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INTBODÜCTION

A  research project that deals with both the theoretical and experi

mental aspects of molecular structure would reasonably concern the same 

sets of molecules. However, the experimental and theoretical work re

ported in this thesis are for different molecules. Essentially of an 

experimental nature are the results reported for CP^Br-CHgBr and CFgCl- 

CHgCl. This includes infrared and Raman spectra and assignment of funda

mentals for both rotational isomers of each molecule. The low symmetry of 

these molecules and uncertainty in the assignment of some fundamentals 

make% a theoretical treatment of the vibrational frequencies impractical.

On the other hand, there were several reasons for undertaking the normal 

coordinate analysis of CF^-CHg. This molecule has rather high symmetry 

and the assignment of its fundamentals are probably correct. Further, 

use of the Urey-Bradley potential, which has previously been applied to more 

simple molecules, offers both a test of this potential and the opportunity 

for obtaining a set of force constants applicable to other fluorine sub

stituted ethanes.

Accordingly, this thesis is divided into two parts. Part I is a 

normal coordinate analysis of CF^-CHq; part II gives experimental results 

concerning the vibrational frequencies of CFgBr-CHgBr and CF2CI-CH2CI.



PART I

NORMAL COORDINATE ANALYSIS OF 

O F , CgNg; AND 2̂̂ 5

CHAPTER I 

INTRODUCTION

The radiation emitted by a molecule in the frequency range from 100 

to 5000 cm”^ is usually due to changes in electric moments because of 

vibration of the atoms comprising the molecule. By considering the atoms 

to be point masses joined by various springs, which represent the elec

trical forces between atoms, a model is obtained which will vibrate at 

approximately the same frequencies as the molecule. The mathematical 

process of finding a correct set of springs, or force constants, is 

called normal coordinate analysis; it is the only direct method of calcu

lating the interatomic forces of any but the most simple molecules. Al

ternatively, the problem can be reversed with force constants of similar 

molecules being utilized to predict the vibration frequencies of a mole

cule.

The choice of a set of force constants is equivalent to choosing a 

potential function. If the potential function is overly complicated the 

model can be made to vibrate at the proper frequencies, but the "springs" 

Joining two atoms in one molecule will probably not be the same as those

2
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necessary between the same atoms in a slightly different molecule. In 

other words, the force constants of a too general potential function are 

not transferable among similar molecules. Another defect of a general 

potential function is the lack of uniqueness in the calculated force 

constants, since there are more force constants than vibrational frequen

cies. The general quadratic function^ which contains cross-terms between 

all of the vibrational coordinates is an example of a potential with an 

excess of force constants. Here there are (3h-6)(3h-5)/2 force constants

for a molecule of h atoms but only 3n-6 vibrational frequencies.
2The central force potential is an example of the other extreme; 

it is simple, but cannot be adjusted to fit the vibration frequencies of 

most molecules. The inadequacy of this potential is easily demonstrated 

for a linear molecule where central forces offer no resistance to out-of

line bending.

A  more successful potential contains terms which represent forces 

that resist changes in bond lengths or variations in the angles between 

adjacent bonds. This so-called valence force potential is often used for 

rough calculations to check assignments of fundamentals. However, for 

moderately complicated molecules it is usually necessary to add additional 

terms to a valence force potential to obtain good agreement between theory 

and experiment.

The Urey-Bradley modification of the valence force potential has been

^E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations. 
(New York; McGraw-Hill, 1955).

2
G. Herzberg, Infrared and Raman Spectra. (New York, D. Van Nostrand 

Co. Inc., 1945).



used by several investigators^’̂  with success. Shimanouchi^, in particular,

has calculated the vibrational frequencies of more than twenty methyl

halides and a few molecules of the type 02%^. Overend and Scher/er^ have
7

demonstrated the transferability of '/Jrey-Bradley force constants for 

methyl and silyl halides, among others. The Urey-Bradley modification 

consists essentially of the addition of terms to account for the inter

action, usually repulsion, of non-bonded atoms. For example, the terms 

2Fppdd^ + Fpp*d^^ would be added to the potential energy of CH2F2 to 

account for the fluorine-fluorine repulsion, where d is the equilibrium 

separation of the fluorine atoms and d̂  ̂ is the variation in this distance 

as the molecule vibrates. The first two terms in the Taylor expansion 

of the repulsive force between the fluorine atoms can be calculated from 

the adjusted force constants Fpj and Fpp'.

Since the valence potential has only quadratic terms, the introduction 

of repulsive terms contributes linear terms to the potential energy which 

must be removed. This is accomplished by adding other terms that are 

linear in the valence coordinates. The coefficients of these terms are 

chosen so as to make all sums of linear terms of the same kind equal to 

zero.

F. Heath and J. W. Linnett, Trans. Faraday Soc. 561 (1948).
4
D. E. Mann, e^. al., J. Ch,em. Phys. 27, 43 (1957).

h .  Shimanouchi, J. Chem. Phys. H ,  245, 734, 848 (1949); 20 , 726 
(1952).

^J. Overend and J. R. Scherer, J. Chem. Phys. 1289, 1296, 1720 
(1960); 446, 1681 (1960); 34, 574 (1961).

^H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).
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Several years ago a normal coordinate analysis of the eclipsed form
Q

of CF3-CH3 based on a Urey-Bradley potential was made at this University.

It has been found since then that the equilibrium cofifiguration of such 

molecules is staggered rather than e c l i p s e d . F o r  this reason, and because 

a better computer is now available, a normal coordinate analysis of the 

staggered form of CF3-CH3 has been made and a set of Urey-Bradley force 

constants have been determined for this molecule. As a test of the trans

ferability of these constants, the vibrational frequencies of C2IÎ6 and C^F^ 

have been calculated on the basis of the CF3-CH3 force constants, with 

some adjustment made in three of them.

Theory of Normal Vibrations

The vibrational motion of the atoms comprising a molecule can be des

cribed in terms of changes in bond lengths, bond angles, and other internal 

coordinates. In general only 3N-6 of these coordinates are independent, 

as six coordinates are needed to specify the translation and rotation of 

the molecule. The exception to this rule occurs for linear molecules, in 

which case only two coordinates are necessary to define the rotational 

motion.

If the vibration of the molecule results in displacements of the nuclei 

which are small compared to the interatomic distances the kinetic and po

tential energies can be written as quadratic functions of the vibrational
9coordinates and their time derivatives.

^Chi Yuan Pan and J. Rud Nielsen, J. Chem. Phys. 8 , 1426 (1953).

L. Brandt and R. L. Livingston, J. Am. Chem. Soc. 74, 3573 (1956). 

^E. T. Whittaker, Analytical Dynamics (New York: Dover, 1944).
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-U2T = Z  (g' ).. r.

ij

’'i ""j-

In matrix form the two expressions can be written as 2T = r g"^ r and 

2V = r* f r where r is a column matrix whose elements are the vibrational 

coordinates and ?  is its transpose. The elements of the matrix f are 

determined by the magnitude of the forces between atoms and are, there

fore, called force constants. The elements of the kinetic energy matrix 

g“  ̂are determined by the masses of the atoms and the equilibrium config

uration of the molecule.

It will be shown that linear combinations of the vibrational coor

dinates can be formed by a transformation matrix so that 2T = ^  

and 2V 2hese conditions require that jG q = r, ^  f JC = A  ,

and «C g'^jE = E, where Q is a column matrix whose elements Qj are called 

normal coordinates, A  is a diagonal matrix whose elements are ^ , and 

E is a unit matrix. In the new coordinate basis the various Q's are

independent and their solutions are immediately obtained from Lagrange's
" 10equations to be = Ajj exp. (i t), n = 1 , 2 , --- , 3N-6. The

internal coordinates are related to the normal coordinates by the rela

tions r^ “ Z T d G  jn Qji’ although the motion of a single atom is

quite complicated,it can be described as the sum of 3N-6 simple harmonic 

motions called normal vibrations.

To determine the normal frequencies it is necessary to go back to the 

expressions for T and V in terms of the internal coordinates. Application

Goldstein, Classical Mechanics, (Reading, Mass: Adison-Wesley 
publishing Co. Inc., 1959). ' "



of Lagrange's equations yields the following equations of motion:

Z  (gïj r*j + fij tj) = 0, i = 1,2,---, 3N-6.

Substitution of the solution rj = r r e d u c e s  these relations to 

the set of algebraic equations

Z  (fij -(*>2 g'J r.O) = 0 ,

which can also be written as the matrix equation 

f r° =(d,2 g-1 r°.

Multiplication on the left by the matrix g results in the eigenvalue 

equation

g f r° = ^  r°, ^  = W ^ .

Therefore, the normal frequencies multiplied by 2 TT are square roots of 

the eigenvalues of the gf matrix and the r°'s are eigenvectors of this 

matrix. Since both f and g  ̂are symmetrix matrices with real elements 

and the quadratic forms representing the potential and kinetic energy 

are positive definite, the values of %  are real and p o s i t i v e . C a l c u 

lation of the eigenvalues is accomplished by diagonalizing the gf matrix. 

This can be done by an interative proce^dure described in Appendix I.

By constructing a diagonal matrix A , whose elements are the ^  's, 

and a second matrix R, formed by aligning the various r° vectors in the 

same order as the A  's, the equations gff^° = “ l,2,---3N-6,

can be written in the compact form gfR = R A

However, from the equations X  £ ^  = A  and Ü  g~^ t. = E, we can easily 

show that g f  X = dC A  .
Thus, the column vectors that make up both the £  and R matrices are eigen

vectors of the same matrix. The matrix R can, therefore, be made identi

cal to X  by the condition R g  ̂R = E.
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The labor required in the diagonalization process can be greatly 

reduced by the use of group t h e o r y ^ t o  find a set of coordinates in 

which the energy matrices have a reduced or block structure. These so- 

called symmetry coordinates can be fomed from well known formulas as 

linear combinations of the internal coordinates. Let S be a column 

matrix whose elements are the symmetry coordinates and U an orthogonal 

transformation. I f r = Ü S ,  2V = r f r = § ' l J f U S  = s'FS. Thus F =
^  f U and from similar arguments G = U g  ̂U and because Ü is ortho

gonal tj = tf g 11. Since a similarity transformation does not change the 

eigenvalues of a matrix, the normal frequencies can be obtained by dia

gonalization of g f U = U"^ g U U ^ f U “ G F .  As the product matrix 

GF has the same block structure as F and G, each of the blocks of GF 

can be diagonalized separately.

At this point the calculations of this normal coordinate analysis 

can be outlined. The potential energy matrix was set up in the internal 

coordinate basis using force constants derived by Shimanouchi^ for simi

lar molecules. Symmetry coordinates were then formed as linear combina

tions of the internal coordinates so as to reduce the energy matrices.

The potential energy matrix in the symmetry basis was obtained by simi

larity transformation, while the inverse kinetic energy matrix was calcu

lated directly by means of Wilson's m e t h o d . T h e  product GF was then 

fomed and diagonalized, thus giving a set of vibrational frequencies.

F. Wigner, Group Theory and its Applications to the Quantum 
Mechanics of Atomic Spectra (New York: Academic Press, 1959).

12%. B. Wilson, J. Chem. Phys. 8 , 1047 (1939), 76 (1941).
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The force constants were then varied to obtain better agreement between 

the observed and calculated frequencies, and the process was repeated.



CHAPTER II

USEY-EE4DLEY POTENTIAL ENERGY FUNCTION FOR CFg-CHg

f Matrix

As the atoms of a molecule are displaced slightly from their equi

librium positions the increase of potential energy can be written as

^  f. . r. rz ^higher order terms, where r, is a change in the i thij xj ^ J i
internal coordinate and the f^j's are force constants. As mentioned 

before, the general quadratic potential)which includes all possible 

second order terms, does not have the physical significance of the specia

lized potential adopted for this problem. In order to discuss this po

tential in detail reference is made to Fig. 2-1 and Table l-I. In Fig. 

2-1 , for example, jp22 xs the distance between atoms F^ and F^ and is 

therefore the sum of the equilibrium distance p and the small variation ia 

this value, Pĵ 2 ‘ Table 2-1 is a list of typical internal coordinates 

and their equilibrium values.

The basic part of the Urey-Bradley potential is a valence force 

potential consisting of products of a force constants times the square 

of a change of bond distance or bond angle. Some typical terms of this 

kind are and ^ 12^ ’ where and are force constants,

D]! is the increment of the C^F^ bond length from its equilibrium value D
1 7  2and a^2 the change in the F C F bond angle from its equilibrium 

value a.

10
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F2

4\

\\
 45 -  '

q

F^j C^, C^, and are in the plane of the paper. F^ and are
3 5behind the plane and F and H are in front of the plane of the 

paper.

Fig. 2-1. Molecular Constants for CFg-CHg
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TABLE 2-1

INTERNAL AND VIBRATIONAL COORDINATES OF CFg-CHg

Internal Coordinate Symbol Equilibrium
Value

Symbol for 
Equil. Value

Vibrational
Coordinate

C^F^ bond length 1.36 A° D Dl*
C % ^  bond length ^4 1.09 d ^47 g
C C bond length Rl 1.53 R %
1 2F F  separation Pl2 2.22 P ^ 2
1 8F C separation "l 2.36 r ^1

separation ‘̂ 45 1.78 q **45
4 7H C separation ®4 2.15 s ®4

F^H^ separation "l4 3.29 t ^ 4
separation "l5 2.62 V V15

1 7  2 F C'F angle 5^2 109°28' a ®12

H^C®F^ angle 109°28' b \ 5
F^C^C® angle ®1 109°28' a' ^1

H^C®C^ angle 109°28' b'

®Dj^ = D +  D^, etc.
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To the valence force potential are added teras that represent the

effect of interaction of non-bonded atoms. Thus, the potential energy
1 4 2of interaction of F and H is given by 2Fpg' t t^^ + Fpg t^^ , From the

sign of the constant Fpg' it will be shown that the force between an F

and H atom in this molecule is repulsive.
2

Finally, terms like D and D are added. The

force constants such as Kgp' and are chosen so that the linear

terms in V will vanish.

The complete Urey-Bradley potential energy function for CFg-GHg 

in terms of small variations of the internal coordinates is:

2V = 2Kgp' D(Di + Dg + D3) + KcpCDi^ + + Dg^)

+ 2% '  d(dl +  dg +  dg) + Kcg(d/ + dg^ +  dg^)

+ 2Kcc' a %1 + Kcc ai^
+ 2Hpc(,' R D(ai +  ag +  a^) + Hpgg R D(aj^^ +  + 8 3%)

2HpQp' o2(a^2 + *23 * *3l) % C F  *23^ * *31 )
+ 2Hjicc' a d(b^ + b5 + bg) + Hggg R d(b^2 + ^^2 + bg2)

+ 2Hhch' d^(b45 +  bjg +  b64> + d2 (b4 5 ^ + bjg^ + b^^2)

+ 2Fpp'

+ 2Fpc

+ 2FgH

+ 2FiHC
+ 2FFH

P(Pl2 +  P23 P31) ^FF (Pl2^ ^23^ P31^)
r(ri + rg + r^) + Fp̂ . (r^^ +  rg^ + rs2 )

9(945 + 956 + q64) + PhH (945^ + 9 5 4^ + 9^4%)
3(84 +  S5 +  sg) + Fhc (842 + S5^ + sg^)

t(tl4 + C25 + ^3g) + FpH (Ci4^ + t25 + *=36 >
+ 2Fph' v(vi5 + vgg + V34 +  vig + V34 + v%g)

+ PFH (vi5^ +  ^26^ + V34^ +  + ^34^ + ^25^>

+ J X T



14

The last term in the potential energy function is due to the tor

sional motion of the molecule defined as follows. Let the atoms lie in 

arbitrarily displaced positions. The smallest angle between the 

plane and the plane is defined as with Gg and 83 defined in

a similar manner.

F

The internal coordinate describing the relative orientation between the 

end groups is then defined as IT = (G^ + Gg +  GgX/S.

There are 41 internal coordinates in the equation for the potential 

energy, but only 18 are independent, since there are only 3N-6 vibrational 

degrees of freedom.

The small displacements p^j, q ^ ,  r̂ ,̂ ŝ ,̂ t^^ and v^^ can be ex

pressed in terms of the other vibrational coordinates. These relations, 

correct to the second order, are as follows :

Pj[j ® (D^ + Dj)(1-cos a') D/p + (sin a') D^/p

+ (D^^ +  Dj2)[ 1 - (1 - cos a')2 D^/p^]/2p + a^j^ [d^ cos a' - 

sin^ a' (dVp^)]/2p + D^Dj [- cos a' - (1-cos a')^ D^/p^]/p 

+ (D^ + Dj) a^j [sin a' - sin a' (1-cos a )  D^/p^j D/p. 

q^n * (dm +  dn)(l-cos b') d/q +  b ^  (sin b') d%/q
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+  (dJ- +  d^2 )[ 1 - (1-cos b ')2 d2/q2] / 2q +  ^ ̂ 2 g^g b'-

sin2 b' (dVq^)]/2q +  d^d^ [-cos b' - (1-cos b ')2 d^/q^/q 

+  (djjj +  dg) b ^  [ sin b' - sin b' (1-cos b') d^/q^d/q.

= R][ (R-D cos a)/r +  (D-R cos a)/r + a^ sin a RD/r 

+ R%^ [ 1 - (R-D cos a)^/r2]/2r +  [ 1 - (D-R cos a)2/r2j/2r

+  a^^ (ED cos a - sin2 a R^ D^/r^)/2r 

+ Rl Di [ - cos a - (R-D cos a)(D-R cos a)/r^}/r 

+  R]̂  a^ [sin a - sin a (R-D cos a)R/r2] D/r

+ &i a^ [ sin a - sin a (D-R cos a)D/r“J R/r.

Sjjj = Rĵ  (R-d cos b)/s + d^ (d-R cos b)/s +  b^ sin b Rd/s

+  Rĵ 2 [ 1 - (R-d cos b)2/s^]/2s +  d ^  [ 1 - (d-R cos b)^/s^]/2s

+  [Rd cos b - (sin^ b) r2 d^/s^/’2s

+  Rĵ  dĝ  [ - cos b - (R-d cos b)(d-R cos b)/s^]/s 

+ R^ a^ [sin b - sin b (R-d cos b) R/s^] d/s

+  djjj Sjjj [sin b - sin b (d-R cos b) d/s^] R/s.

*̂ im " Di CD +  dm td +  *1 CR +  t- +  b^
+ {l>i^ a-tjyb + d J  (l-t/) + R ^2 (i_c^2 )

+  a^2 [ RD cos a - Dd cos (a-b) - t^2l

+ [ Rd cos b - Dd cos (b-a) -

+ (- m/9)
+ ‘j'2 (_dD sin a sin b)

+  Di 8 ^ 2 [r sin a - d sin (a-b) - tp t^j

+ Di b* 2 [-d sin (b-a) - t J

+ dm 2[-D sin (a-b) - t j

+  dm bm 2 [r  sin b - D sin (b-a) - tj tj

+ dm 2 [-cos b - + R% a^ 2 D sin a - t j
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+  Rl 2 [d sin b- tg t j  +  2 [d<1 cos (a-b) - t j

+  ( % i  ®ij +  ^om V  +  =ki ^om + =ki ̂ mn ‘ W  2(D4/9)J/2t.

Vin = Di ''D +  ̂ n  + *1 VR + H  Vg +  \
+  (aki - a^j - b ^  +  b„o)(v;/3) +  IT vj

+ { D i ^  (1 - VgZ) +  d^2 (1 _ v / )  +  r ^2 (1 _

+  ai^ [rd cos a - Dd cos a cos b +  % Dd sin a sin b -

+  b^^ [ Ed cos b - Dd cos a cos b +  % Dd sin a sin b -

+  (a^i^ +  “i /  +  '‘J  * (- M / 2  - v«)/9

+  [(Dd sin a sin b)/2 -

+  D^ d^ 2 [cos a cos b - % sin a sin b - Vg Vjjj

+  Djl Rl 2 [- cos a - Vjj v^]

+  Dĵ  ai 2 [ R sin a - d sin a cos b - % d sin b cos a - Vjj v^j

+ Di bji 2 [ - d sin b cos a - % d sin a cos b - Vjj v^j

+  dn Rl 2 [- cos b - Vj v^]

+  djj a^ 2 [ - D sin a cos b - % D sin b cos a - v^ v j

+  djj b^ 2 [ R sin b - D sin b cos a - % D sin a cos b - v^ v j

+  Rl a^ 2 [ d sin a - vr +  R^ b% 2 d sin b Vĵ  v^j 

+  ai b^ 2'^d sin a sin b - % Dd cos a cos b - Vg Vyjj

+  (aki a^j +  b ^  b^^ +  «ki ̂ mn +  ^ i  ^no " ̂ij V  ' \ o >
[2 - (Dd)/2 +  Vg2]/9}/2v.

In these formulas i, j, k = 1, 2,3; m, n, o = 4, 5, 6 , with the

restriction that if i “ 1 then m “ 4, if i » 2 then m  “ 5, and if i = 3

then m  “ 6 . Also, the following abbreviations have been used: 

tD “ [D +  d cos (a-b) - R cos b]/t,

t^ ■» [d +  D cos (b-a) - R cos a]/t,

^R “ [R"D cos a - d cos b]/t.
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= [eD sin a - Dd sin (a-b)] /t,

*-b “ [Rd sin b - Dd sin (b-a)] t ,

= [d-R cos a +  d cos a cos b - % d sin a sin b}/v,

Vj = [d-R cos b +  D cos a cos b - % D sin a sin b]/v,

Vr = [r-d cos a - d cos b]/v

Vg = [r d sin a - Dd sin a sin b - % Dd sin a sin /v,

Vb = [Rd sin b - Dd sin a sin b - % Dd sin a sin b]/v,

Vc “ [(€ in 3 Dd sin a sin b)/2] /v = Gfn,

[(€ 3 Dd sin a sin b)/2] /v = and^

= 1 for in = 15, 26, or 34 and -1 for in » 16, 24, or 35.

Substitution of these terms into the potential energy function and

collection of terms with the same internal coordinates results in the 

following form of the Urey-Bradley potential:

2V = I'TDi +  j'ZZdm +  S'R ĵ +  M E a i  + OEa^j

+  % m  +  X E D i ^  + B Z d ^ 2 + g r ^2

+ l'Ea^^ + ÊEa. + y'z hj- + Y E b ^ ^  +n.X^

+ 2 X'EDi Dj + 2 WEDi d^ + 2 W'ED^ d^
+  2 Z ' E d m  %1 + 2 N E D ^  ai +  2 Q E D i

+  2 A E D i  b^ +  2 A ' E D i  b^ + 2 B ' E d *  d^

+ 2 Z'Zdjn Rl + 2 GEdn, a^ + 2 C'Ed^j aj

+ 2 Q ' E < V  + 2 N ' E d ^  b^ + 2 T E R i  a^

+  2 T ' E R i  h^ + 2 C E a i  b^ +  2 C'Ea^ b^

+ 2 F (ai2 S23 +  a^^ a^^ +  a^i a^2> + 2 H (b^^ bjg + b^^ bg^ + bg^ b^^)

+ 2 L (ai2 b^5 + a^^ bgg + a^^ bg^)

+  2 L ’ (ai2 b56 +  a23 b^^ +  agi b^g + ai2 bg4 + 823 b^g +  a^^ b^g),

where i, j, k = 1, 2, 3; m, n, o « 4, 5, 6 , and
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» (D^ +  Dg +  D 3);Ed^ = (d^ + dg + dg),

Z  « (*12 +  *23 +  *3l) ' ^  V  “ (^45 +  ^56 + h i?  '
5:Di d* = (Di d4 +  Dg d5 +  D3 dg),

E  Di dji » (Di dg +  Dg dg +  D 3 d^ +  Di dg +  Dg +  D3 dg),

Zd^ aj = (d4 *2 + dg + dg a i + d  ̂33 + dg * i +  dg 82).

The two remaining restrictions on the coordinates are the redundancy 

conditions:^

H^= Z.*i + r*ij +>/V8 [3 â " + 3 *ij^ + 8 (la^ aj 

+ 2Z*i *ij + *12 *23 + ®23 ®31 + ®31 ®12^ “ °
“2=  [3 b /  +  3 b „ *  +  8 (Zb_^

+ bnm + b45 bgg + bgg bg^ + bg^ b^g)] » 0 .
13Following Lagrange's method of indeterminate multipliers, a new 

potential energy function 2V + 2kHi + 2k'H2 is formed in which now *11 of 

the coordinates are independent. The new potential includes the additional 

terms:

2 V 2 k Y * i  *j +  2 V ?  k'3[bo^ b^ +  2 V 2 k Ü a i  b ^  +  2 s/2 k ' E b ^  a^j, and

the following modifications are made in the meanings of the constants.

M-*îî +  2k = M, Ô - * Ô  +  2k = 0,

P - * P  +  2k' " P, Û-»ÏÏ + 2k' “ U,’

Ë - » Ê  +  (3 72/4) k = E, +  (3 s/2/4) k = E',

?-*►? +  (3 s/2/4) k' " y, Ÿ'-^ÿ' + (3 s/2/4 ) k' = Y'

F - * F  +  2 V 2 k = F, H - * E  + 2 s/2 k' = H.

Since the potential energy of the molecule must increase for any

Courant. Differential and Integral Calculus, Vol. II (New York: 
Interscience Publishers, 1934).
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displacement from equilibrium, the linear terms must be zero. The coe

fficients of these terms are:

I' = 2[Kgp' D +  Fpp' D (1-cos a') + Fpg' (D-R cos a)

+  Fpg' (2D + 2d cos a cos b - % Dd sin a sin b - 2R cos a)j

J' = 2[K^' d + Fgg' d (1-cos b') +  Fgg' (d-R cos b)

+  2 Fpg' (2d +  2D cos a cos b - % Dd sin a sin b - 2R cos b)]

S' = 2[Kc c ' R + 3 Fp^' (R-C cos a) +  3 Fgg' (R-d cos b)

+  9 Fjig' (R-D cos a - d cos b)]

M  ® 2[Hjtqq' RD +  Fj(q ' RD sin a +  3 Fgg' (RD sin a - Dd sin a cos b) +  k]

0 = 2[HpQp D^ + Fpp' D^ sin a' + k]

P " 2[Rggg' Rd +  Fgjj' Rd sin a + 3 Fj^' (Rd sin b - Dd sin b cos a) +  k]

Ü + 2[HjjQj'd2 +  F ^ '  d^ sin b' + kj

The K primes and H primes are chosen so that the above expressions 

are zero. The equilibrium conditions will then be satisfied.

The potential function can now be written in the matrix form 

2V = ?  f r , where r is a column matrix with the internal coordinates as 

elements and r is its transpose. The coefficients of the internal coor

dinates form the symmetry matrix f given in condensed form in Table l-II. 

The complete algebraic expressions for the elements of the f matrix

are:

X = Kgp + Fpp' 2 [l - (1-cos a')2 D /̂p ]̂ + F ^  2 (1-cos a')^ D /̂p  ̂

+ Fpg' [ l  - (D-R cos a)2/r2] + Fpg (D-R cos a)2/r^

+ % '  (3 - - 2 + F m  (tg: +  2 Vg2 ) .

B = Kgg +  Fgg' 2[l - (1-cos b')2 d2/q2] + 2 (1-cos b')^ d^/q^

+ Fgg' [l - (d-R cos b)2/s^] + Fg(, (d-R cos b)2/s2 

+  Fpg' (3-t/ - 2 Vj2) + Fpg ( t /  +  2 v/)..
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TÂBtE l-II 

f MâïRIX

X  X' X' w w' w' Z N 0 G À A' A' Q G Q G G G G
X  x' w' w w’ Z 0 B 0 A' A A' Q Q G G G G G

X w' w' w Z 0 0 N A' A' A 0 Q Q G G G G
B' B' Z' G G' G' »' 0 0 G G G Q' G Q' G
B B' Z' G' G G' 0 H' 0 0 G G Q' Q' G G

B Z' G' G' G 0 0 B' 0 G G G Q’ Q' G
8 T T T t ' T* T' G G G G G G G

K* I I G G' G' I G I G 0 G G

e ’ I c' G c' I I G G G G G

E' G' c' G G I 1 G G G G

Y ’ J J G 0 G J G J G

y' J G G G J J G G

y' G G G G G J G
E F F L L' L' G

E F t' L V G

E L' L' L G
y H B G

y H G

y G

n
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S = Egg +  Fpg' 3 [l - (R-D cos à)^/r2] +  Fpg 3 (R-D ces a)^/r2

+ 3  [ 1 - (R-d CCS b)^/s2] +  Pgg 3 (R-d ces

+  Fpa' 3 (3-tR^ - 2 3 (taf + 2 Vg2).

E » Hpgp D^ + F ^ '  (D^ CCS a' - sin^ a' D^/p2)

+  Fyjr sin2 a' D^/p^ - Fj^' 4 Vj.2/9 +  4 Vg^/9 +  (3 V2/4) k.

E' " HpGc R D +  Fyg' (RD ces a - sinf a R^^/r^)

+  Fjtg (sin2 a R^D^/r2) +  Fpg* (3 RD cos a - 3 Dd ces a ces b-t^^-2v^^)

+  PjH (Cg^ + 2 v ^)  +  (3 >/?/4) k.

Y “ Hggg d^ +  Fjjg' (d^ cos b' - sin^ b' dVq^)

+  Fgg sin2 b' d4/q2 - 4 Vg^/g +  4 v^.2/9 + (3 ^ / r )  k'.

Y' " H  Rd +  t„„' (Rd cos b - siof b R^d^/s^)HCC
+  Fh c  sin^ b R^d^/s^ + F^^' (3 Rd cos b - 3 Dd cos a cos b - t̂ ĵ -2vjj )

t  FpH (t̂ ,2 + 2 v^) + (3 72/4) k' .

[- cos a* - (1-cos a')^ D^/p^] + Fgy (1-cos a')^ D^/p^.

[cos (a-b) - tjj t j  +  Fpg (tjj tj),

[cos a cos b - % sia a sin b - v^] +  F^^ v^.

[- cos a - (R-D cos a) (D-R cos a)/r^] +  F^g (R-D cos a) (D-R cos a)/r^

(- 3 cos a - tQ - 2 vg v^) + F ^  (tjj t% + 2 Vg Vr ) .

D sin a' [ 1 - (1-cos a') o2/p2] + Fy^ sin a'(1-cos a'), D^/p?V 

R sin a [l-(D-R cos a)D/r^] +  F^g sin a (D-R cos a) ED/r^

(3 R sin a-3d sin a cos b-tg t^- 2 vp v^) +  Fpg (tgt^ + 2v^v^).

[d sin (a-b) - tj3 t j  +  Fpg tp

(-d sin b cos a - % d Sin a cos b - Vjj Vy) +  Fgg v^.

[ - cos b' - (1-COS b')2 d^/qZ] + (1-cos b')2 d^/q^.

[- cos b-(R-d cos b)(d-R cos b)/s2] +  F^g (R-D cos b)(d-R cos b)/s^

(- 3 cos b - - 2 Vj Vg) +  Fjg (t^ tj + 2 Vj y .

X' a ®‘f f '
H W ^FH
w' n ^FH
Z s ^FC

Q ■ tat ^Fp'
N S3 ^Fc'

■*’ ^f h '
Â

A' as
®FH

B' s % a '
Z' es % c '

+



G = 

G' =

Q' “ 
N' = 

+
T = 

+
X' a 

+
G a

c' = 
F » 
H = 

L' = 

L =» 

I = 

J =

^FH

^HH
^HC
^FH
^FC
^FÜ
HC

^FH 
^FH 
^FH 
^FH 
%  
%
%  
yjï k.

n/2 k'
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[- D sin (b-a) - t J  + Fpg t^.

(-D sin a cos b - % D sin b cos a - v^) +  ^pg

d sin b' [l-(l-cos b') d2/q2] + F ^  sin b' (1-cos b') d^/q^. 

R sin b[l-d(d-R cos b) sin b/s^] + F^q sin b(d-R cos b) Rd/s^ 

(3R sin b-3D sin b cos a - t(^ty-2v^vy) + Fpg + 2v^v^).

D sin a [l- (R-D cos a) R/r^]+ Fpç sin a (R-D cos a) RD/r^

(3 D sin a - - 2vg^vp + Fpg (t^t^ + 2v^v^).

d sin b[l-(R-d cos b) R/s^]+ F̂ j, sin b (R-d cos b) Rd/s^

(3 d sin b - tptb - 2v^v^) + F ^

[Dd cos (a-b) - t^tj + Fpg

(Dd sin a sin b - % Dd cos a cos b - v^V|j).

2 VgZ/g - FpH 2 vJ^/9 + 2 V2 k.

2 Vg2/g - Fpg 2 VgZ/9 +  2 VT k'.

(Dd/3 - 2 v^2/9) + Fpg 2 v//9.
(-Dd/6 +  v^2/9) _ v^2/9.

Symmetry Coordinates 

Any complete set of vibrational coordinates can be used for calcu

lating the energy matrices. If the molecular vibration is described in 

terms of cartesian displacements of the atoms the kinetic energy matrix 

is diagonal; the use of internal coordinates usually simplifies the ele

ments of the potential energy matrix and gives them more direct physical 

meanings. The most useful set of coordinates which can be obtained prior 

to the diagonalization process are called symmetry coordinates. The 

nature of these coordinates is determined by the symmetry of the undis-
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torted molecule and in this coordinate system both energy matrices have 

block structure. The group theory that provides the background for 

discussion of these coordinates is not given here, since the theory, 

although some\diat involved, is well known and readily a c c e s s i b l e . I n 

stead, only the results of the application of group theory and a list of 

symmetry coordinates are presented.

The undistorted CF3-CH3 molecule has the symmetry Group-

theoretical methods show that there are five non-degenerate normal vibra

tions of this molecule each of which belongs to the irreducible represen

tation, or species, of the group Cg^. Also, there is one non-degenerate 

normal vibration belonging to species A£ and six doubly-degenerate normal 

coordinates belonging to species E. By application of the formulas of 

Nielsen and B e r r y m a n f i v e  symmetry coordinates belonging to species A^ 

and two sets of six coordinates of the species E can be formed as linear 

combinations of the internal coordinates. As there is only one normal 

coordinate belonging to which corresponds to the torsional vibration 

of the molecule, it has been treated separately.

A simple set of symmetry coordinates for CF^-CH^, classified accord

ing to species, are:

A^: = I/ /3 (d^ + d^ + dg)

Sg = 1//3 (Di + Dg + Dg)
S3

S4 = l/\/6 (b4 + bg + bg - b43 - bgg - bg^) 

Sg = 1/-/6 (a^ + a£ + ag - a^2 - agg - a^^)

Rud Nielsen and L. H. Berryman, J. Chem. Phys. 17_, 659 (1949).
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E: Sla = (2d4 - - dg)

S2a “ l/\/6 (2Di - - D 3)

Ssa = l/\/6 (2b^ - - bg)

S^a = 1/^6 (2ai - ag - a^)

S a  “ l/»/6 (2^45 - S j  - 6 4 4)

S6a “ I/'/s (2S i2 - a^j - ajj)

81g = 1/1/2 (dg -  dg)

Sgg = I / / 2  (Dg -  Dg)

S b  ‘ 1/"^ ( S  - S )
84b = 1/̂ 5 (»2 “ ^3)

Sgb = 1/1/2 (bgg -  bg^)

8ôb = l/'/2 (&23 - *3 1)
The new fora of the potential energy matrix that results from the 

transformation of internal coordinates into symmetry coordinates can be 

determined by means of a similarity transformation. Let S be a column 

matrix whose elements are the symmetry coordinates and U be the ortho

gonal transformation matrix from the internal to the symmetry basis. 

Then r = US and 2V = sTuTf u S. If F represents the potential energy 

matrix in the symmetry basis it must be related to f by the congruent 

transformation F = uf f U. The F matrix has block structure as shown 

below.

/
Ai block 
5 x 5

first
E block
6 x 6

second
E block
6 x 6

I
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All matrix elements outside of the square blocks are zero. The use
I 14of Nielsen and Berryman s formulas to calculate the symmetry coordinates 

Insures that the two E blocks are Identical. The blocks of the F matrix 

are presented In Table 2-III.

TABLE 2-III 

F MATRICES FOR CF^-CHg

Species A^:

B + 2B' W + 2W' 

X + 2X'

riz'

/3 Z 

S

(N'-2Q')/v^  

(A+2A')//2 

/3 T'//2

(G+2G')//2

(N-2Q)/n/2

/3 T/VI

C+2C'+L+2L'
2

^  + F-I

Species E:

B - b ' w  - w ' N' G - G' Q'/2 0

X - x' A - A' N 0 Q/2

Y' - J C - c' J/2 0

e ' - I 0 1/2

Y - H L - L'

E - P



CHAÏTER III 

KINETIC ENERBT MATRIX EOR CF3-CH3

The G matrix for the molecule CF3-CE3 was constructed by Wilson's
1_5Method. In Wilson's formulas the elements of the inverse kinetic

energy matrix in the symmetry coordinate basis are given by =

2" T" g ^5 • /d. Here 21 represents a summation over degen-?  p La h a a
erate sets of ^  vectors, 2 1 represents a summation over sets of equivalent

P
atoms, d is the degree of the degeneracy, g^ the number of equivalent

atoms in the p th set, and JJ is the reciprocal of the mass of one of
P

these atoms. If the degeneracy of the set of S vectors is one the summa- 

tion over a is omitted. Further, Sj^ “ ^ ^ L a  k \ t ’ ZZ is a

summation over the internal coordinates, and is an element of the

matrix that transforms the internal coordinates into symmetry coordinates. 

Finally, s^^ has the direction in which a given displacement of atom t 

will produce the greatest increase in the k th internal coordinate and 

a magnitude equal to the increase of this coordinate produced by a unit 

displacement of the atom in the most effective direction.

A  selected list of s vectors is given in Table 3-1. After substi

tution of numerical values for the sines and cosines in the expressions 

for the S vectors the results listed in Tables 3-II, III, IV are obtained. 

The blocks of the G matrix are presented in Table 3-V.

26



TABUS 3*1

Sĵj. VECTORS FOR CF^-CR^

Ds
d4
ds
^6
Rl
«1
«2«3
b4

®12
*23

I

(cos a' f̂ 2-fy)/D sin a

(cos a* fi-T2)/'D sin a' 

(cos a* T-^-r^y/Ji sin a*

- il 
" i2- rs

(cos b' r4 -r5 )/d sin b' 

(cos b' f^-f^)/d sin b'

(w r^+u r7)/BD sin a 
(w r2-hi ryX/RD sin a 
(w fg+n fy)/RD sin a 
(cos b fg-f^y/R sin b 
(cos b rg « ^ ) / R  sin b 
(cos b f--rg)/R sin b 
3 (r,4T 2 y/D sin a' 
3 (f2+f3>/D sin a' 
3(fg4f]^)/D sin a*

" i4 
- 15

(cos a r^-r^y/R sin a 
(cos a ry-^y/R sin a 
(cos a fj-roy/R sin a 
(c Ïa-Hi rgy/Rd sin b 
(c rgy/Rd sin b 
(c rg-Hi rgy/Rd sin b

x(r,4fcy/d sin b' 
aXrc+rgy/d sin b' 
x(?6+^4 )/d sin b'

is a unit vector along the C^F bond,
r^ is a unit vector along the bond,
fy is a unit vector along the bond.
?g is a unit vector along the C®C^ bond,
w  = (D-R cos a), u = (R-D cos ay, z = (1-cos a'y, 
c = (d-R cos by, h = (R-d cos by, x  = (1-cos b'y.
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TABLE 3-II

VECTORS OF SPECIES

\ pi R4 C^ c8

1 0 0 fg/Zs

2 fl//3 0 0

3 0 0 "s ^7

4 -V3(rg+ fl)/2D 0 0 4fg/(y3 d)

5
3

0 -'/3(fy+ p ^ / 2 d 4fg/>/3 D) 0

TABLE 3- III

Sj^*^ VECTORS OP SPECIES E*

Hpi C7 c8

la 0 2 r^/yë 0 (?7-3ri)/>/6

2a 0 (r-8-3?4)/y6 0

3a 0 -)/3(^ +T ĵ )/2D \/3(ry-3^)/4R 1/3 c(3f^+r^)/4 Rd

4a S i y  +?4)/2D 0 v'3w(3r^+f^)/4RD >/3(fg-3f^)/4 R

5a 0 V3(rg-p: - 2 ^ 4 d 0 V3x(fy-3r^)/4d

6a V3(rg- p: -2r2>/4D 0 >/3z(rg-3f3)/4D 0
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TABLE 3-IV

VECTORS OF SPECIES

K c' cS

Ib 0 G G

2b 0 G (?3-?2)/^2 G

3b 0 G 3(?6-?5)/4R 3c(?3-r‘g)/4Rd

4b 0 G 3w(r2-r3)/4RD 3(F^-?‘2)/4R

5b 0
ri

4 ( ^  +  ï-6)/3d G 3(?5-^;)/4d

6b 4 ( p +  ^)/ 3 D G 3(r2-rp/4D G
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TABLE 3-V

G MATRICES OF CF3 -CH3

Species Al

-Wg//3 4W(,/3d G

-Wc//3 G 4W(,/3D

2 Wc -4Wq//3d -4Wc/\/3b

0
2 8Wn
EÏ<"f  + - f )

Species E

% + ^  0 1/2 Wg/R -2V2 Wg/3d G

%F + % /2 Wg/R -v/2 Wq/Md G -2/2 W(j/3D

p  + WcLd 3WcN/2 . %  + WcMd  
4d2 d W q/RD

%  + Wc/Rd 
5% 4. 8Wç
2d2 3d2

4d2 d
G

Ü k  + B
2D^ 3d2

Wheî Md

= (

N (

1 +R 3d
1 + J^ +6d2 Rd
d + — - 1. Il HR2d 3RD

1
3Rd

D
R^d

M, ( a + iô )
(-i_ + i_ + ̂

6d 2 RD r 2



CHAPTER IV

RESULTS FOR CF3-CH3 AND DISCUSSION

15
Vibrational assignments for CF3-CH3 have been made by Yost , Thomp- 

son^^, Nielsen^^, and Herzberg.^^ The assignments of Nielsen and Herzberg 

are essentially the same and are probably correct. Comparison between 

Nielsen's assignment and the calculated frequencies is made in Table 4-1.
g

Also, the values calculated by Pan and Nielsen for the eclipsed configur

ation of this molecule are listed.

The initial set of force constants used in this calculation was taken 

from the work of Shimanouchi^ on CF^, C2Hg, and CgFg and the calculations
g

of Pan and Nielsen for CF3-CH3 . These are listed in Table 4-II together 

with the final set of force constants. Some of the differences between 

the initial and final force constants are caused by the fact that Shimanou- 

chi's constants were determined for a set of different molecules, while 

those of Pan and Nielsen were calculated for a different configuration of 

CF3 -CH3 . Some differences are also due to the inclusion of terms in the 

potential function resulting from changes in the distances between non-

Russell, D.R.V. Golding and D. M. Yost, J. Am. Chem. Soc. 16 (1944),

^^H. W. Thompson and R. B. Temple, J. Am. Chem. Soc. 90, 1428 (1948).

Rud Nielsen, H. H. Claassen and D. C. Smith, J. Chem. Phys. 18,
1471 (1950).

1AR. D. Cowan, G. Herzberg and S. P. Sinha, J. Chem. Phys. 1538
(1950).
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bonded atoms with the variation of HCH and FCF angles, which were neglec

ted by the previous workers.

The agreement between calculated and observed frequencies is about as 

good as can be expected for an eight-atom molecule. Although some improve

ment could be obtained by the finer adjustment of some of the force con

stants, this would hardly be meaningful, since better agreement should not 

be expected from this model, in vihich anharmonic terms are neglected, all 

angles are assumed to be tetrahedral, and the uncertainty in some of the 

bond lengths may be one percent or more.

Table 4-III is a listing of the matrix elements of L”^, which is 

related to the symmetry and normal coordinates by the equation Q = L  ̂S. 

Thus, the composition of each normal coordinate can be determined by 

reading across the appropriate row of this table.

The present normal coordinate analysis throws some new light upon 

the nature of the vibrations at 1280 and 831 cm”^, which have formerly 

been characterized as C-F and C-C stretching, respectively. However, the 

present work shows that, while there is considerable mixing of these motions, 

the vibration with the higher frequency is predominantly C-C stretching.

The final value, 3.6 md/A°, for the force, constant Kq q  is considerably 

higher than the value, 2.8 md/A°, of the corresponding force constant for

ethane. This indicates a strengthening of the C-C bond with fluorine
19substitution. A  similar effect occurs in ethylenes , whose C=C stretching 

frequency increases with fluorine substitution.

Table 4-IV is a list of the changes in the calculated frequencies that 

result from an increase of 0.1 in particular force constants, all other 

variables being held constant.

19J. Rud Nielsen, Monthly Research Report of the ONR, May, 1952.
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TABLE 4-1

VALUES OF THE FORCE CONSTANTS FOR CFg-CH^

Symbol Final Value Initial Value Transferred from

FpF 1.1 md/A 1.3 md/A° CF4

Fpp' -0.2 -0.3 md/A° CF,

^CF 4.4 3.75 md/A° CF4

®FCF 0.1 0.15 md/A° CF4

®FCC 0.3 0.15 md/A° CF3-CH3

^FC 0.4 0.23 md/A° CF3-CH3

%c' -0.04 -0.04 md/A° CF3-CH3
k 0.35 0.56 m d ‘A°/rad^ CF3-CH3

^HH 0.09 0.1 md/A° CH4, C2Hg

Ph h ' 0 0 md/A° CH4, CgHg
4.6 4.8 md/A CH4. CgHg

%.[CH 0.43 0.4 md/A° %
% C C 0.14 0.15 md/A° C2H6

% C 0.4 0.4 md/A° %

%c' -0.05 -0.05 md/A° %
k' 0.04 0.5 md-A°/rad^ C2H6

^ C 3.6 2.8 md/A° C2H6

^FH 0.06 0.12 md/A° CF3-CE3

^f h ' -0.01 - .045 md/A CF3-CH3
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TABLE 4-II

VIBRATIONAL FREQUENCIES OF CF3-CH3 (in cm‘ )̂

Species Observed
Calculated g 

Present Work Pan and Nielsen

M 2975 2970

1408 1447 1478

1280 1287 1158

830 857 831

602 581 632

E 3035 3028

1443 1447 1366

1233 1263 1242

970 968 1046

541 563 601

365 373 320
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TABLE 4-III
,„l2vELEMENTS OF THE TRANSFORMATION MATRIX L"^ (x  10^^)

Species Aĵ :

Si S3 S4 S5
Ql(2975) 1.276 .017 .122 .045 .013

92(1408) -.144 .187 - .390 .856 .105

0 3 (1230) .024 -1.297 2.210 .353 - .470

Q4 (830) .079 4.981 2.490 .214 - .154

Q5 (602) .103 -1.888 3.080 .253 3.378

Species E:

Si S2 S3 S4 S5 S6
Q^(3035) 1.230 .001 .048 - .014 - .005 - .004

92(1443) .069 .002 - .030 .039 .353 .013

9 3 (1 233) - .045 2.525 - .432 - .278 - .017 - .177

94 (970) .105 1.880 1.361 .023 .103 .021

95 (541) .082 2.091 - .245 1.509 - .054 2.825

96 (365) .207 1.795 - .370 3.569 - .100 -1.260
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TABLE 4-IV

CHANGES IN THE CALCULATED FREQUENCIES (cm'b DUE TO AN INCREASE 

OF VARIOUS FORCE CONSTANTS BY 0.1 md/A

>'l ^3 ^7 )̂ 9 M .0 H i

^FF 0 0 0 6 3 0 0 4 1 6 1

Ff f ' 0 - 1 -17 0 -10 0 0 5 1 -25 - 7

% C 0 1 1 13 7 0 0 0 1 0 14

% c ' 0 1 3 0 7 0 0 15 0 0 24

^FH 4 6 8 2 2 3 2 1 10 2 5

Ff h ’ 39 -28 - 1 0 0 4 - 2 -12 -27 - 3 - 7

% C F 0 1 11 2 13 0 0 3 1 38 10

% C C 0 0 14 0 15 0 0 13 0 4 37

^CF 0 0 2 3 0 0 9 1 0 0 0

k 0 0 15 7 12 0 0 2 0 3 -25



CHAPTER V 

F AND G MATRICES FOR C2Hg AND CgFg

The validity of a set of force constants may be tested by using them 

to predict the vibration frequencies of molecules similar to the one for 

wiiich they have been determined. In the present case the frequencies of 

CgHg and C2Fg can be calculated with essentially the same constants as 

obtained for CF3-CH3 .

The following paragraphs describe the modification of the F and G 

matrices needed for the calculation of the vibrational frequencies of 

ethane. The corresponding matrices for C^Fg have the same form.

The ethane frequencies could be obtained from the previous matrices 

by the simple substitution of carbon-hydrogen bond lengths, force constants, 

and masses for the corresponding carbon-flu/E{gfine quantities. However, this 

would not take advantage of the additional factoring of the F and G mat

rices possible because of the higher symmetry, D^^, of the ethane molecule. 

The correlation between the relevant irreducible representations of the 

Cgy and Ü3jJ groups is indicated by the following diagram. ̂

S v  ®3d
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Symmetry coordinates of the three Aĵ g and two A 2^ vibrations for 

ethane can be formed as linear combinations of the A^ symmetry coordinates 

of CF3CH3 after modification required by the substitution of hydrogen for 

fluorine. Linear combinations of the six symmetry coordinates of the 

species E of CF3-CH3 can be combined into two sets of three symmetry 

coordinates for the Eg and E^ species of ethane. Thus, the symmetry 

coordinates for ethane in terms of the appropriately modified symmetry

coordinates of CF3-CH3 are:

A^g Si = I//2

52 » 1//2 + s/i)

53 =  83AI 

A 2u* Si = I//2

S2 “ I//2 (-84^^ +  85^!)

Eg: 81 = I//2 (81% + 82%)

82 = 1//2 (S3® +  84B)

83 = I//2 (85® +  SgG)

E„: 81 = I//2 (-81^ + 82®)

82 = I//2 (-83® + 84®)

83 = I//2 (-85B + 85^ .

Since the symmetry coordinates for both molecules are orthogonal, the 

F and 6 matrices for ethane can be obtained by similarity transformation. 

Thus, F(C2Fg) “ UFCCFj-CHj)!! where Ü is the transformation matrix from

the symmetry coordinates of CF3-CH3 to those of ethane. The blocks of the

F and G matrices are listed in Tables 5-1 and 5-11.
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TABLE 5-1 

F MATRICES FOR CgHg

Species A^g:

X  + 2X' + W +  2W' (N +  A  + 2A' - 2Q)//2 ^6 Z

f+ c '+l '-i /3 T 

S

Species Ag^:

X + 2X* - W - 2W' (N - A - 2A' - 2 Q ) / #  

+ F-C'-L'-I

Species Egi

X - x' +  W - w' N H* a - A* Q/2

e ' - I + c  - g ' 1/2

E - F + L - L'

Species E^:

X - x' - W + w' N - A  + a ' Q/2

e ' - I - G + c' 1/2

e ' - F - L + L'
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TABLE 5-II

G MAIEIGES FOR CgHg

Species A^g;

%  + Wc/3 4 Wc/3d

Wg/d^ + Wc/6d^

-2 Wc//6 

-8 Wg/^e d 

2 %C

Species A 2„;

%  + Wg/3 4 Wc/3d

%/d^ + Wg/ 6d^

Species Eg:

%  + Wq/3 V  M  + l ’ -2V 2 Wg/3d

%  1 9
*c( Rd + 3d? )-
5 %  BWc 
2d2 3d2

Species E^:

%  + Wc/3 Wg/3d
%  + Wc 
df 6d2

-2/5 Wc/3d 

2d2 3d2

a + H c
2dZ 3d2



CHAPTER VI

RESULTS FOR G2Hg AND CgFg AND DISCUSSION

All but three force constants obtained for CF^-CH^ were used in the

calculation of the vibrational frequencies of CgHg and C2Fg. Since the

interaction between two hydrogen or fluorine atoms at opposite ends of

the molecule is not the same as between such atoms in the same end-group,
+ +'the force constants Fgg and Fp^* are replaced by new constants Fgg , Fgg , 

Fpp^, and Fpy^ . Also, in order to obtain satisfactory agreement between 

calculated and observed frequencies it was found necessary to use a separ

ate constant Kgg for the two molecules. The values of these special force 

constants and other molecular constants for C^Hg and C^Fg are listed in 

Table 6-1.

The vibrational frequencies of CgHg and calculated in the present

work and by Shimanouchi^ are listed in Table 6 -II. The rather close 

agreement between the two sets of calculated frequencies is not surprising, 

since the final force constants obtained here for C2Hg differ little from 

those determined by Shimanouchi for CH^ and C2Hg. The calculated fre

quencies agree well with those observed, except for the lowest frequency 

of the species E . It is possible that the experimental value of thiss
frequency is in error, since, although it is Raman-active, it has never 

been observed directly but has been inferred from three infrared combina-

41
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20tion bands.

The calculated frequencies for seem satisfactory, although

tending to be slightly lower than the observed values. This may indi

cate that C“F forces are also strengthened by the increasing fl^^rination 

of ethane.

The calculated C-F stretching frequencies, of species Eg and E^ are 

separated by about 100 cm ^, while the observed frequencies are approxi

mately equal. Since in this case there seems to be little doubt about the 

assignment, this lack of agreement is either caused by a difference of force 

constants of CFg-CHg and C^Fg or by an inadequacy of the potential function.

A  strong mixing of C-C and C-F stretching occurs in vibrations of 

species A^g, with the highest frequency, observed at 1417 cm ^ having 

largely the character of C-C stretching. The calculated C-C stretching 

force constant is higher in C^F^ than in CFg-CHg, 4.0 as compared to 3.6 

md/A°, which is in accord with the empirical finding that fluorine sub

stitution strengthens the C-C bond.

There has been considerable interest in this 1417 cm"^ Raman bond
21since it was reported by Rank and Pace in the spectrum of the liquid

22and by Nielsen and Gullikson for the gas. It is rather surprising to

have a C-C or C-F stretching frequency above 1400 cm"^ when the highest
-1 23frequency of CF^ is at 1265 cm . In a recent paper, Carney et al.

20L. G. Smith, J. Chem. Phys. 17, 139 (1949).

H. Rank and E. L. Pace, J. Chem. Phys. 39 (1947).

22j. Rud Nielsen and C. W. Gullikson, J. Chem. Phys. 21, 1416 (1953).
23Rose A. Carney, E. A. Piotrowski, A. G. Meister, J. H. Braun, and 

F. F. Cleveland, J. Mol. Spect. 2» 209 (1961).
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interpret the 1417 cm“  ̂band as the overtone of the fundamental at

714 cm ^ and ascribe to the highest fundamental the frequency 1228 
-1

cm , chosen on the basis of infrared combination bands. While this is a

possible interpretation, it seems less plausible than that adopted here.

For all three molecules the torsional vibration is in a species by

itself and does not interact with the other vibrations. For C2Hg the
-1 24torsional frequency is 278 cm , which corresponds to a force constant

o 2of 0.036 md A  /rad . For CFg-CH^ the torsional frequency has been deter-
-1 17mined by a study of infrared combination bands to be 238 cm , corres

ponding to a force constant of 0.044 md-A°/rad^. This value is consistent
25with the microwave measurements of Minden and Dailey. For both mole

cules the contribution to the potential function resulting from the intrin

sic torsional stiffness of the C-C bond, as expressed by the force constant 

JCI , is about equal to the contributions arising from the forces between 

unbonded atoms.

24J. Bomanko, T. Feldman, and H. L Welsh, Canadian J. Fhys. 388
(1955).

Minden and B. P. Dailey, Phys. Rev. 82, 338 A (1951).
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TABLE 6-1

FORCE CONSTANTS AND MOLECUIAR CONSTANTS FOR CgHg AND CgFg

Description Value for C2H5 Value for CgFg

Fjgj^ force constant 0.035 md/A° 0.06 md/A°
• j.F__ force constantA& -0.01 md/A°

, 0
-0.01 md/A

Kqg force constant 2 .8 md/A° 4.0 ind/A°

C-C bond length 1.54 A° 1.52 A°

C-X bond length 1.09 A° 1.36 A°

XCX bond angle 109° 28' 109° 28'

XCC bond angle 109° 28' 109° 28'
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TABLE 6 -II

VIBRATIONAL FREQUENCIES OF C2Hg AND CgFg (in cm”S

C2H6 ^2^6
Species Observed20,24 ,Present Shimânouchi Observed^^'ZZ Present Shimanouchi

^Ig 2954 2958 2916 1417 1395 1231

1388 1401 1369 808 806 846

994 1021 1005 348 343 391

2915 2948 2938 1117 1050 1154

1380 1409 1400 714 678 698

%8 2955 3012 2973 1250 1289 1224

1460 1440 1438 619 579 612

1190 1004 997 372 367 376

Eu 2996 3018 2984 1251 1190 1159

1472 1447 1457 523 537 531

823 893 825 216 223 248



APPENDIX I 

DIAGONALIZATION OF NON-SYMMETRIC MATRIX

Since many techniques are available for the calculation of the eigen-
1 26values and eigenvectors of a matrix ’ , only that used in this work is

discussed here. Let Lĵ . be a row vector composed of the elements in the

i th row of the matrix L and let L.j be a column vector formed in a

similar manner. Let the eigenvectors of a block of GF=H be L.^, k=l,2, —

with eigen values so that H L.ĵ  = ^  ̂  L.^. This set of equations

can also be written as H L = L A  j where A  is a diagonal matrix with

elements A  k* 'fbe equivalent form of this equation, L"^ H L = A >  shows

that the eigenvalues of H can be determined by diagonalization of H by

similarity transformation, and that the eigenvectors of H are represented

by the columns of the transformation matrix L.

Excluding the case of accidental degeneracy, the eigenvalues of a

block of the GF matrix are distinct and the corresponding eigenvectors

are linearly independent by the following argument. Assume there is one

and only one dependency relation among the N eigenvectors of a GF block.

This can be written as: L.^ = aĵ  L.^, where not all a^'s are = 0.

Then H L.^ = a^ ̂  ̂  L.ĵ  “ ^  1 ^*1 “ ^  ^k therefore,
N

1^=2 ( ^ k  - Til) ^*k " Since ^  ^  ^  k = 2,3 —  N, the last

equation is a second dependency relation among the eigenvectors, in con

tradiction to the initial assumptions. Thus, there cannot be a single 

dependency relation among the eigenvectors. In a similar manner it can

W. Turnbull and A. C. Aitken, ^  Introduction to the Theory of 
Canonical Matrices (London: Blackie and Son Ltd., 1932).
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be shown that there can not be two, or three, or any other number of 

dependency relations. The space spanned by the eigenvectors is, therefore, 

N dimensional.

An arbitrary column matrix X, in the space spanned by the eigenvectors, 

can be written as a linear combination of the eigenvectors, X 

The L.j^'s form a linearly independent set of yectors, since the normal 

coordinates are independent. If the vector X is multiplied repeatedly

by H the result is : X = ^  a^ L.^. If  ̂̂  A  ̂   ,

then for p sufficiently large and a^ 3* 0 the term with k = 1 will dominate 

on the right hand side of this equation. As a result,

h P X = X) = a^ L.i = L.^) = X.

Thus, r P"^ X, denoted as V.^, is an approximation to L.^ the eigenvector 

of H corresponding to the largest eigenvalue A  • The eigenvalue A

is approximately equal to the normalization constant of r P X divided by

the normalization constant of r P"^ X.

The matrix R is then modified for the calculation of the next lar

gest eigenvalue and corresponding vector by the deflation method of 

Aitken.27 An approximate value of , designated U^. , is calcu

lated by an iteration method similar to that above with V. chosen as

the first approximation. It is now easy to verify that the matrix

R - A ^  (V'l) (Ui.)/^ the same eigenvectors as R and also

the same eigenvalues, except for A  % which has been changed to zero.

The above proceedure is then repeated to calculate A  2 » etc.

27A. C. Aitken, Proc. Roy. Soc. Edinburgh 57, 172 (1937).



PARI II

VIBRATIONAL SPECTRA OF CFgBr-CHgBr AND CF^Cl-CNgCl

CHAPTER I 

INTBODjLTCnON 

Previous ttork

The replacement of some hydrogen atoms by halogens in a hydrocarbon

often results in a compound with useful physical properties. The fluoro-

carbons are particularly Interesting in that they are in general highly

volatile and have low surface tension, refractive index, and dielectric 
28constant. They are unusually stable, partly because the fluorine atoms 

form a protective shield about the carbon skeleton. Also contributing 

to the stability of these compounds is the strengthening of the C-C 

bond due to fluorine substitution, as noted in part I of this thesis.

The methyl halides and silyl halides have been thoroughly studied
29 30by Glockler and co-workers and by Cleveland et After satisfactory

28J. H. Simons in Fluorine Chemistry, Volume I, page 403 (New York: 
Academic Press, 1950).

Glockler et al.. J. Chem. Phys. 278, 382, 553 (1939); 8 , 
125, 699, 897, (1940); 9, 224, 527 (1941); 10, 607 (1942).

^®F. F. Cleveland et al., J. Chem. Phys. 18, 346, 1073, 1076, 1081 
(1950); 19, 119, 784, 1561 (1951); 20, 454, 1949 (1952); 22, 193 (1954); 
23, 833 (1955); 25, 941 (1957).
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force constants had been determined for these compounds much of the research 

effort in this field has turned to the more complicated ethylenes and 

ethanes. The molecular constants of these compounds can be determined 

by electron diffraction measurements, microwave spectroscopy, and by 

thermodynamic methods. The principal method of determining the inter

atomic forces for any but the most sing»le molecules is by study of the 

vibrational spectra, since the band frequencies are directly related to 

the strength of the chemical bonds.

At the University of Oklahoma professor J. Rud Nielsen and co

workers have studied the vibrational spectra of a large number of these

compounds with enq>hasis on fluorinated molecules. The infrared and Raman
31spectra of more than a dozen halogenated ethylenes have been reported

with assignments and thermodynamical properties in most cases. More
32than twenty fluoroethanes and fluoro-haloethanes with symmetrical

end groups have been examined in this laboratory. Complete assignments

of the fundamentals and thermodynamic functions have been calculated for

most of these compounds. More recently, Klaboe and Nielsen have extended
33this work to include eight compounds with no symmetrical end group.

Rud Nielsen e ^ ^ . , ,J. Chem. Phys., 18, 326, 485, 812 (1950; 
20, 1090, 1916 (1952); 23, 1944 (1955); 1374 (1957); 27, 264 (1957);
30, 98, 103 (1959).

Rud Nielsen et al., J. Chem. Phys., 16, 67 (1948); 18, 1471 
(1950); 20, 473, 847 (1952); 21, 383, 1060, 1070 (1953); 23, 329 (1955); 
27, 264, 887, 891 (1957).

33Peter Klaboe and J. Rud Nielsen, J. Chem. Phys., 1375 (1959); 
32. 899 (1960); 1819 (1961); J. Molecular Spectroscopy, 6 , 379, 520
(1961).
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Rotational Isomerism 

The relative orientation of the end groups of ethane and its halo

genated derivaties has only recently been determined. For many years 

free rotation of the end groups about the C-C bond was assumed to occur,

but this assumption was disproved by low temperature measurements of the
34heat capacity of *°d CgDg. Since there is no free rotation, the

equilibrium position must be either staggered or eclipsed with ^ 3h

symmetry, respectively.

Staggered Configuration Eclipsed Configuration
(D3d> 0>3h>

As the selection rules for these two symetries are quite similar the
20correct equilibrium configuration was not definitely known until Smith

resolved some of the rotational fine structure of C2Hg and CgDg. Later
24•Romanko, Feldman and Welsh substantiated Smith's results with a high 

resolution study of the Raman bands of ethane, proving the staggered 

form to be the equilibrium configuration. The substituted ethanes are 

also believed to exist in this configuration.

If neither end group of a halogenated ethane is symmetrical there 

are two or three rotational isomers. For CF^Br-CHgBr and CF2CI-CH2CI 

the two rotational forms called "trans" and "gauche" are shown below.

34G. Herzberg, Infrared and Raman Sipectra of Polyatomic Molecules 
(New York: D. Van Nostrand Company, 1945).
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gauche"trans”

In the work of Nielsen, Klaboe, and Lakshmi^^’^^ values of A H ° ,  

the enthalpy difference between the rotational isomers, varying from 0 to 

nearly 1200 cal/mole were determined for various molecules of this general 

type.

^^K. Lakshmi, 'Vibrational Spectra of GFCliCHBr CoH^. F Br and CFoBr- 
CHBr2 ,” (Ph.D. Thesis, University of Oklahoma, 1959).



CHAPTER II 

EXPERIMENTAI RESULTS

The samples of had CFgCl-CHgCl used in the present work

were prepared and purified by Dr. L. H. Beck in the laboratory of Professor 

A. L. Henne at Ohio State University. The spectra indicate that both 

samples are of high purity.

The infrared spectrum of liquid CF2Br-CH2Br has previously been
36reported by the Naval Research Laboratory. The infrared spectra of 

the gaseous and solid phases of GF^Br-CHgBr and the gaseous, liquid and 

solid phases of CF2CI-CH2CI were recorded in the region from 300 to 

5000 cm"^ with the aid of a Perkin-Elmer double pass spectrometer equip

ped with CsBr, NaCl, and LiF prisms. Transmission curves plotted from 

these records are shown in Figs. 2-1, 2, ' , 11. The variation with

temperature of the absorbances of the fundamentals, over the range from 

25 to 110°C for CF2Br-CH2Br and from 25 to 150°C for GF2CI-CH2CI, was 

determined.

The Raman spectrum of liquid CF2CI-CH2CI was photographed with a 

3-prism glass spectrograph of reciprocal linear dispersion 15 A°/mm at 

4353 A°, and polarization measurements were made. The Raman spectrum of

36N. R. L. Report No. 3567. Spectroscopic Spectra of Fluorinated 
Hydrocarbons (Naval Research Laboratory, Washington D. C., 1952).
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liquid CP2Br-CH2Br was photographed by M. Z. El-Sabban at this labora

tory. In Table II-1 Raman data,for CF2CI-GH2CI are listed.

The frequencies of the stronger bands in the infrared and Raman

spectra of liquid CF2Br-CH2Br have been previously reported by R. E.
38Kagarise. No previous vibrational spectra of CF2 CI-GH2GI have been 

published.

07J. Rud Nielsen, Report to the A  E C Division of Research Under
Contract AT-(40-1)-1074, June 15, 1954.

^®R. E. Kagarise, J. Chem Phys. 24, 1264 (1956).
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XABIE 2-1

SAHÂH SPEÇIRDM OF U Q U I S  CF2CI-CH2CI AI BOOM TQIPERAIUBE

Wave Number Description® Depolarisation Interpretation^

126 w w I, II

177 vw I, II

195 vw I, II

284 s, sh 0.60 I, II

~430 s, vd I

433 vs, sh 0.59 II

556 w I

577 vw II

663 s, sh 0.33 II

*725 w w 177+556=733 (I)

761 w, d dp I, II

779 vs, sh 0.39 I

811 m 0.69 II

'*835 w w I

896 vw, vd I, II

964 m, d dp I

984 vw, d 4304-556=986 (I)

1022 vw 0.75 II

*1085 vw, vd I

,*1100 vw, vd II

1185 vw 433+761=1194 (II)
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TABLE 2-1 (Continued)

Wave Number Description* Depolarization Interpretation^

1219 w w I

1244 w w II

1251 w w 284+964=1248 (I)

1303 w, sh 0.44 I, II

1430 m, sh dp I, II

2845 w pol. 2x1430=2860 (I,II)

2973 vs II

2983 vs 0.30 I

3036 m 0.84 I, II

®*The following abbreviations have been used: ŝ strong, m medium,
w weak, v very, ^  diffuse, and sh sharp.

designates the more stable isomer, and II the less stable isomer.



CHAPTER III

INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF CFgBr-CHgBr

The large number of strong Infrared and Raman bands observed Indi

cates that, like the previously investigated ethanes of this form, CF2Br- 

CHgBr exists as a mixture of rotational isomers. These are undoubtedly 

a "trans" form of symmetry Cs and two enantiomorphic "gauche" forms having 

no symmetry. The normal vibrations of the "trans" form divide into 11 

of species a' and 7 of species a". The former are polarized in the 

Raman effect and the latter depolarized. All 18 normal vibrations of 

the "gauche" form belong to the same species, and all fundamentals of 

either isomer are both infrared and Raman active.

Assuming the internuclear distances C-C = 1.54, C-H = 1.093, C-F =

1.37, and C-Br = 1.98 A°, and tetrahedral angles, one finds the princi-
-40 2pal moments of inertia to be 209.7, 1572 and 1599 x 10 g cm for the 

"trans" form. The axis of the largest moment of inertia is perpendicular 

to the symmetry plane, while the axis of intermediate moment lies in 

the symmetry plane making an angle of 38° 42' with the C-C bond. Infra

red bands of species a" should therefore have type C contours, and bands 

of species a' should have contours that are hybrids between types A and

B. However, it is not possible to make any reliable predictions of
, 39these contours on the basis of Badger and Zumwalt s curves. On the

39r . M. Badger and L. R. Zumwalt, J. Chem. Phys. i6, 711 (1938).
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other hand, since the molecule is very nearly a symmetrical top, the 

curves of Gerhard and Dennison^^ can be applied. They show that a 

parallel band should have a PR separation of 6 cm“  ̂with a Q branch 

having an intensity of about 17 percent of the entire band. The per

pendicular bands should have a single maximum. Vibrations of species a" 

and a' should give rise to perpendicular and hybrid infrared bands 

respectively. Since the configuration of the "gauche" isomer is not 

accurately known, no predictions can be made about the contours of its 

infrared bands; however, they should be rather similar to those of the

"trans" isomer. Actually, only eight bands show more than one absorption
-1maximum. The observed PR separations vary from 5 to 10 cm , the average 

— Xbeing 7.1 cm . For none of these bands is a Q branch observed.

When the temperature of gaseous CF2Br-CR2Br was raised from 25° to 

110°C six of the strong infrared bands were enhanced, while the intensi

ties of ten strong bands decreased. The latter bands were assigned as 

fundaments,Is of the more stable rotational isomer, which will be desig

nated I; the former bands were assumed to be fundamentals of the less 

stable isomer, 11. A comparison of the intensities of Raman bands at 

30° and -50°C provided a similar basis for ascribing a few additional 

bands to isomers 1 or 11. Furthermore, it was found that all bands 

assigned to the less stable isomer are absent, or at least extremely

weak, in the solid at -170°C. 
rou^h

Since a'^calculation showed that the dipole moments of the isomeric 

forms of CF2Br-CH2Br should be equal to within less than 3 percent, no

40g. L. Gerhard and D. M. Dennison, Phys. Rev. 43, 197 (1933).
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attempt was made to differentiate between the spectra of the two isomers 

by observing the intensities of the infrared bands when the compound is 

discXved in solvents of different polarity .

From the fundamentals assigned to other halogenated ethanes it is 

possible to predict roughly the frequencies of the present compound.

This was used, in conjunction with the observed spectral data, as a 

criterion for the assignment of the fundamentals. To account for all 

the fundamentals of each rotational isomer it was necessary to assume 

that several fundamentals of I coincide or overlap with fundamentals of

II. The choice of these is rather uncertain. The assigned fundamentals 

are listed in Tables 3-1 and 3-II.

A test of these assignments is provided by the sum rule of Hizushima

et al.^^ One obtains X, = 27.80 x 10^ and 27.68 x 10^ for isomers
' 42I and II, respectively. The empirical sum rule of Bernstein and Pullin

is also satisfied quite well, the sums being = 16,469 and 16,444

for I and II, respectively.

Although consideration of steric hindrance would lead one to expect 

that the more stable isomer is the "trans" form, it was not possible to 

establish this on the basis of the present data.

In terms of the assigned fundamentals it has been possible to inter

pret satisfactorily practically all the observed infrared and Raman bands. 

Only the difficulties will be mentioned here. There is some uncertainty 

about the correlation of the Raman bands at 530 and 344 cm as well as

I. Mizushima £t ^ . , J. Chem. Phys. 21_, 215 (1953).

J. Bernstein and A.D.A. Pullin, J. Chem. Phys. 21, 2188 (1953).
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those at 639 and 648 cm~^, with the corresponding infrared bands. This

may be caused by Fermi coupling with the overtones of the fundamentals.at 
-1

272 and 326 cm . No explanation was found for the apparent splitting of

the I fundamental at 756 cm“  ̂ into two components at 753 and 758 cm  ̂in

the infrared spectrum of the solid. The similar splitting of the band

at 1051 and 1056 cm”  ̂may be caused by Fermi coupling. The weak infrared
 ̂1band of the gas at 955 cm , idiich appears to belong to II, can only be

explained as a ternary combination band, or as an impurity band. It seems

unrelated to the infrared bands in the solid at 943 and 965 cm"^, which

can be explained as binary combination bands of I, shifted somewhat due

to their proximity to the fundamental at 928 cm"^. A most peculiar feature
-1in the spectrum of the solid is the strong band at 1227 cm . While this 

can be explained as a binary combination band (229 + 928 = 1227), no 

plausible explanation has been found for its high intensity.
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TABLE 3-1

FUNDAMENTAL VIBRATION FREQUENCIES OF THE MORE STABLE

ROTATIONAL ISOMER (I) OF CF2 Br-CH2 Br (in cm” )̂

Infrared
(gaa)a

Infrared
(liquid)

Infrared
(solid)

Raman
(liquid)

80 m

140 m

170 m

299 m

■^320 w w 326 vs

374 w w 373 m

394 w w 397 w

*«'540 w 542 m 540 m 530 m

651 8 641 V8 638 vs 6391s
648'

756 8 754 8 753 8 753 vs

866 m 864 m 867 m 865 w

928 w s 923 W 8 929 vs 923 vs

1070 vs 1062 V8 1056 8 1065 w

1217 vs 1205 V8 1197 8 1206 m

1250 vs 1256 8 1254 8 1256 8

1423 s 1420 vs 1418 m 1420 m

2999 8 ~2976 8 2989 8 2986 8

3047 w 3049 s 3052 8

^The following abbreviations have been used: £  strong, m medium,
w weak, and v very.
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TABLE 3-II

FONDAMENTAL VIBRATION FREQUENCIES OF THE LESS STABLE

ROTATIONAL ISOMER (II) OF CFgBr-CH^Br (in cm"^>

Infrared
(gas)*

Infrared
(liquid)

Infrared
(solid)b

Raman
(liquid)

80 m

140 m

187 vs

272 m

«'320 w 326 vs

374 vw 373 m

394 vw 397 w

549 m 548 m '*'547 w w 544 m

618 m 613 s '*'612 w w 613 s

734 s 728 s 729 m

866 m 864 m 867 m 865 w

986 vs 978 vs 977 w w 978 m

1097 vs 1086 vs 1079 w 1088 vw

1163 a 1167 s 1168 w 1166 vw

1247 8 1238 8 1241 vw

1423 s 1420 vs 1418 m 1420 m

2975 s 2976 s 2971 8

3047 w 3049 s 3052 s

®The following abbreviations have been used: s_ strong, 
w weak, and v very.

m  medium.

^ ^ e  bands listed in this column can all be interpreted 
mentals or combination bands of isomer I.

as funda-



CHAFTER IV

INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF CFgCl-CHgCl

The Infrared spectrum of CF2CI-CH2CI has fewer strong bands than 

observed for CF2Br-CE2Br, which indicates more overlapping of fundamentals. 

Otherwise, there are many similarities in the spectra, as might be ex

pected. Both molecules have an isomer of symmetry Cs and the remarks 

made before concerning rotational isomerism, division of fundamentals 

according to symmetry species, and polarization of Raman bands apply 

also to CF2CI-CH2CI.

Assuming the internuclear distances C-C = 1.54, C-H = 1.093, C-F =

1.37, and C-Cl = 1.77 A°, and tetrahedral angles, one finds for the 

"trans" isomer the principal moments of inertia to be 191, 642, and 659 

X 10 g cm^. The axis of the largest moment of inertia is perpendi

cular to the symmetry plane, while the axis of the intermediate axis 

makes an angle of 42° 18° with the C-C bond. Since the molecule is very 

nearly a symmetrical top, the curves of Gerhard and Dennison^^ should be 

of some use in predicting the contours of infrared bands. They show that 

a parallel band should have a PR separation of 10 cm  ̂and a Q branch 

with an intensity about 18 percent of that of the entire band. The 

perpendicular bands should have a single broad maximum. The a" bands 

are perpendicular, while the a* bands are hybrids. The two bands at 

approximately 891 cm assigned as a" fundamentals involving out-of- 

plane C-H bending, have the broad single maxima expected of perpendicular

73
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bands. On the other hand, the band at 819 cm"^, tdiich is ascribed to in

plane C-H bending and is associated with a change of dipole moment roughly

along the axis of smallest moment of inertia, has the predicted PQR
-1

structure and a PR separation of 10 cm . For the other bands the corre

lation between species and observed contours is less clear cut.

In the spectrum of the gas many fundamentals of the different isomers 

evidently overlap. In the spectrum of the liquid some of the overlapping 

bands are resolved because of the absence of rotational structure. Com

parison of the spectrum of the liquid with that of the solid shows that 

many bands are almost totally absent in the solid phase. With this 

valuable aid for the separation of fundamentals of the isomers a reason

able assignment was achieved.

Measurement of the intensities of the infrared bands at temperatures 

up to 150°C confirmed the prevalence of overlapping bands. In the spec

tral region of the HaCl prism only the bands at 969 and 1032 cm”  ̂dis

played a readily measurable temperature dependence. The former decreases 

in intensity with increasing temperature and must therefore be a funda

mental of the more stable isomer, designated I. The band at 1032 exhibit 

the opposite temperature effect and is almost completely absent from the 

spectrum of the solid. It clearly belongs to the less stable isomer, II. 

The approximate vibrational motion giving rise to these bands is C-C 

stretching, \diich is strongly dependent on the relative orientation of 

the end groups.

The normal vibrations of CF2CI-CH2CI can be conveniently divided 

into six which are essentially motions of the hydrogen atoms and twelve 

vibrations in which the heavier atoms participate strongly. There are
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two C-H stretching modes near 3000 cm"^ and two C-H bending modes at

1431 and 1303 cm"^. Two more C-H bending modes occur at approximately 
" 1

890 and 840 cm , with a small separation between frequencies of the two 

isomers.

The Ç-F and C-C stretching fundamentals are represented by strong 

infrared bands in the spectral range from 900 to 1300 cm Since the 

fluorine stretching modes are associated with only one end group ; they 

should have about the same frequencies in both isomers. Because of 

strong combination bands in this region the assignment of these funda

mentals is not certain, but they are reasonably chosen as 1235 and 1103 

cm~^ for I and 1250 and 1109 cm“^ for II. The C-C stretching fundamentals 

undoubtedly lie at 968 and 1029 cm  ̂for I and II, respectively. Of 

course, such a designation of a band as resulting from a simple motion 

of one or two atoms is at best a rough approximation, since any normal 

mode envolves motion of all atoms.

The C-Cl stretching frequencies are identified with the bands at 

785 and 761 cm^^ for the more stable isomer. I, and with those at 768 

and 661 cm“  ̂ for II. The separations of these bands offer some support 

for the natural assumption that isomer I has the "trans” form. Since 

the "gauche" isomer has no symmetry, interaction can occur between any 

two of its fundamentals. A larger separation may therefore be expected 

between its C-Cl frequencies than is observed for isomer I. The bands 

at 560 and 578 cm  ̂are assigned as fundamentals involving a CF2CI 

deformation which is predominantly C-F bending. The bands at 423 and 

430 cm~^ are interpreted as fundamentals associated with bending of the 

C-Cl bond of the CH2CI group, and the bands at 325 and 314 cm~^ are
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ascribed to low frequency deformation of the CF2CI group. The bands

observed in the Raman spectrum at 328, 284, 195 and 177 cm"^ are assumed

to be common for both isomers and are assigned to rocking of the end

groups. The torsional fundamental of either isomer is identified with
-1

the Raman band at 126 cm . The assigned fundamentals are listed in 

Tables 4-II and 4-III. In terms of these fundamentals it is possible to 

interpret satisfactorily almost all of the observed bands.

A  test of these assignments is pp^ided by the sum rule of Mizushima

et al. One obtains %  = 28.94 x 10^ and 28.88 x 10^ for isomers
 ̂ 42I and II, respectively. The empirical sum rule of Bernstein and Pullin

is also satisfied reasonably well, the sums being ^  = 17,302 for

I and S  J/i = 17,359 for II.
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TABLE 4-1

FUNDAMENTAL VIBRATION FREQUENCIES OF THE MORE STABLE

ROTATIONAL ISOMER (I) OF CF^Cl-CEgCl (in cm"^)

Infrared
(gas)a

Infrared
(liquid)

Infrared
(solid)

Raman
(liquid)

^325 s 

423 s ^^422 vt? ~ 4 2 1 v w

126 w w  

177 vw 

195 vw 

284 s 

328 m 

430 s

560 s 553 m 553 m 556 w

761 w 758 s 754 3 761 w

785 w 777 w 777 w 779 s

'^855 m 833 w w 835 w w ^  835 w w

891 s 894 s 894 w 896 vw

968 s 964 s 962 s 964 m

1103 s 1086 s 1078 s «V1085 vw

/1235 m 1217 s 1212 m 1219 w w

1303 w 1299 m 1303 w 1303 w

1431 s 1425 m 1422 m 1430 m

2989 s 2983 m 2982 s 2983 vs

3036 m 3037 m 3035 s 3036 m

'̂rhe following abbreviations have been used; ^  strong, m medium, 
w weak, and v very.
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TABLE 4-II

FUNQAHENTAJ. VIBBATION FBEQUEECIES OF TEE LESS STABIÆ
ROTATIONAL ISOMER (II) OF CFgCl-ŒgCl (in cm"^)

Infrared
(gas)

Infrared
(liquid)

Infrared
(solid)"

Raman
(liquid)

126 w w  

177 vw 

195 vw

284 s

<^314 s 328 m

430 s 433 vs

578 s 577 m 577 vw

661 s 661 s 663 s

768 s 758 8 761 w

819 s 811 s 811 m

891 s 883 s 882 w w 896 vw

1029 8 1019 s 1017 w w 1022 vw

1109 s 1101 s 1110 w w /V1100 vw

'1250 m 1243 s 1239 vw 1244 vw

1303 w 1299 m 1303 w 1303 w

1431 s 1425 m 1422 m 1430 m

2979 s 2975 vw 2973 vs

3036 m 3037 m 3035 s 3036 m

°The folloving abbreviations have been used: js strong, m  medium, 
g  weak, and v very.

^%ie bands listed in this column can all be interpreted as funda
mentals or combination bands of isomer I.



CHAPTER V

ENTHAIPY DIFFERENCE BETWEEN ROTATIONAL ISOMERS

Although a potential barrier restricts the relative rotation of the 

end groups, it does not prohibit transition from one isomer to the other.

A  "trans" form is changed to one of the two enantiomorphic "gauche" 

forms by rotation of one of the end groups a certain angle, probably 

close to 120°. The standard enthalpy change in such a transition is re

lated to the equilibrium constant by the thermodynamic formula In Kg =

- AH°/(RI) + const. Since Kp = (N "trans"/N "gauche"), where N represents 

the number of molecules per unit volume, Kp is equal to k^Jk^ x const., 

where A^ is the integrated absorbance of a band belonging only to the

"trans" isomer and Ag is the absorbance of a band of the "gauche" form.
o

If these absorbances are measured at two different temperatures A H  

can be calculated from the equation:^^

A H °  = R [ ln(At/Ag)^2 - ln(Ac/Ag)Tj / (1/T^ - l/Tg).

Since the pressure and volume of the system remain constant during this 

isomeric transition, the value of A H °  is also the change of internal 

energy of the molecules.

Measurement of the intensity variation with temperature of the bands

J. Bernstein, J. (Siem. Phys. 1^, 987 (1950).

79



80

of CF2Br-CE2Br at 928 and 986 cm“  ̂ indicates a value of A H °  “ 1030 +

100 cal/mole (gas) for this molecule. Values of 710 + 50 cal/mole for

the gas and 1020 + 50 cal/mole for the liquid have been reported by 
38Kagarise , who based his calculations on the temperature-intensity 

variation of the 754 and 728 cm’  ̂bands. Since the dipole moments of 

the rotational isomers differ only slightly, being 1.92 D for the "trans" 

form and 2.01 D for the "gauche" isomer, the value of should be

about the same in the gaseous and liquid phases. It is possible that 

the value 710 cal/mole is low because of overlapping of the 754 and 728 

cm  ̂bands of the gas.

In the case of CF2CI-CR2CI: the temperature variation of the funda

mentals at 969 and 1032 cmT^ indicates a value of A  = 430 + 100 

cal/mole (gas).

Most of the fundamentals of the two isomers of CF2Bt-CH2Br are 

fairly well separated, while many fundamentals of the rotational Isomer 

of CF2CI-CH2CI overlap. This is not unexpected, since the chemical bonds 

of the less stable isomer of either molecule are in a state of strain 

which is related to the magnitude of A H ° .

Comparison of the values of A  of the two molecules indicated 

that there is greater interaction between bromine atoms than between 

chldrine atoms at separations of from 2.5 to 5 A°. This is probably due 

to the larger size of the bromine atoms, since consâdation of the dipole 

moments of the C-Cl and C-Br bonds leads to the conclusion that the 

Cl-Cl repulsion should be somewhat larger.
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