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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

The problem addressed in this thesis is the 

investigation of an implementation scheme for DIANA 

(Descriptive Intermediate Attribute Notation for Ada). This 

implementation scheme is performed on the Perkin-Elmer model 

3230 processor. The investigation also examines multi­

tasking with respect to DIANA and the Perkin-Elmer. This 

scheme is implemented in C within the UNIX environment. The 

DIANA input is an ASCII representation as indicated in the 

DIANA Reference Manual [EVANS 83], and the output is CAL 

(Common Assembler Language). The Common Assembly Language 

assembler is licensed software, subject to restricted rights 

as defined in the Department of Defense, Armed Service 

Procurement Regulations, ASPR, paragraph 7-l04.9(a): Rights 

in Data and Computer Software. At the current time 

Concurrent Computing Corporation, a Perkin-Elmer Company, is 

working on an Ada compiler for the Perkin-Elmer. The 

project consists of porting a validated Ada compiler, which 

does not use DIANA, written in Ada by using an Ada to Pascal 

translater as a bootstrap vehical [OROST 85]. 

1 
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Motivation 

The idea of a Universal Intermediate Language (UIL) is 

intriguing to computer scientists as is the idea of 

concurrency. The question is; "Is an Universal Intermediate 

Language (UIL) possible?" Elsworth proposes two reasons for 

a UIL to be developed [ELSWORTa 78]. The first reason is to 

partition the job of building a compiler into logically 

independent parts, and the second reason is to make 

languages portable. Bassett in 1984 explicitly asks this 

question and points out opposing views [BASSETT 84]. One 

side says that it is impossible to have a UIL while the 

other side says that theoretically it is possible. A UIL 

does not currently exist but DIANA is a good candidate. It 

is beyond the scope of this thesis to prove the existence of 

a UIL. 

Much work is being done on concurrency especially in 

its relationship to computer architecture. The next 

computer generation might exploit this area. Most of the 

present UIL's do not have the capacity to handle 

concurrency. One approach has been to add concurrency to 

current UIL's and the other approach has been to design a 

new UIL to include concurrency. DIANA was designed to be 

used with Ada including its multi-tasking features. This 

was one of the reasons for choosing DIANA. The main purpose 

of this study is to develop a tool to study concurrency. 

Such a tool presently does not exist for the PE-3230. This 

tool will allow others to experiment with various front-ends 
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of compilers. 
Limitations 

This is a study of DIANA rather than a study of Ada, 

therefore, some of the problems inherent in Ada 

implementations are not being investigated. As stated by 

the developers in the DIANA refe.rence manual; " ... DIANA is 

primarily intended as an interface between the parts of a 

compiler. It is also suitable for other programming support 

tools." Since the emphasis is on other support tools, only 

DIANA as stated in the DIANA Reference Manual (revision 3) 

is being investigated. 

DIANA slowly is becoming the standard intermediate 

language (IL) for Ada. The first version, DIANA 81, was 

developed for Ada 80 but with the advent of Ada 83 many 

problems have developed with respect to DIANA 81. Different 

implementers have solved these problems in various ways and 

in the process destroyed the idea of a standard DIANA. To 

counteract these tendencies Tartan Labs Inc. in Pennsylvania 

under government contract began revising DIANA and in 1983 

froze the specification for DIANA with revision 3. 



CHAPTER II 

INTERMEDIATE LANGUAGES/REPRESENTATION 

A SURVEY 

The goal of this survey is to examine Intermediate 

Languages, henceforth referred to as ILs, with an emphasis 

on DIANA (Descriptive Intermediate Attributed Notation for 

Ada). The first section of this survey discusses the 

differences between ILs and IRs (Intermediate 

Representations). The second section reviews types and 

forms of ILs. The third section canvasses the different ILs 

being used. The fourth section discusses DIANA. This 

includes alternatives and other uses for DIANA. 

ILs or IRs 

Elsworth in "Compilation via an Intermediate Language" 

presents a summary of the work done in this area up to 1978 

[ELSWORTH 78]. Elsworth describes an IL as some intermediate 

representation of a program that can stand alone and has a 

form similar to "conventional assembly language and often 

being expressed in a character form." Elsworth goes on to 

say that an IL may be "defined in terms of operations on a 

simple abstract machine [ELSWORTH 78]." 

4 
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Ganapathi and Fisher in their article on retargetable 

code (1984) go into detail on the distinction between ILs 

and IRs [GANAPATHI 84]. They refer to ILs as code generators 

which "provide dictions specially suited to describe the 

generation of target machine code" for example: languages 

like P-code and u-code. IRs on the other hand "help 
.. 

separate machine dependencies· from the code generation 

algorithm" for example: representations like TCOL(tree 

common oriented language) and APT(abstract program tree). 

Waite and Goos in their book on compiler construction 

(1984) defined ILs as "conceptual tools used in decomposing 

the task of compiling from the source language to the target 

language [WAIT 84]." They do not attempt to make a 

distinction with respect to IRs. 

Aho, Sethi and Ullman in their book on compilers 

(1986), confuse the issue even more by their use of the same 

terminal ogy [ AHO 8 6]. To them the words IL and IR have the 

same meaning. 

Using the Ganapathi and Fisher definition of an IR, 

DIANA is described in the DIANA Reference Manual (1983) as 

an IR; and in order for DIANA to communicate between 

computing systems an external ASCII form may be created 

[EVANS 8 3]. 

Types, Forms and Criteria 

In order to use IRs, Ganapathi and Fisher have set down 

a list of considerations for designing IRs [GANAPATHI 84]: 



l. Ease of writing a front-end translator for the IR. 

2. Code generation treated as a separate package. 

3. Ease of generating target code from the IR. 

4. The ability to express machine-independent 

optimizations in the IR. 

5. Storage binding front-end or back-end. 

6 

IRs may be looked at from various directions. Elsworth 

places IRs on a low level to high level scale according to 

their complexity and degree of machine or programming 

language orientation, and on a similar scale according to 

the degree of machine dependence involved [ELSWORTH 78]. There 

exists a tradeoff between efficiency and ease of portability 

corresponding to the high and low level IR techniques. 

Ganapathi and Fisher are dealing with IRs on the 

independent level which Elsworth calls high level ILs. 

Ganapathi and Fisher break IRs down into three forms 

[GANAPATHI 84]: 

1. Tuples: including quadruples, triples, indirect 

triples and n-tuples. 

2. Abstract program trees and graph notation. 

3. Linear representations such as reversed polish and 

standard polish notation. 

Waite and Goos break IRs into four types: token 

sequences, structure trees, computation graphs, and target 

trees [WAIT 84]. 

Aho, Sethi and Ullman point out two important benefits 

of IRs which are the ease of producing IRs and the ease of 



translating IRs into target code [AHO 86]. 

ILs 

There are many ILs in existence. Elsworth presents a 

long list. Some of the more common program oriented ILs 

are CTL for Algol 60, Fortran and PL/I; P-code for Pascal: 

Zcode for Algol 68 [ELSWORTH 78]. TCOL (tree structured 

common language) is usually referred to as a family because 

each member is tailored to a particular source language. 

7 

MIL , a l ow·- level I L in the image of B l i s s , ex i s t s only 

in a graph form which is used in the Charrette Ada Compiler 

1980 [ROSENBERG 80]. LOLITA, another low level IL for Ada, 

was developed in 1982 after DIANA, which first appeared in 

1981 [ROUBINE 82]. L-code, an IL to define dynamic 

semantics, appeared in 1983 by Bryant and Grau [BRYANT 83]. 

L-code was developed for Pascal, Fortran and Ada. DAS 

(Delft Ada Subset) was developed at Delft Univ., 

Netherlands, for their Ada compiler [KATWIJK 83]. DAS 1s an 

attributed parse tree. 

DIANA 

One of the early experiences of writing a compiler for 

Ada took place at Carnegie-Mellon University. The product 

of this early experience was the Charrette Ada Compiler. 

Several articles appeared in Sigplan Notices, vol. 15, 1980, 

describing how this compiler was put together. The ILs used 

for this compiler were TCOLADA for the high level and MIL 



for the low level. The output from the compiler was VAX 

ll/780 assembler in an UNIX environment. On the other side 

of the Atlantic a team at the Institut Fur Informatik II, 

University of Karlsruhe, Germany, was working on an Ada 

compiler and developed an IL called AIDA. In 1981, these 

two Universities cooperated to produce DIANA. From 1981 

until 1983, DIANA was placed under government contract to 

Tartan Labs. Upon completion of the last revision in 1983 

DIANA was frozen by Tartan Labs [EVANS 83]. 
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DIANA, often referred to as an attribute parse tree or 

an abstract syntax tree, was designed from the formal 

definition of ADA. One of the principal design criteria for 

DIANA was that the structure of the original source code was 

to be retained ln the DIANA representation. Goos in an 

article "Problems in Compiling Ada" [GOOS 81] in 1981 

states: "The intermediate representation of an Ada program 

by a DIANA tree is machine-independent only to the extent 

that the general structure and the attributes of the tree 

are machine-independent. The actual values of attribute may 

very well depend on the target computer." This article lays 

out a method to design an ADA compiler using DIANA but 

concentrates only on the front-end. 

In 1982 Simpson [SIMPSON 82] and Taft [TAFT 82] in 

separate articles use DIANA as an IR in their designs and 

both point out some problems with the definition of DIANA. 

Revision 3 of DIANA 83 corrected these problems. 

Taft states that the DIANA proposal "purposely avoids 



specifying a single implementation strategy." Therefore, 

his company is looking at two specific implementation 

techniques to use DIANA most efficiently. The first 

technique represents DIANA nodes as ADA variant record 

types, and the second by implementing separate compilation 

using a software virtual memory technique. Simpson on the 

other hand is studying the implementation DIANA in the ALS 

environment. ALS stands for the Ada Language System which 

is the Ada support environment developed for the U.S. Army. 

Simpson study includes output from the front-end, the code 

generation, the program library manager and the KAPSE 

(Kernel Ada Program Support Environment). 

9 

The philosophy behind code generation for IRs is that 

they must be adaptable easily to any machine within a large 

class of conventional architectures, typically machines with 

directly addressable memory and a set of registers. In 1982 

two different low level IRs came into existence, LOLITA and 

I-code. LOLITA, a low level IR for Ada, was presented by 

R o ubi n and company i n l 9 8 2 in the i r art i c l e ~Q~ IT A : ~ L o ~ 

Level Intermediate Language for Ada [ROUBINE 82]. Their 

main objection to DIANA was the tedious job of writing the 

code generator. LOLITA exists only as an IR for a 

particular source language which is not related to any 

abstract machine model. 

One may ask the question with respect to low level IRs: 

How far is low? For LOLITA this was defined as low as 

machine independence would permit. For I-code, presented by 



Appelbe [APPELBE 82], which was designed along the same 

lines as LOLITA is describe as similar to P-code in form. 

To show the importance of a low level IR the Karlsruhe 

Ada compiler which uses DIANA also uses AIM (abstract 

intermediate machine) [PERCH 83]. The purpose of AIM is to 

ease the retargeting of the compiler. 

DIANA was designed to be useful for the generation of 

other environment tools. A source oriented debugger on a 

minicomputer network for image sequence analysis at 

Faclbereich Informatik der Univ., Hamburg, Germany, uses 

DIANA [FAASCH 83]. Slape and Wallis in 1983 used DIANA to 

translate Fortran to Ada [SLAPE 83]. The main complaint of 

Slape and Wallis about DIANA was the lack of a rigorous 

standard. Rosenblum in A Method for the design of Ada 

transformation tools in a DIANA environment [ROSENBLUM 85] 

presents four tools using DIANA: an Ada source program 

optimizer, a robust programming transformer, a programming 

style transformer, and a debugger preprocessor. 

Conclusion 
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IR's exist only in internal form, therefore it is left 

up to the implementor on how faithful the implementation is. 

IL's not only have an internal form but also an external 

ASCII form -- which gives a metric for discussion. As a 

result IL's allow for machine independent front ends and the 

ability to transport code from one machine to another at the 

IL level, and to this end DIANA is well suited. 



CHAPTER III 

IMPLEMENTATION OF DIANA 

An Overview of DIANA 

DIANA as an intermediate language encodes the results 

of lexical, syntactic, and semantic analysis. Therefore, 

DIANA may be referred to as an attributed parse tree. Since 

DIANA was designed with Ada in mind, each entry in the Ada 

syntax has a corresponding node in DIANA. The definition of 

the nodes and attributes are in chapter 2 of the DIANA 

Reference Manual [EVANS 83]. Each node of a DIANA tree 

contains zero or more attributes which are structural 

attributes, semantic attributes, lexical attributes or code 

attributes. 

The structural attribute prefixed with "as_" 

corresponds to the edges of the parse tree and always points 

to another DIANA node. The semantic attribute prefixed with 

"sm " contains information about the static semantics of the 

source program and are used in type checking and aid in 

procedure overloading, when allowed. The lexical attribute 

prefixed with "lx " contains the lexical information about 

the source program and is used in order to reproduce the 

source. The code attribute prefixed with "cd " contains 

information found for the code generator. Currently, there 

11 



is only one code attribute {cd_impl_size) and it contains 

the number of bits needed to represent some object. 

12 

The DIANA Reference Manual contains a chapter on 

implementation options. The philosophy behind this chapter 

is to present suggestions on various types of options. The 

opening paragraph recommends that the options match the 

applications. As a result, the following implementation 

scheme was chosen. The simple flat form was used for the 

external form, and a node structure using pointers was used 

for the internal form. A bottom up parser was used to 

traverse the tree and produce assembler code which will then 

be put through the assembler to produce machine code. 

External Form of DIANA 

The external form of DIANA may take on three different 

appearances: the flat form, the nested form and a 

combination of the two forms. For the sake of simplicity, 

the flat form was chosen for use in this paper. 

The flat form is an external representation of a node 

pointer structure {see figure 1). Each node has a label or 

node identification which is a sequence of upper case 

letters followed by a sequence of numbers. The label is 

terminated by a colon. The next item in the node is the 

node-name, a nonterminal which consists of a sequence of 

lower case letters and underlines {for a listing of the 

nodes used in this implementation see appendix B). The list 

of DIANA attributes follows enclosed in square brackets. 
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The square brackets may be omitted if the attribute list is 

empty. 

label: node-name list-of-attributes 

Figure 1. The Flat Form 

The list-of-attributes is a series of items with each 

one separated by a semi-colon (see figure 2). Each item in 

the list contains an attribute-name followed by a label, a 

sequence, or a string (see appendix B for the list used in 

this implementation). The label 1s used as a pointer to the 

next DIANA node in the structure and is followed by a caret. 

The sequence is a list of labels enclosed in angle brackets 

with each label followed by a caret. These also point to 

another node. The sequence may also be empty, in which case 

only the angle brackets appear. The string is a terminal 

attribute containing a list of ascii characters in cased in 

double quotes. 

attribute-name labelA; 
attribute-name< labelA labelA ... >; 
attribute-name "string"; 
attribute-name labelA 

Figure 2. List of Attributes 
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Internal Form of DIANA 

The analyzer reads the internal form and converts it 

into the internal representation by using LEX, a regular 

expression based lexical analyzer generator developed by M. 

E. Lesk for AT&T Laboratories-in 1975, to create the tokens 

and a parser which builds the tree. In building the tree 

the parser only checks the syntax for the node. It does not 

check for proper node classes. The representation chosen 

for the internal representation is a directed acyclic graph 

written in C. The nodes are represented by a generic C 

structure shown below in figure 3. 

struct node { /* DIANA nodes */ 
pointer parent; /* pointer to parent for traversal 
int token; /* node type 
int count; /* number of visits during traversal 
int n attribute;/* number of attributes in table 
struct table attribute[MAX_N_ATT]; /*attribute table 

Figure 3. Node Structure 

*I 
*I 
*/ 
*/ 
*/}; 

The non-leaf attributes are pointers to nodes. Since 

there are only a maximum of seven attributes per node, the 

attributes are stored in a table as seen in figure 4. 



struct table 
int token 
int type 
union { 

{ /* structure for attributes */ 
/* type of attribute */ 
/* contents of union */ 

pointer ptr; /* pointer to next node */ 
char leaf [BUFFER]; /*contents of leaf */ 
struct link sequence;/* sequence of pointers */ 
} ; 

Figure 4. Table Structure Attributes 

The union is used in order to distinguish among the three 

types of attributes: a pointer, a leaf, or a sequence. The 

sequence is a pointer to a linked list containing pointers 

to nodes (Figure 5). 

struct link { /* structure of type sequence */ 
struct node *ptr; /* pointer to next node */ 
struct link *next; /* pointer to next link */ } ; 

Figure 5. Linked List Structure 

Code Generation 

The code generator is a tree traversal algorithm which 

is written in C and which translates the DIANA internal 

representation into CAL, a Common Assembler Language which 

is a product of the Department of Defense. CAL was chosen 

because it is portable over a wide range of machines (at a 

15 
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minimum all Perkin Elmer machines) and will allow a later 

addition of an optimizer at the assembler level which will 

allow finer adjustment to a particular machine. The assembly 

stage also allows for error checking at this level. Common 

Assembly Language Programming is licensed software, subject 

to restricted rights as defined in the Department of 

Defense, Armed Service Procurement Regulations, ASPR, 

paragraph 7-104.9(a): Rights in Data and Computer Software. 

The code generator uses a hybrid depth-first left to 

right tree traversal algorithm as shown in figure 6 below. 

The stack is used to control the order in which the nodes 

are processed. Each node-name has its own processing 

procedure which is invoked by the process procedure. The 

process procedure is a switch which contains an entry for 

each type of node (see Appendix A for this implementation). 

As the tree is traversed, the node processing procedure 

pushes the appropriate node-name attribute on the stack, and 

builds a symbol table, builds individual files for each task 

containing the assembler code for that task. Information is 

also gathered for the task manager. 

Upon completion of the traversal procedure a clean-up 

procedure is called which builds the assembler code file. 

The clean-up procedure builds the initializer then 

concatenates all the task files to the initializer and then 

adds the task manager completing the file. 



Procedure traversal (node-name) 
Process (node-name); 
Pop stack (node-name); 
Loop while stack is non-empty 

Process (node-name); 
end loop; 

end traversal; 

Procedure Process (node-name) 
Contains a p~itch which calls the 
appropriate procedure to do the 
actual processing. 

Figure 6. Tree Traversal Algorithm 

17 



CHAPTE-R IV 

THE MEMORY SCHEME 

Traditionally, memory consists of two parts, the run­

time storage and program-code storage. This memory scheme 

augments the traditional setup by modifying the run-time 

storage and program code. The run-time storage maintains a 

static table which contains information about each task and 

a stack area for each task managed at run time (see figure 

7). The program code area contains a section called the 

task manager which interacts with the task table and the 

individual task at run time (see figure 8). 

task l 

stack 

task 2 

stack 

task n-1 

stack 

task n 

stack 

task table (contains one entry for each task) 

Figure l. Memory Storage 

18 
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Initializer / 
--------------------

task 1 I 

I task 2 
--------------------
1 task : 

I task n 
--------------------
1 task ~nanager 

Figure 8. Code Storage 

Memory Layout 

The task table and the task stack area are set at 

compile time. Since the Perkin-Elmer model 3230 is a uni-

processing machine, procedures use the stack area above the 

tasks where each procedure is allocated or deallocated as 

needed. Registers are used for pointers, parameter passing, 

and calculations. 

register save area 

I parameter passing storage I 
/ entry variable storage 
-----------------------------
1 local variable storage 

display pointers 

Figure 9. Typical Task Stack 
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The task stack area is divided up into five areas as 

shown in figure 9. The register save area and the parameter 

passing storage are used when a procedure call is invoked. 

The register save area is used to store the current 

environment and the parameter passing storage is used to 

implement call-by-value parameter passing mechanism. The 
- . 

entry variable storage is a new area in the stack mode.l and 

is used to implement the rendezvous method of communication 

between tasks. The entry variable is used much in the same 

manner as the parameter passing storage but acts like a 

local variable storage. The local variable storage stores 

all variables used by the particular task. Since tasks are 

somewhat like procedures especially in scoping, a display 

area is set up in the same manner as dynamic procedure 

stacks. 

The task table maintains an entry for each task and a 

typical entry may be viewed in figure 10. There are four 

possible states: running, ready-to-run, sleeping and 

terminated. A running task is currently being executed by 

the processor. Ready-to-run tasks are ready and waiting to 

be run. Sleeping tasks are tasks waiting for a rendezvous 

to take place. In order for a task to terminated a search 

for dependent tasks is made. If a dependent task does 

exist, then the task is left active, else it is marked as 

terminated. The second entry contains the priority the 

order in which the tasks are to be given attention. The 

third and fourth entries, next instruction and active area 
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pointer are used together to store the environment when a 

task is interrupted. The next-instruction contains the 

address of the next instruction for the task to execute and 

the active-area-pointer contains the stack location for the 

task. A task may not be terminated until all its child 

tasks have been terminated; therefore, it is necessary to 
.. 

know the number-of-children a-nd the ·parent of a task. When 

a task terminates, it notifies its parent by decrementing 

the number of children in the parent by one. In order to 

implement the rendezvous mechanism, a queue is used to store 

information about a calling tasks wanting to make contact 

with the called task. 

state 

priority I 
----------~------------

next-instruction I 
I active-area-pointer I 
I number-of-children 

parent I 
-----------------------

queue I 

Figure 10. Task Table Entry 



Code Layout 

The program code storage as seen in figure 8. consists 

of the task manager, an area for each task, and the 

initializer. The initializer not only builds the task 

table, but also builds the task stacks. The code for each 

task follows on a first-come firpt-serve basis. The task 

manager follows, which controls the overall running of the 

program. 

The Initializer 

The initializer creates a table entry for each task as 

seen in figure 10. It also builds the task stacks as seen 

in figure 8 then passes control to the task manager. 

22 

There are four possible states: running, ready-to-run, 

sleeping and terminated. Initially all tasks are set to 

ready-to-run state. Since this is a uni-processing system 

only one task may run at a time, and the tasks priorities 

determine which task is run first. When a task is 

interrupted, then the task manager assumes control, 

determines the problem and marks the task appropriately. 

Currently, there are two conditions which determine whether 

a task is to be placed in the sleeping state, both of which 

concern the rendezvous mechanism. The first one has to do 

with a call to another task: the one calling is put in a 

wait state until the called task answers. The second type 

of waiting occurs when a task is expecting a call: it is put 

into a wait state until it is called. A state is marked 



done when a task and all its child tasks have terminated. 

As long as a child task is marked active or waiting a task 

may not terminate. 

The priority pragma has not been implemented; however, 

a priority is assigned each task at compile time. The 

priority is determined on a firs~-come, first-serve basis. 

Each time the task manager is invoked the active task with 

the highest priority is run. 

The initializer next initializes the next-instruction 

to the address of the start of the task code area and the 

active-area-pointer is set to the task stack address. The 

number-of-child tasks and the parent task address is 

23 

maintained to handle the task termination. Since a task may 

not terminate until all its child tasks have terminated, the 

number-of-child tasks is decremented as each child 

terminates. In order to perform this operation the address 

of the parent task is necessary. 

A queue is set up to hold the entries for a calling 

task. The address of the calling task and the address of 

the entry variable is stored in the queue. Currently the 

queue holds a maximum of five entries for the purpose of 

testing. 

The Code 

The code for each task follows the initializer. The 

code in each task is augmented to handle the rendezvous 

mechanism and the interaction with the task manager. The 
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initialization or start up for each task is not different 

from any other main procedure, but the termination of a task 

contains a control mechanism that interacts with the task 

manager. This termination mechanism is necessary in order 

for a task to remain active until all the child tasks have 

terminated. Code is also necessary to handle the rendezvous 

mechanism which is divided into two parts: the receiving 

mechanism and the calling mechanism. The task calling 

another task sends the task manager the address or the 

receiver, the address of the variable storage containing the 

information, and the address to return after completion of 

the rendezvous. The receive mechanism consists of two 

parts: a begin-accept and a end-accept. The begin-accept 

tells the task manager that it ready to receive a call and 

sends the task manager its address. The end-accept send the 

information back to the calling task and notifies the task 

manager that the rendezvous has taken place. 

The Task Manager 

The task manager consists of five routines: the run­

next-task, task-terminator, begin-accept, end-accept and 

task-call. These routines store and retrieve information 

from the task table and interact with the individual tasks. 

Run-next-task searches for the first task with the 

highest priority. If the task is marked active, then the 

environment is loaded and control is turned over to the 

task. If none of the tasks are active, then the program is 
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terminated. 

The task terminator was developed to maintain an active 

task while child tasks exists. The mechanism is a simple 

call to the task manager to see whether all the child tasks 

have terminated. If all the child tasks have terminated 

then the running task is marked done but if some child tasks 

exist then the priority is lowered and the task is kept 

active and control is turned over to the run-next-task 

routine. 

The rendezvous mechanism consists of a calling routine 

and a receive mechanism. The calling routine is invoked by 

a task attempting to make contact with another task and the 

receive mechanism controls the activity of the called task. 

The calling routine, task-call, stores the environment 

of the calling task then places it in a wait state. It then 

places the calling task address and the address of the 

calling task variable in the called task queue. And it 

wakes up the called task if it is in a wait state. 

The receive mechanism is made up of two routines: a 

begin-accept and end-accept. When an accept statement is 

encounted in the task code the task manager is invoked and 

the begin-task routine acquires control. This routine 

stores the environment of the task and then checks the 

queue. If the queue is empty the task is placed in the wait 

state; else if the queue is not empty the task is left 

active and control is turned over to run-next-task. When 

the receive mechanism is ready to terminate communication 
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the task manager is called and the end-accept takes control. 

This routine makes the calling routine active and readjusts 

the entry queue to the next task. And finally control is 

turned over to run-next-task. 

Conclusion 

The stack model is a very convenient tool for the 

implementation of DIANA since tasks and procedures act in a 

similar manner. The tasking convention explained above uses 

the stack model but augments it in two ways: by adding a 

task table and a stack for each task. The development of 

the task table came from the tasking convention that states: 

all tasks in a program are active upon invoking of that 

program. The simplicity of the task-manager and its 

interaction between the task stacks and the task table show 

the beauty of this implementation. 



CHAPTER V 

A DETAILED EXAMPLE 

For a better understanding of DIANA, a detailed example 

is shown below. Ada was chosen for the high level language 

in this example because of its historical relationship to 

DIANA. This example shows an Ada program and its 

transformation to a CAL program through DIANA. DIANA does 

not have a facility to output information to a printer or 

monitor; therefore the following node was added to DIANA 

with its attributes 

out_put => lx symrep 
sm-obj type - -
sm address 
sm=obj_def 

symbol_rep, 
TYPE_SPEC, 
EXP_VOID, 
OBJECT_DEF; 

which invokes the same mechanism as printf invokes in C. 

The output node prints the symbol representation and its 

contents on a single line. 

The Ada program in appendix D explores the different 

aspects of multi-tasking. Four tasks which includes the 

main procedure are created. One of the tasks (t3) is 

embedded in another task (t2) to test task scoping. The 

tasks interact in various ways by passing information 

between them. Simple integer arithmetic and the put 

statement are used to explore these different aspects. 
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The DIANA code which was hand produced from the Ada 

code of appendix D is shown in appendix E. The first step 

in producing a DIANA code is to produce the structural tree, 

which is shown ln appendix E for this example, and secondly 

decorate the tree with the other attributes. Due to the 

length of the DIANA code produced the semantic attributes 

were left out of this example~ 

The CAL assembler code of appendix F was produced from 

DIANA code of appendix E by the code generator of this 

implementation. To give a better understanding of appendix 

F, comments were placed in various places in the assembler 

code. 



CHAPTER VI 

SUMMARY AND FUTURE WORK 

Summary 

Intermediate languages are important to the development 

of language theory and DIANA has made a contribution to the 

development of language theory. Therefore the purpose of 

this study was to create a code generator for the tasking 

model of DIANA. To this end the study has accomplished its 

purpose. 

In building the code generator two compiler tools were 

examined: the lexical analyzer LEX and the parser YACC. The 

lexical analyzer LEX aided greatly in this development. 

However, due to the nature of DIANA the parser YACC was not 

capable of handling the ASCII form of DIANA. Therefore a 

parser was developed and an internal form was created. The 

LEX program and the parser were written in such a way that 

it could be easy to extend them to include the whole of 

DIANA and any extension to DIANA that might be made 

necessary by an extension of DIANA itself. 

The decision to use the assembler language CAL as an 

intermediate language allowed for easy error detection and 

correction in the development of the memory schema. By 

using the concepts of modular design the memory scheme 
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proved easy to modify and to update. More work can to be 

done on the priorities pragma which has not been 

implemented. 

To further facilitate the understanding of DIANA a 

detailed example is given in the appendix. A work was also 

produced which would allow var~ops high level languages to 

produce DIANA with a facility to test their code. 

Suggested Future Work 

This study explores only one tasking model for DIANA. 

30 

There are other models in existence. One possibility is 

using a heap instead of a stack for memory management. 

Another possibility would be mapping the individual tasks to 

the processes of the operating system and allowing the 

operating system to perform inter-task communication as 

inter-process communication. A comparative study of 

different implementations on the same machine would be 

interesting. 
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APPENDIX A 

TOPOLOGY OF DIANA CLASSES AND NODES 

Appendix Band C contain-respectively the nodes and 

classes of the DIANA language which are used in this 

implementation and have been reproduced from the DIANA 

reference manual [EVANS 83]. In order to gain a better 

understanding of convensions used in appendix B and C, 

figure ll is shown below followed by an example. 

ACTUAL 
void 
lx_symrep 

Boolean 

s 

BLOCK STUB 
proc id 
sm value 

Integer 

s 

USED ID 
block 
as name 

DIANA class names. 
DIANA node names. 
DIANA attributes. 

Identifier defined by user. 

Indicates a comment follows which 
continues to end of line. 
Indicates sequence of what comes 
before 

Figure 11. DIANA Notation 

The definition of DIANA as seen in appendix B and C is 

similar in form to BNF. The production rules are broken 

down into two parts: the terminals in appendix B and the 
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nonterminals in appendix C. In the following definition 

EXP : := leaf tree; 

EXP is defined as a class name or a nonterminal followed by 

a choice of a leaf or tree. The leaf and the tree are node 

names or terminals. The two nodes in this example may be 

expressed as follows 

tree => as left EXP, 
as op OPERATOR, 
as=right: EXP; 

leaf => as_string : Character_S; 

where the node name tree has three attributes as left, 

as_right, and as_op. The node name leaf has one attribute 

as string which is supplied by the user. The class name 

OPERATOR is described as 

OPERATOR : := Add I Subtract I Multiply I Divide; 

where Add, Subtract, Multiply and Divide are built in 

operators. 

Using the node names and classes described above, an 

algebraic expression shown in figure 12a is transformed into 

a graphical representation in figure 12b and finally into a 

pseudo-DIANA flat form in figure 12c. For more information 

on the DIANA flat form see page 12 of this thesis. 
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X + y * Z 

Figure 12a. Algebraic Form 

Figure 12b. The Graphic Form 

AO: tree [ as left Al", as_op Add, as_right A2"; -
Al: leaf [ as_string "x"; ] 
A2: tree [ as left A3", as_op Multiply, as_right A4"; -
A3: leaf [ as_string "y"; ] 
A4: leaf [ as_string II zIt ; ] 

Figure 12c. The Flat Form 

Figure 12. An Simple Example 



APPENDIX B 

A LIST OF DIANA NODE NAMES AND THERE ATTRIBUTES 

abort => 

accept => 

as name s - -
lx_srcpos 
lx comments 

as name 
as_param_assoc_s 
as stm s - -
lx_srcpos 
lx comments 

NAME_S, 
source_position, 
comments ; 

NAME, 
PARAM_S, 
STM_S, 
source_position, 
comments; 

arguement_id => lx_symrep symbol_rep; 

assign => 

assoc => 

attribute => 

block => 

box => 

as name 
as exp 
lx=srcpos 
lx comments 

as designator 
as-actual 
lx srcpos 
lx-comments 

NAME, 
EXP, 
source_position, 
comments; 

DESIGNATOR, 
ACTUAL, 
source_position, 
comments; 

as id ID, 
-- always a "used name id" whose attributes 
-- p0ints to a prefined "attr_id" 
as name NAME, 
lx srcpos source_position, 
lx-comments comments, 
sm_exp_type TYPE_SPEC, 
sm value value; 

as_item_s ITEM_S, 
as stm s STM_S, 
as-alternative s: ALTERNATIVE S, 

lx srcpos 
lx-comments 

lx_srcpos 
lx comments 
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-- not implemented 
source_position, 
comments; 

source_position, 
comments; 



comp_unit => as context 

as_unit_body 
as_pragma_s 

lx_srcpos 
lx comments 

compilation => as list 
lx_srcpos 
lx comments 

cond_entry => as stm sl 

const id => 

as stm s2 
lx srcpos 
lx-comments 

lx srcpos 
lx-comments 
lx-symrep 
sm-address 
sm-obj type 
sm-obj-def 
sm-first 

constant => as id s 
as type spec 
as-object def 
lx-srcpos­
lx-comments 

constrained => as name 
as constraint 
cd-imp size 
lx-srcpos 
lx-comments 
sm type struct 
sm=base=type 
sm constraint 

decl s => as list 
lx-srcpos 
lx-comments 

delay => as_exp 
lx_srcpos 
lx comments 

CONTEXT, 
not implemented 

UNIT_BODY, 
PRAGMA_S, 

-- not implemented 
source_position, 
comments; 

Seq OF COMP_UNIT, 
source_position, 

.... comments; 

STM S, 
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-- first stm is entry call 
STM_S, 
source_position, 
comments; 

source_position, 
comments, 
symbol_rep, 
EX_ VOID, 
TYPE_SPEC, 
OBJECT_DEF, 
DEF OCCURRENCE; 

- -- used for deferred 

ID_S, -- seq of const id 
TYPE_SPEC, 
OBJECT_DEF, 
source_position, 
comments; 

NAME, 
CONSTRAINT, -- void 
integer, 
source_position, 
comments, 
TYPE_SPEC, 
TYPE_SPEC, 
CONSTRAINT; -- void 

seq of DECL, 
source_position, 
comments; 

EXP, 
source_position, 
comments; 



entry_call => 

exp_s => 

as name 
-- indexed 

as param assoc s 
lx-srcpos -
lx-comments 
sm_normalize_param_s 

: NAME, 
when entry of family 

. PARAM_ASSOC_S, 
source_position, 
comments, 
EXP_S; 

as list 
lx srcpos 
lx-comments 

seq of EXP, 
source_position, 
comments; 

function call =>as name NAME, 
PARAM_ASSOC_S, 
source_position, 
comments, 
Boolean, 

id s => 

in => 

in id => 

in out => 

in out id => 

as param assoc s 
lx-srcpos -
lx comments 
lx~refix 
sm value 
sm=normalized_param_s 

value, 
EXP_S; 

as list 
lx-srcpos 
lx-comments 

as id 
as name 
as exp void 
lx-srcpos 
lx comments 
lx-default 

lx srcpos 
lx-comments 
lx symrep 
sm-obj type 
sm-init exp 
sm first 

as id 
as name 
as_exp_void 
lx_srcpos 
lx comments 

lx_srcpos 
lx comments 
lx-symrep 
sm-obj type 
sm-first 

seq of ID, 
source_position, 
comments; 

ID_S, -- always in id 
NAME, 
EXP_VOID, 
source_position, 
comments, 
Boolean; 

source_position, 
comments, 
symbol_rep, 
TYPE_SPEC, 
EXP_VOID, 
DEF_OCCURRANCE; 

ID S, -- always in out id 
NAME, 
EXP_VOID, -- always void 
source_position, 
comments; 

source_position, 
comments, 
symbol_ rep, 
TYPE SPEC, 
DEF_OCCURRANCE; 
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integer => 

item s => 

name s => 

as_range 
cd imp size 
lx-srcpos 
lx-comments 
sm size 
sm type struct 
sm_base=type 

as list 
lx srcpos 
lx-comments 

as list 
lx-srcpos 
lx-comments 

no default => lx srcpos 
lx-comments 

null access => lx_srcpos 
lx comments 
sm exp type 
sm-value 

null stm => lx srcpos 
lx-comments 

number => as id s 

number id => 

as·exp 
lx-srcpos 
lx-comments 

lx_srcpos 
lx comments 
lx-symrep 
sm-obj type 

: RANGE, 
:Integer, 

source_position, 
comments, 
EXP_VOID, 
TYPE_SPEC, 
TYPE_SPEC; 

seq of ITEM, 
source_position, 

.. comments; 

seq of NAME, 
source_position, 
comments; 

source_position, 
comments; 

source_position, 
comments, 
TYPE SPEC, 
value; 

source_position, 
comments; 

ID_S, 
-- sequence of number id 

EXP, 
source_position, 
comments; 

source_position, 
comments, 
symbol_rep, 
TYPE SPEC, 
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- - -- always 
sm_init_exp 

refers to a universal type 
EXP; 

numeric literal => lx srcpos 
lx-comments 
lx_numrep 
sm_exp_type 

source_position, 
comments, 
number_rep, 

out => 

sm value 

as id 
as name 
as=exp_void 
lx srcpos 
lx-comments 

TYPE SPEC, 
-- universal type 
value; 

ID_S, always out id 
NAME, 
EXP_VOID, always void 
source_position, 
comments; 



out id => lx srcpos 
lx-comments 
lx symrep 
sm-obj type 
sm-first 

param_assoc_s =>as list 
lx=srcpos 
lx comments 

param s => 

parenthesized 

proc id => 

procedure => 

range => 

as list 
lx-srcpos 
lx-comments 

=>as_exp 
lx srcpos 
lx-comments 
sm_exp_type 

sm value 

lx_srcpos 
lx comments 
lx=symrep 
sm_spec 
sm_body 
sm location 
sm stub 
sm-first 

as_param_s 
lx_srcpos 
lx comments 

as_expl 
as exp2 
lx-srcpos 
lx-comments 
sm=base_type 

source_position, 
comments, 
symbol_rep, 
TYPE_SPEC, 
DEF_OCCURRENCE; 

seq of PARAM_ASSOC, 
source_position, 
comments; 

:. ~eq of PARAM, 
source_position, 
comments; 

EXP, 
source_position, 
comments, 
TYPE_SPEC, 

universal type 
value; 

source_position, 
comments, 
symbol_rep, 
HEADER, 
SUBP_BODY_DECS, 
LOCATION, 
DEF_OCCURRENCE, 
DEF_OCCURRANCE; 

PARAM_S, 
source_position, 
comments; 

EXP, 
EXP, 
source_position, 
comments, 
TYPE_SPEC; 

select => as select clause s 
as stm s 

. SELECT_CLAUSE S, 
STM_S, 
source_position, 
comments; 

- -
lx srcpos 
lx-comments 

select clause =>as_exp_void 
as stm s 

lx srcpos 
lx-comments 

EXP_VOID, 
STM S, 
first stm accept or delay 
source_position, 
comments; 
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select clause s => as list 
lx_srcpos 
lx comments 

seq of SELECT_CLAUSE, 
source_position, 
comments; 

stm s => 

stub => 

as list 
lx-srcpos 
lx-comments 

lx_srcpos 
lx comments 

seq of STM, 
source_position, 
comments; 

source_position, 
comments; 

subprogram_body => as deSignatdr : DESIGNATOR, 
---proc id, function id, or def op 
as header HEADER, -
as-block stub BLOCK_STUB, 
lx srcpos source_position, 
lx comments comments; 

subprogram_decl => as_designator : DESIGNATOR, 

task_body => 

task_body_id => 

task decl => 

task_spec => 

-- proc_id, function_id, or def_op 
as_header HEADER, 
as subprogram def SUBPROGRAM DEF, 
lx-srcpos - source position, 
lx-comments comments; 

as id 
as block stub 
lx srcpos 
lx-comments 

lx srcpos 
lx-comments 
lx=symrep 
sm type spec 
sm-body-
sm-first 
sm-stub 

as id 
as task def 
lx srcpos 
lx-comments 

ID, always task_body_id 
BLOCK STUB, 
source position, 
comments; 

source position, 
: ·comments, 

symbol_rep, 
TYPE_SPEC, 
BLOCK_STUB_VOID, 
DEF_OCCURRANCE, 
DEF_OCCURRANCE; 

ID, -- always var id 
TASK_DEF, 
source_position, 
comments; 

DECL_S, 
source_position, 
comments, 

as decl s 
lx-srcpos 
lx comments 
sm-body BLOCK STUB VOID, 

void only in-presence of 
compilation 

seperate 

sm address EXP_VOID, 
sm_storage_size : EXP_VOID; 



terminate => lx srcpos 
lx-comments 

timed_entry => as stm sl 

as stm s2 

lx_srcpos 
lx comments 

used bltn id => lx_srcpos 
lx comments 
lx_symrep 
sm_operator 

used_bltn_op => lx_srcpos 
lx comments 
lx_symrep 
sm_operator 

used name id => lx_srcpos 
lx comments 
lx-symrep 
sm-defn 

source_positionl 
comments; 

STM 8 1 

-- first stm is entry_call 
: STM s I 
-- first stm is delay 
source_position 1 

comments; 

.. source_posi tion 1 

COmmentS 1 

symbol_repl 
operator; 

source_position 1 

comments 1 

symbol_rep 1 

operator; 

source_position 1 

comments 1 

symbol_rep 1 

DEF_OCCURRENCE; 

used_object_id => lx_srcpos 
lx comments 
lx=symrep 
sm exp type 
sm-defn 

source_position 1 

comments 1 

symbol_rep 1 

TYPE_SPEC 1 
DEF_OCCURRENCE 1 
value; 

used_op => 

var => 

var id => 

sm value 

lx_srcpos 
lx comments 
lx_symrep 
sm defn 

as id 

as_type_spec 
as object def 
lx-srcpos­
lx-comments 

lx_srcpos 
lx comments 

source_positionl 
comments 1 

symbol_rep 1 

DEF_OCCURRENCE; 

ID_S 1 
sequence of var_id 

TYPE_SPEC 1 -- constrained 
OBJECT_DEF 1 
source_positionl 
comments; 

source_position 1 

comments 1 

symbol_rep 1 
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lx symrep 
sm-object type - -
sm address 
sm=obj_def 

TYPE_SPEC1 -- constrained 
EXP_VOID 1 
OBJECT_DEF; 

void => no equivalent in concrete syntax 



APPENDIX C 

DIANA CLASSES 

BLOCK STUB~:= block; 

CONSTRAINED : := constrained; 

CONSTRAINT :: = void; 

DECL : : = constant I subprogram_decl I var 

DEF ID : := 

DESIGNATOR :: = 

task_decl; 

proc_id I 
out_id I 

ID I OP; 

in_id I 
var_id; 

in out id 

EXP : := NAMEI null access numeric literal 
parenthesized; 

EXP VOID : := EXP I void; 

HEADER : := procedure entry; 

ID : := DEF_ID I USED_ID; 

ITEM · ·= subprogram_body task_ body DECL; 

NAME : := DESIGNATOR function_call; 

OBJECT DEF : := EXP_VOID; 

OP :: = USED_OP; 

PARAM : := in I in out out; 

PARAM ASSOC ::= EXP I assoc; 

RANGE R : := range attribute; 

STM :: = null strn I 
delay I 
cond entry 
select 1 
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assign I 
abort I 
timed entry 
terminated; 

entry call 
block-1 
accept I 



SUBPROG DEF ::=void; 

TASK DEF : := 

TYPE SPEC :: = 

UNIT BODY : : = 

USED ID : := 

USED OPS ::= 

task_spec; 

integer I CONSTRAINED; 

subprograrn_decl I 
void; 

used object id· 
used=bl tn_id; . 

used_op 

subprograrn_body 

used_narne_id I 

used_bltn_op; 

Added as a result of srn attribute 

BLOCK STUB VOID : := block I stub I void; 

DEF CHAR :: = def _char; 

DEF OCCURRANCE : : = DEF ID DEF OP DEF_CHAR; 

DEF OP :: = def _op; 

FORMAL SUBPROG DEF : : = NAME I box I no_default; 

LANGUAGE :: = arguernent_ id; 

LOCATION::= EXP_VOID; 

SUBP BODY DECS ::= block I stub I FORMAL_SUBPROG_DEF 
void I LANGUAGE; 
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APPENDIX D 

AN ADA EXAMPLE 

with text io; use text_io; 
procedure-main is 

a,b,c,d integer; 

package int io is new integer_io (integer); 
use int lo; 

task tl is 
entry 

end tl; 

task t2 is 
entry 
entry 

end t2; 

tla(o 

f a(x 
t2a(p 

out integer) ; 

out integer) ; 
out integer); 

task body tl is 

begin 

f,g,h : integer; 

task t3 is 
entry f_f(y out integer) ; 

end t3; 

task body t3 is 
i, j ,rn : integer; 

begin 
i := 20; 
j := 25; 
b := i + j; 
put(b); 
accept f_f(y out integer) do 

y := j + b; 

end f f; 
end t3; 

g := 30; 
t3.f_f(f); 
h := g + f; 
put(h); 
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m := j + b; 
put ( rn) ; 



begin 

end tl; 

accept tla(o : out integer) do 
0 := 200; 

end tla; 
t2.t2a(h); 
put (h) ; 

task body t2 is 

begin 

end t2; 

k,l,n : integer; 

k : = 5; 
l := 10; 
accept f_a(x out integer) do 

X := k + l; 
n := k + l; 
put ( n) ; 

end f a; 
tl.tla(n); 
put ( n) ; 
accept t2a(p : out integer) do 

p := 300; 
end t2a; 

t2.f_a(a); 
d := a - b; 
put (d) ; 
c := a + b; 
put (c) ; 

end main; 
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APPENDIX E 

AN DIANA EXAMPLE 

AOl: compilation [ as list < A02ft > ·1 

A02: comp_unit [ as_unit_body A03ft ] 

A03: subprogram body [ 
as header A04ft; 
as-designator A06ft; 
as-block stub A07ft 

A04: procedure [ as_param_s A05ft 

A05: param_s [ as_list <> ] 

A06: proc_id [ lx_symrep "main" 

A07: block [ 
as items A08ft; 
as stm s A20ft ] 

A08: item s [ as list < A09ft BOOft COOft B33ft C33ft > 

A09: var [ 

AlO: 

All: 

Al2: 

Al3: 

Al4: 

Al5: 

Al6: 

as ids AllA; 
as type spec AlGA; 
as=object_def AlOA 

void 

id s as list < Al2A Al3ft 

var id lx _symrep "a" 

var id lx _symrep "b" 

var id lx _symrep "c" 

var id lx _symrep "d" 

constrained [ 
as name Al7ft 
as constraint void 
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Al4" Al5A > ] 



Al7: 

BOO: 

BOl: 

B02: 

B03: 

B04: 

BOS: 

B06: 

B08: 

B09: 

BlO: 

Bll: 

Bl2: 

COO: 

COl: 

C02: 

C03: 

C04: 

COS: 

used name id [ lx symrep "integer" ] 

task decl 
as id BOlA; 
as task def B02A 

var_id [ lx_symrep "tl" 

task_spec [ as_decl s B03A 

decl_s [ as list < ~04A > 

subprogram decl [ 
as_designator 
as header 
as_ subprogram_ de£ 

BOSA; 
B06A; 
void; 

entry_id [ lx_symrep "tla" 

entry [ 
as_dscrt_range_void void; 
as_param_s B08A 

param_s [ as list < B09A > ] 

out [ 
as ids BlOA; 
as name Bl2A; 
as=exp_void void 

id_s [ as list < BllA > 

otit id [ lx symrep "o" - -

used name id [ lx_symrep "integer" ] 

task decl 
as id COlA; 
as task def C02A 

var_id [ lx_symrep "t2" 

task_spec [ as_decl_s C03A 

decl s [ as list < C04A Cl4A > ] 

subprogram_decl 
as_designator 
as header 
as_subprogram_def void; 

entry_id [ lx_symrep "f a" 
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C06: 

C08: 

C09: 

ClO: 

Cll: 

Cl2: 

Cl4: 

Cl5: 

Cl6: 

Cl8: 

Cl9: 

C20: 

C21: 

C22: 

B33: 

B34: 

B35: 

B36: 

entry [ 
as dscrt range void void; 
as=param=s - C08A 

param_s [ as list < C09A > ] 

out [ 
as ids ClOA; 
as name Cl2A; 
as_exp_void void 

id_s [ as_~ist < CllA > 

out_id [ lx_symrep "x" 

used_name_id [ lx_symrep "integer" 

subprogram decl [ 
as designator 
as-header 
as_subprogram_def 

Cl5A; 
Cl6A; 
void; 

entry id [ lx symrep "t2a" 
- -

entry. [ 
as dscrt range void void; 
as-param-s - Cl8A 

- -

param_s [ as list < Cl9A > ] 

out [ 
as ids C20A; 
as name C22A; 
as=exp_void void 

id_s [ as_list < C21A > 

out_id [ lx_symrep "p" 

used_name_id [ lx_symrep "integer" 

task body [ 
as id B34A; 
as block stub B35A 

task_body_id [ lx_symrep "tl" ] 

block [ 
as items B36A; 
as stm s Bll7A 

item s as list < B37A DOOA D45A > ] 
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B37: 

B3S: 

B39: 

B40: 

B41: 

B42: 

B43: 

DOO: 

DOl: 

D02: 

D03: 

D04: 

DOS: 

D06: 

DOS: 

D09: 

DlO: 

Dll: 

Dl2: 

var [ 
as id s B3S"; 
as-type spec B42"; 
as=object_def void 

id_s [as list< B39" B40" B41" > 

var id lx_symrep "f" 

var id lx_symrep "g" 

var id lx_syrnrep "h" 

constrained [ 
as name B43"; 
as constraint void ] 

used name id [ lx_symrep "integer" ] 

task decl 
as id DOl"; 
as-task def D02" 

var_id [ lx_symrep "t3" 

task_spec [ as_decl s D03" 

decl_s [ as list < D04" > 

subprogram decl 
as designator 
as header 
as_subprogram_def 

DOS"; 
D06"; 
void; 

entry_id [ lx_symrep "f f" 

entry [ 
as dscrt range void void; 
as::::.pararn=s - DOS" 

param_s [ as list < D09" > ] 

out [ 
as ids DlO"; 
as name Dl2"; 
as=exp_void void 

id_s [ as_list < Dll" > 

out_id [ lx_symrep "y" 

used name id [ lx symrep "integer" 
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D45: 

D46: 

D47: 

048: 

D49: 

D50: 

D51: 

D52: 

D53: 

D54: 

D55: 

D56: 

D57: 

D58: 

D59: 

D60: 

D61: 

D62: 

D63: 

D64: 

task body [ as id D46A; 
as block stub D47A 

task_body_id [ lx_symrep "t3" ] 

block [ 
as items D48A; 
as stm s D56A 

item s as list < D49A > ] 

var [ 
as ids DSOA; 
as type spec D54A; 
as_object_def void 

id_s [ as_list < D51A D52A D53A > ] 

var id lx_symrep "i" 

var id lx_symrep "j" 

var id lx_symrep "m" 

constrained [ 
as name D55A; 
as-constraint void ] 

used_name_id [ lx_symrep "integer" ] 

assign [ 
as name 
as_exp 

used name id [ lx symrep "i" ] 

numeric literal [ lx numrep "20" 

assign [ 
as name 
as_exp 

used name_id [ lx_symrep "j" ] 

numeric literal [ lx numrep "25" 

assign [ 
as name 
as_exp 

used name id lx_symrep "b" ] 
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D65: 

D66: 

D67: 

D68: 

D69: 

D70: 

D7l: 

D72: 

D73: 

D74: 

D75: 

D76: 

D77: 

D78: 

D79: 

D80: 

D8l: 

D82: 

D83: 

D84: 

function_call [ 
as name D66A; 
as_param_assoc_s D67A 

used_bltn_op [ lx_symrep "+" 

param assoc s 
- - as list < D68A D69A > ] 

used name id lx_symrep "i" 

used name id lx_symrep "j" 

out_put [ lx_symrep "b" ] 

accept [ 
as name D72A; 
as_param_s D73A; 
as stm s D77A 

used_name_id [ lx_symrep "f f" 

param_s [ as list < D74A > ] 

out [ 
as id s D75A; 
as name D76A; 
as=exp_void void ] 

out_id [ lx_symrep "y" ] 

used_name_id [ lx_symrep "integer" 

stm_s [ as list < D78A D85A D92A > ] 

assign 
as name 
as_exp 

used name_id [ lx_symrep "y" 

function_call [ 
as name D8lA; 
as_param_assoc_s D82A 

used_bltn_op [ lx_symrep "+" 
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param_assoc_s as list < D83A D84A > ] 

used name id lx_symrep "j" 

used name id lx_symrep "b" 



D85: 

D86: 

D87: 

D88: 

D89: 

D90: 

D9l: 

D92: 

Bll8: 

Bll9: 

Bl20: 

Bl2l: 

Bl22: 

Bl23: 

Bl24: 

Bl25: 

Bl26: 

Bl27: 

Bl28: 

assign 
as name 
as_exp 

used name_id [ lx_symrep "m" ] 

function_call [ 
as name D88A; 
as_param_assoc_s D89A 

used_bltn_op [ lx_symrep "+" 
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param_assoc_s [ as list< D90A D91A > ] 

used name id lx_symrep "j" 

used name id lx_symrep "b" 

out_put [ lx_symrep "m" ] 

assign [ 
as name Bll9A; 
as_exp Bl20A 

used_name_id [ lx_symrep "g" ] 

numeric literal lx_numrep "30" 

entry call [ 
as name Bl24A; 
as_param_assoc_s Bl22A 

param_assoc_s as list < Bl23A > ] 

used name id lx_symrep "f" ] 

selected [ 
as name Bl25A; 
as=designator_char Bl26A 

used name id 

used name id 

assign [ 
as name 
as_exp 

Bl28A; 
Bl29A 

lx_symrep "t3" 

lx_symrep "f f" 

used name id [ lx_symrep "h" ] 



Bl29: 

Bl30: 

Bl31: 

Bl32: 

Bl33: 

Bl34: 

Bl35: 

Bl36: 

Bl37: 

Bl38: 

Bl39: 

Bl40: 

Bl41: 

Bl42: 

Bl43: 

Bl44: 

Bl45: 

Bl46: 

Bl47: 

Bl48: 

function_call [ 
as name Bl30~; 
as_param_assoc_s Bl31~ 

used_bltn_op [ lx_symrep "+" 

param_assoc_s as list < Bl32~ Bl33~ > ] 

used name id lx_symrep "g" 

used name id lx_symrep "f" 

out put [ lx_sy~rep "h" ] 

accept [ 
as name Bl36~; 
as_param_s Bl37~; 
as stm s Bl41A 

used name id [ lx symrep "tla" 

param_s [ as list < Bl38A > ] 

out [ 
as ids Bl39A; 
as name Bl40A; 
as=exp_void void ] 

out_id [ lx_symrep "o" ] 

used_name_id [ lx_symrep "integer" 

stm_s [ as list < Bl42A > 

assign 
as name Bl43A; 
as_exp Bl44A 

used_name_id [ lx symrep "o" ] 

numeric_literal [ lx_numrep "200" 

entry call [ 
as name Bl48A; 
as_param_assoc_s Bl46A 

param ass.oc s 
- - as list < Bl47A > ] 

used name id lx_symrep "h" ] 

selected [ 
as name Bl49A; 
as=designator~char BlSOA 
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Bl49: 

Bl50: 

Bl51: 

C33: 

C34: 

C35: 

C36: 

C37: 

C38: 

C39: 

C40: 

C41: 

C42: 

C43: 

C45: 

C46: 

C47: 

C48: 

C49: 

CSO: 

used name id lx_symrep "t2" ] 

used name id lx_symrep "t2a" ] 

out_put [ lx symrep "h" ] 

task body [ 
as id C34~; 
as-block stub C35A 

task_body_id [ lx_symrep "t2" ] 

block [ 
as item s C36A; 
as stm s C45A 

item s as list < C37~ > ] 

var [ 
as id s C38A; 
as=type_spec C42A; 
as_object_def void 

id_s [ as list < C39A C40A C41A > 

var id [ lx _symrep "k" ] 

var id lx _symrep "1" ] 

var id lx _symrep "n" 

constrained [ 
as name C43A; 
as constraint void ] 

used_name_id [ lx_symrep "integer" ] 

assign [ 
as name C47A; 
as_exp C48A 

used name_id [ lx symrep "k" ] 

numeric 1 i tera 1 [ lx_numrep "5" 

assign [ 
as name CSOA; 
as_exp CSl~ 

used name id lx_symrep "1" ] 
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C51: 

C71: 

C72: 

C73: 

C74: 

C75: 

C76: 

C77: 

C78: 

C79: · 

C80: 

C81: 

C82: 

C83: 

C84: 

C85: 

C86: 

C87: 

C88: 

C89: 

numeric_literal [ lx_numrep "10" ] 

accept [ 
as name C72~; 
as_param_s C73~; 
as stm s C77"' 

used name id [ lx_symrep "f a" 

param_s [ as list < C74"' > ] 

out [ 
as id s - C7 5"'; 
as name C76"'; 
as-exp_void void ] 

out_id [ lx_symrep "x" ] 

used_name_id [ lx_symrep "integer" 

stm_s [ as list < C78"' C85"' C92"' > ] 

assign 
as_name C79"'; 
as_exp C80"' 

used name id [ lx_symrep "x" 

function_call [ 
as name C81"'; 
as_param_assoc_s C82"' 

used_bltn_op [ lx_symrep "+" 

param_assoc_s as list < C83"' C84"' > ] 

used name id lx_symrep "k" ] 

numeric literal [ lx numrep "1" 

assign [ 
as name 
as_exp 

used name id [ lx_symrep "n" ] 

function_call [ 
as name C88"'; 
as_param_assoc_s C89"' 

used_bltn_op [ lx_symrep "+" 

param_assoc_~ [ as list< C90"' C91~ > ] 
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C90: 

C91: 

C92: 

ClOl: 

Cl06: 

Cl07: 

Cl08: 

Cl09: 

CllO: 

Clll: 

Cl25: 

Cl26: 

Cl27: 

Cl28: 

Cl29: 

Cl30: 

Cl31: 

Cl32: 

Cl32: 

Cl33: 

used_name_id [ lx_symrep "k" ] 

numeric_literal [ lx_numrep "1" 

out put [ lx symrep "n" - -

entry_call [ 
as name Cl08A; 
as_param_assoc_s Cl06A 

param_assoc_s [ as list < Cl07A > ] 

used name id [ ·1x -symrep "n" ] 

selected [ 
as name Cl09A; 
as=designator_char CllOA 

used name id lx_symrep "tl" 

used name id lx_symrep "tla" ] 

out_put [ lx_symrep "n" ] 

accept [ 
as name Cl26A; 
as_param_s Cl27A; 
as stm s Cl31A 

used name id [ lx symrep "t2a" 

param_s [ as list < Cl28A > ] 

out [ 
as ids Cl29A; 
as name Cl30A; 
as=exp_void void ] 

out_id [ lx_symrep "p" ] 

used_name_id [ lx_symrep "integer" 

stm_s [ as list < Cl32A > ] 

assign 
as name 
as_exp 

Cl32A; 
Cl33A 

used_name_id [ lx_symrep "p" ] 

numeric literal [ lx_numrep "300" 
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A20: 

A2l: 

A26: 

A27: 

A28: 

A29: 

A30: 

A3l: 

A32: 

A33: 

A34: 

A35: 

A36: 

A37: 

A38: 

A4l: 

A42: 

A43: 

A44: 

A45: 

A46: 

stm_s [ as list< A21A A31A A38A A41A A48A > 

entry_call [ 
as name A28A; 
as_param_assoc s A26A 

param assoc s - - as list < A27A > 

used name id lx_symrep "a" ] 

selected [ 
as name . A29A; 
as=designator_char AJOA 

used name id 

used name id 

assign [ 
as name 
as_exp 

lx_symrep "t2" 

lx_symrep "f a" 

used name id [ lx_symrep "d" ] 

function_call [ 
as name A34A; 
as_param_assoc_s A35A 

used bltn_op [ lx_symrep II 11 

param_assoc_s as list < A36A A37A > ] 

used name id lx_symrep "a" 

used name id lx_symrep "b" 

out put [ lx_symrep "d" ] 

assign [ 
as name A42A; 
as_exp A43A 

used name_id [ lx_symrep "c" ] 

function_call [ 
as name A44A; 
as_param_assoc_s A45A 

used_bltn_op [ lx_symrep "+" 

param assoc s - - as list < A46A A47A > ] 

used name id lx_symrep "a" ] 
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A47: 

A48: 

used_name_id [ lx_symrep "b" ] 

out_put [ lx_symrep "c" ] 
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.dp equ 

.ts equ 

.tt equ 

.sp equ 

.fp equ 

.ap equ 
pure 
align 4 
entry main 
main equ * 

* 

9 
10 
ll 
12 
13 
14 

APPENDIX F 

AN CAL EXAMPLE 

* display pointer 
* task pointer for stack 
* task pointer for table 
* stack pointer 
* top of stack pointer 
* arguement pointer for pass by value 

* 
* 

Envirement set up 

.RS 

.TL 

.NT 
* 
* 
.VLl 
.ELl 
.DLl 
.RLl 
.ALl 
.FLl 
* 
.EPl 
.APl 
.RPl 
.TPl 
.Tl 
* 
* 
.VL2 
.EL2 
.DL2 
.RL2 
.AL2 
.FL2 

equ 104 
equ 96 
equ 3 

* table register save area 
* length of task header 
* number of task 

equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 

Main storage area 
16 * length of variable storage a,b,c,d 

0 * length of entry variable storage 
4 * length of desplay storage 

40 * register save area 
8 * parameter save area 
.VLl+.DLl+.RLl+.ALl+.ELl * size of stack 

.DLl+.VLl location of entry storage in its stack 

.EPl+.ELl location of arguement pt 1n its stack 

.APl+.ALl location of register save in its stack 

.NT*.TL+.TL+.RS stack pointer for parent 

.TL*O+.RS location of task in task table 

Task 1 storage area 
12 * f,g,h 

4 
8 
40 
8 
.VL2+.DL2+.RL2+.AL2+.EL2 
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* 
.EP2 
.AP2 
.RP2 
.TP2 
.T2 
* 
* 
.VL3 
.EL3 
.DL3 
.RL3 
.AL3 
.FL3 
* 
.EP3 
.AP3 
.RP3 
.TP3 
.T3 
* 
* 
.VL4 
.EL4 
.DL4 
.RL4 
.AL4 
.FL4 
* 
.EP4 
.AP4 
.RP4 
.TP4 
.T4 
* 
.FS 
* 
* 
* 
lr 
ai 
stm 

* 
* 
li 
st 
st 
st 
st 

* 

equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 

.DL2+.VL2 

.EP2+.EL2 

.AP2+.AL2 

.TPl+.FLl 

.TL*l+.RS 

Task 3 storage area 
8 * i,j 

4 
12 
40 
8 
.VL3+.DL3+.RL3+.AL3+.EL3 

.DL3+.VL3 
,.EP3+.EL3 
.AP3+.AL3 
.TP2+.FL2 
.TL*2+.RS 

Task 2 storage area 
8 * k,l 
8 
8 
40 
8 
.VL4+.DL4+.RL4+.AL4+.EL4 

.DL4+.VL4 

.EP4+.EL4 

.AP4+.AL4 

.TP3+.FL3 

.TL*3+.RS 
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equ .TPl+.FLl+.FL2+.FL3+.FL4 * total size of stack 

Set up task table 

.sp,.fp 

.fp, .FS 
10,12( .sp) 

2,0 
make all tasks active 

2,.Tl+O( .sp) *main 
2, .T2+0( .sp) * task l 
2,.T3+0(.sp) *task 3 
2,.T4+0( .sp) *task 2 



* 

* 
* 
* 

* 
* 
* 

* 
* 

* 

li 
st 
li 
st 
li 
st 
li 
st 

li 
st 
1i 
st 
li 
st 
li 
st 

1i 
st 
li 
st 
li 
st 
1i 
st 

li 
st 
li 
st 
li 
st 
li 
st 
li 
st 
li 
st 
li 
st 
li 
st 

2,1 
set up prority 

* main 
2, .Tl+4( .sp) 
2,3 
2, .T2+4( .sp) 
2,0 
2, .T3+4( .sp) 
2,2 
2, .T4+4( .sp) 

* task 1 

* task 3 

* task 2 

set up # of children 
2,2 
2, .Tl+l6( .sp) 
2,1 
2, .T2+16( .sp) 
2,0 
2, .T3+l6( .sp) 
2,0 
2, .T4+16( .sp) 

set up parent address 
2,.Tl(.sp) 
2, .Tl+20( .sp) 
2, .Tl( .sp) 
2, .T2+20( .sp) 
2, .T2( .sp) 
2, .T3+20( .sp) 
2,.Tl(.sp) 
2,.T4+20(.sp) 

initialize task stack pointers and jump addresses 
.ts,.TPl(.sp) *main 
. ts , . T 1 + 12 ( . sp) 
2, TASKM 
2,--:-T1+8( .sp) 
.ts,.TP2(.sp) *task l 
.ts, .T2+12( .sp) 
2, TASKl 
2, --:-T2+8 ( . sp) 
.ts,.TP3(.sp) *task 3 
. ts , . T 3+ 12 ( . sp) 
2, TASK3 
2,--:-T3+8(.sp) 
.ts,.TP4(.sp) *task 2 
.ts, .T4+l2( .sp) 
2, TASK2 
2,--:-T4+8( .sp) 
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* 
* 

* 
* 

Set up display pointers 

l .ts,.Tl+12(.sp) *main 
st .ts,O(.ts) 
1 .ts,.T2+12(.sp) *task l 
st .ts,O(.ts) 
1 2,.T1+12(.sp) 
st 2,4(.ts) 
1 .ts,.T3+12(.sp) *task 3 
st .ts,O(.ts) 
1 2,.T2+12(.sp) 
st 2,4(.ts) 
1 2,.T1+12(.sp) 
st 2,8(.ts) 
l .ts,.T4+12(.sp) *task 2 
st .ts,O(.ts) 
1 2, .T1+12( .sp) 
st 2,4(.ts) 

1i 
st 
1i 
st 
b 

Set up Queue 
2,0 
2, task c 
2,:-T1+0(.sp) 
2,_task_pt 
Q10 

QOS 
1 
1i 
st 
st 

equ * 
.tt,_task_pt 
2,36( .tt) 
2,28(.tt) 
2,32(.tt) 

* 
1i 3,0 
1i 2,48(.tt) 
st 3,0(2) 
st 3,4(2) 
st · 2,44( .tt) 
1i 2,60(.tt) 
st 3,0(2) 
st 3,4(2) 
st 2,56(.tt) 
1i 2,72(.tt) 
st 3,0(2) 
st 3,4(2) 
st 2,68(.tt) 
1i 2,84(.tt) 
st 3,0(2) 
st 3,4(2) 
st 2,80(.tt) 
1i 2,36( .tt) 
st 3,0(2) 
st 3,4(2) 
li 2,92(.tt) 
l i 2, • TL 
am 2,_task_pt 
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li 
am 

QlO 
1 
ci 
bnp 

* 
b 

* 
* 
* 
pure 
align 
entry 
TASK2 

* 

2,1 
2,_task_c 
equ * 
2,_task_c 
2,. NT 
Q05 

run n task end of set up 

* start chile t~sk ·2 
4 

TASK2 
equ * 

li 2,5 * K+L -> A 5 + 10 = 15 
1 
st 
li 
1 
st 

* 

.dp,O(.ts) 
2,8( .dp) 
2,10 
. dp, 0 ( • ts) 
2,12(.dp) 

T21 equ * 
li 0,1 
bal 15, sched 

_accept21 equ * 
* 

1 .dp,O( .ts) 
1 2' 8 ( • dp) 
1 .dp,O( .ts) 
a 2,12(.dp) 
1 .dp,O( .ts) 
st 2, .EP4+0( .dp) 

* 
1 2, .EP4+0( .dp) 
st 2 , • AP4 +4 ( . ts ) 
li 2,L20 
st 2, .AP4+0( .ts) 
stm 10, .RP4+0( .ts) 
la .ap, .AP4+0 ( .ts) 
ba1 15,_printf 
lm 1 0 , . AL 4 + 0 ( . a p ) 

* 
1 .dp,O( .ts) 
li .ap,.EP4+0(.dp) 
li 0,3 
bal 15, sched 
ende21 equ * 

* 

Print out A 
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* 
li l,.T2+0( .sp) * table address for entry 

* 

* 

1 .dp,O(.ts) 
1 i . ap, 12 ( . dp) 
li 0,2 
bal 15, sched 
call21 equ * 

1 
1 
st 
li 
st 
stm 
la 
bal 
lm 

. dp, 0 ( . ts ) 
2, 12 ( . dp) 
2 , • AP 4 + 4 ( • t s ) . 
2,L70 
2, .AP4+0( .ts) 
10, .RP4+0( .ts) 
• a p, . AP 4 + 0 ( . t s ) 
15,_printf 
1 0 , • AL 4 + 0 ( • a p ) 

T22 equ * 
li 0,1 
bal 15, 

_accept22 
sched 
equ * 

* 
li 2,300 
1 .dp,O(.ts) 
st 2,.EP4+4(.dp) 
li .ap,.EP4+4(.dp) 
li 0,3 
ba1 15, _sched 

* 
ende22 equ * 

TASK2A equ * task termination 
li 0,0 
bal 15, sched 
b TASK2A 

* 
* 
pure * start task 3 
align 4 
entry TASK3 
TASK3 equ * 

* li 2,20 * I+J -> B 
1 . dp, 0 ( . ts ) 
st 2, 12 ( . dp) 
li 2,25 
1 . dp, 0 ( . ts) 
st 2,16 ( .dp) 
1 .dp,O(.ts) 
l 2, 12 ( . dp) 
1 .dp,O( .ts) 
a 2 , 16 ( . dp) 
l .dp,8( .ts) 
st 2,8(.dp) 

Print out 1 using print£() 

20 + 25 = 45 
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* 

* 
l .dp,8(.ts) 
l 2, 8 ( . dp) 
st 2, . AP3 +4 ( . ts) 
li 2,Ll0 
st 2, . AP3 +0 ( . ts) 
strn l 0 , . RP 3 + 0 ( . t s ) 
la .ap, .AP3+0( .ts) 
bal 15, printf 
lrn l 0 , . AL 3 + 0 ( . a p ) 

* 
T3l equ * 
li 0,1 
bal 15, sched 

_accept3 equ * 
* 

l 
l 
l 
a 
l 
st 

.dp,O(.ts) * J+B -> F 
2,16( .dp) 
.dp,8(.ts) 

2,8(.dp) 
. dp, 0 ( . ts ) 
2, .EP3+0( .dp) 

Print out Busing printf() 

25 + 45 = 70 

* Print out Fusing printf() 

* 

* 

* 
* 

* 

st 
li 
st 
strn 
la 
bal 
lrn 

l 
li 
li 
bal 
ende3 

TASK3A 
li 
bal 
b 

pure 
align 
entry 
TASKl 

li 
l 
st 

2,.AP3+4(.ts) 
2,L30 
2 , . AP 3 + 0 ( • t s ) 
10, .RP3+0( .ts) 
• a p, • AP 3 + 0 ( • t s ) 
15, printf 
l0,:-AL3+0( .ap) 

. dp, 0 ( • ts ) 

.ap, .EP3+0 ( .dp) 
0,3 
15,_sched 

equ * 
equ * task termination 

0,0 
15, sched 

TASK3A 

* 
4 

TASK1 
equ * 
2,30 
.dp,O(.ts) 
2 , 12 ( . dp) 

start task l 

* G+F -> H 30 + 70 = 100 
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1i 1 1 .T3+0( .sp) 
1 .dp 10( .ts) 
1i .ap 18(.dp) 
1i 012 
ba1 151 sched 
ca1111 equ * 

* 
1 .dp 10(.ts) 
1 2 1 ], 2 ( o dp) 
1 .dp 10( .ts) 
a 2 1 8 ( • dp) 
1 .dp 10( .ts) 
st 2 1 16 ( o dp) 

* 
1 .dp 10(.ts) 
1 2116(.dp) 
st 2 1 .AP2+4( .ts) 
1i 2 1L40 
st 2 I • AP 2 + 0 ( . t s ) 
stm 1 0 1 • RP 2+ 0 ( . ts) 
1a .ap 1 .AP2+0 (. ts) 
ba1 15 1_printf 
1m 1 0 1 • AL 2 + 0 ( . a p ) 

* 
T11 equ * 
1i 011 
ba1 151 

_accept1 
sched 
equ * 

* 
1i 21200 
1 .dp 10(.ts) 
st 2 1 .EP2+0( .dp) 

* 
1i .ap 1 .EP2+0( .dp) 
1i 013 
ba1 151 sched -
ende1 equ * 

* 
1i 1 1 .T4+0(.sp) 
1 .dp 1 0( .ts) 
1i .ap 1 16 ( .dp) 
1i 012 
ba1 15 1 sched 

_ca1112 equ * 
* 

1 .dp 10(.ts) 
1 2 1 16 ( • dp) 
st 2 1 .AP2+4(.ts) 
1i 2 1L80 
st 2 1 .AP2+0(.ts) 
stm 10,.RP2+0(.ts) 
1a .ap,.AP2+0(.ts) 
ba1 15, printf 
1m 10,~AL2+0(.ap) 
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* 

* 
* 

* 

* 

* 

* 

* 

TASKlA 
li 

equ * task termination 
0,0 

bal 15,_sched 
b TASKlA 

pure * start main 
align 4 
entry TASKM 
TASKM equ * 
li l,.T4+0(.sp) 
1 .dp,O(.ts) 
li .ap,4( .dp) 
li 0,2 
bal 15, sched -
callm equ * 
1 .dp,O(.ts) * A+B -> c 
1 2, 4 ( • dp) 
1 . dp, 0 ( • ts) 
a 2,8(.dp) 
1 . dp, 0 ( . ts ) 
st 2,12(.dp) 
1 • dp, 0 ( . ts) * A - B -> D 
1 2 , 4 ( • dp) 
1 • dp, 0 ( . ts) 
s 2, 8 ( • dp) 
1 . dp, 0 ( • ts ) 
st 2,16( .dp) 

Print 
1 .dp,O(.ts) 
1 2,16(.dp) 
st 2,.AP1+4(.ts) 
li 2,L50 
st 2 , . AP 1 + 0 ( . t s ) 
stm 1 0 , • RP 1 + 0 ( . t s ) 
la . a p, • AP 1 + 0 ( • t s ) 
bal 15,_printf 
lm 1 0 , . AL 1 + 0 ( . a p ) 

15 + 45 = 60 

15 + 45 = -30 

out D using print£ ( ) 

Print out C using print£ ( ) 
1 .dp,O( .ts) 
1 2 , 12 ( • dp) 
st 2 , . AP 1 + 4 ( • t s ) 
li 2,L60 
st 2, .APl+O( .ts) 
stm 1 0 , . RP 1 + 0 ( . t s ) 
la . a p , . AP 1 + 0 ( • t s ) 
bal 15,_printf 
lm 1 0 , . AL 1 + 0 ( . a p ) 

. ' 
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* 
* 

TASKMA 
li 
bal 
b 

pure 

equ * task termination 
0,0 
l5,_sched 

TASKMA 

align 4 
entry sched 
sched equ * 

* 
eli 
bne 
l 
bp 
li 
st 
l 
li 
am 
b 

S005 
st 
li 
am 
l 
c 
bnp 
li 
am 

SOlO 
st 
b 

* 
S050 
* 
eli 
bne 
st 
l 
l 
eli 
bne 
li 
st 

SlOO 
b 

* 
Sl50 
* 

0,0 * Normal end of tas~ routine 
S0 50 
2,l6(.tt) *check for children tasks 
S005 
2,-l · * no children make inactive 
2,0(.tt) 
2,20(.tt) *decrease parent task 
3,-l 
3,16(2) 
SOlO 
equ * keep active children exist 
15,8 (.ttl. * jump address 
2,1 * lower prority 
2,4(.tt) 
2,4(.tt) * prority check for lowest 
2,_prority 
SOlO 
2,1 * make lower 
2,_prority 
equ * 
l5,8(.tt) *save jump address for return 
run n task 

equ * continue 

0,1 * Entry begin call 
Sl50 
l5,8(.tt) *store jump address 
2,28(.tt) *check to see if queue is empty 
3,0(2) 
3,0 
SlOO 
2,1 
2,0(.tt) 
equ * 

run n task 

equ * 

* queue is empty put to sleep 
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eli 
bne 
st 
st 
li 
st 
li 
st 
1 
cl 
bne 

8170 
st 
st 
1 
st 
b 

8160 
1 
eli 
be 
b 

8180 
b 

* 
8200 
* 
eli 
bne 
li 
1 
1 
st 
1 
1 
st 
li 
st 
1 
st 
br 

* 
8250 
* 

b 
* 

0,2 * Task call to entry 
8200 
15,8(.tt) 
.ap,24( .tt) 
2,1 
2,0( .tt) 
2,0 
2,0(1) 
3,32(1) 
3,28(1) 
8160 

* 

* store jump address 
* store arguement pointer 
* put to sleep 

* wake up entry task 

* load up queue 
* check fullness of queue 

* store calling table task address 
* store arguement pointer address 

70 

equ 
.tt,0(3) 
.ap,4(3) 
2,8(3) 
2,32(1) 
8180 

* load up next empty location in queue tail 

equ 
2,0(3) 
2,0 
8170 

* empty check for queue 

errl * too many tasks queued up terminate 
equ * 

run n task 

equ * 
0,3 
8250 
2,0 

* Entry end signal 

3' 2 8 ( . tt) 
4,0(3) 
2,0(4) 

* make calling task active 

2,0(.ap) *transfer call 
4,4(3) 
2,0(4) 
2,0 
2,0(3) * zerro out queue 
2,8(3) * load up next item in queue 
2 '2 8 ( • tt) 
15 * return to task and continue 

equ * 

err2 
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run n task equ * 
* 
li 
st 
b 

8400 
li 
st 
li 
st 
b 

8325 
1 
1 
eli 
bne 
1 
cl 
bne 
1 
1 
1 
br 

8350 
li 
am 
li 
am 

8375 
1 
ci 
bnp 
li 
am 

8300 
1 

* 

* 

c 
bnp 
b 

errl 
li 
st 
stm 
lr 
bal 
lm 
b 

2,0 * 
2,_prority_c 
8300 

" prority level rotation 

equ * set 
2,.Tl+O(.sp) 
2,_task_pt 

up for # of tasks 
* initialize task pointer for rotation 

2,0 * 
2,_task_c 
8375 

" 

equ * check active 
.tt,_task_pt 
2,0(.tt) 
2,0 
8350 
2,4(.tt) 
2,_prority_c 
8350 

active task check 

15,8( .tt) * load up jump address 
.ts,l2(.tt) * " task pointer for stack 
.ap,24(.tt) * " arguement pointer 
15 * run task 
equ * 
2,.TL *check next task 
2 ,_task_pt 
2,1 
2,_task_c 
equ * 
2,_task_c 
2,.NT *check# of tasks 
8325 
2,1 * increment next prority 
2,_prority_c 
equ * 
2, prority c 
2,=prority-
8400 
8500 * normal termination 

equ 
2,ERR1 

* 
2, 0 ( . sp) 
10,8(.sp) 
. ap,. sp 
15,_printf 
10,8( .ap) 
8500 



* 

err2 
st 
li 
st 
stm 
lr 
bal 
lm 

equ * 
0 1 4 ( . sp) 
2 1ERR2 
2 1 0 ( • sp) 
10 18(.sp) 
. ap 1. sp 
151_printf 
1 0 1 8 ( • ap) 

8500 equ * 
*-----------------------------------------------
* 
li 
st 
stm 
lr 
bal 
lm 

Normal termination 
6 1 L99 
6 10(.sp) 
0 136(.sp) 
.ap 1 .sp 
15 1 printf 
0 13G(.ap) 

*-----------------------------------------------
* 

lm 10,12(.sp) 
br 15 
impur 
extrn _printf 

_prority equ * 
de a(3) 

_task_pt equ * 
de a(O) 
task e equ * 

-de a(O) 
_prority_e equ * 

de a(O) 
ERRl equ * 

db Y , a , 1 Y , 2 0 , 1 Y ~ 5 1 , 1 Y , 7 5 , f Y , 6 5 , 1 Y , 7 5 , 1 Y , 6 5 , f Y , 2 0 , 
db y'6f'ly'76'1y'65' 1y'72'1y'20' 1y'66'1y'6e'ly'6f' 
db. y'77'1y'20'1y'65'1y'72'1y'72'1y'6f'ly'72'1y'20' 
db y 'a ' 1 y '0 ' 

ERR2 equ * 
db Y , a , 1 Y , 2 0 , 1 Y , 5 4 , 1 Y , 61 , 1 Y , 7 3 , 1 Y , 6 b , 1 Y , 2 0 , 1 Y , 7 3 , 
db y'63',y'68' 1y'65' 1y'64'1y'75' 1y'6e'ly'61' 1y'72' 
db Y , 2 0 , 1 Y , 6 5 , 1 Y , 7 2 , 1 Y , 7 2 , 1 Y , 6 f , 1 Y , 7 2 , 1 Y , 2 0 , 1 Y , 2 5 , 
db y'64' 1y'a' 1y'O' 

LlO equ * 
db Y , a , 1 Y , 6 2 , 1 Y , 2 0 , f Y , 3d , 1 Y , 2 0 , f Y , 2 5 ' 1 Y , 6 4 ' 1 Y 'a ' 
db y '0, 

L20 equ * 
db Y , a ' 1 Y ' 6 1 , 1 Y , 2 0 , 1 Y , 3d , 1 Y , 2 0 , 1 Y , 2 5 , f Y , 6 4 , 1 Y , a , 
db y '0, 

L30 equ * 
db Y , a , 1 Y , 6 6 , 1 Y , 2 0 , 1 Y ' 3 d , 1 Y , 2 0 , 1 Y , 2 5 , 1 Y , 6 4 , f Y , a , 
db y '0, 

L40 equ * 
db Y , a , 1 Y , 6 8 , 1 Y , 2 0 , f Y , 3 d , 1 Y , 2 0 , 1 Y , 2 5 , 1 Y , 6 4 , 1 Y , a , 
db y '0, 
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L50 
db 
db 

L60 
db 
db 

L70 
db 
db 

L80 
db 
db 

L99 
db 
end 

equ * 
y 'a', y '6 4 ', y '2 0 ', y '3d', y '2 0 ', y '2 5 ', y '6 4 ', y 'a' 
y, 0 , 

equ * 
y'a' ,y'63' ,y'20' ,y'3d' ,y'20' ,y'25' ,y'64' 1 y'a' 
y, 0, 

equ * 
y'a' 1 y'6c' ,y'20' ,y'3d' ,y'20' ,y'25' ,y'64' ,y'a' 
y, 0, 

equ * 
Y, a, t Y, 6 8 , f Y, 61 , t Y, 2 0 , I Y, 3d, f Y, 2 0, f Y, 2 5 'I Y, 6 4, 
y'a',y'O' 

equ * 
y 'a ' 1 y '6 5 ' , y '6e' , y '6 4 ' , y 'a ' , y '0 ' 
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