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NOMENCLATURE 

Ain inlet absorbance 

Aout = outlet absorbance 

Ao = initial absorbance, t=O 

A = absorbance at any time 

CA = dye concentration at any time 

c8 = sodium hydroxide concentration 

CAo = initial dye concentrations 

c80 = initial sodium hydroxide concentration 

D = tube diameter 

E = activation energy 

E(X) = exponential integral 

NRe = Reynolds number 

V = reactor volume 

vo = volumetric flow rate, ft 3/min 

t = time 

T = residence time 

K' = pseudo first order rate constant, min- 1 

K = rate constant, L/mol min 

XA = conversion 

~P = pressure drop 

T;n = inlet transmittance 

Tout = outlet transmittance 

L = reactor length 
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i . d = inside diameter 

s.s = steady state time 

Q = volumetric flow rate, ml/min 

p = density 

ll = viscosity 

T = temperature 

rA = reaction rate 

-v,u, = mean ve 1 oc ity 

t.Ps = calculated pressure drop for straight tube 

t.Pc = calculated pressure drop for helix 

Sc = Schmidt number 

xiii 



CHAPTER I 

INTRODUCTION 

Secondary flow is said to be perpendicular to the main direction of 

flow and occurs whenever the main flow is caused to change its direction 

due to constraining walls. In helically-coiled tubes, secondary flow is 

induced by the action of centrifugal forces. 

Studies have shown that this effect inhibits axial dispersion, 

increases heat transfer coefficients and heat transfer area, and also 

increases pressure drop in helical tubes as opposed to straight tubes. 

In terms of chemical conversion in reactors, there is no clear-cut 

understanding of the effects of this secondary flow in helical tubes 

when compared to plug flow reactors and laminar flow reactors. 

It is known in the literature that plug flow reactors are expected 

to have maximum conversion. In helical reactors, it is speculated that 

there will be secondary mixing as a result of this flow pattern. Hence, 

it is expected to enhance the performance of the reactor in terms of 

conversion to approach plug flow. 

In recent related work, Asfour (20) predicted that the performance 

of helically-coiled tubular reactors falls in between plug flow and 

laminar flow reactors approaching plug flow at very high or very low 

holding times. 

In this study, design changes were made to improve Asfour's 

experimental set-up. A newtonian fluid in the laminar flow region was 



considered and the hydrolysis of crystal-violet dye with sodium 

hydroxide was the reaction employed. 

2 

This investigation also considered different orientations of the 

reactor, different reactor sizes, radius of curvature, coil diameter and 

pitch. 



CHAPTER II 

LITERATURE SURVEY 

Extensive studies have been done on the flow of fluids through 

tubular reactors in various areas of interest. A review of the 

literature will be made in the following subjects: 

(1) Diffusion and reaction 

(2) Axial dispersion and residence time distribution 

(3) Heat transfer and pressure drops 

(4) Experimental work and kinetics 

Diffusion and Reaction 

Cleland and Wilhelm (1) conducted one of the earliest studies on 

diffusion and reaction in a viscous-flow tubular reactor. They 

investigated the effect on point and integral conversion of chemical 

reactions, from radial diffusion and reaction time distribution in 

viscous-flow tubular reactors. The results were given for a liquid­

phase first-order chemical reaction, under isothermal conditions, in a 

tubular reactor in the laminar-flow region for a range of dimensionless 

rate and time variables. 

The liquid-phase hydrolysis of acetic anhydride was chosen as the 

specific chemical reaction for this study. The dimensionless parameters 

defined were, 

3 



where, 

Kz c D r 
A = --, c = -, ct = ' u =-

vo co KR2 R 

A = time of contact 

ct = diffusion parameter, dimensionless 

k = reaction-velocity constant 

r = radial position in reactor measured from reactor 

z = distance coordinate measured from reactor inlet 

Vo = velocity of centra 1 streamline within reactor 

c = point concentration of reactant, dimensionless 

co =concentration of reactant at reactor inlet, M/L3 

c = point concentration of reactant, M/L3 

D 

R 

u 

- q! 
- '> • GiV ( '· 

= molecular diffusivity ·"- 1° .... ~ ·-

= reactor radius 

= radial coordinate measured from reactor axis 

kz = reaction velocity constant in axial direction 

axis 
: l'r ((' r 

Based on these parameters, they developed models that can be used 

4 

/-.d·./1 

to predict average concentrations of reactants for both laminar flow (no 

diffusion) and plug flow (uniform radial concentrations) reactors and 

also obtained values for first-order reactions that permit quantitative 

evaluation of the contributions of diffusion and flow profile on mean 

conversion for any set of circumstances. 

Levenspiel and Smith (2) developed a diffusion-type model for the 

longitudinal mixing of fluids in flow. They characterized this mixing 

in flow by a single parameter D, the "longitudinal dispersion 

coefficient". In developing the model they made the assumption that the 

longitudinal dispersion coefficient D is independent of position and 
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gives a measure of the degree of mixing occurring during flow. As a 

result, this model was expected to be useful in investigating 

conversions in homogeneous flow reactors. 

In a related work to Levenspiel (2), Aunicky (3), recognized the 

fact that a coefficient of longitudinal dispersion K, is used to 

characterize the longitudinal mixing of fluids flowing through straight 

pipes. He further investigated the case of piping equipped with bends 

and suggested an extension of the value of K by an expression ~k. which 

describes the more intense longitudinal mixing that occurs in bend 

areas. The value of Ak is determined by the secondary flow at these 

bends and it depends on the Reynolds number (NRe), bend length a, and 

the proportional bend curvature (R/0) ie, 

~k = f ( NRe, R/0, a ) 

While studying the effect of incomplete mixing on homogeneous 

reactions, Oanckwerts (4) investigated the concept of mixing on the 

molecular scale between elements of fluid that have been in the system 

for different lengths of time. He proposed a design method that 

combines a knowledge of the kinetics of the reaction and the 

hydrodynamic and diffusional behavior of the reactant stream, when 

calculating the output of different types of reactors under different 

conditions. He indicated that segregation, which is the existence of 

different concentrations of a particular reactant in the reactor, leads 

to undesirable side-reactions and further suggested a measurement for 

the degree of segregation as, 

J = 



The quantity (• - t) 2 is the mean square deviation of the ages of all 

points in the system from the mean age, '• and the value of e- 2 can be 

evaluated if the residence-time distribution for the system is known. 

This work, however, did not present a complete solution to reactions 

involving complex kinetics in continuous-flow reactors. 

6 

Zwietering (5), extended the concept of degree of mixing and 

segregations to the case of continuous flow systems with an arbitrary 

but known residence time distribution, by defining a life-expectation 

distribution in addition to Danckwerts• age distribution and a condition 

of maximum mixedness (minimum segregation). He proposed models for 

calculating the conversion in a reactor in which a chemical reaction of 

arbitrary order takes place, and contended that two continuous reactors 

that have identical residence time distributions, can have different 

degrees of chemical conversion if their state of mixing is different. 

Axial Dispersion and Residence Time Distribution 

It is generally known that highest conversions are obtained from 

continuous chemical reactors under plug flow conditions (ie. when axial 

dispersion is minimized). 

Koutsky and Adler (6) conducted an interesting investigation on the 

possible attainment of plug flow in continuous flow systems by taking 

advantage of the geometrical configurations of helically coiled tubes 

which produces secondary currents. They then made comparisons of 

helical tubes, straight tubes and packed beds based on tracer 

distribution tests and pressure drop, in both laminar and turbulent flow 

regimes. In describing the geometry of helical tubes, they made use of 

the following four dimensionless variables: 



(1) R/Rc =the curvature of the helix where, 

R is the equivalent cross sectional radius of the helix 

Rc = radius of curvature 

(2) a/b = ellipticity, which is the ratio of the major and minor axis 

of the elliptical cross section of the helix 

(3) h/Rc = the pitch where, 

h =distance between two adjacent loops of the helix 

Rc = radius of curvature 

(4) A parameter L/0 where, L = length of tube before being formed into 

a helix 

D = 2R, is the equivalent diameter of the helix cross section 

Their work was done over specific ranges of these dimensionless 

variables and over a Reynolds number range of 200 ~ NRe ~ 40,000. They 

also used dimensionless coordinates to express the outlet tracer 

concentrations as a function of time: 

CV vt 
Y=-- X=--

Q v 

where, 

Y = concentration, dimensionless 

X = time, dimensionless 

C = exit tracer concentrations as a function of time 

V = total volume of tube 

Q = total quantity of tracer injected into the system 

v = volumetric flow rate 

t = time 

7 

Though the data from this work does not indicate the exact strength 

of secondary flow in helices, they showed that pressure drop in helical 
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tubes are up to four times as great as straight tubes and that laminar 

flow can be maintained up to Reynolds numbers of 8,000. These facts, 

the authors contended, are a clear indication that there is a 

substantial strength of secondary flow in helices. In the laminar flow 

regime, they contend that axial dispersion in helical tubes is 

moderately higher than that in packed beds and a lot lower than that in 

straight tubes. Also the pressure drop of helical tubes is intermediate 

between the low pressure drop of straight tubes and the higher pressure 

drop of packed beds. The increase in power consumption is said to 

follow the same order as pressure drop. 

Sakra et al. (7) critically reviewed work done by others (Koutsky 

and Adler (6), Levenspiel and Smith (2)) and contend that their proposed 

reactor models have some disadvantages in that they consume much space 

and have difficulties in cleaning. 

They proposed a reactor model that would remove these disadvantages 

based on their theory of double secondary flow. For the calculation of 

dispersion number 0/UL, 

where, 

0 = axial dispersion coefficient 

L = reactor length 

U = liquid flow rate through reactor 

they proposed a relation whereby the dispersion number is a function 

of eometric parameters of the reactor, magnitude of Reynolds number, 

and friction factor. However, for laminar flow, dependence on geometric 

parameters was neglected and they gave the dispersion number as, 

0/UL = ~ (Re, Sc) 



In their results, they asserted that during laminar flow through a 

helix, D/UL decreases with an increase in Re, while the reverse is true 

for straight pipe. 

Nauman (8) employed Dean's velocity profiles to develop numerical 

methods that can be used to approximate the residence time distribution 

for laminar flow in a helically coiled tube. He obtained values for 

dimensionless residence time and cumulative distribution functions, 

9 

f (e), for various streamline parameters and contended that helically ~ 
coiled tubes have a narrower distribution than straight tubes. 

Heat Transfer and Pressure Drop 

Most of the work done on coiled tubes had been in the area of heat 

transfer. Coiled heat exchangers have been in use for heating and 

cooling fluids in a wide variety of industries. They are known to have 

two major advantages over straight tubes. First, heat transfer 

coefficients in coils are higher than in straight tubes and they allow a 

greater heat transfer area to be packed into a given space more 

economically and more conveniently than with straight tubes (9). 

Srinivasan et al. (9) critically examined various published 

correlations on heat transfer and pressure drop in coils and proposed 

new equations for the critical Reynolds number. They classified coiis 

into those with constant curvature (helices) and those with variable 

curvature (spirals) and reviewed the experimental and theoretical work 

on coils under these classifications. 

A number of equations were proposed for pressure drop calculations 

in coils of constant curvature for both laminar and turbulent flow. 

Most of these equations predict either the dimensionless Fanning 
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friction factor for coils, fc, or its ratio to the fanning friction 

factor for straight tubes, fs. 

Eustice (10) reported the first experimental work on fluids flowing 

in laminar flow through coils of constant curvature in 1910. He found 

that volumetric flow-rate through a helix, Qc, was less than that for an 

equal length of straight tubing, Qs, for a given pressure drop. He 

correlated his results by the equation, 

[(Qs - Qc) I Qs]x = [~Q/Qs]x = B/D 

where, B is a constant, D is the coil diameter, and x is an exponent. 

The first theoretical analysis of the flow of incompressible fluids 

through helices was made by Dean (11) in 1927. His analysis was based 

on the assumption that the ratio of the inside diameter of the tube to 

the diameter of the coil is small. As a result, he expressed the 

dynamic similarity of fluid flow by the dimensionless group: 

where, 

di = tube diameter 

D = coil diameter 

and also derived the equations 

Qc/Qs = 1 - (0.03058)[2(NRe) 2 (di/D)/597]2 

+ (0.01195) [2 (NRe) 2 (di/D)/576]4 

This equation, however, is known to be of little practical 

importance, because it is only valid for small values of the 

dimensionless group given above. 
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On further investigation of Dean's theoretical analysis, White (12) 

obtained a relationship for the pressure head loss in a coil as: 

where 

L = length of coil 

u = mean velocity 

1 
_ = u _ [1 _ (l16/N ,o.45J 1/0.45} 

C Dn 

and Non= Dean's Number= NRe(di/0) 0· 5 

Most subsequent papers in this subject were essentially based on 

Dean's theoretical analysis. 

On heat transfer in helices, Mori and Nakayama (13) obtained data 

experimentally to show the velocity and temperature distributions over a 

cross section of fluid in a coil for both laminar and turbulent flow. 

They found both profiles to be asymmetric. 

Correlations have also been proposed for calculating the desired 

length of coil in a helix. Shpringz (14) gave the equation to calculate 

the length of a helix, Ln, with n turns as: 

where, p = pitch and D = coil diameter 

Kalb and Seader (15) experimentally investigated the entrance­

region heat transfer to gases flowing in a uniform wall-temperature 

helical coil. They contended that, compared with straight-tube flow, 

the induced secondary flow in curved tubes causes a higher critical 

Reynolds number for transitions to turbulent flow and significant 



variation of transfer coefficients~ Their results indicate a, rapid 

transition to laminar flow from turbulent flow conditions at the 

entrance region. 

12 

In a related study, Dravid et al. (21) recommended design values of 

the heat transfer coefficients for helically coiled tubes operating in 

the thermal entrance region and at Dean's numbers above 100. Their work 

was limited to the laminar flow regime. 

Owhadi et al. (22,23,24) made a series of investigations on forced 

convection boiling inside helically coiled tubes and proposed 

correlations for two phase pressure drop and heat transfer. 

Kinetics and Experiment 

The investigations made in this work were based on the hydrolysis 

of crystal violet dye with sodium hydroxide. Corsaro (16) gave a 

description of the kinetics of this reaction by showing the electron 

deficiency at the tertiary carbon position where hydroxide ion (OH) is 

expected to attack to form a colorless carbinol derivative. By 

measuring the loss of color intensity of the dye at different time 

intervals, a rate constant can be obtained directly from absorbance 

readings taken with a spectrophotometer. 

In molecular form, the reaction is represented as, 

This reaction is first order with respect to each reactant and 

second order overall. If the sodium hydroxide concentration is in great 

excess initially, its concentration remains approximately constant at 



all times, hence the overall second-order reaction becomes a pseudo 

first-order reaction (17), represented by 

.-rdye = K• [dye] 

where, 

K1 = K [NaOH] 

Based on this concept, a few attempts had been made to develop a 

simple tubular flow reactor experiment for undergraduate laboratory. 

13 

Anderson (18) developed one using acetic anhydride and water. The 

elaborate safety precautions and expensive temperature control 

requirements of this design made it unacceptable to subsequent 

investigators. 

Hudgins and Cayrol (19) improved on Anderson•s (18) design by using 

a color change as a visual reinforcement of the measured results and 

developed an experiment which operates at room temperature. They used 

the hydrolysis of crystal violet dye with sodium hydroxide as their 

system which remains fairly isothermal during reaction. They also made 

the reagents very dilute to minimize safety hazards. They compared 

their experimental results with conversions from PfTR (plug flow tubular 

reactor) and LfTR (laminar flow tubular reactor) models and concluded 

that the behavior of their reactor model (helical reactor) lies between 

the LfTR and PfTR. From their plots, it is interesting to observe that 

the experimental conversion curve crosses the LfTR curve at short 

holding times. This suggests that experimental conversions are lower 

than LfTR at these times. 

Asfour (20) suggested design improvements on the work of Hudgins 

and Cayrol (19), to improve the reproducibility of the results, and to 
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expedite data collection. He studied the effect of residence time on 

conversion in a tubular flow reactor and compared the experimental 

conversion with those of plug-flow and laminar-flow models. From the 

plot of the results of this experiment, it is evident that the 

experimental conversions fall between those of the plug-flow and 

laminar-flow models. His experimental conversion curve indicates that 

there is no intersection with the LFTR but it seems to indicate that at 

very large or very low holding times, the experimental conversion will 

approach plug-flow model. 

The present investigation was done with few design changes from 

those of the previous investigators. The hydrolysis of crystal violet 

dye with sodium hydroxide was employed in the system. ~nly newtonian 

fluids in the laminar flow region are presented in this work) 

In part, this work was aimed at designing a simple helical flow 

reactor that could be used in undergrad~ate laboratories. It is 

theoretically acceptable that maximum conversions are obtained in plug­

flow reactor models and minimum conversions in laminar flow models~. 

Previous investigators were able to establish that conversion for 

helical flow models fall somewhere between these two models but there 

are discrepancies as to where in between these two models the helical 

flow falls. This present investigation will attempt to predict where 

the helical flow model falls. 

Again, this work was done with the understanding that secondary 

mixing occurs in helically coiled tubes due to their geometrical 

configuration. The strength or extent of this mixing is not within the 

scope of this work. It was intended to study the effect of secondary 

mixing in helical reactors, at low Reynolds number. Finally, an attempt 



15 

will be made to propose a model that can predict conversion and power 

consumption, given Reynolds number, coil diameter, radius of curvature 

and coil length. Some of the correlations proposed in the literature in 

\ other areas of study will be used in this model. 



CHAPTER III 

KINETICS STUDY 

Reaction 

The reaction for this investigation is the hydrolysis of crystal­

violet dye with sodium hydroxide. 

This reaction is first order with respect to each reactant and second 

order overall. The overall expression can be put in the form 

( 1) 

A+B ==> products (2) 

with corresponding rate equation, 

( 3) 

If c80 » CAo• then c8 remains approximately constant at all times, and 

the above irreversible second order reaction becomes a pseudo-first 

order reaction represented by, 

dCA/dt = -K'CA 

where 

K' = KC8 

By separation and integration of equation (4) we obtain, 

ln CA/CAO = -K' t 

( 4) 

(5) 

Equation (5) was used in studying the kinetics of the batch reaction for 

these reactants. 
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Calibration of Spectrophotometer 

The spectronic 20 spectrophotometer, from Milton Roy, was used in 

this work. The Spec-20 was calibrated over a range of concentrations. 

Calibration curves are shown in Figure 1 and Figure 2. Before 

calibration, a performance check was made on the Spec-20. 

17 

The technical services section of Aldrich Chemical Company (the dye 

manufacturers), gave data on the extinction coefficients obtained using 

0.003 g/L dye solution over a UV range of 209-591 nm(max). The relation 

given for the extinction coefficient is, 

Extinction Coefficient (E) =Absorbance x Mol.Wt/concentration in g/L. 

Based on this data, absorbance values were calculated for the chosen 

concentrations knowing the molecular weight of the dye. 

To check the performance of the Spec-20, 0.003 g/L dye solution was 

prepared and two runs were made at designated wavelengths. It was found 

that at 591 nm(max.), the Spec-20 readings were the same as the 

calculated value and at lower wavelengths, the deviation was about 2%. 

As a further check, two spectrophotometers of the same model were 

used to make runs over the same concentration range and at wavelengths 

of 591 nm and 590 nm. Again, the readings were the same for the two at 

591 and 590 nm. 

Hence calibration curves were made at both 590 and 591 nm using one 

Spec-20 but 591 nm was used for further investigation in this experiment 

since it is the maximum wavelength for the dye. 

To calibrate the Spec-20, 0.05 g of dye was dissolved in 1 litre of 

deionized water (conductivity 80 micro-ohm/em; 2 ppm). With a pipette, 

various volumes of this solution were diluted to obtain a concentration 

range of 0.5 x 10-6 g/ml to 10 x 10-6 g/ml. 
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Runs were made in this concentration range at 591 nm and 590 nm 

wavelengths to obtain the corresponding absorbance values. The data 

obtained are shown in Tables XXVI and XXVII, in Appendix B. 

Batch Reaction 

Calculations 

An important condition for the assumption of pseudo-first order for 

this reaction is that CBO >> CAO· As shown in the following 

calculations, the initial conditions for this reaction were chosen to 

meet this requirement. 

Mol.Wt of NaOH = 40 g/mole 

Mol.Wt of crystal violet dye= 408 g/mole 

As reported by Hudgins and Cayrol (19) the dye concentrations 

needed for this experiment are of the order of 10-5 M. Based on this, 

0.03 g/L solution of dye was made, which gave a dye concentration of 

7.353 X 10-5 M. 

For the purpose of this experiment, 0.02 M and 0.04 M NaOH 

solutions were used with 7.353 x 10-5 M dye solution. CAo and CBO were 

obtained as follows: 

0.01 L x 7.353 x 10-5 M dye= 7.353 x 10-7 moles 

0.30 l x 0.02 M NaOH = 6.0 x 10-3 moles 

total volume = 0.31 L 

CAo = 7.353 x 10-7 moles/0.31 = 2.372 x 10-6 M 

c80 = 6.0 x 10-3 moles/0.31 = 0.0194 M 

The molar ratio c80 : CAo becomes 8179:1. This is sufficiently large for 

the assumption of pseudo-first order to be reasonable. 



In the same way, 0.01 L of 7.353 x 10-5 M dye solution was mixed 

with 0.35 L of 0.02 M NaOH to obtain CAo = 2.043 x 10-6 M and c80 = 

0.0194 M which gives a ratio of 9496:1. 
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For the 0.04 M NaOH solution, 0.01 L of 7.353 x 10-5 M dye solution 

was mixed with 0.30 L of 0.04 M NaOH to obtain CAO = 2.372 x 10-6 M and 

c80 = 0.0387 M which is a ratio of 16315:1. Again, 0.01 L of 7.353 x 

10-5 M dye solution mixed with 0.35 L of 0.04 M NaOH gives CAo = 2.043 

x 10-6 M and c80 = 0.0389 M which is a ratio of 19041:1. These four 

sets of concentration were used for the kinetics study. 

Procedure 

For clarity, the batch runs were classified as A,B,C,D, and E·to 

identify the purposes for which they were made, but the procedure was 

the same and was as follows: 

1. 0.03 g of dye, 0.8 g and 1.6 g of dry NaOH are measured with a 

chemical balance and diluted to make 7.353 x 10-5 dye solution, 0.02 M 

NaOH and 0.04 M NaOH solutions respectively. 

2. After a 15 min warm up, the Spec-20 was set to 0% transmittance 

by completely blocking the light path and with a blank (deionized water) 

it was set to 100% transmittance. 

3. The appropriate volume of NaOH solution was poured into a 

beaker and set to stir on a magnetic stirrer to ensure complete 

mixing. A thermometer was also inserted in the solution to measure the 

temperature. 

4. With a pipette, 10 ml of the dye solution was transferred to a 

test tube. 



5. The 10 ml dye solution was poured into the stirring NaOH 

solution and a stop watch started simultaneously. 
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6. At given times, samples of the reacting solution were taken 

from the beaker with a pipette, transferred to a Spec-20 cell (7/16 11 i.d 

test-tube), and inserted in the Spec-20 sample compartment for an 

absorbance reading. 

This sampling process took about 20 seconds and the suggested 

effect on the obtained data is discussed in the section on 

reproducibility. The detailed procedure and precautions taken for each 

class of runs are discussed in the next section. 

Reaction Results 

Batch A Runs 

The NaOH used for this experiment had been in use for a long time 

(2 yrs). To ensure that it was dry, the NaOH (powder) was put in an 

oven at a temperature of about 100°C for a period of time and then 

transferred to a dessicator. 

Runs A.1 and A.2 were made with 0.02 M NaOH. The observed 

absorbance readings were converted to concentration with the calibration 

curve and the data are given in Tables XXVIII and XXIX in Appendix B. 

The plots are shown in Figures 3 and 4 respectively. A linear 

regression (least square fit) was done with a HP-41C calculator to find 

the correlation and slope. 

Runs A.3 and A.4 were made with 0.04 M NaOH. Since the 

concentration of NaOH in these runs were doubled, the rate constants, by 

stoichiometry, were expected to be twice the values in A.1 and A.2. 

Therefore, runs A.3 and A.4 were made to prove the validity of that 
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concept. The data are given in Tables XXX and XXXI in Appendix B and 

the plots are shown in Figures 5 and 6. 
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Runs A.5 to A.10 were made to obtain replicates of the earlier 

runs. Runs A.5 and A.8 were made with freshly prepared dye solution in 

the same order of concentration as runs A.1 to A.4. The data obtained 

for these runs are given in Tables XXXII to XXXV in Appendix B. Runs 

A.9 and A.10 are replicates of A.3 and A.1. They were made with the 

same dye solution as A.1 to A.4, and the data are given in Tables XXXVI 

and XXXVII in Appendix B. The temperatures of the solutions for each of 

these runs were recorded. 

The absorbance readings obtained (raw data), were converted to 

concentration using the calibration curve and then divided by the 

molecular weight of dye to get the values in moles/litre. Some 

approximations were made in this process. In order to eliminate the 

possibility of errors arising from these conversions and approximations, 

the raw absorbance data were used directly for linear regression. To do 

this a value was needed for an initial absorbance (Ao) i.e. the 

absorbance at time, t=O, when there was no reaction. The Ao value was 

determined as follows: 

(a) 300 ml of deionized water (2 ppm, 80 microhm/em) was mixed 

with 10 ml of 7.353 x 10-5 M dye solution and stirred at room 

temperature (24°C). A sample of this solution was put into the Spec-20 

to find Ao=0.23. 

(b) The same procedure was used for 350 ml of deionized water and 

10 ml of 7.353 x 10-5 M dye solution (26°C) to find Ao = 0.21. 

These Ao values were used with the absorbance values in runs A.1 to 

A.10 to obtain ln Ao/A. Ao=0.23 was used in the runs that have 10 ml of 
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dye solution reacting with 300 ml of NaOH and Ao=0.21 was used in the 

runs that have 10 ml of dye solution reacting with 350 ml of NaOH. 
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Plots of ln Ao/A vs. time for runs A.1 to A.4 are shown in Figures 

7 to 10. The corresponding tables and regression parameters are given 

in Tables XXXVIII to XLI in Appendix B. Also Tables XLII to XLVII in 

Appendix B give absorbance regressions for runs A.5 to A.10. Plots were 

not made for these data. 

Batch Runs B and C 

In batch A-runs the same sample cell was used for each sample and 

the readings were taken by visual inspection of the Spec-20. 

In batch B and C runs, a digital multimeter was connected to the 

accessory analog output of the Spec-20 to obtain a digital display of 

the readings. This was intended to eliminate any errors due to visual 

effects. In addition, different sample cells (made of the same 

material) were used for each sample and the pipette was cleaned between 

samples. These measures were designed to eliminate the possibility of 

contamination of a sample by a previous one. 

The digital output was calibrated from 0% to 100% transmittance and 

the obtained readings were converted to absorbance by the relation; 

A = - log 10 T 

Ao values were determined with a digital multimeter using the procedure 

described in batch A runs section. The regressed absorbance values for 

runs B.1, B.2, C.1 and C.2 are given in Tables XLVIII to LI in Appendix 

B. 
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Batch- D-Runs 

The 0-runs were made at different temperatures to study the effect 

of te~perature on the reaction rate constant. 
All 0-runs were made with 10 ml of dye solution and 300 ml of 

0.02 M NaOH in a beaker. The NaOH solution was cooled in ice, or 

heated, to the desired temperature after initial stirring. The dye 

solution was added at the desired temperature and the resultant solution 

stirred continuously as the samples were taken. Since this was not in a 

constant temperature bath, it was not possible to perform the experiment 

under completely isothermal conditions. However, initial and final 

temperatures for each run were recorded. The average of these two 

temperatures was used in the final determination of the rate constant 

expression described in the section on determination of rate constant. 

Tables for batch runs 0.1 to 0.5 are given in Tables LII to LVI in 

Appendix B. 

To determine the Ao values used for these runs, 10 ml of dye 

solution was diluted in 300 ml of deionized water (conductivity 0.8 

microhm/em). At temperature lower than room temperature, solution was 

cooled with ice and at higher temperatures it was heated. The digital 

multimeter was used to read the absolute transmittance which was 

converted to absorbance by the relationship given in the section on 

batch runs B and C. A table of these Ao values is given in Table LVII 

in Appendix B. 

In the reactions of the dye solution with NaOH, there was a 

remarkable increase in the rate of disappearance of color of dye as the 

temperature of the reaction was increased. This suggests an increase in 

reaction rate at higher temperatures. 
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On the other hand, in determining the initial absorbance (Ao) with 

deionized water at the designated temperatures, there was no 

identifiable trend. Since; (a) the solution was continuously stirred 

to avoid concentration gradients (b) the temperature was not lowered 

below the water saturation point or freezing point, (c) the temperature 

was not raised above the boiling point; a significant change in density 

was not expected. Again it was assumed that there was no reaction 

between the dye solution and the deionized water. Therefore the Ao 

value was expected to be the same at all temperatures. Based on this 

reasoning, the average of the temperatures (21°C) was taken to be the 

room temperature and also an average of the Ao readings was taken to 

give Ao = 0.2506. This Ao value was used for all the regressions in D­

runs. 

Batch E-Runs 

The E-runs were made to investigate a probable effect of dissolved 

co2 on the concentration of NaOH at atmospheric pressure. The following 

procedure was used: 

1. 0.8 g NaOH was dissolved in lL of deionized water i.e 0.02 M 

NaOH and kept open to air for at least 3 hrs. 

2. lL of water was heated up to 100°C and allowed to boil for 

about 2 mins. It was expected that most of the dissolved gasses would 

evaporate through this process. 

3. The boiled water was allowed to cool to room temperature and 

0.8 g NaOH was dissolved in it. 



4~ 10 ml of dye solution was reacted with 300 ml of 0.02 M NaOH 

obtained with ordinary deionized water and then repeated for boiled 

deionized water. 
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Runs E-1 and E-2 were made accordingly and the data are given in 

Tables LVIII and LIX in Appendix B. It was observed that the difference 

between the results of the two runs is only 0.1% which, for practical 

purposes is not significant. 

Reproducibility 

Runs A.S to A.10 were made to check the reproducibility of the 

batch experiment. The high correlations obtained in the linear 

regressions is an indication of overall reproducibility of the 

experimental data. 

For the regressions based on concentration, the deviations ranged 

from 0.6 to 6%. This was considered to be within the analytical 

precision range. The deviations may be attributed to (a) approximations 

made in converting to concentrations from absorbance, (b) difference in 

room temperature on various days of the runs, (c) possible variations in 

measurement of dye and NaOH for each day of the runs, (d) possible 

contamination of one sample by a previous one in the course of the run 

due to use of one cell, (e) variation in the time used in pipetting and 

inserting samples in the Spec-20, since the reaction still goes on 

during this time. 

However, regressions based on the raw absorbance data were found to 

have smaller deviations. Comparison made between runs shows good 

agreement with an average of 4% difference. This indicates that the 

experimental data are fairly reproducible. 
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Determination of Rate Constant 

For the reaction, 

if C80 >> CAo• then c8 remains approximately constant at all times: 

Let 

KC80 = K' 

then 

-dCA/dt = K'CA 

The summaries of the K-values obtained for runs A.1 to A.10 using 

regressions based on concentration and absorbance are given in Tables I 

and II respectively. 

Since the results of the experiments indicate a temperature 

dependency for the reaction, an Arrhenius plot was made for all the 

runs. 

or 

The Arrhenius equation is given by, 

K = K0 [exp(- E/RT)] 

ln K = ln K0 - E/RT 

By plotting ln K vs. 1/T from the experimental results, the parameters, 

K0 and E can be determined: 

slope = - E/R 

intercept = ln K0 

A summary of 1/T and ln K for all the runs is given in Table III. 

The plot of ln K vs. 1/T is shown in Figure 11. Reported data from a 

group at Rensselaer Polytechnic Institute on the same reaction was also 

plotted in Figure 11. 
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TABLE I 

SUMMARY OF K VALUES FOR CONCENTRATIONS 

Date: 12-2-87 

Temp(°C) Run # K 1 (min - 1) cBo(M) K=K 1 /CB0 (1/mol min) 

24 A.1 0.1580 0.0194 8.1443 
24 A.2 0.1954 0. 0194 10.0722 
24 A.3 0.3686 0.0387 9.5245 
24 A.4 0.4185 0.0389 10.7584 
24 A.5 0.1424 0.0194 7.3402 
26 A.6 0.1966 0.0194 10.1340 
26 A.7 0.2467 0.0387 6.3747 
26 A.8 0.2876 0.0389 7.3933 
26 A.9 0.2308 0.0387 5.9638 
24 A.10 0.1566 0.0194 8.0722 

TABLE II 

SUMMARY OF K VALUES FOR ABSORBANCE 

Date: 12-2-87 

Temp(°C) Run # K 1 (min - 1) CBo(M) K=K 1 /CB0 (l/mol min) 

24 A.1 0.1701 0.0194 8.7680 
24 A.2 0.1928 0.0194 9.9381 
24 A.3 0.4098 0.0387 10.5891 
24 A.4 0.4218 0.0389 10.8432 
24 A.5 0.1386 0.0194 7.1443 
26 A.6 0.1853 0.0194 9.5515 
26 A.7 0.2491 0.0387 6.4367 
26 A.8 0.2937 0.0389 7.5501 
26 A.9 0.2263 0.0387 5.8475 
24 A.10 0.1516 0.0194 7.8144 
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TABLE III 

ARRHENIUS PLOT DATA FOR ALL RUNS 

10 ml of 7.353x1o-5 M dye solution Date: 1-17-88 
300 ml of 0.02 M NaOH 

Run # Temp ( °C) K ( 1 I mo 1 min) 1/T(C1) ln K 

A.1 24 8.7680 -3 2.171 3.367x10_3 
A. 2 24 10.0722 3.367x10_3 2.310 
A.3 24 9.5245 3.367x10_3 2.254 
A.4 24 10.7584 3.367x10_3 2.376 
A.5 24 7.3402 3.367x10_3 1. 993 
A.6 26 10.1340 3.344x10_3 2.316 
A.7 26 6.3747 3.344x10_3 1.852 
A.8 26 7.5501 3.344x10_3 2.022 
A.9 26 5.8475 3.344x10_3 1. 766 
A.10 24 7.8144 3.367x10_3 2.056 
8.1 24 6.8144 3.367x10_3 1. 919 
8.2 24 6.9845 3.367x10_3 1.944 
C.1 24 8.6434 3.367x10_3 2.157 
C.2 24 11.2416 3.367x1Q3 2.420 
D.1 13 2.6237 3.50x10_3 0.9646 
D.2 38 44.8557 3.22x10_3 3.8035 
D.3 17 3.6649 3.45x10_3 1.2988 
D.4 30 11.1598 3.30x10_3 2.4123 
D.5 22 5. 5773 3.39x10 _3 1. 7187 
E.1 25 9.1392 3.356x10_3 2.2126 
E.2 25 9.1289 3.356x10 2. 2114 



TABLE IV 

SUMMARY OF EFFECT OF TEMPERATURE ON RATE CONSTANT 

c80 = 0.0194 M Date: 
--

Run # Av. Temp. (°C) K' (min - 1) K (1/mo 1 min - 1) 1/T (K-1) 
-- -~ 0.1 13 0.0509 2.6237 3.50xl0_3 

*0.2 38 0.0711 44.8557 3.22xl0_3 
0.3 17 0.1082 3.6649 3.45x10_3 
0.4 30 0.2165 11.1598 3.30x10_3 
0.5 22 0.8702 5.5773 3.39x10 

Correlation coeff. = 0.9989, Intercept = 26.3228, Slope = 7250.4955 
*Point not used in linear regression 

12-16-87 

ln K 

0.9646 
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The plot shows that the values obtained from the D-runs give the 

best approximation of the temperature dependency of the rate constant. 

Based on this observation, a linear regression was made on the D-run 

data, the summary of which is given in Table IV. 

From this regression, 

R2 = 0.9989 

a = 26.3228 (intercept) 

b = -7250.4955 (slope) 

From, 

ln K = ln K0 - E/RT 

using the above parameters, 

ln K = 26.3228 - 7250.496/T 

or 

K = 2.703 x loll exp (-7250.50/T) 

This is the predicted equation for the temperature dependency of the 
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rate constant of this experiment. It was used in calculation of K for 

further investigations in this work. 

For R = 1.987 cal/mol.K, the activation energy (E) for this 

reaction is calculated to be 14406.7 cal. 

At a room temperature of 25°C, the rate constant 

K = 7.33 L/mol min and the pseudo first order rate constant K1 = 
3 . -1 0.29 m1n . 

Asfour (20) obtained K• = 0.2 min-1 while Hudgins and Cayrol (19) 

obtained K• = 0.54 min- 1• The group at Rensselaer Polytechnic Institute 

obtained K1 = 0.247 min- 1. The results of the RPI group are given in 

Table V. 
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TABLE V 

RESULTS FROM R.P.I GROUP 

Run 8.1 Run B. 2 Run 8.3 Run 8.4 

T=30° C T=20° C T=38° C T=45° C 
1/T=3.3x10-3 1/T=3.3x10-3 1/T=3.22x10-3 1/T=3.15x10-3 

K ln K K ln K K ln K K ln K 

13.6378 2.61 10.4872 2.35 15.5336 2.74 21.9781 3.09 
13.8755 2.630 11.0206 2.40 15.2578 2.73 19.5867 2.98 
13.8629 2.629 11.0691 2.404 16.8822 2.83 19.4946 2.97 
13.7010 2.62 14.0780 2.65 15.4389 2.737 19.2834 2.96 



CHAPTER IV 

EXPERIMENTAL FLOW SYSTEM AND PROCEDURE 

Description of Experimental Apparatus 

A schematic diagram of the proposed experimental set-up for this 

work is given in Figure 12. The apparatus comprises the following: 

1. Reservoirs: Two 50-L polyethylene tanks labelled TK1 and TK2 

for dye and sodium hydroxide solutions, respectively. 

2. Pumps: Two 1/3 hp, model D-11, centrifugal pumps, manufactured 

by Eastern Pump Industries, labelled P1 and P2 for dye and sodium 

hydroxide, respectively. 

3. Rotameters: Two rotameters and a flow indicator labelled R1, 

R2 and R3 were used in this experiment. R1 is the dye flow meter, 

Fischer & Porter model # 10A6131N, with a stainless steel float and a 

maximum flow rate of 1250 ml/min. R2 is the sodium hydroxide flow 

meter, Fischer & Porter model # 10A6132N, with a stainless steel float 

and a maximum flow rate of 1340 ml/min. R3 is a flow indicator made by 

Matheson Gas Products with maximum flow of 1300 ml/min and a stainless 

steel float. 

4. Reactor: The reactor was made of 50ft of 1/4 in i.d Teflon 

tubing, wound on a 4 in diameter PVC pipe 3 ft in length. The tubings 

were purchased from Cole-Parmer Instrument Company. For further 

investigation in this work, the reactor configuration and orientations 

were changed. 50 ft of 1/4 in i.d Teflon tubing was used with 2 in 
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diameter PVC pipes; 50ft of 1/8 in i.d polyethylene tubing, also 

purchased from Cole-Parmer were used with both 4 in and 2 in PVC pipes. 

The reactor could be kept in a vertical or horizontal position. 

5. Manometer: A 50 in differential manometer was used to measure 

pressure drop across the reactor. 

6. Spectrophotometers: Two Spectronic 20's, made by Bausch & Lomb 

and Milton Roy, were used to take the inlet and outlet sample readings. 

7. Valves: Needle valves were used to adjust the flows. 

The two pumps P1 and P2 were used mainly to pump the reactants into 

the system through rotameters R1 and R2 during experimentation and also 

to recycle the reactants back to the tanks to insure perfect mixing 

before the start of the experiment. The reactant streams mix in a tee­

joint, go through the flow indicator R3 and flow into the inlet Spec-20 

for an inlet sample reading before going into the reactor. The tubular 

reactor was in the form of a helical coil wound on PVC support and the 

flow exiting the reactor went through another spectrometer for outlet 

sampling. The manometer was connected from the inlet and outlet points 

of the reactor and read the pressure drop in the reactor. 

In this experimental set-up, some design features were different 

from that used by previous investigators. 

Hudgins and Cayrol (19) and Asfour (20) used reservoirs and 

constant head tanks. In this work, reservoirs and pumps were being 

used. This is mainly due to convenience since headroom was limited in 

the room where the experiments were conducted. 

The flow-through Spec-20 cell introduced by Asfour was modified to 

minimize dead volume by elongating the innertube to leave a little 
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clearance at the bottom of the curvette. In addition, this enables the 

fluid in curvette to be well mixed at all times. 

The question arose that this elongation which cut through the light 

path of the Spec-20, might result in lower transmittance values. To 

resolve this, the Spec-20 was calibrated with the modified flow cell. 

The reaction mechanism for this experiment is a pseudo first order 

reaction. For this to be valid, the initial concentration of sodium 

hydroxide in the reactor (C80 ) has to be in large excess of that of the 

dye (CA0 ). Previous investigators tried to achieve this by keeping a 

constant NaOH: dye flow rate ratio and varying both flow rates. Asfour 

used a ratio of 9:1. In this proposed set-up, two new features were 

used; a flow indicator before the reactor that showed the exact amount 

of solution going into the reactor and a bypass valve, before the flow 

indicator, controlling the amount that went into the reactor. The idea 

was to keep a 1:1 flow-rate ratio and concentration ratio of NaOH and 

dye through R1 and R2. Hence, c80 and CAo were kept constant through 

the experiment. ~ith the aid of the bypass-valve, the residence time in 

the reactor can be varied while still keeping c80 and CAo constant~ 

Previous investigators have reported the use of tygon tubing for 

the reactor. The obvious change in color of the tubing to a deep purple 

is an indication that the dye reacts with the tube. This may affect the 

results of the experiment. In this work teflon and polyethylene tubings 

were used which have higher resistance to dye absorption on the tubing 

wall. 

In previous work, part of the solution going to the reactor was 

taken for sampling. In this work the entire flow passes through the 
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Spec-20's and the length of tubing between the Spec-20's and the reactor 

inlet and outlet was kept very short (about 1ft). 

In place of mixers in the reservoir tanks, recycle lines were 

provided for the tanks and the reactants were recycled with the pumps 

for a long period of time before the start of the experiment to insure 

good mixing. This design is more reliable and requires less total 

energy. 

It was intended that all these modifications in design would lead 

to experimental results that are more representative and have less error 

than that of previous investigators. 

Sizing and Design Specifications 

Since this equipment was also being designed for use in an 

undergraduate unit operations laboratory, one of the primary goals was 

to size it to run long enough for a lab session. Therefore, continuous 

operation time was chosen to be 150 mins (2 1/2 hrs). 

Two 50-L reservoirs were available for the reactants storage. 

Hence the design parameters were determined based on this capacity. 

Some inherent assumptions were made in determining the design 

specifications and operating conditions. 

1) The reaction mechanism was assumed to be pseudo-first order 

with c80 » CAo. 

2) \The dye and NaOH solutions were assumed to be dilute enough to 

have the same physical properties as water. Therefore, the viscosity of 

the solutions were assumed to be equal to that of water (1 centipoise or 

6.7197 x 10-4 lbm/ft-s). Density of solutions were assumed to be equal 

to that of water (62.34 lbm/ft3).' 
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3) The solutions were assumed to be at constant density within the 

reactor which makes it possible to relate the holding time or mean 

residence time (,) to the volume (V) and volumetric flow rate (v0 ). 

L = V /v0 

4) The temperature was assumed to be uniform throughout the 

reactor. 

The reactor was sized for both 1/4 in i.d tubing and 1/8 in i.d 

tubing. It was intended that this investigation be done in the laminar 

flow regime, therefore for the 1/4 in i.d tubing, a Reynolds number 

range of 197 - 2000 was chosen. This corresponds to a flow rate range 

of about 58 - 600 ml/min. 

Design calculations based on 1/4 in i.d tube: 

(a). Dye concentration: 

From, 

C - CA C ] X _ Ao A 1 _ [A 
A - --:C..-A_o_ = 1 - CAo = 00o 

and using different conversion values, a possible range of dye 

concentrations were determined. From the calibration curve, Ao was 

fixed at 1.6 to give a maximum initial molar concentration of dye in the 

system as 13 x 10-6 M. A value of 12 x 10-6 M was chosen as the optimum 

concentration in the reactor. Based on this, the concentration of dye 

required in the tank was determined as follows: 

[CA]tankx Qdye 

Qdye + QNaOH 
< 12 X 10-6 

For a design maximum flow rate of 600 ml/min, Odye =dye flow rate = 300 

ml/min, ONaOH = NaOH flow rate = 300 ml/min on a 1:1 basis. 



CA x 300 
tank = 12 x 10-6 

300 + 300 

=> C = 2.4 X 10-S M 
Atank 

Molecular weight of dye = 408 g/mole 

Mass of dye required to make up a 2.4 x 10-S M dye solution in a 50 L 

tank is given by, 

2.4 X 10-5 moles L X SOL x 408g 
mole 

= 0.4896 grams 

or 0.49g in 50 liters 

(b). NaOH Concentration: 

For a simple first order reaction 

A + B = Products 

the rate equation is given by, 

Assuming pseudo-first order, 

-rA = K CACBo 

K Cso = K I 

The first order expression can be expressed in integral form as, 

K1 =- ln(1-XA) 

Assume XA = 0. 9 

K 1 = - 1 n ( 1-.9) = 2. 3026 

49. 

( 1) 

( 2) 

( 3) 

( 4) 

( 5) 

At Reynolds number 1970, • = 0.834 min. and at 197, • = 8.34 min. units 

From the batch expression, at room temperature, (T = 25°C) K = 7.33 

L/mol min 



K•@8 ~34 = 0.2761 min- 1 

K•@ 0.834 = 2.7609 min- 1 

From equation (4), 

K• = 7.33 c80 = 0.2761 min-1 

=> Cs0 = 0.0377 = 0.04 M 

50 

This is referred to as the mixing cup concentration of NaOH and it 

is expected to be approximately constant throughout the reactor. 

The concentration of NaOH in tank was determined as follows, 

CB x QNaOH 
tank 

--,..Q -......,.+--,..Q -- = CBo 
NaOH dye 

C X 300 
8tank -__,6"Xo'l':"o -- = o. o4 

=> Cstank = 0.08 M 

Molecular weight of NaOH = 40 g/mole 

Thus the mass of NaOH required to make a 0.08 M solution in a 50-L 

tank is given by, 

40g -0.08M x SOL x mole - 160 grams 

The CA0 : c80 ratio is found to be 1:3333 which is sufficient for the 

pseudo-first order assumption to hold. 

Calculations for 1/8 in i.d tubes were made with the same 

procedure. 

Calibration of Spec-20 1 s and Rotameters for 

Continuous Flow 

As mentioned in description of experimental apparatus the flow cell 

design for the spectrometers was modified to eliminate dead volume and 
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enhance proper mixing of the fluid in the cell curvette. As a result of 

this, the Spec-2o•s were recalibrated for continuous flow operation. 

~he dye solution was found to be light sensitive which affects the 

Spec-20 reading. The cell compartment was covered with a black material 

and paper foil to restrict the interference by light in the 

laboratory. Vibrations can also interfere with the reading. 

Connections were made from the analog output of the Spec-2o•s to a 

digital multimeter. With the aid of a switch, the inlet and outlet 

Spec-20 readings were made. 

Calibration curves using the modified flow cell for the Spec-20 1 s 

are shown in Figures 13 and 14. 

The rotameters were also calibrated with the stainless steel float 

balls sitting on the graduation mark. The curves for the rotameter 

calibrations are shown in Figures 15, 16 and 17. 

Preparation of Solutions 

As per design specifications, 2.4x10-S M dye solution was made up 

in the dye tank and 0.08 M sodium hydroxide solution was made up in the 

NaOH tank. 

To make the dye solution, 0.49 g of crystal violet dye was 

dissolved in 50 L of deionized water. The deionization was done using 

Barnstead Ultra-pure Cartridges. The conductivity of the water was 

measured with a conductivity meter. Water with conductivity in the 

range of 0.8 - 750 microhm/em had been used at different times in the 

course of this work. There is no direct relationship between the 

performance of the experiment and the conductivity of water. 
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For the NaOH solutions, 160 g of NaOH was dissolved in 50 L of de­

ionized water. The NaOH used was of the powder form and the 

measurements were done on the OHAUS balance. 

The solutions were separately recycled for at least 30 mins before 

the start of the experimental runs. 

Sampling Technique 

The design time for this experiment is about 2 1/2 hrs and the 

capacity of each reservoir is 50 L. To meet the time demand, the 

rotameters for dye and NaOH were required to put 300 ml/min of reactants 

into the system at all times. The recycle lines were shut during 

runs. When the bypass valve was opened to obtain runs at lower 

residence time, the pressure drop across the reactor was observed to 

fall and in order to meet the pressure drop demands, the rotameter 

readings in the dye and NaOH lines went up. The rotameters were set 

back to give 300 ml/min each time the residence time in the reactor was 

altered. For the dye rotameter, the scale reading corresponding to 300 

ml/min is 24 and for the NaOH rotameter, it is 40. Bubbles are often 

noticed after flow rate changes using the bypass valve. These were 

allowed to leave the system before any readings were taken. 

~s a rule of thumb, it is expected that steady state is reached 

when 3 times the reactor volume amount of reactants go through the 

reactor. However, at high flow rates, steady-state is found to be 

attained quicker than at low flow rates. As are indicated in the 

experimental results, steady-state time for this work ranged from 5 mins 

at high flow rates to 25 mins at low flow rates. This was the time that 
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elapsed, after flow changes were made, before inlet and outlet readings 

were taken. To monitor the approach to steady state in the reactor, 

inlet and outlet readings were taken at smaller time intervals and as 

steady state was approached, the readings were found to be consistent. 

Experimental Procedures 

The following procedure was employed in running the experiment. 

(1) Dissolve 160 g NaOH in 50 L of deionized water. 

(2) Dissolve 0.49 g crystal violet-dye in 50 L of deionized water. 

(3) With the inlet valves to the reactor system closed and the 

recycle valves open; start pumps and recycle the reactants in the tanks 

for about 15-30 mins to ensure good mixing. 

(4) Record room temperature, dye solution temperature and NaOH 

solution temperature. 

(5) Warm up Spec-20's (about 15 mins) and zero the Spec-20's with 

NaOH solution flowing through the system. 

(6) Open valve to let in dye solution to the reactor system and 

close the two recycle lines. 

(7) Set R1, R2 and R3 to read the desired values using the bypass 

valve and the control knobs in R1 and R2. Any bubbles at this point 

should be allowed to leave the system before proceeding. 

(8) Set stop watch and take inlet and outlet transmittance 

readings at desired time intervals. This enables one to monitor the 

change in CA with time and see the development of steady-state. 

(9) At steady-state, record inlet and outlet transmittance and 

pressure drop (inches of Hg). 
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(10) Change flow rate into reactor by opening the bypass valve and 

repeat 7-9. 

l The transmittance values obtained were converted to absorbance with 

the relation, 

For experiment, 

Ao - A 
L____ XA = Ao = 

For plug flow, 
-K •-r 

XA = 1 - e 
where 

K• = KCBo 

and K was determined at the average temperature. 

For Laminar flow, 

where 

NR = K1 -r and E(x) is' the exponential integral available in 

mathematical handbooks (34). Reynolds number, NRe = pvD/~ and -r = 

V/v0 . 



CHAPTER V 

EXPERIMENTAL RESULTS FOR CONTINUOUS 

FLOW SYSTEM 

The results from the final design of the continuous flow system 

will be presented in this chapter. A total of 14 runs were made at this 

stage and the runs were labeled to reflect the difference in purpose for 

which they were made. A general description is given for each class of 

runs including the objective for the runs. 

Reproducibility of the results and error analysis are also 

discussed in this chapter after the data from the experiment. 

The runs were made with 50ft lengths of 1/4 in. i.d coil and 1/8 

in. i.d coil wrapped around 4 in. diameter and 2 in. diameter P.V.C 

pipes (3ft long). The final design included the use of flow cells with 

elongated inner tube to eliminate dead volume and enhance proper mixing 

of the reacting solution in the cell curvature. A diagram of this flow 

cell design is shown in Figure 18. The spectrophotometers were 

recalibrated for continuous flow based on this design. Figures 13 

through 17 show the calibration curves for the spectrophotometers and 

the flow meters used in this experiment. 

Since constant temperature baths were not used, the operating 

temperature for this experiment varied in accordance with the ambient 

temperature at time and day of run. However, all runs were made in a 

temperature range from 20°C to 27°C. The Reynolds number range for 
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which the runs were made are 331-2004 for 1/4 in. i.d coil and 166-1002 

for 1/8 in. i.d coil. The Spec-20's were set to 100% transmittance with 

sodium hydroxide solution running through the system and the allowed 

steady-state time ranged from 5 mins for the highest flow rate to 30 min 

for the lowest flow rate. This was the time that elapsed before the 

inlet and outlet readings were recorded. However, at smaller time 

intervals, for each flow rate, inlet and outlet readings of the unsteady 

state concentrations were taken to monitor the development of steady 

state. 

Z - Runs 

The Z-runs were made with 50ft length of 1/4 in. i.d coil wrapped 

on 4 in. i.d pipes placed in a horizontal position. Four runs namely Z-

6, Z-7, Z-10 and Z-11 were made in this category. 

In Z-6 and Z-7, the reacting solutions were run from the lowest 

flow rate to the highest flow rate while in Z-10 and Z-11, the reverse 

was the case. This was designed to obtain a stable method of 

operation. It was found that operating from highest to lowest flow rate 

was better in order to expel the air bubbles trapped in the system when 

it was not operating. 

The results for the Z-runs are given in Tables VI to IX with the 

corresponding calculated conversion values for plug flow tubular reactor 

and laminar flow tubular reactor. 

Plots showing comparison of conversions from experiment, plug flow 

and laminar flow reactors are shown in Figures 19 to 22. 

The conversions (XA) were obtained thus: 

Expt: 
Ain - Aout 

Ain 



Room Temperature = 25° C 
NaOH Temperature = 26° C 
Dye Temperature = 20° C 

Q(ml/min) Tin Tout 

600 0. 016 0.120 
500 0.016 0.125 
400 0.016 0.157 
300 0.017 0.214 
200 0.019 0.303 
100 0.023 0.481 

Ain 

1. 796 
1.796 
1. 796 
1. 770 
1. 721 
1.638 

( 

TABLE VI 

RUN Z-6 

Aout ~P(psi) 

0.921 1. 52 
0.903 1.33 
0.804 1.03 
0.670 0.79 
0.519 0.59 
0.318 0.47 

Date: 3-13-88 
Conductivity = 750 micro ohm/em 

XA XA XA 
T (min) EXPT PFTR LFTR 

0.802 0.487 0.225 0.202 
0.960 0.497 0.263 0.230 
1.206 0.552 0.319 0.288 
1.604 0.621 0.400 0.343 
2.394 0.698 0.533 0.475 
4.857 0.806 0.787 0. 710 

(j) 
..p. 



Room Temperature = 25° C 
NaOH Temperature = 26° C 
Dye Temperature = 20° C 

Q(ml/min) Tin Tout 

600 0.017 0.100 
500 0.015 0.112 
400 0.015 0.146 
300 0.016 0.206 
200 0.019 0.310 
100 0.023 0.478 

Ain 

1. 770 
1.824 
1.824 
1. 796 
1. 721 
1.638 

TABLE VII 

RUN Z-7 

Aout 8P( psi) 

1.000 1.47 
0.951 1.28 
0.836 1.03 
0.686 0.79 
0.509 0.59 
0.321 0.47 

Date: 3-13-88 
Conductivity = 750 micro ohm/em 

XA XA XA 
·d min) EXPT PFTR LFTR 

0.802 0.4350 0.225 0.202 
0.96 0.479 0.263 0.230 
1.206 0.542 0.319 0.288 
1.604 0.618 0.400 0.343 
2.394 0.704 0.533 0.475 
4.857 0.804 0.787 0.710 

0"1 
CJ1 



Room Temperature = 25° C 
NaOH Temperature = 25° C 
Dye Temperature = 25° C 

Q(ml/min) Tin Tout 

600 0.063 0.222 
500 0.071 0.274 
400 0.071 0. 317 
300 0.080 0.433 
200 0.091 0. 611 
100 0.123 0.824 

Ain 

1. 201 
1.149 
1.149 
1.097 
1.041 
0. 910 

TABLE VI II 

RUN Z-10 

Aout LlP(psi) 

0.654 1.52 
0.562 1.33 
0.499 1.03 
0.364 0.79 
0.214 0.59 
0.084 0.49 

Date: 3-21-88 
Conductivity = 9 micro ohm/em 

XA XA XA 
•(min) EXPT PFTR LFTR 

0.802 0.455 0. 210 0.190 
0.96 0.511 0.245 0.217 
1.206 0.566 0. 298 0.272 
1.604 0.668 0.375 0.328 
2.394 0.794 0.504 0.432 
4.857 0.908 0.759 0.670 

0"1 
0"1 



Room Temperature = 26° C 
NaOH Temperature = 26° C 
Dye Temperature = 26° C 

Q(ml/min) T;n Tout 

600 0.096 0.231 
500 0.102 0.268 
400 0.106 0.314 
300 0.094 0.360 
200 0.115 0.522 
100 0.158 0.752 

A;n 

1.0177 
0.9914 
0.9747 
1.0269 
0.9393 
0.8013 

TABLE IX 

RUN Z-11 

Aout liP( psi) 

0.6364 1. 52 
0. 5719 1.33 
0.5031 1.03 
0.4437 0.79 
0.2823 0.49 
0.1238 0.39 

Date: 4-7-88 
Conductivity = 780 micro ohm/em 

XA XA XA 
·r( min) EXPT PFTR LFTR 

0.802 0.3747 0.242 0.215 
0.960 0.4232 0.282 0.259 
1.206 0.4839 0.340 0.304 
1.604 0.5679 0.425 0.382 
2.394 0.6994 0.562 0.492 
4.857 0.8455 0.813 0. 712 

0') 
-.....! 
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where, K1 = the reaction rate constant was obtained from the Arrhenius 

equation in Chapter III at the operating temperature 

LFTR: XA= 1 - GR r ECR) + CR - 1) exp ( -NR/2) 

where, NR = K •, 

The function E(y) is defined by: 

co 

E(y) = f exp(- P) d<P 
y <P 

and tabulated in standard tables (34) as- Ei(- X). 
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From the plots, it was observed that the calculated values for the 

plug flow and laminar flow reactors were lower than the conversions 

obtained from experiment. But, according to literature, the plug flow 

reactors are supposed to have the highest possible conversions. 

Since, the rate constant (K) is the only experimental value 

introduced into these calculations, from batch kinetics study, a 

parametric study was done to see the effect of error in the K values on 

the plug flow conversions. 

This study showed that the rate constant obtained from batch 

experiment has to be more than 60% in error for the plug flow conversion 

to be more than experiment. This was considered unlikely, hence the 

decision to obtain experimentally, the conversions for laminar flow and 

possibly plug flow to see how they compare with experiments. 

Secondly, a study of the reaction mechanism was made to explore the 

validity of the pseudo-first order assumption for this reaction. The 

result of this study is shown in a later section on analysis of data. 



Run Z-10 was made with water of the lowest conductivity and the 

suggested effect is given in the section on reproducibility. 
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Run Z-11, though at a conductivity much higher than Z-10, was made 

as a duplicate to Z-10. 

S-Runs 

The S-runs were made with a 50ft length of 1/4 in. i.d straight 

tube reactor at the same residence times as the Z-runs. This was 

designed to obtain, experimentally, the conversions for a laminar flow 

tubular reactor and compare with the calculated values in the Z-run 

tables. The XA values for these runs are given in Tables X and XI. 

These values were found to be much higher than the calculated values and 

fit more to the helical coil results as expected. 

Figure 23 shows the straight tube laminar flow experimental 

conversions in comparison with helical coil conversions. 

These results gave support to the suspicions of the invalidity of 

the assumed reaction mechanism. 

Q-Runs 

The Q-runs were made with 50ft length of 1/4 in. i.d coils around 

a 4 in. i.d pipe. They were made to investigate the effect of body 

forces or reactor orientation on the performance of the reactor. In 

these runs, the reactor was kept in a vertical upright position, as 

opposed to the horizontal position in the other runs. 

Run Q-1 was for an upflow of reacting solutions while Q-2 was for a 

downflow of solutions. The results are given in Tables XII and XIII, 



TABLE X 

RUN S-1 

Room Temperature = 25° C 
NaOH Temperature = 25° C 
Dye Temperature = 24° C 

Q(ml/min) Tin Tout Ain Aout ~P( psi) 

600 0.290 0.490 0.5376 0.3098 1.13 
500 0.292 0.518 0.5346 0.2857 0.96 
400 0.316 0.600 0.5003 0.2218 0.79 
300 0.320 0.660 0.4949 0.1805 0.64 
200 0.336 0.764 0.4737 0.1169 0.49 
100 0.382 0.905 0.4179 0.0434 0.37 

Date: 3-30-88 
Conductivity = 800 micro ohm/em 

T(min) EXPT(XA) S.S(min) 

0.802 0.4237 10 
0.96 0.4657 15 
1.206 0.5568 18 
1.604 0.6353 20 
2.394 0.7532 25 
4.857 0.8963 30 

-...J 
.p. 



Room Temperature = 24° C 
NaOH Temperature = 25° C 
Dye Temperature = 23° C 

Q(ml/min) Tin Tout Ain 

600 0.096 0.259 1. 0177 
500 0.096 0.281 1. 0177 
400 0.091 0.308 1. 0410 
300 0.111 0.397 0.9547 
200 0.119 0.565 0.9245 
100 0.168 0.815 0. 7747 

TABLE XI 

RUN S-2 

Aout ~P(psi) 

0.5867 1.03 
0. 5513 0.93 
0. 5114 0.74 
0.4012 0.49 
0.2480 0.39 
0.0888 0.29 

Date: 4-13-88 
Conductivity = 700 micro ohm/em 

T(min) EXPT(XA) S.S(min) 

0.802 0.4235 10 
0.960 0.4583 15 
1.206 0.5087 18 
1.604 0.5797 20 
2.394 0.7318 25 
4.857 0.8853 30 

-....J 
Ul 
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Room Temperature = 27° C 
NaOH Temperature = 27° C 
Dye Temperature = 23° C 

Q(ml/min) Tin Tout Ain 

600 0.098 0.236 1.0088 
500 0.118 0.306 0.9281 
400 0.138 0.391 0.8601 
300 0.165 0.525 0.7825 
200 0.114 0.522 0.9431 
100 0.168 0.793 0.7747 

TABLE XII 

RUN Q-1 

Aaut liP( psi) 

0. 6271 1.65 
0.5143 1.33 
0.4078 1.08 
0.2798 0.79 
0.2823 0.59 
0.1007 0.39 

Date: 4-5-88 
Conductivity = 850 micro ohm/em 

T(mi n) EXPT(XA) S.S(min) 

0.802 0.3784 10 
0.960 0.4459 12 
1.206 0.5259 15 
1.604 0.6424 18 
2.394 0.7006 20 
4.857 0.8700 23 

"'-1 
"'-1 



Room Temperature = 26° C 
NaOH Temperature = 27° C 
Dye Temperature = 26° C 

Q(ml/min) T;n Tout Ain 

600 0.098 0.253 1.0088 
500 0.101 0.290 0.9957 
400 0.105 0.376 0.9788 
300 0.116 0.383 0.9355 
200 0.143 0.628 0.8447 
100 0.193 0.791 0.7144 

TABLE XI II 

RUN Q-2 

Aout AP( psi) 

0.5969 1.60 
0.5376 1.03 
0.4248 0.88 
0.4168 0.79 
0.2020 0.49 
0.1018 0.37 

Date: 4-6-88 
Conductivity = 800 micro ohm/em 

T(min) EXPT(XA) S.S(min) 

0.802 0.4083 10 
0.960 0.4601 12 
1.206 0.5660 15 
1.604 0.5545 18 
2.394 0.7608 20 
4.857 0.8575 23 

'-J 
OJ 
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respectively, and a plot showing the comparison of the results to those 

of horizontal position is given in Figure 24. 

P-Runs 

The P-runs were carried out with 50ft length of 1/4 in. i.d teflon 

tubes wrapped around 2 in. i.d pipe. The essence of these runs was to 

study the effect of change of radius of curvature on the reactor 

performance for the same residence time. 

Two runs were made in this class and the results are given in 

Tables XIV and XV. A plot showing the effect of change in radius of 

curvature is shown in Figure 25. 

K-Runs 

The K-runs were made with 1/8 in. i.d teflon tubes wrapped around 4 

in. i.d pipes. This was intended to investigate the effect of change of 

the reactor diameter and number of coils on the reactor performance. 

The suggested effects are discussed in the next chapter. 

Two runs were made and the results are given in Tables XVI and 

XVII. A plot showing the effect of change in coil diameter is given in 

Figure 26. 

J-Runs 

In these runs, it was intended to study the effect of change in 

radius of curvature for 1/8 in. i.d coiled tubes. The tubes were 

wrapped around a 2 in. i.d pipe. The same length of tubes was used as 

in previously discussed results. 
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Room Temperature = 24° C 
NaOH Temperature = 23° C 
Dye Temperature = 23° C 

Q(ml/min) Tin Tout 

600 0.081 0.216 
500 0.088 0.239 
400 0.093 0.255 
300 0.095 0.304 
200 0.106 0.457 
100 0.161 0.689 

A;n 

1. 0915 
1. 0555 
1. 0315 
1.0223 
0.9747 
0.7932 

TABLE XIV 

RUN P-1 

Aout AP(psi) 

0.6655 2.41 
0.6216 1.92 
0.5935 1. 52 
0.5171 0.93 
0.3401 0.54 
0.1618 0.34 

Date: 4-13-88 
Conductivity = 730 micro ohm/em 

.(min) EXPT(XA) S.S(min) 

0.802 0.3903 10 
0.960 0.4111 15 
0.4247 1.206 18 
1.604 0.4941 20 
2.394 0. 6511 25 
4.857 0.7960 30 

co _. 



Room Temperature = 24° C 
NaOH Temperature = 26° C 
Dye Temperature = 21° C 

Q(ml/min) Tin Taut Ain 

600 0.090 0.231 1.0458 
500 0.084 0.233 1.0757 
400 0.092 0.259 1. 0362 
300 0.102 0.314 0.9914 
200 0.121 0.456 0.9172 
100 0.170 0.646 0.7696 

TABLE XV 

RUN P-2 

Aout LlP(psi) 

0.6364 2.50 
0.6326 1.96 
0.5867 1.50 
0.5031 1.03 
0.3410 0.59 
0.1898 0.34 

Date: 4-13-88 
Conductivity = 730 micro ohm/em 

T(mi n) EXPT(XA) S.S(min) 

0.802 0.3915 10 
0.960 0.4119 15 
1.206 0.4338 18 
1.604 0.4926 20 
2.394 0.6282 25 
4.857 0.7534 30 

co 
N 
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TABLE XVI 

RUN K-1 

Room Temperature = 25° C 
NaOH Temperature = 27° C 
Dye Temperature = 27° C 

Q(ml/min) Tin Tout Ain Aout ilP( psi) 

150 0.158 0.383 0. 8013 0.4168 3.49 
126 0.172 0.475 0.7645 0.3233 2.16 
100 0.198 0.561 0.7033 0.2510 1.77 

75 0.228 0.635 0.6421 0.1972 1.47 
50 0.452 0.883 0.3449 0.0540 0.59 
25 0.424 0.888 0.3726 0.0516 0.49 

Date: 4-14-88 
Conductivity = 650 micro ohm/em 

·r(min) EXPT( XA) S.S(min) 

0.802 0.4799 10 
0.960 0.5771 15 
1.206 0.6431 18 
1.604 0.6928 20 
2.394 0.8433 25 
4.857 0.8616 30 

OJ 
~ 



TABLE XVII 

RUN K-2 

Room Temperature = 25° C 
NaOH Temperature = 26° C 
Dye Temperature = 22° C 

Q(ml/min) Tin Tout Ain Aout ~P(psi) 

150 0.130 0.295 0.8861 0.5302 3.34 
126 0.148 0.390 0.8297 0.4089 2.36 
100 0.150 0.470 0.8239 0.3279 1.92 

75 0.198 0.594 0.7033 0.2262 1.23 
50 0.282 0.790 0.5498 0.1024 0.79 
25 0.465 0.899 0.3325 0.0462 0.59 

Date: 4-15-88 
Conductivity 600 micro ohm/em 

·r(min) EXPT(XA) S.S(min) 

0.802 0.4016 10 
0.960 0.5072 15 
1.206 0.6020 18 
1.604 0.6784 20 
2.394 0.8138 25 
4.857 0.8610 30 

co 
(J1 
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Two runs were made and the results are given in Tables XVIII and 

XIX. 

Reproducibility 

The performance of the system and the precision of the equipment 

used for data collection in this study were of high importance to the 

results obtained. In this section, the various factors that might lead 

to irreproducibility are discussed and the overall reproducibility of 

the data is given. 

(1} When setting the Spec-20's to 100% transmittance before the 

start of each run, it was observed that the inlet Spec-20 was off the 

100% mark by 17%. At 100% mark, it read 83%. 

As a result of this, a performance check was made on the Spec-20's 

by running ordinary water and dye solutio~ through the system. The 

readings from the two were found to be in good agreement within 2%. 

Again, the readings were found to be more stable at night than 

daytime. This was due to the noise level in the laboratory environment 

during the day but it was not perceived as a major source of error. 

(2) The flow indicator and NaOH rotameter were dismantled on a few 

occasions to clean the tubes due to deposition of sodium hydroxide in 

the tubes. This is an indication of possible NaOH deposits on the 

reactor walls too. But the extent of the uncertainty arising from this 

factor is not known. 

(3} As given in the tables, some of the runs were made at 

different temperatures. The temperature of the reacting solution in 

each run was assumed to be constant but without a constant temperature 



Room Temperature = 23° C 
NaOH Temperature = 25° C 
Dye Temperature = 22° C 

Q(ml/min) T;n Tout A;n 

150 0.178 0.357 0.7496 
126 0.183 0.421 0.7375 
100 0.194 0.481 0. 7122 

75 0.219 0.596 0.6596 
50 0.253 0.745 0.5969 
25 0.402 0.880 0.3958 

TABLE XVII I 

RUN J-1 

Aout LlP(psi) 

0.4473 4.12 
0.3757 2.75 
0.3179 2.16 
0.2248 1.55 
0.1278 0.69 
0.0555 0.44 

Date: 4-16-88 
Conductivity = 580 micro ohm/em 

T(min) EXPT(XA) S.S(min) 

0.802 0.4032 10 
0.960 0.4906 15 
1.206 0.5537 18 
1.604 0.6592 20 
2.394 0.7858 25 
4.857 0.8597 30 

(X) 
(X) 



Room Temperature = 24° C 
NaOH Temperature = 23° C 
Dye Temperature = 22° C 

Q(ml/min) Tin Tout Ain 

150 0.147 0.297 0.8327 
126 0.158 0.369 0.8013 
100 0.165 0.419 0.7825 

75 0.194 0.538 0. 7122 
50 0.254 0.736 0.5952 
25 0.387 0.387 0.874 

TABLE XIX 

RUN J-2 

Aout ~P(psi) 

0.5272 4.86 
0.4330 3.14 
0. 3778 2.45 
0.2692 1.77 
0.1331 1.03 
0.4123 0.64 

Date: 4-16-88 
Conductivity = 700 micro ohm/em 

-r(min) EXPT(XA) S.S(min) 

0.802 0.3668 10 
0.960 0.4597 15 
1.206 0.5172 18 
1.604 0.6220 20 
2.394 0. 7763 25 
4.857 0.8581 30 

00 
1.0 
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bath, this is hard to substantiate. So the actual temperature profile 

is not known and the degree of uncertainty from this error is not known. 

(4) As also indicated in the tables, the conductivity of the water 

used was not the same for every run. Since it is not known what 

impurities the reaction is sensitive to, the uncertainty arising from 

this factor is not known. 

As a result of these factors, each experimental run was duplicated 

to check the reproducibility. 

For 1/4 in. i.d coil on 4 in. i.d pipe in the horizontal position, 

Run Z-7 was made as a duplicate of Z-6 and the results show an average 

deviation of 2.8%. In the vertical position, runs Q-1 and Q-2, though 

in different flow directions, show an average deviation of 6.7%. For 

the straight tube laminar flow results, run S-2 is a duplicate of S-1 

and the results show an average of 3.8% difference. 

For 1/4 in. coil on 2 in. diameter pipe, P-2 is a duplicate of P-1 

and the average difference in results is 2%. For the K-runs, the 

average difference in conversion is 6.71 and that for J-runs is 4.5%. 

Overall, given limits of experimental error, the results for this 

study were found to be reproducible. 

Analysis of Data 

As shown in Figures 19-22, the calculated conversion for plug flow 

and laminar flow models were less than the experimental conversion. 

Since the results of the experiment were found to be consistent, an 

investigation was made on the variables used in the calculations. 

The hypothesized mechanism for this reaction is given by 



for c80 » CAo 

dCA 
K·c =-~ = A 

where 

This implies a pseudo-first order assumption. 

The conversion for plug flow first order reaction is given by: 

- k·· XA = 1 - e 

where 

The volume, V, is a function of tube geometry and constant. 
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Therefore the parameters that might introduce error into the calculation 

are, K, c80 , v0 and of course a wrong assumption in reaction mechanism. 

The investigation was carried out as follows. 

An analysis of the complete rate equations was made using the 

differential method of data analysis given by Levenspiel (17). 

From the mechanism 

dCA 
- rA = - ~ = K f(c) ( 1) 

For, nth order reaction, 

dCA 
K•cn -rA=-dt= A (2) 

integrating, 

(3) 
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With the aid of a computer software package, a plot of the 

concentrations (absorbance) and residence time data obtained from the 

experiment was made for each run. The best curve fitting equations for 

these data was found to be a polynomial of the form, 

( 4) 

For a third order polynomial 

Y = a + bx + cx2 + dx3 (5) 

( 6) 

Differentiation of equation 6 gives 

~ = b + 2C -r + 3d ~ 2 (7) 

but, 

The slope of the curves at each residence time value was determined 

and a plot of ln(- rA) vs ln CA was made for each run. 

As represented by equation 3, the slope of this plot, n, gives the 

order of the reaction and the intercept, lnK', gives the rate constant. 

The rate constants obtained from this analysis were used to 

calculate the conversions for plug flow and laminar flow models, if the 

order of the reaction is close to first order as assumed. 

A comparison of the rate constants was made with those obtained 

from the batch experiment, given by ln K = 26.3228 - 7250.496/T. 

Some of the data obtained from these analysis are given in Tables 

XX-XXII. 
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TABLE XX 

ANALYSIS OF DATA FOR RUN Z-10 

-r (min) CA(A) - rA ln(-rA) ln CA 

0.0 1. 201 
0.0 1.149 
0.0 1.149 
0.0 1.097 
0.0 1.041 
0.0 0.910 

0.802 0.654 0.4431 -0.8140 -0.425 
0.960 0.562 0.4033 -0.9081 -0.576 
1.206 0.499 0.3454 -1.0631 -0.695 
1.604 0.364 0. 2618 -1.3400 -1.011 
2.394 0.214 0.1335 -2.0140 -1.542 
4.857 0.084 0.0528 -2.9415 -2.477 

TABLE XXI 

REACTOR COMPARISON USING ANALYZED DATA 

XA XA XA 
·d min) EXPT PFTR LFTR 

0.802 0.455 0.440 0. 392 
0.960 0. 511 0.501 0.429 
1.206 0.566 0.582 0.502 
1.604 0.668 0.689 0.612 
2.394 0.794 0.823 0.748 
4.857 0. 908 0.970 0.864 



Run # T(°C) Order(n) 

Z-10 25 1.061 
Z-11 25.5 1.010 
S-1 24.5 1.024 
S-2 24 0.835 
Q-1 25 0.653 
Q-2 26.5 0.795 
P-1 23 0.948 
P-2 23.5 1.306 

TABLE XXII 

SUMMARY OF DATA ANALYSIS 

K. ( KC )min-1 Bo K(L/mol min) 

0.7236 18.09 
0.5062 12.66 
0.6419 16.05 
0.4884 12.21 
0.4424 11.06 
0.5127 12.82 
0.4165 10.41 
0.5059 12.65 

ln K 

2.895 
2.538 
2. 776 
2.502 
2.403 
2.551 
2.343 
2.537 

f x103(T in K) 

3.356 
3.350 
3.361 
3.367 
3.356 
3.339 
3.378 
3.373 

\.0 
()1 
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To check the actual concentration of sodium hydroxide in the tank, 

the same procedure used in making up solutions for the runs was used to 

make up a sodium hydroxide solution in the tank. By calculation, this 

solution is 0.08 M NaOH solution. 

After recycling, six 25 ml-volumes of the solution were withdrawn 

from the tank with a pippette and titrated with 1 N hydrochloric acid 

(HCl) solution, using phenolphthalene indicator. 

The average concentration of NaOH in the tank from the six 

titrations was 0.079 M. This indicates that the sodium hydroxide 

solution was accurate as prepared for the runs and eliminates the chance 

of c80 being in error as used in the conversion calculations for plug 

flow and laminar flow tubular reactors. 

The fluctuation, if any, in the sodium hydroxide and dye rotameter 

readings was such that there was a flow of 300 ± 20 ml/min from each 

tank. This gives a maximum flow of 600 ± 40 ml/min in the reactor. An 

analysis on the conversion using the residence times obtained with this 

flow limits gave a deviation of± 5.6% from the conversion obtained in 

the experiment. 

This was considered to be within limits of experimental error. 

Thus v0 was not a major source of error which implies that the residence 

time (•) values used in the calculations were accurate. 

Since c80 and v0 were apparently accurate, a detailed analysis was 

made on the rate constants. 

Table XX gives the analysis for Run Z-10. A plot of ln(- rA) vs 

lnCA was made to obtain the order of reaction for this run as 1.06 and 

the pseudo first order rate constant K' as 0.724 min- 1. Using this K' 

value and c80 = 0.04, the conversions for plug flow and laminar flow 



97 

reactors were calculated to see how they compare with the experiment. 

The results of these calculations are given in Table XXI and the plot is 

shown in Figure 28. The trend seen in this plot agrees with that of 

Asfour (20). The helical flow model falls between the plug and laminar 

model. At low residence time, it crosses the plug flow model. This can 

be attributed to experimental error at these points. 

Similar analysis was made on the results of every run that properly 

fits the polynomial equation. A summary of these analysis is given in 

Table XXII. 

A linear regression was made on the ln K vs 1/T values in Table 

XXII to obtain, 

Correlation, R2 = 0.29 
Intercept, a = 16.6658 
Slope, b = - 4195.74 

from the Arrhenius equation, 

ln K = ln K0 - E/RT 

Using the above parameters, a new equation for the temperature 

dependency of the rate constant was found to be, 

ln K = 16.6658- 4195.74/T 

For R = 1.987 cal, the activation energy was calculated as 8.3 K cal. 

The correlation coefficient, R2, for this regression was found to 

be low as given above. This can be attributed to the very small 

temperature difference in the runs as seen in the table. 

However, the activation energy indicates a low temperature 

dependency for this reaction. 
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From the above equation, at room temperature of 25°C, 

K = 13.3 L/mol min 



CHAPTER VI 

DISCUSSION 

Helically-coiled tubular reactors have been shown to have the 

advantages of higher heat transfer coefficients, less space and reduced 

axial dispersion (6,9) over straight tubes. At high Reynolds number, it 

has been proven (6) that straight tubes have higher pressure drop than 

helical tubes at low Reynolds numbers and as such higher power 

consumption. 

The aim of this work was to propose an alternative to the use of 

straight tube reactors at high Reynolds number and as such high pressure 

drop, with practically no cost in the product conversion. It was 

intended to achieve this by taking advantage of the secondary mixing 

effects in helically-coiled tubular reactors. 

In this chapter, the effects of various changes of variables made 

in this work will be discussed. Some proposed models in the literature 

will be used to make inferences from the experimental results. 

Effect of Change in Reactor Orientation 

The effects of reactor orientation are seen in the plots comparing 

Z and Q runs. The results show that the conversions for the reactor in 

the horizontal positions are slightly higher than that in the vertical 

positions especially at high flow rates. This is in agreement with the 

results of Sakra, et al. (7) who did a similar study based on dispersion 

100 
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number (0/uL). In any case, the slight difference may be due to the 

difference in velocity profile as observed by Mori and Nakayama (13). 

On the other hand, the pressure drop in both cases is within ± 5%. 

The difference in conversion is considered to be within limits of 

experimental uncertainty and as such is negligible. 

The results of run Q-1 and Q-2 show that upflow or downflow of the 

reacting solutions in a vertical reactor, have no appreciable effect on 

the reactor performance. 

Koutsky and Adler (6) also ran tests in both horizontal and 

vertical positions to prove the negligible effect of body forces. 

Effects of Change in Reactor Geometry 

Changes were made in the radius of curvature and the coil diameter 

of the reactor. 

As shown in Figure 25, the results of P and Z runs indicate a 

considerable decrease in conversion with a decrease in radius of 

curvature for a 1/4 in. i.d coil. Also Figure 27 and the results of the 

K and J runs show the same trend of effect for the 1/8 in. i.d coil. 

This implies a decrease in the effects of secondary mixing. 

As reported by Srinivasan, et al. (9), Berg and Bonilla gave a 

correlation for the inside heat transfer coefficient in helices for this 

Reynolds number range as, 

c 
hi = ~ [0.0000229 + 0.000636 (di/D)] (NRe) 1· 29 

where, 

di = tube diameter 

D = coil diameter 
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The diameters used in this work were put into this equation and the 

calculated values showed that, for the same coil diameter, D, a decrease 

in radius of curvature, which means decrease in di, led to a decrease in 

hi by about the same magnitude. This agrees with the results of the 

experiment as decreased heat transfer coefficient implies a decrease in 

the effects of secondary mixing. 

The results of the P-runs also show a higher pressure drop across 

the reactor, than the Z-runs, due to a decrease in radius of curvature. 

This can be explained with the correlations given in the literature 

for the hydrodynamics in helical coils. As reported in Srinivasan, 

et al. (9), Dean characterized the dynamic similarity of fluid flow 

through a helix as 

N = N (di/0) 0•5 On Re 

where, 

di = tube diameter 

D = coil diameter 

Non = Dean number. 

Based on this correlation, White (12) gave the following 

relationship for the pressure head loss in a coil: 

~H = C(8/NRe) [41/di)(u2/g)] 

where 

for 11.6 < Non < 2000. 
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Calculations were made using the experimental data for P and Z runs 

and the results show that ~is higher with a reduction in di, which 

conforms with the results of the experiment. 

In this work, changes were also made in the coil diameter. As 

shown in Figure 26, the results from the Z and K runs indicate an 

increase in conversion with a decrease in coil diameter. 

The Berg and Bonilla equation given above for inside heat transfer 

coefficient, were also used to evaluate this trend. 

For the same di and NRe' a decrease in coil diameter, D, implies an 

increase in the ratio (di/D) which results in an increase in heat 

transfer coefficient. This infers that there is an increase in 

secondary mixing effects which is demonstrated by the higher conversions 

observed in the experiment. 

Again, the White correlation given above can be used to explain the 

higher pressure drop obtained with a decrease in coil diameter. 

For the same Reynolds number, NRe' a decrease in coil diameter will 

result in an increase in mean velocity, u, and an increase in Dean 

number, Dn. From the correlation, it is evident that this will amount 

to an increase in the pressure head loss, ~H. 

No attempt was made to study the effect of pitch change on the 

reactor performance. This may be a subject for further investigation. 

Pressure Drop 

The pressure drop in all the runs made were found to be within ± 5% 

deviation. 
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The pressure drop data for run Z-10, in 50 ft reactor length, 1/4 

in. coil diameter, were used in comparing the experimental results with 

the pressure drop obtained by calculation from published correlations. 

For straight tube in laminar flow, McCabe and Smith {30) 

correlation was used 

Koutsky and Adler {6) gave the pressure drop in helical tubes as, 

-2 c1f 1 pL v 

2 D gc 

where 

c1 = ratio of friction factor of helical tube to friction factor of 
straight tube, in laminar flow. 

The c1 value was obtained from their plot for ellipticity (a/b) = 1. 

The results from these calculations are given in Table XXIII. 

From the results, it is seen that pressure drop obtained from the 

experiment agrees fairly with the predicted values from Koutsky and 

Adler (6) correlation. 

Again, it is found that the experimental values are higher {up to 

65%) than the predicted values from McCabe and Smith correlation. These 

observations are found to be true for other runs. 

To obtain the same pressure drop as experiment, from a straight 

tube under turbulent flow conditions, the Reynolds number required for 

each experimental pressure drop is obtained with the correlation in 

McCabe and Smith {30). 



Q(ml/min) NRe 

600 2004 
500 1671 
400 1336 
300 1003 
200 672 
100 331 

TABLE XXIII 

PRESSURE DROP COMPARISON 

Straight Tube ·Coiled Tube 
EXPT. Calculated Calculated 

v( ft/s) LlP(Psi) t:.P 5 (Psi) t:.Pc(Psi) 

1.039 1.52 0.56 1.56 
0.866 1.33 0.46 1.16 
0. 692 1.03 0.37 0.85 
0.520 0.79 0.28 0.61 
0.348 0.59 0.19 0.37 
0.172 0.49 0.09 0.18 

...... 
0 
(J1 
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where, 

f = friction factor, obtained from Moody plots for smooth tubes in 
viscous flow. 

The Reynolds number required is used to determine the velocity, 

length of reactor, residence time and pressure drop required to obtain 

the same conversion as the experiment, in a reactor of the same diameter 

under turbulent flow conditions. 

With NRe known, 

vrequired = NRe 'IJ/ P D 

For plug flow, 

With XA = XA (EXPT.) and K1 =pseudo rate constant obtained in analysis 

of data (K• = 0.7236 min- 1 for run Z-10), 

ln(1-XA) 
T required = -_....,K.,.,--

L(required) = v T 

Hence, 

The results obtained from these calculations for run Z-10 are given 

in Table XXIV. 

From these results, it is found that the pressure drop required to 

obtain the same conversion as a helically-coiled tubular reactor under 

laminar flow, in a straight tube under turbulent flow is about 61% 



EXPT. EXPT. 
AP(Psi) XA 

1.52 0.455 
1.33 0.511 
1.03 0.566 
0.79 0.668 

K1 = 0.7236, 

TABLE XXIV 

DETERMINATION OF REQUIRED PRESSURE DROP 

Required Required Required Required 
NRe •(min) v(ft/s) L( ft) f 

5400 0.84 2.80 141 0.003 
4500 0.99 2.33 138 0.0037 
3500 1.15 1.81 125 0.005 
2400 1.52 1.24 113 0.0078 

D = 0. 0208 ft. 

Required 
AP(Psi) 

4.28 
3.59 
2.65 
1. 76 

0 
-....! 



Run # Room Water conductivity 
Temp (°C) (microhm/em) 

Z-6 25 750 

Z-7 25 750 
Z-10 25 9 

Z-11 26 780 
S-1 25 800 
S-2 24 700 
Q-1 27 850 
Q-2 26 800 
P-1 24 730 

P-2 24 730 
K-1 25 650 
K-2 25 600 
J-1 23 580 
J-2 24 700 

TABLE XXV 

SUMMARY OF EXPERIMENTAL CONDITIONS 

Reactor Position Flow Pattern 

Horizontal Low to High 
Flow Rates 

II II 

II High to Low 
Flow Rates 

II II 

Straight Tube II 

Straight Tube II 

Vertical Upward Flow 
Vertical Downward Flow 
Horizontal High to Low 

Flow Rates 
II II 

II II 

II II 

II II 

II II 

Geometry 

1/4 in. tube i.d, 4 in. pipe 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

1/4 in. tube i.d, 2 in. pipe 

II II 

1/8 in. tube i.d, 4 in. pipe 
II II 

1/8 in. tube i.d, 2 in. pipe 
II II 

__, 
0 
CX> 
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higher than the coiled tube and the reactor length required is more than 

twice that of a helical reactor. 

Put in economic terms, this implies that the cost of energy is 

higher by, probably, the same order of magnitude. 

Effect of Temperature Change 

The effect of temperature is seen in the rate constant. From the 

analysis of data, an Arrhenius equation of the form 

ln K = 16.6658 - 4195.74/T 

was obtained. 

For a reaction at 25°C, this equation gives a pseudo-first order 

rate constant of 0.53 min- 1• If the temperature increases by one degree 

celsius (i.e. 26°C), the rate constant becomes 0.56 min-1• If the 

temperature decreases by one degree (i.e 24°C), the rate constant 

becomes 0.51 min- 1. This gives an average deviation of± 4.5%. 

Therefore the temperature dependency of the reaction is very low. 



CHAPTER VII 

CONCLUSIONS 

A continuous flow helically-coiled tubular reactor had been 

successfully designed for use in undergraduate laboratory. The change 

of color of the reaction mixture between the reactor inlet and outlet 

was due to conversion along the reactor. This visual effect is expected 

to give the students a feel of what is going on inside the reactor. The 

fact that very long tubes can be put into a small area for experimental 

work is very convenient for laboratory space. 

The following conclusions can be drawn from the experimental 

results: 

(1) The hydrolysis reaction between sodium hydroxide and crystal 

violet dye is of low temperature dependency. 

(2) The reactor orientation or direction of flow of reacting 

solutions has a negligible effect on the conversion. 

(3) The conversion in the reactor decreases with a decrease in 
' 

radius of curvature while the pressure drop increases. 

(4) The conversion and the pressure drop in the reactor increase 

with a decrease in coil diameter.~ 
/ 

(5) In the laminar regime, the pressure drop in a helical reactor 

is higher than that in an equivalent length of straight tube reactor. ~--

(6) The reaction is actually of a fractional order but the 

assumption of a pseudo-first order is valid for all practical purposes.~~ 

110 
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(7) For the same conversion and reactor diameter, the pressure 

drop in a helical reactor under laminar flow is less than that in a 

straight tube (plug flow) reactor under turbulent conditions. 

/ This means 

~ reactor and the 

\\ that power consumption will be less for the helical flow 
I 

cost of energy is lower. Therefore, it is more I 
I 
( 
' 

economical to use helical flow reactors and operate in laminar flow J 
instead of using plug flow reactors in turbulent regime, if conversion 

11 
or product yield is the ultimate goal. 

Recommendations 

(1) Constant temperature bath should be used for the reactor and 

the reactants. 

{2) Studies should be done in the turbulent regime for both the 

helically-coiled reactor and the straight tube. This will require two 

bigger pumps of equal capacity installed in the system and will give a 

good prediction of the plug flow model. 

(3) A mixer may be needed for the reactants to ensure that a 

solution of uniform concentration goes into the reactor. 

(4) For the purpose of the undergraduate laboratory work, it is 

suggested to use the same materials, of known weight, in all dye and 

sodium hydroxide measurements. This will reduce the chances of error 

due to measurements. 

I 

(5·~ In the event that the stainless steel balls in the flow meter 

tubes get stuck, it is suggested to dismantle the flow meter and clean 

the tubes with a dilute acid solution. This solution should not be run 

through the reactor system for fear of interference with the reaction 

results. 
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(6) Though it is not certain what impurities affect the reaction, 

it is recommended to use water with low conductivity (2-100 micro 

ohm/em). 

N() The experimental system should be flushed with water after 

each run. This will reduce the deposition of sodium hydroxide in the 

tube walls. 

(8) The sodium hydroxide solution used in this study was first 

prepared in a beaker and then poured into the sodium hydroxide tank. It 

is hereby recommended to filter that solution before pouring it into the 

tank. This will eliminate the cloudiness of the solution in the tank 

due to presence of undissolved sodium hydroxide and also help to reduce 

the deposition of sodium hydroxide in the system. 

~) One titration should be made on the sodium hydroxide solution 

in the tank. This will ensure that the procedure used in making up the 

solution is accurate. 

(10) A different reaction should be investigated to see the 

general applicability of the pseudo-first order assumption. 
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APPENDIX A 

PHYSICAL CONSTANTS AND CALCULATIONS 

Viscosity ~water = 6.7197x104 lbm/ft-s 

Density = Pwater = 62.34 lmb/ft3 

Reactor length = 50 ft 

Pitch = h/Rc 

where, 

h = distance between two adjacent loops of the helix 

Rc = radius of curvature (the radial distance from the axis of tube 

to the center of the cross section of the helix) 

1. For 1/4 in. i.d tube on 4 in. pipe 

D = 1/4 in. = 0.0208 ft 

Area = 
7TD2 

3.40 X 10-4 ft2 
4 = 

Volume = 0.017 ft3 

Rc = pipe inner radius + pipe thickness + tube outer radius 

= 2 in. + 1/4 in. + (5/16 in./2) 

= 2.4063 in. 

h = 6.16 in. = 0.375 in. 

Pitch= 0· 375 = 0.156 2.4062 
Number of turns = 40 
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2. For 1/4 in. tube on 2 in pipe 

Rc = 1 in. + 3 I 16 in . + ( 5 I 16 in . I 2) 

= 1.344 in. 

h = 6116 in. = 0.375 in. 

0.375 Pitch = 1_344 = 0.279 

Number of turns = 68 

3. For 118 in. tube on 4 in. pipe 

Rc = 2 in. + 1/4 in. + (311612) 

= 2.344 in. 

h = 4116 in. = 0.25 in. 

Pitch = 0.107 

Number of turns = 38 

4. For 118 in. tube on 2 in. pipe 

Rc = 1 in. + 3116 in. + (3116/2) 

= 1. 281 in. 

h = 4116 in. 

Pitch = 0.195 

Number of turns = 70 

For 118 in. tube, 

D = 0.0104 ft 

'IT02 
Area = --4-- = 8.52 x 10-5 ft2 

Volume = area x length = 4.26 x 10-3 ft3 
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APPENDIX B 

DATA FOR BATCH RUNS 
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TABLE XXVI 

CALIBRATION CURVE DATA AT 591 NM WAVELENGTH 

Date: 11-18-87 
Concentration (g/mL) 

0 5 10-6 
• X 6 1 0 10-
• X 6 

2 0 10-
• X 6 

3 0 10-
• X 6 4 0 10-
• X 6 

5 0 10-• X 
6 0 10-6 

• X 6 10-7.5 X 

Experimental Absorbance 

0.16 
0.26 
0.51 
0.68 
0.89 
0.95 
1.20 
1.38 

Correlation coeff. = 0.9871, Intercept= 0.1206, 
Slope = 0.1747 

TABLE XXVII 

CALIBRATION CURVE DATA AT 590 NM WAVELENGTH 

Date: 11-18-87 
Concentration (g/mL) 

0.5 X 10-6 
1 0 10-6 

• X 
2 0 10-6 

• X 6 
3 0 10-• X 
4 0 10-6 • X 
5 0 10-6 

• X 
6 0 10-6 

• X 6 
7 5 10-

• X 

Experimental Absorbance 

0.21 
0.27 
0.48 
0.62 
0.80 
1.1 
1.2 
1.4 

Correlation coeff. = 0.9516, Intercept = 0.1937 
Slope = 01497 
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TABLE XXVIII 

DATA FOR BATCH RUN A~1 

10 ml of 7.353x10- 5 M dye 
300 ml of 0.02 M NaOH 

Time(min) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Absorbance 

0.17 
0.15 
0.12 
0.10 
0.09 

0.065 
0.06 
0.049 
0.042 
0.025 

Dye Cone., g/L 

-3 0.75x10_3 
0.67x10_3 
0.54x10_3 
0.45x1Q3 
0.4x10 

-
-3 0.28x10_3 

0.25x10_3 
0.22x10_3 
0.18x1Q3 
0.1x10 

Date: 11-24-87_6 
CAo = 2.372x10 M 
cBo = 0.0194 M 

Dye Cone., M 

-6 1.838x10 _6 
1. 642x10 _6 
1.324x10_6 
1.103x10_7 
9.804x10 

-
-7 6.863x10_7 

6.128x10_7 
5.392x10_7 
4.412x10_7 
2.451x10 

0.255 
0.368 
0.583 
0.766 
0.884 

1.240 
1.353 
1.481 
1.682 
2.270 

Correlation coeff. = 0.9629, Intercept = 0.0216, Slope = 0.1778 

TABLE XXIX 

DATA FOR BATCH RUN A.2 

10 ml of 7.353x1o- 5 M dye 
350 ml of 0.02 M NaOH 

Time( min) Absorbance Dye Cone., 

0.5 0.16 -3 0.7x10 _3 
1 0.14 0.62x10_3 
2 0.12 0.54x10_3 
3 0.10 0.45x10_3 
4 0.08 0.35x1Q3 
5 0.07 0.3x10 _3 
6 0.052 0.23x1Q3 
7 0.044 0.2x10 _3 
8 0.04 0.17x1o_3 
9 0.03 0.13x10 

g/L 

Date: 11-25-8z6 
CAo = 2.043x10 M 
cBo = 0.0194 M 

Dye Cone., M - ln CA/CAo 

-6 0.174 1. 716x10 _6 
1.520x10_6 0.296 
1.324x10_6 0.434 
1.103x10 _7 0.616 
8.579x10_7 0.868 
7.353x1o_7 1.022 
5.637xl0_7 1.288 
4.902x10_ 7 1.427 
4.167x10_7 1.590 
3.186x10 1.858 

Correlation coeff. = 0.9970, Intercept = 0.0684, Slope = 0.1954 
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TABLE XXX 

DATA FOR BATCH RUN A.3 

10 ml of 7.353x1o-5 M dye 
Date: 11-25-8z6 
CAo = 2.372x10 M 

300 ml of 0.04 M NaOH cBo = 0.0387 M 

Time( min) Absorbance Dye Cone., g/L Dye Cone., M - ln CA/CAo 

1 0.14 -3 -6 0.445 0.62x1Q3 1.520x10_6 
2 0.11 0.5x10 _3 1. 226x10 _7 0.660 
3 0.08 0.35x10_ 3 8.579x10_7 1. 017 
4 0.06 0.25x10_ 3 6.128x10_7 1.353 
5 0.04 0.17x1o_3 4.167x10_7 1.739 
6 0.03 0.13x10_3 3.186x10_7 2.008 
7 0.02 0.09x10_ 3 2.206x10_7 2.375 
8 0.018 0.07x10 _3 1. 716x10 _8 2.626 
9 0.008 0.025x1Q3 6.128x10_8 3.656 

10 0.002 0.01x10 2.451x10 4.572 

Correlation coeff. = 0.9420, Intercept= - 0.2714, Slope = 0.4212 

TABLE XXXI 

DATA FOR BATCH RUN A.4 

10 ml of 7.353x1o-5 M dye 
350 ml of 0.04 M NaOH 

Time(min) 

1 
2 
3 
4 
5 
6 
7 
8 

Absorbance 

0.13 
0.085 
0.055 
0.035 
0.02 
0.018 
0.01 
0.001 

Dye Cone., g/L 

-3 0.58x10_ 3 
0.38x10_ 3 
0.24x10_ 3 
0.14x10_ 3 
0.09x10_3 
0.07x10_ 3 
0.05x10 _3 
0.005x10 

Date: 11-25-8z6 
CAo = 2.043x10 M 
cBo = 0.0389 M 

Dye Cone., M 

1. 4216x1Q;6 
9.314x10_7 
5.882x10_7 
3.431x1o_7 
2.206x10_7 
1. 716x10_7 
1. 225x10 _8 
1.225x10 

0.363 
0.785 
1.245 
1. 784 
2.226 
2.477 
2.814 
5.117 

Correlation coeff. = 0.8773, Intercept = - 0.4465, Slope = 0.5662 
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TABLE XXXII 

DATA FOR BATCH RUN A.5 

10 ml of 7.353x1o-5 M dye Date: 11-29-az6 
300 ml of 0.02 M NaOH CAo = 2.372x10 M 
Temperature = 24° C cBo = 0.0194 M 

Time( min) Absorbance Dye Cone., M - 1 n CA/CAo 

1 0.16 1.716x1o-6 0.324 
2 0.135 1. 4706x1Q~6 0.478 
3 0.115 1. 250x10 _7 0.641 
4 0.09 9.804x10_7 0.884 
5 0.082 8.824x10_7 0.988 
6 0.072 7.598x10_7 1.138 
7 0.065 6.863x10_7 1.240 
8 0.052 5.637x10_7 1.437 
9 0.05 5.392x10_7 1.481 

10 0.048 4.902x10 1.577 

Correlation coeff. = 0.9839, Intercept = 0.2356, Slope = 0.1424 

TABLE XXXIII 

DATA FOR BATCH RUN A.6 

10 ml of 7.353X1o-5 M dye Date: 11-29-87 
350 ml of 0.02 M NaOH CAo = 2.043x10-6 M 
Temperature = 26° C CBo = 0.0194 M 

Time (min) Absorbance Dye Cone., M - ln CA/CAo 

1 0.13 1.4216x1Q~6 0.363 
2 0.11 1. 226x10 _7 0.511 
3 0.09 9.804x10_7 0.734 
4 0.075 8.088x10_7 0.927 
5 0.06 6.128x10_7 1.204 
6 0.05 5.392x10_7 1.332 
7 0.042 4.412x10_7 1.533 
8 0.035 3.431x10_7 1. 784 
9 0.03 3.186x10_7 1.858 

10 0.025 2.451x10 2.121 

Correlation coeff. = 0.9957, Intercept= 0.1551, Slope = 0.1966 
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TABLE XXXIV 

DATA FOR BATCH RUN A.7 

10 ml of 7.353x1o-5 M dye Date: 11-29-87 
300 ml of 0.04 M NaOH CAo = 2.372x10-6 M 
Temperature = 26° C CBo = 0.0387 M 

Time(min) Absorbance Dye Cone., M - ln CA/CAo 

1 0.14 -6 0.445 1. 520x10 _6 
2 0.11 1.226x10_7 0.660 
3 0.08 8.579x10_7 1.017 
5 0.055 5.882x10_7 1.394 
6 0.042 4.902x1o_7 1.577 
7 0.042 4.412x10_7 1.682 
8 0.038 3.677x10_7 1.864 
9 0.02 2.206x10_7 2.375 

10 0.01 1. 225x10 2.963 

Correlation coeff. = 0.9518, Intercept = 0.1550, Slope = 0.2467 

TABLE XXXV 

DATA FOR BATCH RUN A.8 

10 ml of 7.353x10-5 M dye Date: 11-29-87 
350 ml of 0.04 M NaOH CAo 2.043x10-6 M 
Temperature = 26° C CBo = 0.0389 M 

Time( min) Absorbance Dye Cone., M - ln CA/CAo 

1 0.12 -6 0.434 1.324x10_7 
2 0.085 9.314x10_7 0.785 
3 0.065 6.863x10_7 1.091 
4 0.05 5.392x10_7 1.332 
5 0.032 3.431x10_7 1. 784 
6 0.03 3.186x10_7 1.858 
7 0.02 2.206x10_7 2.226 
9 0.01 1. 225x10 _8 2.814 

10 0.009 9.804x10 3.037 

Correlation coeff. = 0.9949, Intercept= 0.2047, Slope = 0.2876 
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TABLE XXXVI 

DATA FOR BATCH RUN A.9 

10 ml of 7.353x1o-5 M dye Date: 11-30-8z6 
300 ml of 0.04 M NaOH CAo = 2.372x10 M 
Temperature = 26° C c80 = 0.0387 M 

Time(min) Absorbance Dye Cone., M - 1 n CA/CAo 

1 0.17 1.838x1o-6 0.2551 
2 0.13 1.4216x1Q~ 6 0.5120 
3 0.10 1.103x10 _7 0.7657 
4 0.085 9.314x10_7 0.9348 
5 0.068 7.108x10_7 1.2051 
6 0.05 5.392x10_7 1.4814 
7 0.04 4.167x10_7 1.7391 
8 0.035 3.431x1o_7 1.933 
9 0.03 3.186x10_7 2.008 

10 0.02 2.206x10 2.375 

Correlation coeff. = 0.9941, Intercept= 0.0517, Slope = 0.2308 

TABLE XXXVII 

DATA FOR BATCH RUN A.10 

10 ml of 7.353x10-5 M dye Date: 11-30-8!6 
300 ml of 0.02 M NaOH CAo = 2.372x10 M 
Temperature = 24° C CBo = 0.0194 M 

Time(min) Absorbance Dye Cone., M - ln CA/CAo 

1 0.19 -6 0.1297 2.083x10_6 
2 0.17 1.838x10 _6 0.2551 
3 0.15 1.642x10_6 0.3678 
4 0.12 1. 324x10 _6 0.5831 
5 0.102 1.127x10 _7 0.7442 
6 0.09 9.804x10_7 0.8835 
7 0.075 8.088x10_ 7 1. 0759 
8 0.065 6.863x10_7 1. 2402 
9 0.06 6.128x10_7 1. 3535 

10 0.05 5.392x10 1.4814 

Correlation coeff. = 0.9965, Intercept= 0.0497, Slope= 0.1566 



TABLE XXXVIII 

DATA FOR ABSORBANCE REGRESSION ON BATCH RUN A.1 

Ao = 0.23 
Time(min) Absorbance 

0 
1 
2 
3 
4 
5 
7 
8 
9 

10 
11 

0.23 
0.17 
0.15 
0.12 
0.10 
0.09 
0.065 
0.06 
0.049 
0.042 
0.025 

Date: 12-1-87 
1 n Ao/ A 

0.0 
0.3023 
0.4274 
0.6506 
0.8329 
0.9383 
1. 2637 
1. 3437 
1. 5463 
1. 7004 
2.2192 

Correlation coeff. = 0.9698, Intercept = 0.1019 
Slope = 0.1701 

TABLE XXXIX 

DATA FOR ABSORBANCE REGRESSION ON BATCH RUN A.2 

Ao = 0.21 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.21 0.0 
0.5 0.16 0.2719 

1 0.14 0.4055 
2 0.12 0.5596 
3 0.10 0.7419 
4 0.08 0.9651 
5 0.07 1. 0986 
6 0.052 1.3959 
7 0.044 1. 5629 
8 0.04 1. 6582 
9 0.03 1. 9459 

Correlation coeff. = 0.9955, Intercept= 0.1835 
Slope= 0.1928 
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TABLE XL 

DATA FOR ABSORBANCE REGRESSION ON BATCH RUN A~3 

Ao = 0.23 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.23 0.0 
1 0.14 0.4964 
2 0.11 0.7376 
3 0.08 1.0561 
4 0.06 1. 3437 
5 0.04 1. 7 492 
6 0.03 2.0369 
7 0.02 2.4423 
8 0.018 2.5477 
9 0.008 3,3586 

10 0.002 4.7449 

Correlation coeff. = 0.9184, Intercept = -0.2028 
Slope = 0.4098 

TABLE XLI 

DATA FOR ABSORBANCE REGRESSION ON BATCH RUN A.4 

Ao = 0.21 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.21 0.0 
1 0.13 0.4796 
2 0.085 0.9045 
3 0.055 1. 3398 
4 0.035 1. 7918 
5 0.02 2.3514 
6 0.018 2.4567 
7 0.01 3.0445 

Correlation coeff. = 0.9897, Intercept= 0.0797 
Slope = 0.4218 

125 



TABLE XLI I 

ABSORBANCE DATA ON BATCH RUN A.5 

Ao = 0.23 Date: 12-1-87 
Time(min) Absorbance 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.23 
0.16 
0.135 
0.115 
0.09 
0.082 
0.072 
0.065 
0.052 
0.05 
0.048 

ln Ao/A 

0.0 
0.3629 
0.5328 
0.6931 
0.9383 
1.0314 
1.1614 
1.2637 
1. 4868 
1. 5261 
1.5669 

Correlation coeff. = 0.9766, Intercept = 0.2942 
Slope = 0.1386 

TABLE XLIII 

ABSORBANCE DATA ON BATCH RUN A.6 

Ao = 0.21 Date: 12-1-87 
Time(min) Absorbance 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.21 
0.13 
0.11 
0.09 
0.075 
0.06 
0.05 
0.042 
0.035 
0.03 
0.025 

ln Ao/A 

0.0 
0.4796 
0.6466 
0.8473 
1.0296 
1. 2528 
1. 4351 
1.6094 
1. 7918 
1. 9459 
2.1282 

Correlation coeff. = 0.9988, Intercept = 0.2974 
Slope = 0.1853 
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TABLE XLIV 

ABSORBANCE DATA ON BATCH RUN A.7 

Ao = 0.23 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.23 0.0 
1 0.14 0.4964 
2 0.11 0.7376 
3 0.08 1. 0561 
5 0.055 1.4307 
6 0.048 1. 5669 
7 0.042 1. 7004 
8 0.038 1. 8005 
9 0.02 2.4423 

10 0.01 3.1355 

Correlation coeff. = 0.9185, Intercept = 0.1847 
Slope = 0.2491 

TABLE XLV 

ABSORBANCE DATA ON BATCH RUN A.8 

AO = 0.21 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.21 0.0 
1 0.12 0.5596 
2 0.085 0.9045 
3 0.065 1.1727 
4 0.05 1. 4351 
5 0.032 1.8814 
6 0.03 1. 9459 
7 0.02 2.3514 
9 0.01 3.0445 

10 0.009 3.1499 

Correlation coeff. = 0.9929, Intercept = 0.2935 
Slope = 0.2937 
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TABLE XLVI 

ABSORBANCE DATA ON BATCH RUN A.9 

Ao = 0.23 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.23 0.0 
1 0.17 0.3023 
2 0.13 0.5705 
3 0.10 0.8329 
4 0.085 0.9954 
5 0.068 1. 2186 
6 0.05 1. 5261 
7 0.04 1. 7492 
8 0.035 1.8827 
9 0.03 2.0369 

10 0.02 2.4423 

Correlation coeff. = 0.9932, Intercept = 0.1109, 
Slope = 0.2263 

TABLE XLVII 

ABSORBANCE DATA ON BATCH RUN A.10 

Ao = 0.23 Date: 12-1-87 
Time(min) Absorbance ln Ao/A 

0 0.23 0.0 
1 0.19 0.1911 
2 0.17 0.3023 
3 0.15 0.4274 
4 0.12 0.6506 
5 0.102 0.8131 
6 0.09 0.9383 
7 0.075 1.1206 
8 0.065 1. 2637 
9 0.06 1.3437 

10 0.05 1. 5261 

Correlation coeff. = 09952, Intercept = 0.0236, 
Slope = 0.1516 
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TABLE XLVIII 

ABSORBANCE DATA ON BATCH RUN B~1 

10 ml of 7.353 M dye Date: 12-12-87 
300 ml of 0.02 M NaOH Ao = 0.1152 
Temperature 24° C 

Time(min) Transmittance Absorbance -1 n A/Ao 

1 0. 773 0.1118 0.0300 
2 0.799 0.0975 0.1668 
3 0.832 0.0799 0.3659 
4 0.844 0.0737 0.4467 
5 0.862 0.0645 0.5800 
6 0.881 0.0550 0.7393 
7 0.896 0.0477 0.8817 
8 0. 912 0.0400 1. 0578 
9 0. 918 0.0372 1.1304 

10 0.920 0.0362 1.1576 

Correlation coeff. = 0.9873, Intercept = 0.0716, Slope= 0.1322 

TABLE XLIX 

ABSORBANCE DATA ON BATCH RUN B.2 

10 ml of 7.353 M dye Date: 12-12-87 
350 ml of 0.02 M NaOH Ao = 0.1124 
Temperature = 24° C 

Time(min) Transmittance Absorbance -1 n A/Ao 

1 0.810 0.0915 0.2057 
2 0.834 0.0788 0.3552 
3 0.850 0.0706 0.4650 
4 0.869 0.0610 0.6112 
5 0.882 0.0545 0. 7 239 
6 0.904 0.0438 0.9424 
7 0.906 0.0429 0.9632 
8 0. 916 0.0381 1. 0818 
9 0.931 0. 0311 1.2849 

10 0.943 0.0255 1.4834 

Correlation coeff. = 0.9896, Intercept = 0.0661, Slope = 0.1355 
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TABLE L 

ABSORBANCE DATA ON BATCH RUN C.1 

10 ml of 7.353x105 M dye Date: 12-12-87 
300 ml of 0.04 M NaOH Ao = 0.1152 
Temperature = 24° C 

Time(min) Transmittance Absorbance -ln A/Ao 

1 0.820 0.0862 0.2900 
2 0.861 0.0650 0. 5723 
3 0.891 0.0501 0.8326 
4 0.924 0.0343 1.2115 
5 0.954 0.0205 1. 7262 
6 0.960 0.0177 1.8731 
7 0.963 0.0164 1.9494 
8 0.983 0.0075 2.7318 
9 0.986 0.0061 2.9384 

10 0.990 0.0044 3.2651 

Correlation coeff. = 0.9846, Intercept= -0.1008, Slope = 0.3345 

TABLE LI 

ABSORBANCE DATA ON BATCH RUN C.2 

10 ml of 7.353x1o-5 M dye Date: 12-12-87 
350 ml of 0.04 M NaOH Ao = 0.1124 
Temperature = 24° C 

Time(min) Transmittance Absorbance -ln A/Ao 

1 0.847 0.0721 0.4440 
2 0.879 0.0560 0.6967 
3 0.921 0.0357 1.1469 
4 0.936 0.0287 1. 3652 
5 0.958 0.0186 1.7989 
6 0.968 0.0141 2.0759 
7 0.975 0.0110 2.3242 
8 0.986 0.0061 2.9138 

10 0.998 0.0009 4.8274 

Correlation coeff. = 0.9268, Intercept = -0.2801, Slope = 0.4373 
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TABLE LI I 

DATA FOR BATCH RUN D.l 

10 ml dye solutions Date: 12-14-87 
300 ml of 0.02 M NaOH Initial temp. = 10° c 
Ao = 0.2506 Final temp. = 16° c 
Time (min) Transmittance Absorbance -ln A/Ao 

1 0.586 0.2321 0.0767 
2 0.600 0.2218 0.1221 
3 0.614 0. 2118 0.1682 
4 0.624 0.2048 0.2018 
5 0.643 0.1918 0.2674 
6 0.660 0.1805 0.3281 
7 0.672 0.1726 0.3729 
8 0.682 0.1662 0.4107 

10 0. 714 0.1463 0.5382 

Correlation coeff. = 0.9955, Intercept = 0.0159, Slope = 0.0509 

TABLE LII I 

DATA FOR BATCH RUN D.2 

10 ml of dye solution Date: 12-14-87 
300 ml of 0.02 M NaOH Initial temp. = 35° C 
Ao = 0.2506 Final temp. = 42° C 

Time(min) Transmittance Absorbance -1 n A/Ao 

1 0.760 0.1192 0.7431 
2 0.884 0.0535 1.5442 
3 0.956 0.0195 2.5534 
4 0.984 0.0070 3.5780 
5 0.992 0.0035 3. 2711 
6 0.996 0. 0017 4.9932 

Correlation coeff. = 0.9949, Intercept =·0.0984, Slope = 0.8702 



132 

TABLE LIV 

DATA FOR BATCH RUN D.3 

10 ml of 7.35x1o-5 M dye solution 
300 ml of 0.02 M NaOH solutions 
Ao = 0.2506 

Time(min) Transmittance 

1 0. 587 
2 0. 612 
3 0. 624 
4 0.649 
5 0. 670 
6 0.679 
7 0. 705 
8 0. 722 
9 0.741 

10 0.755 

Date: 12-16-87 
Initial temp. = 15° C 
Final temp. = 18° C 

Absorbance -1 n AI Ao 

0.2314 
0.2132 
0.2048 
0.1878 
0.1739 
0.1681 
0.1518 
0.1415 
0.1302 
0.1221 

0.0797 
0.1616 
0.2018 
0.2885 
0.3654 
0.3993 
0. 5013 
0.5716 
0.6548 
0.7190 

Correlation coeff. = 0.9961, Intercept = 0.0034, Slope = 0.0711 

TABLE LV 

DATA FOR BATCH RUN D.4 

10 ml of dye solution Date: 12-16-87 
300 ml of 0.02 M NaOH Initial temp. = 25° C 
Ao = 0.2506 Final temp. = 34° C 

Time( min) Transmittance Absorbance -1 n AI Ao 

1 0. 619 0.2083 0.1849 
2 0.648 0.1884 0.2853 
3 0.702 0.1537 0.4889 
4 0.755 0.1221 0.7190 
5 0.796 0.0991 0. 9277 
6 0.831 0.0804 1.1368 
7 0.871 0.0600 1.4295 
8 0.891 0.0501 1.6098 
9 0.908 0.0419 1. 7886 

10 0.932 0.0306 2.1029 

Correlation coeff. = 0.9949, Intercept= -0.1237, Slope = 0.2165 
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TABLE LVI 

DATA FOR BATCH RUN D.5 

10 ml of dye solution Date: 12-16-87 
300 ml of 0.02 M NaOH Initial temp. = 20° C 
Ao = 0.2506 Final temp. = 24° C 

Time( min) Transmittance Absorbance -1 n AI Ao 

1 0.601 0.2211 0.1252 
2 0.631 0.2000 0.2255 
3 0.662 0.1791 0.3359 
4 0.672 0.1726 0.3729 
5 0. 714 0.1463 0.5382 
6 0.745 0.1278 0.6734 
7 0.772 0.1124 0.8018 
8 0. 779 0.1085 0.8371 
9 0.801 0.0964 0.9554 

10 0.826 0.0830 1.1050 

Correlation coeff. = 0.9915, Intercept = 0.0019, Slope = 0.1082 

TABLE LVII 

DATA ON Ao VALUES FOR GIVEN TEMPERATURE 

Date: 12-16-87 

Temp(°C) Transmittance Absorbance (Ao) 

10 0.558 0.2534 
15 0.566 0.2472 
20 0.560 0.2518 
25 0.554 0.2565 
35 0.570 0.2441 
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TABLE LVIII 

DATA FOR BATCH RUN E~1 

10 ml of 7o353x1o- 5 M dye Date: 1-19-88 
300 ml of 0.02 M NaOH Ao = 0. 2377 
Temperature = 25° C CBo = 0.0194 

Time( min) Transmittance Absorbance -ln A/Ao 

1 Oo636 0.1965 Oo1903 
2 0.690 0.1612 0.3884 
3 Oo738 0 o1319 0.5890 
4 0. 771 0.1129 0.7445 
5 Oo794 Oo1002 Oo8638 
6 Oo801 0.0964 Oo9025 
7 0.850 0.0706 1o2140 
8 0.882 Oo0545 1.4528 
9 0.899 Oo0462 1.6380 

10 0.915 Oo0386 1.8178 

Correlation coeffo = 0.9851, Intercept= Oo0067, Slope = 0.1773 

TABLE LIX 

DATA FOR BATCH RUN Eo2 (C02 FREE) 

10 ml of 7o353x1o-5 M dye Date: 1-20-88 
300 ml of 0.02 M NaOH Ao = Oo 2377 
Temperature 25° C cBo = 0.0194 

Time(min) Transmittance Absorbance -ln A/Ao 

1 0 0 639 0 0 1945 0.2006 
2 Oo698 0.1561 Oo4205 
3 0.729 Oo1373 Oo5488 
4 0.774 Oo1113 0.7588 
5 0. 793 0.1007 0.8589 
6 0.832 Oo0799 1.0902 
7 0.854 Oo0685 1.2442 
8 0.882 Oo0545 1.4728 
9 Oo904 0.0438 1. 6914 

10 Oo910 0.0410 1. 7574 

Correlation coeffo = 0.9950, Intercept = Oo0305, Slope= Oo1771 
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