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ABSTRACT 

Selective hydrogenation of cyclic-diolefins to cyclo-monoenes is a 

basic route to reactive olefin intermediates for the synthesis of c8 or 

C12 lactams, dicarboxylic acids, and their derivatives. Frequently the 

yield to the desired olefin can be improved by the addition of a small 

amount of material that modifies the system. Sulfur compounds in small 

amounts have been suggested for this purpose but the type of sulfur 

compound and the concentration required to enhance the selectivity has 

not been reported for a palladium catalyst. 

Experiments were conducted in a 300 ml autoclave at room 

temperature, about 25°C, under the hydrogen pressure of 413.7 kPa (60 

psig). The results show that the detailed reaction sequence fits the 

experimental data well when the individual reaction steps are considered 

first order. With the sulfur containing compounds used in this study, 

thiophene, c4H4S, and mercaptan, c10H21sH, thiophene was the best 

reagent to enhance the selectivity and increase the yield of desired 

product, cyclooctene. However, the concentration of thiophene should be 

controlled in a range between 10 to 40 ppm. If excessive amounts of 

thiophene are employed the reaction remains very selective, but the rate 

of conversion of 1,5 cyclooctadiene is dramatically reduced; 

consequently, a low net yield of cyclooctene is obtained. The results 

also indicate that, at the same sulfur content, the mercaptan, c10H21sH, 

immediately poisoned the catalyst and sharply retarded the hydrogenation 

rate, resulting in significant low net yields to cyclooctene. 
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CHAPTER I 

INTRODUCTION/LITERATURE REVIEW 

The objective of this work was to investigate the use of sulfur 

compounds to improve the selectivity for preparing cyclic-monoenes by 

hydrogenation of the corresponding cyclodiolefins over supported 

palladium catalyst in the liquid phase. Selective hydrogenation of 

cyclo-diolefins to cyclic-monoenes is the basic route to prepare a 

reactive intermediate for the synthesis of c8 or c12 lactams, 

dicarboxylic acids, and their derivatives (Hanika et al., 1981; Nowack 

et al., 1985). One of the potential uses of cyclooctene (COE) is its 

oxidation to suberic acid which can be used for synthesis of special 

oils, plasticizers, polyesters, polymides, etc. In spite of the fact 

that the sulfur compounds are known poison for the hydrogenation 

reaction, a number of previous investigations (Genas et al., 1967; 

Kamiyama et al., 1975; Karanth et al., 1975; Lechercq et al., 1981; 

Pearce et al., 1981; Hughes, 1984) have indicated that a small amount of 

sulfur compounds improved the selective hydrogenation of diolefins to 

monoenes. However, no systematic study of the various types of the 

sulfur compounds such as sulfide, mercaptan, and disulfide has been 

reported. Therefore, a systematic study of the effect of the sulfur 

compounds on the selective hydrogenation was made and the effect of the 

various types of sulfur compounds on rate reaction and selectivity 

clarified. 

1 



This study resulted in a recommendation that thiophene is the most 

effective type of sulfur compound for selective hydrogenation. In 

addition, the previously advanced reaction mechanism reactions for 

preparation of cyclic-olefins were tested and compared with the results 

obtained during this investigation with and without sulfur compounds. 

2 

The selective hydrogenation of cyclooctadienes (COD) using soluble 

transition metal complexes was extensively studied (Itatani et al., 

1972; Terasawa et al., 1978; Fuji et al., 1978; Strukul et al., 1979; 

Hirai et al., 1981; Fragale et al., 1984) with a wide variety of 

catalysts such as Nii2(o3 P) 2, PtC1 2(o3 P) 2 + SnC1 2, PdC1 2(o3 P) 2 + 

SnC1 2, [Ir(COD)L2]PF6, etc. The homogeneous catalysts have been studied 

more extensively than any heterogeneously catalysted hydrogenation 

reactions (Johnson et al., 1972; Johnson et al., 1975; Hanika et al., 

1980; Ruman et al., 1982; Morelli et al., 1974; Lalancette, 1974; 

Pickles, 1967). 

In all of these catalytic reactions, isomerization took place with 

or preceded hydrogenation. The rates of isomerization of 1,5 

cyclooctadiene to 1,4 and 1,3 isomers on the platinum catalyst were 

measured and the composition of an equilibrium mixture was determined by 

Tayim et al. (1957). Also, isomerization with the nickel catalyst and 

those containing platinum was reported and compared by Itatani et al. 

(1967). Itatani indicated that nickel catalyst resulted in less 

isomerization than either platinum or palladium catalysts. They also 

pointed out that the rapid migration of double bonds of 1,5 

cyclooctadiene occurs to form the conjugated 1,3 cyclooctadiene and the 

succeeding hydrogenation to cyclooctene, but not to cyclooctane (COA), 

followed pseudo first-order kinetics, after a short induction period. 



In addition to the transition soluble metal complexes, the 

selective hydrogenation of cyclooctadienes catalyzed by colloidal 

palladium in Poly (n-vinyl-2 pyrrolidone) was investigated by Hirai et 

al. (1981). Their results showed that, for the hydrogenation of 1,5 

cyclooctadiene, the catalytic activity of the colloidal palladium was 

2.7 times greater than that of 0.5% palladium on activated charcoal and 

the selectivity of cyclooctadiene to cyclooctene was much higher with 

the colloidal catalyst than with the homogenous palladium complex and 

polymer-bound Pd{II) complexes. 

3 

The isomerization of 1,5 cyclooctadiene to cis-Bicyclo [3.3.0] oct-

2-ene, 1,4 cyclooctadiene, and 1,3 cyclooctadiene catalyzed by 

transition metal complexes, such as Pd(II), Rh(I), Ru(II), Pt(O), 

Pt(II), Mn(II), and Ni(II) complexes was studied by Nishiguchi et al. 

(1975) under various reaction conditions. 

In their studies, Ni(II) complexes were found to have excellent 

catalytic activities for the isomerization to the bicyclic compound. 

The effect of reaction solvent, additives, reaction temperature, 

reaction time, catalyst concentration, and 1,5 cyclooctadiene 

concentration were investigated using NiBr2(PBu3)2 as a catalyst. A 

modified n-allyl mechanism was also proposed for the isomerization. 

Hanika et al. (1981) studied the kinetics of hydrogenation of 1,3 

cyclooctadiene, 1,5 cyclooctadiene, and cyclooctene on supported 

palladium catalysts. The rates of hydrogenation of cyclooctadiene 

isomers and cyclooctene were measured and compared. The reaction system 

could be well described by a kinetic model, depicted below, in which the 

individual reaction steps were assumed the 1st order. 
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1,5 cyclooctadiene + cyclooctene + cyclooctane 

1,3 cyclooctadiene 

Moreover, the highest selectivity for hydrogenation of 1,5 

cyclooctadiene to cyclooctene was obtained with a Pd/Al 2o3 catalyst 

similar to those used in this study. It was also observed that 1,3 

cyclooctadiene was hydrogenated 3.5 time faster than 1,5 cyclooctadiene, 

probably owing to the favorable effect of the double bond conjugation in 

1,3 cyclooctadiene. Therefore, they suggested that the migration of the 

double bonds was induced by the strain in eight membered ring with two 

double bonds and the tendency to form a system of conjugated double 

bonds, which necessarily involved interim formation of the 1,4 isomer. 

Their results also indicated that the rate of hydrogenation of 1,5 

cyclooctadiene on the supported catalysts was 3-4 times higher than the 

rate of isomerization and the subsequent hydrogenation of cyclooctene 

was essentially slower. Thus, the high and flat maximum for the 

concentration of cyclooctene was achieved and it was possible to obtain 

cyclooctene in the reaction mixture at the olefin concentration of 97-

99% mol. 

In addition to the kinetics of hydrogenation of cyclooctadiene 

isomers, Hanika et al. (1981) investigated the effect of internal 

diffusion on the selective hydrogenation of 1,5 cyclooctadiene to 

cyclooctene using both powder and tablet catalysts with 0.6% (by wt.) 

palladium on Al 2o3• The results obtained showed that the retarding 

effect of intra-particle diffusion of the reaction components in porous 

catalysts. The results showed both the expected lowering of the 
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reaction rates and a significant selectivity decrease to cyclooctene 

with the use of tablet catalyst. To avoid these intraparticle diffusion 

effects and accompanying decrease in selectivity (Tamaru., 1951; Mars et 

al., 1964), catalyst with all the palladium deposited in the outside 

surface of the catalyst particles are used for the industrial 

preparation of the cyclic-olefin from the corresponding diolefin. 

Ruman et al. (1982) studied the hydrogenation of 1,5 cyclooctadiene 

to cyclooctene at 68-70oc and 0.25 MPa in the presence of a palladium 

catalyst. The hydrogenation was accompanied by isomerization of 1,5 

cyclooctadiene to 1,3 cyclooctadiene and 1,4 cyclooctadiene. The 

formation of cyclooctane under the given condition was low with 97% 

conversion of 1,5 cyclooctadiene and 94% selectivity to cyclooctene. 

Nowack et al. (1986) investigated the selective hydrogenation of 

1,5 cyclooctadiene to cyclooctene in a very high yields. In their 

experiments, 1,4 cyclooctadiene was hydrogenated in the presence of a 

catalyst composition comprising palladium on alumina and on an aluminum 

phosphate support, Pd/Al 2o3 and Pd/AlP04 respectively. The palladium 

content ranged from about 0.1 to about 20% wt. at the pressure range 

from 15 psia to 5,000 psia and the reaction temperature from 16°C to 

93°C. The experimental results showed that, at equal conversion of 1,5 

cyclooctadiene, the selectivity to cyclooctene was higher for Pd/AlP04 

catalyst than for Pd/Al 2o3 catalyst. Moreover, the selectivity to 

cyclooctene at comparable conversion of 1,5 cyclooctadiene to 

cyclooctene on Pd/AlP04 catalyst was even higher when lithium methoxide 

or lithium methoxide plus a small amount of carbon monoxide, CO, was 

used with the Pd/AlP04 catalyst. This work was directed at optimizing 

the large scale production of cyclooctene from cyclooctadiene and 
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pointed out the effect of catalyst modifier such as CO to increase 

selectivity. The addition of sulfur compound to improve the selectivity 

to cyclooctene was not considered by Nowack. 



CHAPTER II 

EXPERIMENTAL SYSTEM AND PROCEDURE 

The basic objective of this study was to investigate the effects of 

sulfur compounds, thiophene and 1-decanethiol, on the hydrogenation of 

1,5 cyclooctadiene using palladium on y-Al 2o3 as a catalyst. The 

dependence of selectivity to cyclooctene on the various concentrations 

of the sulfur compounds was studied and the kinetic models previously 

described in the literature were used to determine the rate constants 

for the separate steps. 

Experimental 

Chemicals 

1,5 cyclooctadiene (Eastman Kodak Company), b.p. 149°C lit., n5° 

1.4931, density 0.882 

Cyclohexane 99% mol pure (Fisher Scientific), b.p. 80.7 ± 0.1°C, 

density 0.779 

Hydrogen (Big 3 Industries, Inc., Houston, Texas) UN 1049, 99.9% 

mol. 

Thiophene b.p. 84°C, n5° 1.5278, density 1.070 

1-decanethiol, 97% mol pure, b.p. 114°/13 mm, n5° 1.4536, density 

0.841 

7 



Catalyst 

S. D. 143, 0.3% palladium on y-Al 2o3 (Calsicat Chemical Company), 

pellet 3.5 mm in diameter, specific surface area 31 m2/g, pore volume 

0.036 ml/g, pore diameter 462°A. The catalysts were crushed and 

screened prior to use (grain size between 149 ~m and 1000 ~m.) All the 

palladium was deposited on the surface of the catalyst. 

Apparatus and Procedure 

8 

In each experiment, a constant volume batch reactor, a 300 ml 

Autoclave Engineer, connected to a hydrogen source was charged with 1.0 

gram of 0.3% palladium on y-Al 2o3 catalyst, 90 ml of cyclohexane, and 10 

ml of 1,5 cyclooctadiene. The hydrogen pressure was held constant at 

413.7 kPa (kN/m2). 

In examining the dependence of the selective hydrogenation of 1,5 

cyclooctadiene to cyclooctene on the amount of sulfur compounds, various 

amounts of thiophene: 1.0 ~l; 3.0 ~1; 6.0 ~1, and 1-decanethiol: 1.0 

~l; 7.9 ~1, were added into the solution of 90 ml of cyclohexane and 10 

ml of 1,5 cyclooctadiene with 1.0 gram of 0.3% palladium on y-Al 2o3 as a 

catalyst. 

The reactor was flushed free of air by repeatedly filling with 

hydrogen, H2, and venting to the atmosphere several times. After that, 

hydrogen was charged into the reactor in such a fashion that a constant 

pressure at 413.7 kPa (60 psig) was held in the reactor. Then the 

mixture was stirred at 600 rpm and at room temperature. During the 

experiment, the progress of the reaction was monitored by periodically 

sampling the reaction mixture, every hour, until 1,5 cyclooctadiene was 

almost completely converted to products. 
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Analyses 

The progress of the reaction was monitored by periodically sampling 

the reaction mixture. One micro litre samples were injected into a 

Hewlett Packard 5880 A gas-chromatograph equipped with a Hewlett-Packard 

5880 A integrator. A 9.0 meter Carbowax column was used with helium as 

a carrier gas. 

The relative retention times: cyclooctane 1.0, cyclooctene 1.11, 

1,3 cyclooctadiene 1.3, 1,4 cyclooctadiene 1.4, 1,5 cyclooctadiene 1.76. 

Products were identified by direct comparison with actually 

prepared samples made with reagent grade starting reactants. GC/MS was 

run on one of the samples at Phillips Petrolelum to verify the 

identification. 



CHAPTER III 

RESULTS AND DISCUSSION 

Run 6 (Preliminary Experiment) 

A preliminary experiment was made to select a suitable hydrogen 

pressure and an appropriate amount of catalyst for use in this study to 

convert all of the 1,5 cyclooctadiene to products in a reasonable period 

of time. The hydrogenation of 1,5 cyclooctadiene was first studied in 

the absence of a sulfur compound using 1.0 gram of 0.3% wt. Pd/Al 2o3 

catalyst with 90 ml of cyclohexane and 10 ml of 1,5 cyclooctadiene in a 

300 ml autoclave at room temperature, about 25°C, under the hydrogen 

pressure of 413.7 kPa (60 psig). After 1440 minutes, the 1,5 

cyclooctadiene was completely converted to products as shown in Figure 

1. The concentration of cyclooctene obtained was 94.4% mol, and the 

concentration of cyclooctane was 5.7% mol. The amount of cyclooctane 

increased rapidly after the disappearance of 1,5 and 1,4 

cyclooctadiene. At this point, t = 1440 minutes, the selectivity to 

cyclooctene of the obtained product was 94.4%. The selectivities to 

cyclooctene and the corresponding conversions of 1,5 cyclooctadiene are 

tabulated in Table I and also plotted in Figure 2. As may be seen from 

examinations of this figure, the selectivity to cyclooctene was very 

high at low conversion of 1,5 cyclooctadiene and progressively decreased 

with increased conversion. 

10 
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TABLE I 

RUN 6 (NO SULFUR COMPOUND) 

Time (min) % Conversion 
1,5 Cyclooctadiene 

240 50.4 

420 72.5 

660 86.1 

780 89.6 

900 92.1 

1020 94.0 

1140 95.5 

1260 96.5 

1380 97.8 

1440 

% Selectivity Conversion 
to Cyclooctene* f 

0.504 

0.725 

97.8 0.861 

96.8 0.896 

96.6 0.921 

96.0 0.940 

95.5 0.955 

95.2 0.965 

94.8 0.973 

94.4 

* Cyclooctene-yield divided by total yield of cyclooctene and 
cyclooctane. 
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1 
ln (1-f) 

0.703 

1.212 

1.973 

2.214 

2.538 

2.814 

3.101 

3.352 

3.612 
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Analyses of the reaction mixture by gas chromatography clearly 

indicated the formation of 1,4 cyclooctadiene in the earlier stages of 

the hydrogenation reaction. The maximum concentration of 1,4 

cyclooctadiene obtained was about 8% mol at t = 240 minutes and 1,4 

cyclooctadiene was virtually absent after 960 minutes. However, 1,3 

cyclooctadiene was not detected in the reaction mixture at any time 

during this run. This suggests that the rate of hydrogenation of 1,3 

cyclooctadiene was much faster than that of the isomerization of 1,5 

cyclooctadiene to 1,3 cyclooctadiene. 

14 

The first order rate constants for the individual reaction steps in 

this run agree well with those arrived at assuming that hydrogenation of 

1,5 cyclooctadiene follows first order kinetics as shown in Figure 1 and 

Table II. The reaction scheme is shown in Appendix A. 



TABLE II 

VALUES OF THE RATE CONSTANTS OF THE INDIVIDUAL REACTION STEPS 

Rate Constant, min-1 9cat-1 

Sulfur Compound 

k1 k2 k3 k4 k5 

RUN 6 -- -- 6.3xl0-4 4.6x1o-3 -- -- 2. 37xl0-3 

RUN 7 40.7 ppm, c4H4S 8.0x1o-4 3.48x1o-3 -- -- 2 .1xl0-3 

RUN 9 81.3 ppm, C4H4S 3.65x1o-4 l.02x1o-3 3.6xl0-5 --* 1.03xl0-3 

RUN 10 84.2 ppm, c10H21sH 5.0xl0-5 4.0x1o-5 -- -- 5.4x1o-5 

RUN 11 10.7 ppm, c10H21SH 2.19x1o-4 6.669x1o-4 4.23xl0-5 --* 7.27x1o-5 

RUN 27 13.6 ppm, c4H4S 8.9x1o-4 3.56x1o-3 -- -- 2. 2xl0-3 

* The order of magnitude of k value is very small, in the order of 10-7 

k6 

1. 7x1o-3 

3.0x1o-4 

7 .8xl0-5 

....... 
(J1 
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Run 7 

A small amount of thiophene, c4H4S, a concentration approximately 

40.7 ppm, was added into the mixture of 10 ml of 1,5 cyclooctadiene 

solution in 90 ml of cyclohexane using 1.0 gram of 0.3% wt. Pd/Al 2o3 

catalyst, and the hydrogenation was conducted at the same condition used 

previously with no added sulfur compound. The conversion of 1,5 

cyclooctadiene was again followed as a function of time. The formation 

and loss of the various c8 olefins with time is shown in Figure 3. 

At this concentration of thiophene, the results were very similar 

to those obtained earlier in run 6, in the absence of a sulfur 

compound. After 1380 minutes, the conversion of 1,5 cyclooctadiene was 

94.6% mol, the concentration of cyclooctene in the obtained product was 

89.1% mol, and the cyclooctane was 3.1% mol. At this point, the 

selectivity to cyclooctene was 96.6%, which was somewhat greater than 

the selectivity obtained in run 6 at equal conversion of 1,5 

cyclooctadiene. The selectivities of cyclooctene and the corresponding 

conversion of 1,5 cyclooctadiene are tabulated in Table III and also 

plotted in Figure 2. The data plotted in Figure 2 clearly show that the 

selectivity to cyclooctene was higher, at comparable conversion of 1,5 

cyclooctadiene, for run 7 with 40.7 ppm of thiophene, than for run 6, 

with no sulfur compound, especially at conversions of 1,5 cyclooctadiene 

greater than 90% mol. 

Analyses of the reaction mixture by gas chromatography also 

indicated the formation of 1,4 cyclooctadiene in the earlier stages of 

the hydrogenation reaction. The maximum concentration of 1,4 

cyclooctadiene, obtained at t = 240 minutes, was about 10% mol, more 
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TABLE III 

RUN 7 (40.7 PPM of THIOPHENE, C4H4S) 

Time (min) % Conversion 
1,5 Cyclooctadiene 

200 48.7 

420 71.0 

660 82.6 

780 86.1 

840 87.2 

900 88.4 

1020 90.6 

1140 92.2 

1260 93.5 

1320 94.1 

1380 94.6 

% Selectivity 
to Cyclooctene 

97.7 

98.0 

97.5 

97.0 

97.1 

97.1 

96.8 

96.6 

Conversion 
f 

0.487 

0. 710 

0.826 

0.861 

0.872 

0.884 

0.906 

0.922 

0.935 

0.941 

0.946 

18 

1 
ln (1-f) 

0.67 

1.24 

1.75 

1.97 

2.06 

2.15 

2.36 

2.55 

2.73 

2.83 

2.92 



than obtained in the absence of sulfur compound. However, 1,3 

cyclooctadiene was not detectable in the reaction mixture at any time. 

The concentration versus time data for the reaction steps agree 
~ 

well with the assumption that the hydrogenation of 1,5 cyclooctadiene 

follows the 1st order kinetics as shown in Figure 3 and Table II. 
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Run 9 

A small amount of thiophene, c4H4S, a concentration approximately 

81.3 ppm, was added into the 300 ml autoclave containing 10 ml of 1,5 

cyclooctadiene, 90 ml of cyclohexane, and 1.0 gram of Pd/Al 2o3 

catalyst. The hydrogenation of 1,5 cyclooctadiene was done at room 

temperature {25°C) under the hydrogen pressure of 413.7 kPa, and the 

course of the reaction was followed as a function of time. The 

dependence of the reaction mixture composition versus time is shown in 

Figure 4. 

20 

At this concentration of thiophene, 81.3 ppm, the rate of 

hydrogenation of 1,5 cyclooctadiene was obviously slower than for run 6 

and run 7. At t = 3540 minutes, with the conversion of 1,5 

cyclooctadiene of 94.3%, most of the product was cyclooctene {88.5% mol) 

with lesser amounts of 1,4 cyclooctadiene (3.8% mol) and 1,3 

cyclooctadiene (2.0% mol), and a negligible quantity of cyclooctane. 

Analyses again indicated the formation of 1,4 cyclooctadiene and 

some 1,3 cyclooctadiene. The maximum concentration of 1,4 

cyclooctadiene obtained was about 12.5% mol, at t = 520 minutes, higher 

than the concentration obtained in either run 6 and run 7. 

The concentration versus time data support the assumption that the 

hydrogenation of 1,5 cyclooctadiene follows the 1st order kinetics as 

shown in Figure 4 and Table II. 
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Run 10 

A small amount of 1-decanethiol, c10H21sH, a concentration about 

84.2 ppm, was added into the mixture of 10 ml of 1,5 cyclooctadiene and 

90 ml of cyclohexane. The hydrogenation of 1,5 cyclooctadiene was done 

in the autoclave using 1.0 gram of 0.3% Pd/Al 2o3 catalyst at room 

temperature (25aC) under the hydrogen pressure of 413.7 kPa (60 psig). 

At this concentration of 1-decanethiol, 84.2 ppm, the rate of 

hydrogenation of 1,5 cyclooctadiene was remarkably slow as shown in 

Figure 5. Analyses of the reaction mixture by gas-chromatography 

indicated the formation of 1,4 cyclooctadiene; however, no 1,3 

cyclooctadiene and cyclooctane appeared during this experiment. The 

rate of hydrogenation of cyclooctene to cyclooctane and the rate of 

isomerization of 1,5 cyclooctadiene to 1,4 and 1,3 cyclooctadiene were 

sharply retarded by 1-decanethiol apparently due to immediately 

poisoning of the active sites on the catalyst. 

No attempt was made to continue this experiment after 1800 minutes 

because of the low conversion of 1,5 cyclooctadiene and very low yield 

of cyclooctene obtained when this amount of 1-decanethiol was present. 

The values of the rate constants of the individual reaction steps are 

tabulated in Table II. 
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Run 11 

A small amount of 1-decanethiol, c10H21sH, a concentration 

approximately 10.7 ppm, was added into the 300 ml autoclave containing 

10 ml of 1,5 cyclooctadiene, 90 ml of cyclohexane as a solvent, and 1.0 

gram of 0.3% wt. Pd/Al 2o3 catalyst. The hydrogenation of 1,5 

cyclooctadiene was done at the standard test conditions of room 

temperature and under the hydrogen pressure of 413.7 kPa (60 psig). The 

conversion of 1,5 cyclooctadiene was again followed as a function of 

time. 

The dependence of the variations in the reaction mixture 

composition on time during the hydrogenation of 1,5 cyclooctadiene is 

shown in Figure 6. At this concentration of 1-decanethiol, the results 

were similar to those obtained in run 10. The rate of hydrogenation of 

1,5 cyclooctadiene was obviously slow. After 3460 minutes, the 

conversion of 1,5 cyclooctadiene was 55.1% mol, and the concentration of 

cyclooctene was 27.3% mol. 

Analyses of the reaction mixture by gas-chromatography indicated 

the formation of 1,4 cyclooctadiene and 1,3 cyclooctadiene during the 

hydrogenation of 1,5 cyclooctadiene. However, no cyclooctane was formed 

in the system, probably due to complete poisoning of the catalyst. The 

rate constant values of the individual reaction steps in this run are 

tabulated in Table II and then plotted in Figure 6. 
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Run 27 

A small amount of thiophene was added into the mixture of 10 ml 1,5 

cyclooctadiene and 90 ml of cyclohexane with 1.0 gram of 0.3% Pd/Al 2o3 

catalyst. The thiophene concentration was 13.6 ppm. The reactant was 

stirred in the absence of hydrogen gas at atmospheric pressure and room 

temperature (about 25°C) for 1 hr and then hydrogenated at the hydrogen 

pressure of 413.7 kPa (60 psig). 

After 2520 minutes, 1,5 cyclooctadiene was converted completely. 

With this amount of thiophene, time require was 1.75 time longer than 

when no sulfur compound was present. Figure 7 illustrates the 

dependence of the variations in the reaction mixture composition with 

time during the hydrogenation of 1,5 cyclooctadiene. At the 

concentration of thiophene, 13.6 ppm, the results were similar to those 

obtained in run 6, in the absence of a sulfur compound, and run 7, with 

40.7 ppm of thiophene. The concentration of cyclooctene obtained, after 

the disappearance of 1,5 and 1,4 cyclooctadiene, was 95.6% mol, and the 

cyclooctane was 4.4% mol and increasing. Therefore, selectivity to 

cyclooctene in the product was 95.6% for this run. This was more 

selective than for run 6 at equal conversion of 1,5 cyclooctadiene. The 

selectivities to cyclooctene and the corresponding conversion of 1,5 

cyclooctadiene are tabulated and compared with the previous runs in 

Table IV and then plotted in Figure 2. The graph plotted in Figure 8 

clearly shows that the selectivity to cyclooctene was higher at 

comparable conversion of 1,5 cyclooctadiene for run 27, with 13.6 ppm of 

thiophene, than for run 6, with no sulfur compound and roughly equal to 

the selectivity for run 7, with 40.7 ppm of thiophene. The 

hydrogenation of 1,5 cyclooctadiene with 13.6 ppm of thiophene was 
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TABLE IV 

RUN 27 (13.6 PPM OF THIOPHENE, C4H4S) 

Time (min) % Conversion 
1,5 Cyclooctadiene 

240 56.0 

420 75.0 

660 86.1 

720 87.2 

780 88.9 

840 90.1 

900 91.0 

1020 92.4 

1140 93.5 

1260 94.2 

1380 95.0 

1440 95.3 

1860 97.1 

2520 

% Selectivity 
to Cyclooctene 

98.0 

97.9 

97.4 

97.1 

96.9 

96.8 

96.7 

96.6 

96.5 

96.4 

95.6 

Conversion 
f 

0.560 

0.750 

0.861 

0.872 

0.889 

0.901 

0.910 

0.924 

0.935 

0.942 

0.950 

0.953 

0.971 

28 

1 
ln (1-f) 

0.82 

1.38 

1.97 

2.11 

2.2 

2.31 

2.40 

2.57 

2.73 

2.85 

3.00 

3.06 

3.53 
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somewhat faster in this run (run 27) than with 40.7 ppm of thiophene in 

run 7 as expected, due to less amount of sulfur compound poisoning the 

catalyst. 

Analyses of the reaction mixture by gas-chromatography also 

showed the formation of 1,4 cyclooctadiene with the maximum 

concentration of 11.1% mol in the earlier stage of hydrogenation about t 

= 240 minutes. 

Similar to run 6 and run 7, 1,3 cyclooctadiene was not detectable 

in the reaction mixture, probably owing to rapid rate of hydrogenation 

of 1,3 cyclooctadiene. The rate constants of the individual reaction 

steps obtained for hydrogenation of 1,5 cyclooctadiene, 1,4 

cyclooctadiene and cyclooctene are again in very good mutual agreement 

as showed in Figure 7. 

In Figure 8, the graph of % selectivity vs. ln{ 1 ) clearly 1-f 
illustrates that for every point of the experimental data, the 

selectivity to cyclooctene in the systems containing sulfur compounds is 

always higher than in the one without a sulfur compound. On error 

analysis in selectivity to cyclooctene cannot be easily applied to this 

selectivity-conversion plot. 

There is also a significant difference between the values of the 

individual rate constant from cyclooctene to cyclooctane, k6, in the 

presence and absence of sulfur, as shown in Table II. This indicates 

that % selectivity to cyclooctene in the system with a small amount of 

sulfur compound is much higher than the system in the absence of sulfur 

compound. 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

The selective hydrogenation of 1,5 cyclooctadiene to cyclooctene 

with a supported palladium catalyst (0.3% Pd/Al 203) was studied in 

solutions of cyclohexane at room temperature and a hydrogen pressure of 

413.7 kPa using a 300 ml batch autoclave reactor. 

1. The detailed reaction sequence, depicted below, fits the 

experimental data well when the individual reaction steps are considered 

1st order. 

1,3 cyclooctadiene 
, "..I. 

1,5 cyclooctadiene + 1,4 cyclooctadiene + cyclooctene + cyclooctane 

2. The addition of small amounts of sulfur compounds, thiophene, 

C4H4S, and mercaptan, c10H21SH, into the reaction mixture considerably 

improved the selectivity to cyclooctene at comparable conversion of 1,5 

cyclooctadiene, compared with the reaction in the absence of sulfur 

compound. 

3. For sulfur containing compounds considered in this study, 

thiophene, c4H4S, and mercaptan, c10H21sH, thiophene was the best 

reagent to enhance the selectivity and increase the yield of desired 

product, cyclooctene. The optimum content of thiophene was in the range 

of 10 to 40 ppm under these experimental conditions. If the excessive 

amounts of thiophene are employed in the hydrogenation of 1,5 
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cyclooctadiene, the reaction remains very selective, but the rate of 

conversion of cyclooctadienes is dramatically reduced due to poisoning 

of the catalyst. Therefore, the concentration of thiophene must be 

controlled in a range between 10 to 40 ppm to obtain high selectivities 

and reasonable rates of hydrogenation. Compared with mercaptan, 

c10H21sH, thiophene had considerably less effect on the rate of 

reaction. At the same sulfur content, approximately 10 ppm, the 

mercaptan immediately poisoned the catalyst, resulting in significant 

lower rates of the hydrogenation of cyclooctadiene; consequently, a low 

net yield of cyclooctene was obtained in the reaction product with the 

mercaptan. 

As described above, not all sulfur compounds can be used to enhance 

the selective hydrogenation of cyclo-diolefins to cycle-olefin. Some 

compounds have a dramatic effect on the rate of hydrogenation. For 

example, mercaptan and disulfide severely poison the catalyst; 

apparently they are absorbed very tightly and remove active sites from 

participation in the reaction. This results in a low rate of 

hydrogenation, and small changes in the selectivity to the desired 

intermediate, cyclooctene. 

For this reason, thiophene probably remains the ideal sulfur

compound for a catalyst modifier in the selective hydrogenation of 

diolefins to olefin, especially with cyclohexane as a solvent. It 

appears that thiophene is reversibly chemisorbed on the active site, not 

permanent poison, and while it competes with diolefins for sites, also 

markedly reduces olefin adsorption and subsequent hydrogenation to 

saturates. However, it must be used carefully; if excessively added, 

thiophene can also sharply retard the hydrogenation rate. 
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The other advantage that makes thiophene attractive as a catalyst 

modifier is its similarity in boiling point to cyclohexane, a widely 

used solvent for diolefin hydrogenation. The boiling points of 

thiophene and cyclohexane are almost the same (the boiling point of 

thiophene is 84°C and cyclohexane is 80.7°C). Thus, cyclohexane and 

added thiophene can be easily separated from c8 products by overhead 

distillation and the mixed thiophene-cyclohexane solvent can be recycled 

many times without adding fresh thiophene. 

For many purposes, thiophene would be the catalyst modifier of 

choice for use in selective hydrogenation reaction, particularly when 

cyclohexane is the solvent. 

Recommendations 

Thiophene would be the reagent of choice to improve the selective 

hydrogenation of cyclic-diolefins to monoenes. It is reversibly 

adsorbed by the catalyst and improves the selectivity of the reaction. 

Other sulfur compounds are less effective. It is likely that other 

sulfides, such as dimethyl sulfide and diethyl sulfide would react with 

catalyst in the same manner as thiophene. That is, they would not 

permanent poison the catalyst and reversibly chemisorbed on the active 

sites (proprietary data, as shown in Appendix G). Thus they function a 

similar manner and in some instances would offer some possible 

advantages in separation of the product from the solvent. These 

materials should be tested in future work along with carbonyl sulfide, 

COS, which is normally a gas and could be used effectively in flow 

reactors and recycled with the excess hydrogen. Mercaptans and 

disulfided are strongly adsorbed by the catalyst and dramatically reduce 



34 

catalyst activity. Their use as a catalyst modifier is not recommended. 
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REACTION SCHEME 

In this work, the following reaction scheme for hydrogenation of 

1,5 cyclooctadiene has been proposed: 

1,3 COD (C) 

1,5 COD (A)~1,4 COD (B)~COE (D)~COA (E) 
I kl k2 t 

ks 
For a constant volume of the reaction mixture and constant hydrogen 

pressure, the following system of equations can be written for 

hydrogenation of 1,5 cyclooctadiene in a constant volume batch reactor. 

dC 
dtA = - (k1+k3+k5) CA (A-1) 

.Q.CB = 
dt k1CA - k2CB (A-2) 

g_cc = 
dt k3CA - k4CC (A-3) 

.Q.CD = 
dt k2CB + k4CC + k5CA - k6CD (A-4) 

.Q.CE = 0 (A-5) dt CA - CA - CB - CC - CD 

with the initial conditions 

(A-6) 

The system of differential equations were solved by analytical 

method as following cases: 

Case I. For the system without 1,3 cyclooctadiene occuring, such 

as run 6, run 7 and run 27, the following reaction scheme for 

hydrogenation can be shown as: 
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k1 k2 k6 

1,5 COD (A)+1,4 COD (B)+COE (D)+COA (E) 

k5 

The concentrations of each component can be determined by using 

equation A-1 through A-6 as follows: 

0 k1CA -k't -k2t 
CB = -(r.-k--'-2 ,;__---:-k....-;' ),-- [ e - e ] 

(k1k2 + k2k5 - k'k5) c~ -k't k6t 
Co= (k2- k') (k6- k') [e - e 1 

0 k1k2CA -k6t -k2t 
+ -(r.-k'--'2 :;;_-~k~,...-) --.(~k 6--....,..k..,.....' ),_.. [ e - e ] 

k6(k1k2 + k2k5- k'k5)C~ e-k6t e-kt 
CE = (k2 - k') (k6 - k') [ ~ - ~ ] 

Case II. For the system without cyclooctane appearing in the 

reaction mixture, such as run 9 and run 11, the following reaction 

scheme for hydrogenation can be depicted as: 

(A-7) 

(A-8) 

(A-9) 

(A-10) 
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1,3 COD (C) 

1,5 COD (A) + 1,4 COD (B) + COE (D) 
I kl kz t 

ks 
The concentrations of each component can be obtained as follows: 

The concentration of A can be obtained from equation A-7. 

The concentration of B can be calculated from equation A-8. 

0 k3CA -k't -k t 
Cc = ( ) [e - e 4 1 k4- k' 

+ (k2- k'} 

0 -k t k c 
(e 2 _1} + 3 A 

(k4- k') 

Case III. For the system without 1,3 cyclooctadiene and 

cyclooctane present in the reaction mixture, such as run 10, the 

following reaction scheme for hydrogenation can be depicted as: 

k1 k2 

1,5 COD (A) + 1,4 COD (B) + COE (D) 

k5 

(A-ll) 

(A-12) 

The concentrations of each component can be obtained as follows: 

The concentration of A can be obtained from equation A-7. 

The concentration of B can be calculated from equation A-8. 



42 

-k 1 t 
(e - 1)] 

kl 

0 k5 CA -k•t 
- -k-. (e - 1) (A-13) 

K values of each individual reaction step are fitted the 

experimental data by using Nonlinear Regression Analysis by Marquardt 

method. 



APPENDIX B 

COMPUTER PROGRAM FOR CONCENTRATION AND 

INDIVIDUAL RATE CONSTANT 
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C234567 
1 REAL KD,K1,K2,K3,K4,KS,K6 
2 INTEGER NCASE,TS,TE,NT,RUN 

C************************************************************ 
c 
C DATA RUN 
C INPUT RUN ll 
c 

3 RUN • 
c 
c INPUT INITIAL CONCENTRATION 
c 

4 CAO • 
c 
c INPUT K VALUE 
c 

5 KD 
6 K1 
7 K2 
8 K3 
9 K4 

10 K5 
11 K6 

c 
c INPUT STARTING TIME 
c 

12 TS 
c 
c INPUT ENDING TIME 
c 

13 TE 
c 
c INPUT INCREASING TIME 
c 

14 NT 
C************************************************************ 
c * 
C INPUT CASE t * 
c * 
C CASE I * 
c * 
C 1,5 COD --. 1,4 COD--. COE --. COA * 
c * 
c * 
C CASE II * 
c * 
C 1,3 COD * 
c ./" ............ * 
C 1,5 COD- 1,4 COD- COE * 
c * 
c * 
C CASE III * 
c * 
C 1,5 COD~ 1,4 COD--. COE * 
c * 
c * 
C*************************************************** 
c 

15 NCASE • 



c 
c 

16 WRITE(6,1) RUN 
17 1 FORMAT(3X,'RUN • ',!5,//) 
18 WRITE(6,5) KD,K1,K2,K3,K4,K5,K6 
19 5 FORMAT(3X,'K s ',F10.7,3X,'K1 • ',Fl0.7, 

$ 3X,'K2 • ',F10.7,3X,'K3 • ',F10.7,/, 
$ 3X,'K4 • ',F10.7,3X,'K5 • ',F10.7, 
$ 3X,'K6 • ',F10.7,//) 

20 DD2 • K2-KD 
21 DD4 • K4-KD 
22 DD6 • K6-KD 
23 D26 • K6-K2 

24 
25 
26 
27 

28 
29 

30 

c 

c 

c 

c 
c 
c 
c 

T12 • K1*K2 
T25 • K2*K5 
TDS • KD*K5 
T34 • K3*K4 

D1 • (T12+T25-TD5)/(DD2*DD6) 
D2 • Tl2/(DD2*D26) 

GO TO (10,100,200),NCASE 

CASE I 

31 10 WRITE(6,15) 
32 15 FORMAT(3X,'T(MIN)' ,2X,'1,5 COD' ,3X,'l,4 COD', 

$ SX,'COE' ,7X,'COA'/) 
33 DO 50 I•TS,TE,NT 
34 EKD • EXP(-KD*I) 
35 EK2 • EXP(-K2*I) 
36 EK4 • EXP(-K4*I) 
37 EK6 • EXP(-K6*I) 
38 CALL AI(EKD,CAO,CA) 
39 CALL BI(EKD,EK2,K1,DD2,CAO,CB) 
40 CALL DI(EKD,EK2,EK6,D1,D2,CAO,CD) 
41 CALL EI(EKD,EK2,EK6,D1,D2,DD2,KD,K1,K2,K6, 

42 
43 
44 
45 
46 
47 

$ T12,T25,TD5,CAO,CE) 
C************************************************************ 
c * 
C CA • CONCENTRATION OF 1,5 COD * 
C CB • CONCENTRATOIN OF 1,4 COD * 
C CC • CONCENTRATION OF 1,3 COD * 
C CD • CONCENTRATION OF COE * 
C CE • CONCENTRATION OF COA * 
c * 
C************************************************************ 
c 
C CONVERT CA,CB,CD,CE INTO MOLE FRACTION 
c 
C************************************************************ 
c * 

CT • CA+CB+CD+CE 
AA • CA/CT 
BB • CB/CT 
DD • CD/CT 
EE • CE/CT 

WRITE(6,20) I,AA,BB,DD,EE 

45 



48 20 FORMAT(3X,I5,3X,F7.4,3X,F7.4, 
S 3X,F7.4,3X,F7.4) 

49 50 CONTINUE 
50 STOP 

51 
52 

53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 

68 
69 

70 
71 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

c 
C CASE II 
c -------
c 

c 
c 
c 
c 

100 WRITE(6,110) 
110 FORMAT(3X,'T(MIN)' ,2X,'l,5 COD' ,3X,'l,4 COD', 

s 3X, I 1, 3 COD I , sx, I COE. ) 

s 

120 
s 

150 

DO 150 IzTS,TE,NT 
EKD s EXP(-KD*I) 
EK2 • EXP(-K2*I) 
EK4 s EXP(-K4*I) 

CALL AI(EKD,CAO,CA) 
CALL BI(EKD,EK2,Kl,DD2,CAO,CB) 
CALL CII(EKD,EK4,DD4,K3,CAO,CC) 
CALL DII(EKD,EK2,EK4,DD2,DD4,KD,Kl,K3,K5, 

T12,T34,CAO,CD) 
CT • CA+CB+CC+CD 
AA • CA/CT 
BB • CB/CT 
CC • CC/CT 
DO • CD/CT 

WRITE(6,120) I,AA,BB,CC,DD 
FORMAT(3X,I5,3X,F7.4,3X,F7.4, 

3X,F7.4,3X,F7.4) 
CONTINUE 
STOP 

CASE II I 

200 WRITE(6,210) 
210 FORMAT(3X,'T(MIN)' ,2X,'l,5 COD' ,3X,'l,4 COD', 

S 5X,'COE') 
. DO 250 I•TS,TE,NT 

EKD • EXP(-KD*I) 
EK2 • EXP(-K2*I) 

CALL AI(EKD,CAO,CA) 
CALL BI(EKD,EK2,Kl,DD2,CAO,CB) 
CALL DIII(EKD,EK2,DD2,KD,K2,K5,Tl2,CAO,CD) 

CT • CA+CB+CD 
AA ,. CA/CT 
BB • CB/CT 
OD • CD/CT 

WRITE(6,220) I,AA,BB,DD 
220 FORMAT(3X,I5,3X,F7.4,3X,F7.4,3X,F7.4) 
250 CONTINUE 

STOP 
END 

C************************************************************ 
c * 
C SUB AI * 
c .... 
C CALCULATION OF 1,5 COD CONCENTRATION IN CASE I "' 
c .... 
C************************************************************ 
c 
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87 
68 
89 
90 
91 

92 
93 
94 
95 
96 
97 
98 

99 
100 
101 
102 
103 

SUBROUTINE ~I(EKD,CAO,CA) 
REAL EKD,CAO,CA 
CA = CAO*EKD 

RETURN 
END 

C***********"'*"'*"'*"'"'**********"'****************************** 
c * 
C SUB BI * 
c * 
C CALCULATION OF 1,4 COD CONCENTRATION IN CASE I * 
c * 
C**************************************"'********************* 
c * 

SUBROUTINE BI(EKD,EK2,K1,DD2,CAO,CB) 
REAL EKD,EK2,K1,DD2,CAO,CB 
B1 • K1*CAO/DD2 
B2 • EKD-EK2 
CB "' B1*B2 

RETURN 
END 

C************************************************************ 
c * 
C SUB DI * 
c * 
C CALCULATION OF COE CONCENTRATION IN CASE I * 
c * 
C************************************************************ 
c * 

SUBROUTINE DI(EKD,EK2,EK6,D1,D2,CAO,CD) 
REAL EKD,EK2,EK6,D1,D2,CAO,CD 
CD • CAO*(D1*(EKD-EK6)+D2*(EK6-EK2)) 

RETURN 
END 

C************************************************************ 
c * 
C SUB EI * 
c * 
C CALCULATION OF COE CONCENTRATION IN CASE I * 
c * 
C************************************************************ 
c * 

104 SUBROUTINE EI(EKD,EK2,EK6,D1,D2,DD2,KD,K1,K2,K6, 
S T12,T25,TD5,CAO,CE) 

105 REAL EKD,EK2,EK6,D1,D2,DD2,KD,K1,K2,K6, 
$ T12,T25,TD5,CAO,CE 

106 CE1 • K6*D1*(EK6/K6-EKD/KD) 
107 CE2 • K6*D2*(EK2/K2-EK6/K6) 
108 CE3 • (Tl2+T25-TD5)/(KD*DD2) 
109 CE4 • K1/DD2 
110 CE • (CE1+CE2+CE3-CE4)*CAO 
111 RETURN 
112 END 

C************************************************************ 
c * 
C SUB CII * 
c * 
C CALCULATION OF 1,3 COD IN CASE II * 
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113 
114 
115 
116 
117 

118 

119 

120 
121 
122 
123 
124 
125 

126 
127 
128 
129 
130 
13l 
132 
133 
134 

c * C************************************************************ 
c * 

SUBROUTINE CII(EKD,EK4,DD4,K3,CAO,CC) 
REAL EKD,EK4,DD4,K3,CAO,CC 
CC • K3*CAO*(EKD-EK4)/DD4 

RETURN 
END 

C************************************************************ 
c * 
C SUB Dl I * 
c * 
C CALCULATION OF COE CONCENTRATION IN CASE II * 
c * 
C************************************************************ 
c * 

SUBROUTINE DII(EKD,EK2,EK4,DD2,DD4,KD,K1,K3,K5, 
$ Tl2,T34,CAO,CD) 

REAL EKD,EK2,EK4,DD2,DD4,KD,K1,K3,K5, 
$ T12,T34,CAO,CD 

CD1 • (T12/DD2+T34/DD4+K5}*(l-EKD}/KD 
CD2 • K1*(EK2-1)/DD2 
CD3 • K3*(EK4-1)/DD4 
CD • (CD1+CD2+CD3)*CAO 

RETURN 
END 

C************************************************************ 
c * 
C SUB DI I I * 
c * 
C CALCULATION OF COE CONCENTRATION IN CASE III * 
c * 
C************************************************************ 
c * 

SUBROUTINE DIII(EKD,EK2,DD2,KD,K2,K5,T12,CAO,CD) 
REAL EKD,EK2,002,KD,K2,K5,T12,CAO,CD 
XEK2 • K2*(EK2-l) 
XEKD • KD*(EKD-l) 
COl • T12*(XEK2-XEKD)/DD2 
CD2 • KS*(EKD-1)/KD 
CD s (CD1-CD2)*CAO 

RETURN 
END 
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RUN • 6 

K .. 0.0030000 Kl 0.0006300 K2 ,. 0.0046000 K3 = 0.0000000 
K4 "' 0.0000000 KS 0.0023700 K6 "' 0.0001700 

T(MIN) 1,5 COD 1,4 COD COE COA 

60 0.8353 0.0301 0.1339 0.0007 
120 0.6977 0.0480 0.2517 0.0027 
180 0.5827 0.0574 0.3541 0.0058 
240 0.4868 0. 0611 0.4423 0.0099 
300 0.4066 0.0610 0.5176 0. 0148 
360 0.3396 0.0585 0.5815 0.0204 
420 0.2837 0.0547 0.6351 0.0266 
480 0.2369 0.0500 0.6798 0.0333 
540 0.1979 0.0451 0.7166 0.0404 
600 0.1653 0.0402 0.7466 0.0479 
660 0.1381 0.0355 0.7708 0.0556 
720 0.1153 0.0311 0.7900 0.0636 
780 0.0963 0.0270 0.8049 0.0717 
840 0.0805 0.0234 0.8161 0.0800 
900 0.0672 0.0202 0.8242 0.0884 
960 0.0561 0.0173 0.8297 0.0968 

1020 0,0469 0.0149 0.8330 0.1053 
1080 0.0392 0.0127 0.8344 0.1138 
1140 0.0327 0.0108 0.8342 0.1223 
1200 0.0273 0.0092 0.8327 0.1308 
1260 0.0228 0.0078 0.8301 0.1393 
1320 0.0191 0.0066 0.8266 0.1477 
1380 0.0159 0.0056 0.8223 0.1562 
1440 0.0133 0.0047 0.8175 0.1645 



50 

RUN • 7 

K 0.0029000 K1 0.0008000 K2 0.0034800 K3 0.0000000 
K4 " 0.0000000 K5 0.0021000 K6 0.0003030 

T(MIN) 1,5 COD 1,4 COD COE COA 

60 0.8403 0.0396 0. 1190 0.0011 
120 0.7061 0.0655 0.2242 0.0042 
180 0.5933 0. 0811 0.3164 0. 0092 
240 0.4986 0.0894 0.3964 0.0157 
300 0.4190 0.0923 0.4652 0.0235 
360 0.3520 0.0915 0.5239 0.0325 
420 0.2958 0.0882 0.5734 0.0425 
480 0.2486 0.0833 0. 6148 0.0533 
540 0.2089 0.0775 0.6488 0.0648 
600 0.1755 0.0712 0.6764 0.0769 
660 0.14 75 0.0647 0.6984 0.0894 
720 0.1239 0.0584 o. 7155 0.1022 
780 0.1041 0.0523 0.7282 0.1154 
840 0.0875 0.0466 0.7372 0.1287 
900 0.0735 0.0412 0. H31 0.1422 
960 0.0618 0.0364 0.7461 0.1557 

1020 0.0519 0.0320 0.7468 0.1693 
1080 0.0436 0.0280 0.7455 0.1828 
1140 0.0367 0.0245 0. 7425 0.1964 
1200 0.0308 0.0213 0.7381 0.2098 
1260 0.0259 0.0185 0,7324 0.2232 
1320 0.0218 0.0161 0.7257 0.2365 
1380 0.0183 0.0139 0.7183 0.2496 
1440 0.0154 0.0120 0. 7101 0.2626 



51 

RUN • 9 

K .. 0.0008500 K1 " 0.0003650 K2 = 0.0010180 K3 = 0.0000360 
K4 .. 0.0000000 K5 " 0.0010300 K6 " 0.0000000 

T(MIN) 1,5 COD 1,4 COD 1,3 COD COE 
60 0.9190 0.0200 0.0020 0.0589 

120 0.8469 0.0367 0.0039 0.1125 
180 0.7823 0.0506 0.0055 0.1616 
240 0. 7241 0.0622 0.0069 0.2068 
300 0. 6716 0. 0717 0.0083 0.2484 
360 0.6240 0.0796 0.0095 0.2870 
420 0.5806 0.0859 0.0106 0.3229 
480 0.5411 0. 0911 0. 0115 0.3563 
540 0.5049 0.0951 0.0125 0.3875 
600 0.4717 0.0983 0.0133 0.4168 
660 0.4412 0.1006 0.0141 0.4442 
720 0.4130 0.1022 0. 0148 0.4700 
780 0. 3871 0.1033 0.0154 0.4942 
840 0.3630 0.1038 0.0160 0.5171 
900 0.3408 0.1039 0.0166 0.5387 
960 0.3201 0.1036 0. 0171 0.5592 

1020 0.3009 0.1030 0.0176 0.5785 
1080 0. 2831 0.1021 0.0180 0.5968 
1140 0.2664 0.1009 0.0185 0.6142 
1200 0.2509 0.0995 0.0188 0.6307 
1260 0.2364 0.0980 0.0192 0.6464 
1320 0.2229 0.0963 0.0196 0.6612 
1380 0.2102 0.0945 0.0199 0.6754 
1440 0.1983 0.0926 0.0202 0.6889 
1500 0.1872 0.0906 0.0204 0.7017 
1560 0.1768 0.0886 0.0207 o. 7140 
1620 0.1670 0.0864 0.0210 0.7256 
1680 0.1578 0.0843 0.0212 0.7367 
1740 0.1491 0.0821 0.0214 o. 7473 
1800 0.1410 0.0800 0.0216 0.7574 
1860 0.1334 0.0778 0. 0218 0. 7671 
1920 0.1262 0.0756 0.0220 0.7763 
1980 0.119.4 0.0734 0.0222 0.7851 
2040 0.1130 0. 0712 0.0223 0.7935 
2100 0.1070 0.0691 0.0225 0.8015 
2160 0.1013 0.0670 0.0226 0.8092 
2220 0.0959 0.0649 0.0227 0.8165 
2280 0.0908 0.0628 0.0229 0.8235 
2340 0.0861 0.0608 0.0230 0.8302 
2400 0.0815 0.0588 0.0231 0.8366 
2460 0.0773 0.0568 0.0232 0.8427 
2520 0.0732 0.0549 0.0233 0.8485 
2580 0.0694 0. 0531 0.0234 0. 8541 
2640 0.0658 0.0512 0.0235 0.8595 
2700 0.0624 0.0494 0.0236 0.8646 
2760 0.0592 0.0477 0.0237 0.8695 
2820 0.0561 0.0460 0.0237 0. 8741 
2880 0.0532 0.0444 0.0238 0.8786 
2940 0.0505 0.0428 0.0239 0.8829 
3000 0.0479 0. 0412 0.0240 0.8870 
3060 0.0454 0.0397 0.0240 0.8909 
3120 0.0431 0.0382 0.0241 0.8946 
3180 0.0409 0.0368 0. 0241 0.8982 
3240 0.0388 0.0354 0.0242 0.9016 
3300 0.0368 0.0341 0.0242 0.9049 
3360 0.0350 0.0328 0.0243 0.9080 
3420 0.0332 0.0315 0.0243 0. 9110 
3480 0.0315 0.0303 0.0244 0.9138 
3540 0.0299 0.0291 0.0244 0.9166 



52 

RUN "' 10 

K 0.0001020 K1 0.0000500 K2 0.0000400 K3 0.0000000 

K4 0.0000000 K5 0.0000540 K6 0.0000000 

T(MIN) 1,5 COD 1,4 COD COE 
60 0.9938 0.0030 0.0032 

120 0.9876 0.0059 0.0064 
180 0.9815 0.0089 0.0096 
240 0.9754 0.0118 0.0128 

300 0.9694 0.0147 0.0159 
360 0.9634 0.0175 0.0191 
420 0.9574 0.0204 0.0222 
480 0.9515 0.0232 0.0253 
540 0.9457 0.0260 0.0283 
600 0.9399 0.0287 0.0314 
660 0.9341 0.0315 0.0344 
720 0.9284 0.0342 0.0375 
780 0.9227 0.0369 0.0405 
840 0.9170 0.0395 0. 04 34 
900 0. 9114 0.0422 0.0464 
960 0.9059 0.0448 0.0493 

1020 0.9003 0.0474 0.0523 
1080 0.8949 0.0500 0.0552 
1140 0.8894 0.0525 0.0581 
1200 0.8840 0.0551 0.0609 
1260 0.8786 0.0576 0.0638 
1320 0.8733 0.0601 0.0666 
1380 0.8680 0.0625 0.0695 
1440 0.8628 0.0650 0.0723 
1500 0.8575 0.0674 0.0751 
1560 0.8524 0.0698 0. 0778 
1620 0.8472 0.0722 0.0806 
1680 0.8421 0.0746 0.0833 
1740 0.8370 0.0769 0.0861 
1800 0.8320 0.0792 0.0888 



53 

RUN "' 11 

K - 0.0002917 K1 • 0.0002190 K2 = 0.0006688 K3 = 0.0000420 
K4 • 0.0000000 K5 0.0000727 K6 = 0.0000000 

T(MIN) 1,5 COD 1,4 COD 1,3 COD COE 
60 0.9802 0.0127 0.0025 0.0046 

120 0.9608 0.0247 0.0049 0.0095 
180 0.9419 0.0359 0.0073 0.0149 
240 0.9234 0.0464 0.0096 0.0206 
300 0.9053 0.0562 0.0119 0.0266 
360 0.8876 0.0654 0.0142 0.0328 
420 0.8702 0. 0740 0.0163 0.0394 
480 0.8533 0.0820 0.0185 0.0462 
540 0.8367 0.0895 0.0206 0. 0532 
600 0.8205 0.0965 0.0226 0.0604 
660 0.8046 0.1030 0.0246 0.0679 
720 0.7890 0.1090 0.0266 0.0754 
780 0.7738 0.1145 0.0285 0. 0832 
840 0.7589 0.1197 0.0303 0.0911 
900 0. 7444 0.1244 0.0322 0.0991 
960 0.7301 0.1288 0.0340 0.1072 

1020 0. 7161 0.1328 0.0357 0.1154 
1080 0.7024 0.1365 0.0375 0.1236 
1140 0.6890 0.1398 0.0391 0.1320 
1200 0.6759 0.1429 0.0408 0.1404 
1260 0.6631 0.1456 0.0424 0.1489 
1320 0.6505 0.1481 0.0440 0.1574 
1380 0.6382 0.1504 0.0455 0.1659 
1440 0.6261 0.1524 0. 04 71 0.1745 
1500 0.6143 0.1541 0.0485 0.1831 
1560 0.6027 0.1557 0.0500 0.1916 
1620 0.5913 0.1570 0. 0514 0.2002 
1680 0.5802 0.1581 0.0528 0.2088 
1740 0.5693 0.1591 0.0542 0.2174 
1800 0.5587 0.1599 0.0555 0.2259 
1860 0.5482 0.1605 0.0569 0.2344 
1920 0.5380 0.1610 0.0582 0,2429 
1980 0.5279 0.1613 0.0594 0. 2514 
2040 0.5181 0.1615 0.0607 0.2598 
2100 0.5084 0.1615 0.0619 0.2682 
2160 0.4990 0.1615 0.0631 0.2765 
2220 0.4897 0.1613 0.0642 0.2848 
2280 0.4806 0.1610 0.0654 0.2930 
2340 0.4717 0.1606 0.0665 0.3012 
2400 0.4630 0.1601 0.0676 0.3093 
2460 0.4544 0.1595 0.0687 0.3174 
2520 0.4460 0.1589 0.0697 0.3254 
2580 0.4378 0.1582 0.0708 0.3333 
2640 0.4297 0.1573 0.0718 0.3411 
2700 0.4218 0.1565 0.0728 0.3489 
2760 0. 4141 0.1555 0.0737 0.3566 
2820 0.4065 0.1546 0. 074 7 0.3643 
2880 0.3990 0.1535 0.0756 0. 3718 
2940 0.3917 0.1524 0.0766 0.3793 
3000 0.3845 0.1513 0.0775 0.3867 
3060 0. 3775 0.1501 0.0783 0. 3941 
3120 0.3706 0.1489 0. 0792 0.4013 
3180 0.3638 0.14 76 0.0801 0.4085 
3240 0.3572 0.1463 0.0809 0.4156 
3300 0.3507 0.1450 0.0817 0.4226 
3360 0.3443 0.1436 0.0825 0.4295 
3420 0.3380 0.1423 0.0833 0.4364 



54 

RUN ,. 27 

K = 0.0030900 K1 • 0.0008900 K2 = 0.0035600 K3 .. 0.0000000 

K4 = 0.0000000 KS "' 0.0022000 K6 ,. 0.0000780 

T(MI'N) 1,5 COD 1,4 COD coe: COA 

60 0.8308 0.0437 0.1252 0.0003 

120 0.6902 0.0717 0.2370 0.0011 
180 0.5734 0.0881 0;3360 0.0025 
240 0.4764 0.0962 0.4232 0.0043 
300 0.3957 0.0986 0.4993 0.0064 
360 0.3288 0.0969 0.5654 0.0089 
420 0.2731 0.0927 0.6225 0. 0117 
480 0.2269 0.0868 0.6716 0.0147 
540 0.1885 0.0800 0.7135 0.0180 
600 0.1566 0.0729 0. 7491 0.0214 
660 0.1301 0.0657 0.7792 0.0250 
720 0.1081 0.0588 0.8044 0.0287 
780 0.0898 0.0522 0.8255 0.0325 
840 0.0746 0.0461 0.8429 0.0364 
900 0.0620 0.0405 0.8571 0.0404 
960 0.0515 0.0354 0.8687 0.0444 

1020 0.0428 0.0308 0.8778 0.0485 
1080 0.0355 0.0268 0.8850 0.0527 
1140 0.0295 0.0232 0.8905 0.0568 
1200 0.0245 0.0200 0. 8 94 5 0.0610 
1260 0.0204 0.0172 0.8972 0.0652 
1320 0.0169 0.0148 0.8989 0.0694 
1380 0.0141 0.0127 0.8996 0.0736 
1440 0. 0117 0.0109 0.8996 0.0778 
1500 0.0097 0.0093 0.8990 0.0820 
1560 0.0081 0.0079 0.8978 0.0862 
1620 0.0067 0.0068 0.8961 0.0904 
1680 0.0056 0.0058 0.8941 0.0946 
1740 0.0046 0.0049 0.8917 0.0988 
1800 0.0038 0.0042 0.8891 0.1030 
1860 0.0032 0.0035 0.8862 0.1071 
1920 0.0027 0.0030 0.8831 0.1112 
1980 0.0022 0.0025 0.8799 0.1154 
2040 0.0018 0.0021 0.8766 0.1195 
2100 0.0015 0.0018 0.8731 0.1236 
2160 0.0013 0.0015 0.8696 0.1277 
2220 0.0010 0.0013 0.8660 0.1317 
2280 0.0009 0.0011 0.8623 0 .13 58 
2340 0.0007 0.0009 0.8586 0.1398 
2400 0.0006 0.0008 0.8548 0.1438 
2460 0.0005 0.0006 0.8511 0.1478 
2520 0.0004 0.0005 0.8473 0.1518 



K values of each individual reaction step are fitted the 

experimental data by using Nonlinear Regression Analysis by Marquardt 

method. 
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The example of list of the program for 1,5 cyclooctadiene in run 27 

is shown in the following page. 



TITLE 'TEST'; 
DATA TEST; 

INPUT X Y ·~; 
CARDS; 

0 .8494 60 .7861 120 .5441 180 .4575 240 .3654 300 .2919 
360 .2474 420 .2058 480 .1728 540 .1486 600 .1298 660 .1122 
720 .0992 780 .0902 840 .0826 900 .0750 960 .0697 
1020 .0637 1080 .0578 1140 .0543 1200 .0521 1260 .0482 
1320 .0433 1380 .0414 1440 .0400 
1500 .0358 1560 .0313 1620 .0307 1680 .0298 1740 .0271 
1800 .0266 1860 .02416 . 
PROC NLIN BEST=10 PLOT METHOD=MARQUAROT; 

PARMS 80=0 TO .002; 
MODEL Y=.8333*EXP(-BO*X); 

DER.BO = .8333*(-X)*EXP(-BO*X); 
OUTPUT OUT=B P=YHAT R=YRESID; 

PROC PLOT DATA=B; 
PLOT Y*X='A' YHAT*X='P' /OVERLAY VPOS=25; 

PLOT YRESID*X/VREF=O VPOS=25; 
RUN; 
II 
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CONVERGENCE CRITERION MET. 

TEST 

NON-LINEAR LEAST SQUARES ITERATIVE PHASE 

DEPENDENT VARIABLE: Y METHOD: MARQUARDT 

RESIDUAL SS ITERATION 80 

0 0 
1 0.0007278599 
2 0.0015472323 
3 0.0023707363 
4 0.0029125011 
5 0.0030817281 
6 0.0031057135 
7 0.0031080523 
8 0.0031082664 
9 0.0031082859 

TEST 

15.641286809600 
3.076624933024 
0.593393510142 
0.098226287524 
0.031338414446 
0.027708020384 
0.027646072131 
0.027645496250 
0.027645491432 
0.027645491392 

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y 

SOURCE OF SUM OF SQUARES MEAN SQUARE 

REGRESSION 1 
RESIDUAL 31 
UNCORRECTED TOTAL 32 

(CORRECTED TOTAL) 31 

PARAMETER ESTIMATE 

2.2827745742 
0.0276454914 
2.3104200656 

1.4213222755 

ASYMPTOTIC 
STD. ERROR 

2.2827745742 
0.0008917900 

BO 0.0031082859 .000096244071 

ASYMPTOTIC 95 % 
CONFIDENCE INTERVAL 
LOWER UPPER 

0.00291199621 0.00330457563 

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS 

CORR BO 

BO 1.0000 U1 
'-I 



It 
0.8 .f. A 

p 
R 
E 
0 
I 0. 6 + 
c 
T 
E 
0 

v 
A 
L 
u 

0.4 + 

E 0.2 + 

0.0 + 

p 

• 
p 
A 

p 
A 

p 
A p 

A p 
A p 

A • It • It • 

PLOT OF Y*X 
PLOT OF YHAT*X 

• A A A 
p p p It 

TEST 

It 

SYMBOL USED IS A 
SYMBOL USED IS P 

A A A A A A 
p p p p p p 

A A A A A A 
p p p p p p 

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-------
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 

X 

CJl 
00 



R 
E 
s 
I 
D 
u 
A 
L 

TEST 

PLOT OF YRESID*X LEGEND: A 1 OBS, B 2 OBS, ETC. 

0. 100 + 

I 
A 

0.075 + 

I 
0.050 + 

I A A A A A A A A 
0.025 + A A A A A A A A 

lA 
A A A 

A 
A 

0.000 +------------------------------A--------------------------------------------------------------------
1 A A A A 

-0.025 + A 

I 
A A 

A 

-0.050 + 
-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--------

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 

X 

U"l 
<.0 



APPENDIX C 

OTHER EXPERIMENTS IN THIS STUDY 
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OTHER EXPERIMENTS IN THIS STUDY 

During this study, in addition to run 6, 7, 9, 10, 11, and 27, 

which are reported in Chapter III, a number of experiments were 

performed. The purposes and results of these experiments are presented 

briefly as follows: 

Run 1 through 5 were made to select the appropriate conditions, 

such as suitable hydrogen pressure, an amount of catalyst, and stirring 

speed so that the course of the reaction could be followed in the 

convenient and accurate time frame. The results of these experiments 

showed that the reaction rate was independent of the stirring speed, 

especially in the range of 600 to 1000 rpm. The fact was also pointed 

out from a number of previous works with a similar catalyst by Dr. M. M. 

Johnson (personal communciation). 

In run 12.through 26, an effort was made to establish the reaction 

rate dependence on hydrogenation pressure. However, this attempt failed 

because the change of the hydrogen pressure measured in these runs could 

not be followed accurately, by using pressure gauge and equipment 

available in the laboratory. 

Run 8 and 28 were duplicated to check the error in the experiments 

of run 6 and 7, respectively. 
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ERROR IN SAMPLE ANALYSIS 
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ERROR IN SAMPLE ANALYSIS 

Liquid samples taken from a 300 ml Autoclave Engineer were used to 

determine the error in gas chromatographic analysis. Each sample was 

analyzed three times. In Table V through Table VII, the results are 

shown and reported as the weight percent of each compound in the 

reaction mixture. The error in the G. C. analysis varies from 0.1 to 

3.8% depending on the concentration of the compound. 
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Injection 1 

Injection 2 

Injection 3 

Average 

Max. Error 

Max. Error (%) 

TABLE V 

RESULTS OF GAS CHROMATOGRAPHIC ANALYSIS 
FOR SAMPLE VI 

1,5 COD 

4.416 

4.450 

4.482 

4.449 

0.033 

0.742 

Weight Percent 

1,4 COD 

0.877 

0.879 

0.886 

0.881 

0.005 

0.568 

COE 

6.083 

6.151 

6.184 

6.139 

0.056 

0.912 
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Cyclohexane 

87.974 

87.890 

87.831 

87.898 

0.076 

0.086 



Injection 1 

Injection 2 

Injection 3 

Average 

Max. Error 

Max. Error (%) 

TABLE VI 

RESULTS OF GAS CHROMATOGRAPHIC ANALYSIS 
FOR SAMPLE XI 

1,5 COD 

1.752 

1.783 

1.791 

1.775 

0.016 

0.901 

Weight Percent 

1,4 COD 

0.442 

0.443 

0.447 

0.444 

0.002 

0.450 

COE 

8.878 

8.921 

9.047 

8.949 

0.098 

1.095 
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Cyclohexane 

88.262 

88.112 

88.072 

88.149 

0.113 

0.128 



Injection 1 

Injection 2 

Injection 3 

Average 

Max. Error 

TABLE VII 

RESULTS OF GAS CHROMATOGRAPHIC ANALYSIS 
FOR SAMPLE XVI 

1,5 COD 

0.897 

0.903 

0.816 

0.905 

0.019 

1,4 COD 

0.236 

0.234 

0.236 

COE 

9.916 

9.987 

10.124 

Weight Percent 

COA 

0.380 

0.376 

0.357 

Max. Error{%) 2.099 

0.235 

0.016 

0.901 

10.009 

0.002 

0.450 

0.371 

0.098 

1.095 

Cyclohexane 

87.959 

87.850 

87.805 

87.871 

0.113 

0.128 
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PRECISION OF SPECIFIC RATE CONSTANTS 

The rate constant of reaction individual step was calculated from 

data giving the state of the system at two different times. 

The specific rate constant kA, a first order reaction, will be 

given by (Benson, 1960). 

1 cA,1 
kA = ln C t2 - t1 A,2 

(E-1) 

Assumed that the errors in measuring the four quantities CA,1' 

CA,2' t1, and t2 are independent of each other; therefore, the error in 

the dependent kA, can be calculated by 

(E-2) 

Equation (E-2) can be rewritten in terms of relative errors AkA/kA, 

At1/t1, etc. as follows: 
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Equation (E-1) can be used to calculate the partial derivatives and 

then substituted into Equation (E-3), as follows: 

+ (-~1'-----)2 ( t.CA,1)2+ (- -----;<-1 __ )2 ( t.CA,2 )2 
CA 1 CA,1 CA 1 CA,2 ln (~) ln (~) 
cA,2 cA,2 

(E-4) 

In run 6, for example, t 1 = 3600 sec, t 2 = 82800 sec, 

sec, CA, 1 = 1.0042 mol/1, and CA, 2 = 0.025 mol/1 were selected to 

calculate the precision of specific rate constant, k', of 1,5 COD. The 

relative error in measurement of 1,5 COD, t.CA/CA is approximately 1.3% 

{from Appendix D.) On substituting these values in Equation (E-4) we 

find 

( A~A)=±(1.6 X 10-10+1.459 X 10-10 +1.238 X 10-5+1.238 X 10-5)112 
A 

= ± 0.00498 = ± 0.498% 

The error in specific rate constant is very small compared with the 

error in concentration measurement. 
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SULFUR MASS CONCENTRATION MEASUREMENT 

The concentration of sulfur compounds measured in this study was 

ppm, the mass of sulfur compounds in the solution mixture multiplied by 

a factor of 1,000,000; that is: 

ppm = -'m~a;:-:s=-7s_o~f~s-=-u ...:...;lf:.....:u:...::r,--c.=.:o~m~p-=-o.=.:u n:.....:d=-
total mass of mixture 

as shown in the following example. 

In run 6, 1.0 ~1 of thiophene, c4H4S, was added into the solution 

of 10.0 ml of 1,5 COD and 90.0 ml of cyclohexane. 

The concentration of C4H4S in ppm can be calculated as follows: 

Density of C4H4S 

Density of 1,5 COD 

Density of cyclohexane 

therefore 

mass of 10.0 ml of 1,5 COD 

mass of 90.0 ml of cyclohexane 

= 1.070 

= 0.882 

= o. 779 

= 0.882 gm/ml x 10 ml 

= 8.82 gm 

= 0.779 gm/ml x 90 ml 

= 70.11 gm 

mass of 1.0 ~1 of thiophene, c4H4S, = 1.070 gm/ml x 1.0 x 1o-3ml 

= 1.070 x 1o-3 gm 

The mass concentration of thiophene, c4H4S, in the solution, ppm, 
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= mass of thiophene, c4H4S (106) 
mass of (thiophene, c4H4S, + 1,5 COD + cyclohexane) 

= --------~1~·~0~70~x-=10~--3~g=m~----
(1.070 x 10-3 + 8.82 + 70.11) gm 

= 13.56 ppm 

The other mass concentrations of sulfur compounds used in this 

study are shown in Table VIII. 
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TABLE VIII 

AMOUNT AND MASS CONCENTRATION OF SULFUR COMPOUND 

Sulfur compound volume, lll mass concentration, ppm 

Thiophene, c4H4S 1 13.6 

3 40.7 

6 81.3 

Mercaptan, C1oH21SH 1 10.7 

7.9 84.2 



APPENDIX G 

PROPRIETARY DATA OF HYDROGENATION OF BUTADIENE 

IN c4 STREAMS IN THE PRESENCE OF SULFUR 
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TABLE IX 

Physical Properties of Ri catalysts 

Catalyst Form Ccxrp:lsition CBD, lb/ft3 Surface Area, m2/g 

-
1'2464 1/20" coo 0.3\ It! 34.3 230 

balance Al.2o3 

G68C 2.5 - 4mn spheres 0.3\ It! . 46.8 110 
balance Al2o3 

G68D 3/16" X 3/16" Tab. 0.5\ It!, 0.5\ Cr 66.1 60 
balance Al2o3 

G68A 3/16" X 1/8" Tab. 0.3, N 37.4 204 
balance A1p3 

P.V., an3/g 
I> 29 R> 

0.4 - 0.5 

0.5 - 0.6 

0.4 - 0.5 

0.5 -0.6 

R:i 
Distribution 

Increasing 
Penetration 
Depth 

...._. 
t.T1 



UiSV, V~/hr 
Tinlet, F 

catalyst 
G68A 
G68D 
G68D 
G68C 
T2464 

TABLE X 

Hydrogenation Activity of Pl:t catalysts for 
Sulfur-free Feed 

33 Pressure, psig 
98 H2/Butadiene (molar ratio) 

Inlet BD (\) Conversion (\) 
5.0 84.6 
s.o 93.1 
7.0 72.6 
s.o 99.6 
7.0 100.0 

TABLE XI 

Effect of 5 ~ C2~5~ (2.6 pp-. S) 
on Activity of G68C and T2464 

190 
2/l 

catalyst Sulfur level Inlet BD (\) Conversion (\) 

G68C 

T2464 

G68C 

T2464 

- 0 -

- 0 -

2.6 ppnw s 

2.6 ppnw s 

6.9 

6.9 

7.7 

7.7 

99.6 

100.0 

57.9 

60.8 

Note: H2/BD had been lowered from 2/1 in Table IX to 1.5/1 to 

bring out differences in catalyst activity. 
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Figure 9. Life test for hydrogenation of BD in a c4 stream 

containing 20 ppmw S as Dimethyl Disulfide, 

150 
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hkiitional Test Conditions Su'Jgested by CUstaDers 

TABLE XII 

so Pl:.t sulfur as C-Jf~ 

UiSV, V/Y/hr 35 Pressure, psig 210 
T °F 160 H2/BD (molar ratio) 2/l inlet, 

l 

catalyst Inlet BD (\) Conversion (\) Hours on Stream 

G68C 0.66 4.1 
T2464 0.66 7.0 

Note that in addition to the large increase in temperature, 
a lower BD feedstock is being evaluated. 

TABLE XIII 

UISV, VJX!hr 25 Pressure, psig 

Tinlet, F 154 H~D (molar ratio) 

catalyst Inlet BD (\) Conversion (\) 

G68C 3.74 51.1 
G68D 3.74 65.0 

6.0 
6.0 

200 
3/l 

Unlike in Table X and XI, the catalysts of Table XII and XIII were a till 

undergoing considerable deactivation. The conversions reported are only 

for a short period on stream. 
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lldcUUonal Approaches to Incnaslng Sulfur. Resistance 

1. One approach to increa.se the sulfur resistance of the Pd 
catalysts is to introduce "scavenger" metals. Pd catalysts 
prepared with Ni, Cu or W or various ~inations thereof did 

not prove to extend the life of the catalyst. 

2. The steady state activities observed in the tests for DMDS 

and c2H5SH could perhaps be improved by increasing the Pd 

content. 

3, Preliminary studies indicate that higher P8 will l.nllrove 
2 

activity substantially. The next set of studies will be 

carried out at 450 psig. 

bjg/186 

12/10/87 
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