
AN INVESTIGATION OF AN INTERMEDIATE

REPRESENTATION FOR A HIGH

LEVEL LANGUAGE

By

DAVID ASA HARDEN
,:

Bachelor of Science in Architectural Studies

Oklahoma State University

Stillwater, Oklahoma

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 198 8

Thes~'S
\"-l Vf -
\4-;<s<i .. L
<:..o~.~

AN INVESTIGATION OF AN INTERMEDIATE

REPRESENTATION FOR A HIGH

LEVEL LANGUAGE

Thesis Approved:

~- LT~~---
----'----=-1-~~--~~=------

_ _L(~ /1. ~---
Dean of the Graduate College

ii
1302569

ACKNOWLEDGEMENTS

I wish to express appreciation to Dr. K. M. George and

Dr. George E. Hedrick for their ~uidance and assistance

throughout this entire study. Without their help, this work

would never have been realized.

I am indebted to the many faculty members of Oklahoma

State University and Saint Gregory's College who have

provided assistance in my studies and made my graduate

education a success.

Finally, a special thanks to the monks of Saint

Gregory's Abbey for their unfailing support and

encouragement. To these, my confrers, this work is

dedicated.

lll

TABLE OF CONTENTS

Chapter

I. INTRODUCTION.
Statement of the Problem
Motivation
Limitations.

Page

1

1
2
3

II. INTERMEDIATE LANGUAGES/REPRESENTATION A SURVEY. 4

ILs or IRs .
Types, Forms and Criteria
IL ~ s
DIANA.
Conclusion .

III. IMPLEMENTATION OF DIANA .

An Overview of DIANA .
External Form of DIANA
Internal Form of DIANA
Code Generation.

IV. THE MEMORY SCHEMA ...

v.

VI.

Memory Layout
Code Layout

The Initializer .
The Code. . . .
The Task Manager

Conclusion

A DETAILED EXAMPLE ..

SUMMARY AND FUTURE WORK .

Summary
Suggested Future Work.

4
5
7
7

10

11

11
12
13
15

18

19
22
22
23
24
26

27

29

29
30

SELECTED BIBLIOGRAPHY. 31

iv

Chapter Page

APPENDIX A - TOPOLOGY OF DIANA CLASSES AND NODES 33

APPENDIX B - DIANA NODES 36

APPENDIX c - DIANA CLASSES 43

APPENDIX D - A ADA EXAMPLE . . . 45

APPENDIX E - A DIANA EXAMPLE 47

APPENDIX F - A CAL EXAMPLE 60

v

LIST OF FIGURES

Figure

l. The Flat Form

2. List of Attributes ..

3. Node Structure.

4.

5.

6.

Table Structure for Attributes ..

Linked List Structure . . .

Tree Traversal Algorithm ..

Page

13

13

14

15

15

17

7. Memory Storage. 18

8. Code Storage. 19

9. Typical Task Stack. 19

l 0.

ll.

12.

Task Table Entry.

DIANA Topology ...

An Simple Example .

vi

21

33

35

CHAPTER I

INTRODUCTION

Statement of the Problem

The problem addressed in this thesis is the

investigation of an implementation scheme for DIANA

(Descriptive Intermediate Attribute Notation for Ada). This

implementation scheme is performed on the Perkin-Elmer model

3230 processor. The investigation also examines multi­

tasking with respect to DIANA and the Perkin-Elmer. This

scheme is implemented in C within the UNIX environment. The

DIANA input is an ASCII representation as indicated in the

DIANA Reference Manual [EVANS 83], and the output is CAL

(Common Assembler Language). The Common Assembly Language

assembler is licensed software, subject to restricted rights

as defined in the Department of Defense, Armed Service

Procurement Regulations, ASPR, paragraph 7-l04.9(a): Rights

in Data and Computer Software. At the current time

Concurrent Computing Corporation, a Perkin-Elmer Company, is

working on an Ada compiler for the Perkin-Elmer. The

project consists of porting a validated Ada compiler, which

does not use DIANA, written in Ada by using an Ada to Pascal

translater as a bootstrap vehical [OROST 85].

1

•

2

Motivation

The idea of a Universal Intermediate Language (UIL) is

intriguing to computer scientists as is the idea of

concurrency. The question is; "Is an Universal Intermediate

Language (UIL) possible?" Elsworth proposes two reasons for

a UIL to be developed [ELSWORTa 78]. The first reason is to

partition the job of building a compiler into logically

independent parts, and the second reason is to make

languages portable. Bassett in 1984 explicitly asks this

question and points out opposing views [BASSETT 84]. One

side says that it is impossible to have a UIL while the

other side says that theoretically it is possible. A UIL

does not currently exist but DIANA is a good candidate. It

is beyond the scope of this thesis to prove the existence of

a UIL.

Much work is being done on concurrency especially in

its relationship to computer architecture. The next

computer generation might exploit this area. Most of the

present UIL's do not have the capacity to handle

concurrency. One approach has been to add concurrency to

current UIL's and the other approach has been to design a

new UIL to include concurrency. DIANA was designed to be

used with Ada including its multi-tasking features. This

was one of the reasons for choosing DIANA. The main purpose

of this study is to develop a tool to study concurrency.

Such a tool presently does not exist for the PE-3230. This

tool will allow others to experiment with various front-ends

3

of compilers.
Limitations

This is a study of DIANA rather than a study of Ada,

therefore, some of the problems inherent in Ada

implementations are not being investigated. As stated by

the developers in the DIANA refe.rence manual; " ... DIANA is

primarily intended as an interface between the parts of a

compiler. It is also suitable for other programming support

tools." Since the emphasis is on other support tools, only

DIANA as stated in the DIANA Reference Manual (revision 3)

is being investigated.

DIANA slowly is becoming the standard intermediate

language (IL) for Ada. The first version, DIANA 81, was

developed for Ada 80 but with the advent of Ada 83 many

problems have developed with respect to DIANA 81. Different

implementers have solved these problems in various ways and

in the process destroyed the idea of a standard DIANA. To

counteract these tendencies Tartan Labs Inc. in Pennsylvania

under government contract began revising DIANA and in 1983

froze the specification for DIANA with revision 3.

CHAPTER II

INTERMEDIATE LANGUAGES/REPRESENTATION

A SURVEY

The goal of this survey is to examine Intermediate

Languages, henceforth referred to as ILs, with an emphasis

on DIANA (Descriptive Intermediate Attributed Notation for

Ada). The first section of this survey discusses the

differences between ILs and IRs (Intermediate

Representations). The second section reviews types and

forms of ILs. The third section canvasses the different ILs

being used. The fourth section discusses DIANA. This

includes alternatives and other uses for DIANA.

ILs or IRs

Elsworth in "Compilation via an Intermediate Language"

presents a summary of the work done in this area up to 1978

[ELSWORTH 78]. Elsworth describes an IL as some intermediate

representation of a program that can stand alone and has a

form similar to "conventional assembly language and often

being expressed in a character form." Elsworth goes on to

say that an IL may be "defined in terms of operations on a

simple abstract machine [ELSWORTH 78]."

4

5

Ganapathi and Fisher in their article on retargetable

code (1984) go into detail on the distinction between ILs

and IRs [GANAPATHI 84]. They refer to ILs as code generators

which "provide dictions specially suited to describe the

generation of target machine code" for example: languages

like P-code and u-code. IRs on the other hand "help
..

separate machine dependencies· from the code generation

algorithm" for example: representations like TCOL(tree

common oriented language) and APT(abstract program tree).

Waite and Goos in their book on compiler construction

(1984) defined ILs as "conceptual tools used in decomposing

the task of compiling from the source language to the target

language [WAIT 84]." They do not attempt to make a

distinction with respect to IRs.

Aho, Sethi and Ullman in their book on compilers

(1986), confuse the issue even more by their use of the same

terminal ogy [AHO 8 6]. To them the words IL and IR have the

same meaning.

Using the Ganapathi and Fisher definition of an IR,

DIANA is described in the DIANA Reference Manual (1983) as

an IR; and in order for DIANA to communicate between

computing systems an external ASCII form may be created

[EVANS 8 3].

Types, Forms and Criteria

In order to use IRs, Ganapathi and Fisher have set down

a list of considerations for designing IRs [GANAPATHI 84]:

l. Ease of writing a front-end translator for the IR.

2. Code generation treated as a separate package.

3. Ease of generating target code from the IR.

4. The ability to express machine-independent

optimizations in the IR.

5. Storage binding front-end or back-end.

6

IRs may be looked at from various directions. Elsworth

places IRs on a low level to high level scale according to

their complexity and degree of machine or programming

language orientation, and on a similar scale according to

the degree of machine dependence involved [ELSWORTH 78]. There

exists a tradeoff between efficiency and ease of portability

corresponding to the high and low level IR techniques.

Ganapathi and Fisher are dealing with IRs on the

independent level which Elsworth calls high level ILs.

Ganapathi and Fisher break IRs down into three forms

[GANAPATHI 84]:

1. Tuples: including quadruples, triples, indirect

triples and n-tuples.

2. Abstract program trees and graph notation.

3. Linear representations such as reversed polish and

standard polish notation.

Waite and Goos break IRs into four types: token

sequences, structure trees, computation graphs, and target

trees [WAIT 84].

Aho, Sethi and Ullman point out two important benefits

of IRs which are the ease of producing IRs and the ease of

translating IRs into target code [AHO 86].

ILs

There are many ILs in existence. Elsworth presents a

long list. Some of the more common program oriented ILs

are CTL for Algol 60, Fortran and PL/I; P-code for Pascal:

Zcode for Algol 68 [ELSWORTH 78]. TCOL (tree structured

common language) is usually referred to as a family because

each member is tailored to a particular source language.

7

MIL , a l ow·- level I L in the image of B l i s s , ex i s t s only

in a graph form which is used in the Charrette Ada Compiler

1980 [ROSENBERG 80]. LOLITA, another low level IL for Ada,

was developed in 1982 after DIANA, which first appeared in

1981 [ROUBINE 82]. L-code, an IL to define dynamic

semantics, appeared in 1983 by Bryant and Grau [BRYANT 83].

L-code was developed for Pascal, Fortran and Ada. DAS

(Delft Ada Subset) was developed at Delft Univ.,

Netherlands, for their Ada compiler [KATWIJK 83]. DAS 1s an

attributed parse tree.

DIANA

One of the early experiences of writing a compiler for

Ada took place at Carnegie-Mellon University. The product

of this early experience was the Charrette Ada Compiler.

Several articles appeared in Sigplan Notices, vol. 15, 1980,

describing how this compiler was put together. The ILs used

for this compiler were TCOLADA for the high level and MIL

for the low level. The output from the compiler was VAX

ll/780 assembler in an UNIX environment. On the other side

of the Atlantic a team at the Institut Fur Informatik II,

University of Karlsruhe, Germany, was working on an Ada

compiler and developed an IL called AIDA. In 1981, these

two Universities cooperated to produce DIANA. From 1981

until 1983, DIANA was placed under government contract to

Tartan Labs. Upon completion of the last revision in 1983

DIANA was frozen by Tartan Labs [EVANS 83].

8

DIANA, often referred to as an attribute parse tree or

an abstract syntax tree, was designed from the formal

definition of ADA. One of the principal design criteria for

DIANA was that the structure of the original source code was

to be retained ln the DIANA representation. Goos in an

article "Problems in Compiling Ada" [GOOS 81] in 1981

states: "The intermediate representation of an Ada program

by a DIANA tree is machine-independent only to the extent

that the general structure and the attributes of the tree

are machine-independent. The actual values of attribute may

very well depend on the target computer." This article lays

out a method to design an ADA compiler using DIANA but

concentrates only on the front-end.

In 1982 Simpson [SIMPSON 82] and Taft [TAFT 82] in

separate articles use DIANA as an IR in their designs and

both point out some problems with the definition of DIANA.

Revision 3 of DIANA 83 corrected these problems.

Taft states that the DIANA proposal "purposely avoids

specifying a single implementation strategy." Therefore,

his company is looking at two specific implementation

techniques to use DIANA most efficiently. The first

technique represents DIANA nodes as ADA variant record

types, and the second by implementing separate compilation

using a software virtual memory technique. Simpson on the

other hand is studying the implementation DIANA in the ALS

environment. ALS stands for the Ada Language System which

is the Ada support environment developed for the U.S. Army.

Simpson study includes output from the front-end, the code

generation, the program library manager and the KAPSE

(Kernel Ada Program Support Environment).

9

The philosophy behind code generation for IRs is that

they must be adaptable easily to any machine within a large

class of conventional architectures, typically machines with

directly addressable memory and a set of registers. In 1982

two different low level IRs came into existence, LOLITA and

I-code. LOLITA, a low level IR for Ada, was presented by

R o ubi n and company i n l 9 8 2 in the i r art i c l e ~Q~ IT A : ~ L o ~

Level Intermediate Language for Ada [ROUBINE 82]. Their

main objection to DIANA was the tedious job of writing the

code generator. LOLITA exists only as an IR for a

particular source language which is not related to any

abstract machine model.

One may ask the question with respect to low level IRs:

How far is low? For LOLITA this was defined as low as

machine independence would permit. For I-code, presented by

Appelbe [APPELBE 82], which was designed along the same

lines as LOLITA is describe as similar to P-code in form.

To show the importance of a low level IR the Karlsruhe

Ada compiler which uses DIANA also uses AIM (abstract

intermediate machine) [PERCH 83]. The purpose of AIM is to

ease the retargeting of the compiler.

DIANA was designed to be useful for the generation of

other environment tools. A source oriented debugger on a

minicomputer network for image sequence analysis at

Faclbereich Informatik der Univ., Hamburg, Germany, uses

DIANA [FAASCH 83]. Slape and Wallis in 1983 used DIANA to

translate Fortran to Ada [SLAPE 83]. The main complaint of

Slape and Wallis about DIANA was the lack of a rigorous

standard. Rosenblum in A Method for the design of Ada

transformation tools in a DIANA environment [ROSENBLUM 85]

presents four tools using DIANA: an Ada source program

optimizer, a robust programming transformer, a programming

style transformer, and a debugger preprocessor.

Conclusion

10

IR's exist only in internal form, therefore it is left

up to the implementor on how faithful the implementation is.

IL's not only have an internal form but also an external

ASCII form -- which gives a metric for discussion. As a

result IL's allow for machine independent front ends and the

ability to transport code from one machine to another at the

IL level, and to this end DIANA is well suited.

CHAPTER III

IMPLEMENTATION OF DIANA

An Overview of DIANA

DIANA as an intermediate language encodes the results

of lexical, syntactic, and semantic analysis. Therefore,

DIANA may be referred to as an attributed parse tree. Since

DIANA was designed with Ada in mind, each entry in the Ada

syntax has a corresponding node in DIANA. The definition of

the nodes and attributes are in chapter 2 of the DIANA

Reference Manual [EVANS 83]. Each node of a DIANA tree

contains zero or more attributes which are structural

attributes, semantic attributes, lexical attributes or code

attributes.

The structural attribute prefixed with "as_"

corresponds to the edges of the parse tree and always points

to another DIANA node. The semantic attribute prefixed with

"sm " contains information about the static semantics of the

source program and are used in type checking and aid in

procedure overloading, when allowed. The lexical attribute

prefixed with "lx " contains the lexical information about

the source program and is used in order to reproduce the

source. The code attribute prefixed with "cd " contains

information found for the code generator. Currently, there

11

is only one code attribute {cd_impl_size) and it contains

the number of bits needed to represent some object.

12

The DIANA Reference Manual contains a chapter on

implementation options. The philosophy behind this chapter

is to present suggestions on various types of options. The

opening paragraph recommends that the options match the

applications. As a result, the following implementation

scheme was chosen. The simple flat form was used for the

external form, and a node structure using pointers was used

for the internal form. A bottom up parser was used to

traverse the tree and produce assembler code which will then

be put through the assembler to produce machine code.

External Form of DIANA

The external form of DIANA may take on three different

appearances: the flat form, the nested form and a

combination of the two forms. For the sake of simplicity,

the flat form was chosen for use in this paper.

The flat form is an external representation of a node

pointer structure {see figure 1). Each node has a label or

node identification which is a sequence of upper case

letters followed by a sequence of numbers. The label is

terminated by a colon. The next item in the node is the

node-name, a nonterminal which consists of a sequence of

lower case letters and underlines {for a listing of the

nodes used in this implementation see appendix B). The list

of DIANA attributes follows enclosed in square brackets.

13

The square brackets may be omitted if the attribute list is

empty.

label: node-name list-of-attributes

Figure 1. The Flat Form

The list-of-attributes is a series of items with each

one separated by a semi-colon (see figure 2). Each item in

the list contains an attribute-name followed by a label, a

sequence, or a string (see appendix B for the list used in

this implementation). The label 1s used as a pointer to the

next DIANA node in the structure and is followed by a caret.

The sequence is a list of labels enclosed in angle brackets

with each label followed by a caret. These also point to

another node. The sequence may also be empty, in which case

only the angle brackets appear. The string is a terminal

attribute containing a list of ascii characters in cased in

double quotes.

attribute-name labelA;
attribute-name< labelA labelA ... >;
attribute-name "string";
attribute-name labelA

Figure 2. List of Attributes

14

Internal Form of DIANA

The analyzer reads the internal form and converts it

into the internal representation by using LEX, a regular

expression based lexical analyzer generator developed by M.

E. Lesk for AT&T Laboratories-in 1975, to create the tokens

and a parser which builds the tree. In building the tree

the parser only checks the syntax for the node. It does not

check for proper node classes. The representation chosen

for the internal representation is a directed acyclic graph

written in C. The nodes are represented by a generic C

structure shown below in figure 3.

struct node { /* DIANA nodes */
pointer parent; /* pointer to parent for traversal
int token; /* node type
int count; /* number of visits during traversal
int n attribute;/* number of attributes in table
struct table attribute[MAX_N_ATT]; /*attribute table

Figure 3. Node Structure

*I
*I
*/
*/
*/};

The non-leaf attributes are pointers to nodes. Since

there are only a maximum of seven attributes per node, the

attributes are stored in a table as seen in figure 4.

struct table
int token
int type
union {

{ /* structure for attributes */
/* type of attribute */
/* contents of union */

pointer ptr; /* pointer to next node */
char leaf [BUFFER]; /*contents of leaf */
struct link sequence;/* sequence of pointers */
} ;

Figure 4. Table Structure Attributes

The union is used in order to distinguish among the three

types of attributes: a pointer, a leaf, or a sequence. The

sequence is a pointer to a linked list containing pointers

to nodes (Figure 5).

struct link { /* structure of type sequence */
struct node *ptr; /* pointer to next node */
struct link *next; /* pointer to next link */ } ;

Figure 5. Linked List Structure

Code Generation

The code generator is a tree traversal algorithm which

is written in C and which translates the DIANA internal

representation into CAL, a Common Assembler Language which

is a product of the Department of Defense. CAL was chosen

because it is portable over a wide range of machines (at a

15

16

minimum all Perkin Elmer machines) and will allow a later

addition of an optimizer at the assembler level which will

allow finer adjustment to a particular machine. The assembly

stage also allows for error checking at this level. Common

Assembly Language Programming is licensed software, subject

to restricted rights as defined in the Department of

Defense, Armed Service Procurement Regulations, ASPR,

paragraph 7-104.9(a): Rights in Data and Computer Software.

The code generator uses a hybrid depth-first left to

right tree traversal algorithm as shown in figure 6 below.

The stack is used to control the order in which the nodes

are processed. Each node-name has its own processing

procedure which is invoked by the process procedure. The

process procedure is a switch which contains an entry for

each type of node (see Appendix A for this implementation).

As the tree is traversed, the node processing procedure

pushes the appropriate node-name attribute on the stack, and

builds a symbol table, builds individual files for each task

containing the assembler code for that task. Information is

also gathered for the task manager.

Upon completion of the traversal procedure a clean-up

procedure is called which builds the assembler code file.

The clean-up procedure builds the initializer then

concatenates all the task files to the initializer and then

adds the task manager completing the file.

Procedure traversal (node-name)
Process (node-name);
Pop stack (node-name);
Loop while stack is non-empty

Process (node-name);
end loop;

end traversal;

Procedure Process (node-name)
Contains a p~itch which calls the
appropriate procedure to do the
actual processing.

Figure 6. Tree Traversal Algorithm

17

CHAPTE-R IV

THE MEMORY SCHEME

Traditionally, memory consists of two parts, the run­

time storage and program-code storage. This memory scheme

augments the traditional setup by modifying the run-time

storage and program code. The run-time storage maintains a

static table which contains information about each task and

a stack area for each task managed at run time (see figure

7). The program code area contains a section called the

task manager which interacts with the task table and the

individual task at run time (see figure 8).

task l

stack

task 2

stack

task n-1

stack

task n

stack

task table (contains one entry for each task)

Figure l. Memory Storage

18

19

Initializer /

task 1 I

I task 2

1 task :

I task n

1 task ~nanager

Figure 8. Code Storage

Memory Layout

The task table and the task stack area are set at

compile time. Since the Perkin-Elmer model 3230 is a uni-

processing machine, procedures use the stack area above the

tasks where each procedure is allocated or deallocated as

needed. Registers are used for pointers, parameter passing,

and calculations.

register save area

I parameter passing storage I
/ entry variable storage

1 local variable storage

display pointers

Figure 9. Typical Task Stack

20

The task stack area is divided up into five areas as

shown in figure 9. The register save area and the parameter

passing storage are used when a procedure call is invoked.

The register save area is used to store the current

environment and the parameter passing storage is used to

implement call-by-value parameter passing mechanism. The
- .

entry variable storage is a new area in the stack mode.l and

is used to implement the rendezvous method of communication

between tasks. The entry variable is used much in the same

manner as the parameter passing storage but acts like a

local variable storage. The local variable storage stores

all variables used by the particular task. Since tasks are

somewhat like procedures especially in scoping, a display

area is set up in the same manner as dynamic procedure

stacks.

The task table maintains an entry for each task and a

typical entry may be viewed in figure 10. There are four

possible states: running, ready-to-run, sleeping and

terminated. A running task is currently being executed by

the processor. Ready-to-run tasks are ready and waiting to

be run. Sleeping tasks are tasks waiting for a rendezvous

to take place. In order for a task to terminated a search

for dependent tasks is made. If a dependent task does

exist, then the task is left active, else it is marked as

terminated. The second entry contains the priority the

order in which the tasks are to be given attention. The

third and fourth entries, next instruction and active area

21

pointer are used together to store the environment when a

task is interrupted. The next-instruction contains the

address of the next instruction for the task to execute and

the active-area-pointer contains the stack location for the

task. A task may not be terminated until all its child

tasks have been terminated; therefore, it is necessary to
..

know the number-of-children a-nd the ·parent of a task. When

a task terminates, it notifies its parent by decrementing

the number of children in the parent by one. In order to

implement the rendezvous mechanism, a queue is used to store

information about a calling tasks wanting to make contact

with the called task.

state

priority I
----------~------------

next-instruction I
I active-area-pointer I
I number-of-children

parent I

queue I

Figure 10. Task Table Entry

Code Layout

The program code storage as seen in figure 8. consists

of the task manager, an area for each task, and the

initializer. The initializer not only builds the task

table, but also builds the task stacks. The code for each

task follows on a first-come firpt-serve basis. The task

manager follows, which controls the overall running of the

program.

The Initializer

The initializer creates a table entry for each task as

seen in figure 10. It also builds the task stacks as seen

in figure 8 then passes control to the task manager.

22

There are four possible states: running, ready-to-run,

sleeping and terminated. Initially all tasks are set to

ready-to-run state. Since this is a uni-processing system

only one task may run at a time, and the tasks priorities

determine which task is run first. When a task is

interrupted, then the task manager assumes control,

determines the problem and marks the task appropriately.

Currently, there are two conditions which determine whether

a task is to be placed in the sleeping state, both of which

concern the rendezvous mechanism. The first one has to do

with a call to another task: the one calling is put in a

wait state until the called task answers. The second type

of waiting occurs when a task is expecting a call: it is put

into a wait state until it is called. A state is marked

done when a task and all its child tasks have terminated.

As long as a child task is marked active or waiting a task

may not terminate.

The priority pragma has not been implemented; however,

a priority is assigned each task at compile time. The

priority is determined on a firs~-come, first-serve basis.

Each time the task manager is invoked the active task with

the highest priority is run.

The initializer next initializes the next-instruction

to the address of the start of the task code area and the

active-area-pointer is set to the task stack address. The

number-of-child tasks and the parent task address is

23

maintained to handle the task termination. Since a task may

not terminate until all its child tasks have terminated, the

number-of-child tasks is decremented as each child

terminates. In order to perform this operation the address

of the parent task is necessary.

A queue is set up to hold the entries for a calling

task. The address of the calling task and the address of

the entry variable is stored in the queue. Currently the

queue holds a maximum of five entries for the purpose of

testing.

The Code

The code for each task follows the initializer. The

code in each task is augmented to handle the rendezvous

mechanism and the interaction with the task manager. The

24

initialization or start up for each task is not different

from any other main procedure, but the termination of a task

contains a control mechanism that interacts with the task

manager. This termination mechanism is necessary in order

for a task to remain active until all the child tasks have

terminated. Code is also necessary to handle the rendezvous

mechanism which is divided into two parts: the receiving

mechanism and the calling mechanism. The task calling

another task sends the task manager the address or the

receiver, the address of the variable storage containing the

information, and the address to return after completion of

the rendezvous. The receive mechanism consists of two

parts: a begin-accept and a end-accept. The begin-accept

tells the task manager that it ready to receive a call and

sends the task manager its address. The end-accept send the

information back to the calling task and notifies the task

manager that the rendezvous has taken place.

The Task Manager

The task manager consists of five routines: the run­

next-task, task-terminator, begin-accept, end-accept and

task-call. These routines store and retrieve information

from the task table and interact with the individual tasks.

Run-next-task searches for the first task with the

highest priority. If the task is marked active, then the

environment is loaded and control is turned over to the

task. If none of the tasks are active, then the program is

25

terminated.

The task terminator was developed to maintain an active

task while child tasks exists. The mechanism is a simple

call to the task manager to see whether all the child tasks

have terminated. If all the child tasks have terminated

then the running task is marked done but if some child tasks

exist then the priority is lowered and the task is kept

active and control is turned over to the run-next-task

routine.

The rendezvous mechanism consists of a calling routine

and a receive mechanism. The calling routine is invoked by

a task attempting to make contact with another task and the

receive mechanism controls the activity of the called task.

The calling routine, task-call, stores the environment

of the calling task then places it in a wait state. It then

places the calling task address and the address of the

calling task variable in the called task queue. And it

wakes up the called task if it is in a wait state.

The receive mechanism is made up of two routines: a

begin-accept and end-accept. When an accept statement is

encounted in the task code the task manager is invoked and

the begin-task routine acquires control. This routine

stores the environment of the task and then checks the

queue. If the queue is empty the task is placed in the wait

state; else if the queue is not empty the task is left

active and control is turned over to run-next-task. When

the receive mechanism is ready to terminate communication

26

the task manager is called and the end-accept takes control.

This routine makes the calling routine active and readjusts

the entry queue to the next task. And finally control is

turned over to run-next-task.

Conclusion

The stack model is a very convenient tool for the

implementation of DIANA since tasks and procedures act in a

similar manner. The tasking convention explained above uses

the stack model but augments it in two ways: by adding a

task table and a stack for each task. The development of

the task table came from the tasking convention that states:

all tasks in a program are active upon invoking of that

program. The simplicity of the task-manager and its

interaction between the task stacks and the task table show

the beauty of this implementation.

CHAPTER V

A DETAILED EXAMPLE

For a better understanding of DIANA, a detailed example

is shown below. Ada was chosen for the high level language

in this example because of its historical relationship to

DIANA. This example shows an Ada program and its

transformation to a CAL program through DIANA. DIANA does

not have a facility to output information to a printer or

monitor; therefore the following node was added to DIANA

with its attributes

out_put => lx symrep
sm-obj type - -
sm address
sm=obj_def

symbol_rep,
TYPE_SPEC,
EXP_VOID,
OBJECT_DEF;

which invokes the same mechanism as printf invokes in C.

The output node prints the symbol representation and its

contents on a single line.

The Ada program in appendix D explores the different

aspects of multi-tasking. Four tasks which includes the

main procedure are created. One of the tasks (t3) is

embedded in another task (t2) to test task scoping. The

tasks interact in various ways by passing information

between them. Simple integer arithmetic and the put

statement are used to explore these different aspects.

27

28

The DIANA code which was hand produced from the Ada

code of appendix D is shown in appendix E. The first step

in producing a DIANA code is to produce the structural tree,

which is shown ln appendix E for this example, and secondly

decorate the tree with the other attributes. Due to the

length of the DIANA code produced the semantic attributes

were left out of this example~

The CAL assembler code of appendix F was produced from

DIANA code of appendix E by the code generator of this

implementation. To give a better understanding of appendix

F, comments were placed in various places in the assembler

code.

CHAPTER VI

SUMMARY AND FUTURE WORK

Summary

Intermediate languages are important to the development

of language theory and DIANA has made a contribution to the

development of language theory. Therefore the purpose of

this study was to create a code generator for the tasking

model of DIANA. To this end the study has accomplished its

purpose.

In building the code generator two compiler tools were

examined: the lexical analyzer LEX and the parser YACC. The

lexical analyzer LEX aided greatly in this development.

However, due to the nature of DIANA the parser YACC was not

capable of handling the ASCII form of DIANA. Therefore a

parser was developed and an internal form was created. The

LEX program and the parser were written in such a way that

it could be easy to extend them to include the whole of

DIANA and any extension to DIANA that might be made

necessary by an extension of DIANA itself.

The decision to use the assembler language CAL as an

intermediate language allowed for easy error detection and

correction in the development of the memory schema. By

using the concepts of modular design the memory scheme

29

proved easy to modify and to update. More work can to be

done on the priorities pragma which has not been

implemented.

To further facilitate the understanding of DIANA a

detailed example is given in the appendix. A work was also

produced which would allow var~ops high level languages to

produce DIANA with a facility to test their code.

Suggested Future Work

This study explores only one tasking model for DIANA.

30

There are other models in existence. One possibility is

using a heap instead of a stack for memory management.

Another possibility would be mapping the individual tasks to

the processes of the operating system and allowing the

operating system to perform inter-task communication as

inter-process communication. A comparative study of

different implementations on the same machine would be

interesting.

SELECTED BIBLIOGRAPHY

Ah o , A. V. , R. Sethi and J.D. U l l man. l 9 8 6 . Co !!!£il~ r s :
Principles, Techniques, and .. Tools, Addison Wesley,
Reading Massachusetts.

Appe1be, B. and G. Dismukes. 1982. "An Operational
Definition of Intermediate Code for Implementing a
Portable Ada Compiler." Proceedings of the AdaTec
Conference on Ada, Arlington Vigina, 266-274.

Bassett, s. 1984. "Multipass Compilers Produce Tight
Code."Computer Design, vol 23, no l, 44-47.

Brosgol, B. M. 1980. "TCOLada and the MIDDLE END of the
PQCC Ada Compiler." Sigplan Notices, vol 15, no 11,
101-112.

Bryant, B. R. and A. A. Grau. 1985. "An Intermediate
Language to Define Dynamic Semantics." Computer
La!!_~~~.§_, vol 9, no 2, 24-33.

Elsworth, E. F. 1978. "Compilation via an Intermediate
Language." The Computer Journal, vol 22, no 3, 226-233.

Eva n s , A. , K • J . But her , G . Goo s , W . A. W u l f. l 9 8 3 . !2__I _A_N_A
Reference Manual, Revision lr Springer-Verlag, N.Y.

Paasch, H., V. Haarslev, H. Nagel. 1983. "Ada on a
Minicomputer-Network for Image Sequence Analysis: an
investigative implementation." Ada Letters, vol II, no
4, II-4.92 - II-4.96.

Ganapathi, M. and C. N. Fisher. 1984. "Attributed Linear
Intermediate Representation for Retargetable Code
Generation." Software-Practice and Experience, vol 14,
no 4, 347-364.

Goos, G. and G. Winterstein. 1982. "Problems in Compiling
Ada." Lecture Notes in Computer Science #123, 173-199.

Hisgen, A., D. A. Lamb, J. Rosenberg, M. Sherman. 1980. "A
Runtime Representation for Ada Variables and Types."
Sigplan Notices, vol 15, no 11, 82-90.

31

32

Katwijk, J. van and J. van Somcren. 1983. "The DAS Compiler
a ststus report." Ada-Europe/AdaTec Joint Conference on
Ada, Brussels, 28.1-28.2.

Lamb, D. A., A. Hisgen, M. S. Sherman, J. Rosenberg. 1980.
"An Ada Code Generator for VAX/780 with UNIX." Sigplan
Notices, vol 15, no 11, 91-100.

Orost, J. M. 1985. "Network News." USENET, newsgroup
lang.ada Jan 24.

Perch, G., J. Uhl, H. Jansohn, W •. Kirchgassner, R. Landwehr,
M. Dausmann, S. Drossopouiou, G. Goes. 1983. "Ada
Compiler Karlsruhe: an overview." Ada-Europe/AdaTec
Joint Conference on Ada, Brussels, 2.1-2.4.

Rosenblum, D.S. 1985. "A Methodology for the Design of Ada
Transformation Tools in a DIANA Environment." IEEE
Sof.!:_~~re, vol 2, no 2, 24-33.

Rosenberg, J., D. A. Lamb, A. Hisgen, M.s. Sherman. 1980.
"The Charrette Ada Compiler." Sigplan Notices, vol 15,
no 11, 1980, 72-81.

Roubine, 0., J. Teller and, 0. Maurel. 1982. "Lolita: A
Low Level Intermediate Language for Ada." Proceedings
of the AdaTec Conference on Ada, Arlington, Vigina,
251-260. - --

Sherman, M. S. 1980. "A flexible Semantic Analyzer for
Ada." Sig_plan Notices, vol 15, no 11, 62-71.

Simpson, R. T. 1982. "The ALS Ada Compiler Front End
Architecture." Proceedings of the AdaTec Conference on
Ada, Arlington, Vigina, 98-106.

Slape, J. K. and P. J. L. Wallis. 1983. "Conversion of
Fortran to Ada Using an Intermediate Tree
Representation." The Computer Journal, vol 26, no 4,
344-353.

Taft, S. T. 1982. "Diana as an Internal Representation in
an Ada-In -Ada Compiler." Proceedings of the AdaTec
Conference on Ada, Arlington, Vigina, 261-265.

Waite, W. M. and G. Goos. 1984. Texts and Monographs in
Computer Science: Compiler Construction, Springer­
Verlag, N.Y.

APPENDIX A

TOPOLOGY OF DIANA CLASSES AND NODES

Appendix Band C contain-respectively the nodes and

classes of the DIANA language which are used in this

implementation and have been reproduced from the DIANA

reference manual [EVANS 83]. In order to gain a better

understanding of convensions used in appendix B and C,

figure ll is shown below followed by an example.

ACTUAL
void
lx_symrep

Boolean

s

BLOCK STUB
proc id
sm value

Integer

s

USED ID
block
as name

DIANA class names.
DIANA node names.
DIANA attributes.

Identifier defined by user.

Indicates a comment follows which
continues to end of line.
Indicates sequence of what comes
before

Figure 11. DIANA Notation

The definition of DIANA as seen in appendix B and C is

similar in form to BNF. The production rules are broken

down into two parts: the terminals in appendix B and the

33

34

nonterminals in appendix C. In the following definition

EXP : := leaf tree;

EXP is defined as a class name or a nonterminal followed by

a choice of a leaf or tree. The leaf and the tree are node

names or terminals. The two nodes in this example may be

expressed as follows

tree => as left EXP,
as op OPERATOR,
as=right: EXP;

leaf => as_string : Character_S;

where the node name tree has three attributes as left,

as_right, and as_op. The node name leaf has one attribute

as string which is supplied by the user. The class name

OPERATOR is described as

OPERATOR : := Add I Subtract I Multiply I Divide;

where Add, Subtract, Multiply and Divide are built in

operators.

Using the node names and classes described above, an

algebraic expression shown in figure 12a is transformed into

a graphical representation in figure 12b and finally into a

pseudo-DIANA flat form in figure 12c. For more information

on the DIANA flat form see page 12 of this thesis.

35

X + y * Z

Figure 12a. Algebraic Form

Figure 12b. The Graphic Form

AO: tree [as left Al", as_op Add, as_right A2"; -
Al: leaf [as_string "x";]
A2: tree [as left A3", as_op Multiply, as_right A4"; -
A3: leaf [as_string "y";]
A4: leaf [as_string II zIt ;]

Figure 12c. The Flat Form

Figure 12. An Simple Example

APPENDIX B

A LIST OF DIANA NODE NAMES AND THERE ATTRIBUTES

abort =>

accept =>

as name s - -
lx_srcpos
lx comments

as name
as_param_assoc_s
as stm s - -
lx_srcpos
lx comments

NAME_S,
source_position,
comments ;

NAME,
PARAM_S,
STM_S,
source_position,
comments;

arguement_id => lx_symrep symbol_rep;

assign =>

assoc =>

attribute =>

block =>

box =>

as name
as exp
lx=srcpos
lx comments

as designator
as-actual
lx srcpos
lx-comments

NAME,
EXP,
source_position,
comments;

DESIGNATOR,
ACTUAL,
source_position,
comments;

as id ID,
-- always a "used name id" whose attributes
-- p0ints to a prefined "attr_id"
as name NAME,
lx srcpos source_position,
lx-comments comments,
sm_exp_type TYPE_SPEC,
sm value value;

as_item_s ITEM_S,
as stm s STM_S,
as-alternative s: ALTERNATIVE S,

lx srcpos
lx-comments

lx_srcpos
lx comments

36

-- not implemented
source_position,
comments;

source_position,
comments;

comp_unit => as context

as_unit_body
as_pragma_s

lx_srcpos
lx comments

compilation => as list
lx_srcpos
lx comments

cond_entry => as stm sl

const id =>

as stm s2
lx srcpos
lx-comments

lx srcpos
lx-comments
lx-symrep
sm-address
sm-obj type
sm-obj-def
sm-first

constant => as id s
as type spec
as-object def
lx-srcpos­
lx-comments

constrained => as name
as constraint
cd-imp size
lx-srcpos
lx-comments
sm type struct
sm=base=type
sm constraint

decl s => as list
lx-srcpos
lx-comments

delay => as_exp
lx_srcpos
lx comments

CONTEXT,
not implemented

UNIT_BODY,
PRAGMA_S,

-- not implemented
source_position,
comments;

Seq OF COMP_UNIT,
source_position,

.... comments;

STM S,

37

-- first stm is entry call
STM_S,
source_position,
comments;

source_position,
comments,
symbol_rep,
EX_ VOID,
TYPE_SPEC,
OBJECT_DEF,
DEF OCCURRENCE;

- -- used for deferred

ID_S, -- seq of const id
TYPE_SPEC,
OBJECT_DEF,
source_position,
comments;

NAME,
CONSTRAINT, -- void
integer,
source_position,
comments,
TYPE_SPEC,
TYPE_SPEC,
CONSTRAINT; -- void

seq of DECL,
source_position,
comments;

EXP,
source_position,
comments;

entry_call =>

exp_s =>

as name
-- indexed

as param assoc s
lx-srcpos -
lx-comments
sm_normalize_param_s

: NAME,
when entry of family

. PARAM_ASSOC_S,
source_position,
comments,
EXP_S;

as list
lx srcpos
lx-comments

seq of EXP,
source_position,
comments;

function call =>as name NAME,
PARAM_ASSOC_S,
source_position,
comments,
Boolean,

id s =>

in =>

in id =>

in out =>

in out id =>

as param assoc s
lx-srcpos -
lx comments
lx~refix
sm value
sm=normalized_param_s

value,
EXP_S;

as list
lx-srcpos
lx-comments

as id
as name
as exp void
lx-srcpos
lx comments
lx-default

lx srcpos
lx-comments
lx symrep
sm-obj type
sm-init exp
sm first

as id
as name
as_exp_void
lx_srcpos
lx comments

lx_srcpos
lx comments
lx-symrep
sm-obj type
sm-first

seq of ID,
source_position,
comments;

ID_S, -- always in id
NAME,
EXP_VOID,
source_position,
comments,
Boolean;

source_position,
comments,
symbol_rep,
TYPE_SPEC,
EXP_VOID,
DEF_OCCURRANCE;

ID S, -- always in out id
NAME,
EXP_VOID, -- always void
source_position,
comments;

source_position,
comments,
symbol_ rep,
TYPE SPEC,
DEF_OCCURRANCE;

38

integer =>

item s =>

name s =>

as_range
cd imp size
lx-srcpos
lx-comments
sm size
sm type struct
sm_base=type

as list
lx srcpos
lx-comments

as list
lx-srcpos
lx-comments

no default => lx srcpos
lx-comments

null access => lx_srcpos
lx comments
sm exp type
sm-value

null stm => lx srcpos
lx-comments

number => as id s

number id =>

as·exp
lx-srcpos
lx-comments

lx_srcpos
lx comments
lx-symrep
sm-obj type

: RANGE,
:Integer,

source_position,
comments,
EXP_VOID,
TYPE_SPEC,
TYPE_SPEC;

seq of ITEM,
source_position,

.. comments;

seq of NAME,
source_position,
comments;

source_position,
comments;

source_position,
comments,
TYPE SPEC,
value;

source_position,
comments;

ID_S,
-- sequence of number id

EXP,
source_position,
comments;

source_position,
comments,
symbol_rep,
TYPE SPEC,

39

- - -- always
sm_init_exp

refers to a universal type
EXP;

numeric literal => lx srcpos
lx-comments
lx_numrep
sm_exp_type

source_position,
comments,
number_rep,

out =>

sm value

as id
as name
as=exp_void
lx srcpos
lx-comments

TYPE SPEC,
-- universal type
value;

ID_S, always out id
NAME,
EXP_VOID, always void
source_position,
comments;

out id => lx srcpos
lx-comments
lx symrep
sm-obj type
sm-first

param_assoc_s =>as list
lx=srcpos
lx comments

param s =>

parenthesized

proc id =>

procedure =>

range =>

as list
lx-srcpos
lx-comments

=>as_exp
lx srcpos
lx-comments
sm_exp_type

sm value

lx_srcpos
lx comments
lx=symrep
sm_spec
sm_body
sm location
sm stub
sm-first

as_param_s
lx_srcpos
lx comments

as_expl
as exp2
lx-srcpos
lx-comments
sm=base_type

source_position,
comments,
symbol_rep,
TYPE_SPEC,
DEF_OCCURRENCE;

seq of PARAM_ASSOC,
source_position,
comments;

:. ~eq of PARAM,
source_position,
comments;

EXP,
source_position,
comments,
TYPE_SPEC,

universal type
value;

source_position,
comments,
symbol_rep,
HEADER,
SUBP_BODY_DECS,
LOCATION,
DEF_OCCURRENCE,
DEF_OCCURRANCE;

PARAM_S,
source_position,
comments;

EXP,
EXP,
source_position,
comments,
TYPE_SPEC;

select => as select clause s
as stm s

. SELECT_CLAUSE S,
STM_S,
source_position,
comments;

- -
lx srcpos
lx-comments

select clause =>as_exp_void
as stm s

lx srcpos
lx-comments

EXP_VOID,
STM S,
first stm accept or delay
source_position,
comments;

40

41

select clause s => as list
lx_srcpos
lx comments

seq of SELECT_CLAUSE,
source_position,
comments;

stm s =>

stub =>

as list
lx-srcpos
lx-comments

lx_srcpos
lx comments

seq of STM,
source_position,
comments;

source_position,
comments;

subprogram_body => as deSignatdr : DESIGNATOR,
---proc id, function id, or def op
as header HEADER, -
as-block stub BLOCK_STUB,
lx srcpos source_position,
lx comments comments;

subprogram_decl => as_designator : DESIGNATOR,

task_body =>

task_body_id =>

task decl =>

task_spec =>

-- proc_id, function_id, or def_op
as_header HEADER,
as subprogram def SUBPROGRAM DEF,
lx-srcpos - source position,
lx-comments comments;

as id
as block stub
lx srcpos
lx-comments

lx srcpos
lx-comments
lx=symrep
sm type spec
sm-body-
sm-first
sm-stub

as id
as task def
lx srcpos
lx-comments

ID, always task_body_id
BLOCK STUB,
source position,
comments;

source position,
: ·comments,

symbol_rep,
TYPE_SPEC,
BLOCK_STUB_VOID,
DEF_OCCURRANCE,
DEF_OCCURRANCE;

ID, -- always var id
TASK_DEF,
source_position,
comments;

DECL_S,
source_position,
comments,

as decl s
lx-srcpos
lx comments
sm-body BLOCK STUB VOID,

void only in-presence of
compilation

seperate

sm address EXP_VOID,
sm_storage_size : EXP_VOID;

terminate => lx srcpos
lx-comments

timed_entry => as stm sl

as stm s2

lx_srcpos
lx comments

used bltn id => lx_srcpos
lx comments
lx_symrep
sm_operator

used_bltn_op => lx_srcpos
lx comments
lx_symrep
sm_operator

used name id => lx_srcpos
lx comments
lx-symrep
sm-defn

source_positionl
comments;

STM 8 1

-- first stm is entry_call
: STM s I
-- first stm is delay
source_position 1

comments;

.. source_posi tion 1

COmmentS 1

symbol_repl
operator;

source_position 1

comments 1

symbol_rep 1

operator;

source_position 1

comments 1

symbol_rep 1

DEF_OCCURRENCE;

used_object_id => lx_srcpos
lx comments
lx=symrep
sm exp type
sm-defn

source_position 1

comments 1

symbol_rep 1

TYPE_SPEC 1
DEF_OCCURRENCE 1
value;

used_op =>

var =>

var id =>

sm value

lx_srcpos
lx comments
lx_symrep
sm defn

as id

as_type_spec
as object def
lx-srcpos­
lx-comments

lx_srcpos
lx comments

source_positionl
comments 1

symbol_rep 1

DEF_OCCURRENCE;

ID_S 1
sequence of var_id

TYPE_SPEC 1 -- constrained
OBJECT_DEF 1
source_positionl
comments;

source_position 1

comments 1

symbol_rep 1

42

lx symrep
sm-object type - -
sm address
sm=obj_def

TYPE_SPEC1 -- constrained
EXP_VOID 1
OBJECT_DEF;

void => no equivalent in concrete syntax

APPENDIX C

DIANA CLASSES

BLOCK STUB~:= block;

CONSTRAINED : := constrained;

CONSTRAINT :: = void;

DECL : : = constant I subprogram_decl I var

DEF ID : :=

DESIGNATOR :: =

task_decl;

proc_id I
out_id I

ID I OP;

in_id I
var_id;

in out id

EXP : := NAMEI null access numeric literal
parenthesized;

EXP VOID : := EXP I void;

HEADER : := procedure entry;

ID : := DEF_ID I USED_ID;

ITEM · ·= subprogram_body task_ body DECL;

NAME : := DESIGNATOR function_call;

OBJECT DEF : := EXP_VOID;

OP :: = USED_OP;

PARAM : := in I in out out;

PARAM ASSOC ::= EXP I assoc;

RANGE R : := range attribute;

STM :: = null strn I
delay I
cond entry
select 1

43

assign I
abort I
timed entry
terminated;

entry call
block-1
accept I

SUBPROG DEF ::=void;

TASK DEF : :=

TYPE SPEC :: =

UNIT BODY : : =

USED ID : :=

USED OPS ::=

task_spec;

integer I CONSTRAINED;

subprograrn_decl I
void;

used object id·
used=bl tn_id; .

used_op

subprograrn_body

used_narne_id I

used_bltn_op;

Added as a result of srn attribute

BLOCK STUB VOID : := block I stub I void;

DEF CHAR :: = def _char;

DEF OCCURRANCE : : = DEF ID DEF OP DEF_CHAR;

DEF OP :: = def _op;

FORMAL SUBPROG DEF : : = NAME I box I no_default;

LANGUAGE :: = arguernent_ id;

LOCATION::= EXP_VOID;

SUBP BODY DECS ::= block I stub I FORMAL_SUBPROG_DEF
void I LANGUAGE;

44

APPENDIX D

AN ADA EXAMPLE

with text io; use text_io;
procedure-main is

a,b,c,d integer;

package int io is new integer_io (integer);
use int lo;

task tl is
entry

end tl;

task t2 is
entry
entry

end t2;

tla(o

f a(x
t2a(p

out integer) ;

out integer) ;
out integer);

task body tl is

begin

f,g,h : integer;

task t3 is
entry f_f(y out integer) ;

end t3;

task body t3 is
i, j ,rn : integer;

begin
i := 20;
j := 25;
b := i + j;
put(b);
accept f_f(y out integer) do

y := j + b;

end f f;
end t3;

g := 30;
t3.f_f(f);
h := g + f;
put(h);

45

m := j + b;
put (rn) ;

begin

end tl;

accept tla(o : out integer) do
0 := 200;

end tla;
t2.t2a(h);
put (h) ;

task body t2 is

begin

end t2;

k,l,n : integer;

k : = 5;
l := 10;
accept f_a(x out integer) do

X := k + l;
n := k + l;
put (n) ;

end f a;
tl.tla(n);
put (n) ;
accept t2a(p : out integer) do

p := 300;
end t2a;

t2.f_a(a);
d := a - b;
put (d) ;
c := a + b;
put (c) ;

end main;

46

APPENDIX E

AN DIANA EXAMPLE

AOl: compilation [as list < A02ft > ·1

A02: comp_unit [as_unit_body A03ft]

A03: subprogram body [
as header A04ft;
as-designator A06ft;
as-block stub A07ft

A04: procedure [as_param_s A05ft

A05: param_s [as_list <>]

A06: proc_id [lx_symrep "main"

A07: block [
as items A08ft;
as stm s A20ft]

A08: item s [as list < A09ft BOOft COOft B33ft C33ft >

A09: var [

AlO:

All:

Al2:

Al3:

Al4:

Al5:

Al6:

as ids AllA;
as type spec AlGA;
as=object_def AlOA

void

id s as list < Al2A Al3ft

var id lx _symrep "a"

var id lx _symrep "b"

var id lx _symrep "c"

var id lx _symrep "d"

constrained [
as name Al7ft
as constraint void

47

Al4" Al5A >]

Al7:

BOO:

BOl:

B02:

B03:

B04:

BOS:

B06:

B08:

B09:

BlO:

Bll:

Bl2:

COO:

COl:

C02:

C03:

C04:

COS:

used name id [lx symrep "integer"]

task decl
as id BOlA;
as task def B02A

var_id [lx_symrep "tl"

task_spec [as_decl s B03A

decl_s [as list < ~04A >

subprogram decl [
as_designator
as header
as_ subprogram_ de£

BOSA;
B06A;
void;

entry_id [lx_symrep "tla"

entry [
as_dscrt_range_void void;
as_param_s B08A

param_s [as list < B09A >]

out [
as ids BlOA;
as name Bl2A;
as=exp_void void

id_s [as list < BllA >

otit id [lx symrep "o" - -

used name id [lx_symrep "integer"]

task decl
as id COlA;
as task def C02A

var_id [lx_symrep "t2"

task_spec [as_decl_s C03A

decl s [as list < C04A Cl4A >]

subprogram_decl
as_designator
as header
as_subprogram_def void;

entry_id [lx_symrep "f a"

48

C06:

C08:

C09:

ClO:

Cll:

Cl2:

Cl4:

Cl5:

Cl6:

Cl8:

Cl9:

C20:

C21:

C22:

B33:

B34:

B35:

B36:

entry [
as dscrt range void void;
as=param=s - C08A

param_s [as list < C09A >]

out [
as ids ClOA;
as name Cl2A;
as_exp_void void

id_s [as_~ist < CllA >

out_id [lx_symrep "x"

used_name_id [lx_symrep "integer"

subprogram decl [
as designator
as-header
as_subprogram_def

Cl5A;
Cl6A;
void;

entry id [lx symrep "t2a"
- -

entry. [
as dscrt range void void;
as-param-s - Cl8A

- -

param_s [as list < Cl9A >]

out [
as ids C20A;
as name C22A;
as=exp_void void

id_s [as_list < C21A >

out_id [lx_symrep "p"

used_name_id [lx_symrep "integer"

task body [
as id B34A;
as block stub B35A

task_body_id [lx_symrep "tl"]

block [
as items B36A;
as stm s Bll7A

item s as list < B37A DOOA D45A >]

49

B37:

B3S:

B39:

B40:

B41:

B42:

B43:

DOO:

DOl:

D02:

D03:

D04:

DOS:

D06:

DOS:

D09:

DlO:

Dll:

Dl2:

var [
as id s B3S";
as-type spec B42";
as=object_def void

id_s [as list< B39" B40" B41" >

var id lx_symrep "f"

var id lx_symrep "g"

var id lx_syrnrep "h"

constrained [
as name B43";
as constraint void]

used name id [lx_symrep "integer"]

task decl
as id DOl";
as-task def D02"

var_id [lx_symrep "t3"

task_spec [as_decl s D03"

decl_s [as list < D04" >

subprogram decl
as designator
as header
as_subprogram_def

DOS";
D06";
void;

entry_id [lx_symrep "f f"

entry [
as dscrt range void void;
as::::.pararn=s - DOS"

param_s [as list < D09" >]

out [
as ids DlO";
as name Dl2";
as=exp_void void

id_s [as_list < Dll" >

out_id [lx_symrep "y"

used name id [lx symrep "integer"

50

D45:

D46:

D47:

048:

D49:

D50:

D51:

D52:

D53:

D54:

D55:

D56:

D57:

D58:

D59:

D60:

D61:

D62:

D63:

D64:

task body [as id D46A;
as block stub D47A

task_body_id [lx_symrep "t3"]

block [
as items D48A;
as stm s D56A

item s as list < D49A >]

var [
as ids DSOA;
as type spec D54A;
as_object_def void

id_s [as_list < D51A D52A D53A >]

var id lx_symrep "i"

var id lx_symrep "j"

var id lx_symrep "m"

constrained [
as name D55A;
as-constraint void]

used_name_id [lx_symrep "integer"]

assign [
as name
as_exp

used name id [lx symrep "i"]

numeric literal [lx numrep "20"

assign [
as name
as_exp

used name_id [lx_symrep "j"]

numeric literal [lx numrep "25"

assign [
as name
as_exp

used name id lx_symrep "b"]

51

D65:

D66:

D67:

D68:

D69:

D70:

D7l:

D72:

D73:

D74:

D75:

D76:

D77:

D78:

D79:

D80:

D8l:

D82:

D83:

D84:

function_call [
as name D66A;
as_param_assoc_s D67A

used_bltn_op [lx_symrep "+"

param assoc s
- - as list < D68A D69A >]

used name id lx_symrep "i"

used name id lx_symrep "j"

out_put [lx_symrep "b"]

accept [
as name D72A;
as_param_s D73A;
as stm s D77A

used_name_id [lx_symrep "f f"

param_s [as list < D74A >]

out [
as id s D75A;
as name D76A;
as=exp_void void]

out_id [lx_symrep "y"]

used_name_id [lx_symrep "integer"

stm_s [as list < D78A D85A D92A >]

assign
as name
as_exp

used name_id [lx_symrep "y"

function_call [
as name D8lA;
as_param_assoc_s D82A

used_bltn_op [lx_symrep "+"

52

param_assoc_s as list < D83A D84A >]

used name id lx_symrep "j"

used name id lx_symrep "b"

D85:

D86:

D87:

D88:

D89:

D90:

D9l:

D92:

Bll8:

Bll9:

Bl20:

Bl2l:

Bl22:

Bl23:

Bl24:

Bl25:

Bl26:

Bl27:

Bl28:

assign
as name
as_exp

used name_id [lx_symrep "m"]

function_call [
as name D88A;
as_param_assoc_s D89A

used_bltn_op [lx_symrep "+"

53

param_assoc_s [as list< D90A D91A >]

used name id lx_symrep "j"

used name id lx_symrep "b"

out_put [lx_symrep "m"]

assign [
as name Bll9A;
as_exp Bl20A

used_name_id [lx_symrep "g"]

numeric literal lx_numrep "30"

entry call [
as name Bl24A;
as_param_assoc_s Bl22A

param_assoc_s as list < Bl23A >]

used name id lx_symrep "f"]

selected [
as name Bl25A;
as=designator_char Bl26A

used name id

used name id

assign [
as name
as_exp

Bl28A;
Bl29A

lx_symrep "t3"

lx_symrep "f f"

used name id [lx_symrep "h"]

Bl29:

Bl30:

Bl31:

Bl32:

Bl33:

Bl34:

Bl35:

Bl36:

Bl37:

Bl38:

Bl39:

Bl40:

Bl41:

Bl42:

Bl43:

Bl44:

Bl45:

Bl46:

Bl47:

Bl48:

function_call [
as name Bl30~;
as_param_assoc_s Bl31~

used_bltn_op [lx_symrep "+"

param_assoc_s as list < Bl32~ Bl33~ >]

used name id lx_symrep "g"

used name id lx_symrep "f"

out put [lx_sy~rep "h"]

accept [
as name Bl36~;
as_param_s Bl37~;
as stm s Bl41A

used name id [lx symrep "tla"

param_s [as list < Bl38A >]

out [
as ids Bl39A;
as name Bl40A;
as=exp_void void]

out_id [lx_symrep "o"]

used_name_id [lx_symrep "integer"

stm_s [as list < Bl42A >

assign
as name Bl43A;
as_exp Bl44A

used_name_id [lx symrep "o"]

numeric_literal [lx_numrep "200"

entry call [
as name Bl48A;
as_param_assoc_s Bl46A

param ass.oc s
- - as list < Bl47A >]

used name id lx_symrep "h"]

selected [
as name Bl49A;
as=designator~char BlSOA

54

Bl49:

Bl50:

Bl51:

C33:

C34:

C35:

C36:

C37:

C38:

C39:

C40:

C41:

C42:

C43:

C45:

C46:

C47:

C48:

C49:

CSO:

used name id lx_symrep "t2"]

used name id lx_symrep "t2a"]

out_put [lx symrep "h"]

task body [
as id C34~;
as-block stub C35A

task_body_id [lx_symrep "t2"]

block [
as item s C36A;
as stm s C45A

item s as list < C37~ >]

var [
as id s C38A;
as=type_spec C42A;
as_object_def void

id_s [as list < C39A C40A C41A >

var id [lx _symrep "k"]

var id lx _symrep "1"]

var id lx _symrep "n"

constrained [
as name C43A;
as constraint void]

used_name_id [lx_symrep "integer"]

assign [
as name C47A;
as_exp C48A

used name_id [lx symrep "k"]

numeric 1 i tera 1 [lx_numrep "5"

assign [
as name CSOA;
as_exp CSl~

used name id lx_symrep "1"]

55

C51:

C71:

C72:

C73:

C74:

C75:

C76:

C77:

C78:

C79: ·

C80:

C81:

C82:

C83:

C84:

C85:

C86:

C87:

C88:

C89:

numeric_literal [lx_numrep "10"]

accept [
as name C72~;
as_param_s C73~;
as stm s C77"'

used name id [lx_symrep "f a"

param_s [as list < C74"' >]

out [
as id s - C7 5"';
as name C76"';
as-exp_void void]

out_id [lx_symrep "x"]

used_name_id [lx_symrep "integer"

stm_s [as list < C78"' C85"' C92"' >]

assign
as_name C79"';
as_exp C80"'

used name id [lx_symrep "x"

function_call [
as name C81"';
as_param_assoc_s C82"'

used_bltn_op [lx_symrep "+"

param_assoc_s as list < C83"' C84"' >]

used name id lx_symrep "k"]

numeric literal [lx numrep "1"

assign [
as name
as_exp

used name id [lx_symrep "n"]

function_call [
as name C88"';
as_param_assoc_s C89"'

used_bltn_op [lx_symrep "+"

param_assoc_~ [as list< C90"' C91~ >]

56

C90:

C91:

C92:

ClOl:

Cl06:

Cl07:

Cl08:

Cl09:

CllO:

Clll:

Cl25:

Cl26:

Cl27:

Cl28:

Cl29:

Cl30:

Cl31:

Cl32:

Cl32:

Cl33:

used_name_id [lx_symrep "k"]

numeric_literal [lx_numrep "1"

out put [lx symrep "n" - -

entry_call [
as name Cl08A;
as_param_assoc_s Cl06A

param_assoc_s [as list < Cl07A >]

used name id [·1x -symrep "n"]

selected [
as name Cl09A;
as=designator_char CllOA

used name id lx_symrep "tl"

used name id lx_symrep "tla"]

out_put [lx_symrep "n"]

accept [
as name Cl26A;
as_param_s Cl27A;
as stm s Cl31A

used name id [lx symrep "t2a"

param_s [as list < Cl28A >]

out [
as ids Cl29A;
as name Cl30A;
as=exp_void void]

out_id [lx_symrep "p"]

used_name_id [lx_symrep "integer"

stm_s [as list < Cl32A >]

assign
as name
as_exp

Cl32A;
Cl33A

used_name_id [lx_symrep "p"]

numeric literal [lx_numrep "300"

57

A20:

A2l:

A26:

A27:

A28:

A29:

A30:

A3l:

A32:

A33:

A34:

A35:

A36:

A37:

A38:

A4l:

A42:

A43:

A44:

A45:

A46:

stm_s [as list< A21A A31A A38A A41A A48A >

entry_call [
as name A28A;
as_param_assoc s A26A

param assoc s - - as list < A27A >

used name id lx_symrep "a"]

selected [
as name . A29A;
as=designator_char AJOA

used name id

used name id

assign [
as name
as_exp

lx_symrep "t2"

lx_symrep "f a"

used name id [lx_symrep "d"]

function_call [
as name A34A;
as_param_assoc_s A35A

used bltn_op [lx_symrep II 11

param_assoc_s as list < A36A A37A >]

used name id lx_symrep "a"

used name id lx_symrep "b"

out put [lx_symrep "d"]

assign [
as name A42A;
as_exp A43A

used name_id [lx_symrep "c"]

function_call [
as name A44A;
as_param_assoc_s A45A

used_bltn_op [lx_symrep "+"

param assoc s - - as list < A46A A47A >]

used name id lx_symrep "a"]

58

A47:

A48:

used_name_id [lx_symrep "b"]

out_put [lx_symrep "c"]

59

.dp equ

.ts equ

.tt equ

.sp equ

.fp equ

.ap equ
pure
align 4
entry main
main equ *

*

9
10
ll
12
13
14

APPENDIX F

AN CAL EXAMPLE

* display pointer
* task pointer for stack
* task pointer for table
* stack pointer
* top of stack pointer
* arguement pointer for pass by value

*
*

Envirement set up

.RS

.TL

.NT
*
*
.VLl
.ELl
.DLl
.RLl
.ALl
.FLl
*
.EPl
.APl
.RPl
.TPl
.Tl
*
*
.VL2
.EL2
.DL2
.RL2
.AL2
.FL2

equ 104
equ 96
equ 3

* table register save area
* length of task header
* number of task

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

Main storage area
16 * length of variable storage a,b,c,d

0 * length of entry variable storage
4 * length of desplay storage

40 * register save area
8 * parameter save area
.VLl+.DLl+.RLl+.ALl+.ELl * size of stack

.DLl+.VLl location of entry storage in its stack

.EPl+.ELl location of arguement pt 1n its stack

.APl+.ALl location of register save in its stack

.NT*.TL+.TL+.RS stack pointer for parent

.TL*O+.RS location of task in task table

Task 1 storage area
12 * f,g,h

4
8
40
8
.VL2+.DL2+.RL2+.AL2+.EL2

60

*
.EP2
.AP2
.RP2
.TP2
.T2
*
*
.VL3
.EL3
.DL3
.RL3
.AL3
.FL3
*
.EP3
.AP3
.RP3
.TP3
.T3
*
*
.VL4
.EL4
.DL4
.RL4
.AL4
.FL4
*
.EP4
.AP4
.RP4
.TP4
.T4
*
.FS
*
*
*
lr
ai
stm

*
*
li
st
st
st
st

*

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

.DL2+.VL2

.EP2+.EL2

.AP2+.AL2

.TPl+.FLl

.TL*l+.RS

Task 3 storage area
8 * i,j

4
12
40
8
.VL3+.DL3+.RL3+.AL3+.EL3

.DL3+.VL3
,.EP3+.EL3
.AP3+.AL3
.TP2+.FL2
.TL*2+.RS

Task 2 storage area
8 * k,l
8
8
40
8
.VL4+.DL4+.RL4+.AL4+.EL4

.DL4+.VL4

.EP4+.EL4

.AP4+.AL4

.TP3+.FL3

.TL*3+.RS

61

equ .TPl+.FLl+.FL2+.FL3+.FL4 * total size of stack

Set up task table

.sp,.fp

.fp, .FS
10,12(.sp)

2,0
make all tasks active

2,.Tl+O(.sp) *main
2, .T2+0(.sp) * task l
2,.T3+0(.sp) *task 3
2,.T4+0(.sp) *task 2

*

*
*
*

*
*
*

*
*

*

li
st
li
st
li
st
li
st

li
st
1i
st
li
st
li
st

1i
st
li
st
li
st
1i
st

li
st
li
st
li
st
li
st
li
st
li
st
li
st
li
st

2,1
set up prority

* main
2, .Tl+4(.sp)
2,3
2, .T2+4(.sp)
2,0
2, .T3+4(.sp)
2,2
2, .T4+4(.sp)

* task 1

* task 3

* task 2

set up # of children
2,2
2, .Tl+l6(.sp)
2,1
2, .T2+16(.sp)
2,0
2, .T3+l6(.sp)
2,0
2, .T4+16(.sp)

set up parent address
2,.Tl(.sp)
2, .Tl+20(.sp)
2, .Tl(.sp)
2, .T2+20(.sp)
2, .T2(.sp)
2, .T3+20(.sp)
2,.Tl(.sp)
2,.T4+20(.sp)

initialize task stack pointers and jump addresses
.ts,.TPl(.sp) *main
. ts , . T 1 + 12 (. sp)
2, TASKM
2,--:-T1+8(.sp)
.ts,.TP2(.sp) *task l
.ts, .T2+12(.sp)
2, TASKl
2, --:-T2+8 (. sp)
.ts,.TP3(.sp) *task 3
. ts , . T 3+ 12 (. sp)
2, TASK3
2,--:-T3+8(.sp)
.ts,.TP4(.sp) *task 2
.ts, .T4+l2(.sp)
2, TASK2
2,--:-T4+8(.sp)

62

*
*

*
*

Set up display pointers

l .ts,.Tl+12(.sp) *main
st .ts,O(.ts)
1 .ts,.T2+12(.sp) *task l
st .ts,O(.ts)
1 2,.T1+12(.sp)
st 2,4(.ts)
1 .ts,.T3+12(.sp) *task 3
st .ts,O(.ts)
1 2,.T2+12(.sp)
st 2,4(.ts)
1 2,.T1+12(.sp)
st 2,8(.ts)
l .ts,.T4+12(.sp) *task 2
st .ts,O(.ts)
1 2, .T1+12(.sp)
st 2,4(.ts)

1i
st
1i
st
b

Set up Queue
2,0
2, task c
2,:-T1+0(.sp)
2,_task_pt
Q10

QOS
1
1i
st
st

equ *
.tt,_task_pt
2,36(.tt)
2,28(.tt)
2,32(.tt)

*
1i 3,0
1i 2,48(.tt)
st 3,0(2)
st 3,4(2)
st · 2,44(.tt)
1i 2,60(.tt)
st 3,0(2)
st 3,4(2)
st 2,56(.tt)
1i 2,72(.tt)
st 3,0(2)
st 3,4(2)
st 2,68(.tt)
1i 2,84(.tt)
st 3,0(2)
st 3,4(2)
st 2,80(.tt)
1i 2,36(.tt)
st 3,0(2)
st 3,4(2)
li 2,92(.tt)
l i 2, • TL
am 2,_task_pt

63

li
am

QlO
1
ci
bnp

*
b

*
*
*
pure
align
entry
TASK2

*

2,1
2,_task_c
equ *
2,_task_c
2,. NT
Q05

run n task end of set up

* start chile t~sk ·2
4

TASK2
equ *

li 2,5 * K+L -> A 5 + 10 = 15
1
st
li
1
st

*

.dp,O(.ts)
2,8(.dp)
2,10
. dp, 0 (• ts)
2,12(.dp)

T21 equ *
li 0,1
bal 15, sched

_accept21 equ *
*

1 .dp,O(.ts)
1 2' 8 (• dp)
1 .dp,O(.ts)
a 2,12(.dp)
1 .dp,O(.ts)
st 2, .EP4+0(.dp)

*
1 2, .EP4+0(.dp)
st 2 , • AP4 +4 (. ts)
li 2,L20
st 2, .AP4+0(.ts)
stm 10, .RP4+0(.ts)
la .ap, .AP4+0 (.ts)
ba1 15,_printf
lm 1 0 , . AL 4 + 0 (. a p)

*
1 .dp,O(.ts)
li .ap,.EP4+0(.dp)
li 0,3
bal 15, sched
ende21 equ *

*

Print out A

64

using printf ()

*
li l,.T2+0(.sp) * table address for entry

*

*

1 .dp,O(.ts)
1 i . ap, 12 (. dp)
li 0,2
bal 15, sched
call21 equ *

1
1
st
li
st
stm
la
bal
lm

. dp, 0 (. ts)
2, 12 (. dp)
2 , • AP 4 + 4 (• t s) .
2,L70
2, .AP4+0(.ts)
10, .RP4+0(.ts)
• a p, . AP 4 + 0 (. t s)
15,_printf
1 0 , • AL 4 + 0 (• a p)

T22 equ *
li 0,1
bal 15,

_accept22
sched
equ *

*
li 2,300
1 .dp,O(.ts)
st 2,.EP4+4(.dp)
li .ap,.EP4+4(.dp)
li 0,3
ba1 15, _sched

*
ende22 equ *

TASK2A equ * task termination
li 0,0
bal 15, sched
b TASK2A

*
*
pure * start task 3
align 4
entry TASK3
TASK3 equ *

* li 2,20 * I+J -> B
1 . dp, 0 (. ts)
st 2, 12 (. dp)
li 2,25
1 . dp, 0 (. ts)
st 2,16 (.dp)
1 .dp,O(.ts)
l 2, 12 (. dp)
1 .dp,O(.ts)
a 2 , 16 (. dp)
l .dp,8(.ts)
st 2,8(.dp)

Print out 1 using print£()

20 + 25 = 45

65

*

*
l .dp,8(.ts)
l 2, 8 (. dp)
st 2, . AP3 +4 (. ts)
li 2,Ll0
st 2, . AP3 +0 (. ts)
strn l 0 , . RP 3 + 0 (. t s)
la .ap, .AP3+0(.ts)
bal 15, printf
lrn l 0 , . AL 3 + 0 (. a p)

*
T3l equ *
li 0,1
bal 15, sched

_accept3 equ *
*

l
l
l
a
l
st

.dp,O(.ts) * J+B -> F
2,16(.dp)
.dp,8(.ts)

2,8(.dp)
. dp, 0 (. ts)
2, .EP3+0(.dp)

Print out Busing printf()

25 + 45 = 70

* Print out Fusing printf()

*

*

*
*

*

st
li
st
strn
la
bal
lrn

l
li
li
bal
ende3

TASK3A
li
bal
b

pure
align
entry
TASKl

li
l
st

2,.AP3+4(.ts)
2,L30
2 , . AP 3 + 0 (• t s)
10, .RP3+0(.ts)
• a p, • AP 3 + 0 (• t s)
15, printf
l0,:-AL3+0(.ap)

. dp, 0 (• ts)

.ap, .EP3+0 (.dp)
0,3
15,_sched

equ *
equ * task termination

0,0
15, sched

TASK3A

*
4

TASK1
equ *
2,30
.dp,O(.ts)
2 , 12 (. dp)

start task l

* G+F -> H 30 + 70 = 100

66

1i 1 1 .T3+0(.sp)
1 .dp 10(.ts)
1i .ap 18(.dp)
1i 012
ba1 151 sched
ca1111 equ *

*
1 .dp 10(.ts)
1 2 1], 2 (o dp)
1 .dp 10(.ts)
a 2 1 8 (• dp)
1 .dp 10(.ts)
st 2 1 16 (o dp)

*
1 .dp 10(.ts)
1 2116(.dp)
st 2 1 .AP2+4(.ts)
1i 2 1L40
st 2 I • AP 2 + 0 (. t s)
stm 1 0 1 • RP 2+ 0 (. ts)
1a .ap 1 .AP2+0 (. ts)
ba1 15 1_printf
1m 1 0 1 • AL 2 + 0 (. a p)

*
T11 equ *
1i 011
ba1 151

_accept1
sched
equ *

*
1i 21200
1 .dp 10(.ts)
st 2 1 .EP2+0(.dp)

*
1i .ap 1 .EP2+0(.dp)
1i 013
ba1 151 sched -
ende1 equ *

*
1i 1 1 .T4+0(.sp)
1 .dp 1 0(.ts)
1i .ap 1 16 (.dp)
1i 012
ba1 15 1 sched

_ca1112 equ *
*

1 .dp 10(.ts)
1 2 1 16 (• dp)
st 2 1 .AP2+4(.ts)
1i 2 1L80
st 2 1 .AP2+0(.ts)
stm 10,.RP2+0(.ts)
1a .ap,.AP2+0(.ts)
ba1 15, printf
1m 10,~AL2+0(.ap)

67

Print out H us in printf ()

Print out ha using printf()

*

*
*

*

*

*

*

*

TASKlA
li

equ * task termination
0,0

bal 15,_sched
b TASKlA

pure * start main
align 4
entry TASKM
TASKM equ *
li l,.T4+0(.sp)
1 .dp,O(.ts)
li .ap,4(.dp)
li 0,2
bal 15, sched -
callm equ *
1 .dp,O(.ts) * A+B -> c
1 2, 4 (• dp)
1 . dp, 0 (• ts)
a 2,8(.dp)
1 . dp, 0 (. ts)
st 2,12(.dp)
1 • dp, 0 (. ts) * A - B -> D
1 2 , 4 (• dp)
1 • dp, 0 (. ts)
s 2, 8 (• dp)
1 . dp, 0 (• ts)
st 2,16(.dp)

Print
1 .dp,O(.ts)
1 2,16(.dp)
st 2,.AP1+4(.ts)
li 2,L50
st 2 , . AP 1 + 0 (. t s)
stm 1 0 , • RP 1 + 0 (. t s)
la . a p, • AP 1 + 0 (• t s)
bal 15,_printf
lm 1 0 , . AL 1 + 0 (. a p)

15 + 45 = 60

15 + 45 = -30

out D using print£ ()

Print out C using print£ ()
1 .dp,O(.ts)
1 2 , 12 (• dp)
st 2 , . AP 1 + 4 (• t s)
li 2,L60
st 2, .APl+O(.ts)
stm 1 0 , . RP 1 + 0 (. t s)
la . a p , . AP 1 + 0 (• t s)
bal 15,_printf
lm 1 0 , . AL 1 + 0 (. a p)

. '

68

*
*

TASKMA
li
bal
b

pure

equ * task termination
0,0
l5,_sched

TASKMA

align 4
entry sched
sched equ *

*
eli
bne
l
bp
li
st
l
li
am
b

S005
st
li
am
l
c
bnp
li
am

SOlO
st
b

*
S050
*
eli
bne
st
l
l
eli
bne
li
st

SlOO
b

*
Sl50
*

0,0 * Normal end of tas~ routine
S0 50
2,l6(.tt) *check for children tasks
S005
2,-l · * no children make inactive
2,0(.tt)
2,20(.tt) *decrease parent task
3,-l
3,16(2)
SOlO
equ * keep active children exist
15,8 (.ttl. * jump address
2,1 * lower prority
2,4(.tt)
2,4(.tt) * prority check for lowest
2,_prority
SOlO
2,1 * make lower
2,_prority
equ *
l5,8(.tt) *save jump address for return
run n task

equ * continue

0,1 * Entry begin call
Sl50
l5,8(.tt) *store jump address
2,28(.tt) *check to see if queue is empty
3,0(2)
3,0
SlOO
2,1
2,0(.tt)
equ *

run n task

equ *

* queue is empty put to sleep

69

eli
bne
st
st
li
st
li
st
1
cl
bne

8170
st
st
1
st
b

8160
1
eli
be
b

8180
b

*
8200
*
eli
bne
li
1
1
st
1
1
st
li
st
1
st
br

*
8250
*

b
*

0,2 * Task call to entry
8200
15,8(.tt)
.ap,24(.tt)
2,1
2,0(.tt)
2,0
2,0(1)
3,32(1)
3,28(1)
8160

*

* store jump address
* store arguement pointer
* put to sleep

* wake up entry task

* load up queue
* check fullness of queue

* store calling table task address
* store arguement pointer address

70

equ
.tt,0(3)
.ap,4(3)
2,8(3)
2,32(1)
8180

* load up next empty location in queue tail

equ
2,0(3)
2,0
8170

* empty check for queue

errl * too many tasks queued up terminate
equ *

run n task

equ *
0,3
8250
2,0

* Entry end signal

3' 2 8 (. tt)
4,0(3)
2,0(4)

* make calling task active

2,0(.ap) *transfer call
4,4(3)
2,0(4)
2,0
2,0(3) * zerro out queue
2,8(3) * load up next item in queue
2 '2 8 (• tt)
15 * return to task and continue

equ *

err2

71

run n task equ *
*
li
st
b

8400
li
st
li
st
b

8325
1
1
eli
bne
1
cl
bne
1
1
1
br

8350
li
am
li
am

8375
1
ci
bnp
li
am

8300
1

*

*

c
bnp
b

errl
li
st
stm
lr
bal
lm
b

2,0 *
2,_prority_c
8300

" prority level rotation

equ * set
2,.Tl+O(.sp)
2,_task_pt

up for # of tasks
* initialize task pointer for rotation

2,0 *
2,_task_c
8375

"

equ * check active
.tt,_task_pt
2,0(.tt)
2,0
8350
2,4(.tt)
2,_prority_c
8350

active task check

15,8(.tt) * load up jump address
.ts,l2(.tt) * " task pointer for stack
.ap,24(.tt) * " arguement pointer
15 * run task
equ *
2,.TL *check next task
2 ,_task_pt
2,1
2,_task_c
equ *
2,_task_c
2,.NT *check# of tasks
8325
2,1 * increment next prority
2,_prority_c
equ *
2, prority c
2,=prority-
8400
8500 * normal termination

equ
2,ERR1

*
2, 0 (. sp)
10,8(.sp)
. ap,. sp
15,_printf
10,8(.ap)
8500

*

err2
st
li
st
stm
lr
bal
lm

equ *
0 1 4 (. sp)
2 1ERR2
2 1 0 (• sp)
10 18(.sp)
. ap 1. sp
151_printf
1 0 1 8 (• ap)

8500 equ *
*---
*
li
st
stm
lr
bal
lm

Normal termination
6 1 L99
6 10(.sp)
0 136(.sp)
.ap 1 .sp
15 1 printf
0 13G(.ap)

*---
*

lm 10,12(.sp)
br 15
impur
extrn _printf

_prority equ *
de a(3)

_task_pt equ *
de a(O)
task e equ *

-de a(O)
_prority_e equ *

de a(O)
ERRl equ *

db Y , a , 1 Y , 2 0 , 1 Y ~ 5 1 , 1 Y , 7 5 , f Y , 6 5 , 1 Y , 7 5 , 1 Y , 6 5 , f Y , 2 0 ,
db y'6f'ly'76'1y'65' 1y'72'1y'20' 1y'66'1y'6e'ly'6f'
db. y'77'1y'20'1y'65'1y'72'1y'72'1y'6f'ly'72'1y'20'
db y 'a ' 1 y '0 '

ERR2 equ *
db Y , a , 1 Y , 2 0 , 1 Y , 5 4 , 1 Y , 61 , 1 Y , 7 3 , 1 Y , 6 b , 1 Y , 2 0 , 1 Y , 7 3 ,
db y'63',y'68' 1y'65' 1y'64'1y'75' 1y'6e'ly'61' 1y'72'
db Y , 2 0 , 1 Y , 6 5 , 1 Y , 7 2 , 1 Y , 7 2 , 1 Y , 6 f , 1 Y , 7 2 , 1 Y , 2 0 , 1 Y , 2 5 ,
db y'64' 1y'a' 1y'O'

LlO equ *
db Y , a , 1 Y , 6 2 , 1 Y , 2 0 , f Y , 3d , 1 Y , 2 0 , f Y , 2 5 ' 1 Y , 6 4 ' 1 Y 'a '
db y '0,

L20 equ *
db Y , a ' 1 Y ' 6 1 , 1 Y , 2 0 , 1 Y , 3d , 1 Y , 2 0 , 1 Y , 2 5 , f Y , 6 4 , 1 Y , a ,
db y '0,

L30 equ *
db Y , a , 1 Y , 6 6 , 1 Y , 2 0 , 1 Y ' 3 d , 1 Y , 2 0 , 1 Y , 2 5 , 1 Y , 6 4 , f Y , a ,
db y '0,

L40 equ *
db Y , a , 1 Y , 6 8 , 1 Y , 2 0 , f Y , 3 d , 1 Y , 2 0 , 1 Y , 2 5 , 1 Y , 6 4 , 1 Y , a ,
db y '0,

72

L50
db
db

L60
db
db

L70
db
db

L80
db
db

L99
db
end

equ *
y 'a', y '6 4 ', y '2 0 ', y '3d', y '2 0 ', y '2 5 ', y '6 4 ', y 'a'
y, 0 ,

equ *
y'a' ,y'63' ,y'20' ,y'3d' ,y'20' ,y'25' ,y'64' 1 y'a'
y, 0,

equ *
y'a' 1 y'6c' ,y'20' ,y'3d' ,y'20' ,y'25' ,y'64' ,y'a'
y, 0,

equ *
Y, a, t Y, 6 8 , f Y, 61 , t Y, 2 0 , I Y, 3d, f Y, 2 0, f Y, 2 5 'I Y, 6 4,
y'a',y'O'

equ *
y 'a ' 1 y '6 5 ' , y '6e' , y '6 4 ' , y 'a ' , y '0 '

73

-.

'
VITA k

DAVID ASA HARDEN

Candidate for the Degree of

Master of Science

Thesis: AN INVESTIGATION OF AN INTERMEDIATE REPRESENTATION
FOR A HIGH LEVEL LANGUAGE

Major Field: Computing and Information Science

Biographical:

Personal Data: Born Flushing, New York, October 10,
1950, the son of Elmer David and Cathrine Harden.
Made monastic vows in the presence of the Abbot of
St. Gregory's Abbey, Shawnee, Oklahoma on August
20, 1981 and received the name Br. Isidore, O.S.B ..

Education: Graduated from Walt Whitman High School,
Huntingtion Station, New York, in June, 1968;
received Associate Degree in Construction Techno­
logy from New York State University at Farmingdale
in May, 1970; received Bachelor of Science Degree
in Architecture from Oklahoma State University in
May, 1979; completed requirements for the Master
of Science degree at Oklahoma State University, in
May, 1988.

Professional Experience: Teaching Assistant, Depart­
ment of Construction Technology, Oklahoma State
University, January, 1979, to May, 1979; Teaching
Assistant, Department of Math/Science, St.
Gregory's College, Shawnee, Oklahoma, August, 1981
to May 1982; Instructor, St. Gregory's College,
August 1985 to present.

