This dissertation has been 62-3341 microfilmed exactly as received

BUCKER, Jr., Homer Park, 1933NORMAL COORDINATE ANALYSIS OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}$, $\mathrm{C}_{2} \mathrm{~F}_{6}$ AND $\mathrm{C}_{2} \mathrm{H}_{6}$. VIBRATIONAL SPECTRA OF $\mathrm{CF}_{2} \mathrm{Br} \mathrm{CH}_{2} \mathrm{Br}$ AND $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$.

The University of Oklahoma, Ph.D., 1962
Physics, general
University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

 GRADUATE COLLEGENORMAL COORDINATE ANALYSIS OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{~F}_{6}$ AND $\mathrm{C}_{2} \mathrm{H}_{6}$. VIBRATIONAL SPECTRA OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ AND $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$.

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

BY
HOMER PARK BUCKER, JR.
Norman, Oklahoma

NORMAL COORDINATE ANALYSIS OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{~F}_{6}$ AND $\mathrm{C}_{2} \mathrm{H}_{6}$.
VIBRATIONAL SPECTRA OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ AND $\mathrm{CF}_{2} \mathrm{Cl}^{-\mathrm{CH}_{2} \mathrm{Cl}}$.

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

The writer is greatly indebted to Professor J. Rud Nielsen for his invaluable help and guidance throughout the course of the work.

This research has been supported by a grant from the Atomic Energy Commission.

The author wishes to express his appreciation for the cooperation and assistance of his colleagues in the laboratory and the members of the Physics Department.

Thanks are due Mrs. Jayne Goff for typing the dissertation.
Finally, for her continued encouragement, the author is deeply grateful to his wife.

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF FIGURES vii
INIRODUCTION 1
PART I: NORMAL COORDINATE ANALYSIS OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{~F}_{6}$ AND $\mathrm{C}_{2} \mathrm{H}_{6}$. Chapter
I. INTRODUCTION 2
II. UREY BRADLEY POTENTIAL FUNGTION FOR CF ${ }_{3}-\mathrm{CH}_{3}$ 10
III. KINETIC ENERGY MATRIX FOR $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 26
IV. RESULTS FOR $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ AND DISCUSSION 31
V. F AND G MATRICES FOR $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$ 37
VI. RESULTS FOR $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$ AND DISCUSSION 41
Appendix
AI. DIAGONALIZATION OF A NON-SYMMETRIC MATRIX 46
PART II: VIBRATIONAL FREQUENCIES OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ AND $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$. Chapter
I. INTRODUCTION 48
II. EXPERIMENTAL RESULTS 52
III. INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ 67
IV. INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ 73
V. ENTHALPY DIFFERENCE BETWEEN ROTATIONAL ISOMERS 74
BIBLIOGRAPHY 81

LIST OF TABLES

Table Page
2-I. Internal and Vibrational Coordinates of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 12
2-II. f Matrix 20
2-III. F Matrices for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 25
3-I. \bar{s}_{kt} Vectors for $\mathrm{Cr}_{3}-\mathrm{CH}_{3}$ 27
3-II. $\overrightarrow{\mathrm{S}}_{\mathrm{L}} \mathrm{t}$ Vectors of Species A_{1} 28
3-III. $\vec{S}_{\text {La }}{ }^{t}$ Vectors of Species E_{a} 28
3-IV. $\vec{S}_{L b}{ }^{t}$ Vectors of Species E_{b} 29
3-V. G Matrices of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 30
4-I. Values of the Force Constants for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 33
4-II. Vibrational Frequencies of $\mathrm{CF}_{3}-\mathrm{CH}_{3}\left(\right.$ in $\left.\mathrm{cm}^{-1}\right)$ 34
4-III. Elements of the Transformation Matrix $L^{-1}\left(x 10^{12}\right)$ 35
4-IV. Changes in the Calculated Frequencies Due to an Increase of Various Force Constants by $0.1 \mathrm{md} / \mathrm{A}$ 36
5-I. F Matrices for $\mathrm{C}_{2} \mathrm{H}_{6}$ 39
5-II. G Matrices for $\mathrm{C}_{2} \mathrm{H}_{6}$ 40
6-I. Force Constants and Molecular Constants for $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ 44
6-II. Vibrational Frequencies of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}\left(\right.$ in cm^{-1}) 45
2-I. Raman Spectrum of Liquid $\mathrm{CF}_{2} \mathrm{Cl}_{-\mathrm{CH}_{2} \mathrm{Cl}}$ at Room Temperature 65
3-I. Fundamental Vibration Frequencies of the More Stable Rotational Isomer (I) of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (in cm^{-1}) 71

3-II. Fundamental Vibration Frequencies of the Less Stable
Rotational Isomer (II) of $\mathrm{CF}_{2} \mathrm{Br}^{-\mathrm{CH}_{2} \mathrm{Br}}$ (in cm^{-1}) $\ldots \ldots \ldots$. 72
4-I. Fundamental Vibration Frequencies of the More Stable
Rotational Isomer (I) of $\mathrm{CF}_{2} \mathrm{Cl}^{-\mathrm{CH}_{2} \mathrm{Cl}\left(\text { in } \mathrm{cm}^{-1}\right)} \ldots \ldots \ldots . .77$
4-II. Fundamental Vibration Frequencies of the Less Stable Rotational Isomer (II) of $\mathrm{CF}_{2} \mathrm{Cl}^{-} \mathrm{CH}_{2}-\mathrm{Cl}$ (in cm^{-1}) 78

LIST OF FIGURES

Figure Page
2-1. Molecular Constants for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ 11
2-1. Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Cs Br Region). 54
2-2, Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Na Cl Region) 55
2-3. Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Li. F Region) 56
2-4. Infrared Spectrum of Solid $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (NaCl and LiF Region) 57
2-5. Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ (Cs Br Region). 58
2-6. Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ (Na C1 Region). 59
2-7. Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ (Li F Region) 60
2-8. Infrared Spectrum of Liquid and Solid $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ (Cs Region) 61
 Li F Region) 62
2-10. Infrared Spectrum of Solid $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{C} 1$ (Na C 1 Region) 63
2-11. Infrared Spectrum of Solid $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ (Li F Region) 64

INTBODUCTION

A research project that deals with both the theoretical and experimental aspects of molecular structure would reasonably concern the same sets of molecules. However, the experimental and theoretical work reported in this thesis are for different molecules. Essentially of an experimental nature are the results reported for $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and $\mathrm{CF}_{2} \mathrm{Cl}$ $\mathrm{CH}_{2} \mathrm{Cl}$. This includes infrared and Ramen spectra and assignment of fundamentals for both rotational isomers of each molecule. The low symmetry of these molecules and uncertainty in the assignment of some fundamentals make a theoretical treatment of the vibrational frequencies impractical. On the other hand, there were several reasons for undertaking the normal coordinate analysis of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$. This molecule has rather high symmetry and the assignment of its fundamentals are probably correct. Further, use of the Urey-Bradley potential, which has previously been applied to more simple molecules, offers both a test of this potential and the opportunity for obtaining a set of force constants applicable to other fluorine substituted ethanes.

Accordingly, this thesis is divided into two parts. Part I is a normal coordinate analysis of $\mathrm{CE}_{3}-\mathrm{CH}_{3}$; part II gives experimental results concerning the vibrational frequencies of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$.

PART I

NORMAL COORDINATE ANALYSIS OF

$$
\mathrm{Cr}_{3}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{AND} \mathrm{C}_{2} \mathrm{~F}_{6}
$$

CUAPTER I

INTRODUCTION

The radiation emitted by a molecule in the frequency range from 100 to $5000 \mathrm{~cm}^{-1}$ is usually due to changes in electric moments because of vibration of the atoms comprising the molecule. By considering the atoms to be point masses joined by various springs, which represent the electrical forces between atoms, a model is obtained which will vibrate at approximately the same frequencies as the molecule. The mathematical process of finding a correct set of springs, or force constants, is called normal coordinate analysis; it is the only direct method of calculating the interatomic forces of any but the most simple molecules. Alternatively, the problem can be reversed with force constants of similar molecules being utilized to predict the vibration frequencies of a molecule.

The choice of a set of force constants is equivalent to choosing a potential function. If the potential function is overly complicated the model can be made to vibrate at the proper frequencies, but the "springs" joining two atoms in one molecule will probably not be the same as those
necessary between the same atoms in a slightly different molecule. In other words, the force constants of a too general potential function are not transferable among similar molecules. Another defect of a genexai potential function is the lack of uniqueness in the calculated force constants, since there are more force constants than vibrational frequencies. The general quadratic function ${ }^{1}$ which contains cross-terms between all of the vibrational coordinates is an example of a potential with an excess of force constants. Here there are $(3 n-6)(3 i-5) / 2$ force constants for a molecule of n atoms but only jius vibrational frequencies.

The central force potential ${ }^{2}$ is an example of the other extreme; it is simple, but cannot be adjusted to fit the vibration frequencies of most molecules. The inadequacy of this potential is easily demonstrated for a linear molecule where central forces offer no resistance to out-ofline bending.

A more successful potential contains terms which represent forces that resist changes in bond lengths or variations in the angles between adjacent bonds. This so-called valence force potential is often used for rough calculations to check assignments of fundamentals. However, for moderately complicated molecules it is usually necessary to add additional terms to a valence force potential to obtain good agreement between theory and experiment.

The Urey-Bradley modification of the valence force potential has been

[^0]used by several investigators ${ }^{3,4}$ with success. Shimanouchi ${ }^{5}$, in particular, has calculated the vibrational frequencies of more than twenty methyl halides and a few molecules of the type $C_{2} X_{6}$. Overend and Scherfer ${ }^{6}$ have demonstrated the transferability of Jrey-Bradley ${ }^{7}$ force constants for methyl and silyl halides, among others. The Urey-Bradley modification consists essentially of the addition of terms to account for the interaction, usually repulsion, of non-bonded atoms. For example, the terms $2 \mathrm{~F}_{\mathrm{FF}}{ }^{\prime} \mathrm{dd}_{i}+\mathrm{F}_{\mathrm{FF}} \mathrm{Td}_{\mathrm{i}}{ }^{2}$ would be added to the potential energy of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ to account for the flucrine-fluorine repulsion, where d is the equilibrium separation of the fluorine atoms and d_{i} is the variation in this distance as the molecule vibrates. The first two terms in the Taylor expansion of the repulsive force between the fluorine atoms can be calculated from the adjusted force constants F_{FF} and F_{FF} '.

Since the valence potential has only quadratic terms, the introduction of repulsive terms contributes linear terms to the potential energy which must be removed. This is accomplished by adding other terms that are linear in the valence coordinates. The coefficients of these terms are chosen so as to make all sums of linear terms of the same kind equal to zero.

[^1]Several years ago a normal coordinate analysis of the eclipsed form of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ based on a Urey-Bradley potential was made at this University. 8 It has been found since then that the equilibrium configuration of such molecules is staggered rather than eclipsed. ${ }^{8 a}$ For this reason, and because a better computer is now available, a normal coordinate analysis of the staggered form of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ has been made and a set of Urey-Bradley force constants have been determined for this molecule. As a test of the transferability of these constants, the vibrational frequencies of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ have been calculaced on the basis of the $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ force constants, witin some adjustment made in three of them.

Theory of Normal Vibrations

The vibrational motion of the atoms comprising a molecule can be described in terms of changes in bond lengths, bond angles, and other internal coordinates. In general only $3 \mathrm{~N}-6$ of these coordinates are independent, as six coordinates are needed to specify the translation and rotation of the molecule. The exception to this rule occurs for linear molecules, in which case only two coordinates are necessary to define the rotational motion.

If the vibration of the molecule results in displacements of the nuclei which are small compared to the interatomic distances the kinetic and potential energies can be written as quadratic functions of the vibrational coordinates and their time derivatives. ${ }^{9}$
${ }^{8}$ Chi Yuan Pan and J. Rud Nielsen, J. Chem. Phys. 8, 1426 (1953).
${ }^{8}{ }_{\text {J. L. Brandt }}$ and R. L. Livingston, J. Am. Chem. Soc. 74, 3573 (1956)
${ }^{9}$ E. T. Whittaker, Analytical Dynamics (New York: Dover, 1944).

$$
\begin{aligned}
& 2 T=\sum_{i j}\left(g^{-1}\right)_{i j} \dot{r}_{i} \dot{r}_{j} \\
& 2 V=\sum_{i j} f_{i j} r_{i} r_{j}
\end{aligned}
$$

In matrix form the two expressions can be written as $2 T=\dot{\tilde{r}} g^{-1} \dot{r}$ and $2 \mathrm{~V}=\tilde{\mathbf{r}} \mathrm{f} \mathbf{r}$ where r is a column matrix whose elements are the vibrational coord \ddagger nates and \tilde{r} is its transpose. The elements of the matrix f are determined by the magnitude of the forces between atoms and are, therefore, called force constants. The elements of the kinetic energy matrix g^{-1} are determined by the masses of the atoms and the equilibrium configuration of the molecule.

It will be shown that linear combinations of the vibrational coordinates can be formed by a transformation matrix \mathcal{L} so that $2 T=\sum_{j} \dot{Q}_{j}{ }^{2}$ and $2 \mathrm{~V}=\sum_{j} \lambda_{j} Q_{j}{ }^{2}$. These conditions require that $\mathscr{L} Q_{Q}=r, \mathscr{Z} \mathrm{f} \mathscr{L}=\Lambda$, and $\tilde{\mathscr{L}} g^{-1} \mathscr{L}=E$, where Q is a column matrix whose elements Q_{j} are called normal coordinates, Λ is a diagonal matrix whose elements are λ_{j}, and E is a unit matrix. In the new coordinate basis the various Q 's are independent and their solutions are immediately obtained from Lagrange's equations to be $Q_{n}=A_{n} \exp$. (i $\left.\sqrt{\lambda_{n}} t\right), n=1,2, \cdots, 3 N-6 .{ }^{10}$ The internal coordinates are related to the normal coordinates by the relations $r_{j}=\sum_{n} \mathcal{L}_{j n} Q_{n}$. Thus, although the motion of a single atom is quite complicated, it can be described as the sum of $3 \mathrm{~N}-6$ simple harmonic motions called normal vibrations.

To determine the normal frequencies it is necessary to go back to the expressions for T and V in terms of the internal coordinates. Application

[^2]of Lagrange's equations yields the following equations of motion:
$$
\sum_{j}\left(g_{i j}^{-1} \ddot{r}_{j}+f_{i j} r_{j}\right)=0, i=1,2,-\ldots, 3 N-6
$$

Substitution of the solution $r_{j}=r_{j}{ }^{\circ} e^{i \omega t}$ reduces these relations to the set of algebraic equations

$$
\sum_{j}\left(f_{i j} r_{j}^{o}-\omega^{2} g_{i j}^{-1} r_{j}^{o}\right)=0,
$$

which can also be written as the matrix equation

$$
\mathrm{f} \stackrel{\rightharpoonup}{\mathrm{r}}^{0}=\omega^{2} \mathrm{~g}^{-1} \stackrel{\mathrm{r}}{ }_{0}^{0} .
$$

Multiplication on the left by the matrix g results in the eigenvalue equation

$$
\mathrm{g} f \stackrel{\mathrm{r}}{ }_{\mathrm{o}}=\boldsymbol{\lambda} \hat{\mathrm{r}}^{0}, \quad \boldsymbol{\lambda}=\boldsymbol{\omega}^{2}
$$

Therefore, the normal frequencies multiplied by 2π are square roots of the eigenvalues of the gf matrix and the \vec{r}° 's are eigenvectors of this matrix. Since both f and g^{-1} are symmetrix matrices with real elements and the quadratic forms representing the potential and kinetic energy are positive definite, the values of $\boldsymbol{\lambda}$ are real and positive. ${ }^{10}$ Calculation of the eigenvalues is accomplished by diagonalizing the gf matrix. This can be done by an interative proceddure described in Appendix I.

By constructing a diagonal matrix $\boldsymbol{\Lambda}$, whose elements are the $\boldsymbol{\lambda}$'s, and a second matrix R, formed by aligning the various \vec{r}° vectors in the same order as the $\boldsymbol{\lambda}$'s, the equations $\mathrm{gf}_{\mathrm{f}}^{\mathrm{n}}{ }^{0}=\boldsymbol{\lambda}_{\mathrm{n}} \overrightarrow{\mathrm{r}}_{\mathrm{n}}{ }^{0}, \mathrm{n}=1,2, \ldots-3 \mathrm{~N}-6$, can be written in the compact form $\operatorname{gfR}=\mathrm{R} \boldsymbol{\Lambda}$. However, from the equations $\tilde{\mathcal{L}}_{\mathrm{f}} \mathscr{\mathscr { L }}=\boldsymbol{\Lambda}$ and $\tilde{\mathcal{L}}_{\mathrm{g}}{ }^{-1} \mathcal{L}=\mathrm{E}$, we can easily show that gf $\mathbb{L}=\mathscr{L} \boldsymbol{\Lambda}$.

Thus, the column vectors that make up both the \mathcal{L} and R matrices are eigenvectors of the same matrix. The matrix R can, therefore, be made identical to \mathbb{Z} by the condition $\widetilde{\mathrm{R}} \mathrm{g}^{-1} \mathrm{R}=\mathrm{E}$.

The labor required in the diagonalization process can be greatly reduced by the use of group theory ${ }^{1,11}$ to find a set of coordinates in which the energy matrices have a reduced or block structure. These socalled symmetry coordinates can be formed from well known formulas as linear combinations of the internal coordinates. Let S be a column matrix whose elements are the symmetry coordinates and U an orthogonal transformation. If $r=U S, 2 V=\tilde{r} f r=\widetilde{S} \tilde{U} f U S=\widetilde{S} F S$. Thus $F=$ $\tilde{U} \mathrm{f} U$ and from similar arguments $G^{-1}=\widetilde{U} \mathrm{~g}^{-1} \mathrm{U}$ and because \mathbb{U} is orthogonal $G=\tilde{U} g$ U. Since a similarity transformation does not change the eigenvalues of a matrix, the normal frequencies can be obtained by diagonalization of $U^{-1} g f U=U^{-1} g U U^{-1} f U=G F$. As the product matrix GF has the same block structure as F and G, each of the blocks of GF can be diagonalized separately.

At this point the calculations of this normal coordinate analysis can be outlined. The potential energy matrix was set up in the internal coordinate basis using force constants derived by Shimanouchi ${ }^{5}$ for similar molecules. Symetry coordinates were then formed as linear combinations of the internal coordinates so as to reduce the energy matrices. The potential energy matrix in the symmetry basis was obtained by similarity transformation, while the inverse kinetic energy matrix was calculated directly by means of Wilson's method. ${ }^{12}$ The product GF was then formed and diagonalized, thus giving a set of vibrational frequencies.
$11_{\text {E. P. Wigner, Group Theory and its Applications to the Quantum }}$ Mechanics of Atomic Spectra (New York: Academic Press, 1959).
${ }^{12}$ E. B. Wilson, J. Chem. Phys. 8 , 1047 (1939), 10,76 (1941).

The force constants were then varied to obtain better agreement between the observed and calculated frequencies, and the process was repeated.

CHAPTER II

UREY-RRADLEY . POTENTIAL ENERGY FUNCTION FOR CF $3-\mathrm{CH}_{3}$

f Matrix

As the atoms of a molecule are displaced slightly from their equilibrium positions the increase of potential energy can be written as $\sum_{i j} f_{i j} r_{i} r_{j}+$ higher order terms, where r_{i} is a change in the i th internal coordinate and the $f_{i j}$'s are force constants. As mentioned before, the general quadratic potential, which includes all possible second order terms, does not have the physical significance of the specialized potential adopted for this problem. In order to discuss this potential in detail reference is made to Fig. 2-1 and Table 1-I. In Fig. 2-1, for example, \bar{P}_{12} is the distance between atoms F^{1} and F^{2} and is therefore the sum of the equilibrium distance p and the small variation in this value, p_{12}. Table 2-I is a list of typical internal coordinates and their equilibrium values.

The basic part of the Urey-Bradley potential is a valence force potential consisting of products of a force constants times the square of a change of bond distance or bond angle. Some typical terms of this kind are $\mathrm{K}_{\mathrm{CF}} \mathrm{D}_{1}{ }^{2}$ and $\mathrm{H}_{\mathrm{FCF}} \mathrm{D}^{2} \mathrm{a}_{12}{ }^{2}$, where K_{CF} and $\mathrm{H}_{\mathrm{FCF}}$ are force constants, D_{1} is the increment of the $C^{7} F^{1}$ bond length from its equilibrium value D and a_{12} is the change in the $F^{1} C^{7} F^{2}$ bond angle from its equilibrium value a.

$\mathrm{F}^{1}, \mathrm{C}^{7}, \mathrm{C}^{8}$, and H^{4} are in the plane of the paper. F^{2} and H^{6} are behind the plane and F^{3} and H^{5} are in front of the plane of the paper.

Fig. 2-1. Molecular Constants for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$

TABLE 2-I
INTERNAL AND VIBRATIONAL COORDINATES OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}$

Internal Coordinate	Symbol	Equilibrium Value	Symbol for Equil. Value	Vibrational Coordinate
$C^{7} F^{1}$ bond length	\bar{D}_{1}	$1.36 \mathrm{~A}^{\circ}$	D	$\mathrm{D}_{1}{ }^{\text {a }}$
$\mathrm{C}^{8} \mathrm{H}^{4}$ bond length	\bar{d}_{4}	1.09	d	d_{4}
$\mathrm{c}^{7} \mathrm{c}^{8}$ bond length	\bar{R}_{1}	1.53	R	R_{1}
$\mathrm{F}^{1} \mathrm{~F}^{2}$ separation	$\overline{\mathrm{p}}_{12}$	2.22	P	P_{12}
$\mathrm{F}^{1} \mathrm{C}^{8}$ separation	\bar{r}_{1}	2.36	r	${ }^{\text {r }}$
$\mathrm{H}^{4} \mathrm{H}^{5}$ separation	\bar{q}_{45}	1.78	q	q_{45}
$\mathrm{H}^{4} \mathrm{C}^{7}$ separation	$\overline{s_{4}}$	2.15	s	s_{4}
$\mathrm{F}^{1} \mathrm{H}^{4}$ separation	\bar{t}_{14}	3.29	t	${ }^{\text {t }} 14$
$\mathrm{F}^{1}{ }^{5}$ separation	\bar{v}_{15}	2.62	v	${ }^{1} 15$
$\mathrm{F}^{1} \mathrm{C}^{7} \mathrm{~F}^{2}$ angle	\bar{a}_{12}	$109^{\circ} 28^{\prime}$	a	a_{12}
$\mathrm{H}^{4} \mathrm{C}^{8} \mathrm{~F}^{5}$ angle	\bar{b}_{45}	$109{ }^{\circ} 28^{\prime}$	b	b_{45}
$\mathrm{F}^{1} \mathrm{C}^{7} \mathrm{C}^{8}$ angle	\bar{a}_{1}	$109^{\circ} 28^{\prime}$	a^{\prime}	a_{1}
$\mathrm{H}^{4} \mathrm{C}^{8} \mathrm{C}^{7}$ angle	\bar{b}_{4}	$109{ }^{\circ} 28^{\prime}$	b^{\prime}	b_{4}

To the valence force potential are added terms that represent the effect of interaction of non-bonded atoms. Thus, the potential energy of interaction of F^{1} and H^{4} is given by $2 \mathrm{~F}_{\mathrm{FH}}{ }^{\prime} \mathrm{t} \mathrm{t}_{14}+\mathrm{F}_{\mathrm{FH}} \mathrm{t}_{14}{ }^{2}$. From the sign of: the constant F_{FH} ' it will be shown that the force between an F and H atom in this molecule is repulsive.

Finally, terms like $K_{C F}{ }^{\prime} D D_{1}$ and $H_{F C F}{ }^{\prime} D^{2} a_{12}$ are added. The force constants such as $K_{C F}{ }^{\prime}$ and $H_{F C F}{ }^{\prime}$ are chosen so that the 1inear terms in V will vanish.

The complete Urey-Bradley potential energy function for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ in terms of small variations of the internal coordinates is:

$$
\begin{aligned}
& 2 V=2 K_{C F}{ }^{\prime} D\left(D_{1}+D_{2}+D_{3}\right)+R_{C F}\left(D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}{ }^{2}\right) \\
& +2 \mathrm{~K}_{\mathrm{CH}}{ }^{\prime} \mathrm{d}\left(\mathrm{~d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}\right)+\mathrm{K}_{\mathrm{CH}}\left(\mathrm{~d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}+\mathrm{d}_{3}{ }^{2}\right) \\
& +2 \mathrm{~K}_{\mathrm{CC}}{ }^{\prime} \mathrm{RR}_{1}+\mathrm{R}_{\mathrm{CC}} \mathrm{R}_{1}{ }^{2} \\
& +2 \mathrm{H}_{\mathrm{FCC}}{ }^{\prime} \mathrm{RD}\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}\right)+\mathrm{H}_{\mathrm{FCC}} \mathrm{RD}\left(\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{3}{ }^{2}\right) \\
& +2 \mathrm{H}_{\mathrm{FCF}}{ }^{\prime} \mathrm{D}^{2}\left(\mathrm{a}_{12}+\mathrm{a}_{23}+a_{31}\right)+\mathrm{H}_{\mathrm{FCF}} \mathrm{D}^{2}\left(\mathrm{a}_{12}{ }^{2}+a_{23}{ }^{2}+a_{31}{ }^{2}\right) \\
& +2 \mathrm{H}_{\mathrm{HCC}}{ }^{\prime} \mathrm{Rd}\left(\mathrm{~b}_{4}+\mathrm{b}_{5}+\mathrm{b}_{6}\right)+\mathrm{H}_{\mathrm{HCC}} \mathrm{Rd}\left(\mathrm{~b}_{4}{ }^{2}+\mathrm{b}_{5}{ }^{2}+\mathrm{b}_{6}{ }^{2}\right) \\
& +2 \mathrm{H}_{\mathrm{HCH}}{ }^{\prime} \mathrm{d}^{2}\left(\mathrm{~b}_{45}+\mathrm{b}_{56}+\mathrm{b}_{64}\right)+\mathrm{H}_{\mathrm{HCH}} \mathrm{~d}^{2}\left(\mathrm{~b}_{45}{ }^{2}+\mathrm{b}_{56}{ }^{2}+\mathrm{b}_{64}{ }^{2}\right. \text {) } \\
& +2 \mathrm{~F}_{\mathrm{FF}}{ }^{\prime} \mathrm{p}\left(\mathrm{P}_{12}+\mathrm{P}_{23}+\mathrm{P}_{31}\right)+\mathrm{F}_{\mathrm{FF}}\left(\mathrm{P}_{12}{ }^{2}+\mathrm{P}_{23}{ }^{2}+\mathrm{P}_{31}{ }^{2}\right) \\
& +2 \mathrm{FFC}^{\prime} \mathrm{r}\left(\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}\right)+\mathrm{F}_{\mathrm{FC}}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{3}{ }^{2}\right) \\
& +2 \mathrm{~F}_{\mathrm{HH}}{ }^{\prime} \mathrm{q}\left(\mathrm{q}_{45}+\mathrm{q}_{56}+\mathrm{q}_{64}\right)+\mathrm{F}_{\mathrm{HH}}\left(\mathrm{q}_{45}{ }^{2}+\mathrm{q}_{56}{ }^{2}+\mathrm{q}_{64}{ }^{2}\right) \\
& +2 \mathrm{~F}_{\mathrm{HC}}{ }^{\prime} \mathrm{s}\left(\mathrm{~s}_{4}+\mathrm{s}_{5}+\mathrm{s}_{6}\right)+\mathrm{E}_{\mathrm{HC}}\left(\mathrm{~s}_{4}{ }^{2}+\mathrm{s}_{5}{ }^{2}+\mathrm{s}_{6}{ }^{2}\right) \\
& +2 \mathrm{~F}_{\mathrm{FH}}{ }^{\prime} \mathrm{t}\left(\mathrm{t}_{14}+\mathrm{t}_{25}+\mathrm{t}_{36}\right)+\mathrm{F}_{\mathrm{FH}}\left(\mathrm{t}_{14}{ }^{2}+\mathrm{t}_{25}{ }^{2}+\mathrm{t}_{36}{ }^{2}\right) \\
& +2 \mathrm{~F}_{\mathrm{FH}}{ }^{\prime} \mathrm{v}\left(\mathrm{v}_{15}+\mathrm{v}_{26}+\mathrm{v}_{34}+\mathrm{v}_{16}+\mathrm{v}_{34}+\mathrm{v}_{25}\right) \\
& +\mathrm{F}_{\mathrm{FH}}\left(\mathrm{v}_{15}{ }^{2}+\mathrm{v}_{26}{ }^{2}+\mathrm{v}_{34}{ }^{2}+\mathrm{v}_{16}{ }^{2}+\mathrm{v}_{34}{ }^{2}+\mathrm{v}_{25}{ }^{2}\right) \\
& +\Omega \tau^{2} \text {. }
\end{aligned}
$$

The last term in the potential energy function is due to the torsional motion of the molecule defined as follows. Let the atoms lie in arbitrarily displaced positions. The smallest angle between the $\mathrm{F}^{1} \mathrm{C}^{7} \mathrm{C}^{8}$ plane and the $H^{4} C^{8} C^{7}$ plane is defined as θ_{1}, with θ_{2} and θ_{3} defined in a similar manner.

The internal coordinate describing the relative orientation between the end groups is then defined as $\tau=\left(\theta_{1}+\theta_{2}+\theta_{3}\right) / 3$.

There are 41 internal coordinates in the equation for the potential energy, but only 18 are independent, since there are only $3 \mathrm{~N}-6$ vibrational degrees of freedom.

The small displacements $p_{i j}, q_{m n}, r_{i}, s_{m}, t_{i m}$ and $v_{\text {in }}$ can be expressed in terms of the other vibrational coordinates. These relations, correct to the second order, are as follows:

$$
\begin{aligned}
P_{i j} & =\left(D_{i}+D_{j}\right)\left(1-\cos a^{\prime}\right) D / p+a_{i j}\left(\sin a^{\prime}\right) D^{2} / p \\
& +\left(D_{i}^{2}+D_{j}^{2}\right)\left[1-\left(1-\cos a^{\prime}\right)^{2} D^{2} / p^{2}\right] / 2 p+a_{i j} 2\left[D^{2} \cos a^{\prime}-\right. \\
& \left.\sin ^{2} a^{\prime}\left(D^{4} / p^{2}\right)\right] / 2 p+D_{i} D_{j}\left[-\cos a^{\prime}-\left(1-\cos a^{\prime}\right)^{2} D^{2} / p^{2}\right] / p \\
& +\left(D_{i}+D_{j}\right) a_{i j}\left[\sin a^{\prime}-\sin a^{\prime}\left(1-\cos a^{\prime}\right) D^{2} / p^{2}\right] D / p . \\
q_{m n} & =\left(d_{m}+d_{n}\right)\left(1-\cos b^{\prime}\right) d / q+b_{m n}\left(\sin b^{\prime}\right) d^{2} / q
\end{aligned}
$$

$$
\begin{aligned}
& +\left(d_{m}^{2}+d_{n}{ }^{2}\right)\left[1-\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2}\right] / 2 q+b_{m n}{ }^{2}\left[d^{2} \cos b^{\prime}-\right. \\
& \left.\sin ^{2} b^{\prime}\left(d^{4} / q^{2}\right)\right] / 2 q+d_{m} d_{n}\left[-\cos b^{\prime}-\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2}\right] / q \\
& +\left(d_{m}+d_{n}\right) b_{m n}\left[\sin b^{\prime}-\sin b^{\prime}\left(1-\cos b^{\prime}\right) d^{2} / q^{2}\right] d / q \text {. } \\
& r_{i}=R_{1}(R-D \cos a) / r+D_{i}(D-R \cos a) / r+a_{i} \sin a \operatorname{RD} / r \\
& +R_{1}^{2}\left[1-(R-D \cos a)^{2} / r^{2}\right] / 2 r+D_{i}^{2}\left[1-(D-R \cos a)^{2} / r^{2}\right] / 2 r \\
& +a_{i}^{2}\left(R D \cos a-\sin ^{2} a R^{2} D^{2} / r^{2}\right) / 2 r \\
& +R_{1} D_{i}\left[-\cos a-(R-D \cos a)(D-R \cos a) / r^{2}\right] / r \\
& +R_{1} a_{i}\left[\sin a-\sin a(R-D \cos a) R / r^{2}\right] D / r \\
& +\tilde{D}_{i} a_{i}\left[\sin a-\sin a(D-R \cos a) D / r^{2}\right] R / r . \\
& s_{m}=R_{1}(R-d \cos b) / s+d_{m}(d-R \cos b) / s+b_{m} \sin b R d / s \\
& +R_{1} 2\left[1-(R-d \cos b)^{2 / s} s^{2}\right] / 2 s+d_{m}^{2}\left[1-(d-R \cos b)^{2} / s^{2}\right] / 2 s \\
& +a_{m}^{2}\left[R d \cos b-\left(\sin ^{2} b\right) R^{2} d^{2} / s^{2}\right] \cdot 2 s \\
& +R_{1} d_{m}\left[-\cos b-(R-d \cos b)(d-R \cos b) / s^{2}\right] / s \\
& +R_{1} a_{m}\left[\sin b-\sin b(R-d \cos b) R / s^{2}\right] d / s \\
& +d_{m} a_{m}\left[\sin b-\sin b(d-R \cos b) d / s^{2}\right] R / s . \\
& t_{i m}=D_{i} t_{D}+d_{m} t_{d}+R_{1} t_{R}+a_{i} t_{a}+b_{m} t_{b} \\
& +\left\{D_{i}{ }^{2}\left(1-t_{D}{ }^{2}\right)+d_{m}{ }^{2}\left(1-t_{d}{ }^{2}\right)+R_{1}{ }^{2}\left(1-t_{R}{ }^{2}\right)\right. \\
& +a_{i} 2\left[R D \cos a-D d \cos (a-b)-t_{b}^{2}\right] \\
& +b_{m}^{2}\left[R d \cos b-D d \cos (b-a)-t_{b}^{2}\right] \\
& +\left(a_{k i}^{2}+a_{i j}^{2}+b_{o m}^{2}+b_{m n}^{2}\right)(-a D / 9) \\
& +\sigma^{2}(-d D \sin a \sin b) \\
& +D_{i} a_{i} 2\left[R \sin a-d \sin (a-b)-t_{D} t_{a}\right] \\
& +D_{i} b_{m} 2\left[-d \sin (b-a)-t_{D} t_{b}\right] \\
& +d_{m} a_{i} 2\left[-D \sin (a-b)-t_{d} t_{a}\right] \\
& +d_{m} b_{m} 2\left[R \sin b-D \sin (b-a)-t_{d} t_{b}\right] \\
& +d_{m} R_{1} 2\left[-\cos b-t_{d} t_{R}+R_{1} a_{i} 2 \operatorname{din} a-t_{R} t_{a}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +R_{1} b_{m} 2\left[d \sin b-t_{R} t_{b}\right]+a_{i} b_{m} 2\left[D d \cos (a-b)-t_{a} t_{b}\right] \\
& \left.+\left(a_{k i} a_{i j}+b_{o m} b_{m n}+a_{k i} b_{o m}+a_{k i} b_{m n}-a_{i j} b_{o m}-a_{i j} b_{m n}\right) 2(D d / 9)\right\} / 2 t . \\
& v_{i n}=D_{i} v_{D}+d_{n} v_{d}+R_{1} v_{R}+a_{i} v_{a}+b_{n} v_{b} \\
& +\left(a_{k i}-a_{i j}-b_{m n}+b_{n o}\right)\left(v_{c}^{*} / 3\right)+\tau v_{i}^{*} \\
& +\left\{D_{i}{ }^{2}\left(1-v_{D}{ }^{2}\right)+d_{n}^{2}\left(1-v_{d}^{2}\right)+R_{1}^{2}\left(1-v_{R}^{2}\right)\right. \\
& +a_{i}^{2}\left[R D \cos a-D d \cos a \cos b+\frac{1}{2} D d \sin a \sin b-v_{a}^{2}\right] \\
& +b_{n} 2\left[R d \cos b-D d \cos a \cos b+\frac{1}{2} D d \sin a \sin b-v_{b}^{2}\right] \\
& +\left(a_{k i}^{2}+a_{i j}^{2}+b_{m n}^{2}+b_{n o}^{2}\right)\left(-D d / 2-v_{c}^{* 2}\right) / 9 \\
& +\tau^{2}\left[(D d \sin a \sin b) / 2-v_{\tau}^{\frac{\pi}{2} 2}\right] \\
& +D_{i} d_{n} 2\left[\cos a \cos b-\frac{1}{2} \sin a \sin b-v_{D} v_{d}\right] \\
& +D_{i} R_{1} 2\left[-\cos a-v_{D} v_{R}\right] \\
& +D_{i} a_{i} 2\left[R \sin a-d \sin a \cos b-\frac{1}{2} d \sin b \cos a-v_{D} v_{a}\right] \\
& +D_{i} b_{n} 2\left[-d \sin b \cos a-\frac{1}{2} d \sin a \cos b-v_{D} v_{b}\right] \\
& +d_{n} R_{1} 2\left[-\cos b-v_{d} v_{R}\right] \\
& +d_{n} a_{i} 2\left[-D \sin a \cos b-\frac{1}{2} D \sin b \cos a-v_{d} v_{a}\right] \\
& +d_{n} b_{n} 2\left[R \sin b-D \sin b \cos a-\frac{2}{2} D \sin a \cos b-v_{d} v_{b}\right] \\
& +R_{1} a_{i} 2\left[D \sin a-v_{R} v_{a}+R_{1} b_{n} 2 d \sin b-v_{R} v_{a}\right] \\
& +a_{i} b_{n} 2\left[D d \sin a \sin b-\frac{1}{2} D d \cos a \cos b-v_{a} v_{b}\right] \\
& +\left(a_{k i} a_{i j}+b_{m n} b_{n c}+a_{k i} b_{m n}+a_{k i} b_{n 0}-a_{i j} b_{m n}-a_{i j} b_{n 0}\right) \\
& \left.\left[2-(D d) / 2+v_{c}^{*}\right] / / 9\right\} / 2 v_{0}
\end{aligned}
$$

In these formulas $1, j, k=1,2,3 ; m, n, 0=4,5,6$, with the restriction that if $i=1$ then $m=4$, if $i=2$ then $m=5$, and if $i=3$ then $m=6$. Also, the following abbreviations have been used:

$$
\begin{aligned}
& t_{D}=[D+d \cos (a-b)-R \cos b] / t \\
& t_{d}=[d+D \cos (b-a)-R \cos a] / t \\
& t_{R}=[R-D \cos a-d \cos b] / t
\end{aligned}
$$

$$
\begin{aligned}
& t_{a}=[R D \sin a-D d \sin (a-b)] / t, \\
& t_{b}=[R d \sin b-D d \sin (b-a)] t, \\
& v_{D}=\left[D-R \cos a+d \cos a \cos b-\frac{1}{2} d \sin a \sin b\right] / v, \\
& v_{d}=\left[d-R \cos b+D \cos a \cos b-\frac{1}{2} D \sin a \sin b\right] / v, \\
& v_{R}=[R-D \cos a-d \cos b] / v \\
& v_{a}=\left[R D \sin a-D d \sin a \sin b-\frac{1}{2} D d \sin a \sin b\right] / v, \\
& v_{b}=\left[R d \sin b-D d \sin a \sin b-\frac{1}{2} D d \sin a \sin b\right] / v, \\
& v_{c}^{*}=\left[\left(\epsilon_{\text {in }} 3 D d \sin a \sin b\right) / 2\right] / v=v_{c} \epsilon_{i n}, \\
& v_{\tau}^{*}=\left[\left(\epsilon_{\text {in }} 3 D d \sin a \sin b\right) / 2\right] / v=v_{\tau} \epsilon_{i n}, \text { and: } \\
& \epsilon_{\text {in }}=1 \text { for in }=15,26, \text { or } 34 \text { and }-1 \text { for in }=16,24, \text { or } 35 .
\end{aligned}
$$

Substitution of these terms into the potential energy function and collection of terms with the same internal coordinates results in the following form of the Urey-Bradley potential:

$$
\begin{aligned}
& 2 V=I^{\prime} \Sigma D_{i}+J^{\prime} \Sigma d_{m}+S^{\prime} R_{1}+\bar{M} \Sigma a_{i}+\overline{0} \Sigma a_{i j} \\
&+\bar{P} \Sigma b_{m}+\bar{U} \Sigma b_{m n}+X \Sigma D_{i}{ }^{2}+B \Sigma d_{m}^{2}+S R_{1}{ }^{2} \\
&+\bar{E}^{\prime} \Sigma a_{i}^{2}+\bar{E} \Sigma a_{i j}{ }^{2}+\bar{Y}^{\prime} \Sigma b_{m}^{2}+\bar{Y} \Sigma b_{m n} 2+\Omega \tau^{2} \\
&+2 X^{\prime} \Sigma D_{i} D_{j}+2 W \Sigma D_{i} d_{m}+2 W^{\prime} \Sigma D_{i} d_{n} \\
&+2 \text { I' }^{\prime} \Sigma d_{m} R_{1}+2 N \Sigma D_{i} a_{i}+2 Q \Sigma D_{i} a_{i j} \\
&+2 A \Sigma D_{i} b_{m}+2 A^{\prime} \Sigma D_{i} b_{n}+2 \text { B }^{\prime} \Sigma d_{m} d_{n} \\
&+2 Z^{\prime} \Sigma d_{m} R_{1}+2 G \Sigma d_{m} a_{i}+2 G^{\prime} \Sigma d_{m} a_{j} \\
&+2 Q^{\prime} \Sigma d_{m} b_{m n}+2 N^{\prime} \Sigma d_{m} b_{m}+2 T \Sigma R_{1} a_{i} \\
&+2 T^{\prime} \Sigma R_{1} b_{m}+2 C \Sigma a_{i} b_{m}+2 C^{\prime} \Sigma a_{i} b_{n} \\
&+2 \bar{F}\left(a_{12} a_{23}+a_{23} a_{31}+a_{31} a_{12}\right)+2 \bar{H}\left(b_{45} b_{56}+b_{56} b_{64}+b_{64} b_{45}\right) \\
&+2 L\left(a_{12} b_{45}+a_{23} b_{56}+a_{31} b_{64}\right) \\
&+2 L^{\prime}\left(a_{12} b_{56}+a_{23} b_{64}+a_{31} b_{45}+a_{12} b_{64}+a_{23} b_{45}+a_{31} b_{56}\right), \\
& \text { where } i, j, k=1,2,3 ; m, n, o=4,5,6, \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma D_{i}=\left(D_{1}+D_{2}+D_{3}\right), \Sigma d_{m}=\left(d_{4}+d_{5}+d_{6}\right), \\
& \Sigma a_{i j}=\left(a_{12}+a_{23}+a_{31}\right), \Sigma b_{m n}=\left(b_{45}+b_{56}+b_{64}\right), \\
& \Sigma D_{i} d_{m}=\left(D_{1} d_{4}+D_{2} d_{5}+D_{3} d_{6}\right), \\
& \Sigma D_{i} d_{n}=\left(D_{1} d_{5}+D_{2} d_{6}+D_{3} d_{4}+D_{1} d_{5}+D_{2} d_{4}+D_{3} d_{5}\right), \\
& \Sigma d_{m} a_{j}=\left(d_{4} a_{2}+d_{5} a_{3}+d_{6} a_{1}+d_{4} a_{3}+d_{5} a_{1}+d_{6} a_{2}\right) .
\end{aligned}
$$

The two remaining restrictions on the coordinates are the redundancy conditions: ${ }^{5}$

$$
\begin{aligned}
H_{1} & =\sum a_{i}+\sum a_{i j}+\sqrt{2} / 8\left[3 a_{i}^{2}+3 a_{i j}^{2}+8\left(\sum a_{i} a_{j}\right.\right. \\
& \left.\left.+2 \sum a_{i} a_{i j}+a_{12} a_{23}+a_{23} a_{31}+a_{31} a_{12}\right)\right]=0 \text { and } \\
H_{2} & =\sum b_{m}+\sum b_{m n}+\sqrt{2} / 8\left[3 b_{m}^{2}+3 b_{m n}^{2}+8\left(\sum b_{m} b_{n}\right.\right. \\
& \left.\left.+2 \sum b_{m} b_{m n}+b_{45} b_{56}+b_{56} b_{64}+b_{64} b_{45}\right)\right]=0 .
\end{aligned}
$$

Following Lagrange's method of indeterminate multipliers, ${ }^{13}$ a new potential energy function $2 V+2 \mathrm{kH}_{1}+2 \mathrm{k}^{\prime} \mathrm{H}_{2}$ is formed in which now all of the coordinates are independent. The new potential includes the additional terms:
$2 \sqrt{2} k \sum a_{i} a_{j}+2 \sqrt{2} k^{\prime} \sum b_{m} b_{n}+2 \sqrt{2} k \sum a_{i} b_{m n}+2 \sqrt{2} k^{\prime} \sum b_{m} a_{i j}$, and the following modifications are made in the meanings of the constants.

$$
\begin{aligned}
& \bar{M} \rightarrow \bar{M}+2 k=M, \bar{O} \rightarrow \bar{O}+2 k=0, \\
& \bar{P} \rightarrow \bar{P}+2 k^{\prime}=P, \bar{U} \rightarrow \bar{U}+2 k^{\prime}=U, \\
& \bar{E} \rightarrow \bar{E}+(3 \sqrt{2} / 4) k=E, \bar{E}^{\prime} \rightarrow \bar{E}^{\prime}+(3 \sqrt{2} / 4) k=E^{\prime}, \\
& \bar{Y} \rightarrow \bar{Y}+(3 \sqrt{2} / 4) k^{\prime}=Y, \bar{Y}^{\prime} \rightarrow \bar{Y}^{\prime}+(3 \sqrt{2} / 4) k^{\prime}=Y^{\prime} \\
& \overline{\mathrm{F}} \rightarrow \overline{\mathrm{~F}}+2 \sqrt{2} k=F, \bar{H} \rightarrow \bar{E}+2 \sqrt{2} k^{\prime}=H .
\end{aligned}
$$

Since the potential energy of the molecule must increase for any

13 R. Courant, Differential and Integral Calculus, Vol. II (New York: Interscience Publishers, 1934).
displacament from equilibrium, the linear terms must be zero. The coefficients of these terms are:

$$
\begin{aligned}
& I^{\prime}=2\left[K_{C F}{ }^{\prime} D+F_{F F}{ }^{\prime} D\left(1-\cos a^{\prime}\right)+F_{F C}{ }^{\prime}(D-R \cos a)\right. \\
& \left.+\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(2 \mathrm{D}+2 \mathrm{~d} \cos \mathrm{a} \cos \mathrm{~b}-\frac{1}{2} \mathrm{Dd} \sin a \sin b-2 R \cos a\right)\right] \\
& J^{\prime}=2\left[\mathbb{R}_{\mathrm{CH}}{ }^{\prime} \mathrm{d}+\mathrm{F}_{\mathrm{HH}}{ }^{\prime} \mathrm{d}\left(1-\cos \mathrm{b}^{\prime}\right)+\mathrm{F}_{\mathrm{HC}}{ }^{\prime}(\mathrm{d}-\mathrm{R} \cos \mathrm{~b})\right. \\
& \left.+2 \mathrm{~F}_{\mathrm{FH}}{ }^{\prime}\left(2 \mathrm{~d}+2 \mathrm{D} \cos \mathrm{a} \cos \mathrm{~b}-\frac{1}{2} \mathrm{Dd} \sin \mathrm{a} \sin \mathrm{~b}-2 \mathrm{R} \cos \mathrm{~b}\right)\right] \\
& S^{\prime}=2\left[K_{C C}{ }^{\prime} R+3 F_{F C}{ }^{\prime}(R-C \cos a)+3 F_{H C}^{\prime}(R-d \cos b)\right. \\
& \left.+9 \mathrm{~F}_{\text {FH }}{ }^{\prime}(R-D \cos a-d \cos b)\right] \\
& M=2\left[H_{F C C}{ }^{\prime} R D+F_{F C}{ }^{\prime} R D \sin a+3 F_{F A^{\prime}}(R D \sin a-D d \sin a \cos b)+k\right] \\
& 0=2\left[H_{F C F} D^{2}+F_{F F} D^{2} \sin a^{\prime}+k\right] \\
& P=2\left[H_{H C C}{ }^{\prime} R d+F_{H C}{ }^{\prime} R d \sin a+3 F_{F H}^{\prime}(R d \sin b-D d \sin b \cos a)+K^{\prime}\right] \\
& \mathrm{U}+2\left[\mathrm{H}_{\mathrm{HCH}} \mathrm{~d}^{2}+\mathrm{F}_{\mathrm{HH}} \mathrm{~d}^{2} \sin \mathrm{~b}^{\prime}+\mathrm{k}\right]
\end{aligned}
$$

The K primes and H primes are chosen so that the above expressions are zero. The equilibrium conditions will then be satisfied.

The potential function can now be written in the matrix form $2 V=\tilde{r} f r$, where r is a column matrix with the internal coordinates as elements and $\tilde{\mathbf{r}}$ is its transpose. The coefficients of the internal coordinates form the symetry matrix f given in condensed form in Table 1-II.

The complete algebraic expressions for the elements of the f matrix are:

$$
\begin{aligned}
& X=K_{C F}+F_{F F}{ }^{\prime} 2\left[1-\left(1-\cos a^{\prime}\right)^{2} D^{2} / p^{2}\right]+F_{F F} 2\left(1-\cos a^{\prime}\right)^{2} D^{2} / p^{2} \\
& +F_{F C}\left[1-(D-R \cos a)^{2} / r^{2}\right]+F_{F C}(D-R \cos a)^{2 / r^{2}} \\
& +\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(3-{t_{D}}^{2}-2{v_{D}}^{2}\right)+\mathrm{F}_{\mathrm{FH}}\left({t_{D}}^{2}+2{v_{D}}^{2}\right) . \\
& B=K_{C H}+F_{H H} \quad 2\left[1-\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2}\right]+F_{H H} 2\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2} \\
& +F_{H C}{ }^{1}\left[1-(d-R \cos b)^{2} / s^{2}\right]+F_{H C}(d-R \cos b)^{2} / s^{2} \\
& +\mathrm{E}_{\mathrm{FH}}{ }^{\prime}\left(3-\mathrm{t}_{\mathrm{d}}{ }^{2}-2 \mathrm{v}_{\mathrm{d}}{ }^{2}\right)+\mathrm{F}_{\mathrm{FH}}\left(\mathrm{t}_{\mathrm{d}}{ }^{2}+2 \mathrm{v}_{\mathrm{d}}{ }^{2}\right) \text {. }
\end{aligned}
$$

TABL迺 1-II
f MATRIX

$$
\begin{aligned}
& S=R_{C C}+F_{F C}{ }^{\prime} 3\left[1-(R-D \cos a)^{2} / r^{2}\right]+F_{F C} 3(R-D \cos a)^{2} / r^{2} \\
& +\mathrm{F}_{\mathrm{HC}}{ }^{\prime} 3\left[1-(\mathrm{R}-\mathrm{d} \cos \mathrm{~b})^{2} / \mathrm{s}^{2}\right]+\mathrm{F}_{\mathrm{HC}} 3(\mathrm{R}-\mathrm{d} \cos \mathrm{~b})^{2} / \mathrm{s}^{2} \\
& +F_{\text {TH }}{ }^{\prime} 3\left(3-t_{R}{ }^{2}-2 v_{R}{ }^{2}\right)+F_{\text {FIG }} 3\left(t_{R}{ }^{2}+2 v_{R}{ }^{2}\right) \text {. } \\
& E=H_{F C F} D^{2}+F_{F F}^{\prime}\left(D^{2} \cos a^{\prime}-\sin ^{2} a^{\prime} D^{4} / p^{2}\right) \\
& +\mathrm{F}_{\mathrm{FF}} \sin ^{2} \mathrm{a}^{\prime} \mathrm{D}^{4} / \mathrm{p}^{2}-\mathrm{F}_{\mathrm{FH}}{ }^{\prime} 4 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9+\mathrm{F}_{\mathrm{FH}} 4 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9+(3 \sqrt{2} / 4) \mathrm{k} . \\
& E^{\prime}=H_{F C C} R D+F_{F C}{ }^{\prime}\left(R D \cos a-\sin ^{2} a R^{2} D^{2} / r^{2}\right) \\
& +F_{F C}\left(\sin ^{2} a R^{2} D^{2} / r^{2}\right)+F_{F H}{ }^{\prime}\left(3 R D \cos a-3 D d \cos a \cos b-t_{a}{ }^{2}-2 v_{a}{ }^{2}\right) \\
& +F_{G H}\left(t_{a}^{2}+2 v_{a}^{2}\right)+(3 \sqrt{2} / 4) k . \\
& Y=H_{H C H} d^{2}+F_{H H}\left(d^{2} \cos b^{\prime}-\sin ^{2} b^{\prime} d^{4} / q^{2}\right) \\
& +\mathrm{F}_{\mathrm{HH}} \sin ^{2} \mathrm{~b}^{\prime} \mathrm{d}^{4} / \mathrm{q}^{2}-\mathrm{F}_{\mathrm{FH}}{ }^{\prime} 4 \mathrm{v}_{\mathrm{c}}^{2} / 9+\mathrm{F}_{\mathrm{FH}} 4 \mathrm{v}_{\mathrm{c}}^{2} / 9+(3 \sqrt{2} / \mathrm{r}) \mathrm{k}^{\prime} . \\
& Y^{\prime}=H_{H C C} R d+F_{H C} \text { (Rd cos } b=\sin ^{2} b R^{2} d^{2} / s^{2} \text {) } \\
& +\mathrm{F}_{\mathrm{HC}} \sin ^{2} \mathrm{~b} \mathrm{R} \mathrm{R}^{2} \mathrm{~d}^{2} / \mathrm{s}^{2}+\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(3 \mathrm{Rd} \cos \mathrm{~b}-3 \mathrm{Dd} \cos \mathrm{a} \cos \mathrm{~b}-\mathrm{t}_{\mathrm{b}}{ }^{2}-2 \mathrm{v}_{\mathrm{b}}{ }^{2}\right) \\
& +F_{\mathrm{FH}}\left(\mathrm{t}_{\mathrm{b}}{ }^{2}+2 \mathrm{v}_{\mathrm{b}}{ }^{2}\right)+(3 \sqrt{2} / 4) \mathrm{k}^{\prime} . \\
& X^{\prime}=F_{F F}{ }^{\prime}\left[-\cos a^{\prime}-\left(1-\cos a^{\prime}\right)^{2} \cdot D^{2} / p^{2}\right]+F_{F F}\left(1-\cos a^{\prime}\right)^{2} D^{2} / p^{2} . \\
& W=F_{Y H}{ }^{\prime}\left[\cos (a-b)-t_{D} t_{d}\right]+F_{F H}\left(t_{D} t_{d}\right) \text { 。 } \\
& W^{\prime}=F_{F H}{ }^{\prime}\left[\cos a \cos b-\frac{1}{2} \sin a \sin b-v_{D} v_{d}\right]+F_{F H} v_{D} v_{d} . \\
& Z=F_{F C}\left(-\cos a-(R-D \cos a)(D-R \cos a) / r^{2}\right]+F_{F C}(R-D \cos a)(D-R \cos a) / x^{2} \\
& +F_{F H}^{\prime}\left(-3 \cos a-t_{D} t_{R}-2 v_{D} v_{R}\right)+F_{F H}\left(t_{D} t_{R}+2 v_{D} v_{R}\right) . \\
& Q=F_{F F}^{\prime} D \sin a^{\prime}\left[1-\left(1-\cos a^{\prime}\right) D^{2} / p^{2}\right]+F_{F F} \sin a^{\prime}\left(1-\cos a^{\prime}\right) D^{3} / p^{2} \text {. } \\
& N=F_{F C}{ }^{\prime} R \sin a\left[1-(D-R \cos a) D / r^{2}\right]+F_{F C} \sin a(D-R \cos a) R D / r^{2} \\
& +\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(3 \mathrm{R} \sin a-3 d \sin a \cos b-t_{D} t_{a}-2 v_{D} v_{a}\right)+F_{F H}\left(t_{D} t_{a}+2 v_{D} v_{a}\right) \text {. } \\
& A=F_{F H}{ }^{\prime}\left[d \sin (a-b)-t_{D} t_{b}\right]+F_{F H} t_{D} t_{b} . \\
& A^{\prime}=F_{F H}\left(-d \sin b \cos a-\frac{z_{2}}{2} d \sin a \cos b-v_{D} v_{b}\right)+F_{\text {FH }} v_{D} v_{b} . \\
& B^{\prime}=F_{H H}{ }^{\prime}\left[-\cos b^{\prime}-\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2}\right]+F_{H H}\left(1-\cos b^{\prime}\right)^{2} d^{2} / q^{2} . \\
& Z^{\prime}=F_{H C}{ }^{\prime}\left[-\cos b-(R-d \cos b)(d-R \cos b) / s^{2}\right]+F_{H C}(R-D \cos b)(d-R \cos b) / s^{2} \\
& +F_{F H}^{\prime}\left(-3 \cos b-t_{d} t_{R}-2 v_{d} v_{R}\right)+F_{F H}\left(t_{d} t_{R}+2 v_{d} v_{R}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& G=F_{P H}{ }^{\prime}\left[-D \sin (b-a)-t_{d} t_{a}\right]+F_{F H} t_{d} t_{a} . \\
& G^{\prime}=F_{F H}^{\prime}\left(-D \sin a \cos b-\frac{1}{2} D \sin b \cos a-v_{d} v_{a}\right)+F_{F H} v_{d} v_{a} . \\
& Q^{\prime}=F_{H H}{ }^{\prime} d \sin b^{\prime}\left[1-\left(1-\cos b^{\prime}\right) d^{2} / q^{2}\right]+F_{H H} \sin b^{\prime}\left(1-\cos b^{\prime}\right) d^{3} / q^{2} . \\
& N^{\prime}=F_{H C}{ }^{\prime} R \sin b\left[1-d(d-R \cos b) \sin b / s^{2}\right]+F_{H C} \sin b(d-R \cos b) R d / s^{2} \\
& +\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(3 \mathrm{R} \sin \mathrm{~b}-3 \mathrm{D} \sin \mathrm{~b} \cos \mathrm{a}-\mathrm{t}_{\mathrm{d}} \mathrm{t}_{\mathrm{b}}-2 \mathrm{v}_{\mathrm{d}} \mathrm{v}_{\mathrm{b}}\right)+\mathrm{F}_{\mathrm{FH}}\left(\mathrm{t}_{\mathrm{d}} \mathrm{t}_{\mathrm{b}}+2 \mathrm{v}_{\mathrm{d}} \mathrm{v}_{\mathrm{b}}\right) . \\
& T=F_{F C}{ }^{\prime} D \sin a\left[1-(R-D \cos a) R / r^{2}\right]+F_{F C} \sin a(R-D \cos a) R D / r^{2} \\
& +\mathrm{F}_{\mathrm{FH}}{ }^{\prime}\left(3 \mathrm{D} \sin a-t_{R} t_{a}-2 v_{R} v_{a}\right)+F_{F H}\left(t_{R} t_{a}+2 v_{R} v_{a}\right) \text {. } \\
& T^{\prime}=F_{H C}^{\prime} d \sin b\left[1-(R-d \cos b) R / s^{2}\right]+F_{H C} \sin b(R-d \cos b) R d / s^{2} \\
& +F_{F H}{ }^{\prime}\left(3 d \sin b-t_{R} t_{b}-2 v_{R} v_{b}\right)+F_{F H} t_{a} t_{b} . \\
& C=F_{F H}{ }^{\prime}\left[D d \cos (a-b)-t_{a} t_{b}\right]+F_{F H} t_{a} t_{b} \text {. } \\
& C^{\prime}=F_{F H}{ }^{\prime}\left(D d \sin a \sin b-z_{2} D d \cos a \cos b-v_{a} v_{b}\right) \text {. } \\
& \mathrm{F}=\mathrm{F}_{\mathrm{FH}}{ }^{\prime} 2 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9-\mathrm{F}_{\mathrm{FH}} 2 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9+2 \sqrt{2} \mathrm{k} . \\
& \mathrm{H}=\mathrm{F}_{\mathrm{FH}}{ }^{\prime} \quad 2 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9-\mathrm{F}_{\mathrm{FH}} \quad 2 \mathrm{v}_{\mathrm{c}}{ }^{2} / 9+2 \sqrt{2} \mathrm{k}^{\prime} . \\
& L^{\prime}=F_{\mathrm{FH}}{ }^{\prime}\left(\mathrm{Dd} / 3-2 \mathrm{v}_{\mathrm{c}}^{2} / 9\right)+\mathrm{F}_{\mathrm{FH}} 2 \mathrm{v}_{\mathrm{c}}^{2} / 9 \text {. } \\
& L=F_{F H}{ }^{\prime} \cdot\left(-D d / 6+v_{c}^{2} / 9\right)-F_{F H} v_{c}^{2 / 9} . \\
& I=\sqrt{2} k \text {. } \\
& J=\sqrt{2} \mathrm{k}^{\prime} \text {. }
\end{aligned}
$$

Symetry Coordinates

Any complete set of vibrational coordinates can be used for calculating the energy matrices. If the molecular vibration is described in terms of cartesian displacements of the atoms the kinetic energy matrix is diagonal; the use of internal coordinates usually simplifies the elements of the potential energy matrix and gives them more direct physical meanings. The most useful set of coordinates which can be obtained prior to the diagonalization process are called symmetry coordinates. The nature of these coordinates is determined by the symmetry of the undis-
torted molecule and in this coordinate system both energy matrices have block structure. The group theory that provides the background for discussion of these coordinates is not given here, since the theory, although somewhat involved, is well known and readily accessible. ${ }^{11}$ Instead, only the results of the application of group theory and a list of symmetry coordinates are presented.

The undistorted $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ molecule has the symmetry $\mathrm{C}_{3 \mathrm{v}}$. Grouptheoretical methods show that there are five non-degenerate normal vibrations of this molecule each of which belongs to the irreducible representation, or species, A_{1} of the group $C_{3 v}$. Also, there is one non-degenerate normal vibration belonging to species A_{2} and six doubly-degenerate normal coordinates belonging to species E. By application of the formulas of Nielsen and Berryman ${ }^{14}$ five symmetry coordinates belonging to species A_{1} and two sets of six coordinates of the species E can be formed as linear combinations of the internal coordinates. As there is only one noral coordinate belonging to A_{2}, which corresponds to the torsional vibration of the molecule, it has been treated separately.

A simple set of symmetry coordinates for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$, classified according to species, are:
$A_{1}: S_{1}=1 / \sqrt{3}\left(d_{4}+d_{5}+d_{6}\right)$
$S_{2}=1 / \sqrt{3}\left(D_{1}+D_{2}+D_{3}\right)$
$S_{3}=R_{1}$
$s_{4}=1 / \sqrt{6}\left(b_{4}+b_{5}+b_{6}-b_{45}-b_{56}-b_{64}\right)$
$S_{5}=1 / \sqrt{6}\left(a_{1}+a_{2}+a_{3}-a_{12}-a_{23}-a_{31}\right)$

14 J. Rud Nielsen and L. H. Berryman, J. Chem. Phys. 17, 659 (1949).

E: $\quad S_{1 a}=1 / \sqrt{6}\left(2 d_{4}-d_{5}-d_{6}\right)$

$$
\begin{aligned}
& S_{2 a}=1 / \sqrt{6}\left(2 D_{1}-D_{2}-D_{3}\right) \\
& s_{3 a}=1 / \sqrt{6}\left(2 b_{4}-b_{5}-b_{6}\right) \\
& s_{4 a}=1 / \sqrt{6}\left(2 a_{1}-a_{2}-a_{3}\right)
\end{aligned}
$$

$$
s_{5 a}=1 / \sqrt{6}\left(2 b_{45}-b_{56}-b_{64}\right)
$$

$$
s_{6 a}=1 / \sqrt{6}\left(2 a_{12}-a_{23}-a_{31}\right)
$$

$$
s_{1 b}=1 / \sqrt{2}\left(d_{5}-d_{6}\right)
$$

$$
s_{2 b}=1 / \sqrt{2}\left(D_{2}-D_{3}\right)
$$

$$
s_{3 b}=1 / \sqrt{2}\left(b_{5}-b_{6}\right)
$$

$$
s_{4 b}=1 / \sqrt{2}\left(a_{2}-a_{3}\right)
$$

$$
s_{5 b}=1 / \sqrt{2}\left(b_{56}-b_{64}\right)
$$

$$
s_{6 b}=1 / \sqrt{2}\left(a_{23}-a_{31}\right)
$$

The new form of the potential energy matrix that results from the transformation of internal coordinates into symmetry coordinates can be determined by means of a similarity transformation. Let S be a column matrix whose elements are the symmetry coordinates and U be the orthogonal transformation matrix from the internal to the symmetry basis. Then $r=U S$ and $2 V=\widetilde{S} \widetilde{U} f U S$. If F represents the potential energy matrix in the symmetry basis it must be related to f by the congruent. transformation $F=\tilde{U} f U$. The F matrix has block structure as shown below.

All matrix elements outside of the square blocks are zero. The use of Nielsen. and Berryman's formulas ${ }^{14}$ to calculate the symmetry coordinates insures that the two E blocks are identical. The blocks of the F matrix are presented in Table 2-III.
table 2-III

$$
\mathrm{F} \text { MATRICES FOR } \mathrm{CF}_{3}-\mathrm{CH}_{3}
$$

Species \mathbb{A}_{1} :

$B+2 B^{\prime}$	$W+2 W^{\prime}$	$\sqrt{3} z^{\prime}$	$\left(N^{\prime}-2 Q^{\prime}\right) / \sqrt{2}$	$\left(G+2 G^{\prime}\right) / \sqrt{2}$
	$\mathrm{~K}+2 \mathrm{X}^{\prime}$	$\sqrt{3} \mathrm{z}$	$\left(\mathrm{A}+2 \mathrm{~A}^{\prime}\right) / \sqrt{2}$	$(\mathrm{~N}-2 \mathrm{Q}) / \sqrt{2}$
		S	$\sqrt{3} \mathrm{~T}^{\prime} / \sqrt{2}$	$\sqrt{3} T / \sqrt{2}$
			$\frac{Y+Y^{\prime}}{2}+\mathrm{H}-\mathrm{J}$	$\frac{\mathrm{C}+2 \mathrm{C}^{\prime}+\mathrm{L}+2 \mathrm{~L}^{\prime}}{2}$
				$\frac{E+E^{\prime}}{2}+\mathrm{F}-\mathrm{I}$

Species E:

B - B^{\prime}	W - W'	N^{\prime}	G-G'	$Q^{\prime} / 2$	0
	$\mathrm{X}-\mathrm{X}^{\prime}$	$A-A^{\prime}$	N	0	Q/2
		$Y^{\prime}-\mathrm{J}$	C- ${ }^{\prime}$	J/2	0
			E^{\prime} - I	0	I/2
				Y - H	L- \mathbf{L}^{\prime}

CHAPTER III

RINETIC ENERGY MATRIX FOR $\mathrm{CF}_{3}-\mathrm{CH}_{3}$

The G matrix for the molecule $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ was constructed by Wilson's Method. ${ }^{12}$ In Wilson's formulas the elements of the inverse kinetic euergy matriz in the symutry coordinate basis are given by $\epsilon_{L L}$: $=$ $\sum_{a} \sum_{p} \mu_{p} g_{p} \vec{S}_{L a}^{t} \cdot \vec{S}_{L^{\prime} a}^{t} / \mathrm{d}$. Here \sum_{a} represents a summation over degenerate sets of \vec{S} vectors, \sum_{p} represents a summation over sets of equivalent atoms, d is the degree of the degeneracy, g_{p} the number of equivalent atoms in the p th set, and $\underset{p}{\boldsymbol{N}}$ is the reciprocal of the mass of one of these atoms. If the degeneracy of the set of $\overrightarrow{\mathbf{S}}$ vectors is one the summation over a is omitted. Further, $\vec{S}_{L_{a}}^{t}=\sum_{k} U_{L a, k} \overrightarrow{\mathrm{~B}}_{\mathrm{kt}}$, where \sum_{k} is a summation over the internal coordinates, and $\nabla_{\text {La, } k}$ is an element of the matrix that transforms the internal coordinates into symmetry coordinates. Finally, $\overrightarrow{\mathrm{s}}_{\mathrm{kt}}$ has the direction in which a given displacement of atom t will produce the greatest increase in the k th internal coordinate and a magnitude equal to the increase of this coordinate produced by a unit displacement of the atom in the most effective direction.

A selected list of $\overline{\mathbf{s}}$ vectors is given in Table 3-I. After substitution of numerical values for the sines and cosines in the expressions for the $\overrightarrow{\mathbf{S}}$ vectors the results listed in Tables $3-$ II, III, IV are obtained. The blocks of the G matrix are presented in Table 3-V.

TABLE 3-I

$\stackrel{\mathrm{s}}{\mathrm{kt}}$ VECTORS FOR CF $3-\mathrm{CH}_{3}$

\vec{r}_{1} is a unit vector along the $c^{7} \mathbb{F}^{1}$ bond.
\vec{r}_{4} is a unit vector along the $c^{8} H^{4}$ bond.
\vec{r}_{7} is a unit vector along the $c^{7} C^{8}$ bond.
\vec{r}_{8} is a unit vector along the $c^{8} c^{7}$ bond.
$w=(D-R \cos a), u=(R-D \cos a), z=\left(1-\cos a^{\prime}\right)$,
$c=(d-R \cos b), h=(R-d \cos b), x=\left(1-\cos b^{\prime}\right)$.

TABLE 3-II
$\stackrel{\rightharpoonup}{S}_{L}{ }^{t}$ VECTORS OF SPECIES A_{1}

L	F^{1}	H^{4}	C^{7}	C^{8}
1	0	$\vec{r}_{4} / \sqrt{3}$	0	$\vec{r}_{8} / \sqrt{3}$
2	$\vec{r}_{1} / \sqrt{3}$	0	$\vec{r}_{7} / \sqrt{3}$	0
3	0	0	\vec{r}_{8}	\vec{r}_{7}
4	$-\sqrt{3}\left(\vec{r}_{8}+\frac{\vec{r}_{4}}{3}\right) / 2 \mathrm{D}$	0	0	$4 \overrightarrow{\mathrm{I}}_{8} /(\sqrt{3} \mathrm{~d})$
5	0	$-\sqrt{3}\left(\vec{r}_{7}+\frac{\vec{r}_{1}}{3}\right) / 2 \mathrm{~d}$	$\left.4 \vec{r}_{8} / \sqrt{3} \mathrm{D}\right)$	0

TABLE 3-III
$\stackrel{\rightharpoonup}{S}_{\mathrm{La}}{ }^{\mathrm{t}}$ VECTORS OF SPECIES E_{a}

$L S^{t}$	$\mathrm{F}^{1} \quad \mathrm{H}^{4}$	c^{7}	c^{8}
$1 a$	$0 \quad 2 \vec{r}_{4} / \sqrt{6}$	0	$\left(\vec{r}_{7}-3 \vec{r}_{1}\right) / \sqrt{6}$
2a	$2 \vec{r}_{1} / \sqrt{6} 0$	$\left(\vec{r}_{8}-3 \vec{r}_{4}\right) / \sqrt{6}$	0
3a	$0 \quad-\sqrt{3}\left(\frac{\vec{r}_{4}}{3}+\vec{r}_{1}\right) / 2 \mathrm{D}$	$\sqrt{3}\left(\vec{r}_{7}-3 \vec{r}_{4}\right) / 4 \mathrm{R}$	$\sqrt{3} \mathrm{c}\left(3 \vec{r}_{4}+\vec{r}_{8}\right) / 4 \mathrm{Rd}$
4a	$-\sqrt{3}\left(\frac{\vec{r}_{1}}{3}+\vec{r}_{4}\right) / 2 D \quad 0$	$\sqrt{3 W}\left(3 \vec{r}_{1}+\vec{r}_{7}\right) / 4 \mathrm{RD}$	$\sqrt{3}\left(\vec{r}_{8}-3 \vec{r}_{1}\right) / 4 \mathrm{R}$
5a	$0 \quad \sqrt{3}\left(\vec{r}_{6}-\frac{\vec{r}_{4}}{3}-2 \vec{r}_{5}\right) / 4 \mathrm{~d}$	0	$\sqrt{3} x\left(\vec{r}_{7}-3 \vec{r}_{6}\right) / 4 d$
6a	$\sqrt{3}\left(\vec{r}_{3}-\frac{\vec{r}_{1}}{3}-2 \vec{r}_{2}\right) / 4 \mathrm{D} \quad 0$	$\sqrt{3} \mathrm{z}\left(\vec{r}_{8}-3 \vec{r}_{3}\right) / 4 \mathrm{D}$	0

TABLE 3-IV
$\overrightarrow{\mathrm{S}}_{\mathrm{Lb}}{ }^{\mathrm{t}}$ VECTORS OF SPECIES E_{b}

$L L^{t}$	F^{1}	H^{4}	c^{7}	c^{8}
1b	0	0	0	$\left(\stackrel{\rightharpoonup}{r}_{6}-\stackrel{\rightharpoonup}{r}_{5}\right) / \sqrt{2}$
2b	0	0	$\left(\vec{r}_{3}-\hat{r}_{2}\right) / \sqrt{2}$	0
3b	0	0	$3\left(\vec{r}_{6}-\vec{r}_{5}\right) / 4 \mathrm{R}$	$3 \mathrm{c}\left(\vec{r}_{5}-\vec{r}_{6}\right) / 4 \mathrm{Rd}$
4b	0	$\vec{r}^{r_{4}}{ }^{0}$	$3 \mathrm{w}\left(\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{3}\right) / 4 \mathrm{RD}$	$3\left(\overline{\bar{r}}_{3}-\overline{\bar{r}}_{2}\right) / 4 R$
5b	$\vec{r}_{1}{ }^{0}$	$4\left(\frac{\vec{r}_{4}}{3}+\vec{r}_{6}\right) / 3 \mathrm{~d}$	0	$3\left(\vec{r}_{5}-\vec{r}_{4}\right) / 4 \mathrm{~d}$
6b	$4\left(\frac{1}{3}+\vec{r}_{3}\right) / 3 D$	0	$3\left(\stackrel{\rightharpoonup}{r}_{2}-\stackrel{\rightharpoonup}{r}_{1}\right) / 4 \mathrm{D}$	0

G MAtrices or $\mathrm{CF}_{3}-\mathrm{CH}_{3}$

Species A_{1}

$W_{H}+W_{C} / 3$	0	$-W_{C} / \sqrt{3}$	$4 W_{C} / 3 \mathrm{~d}$	0
		$W_{F}+W_{C} / 3$	$-W_{C} / \sqrt{3}$	0

Species E

$\mathrm{W}_{\mathrm{H}}+\frac{4 \mathrm{~W}_{\mathrm{C}}}{3}$	$W_{F}+\frac{4 W_{C}}{3}$	$\begin{aligned} & -\sqrt{2} \cdot W_{C} M_{d} \\ & \sqrt{2} W_{C} / R \\ & \frac{W_{H}}{d^{2}}+W_{C} L_{d} \end{aligned}$	$\begin{aligned} & \sqrt{2} W_{C} / R \\ & -\sqrt{2} W_{C} / M_{D} \\ & 3 W_{C}^{N / 2} / 2 \\ & \frac{W_{F}}{D^{2}}+W_{C} L_{D} \end{aligned}$	$\begin{aligned} & -2 \sqrt{2} W_{C} / 3 \mathrm{~d} \\ & 0 \\ & -\frac{W_{H}}{4 d^{2}}+\frac{W_{C} M_{d}}{d} \\ & W_{C} / R d \\ & \frac{5 W_{H}}{2 d^{2}}+\frac{8 W_{C}}{3 d^{2}} \end{aligned}$	$\begin{aligned} & 0 \\ & -2 \sqrt{2} W_{C} / 3 D \\ & W_{C} / R D \\ & -\frac{W_{E}}{4 D^{2}}+\frac{W_{C} M_{D}}{D} \\ & 0 \end{aligned}$
					$\frac{5 W_{F}}{2 D^{2}}+\frac{8 W_{C}}{3 D^{2}}$

Where $\quad M_{d}=\left(\frac{1}{R}+\frac{1}{3 d}\right)$
$M_{D}=\left(\frac{1}{R}+\frac{1}{3 D}\right)$
$L_{d}=\left(\frac{1}{6 d^{2}}+\frac{1}{R d}+\frac{3}{R^{2}}\right)$
$L_{D}=\left(\frac{1}{6 D^{2}}+\frac{1}{R D}+\frac{3}{R^{2}}\right)$
$N=\left(\frac{d}{R^{2} D}+\frac{1}{3 R D}+\frac{1}{3 R d}+\frac{D}{R^{2} d}\right)$

GHAPTER IV

RESULTS FOR $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ AND DISCUSSION

Vibrational assignments for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ have been made by Yost ${ }^{15}$, Thompson 16, Nielsen ${ }^{17}$, and Herzberg. ${ }^{18}$ The assignments of Nielsen and Herzberg are essentially the same and are probably correct. Comparison between Nielsen's assignment and the calculated frequencies is made in Table 4-I. Also, the values calculated by Pan and Nielsen ${ }^{8}$ for the eclipsed configuration of this molecule are listed.

The initial set of force constants used in this calculation was taken from the work of Shimanouchi ${ }^{5}$ on $\mathrm{CF}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{2} \mathrm{~F}_{6}$ and the calculations of Pan and Nielsen ${ }^{8}$ for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$. These are listed in Table 4-II together with the final set of force constants. Some of the differences between the initial and final force constants are caused by the fact that Shimanouchi's constants were determined for a set of different molecules, while those of Pan and Nielsen were calculated for a different configuration of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$. Some differences are also due to the inclusion of terms in the potential function resulting from changes in the distances between non-

[^3]bonded atoms with the variation of HCH and FCF angles, which were neglected by the previous workers.

The agreement between calculated and observed frequencies is about as good as can be expected for an eight-atom molecule. Although some improvement could be obtained by the finer adjustment of some of the force constants, this would hardly be meaningful, since better agreement should not be expected from this model, in which anharmonic terms are neglected, all angles are assumed to be tetrahedral, and the uncertainty in some of the bond lengths may be one percent or more.

Table 4-III is a listing of the matrix elements of L^{-1}, which is related to the symmetry and normal coordinates by the equation $Q=L^{-1} \mathrm{~S}$. Thus, the composition of each normal coordinate can be determined by reading across the appropriate row of this table.

The present normal coordinate analysis throws some new light upon the nature of the A_{1} vibrations at 1280 and $831 \mathrm{~cm}^{-1}$, which have formerly been characterized as C-F and C-C stretching, respectively. However, the present work shows that, while there is considerable mixing of these motions, the vibration with the higher frequency is predominantly C-C stretching. The final value, $3.6 \mathrm{md} / \mathrm{A}^{\circ}$, for the force constant K_{CC} is considerably higher than the value, $2.8 \mathrm{md} / \mathrm{A}^{\circ}$, of the corresponding force constant for ethane. This indicates a strengthening of the C-C bond with fluorine substitution. A similar effect occurs in ethylenes ${ }^{19}$, whose $C=C$ stretching frequency increases with fluorine substitution.

Table 4-IV is a list of the changes in the calculated frequencies that result from an increase of 0.1 in particular force constants, all other variables being held constant.

[^4]
TABLE 4-I

VALUES OF THE FORCE CONSTANTS FOR $\mathrm{CF}_{3}-\mathrm{CH}_{3}$

Symbo 1	Final Value	Initial Value	Transferred from
F_{FF}	$1.1 \mathrm{md} / \mathrm{A}^{\circ}$	$1.3 \mathrm{md} / \mathrm{A}^{\circ}$	CF_{4}
$\mathrm{F}_{\mathrm{FF}}{ }^{\prime}$	-0.2	-0.3 md/ ${ }^{\text {a }}$	CF_{4}
K_{CF}	4.4	$3.75 \mathrm{md} / \mathrm{A}^{0}$	CF_{4}
$\mathrm{H}_{\mathrm{FCF}}$	0.1	$0.15 \mathrm{md} / \mathrm{A}^{\circ}$	CF_{4}
$\mathrm{H}_{\mathrm{FCC}}$	0.3	$0.15 \mathrm{md} / \mathrm{s}^{\circ}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$
F_{FC}	0.4	$0.23 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$
$\mathrm{F}_{\mathrm{FC}}{ }^{\prime}$	-0.04	-0.04 md/ ${ }^{\circ}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$
k	0.35	$0.56 \mathrm{md} \cdot \mathrm{A}^{\circ} / \mathrm{rad}^{2}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$
F_{HH}	0.09	$0.1 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
FHH^{\prime}	0	$0 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
K_{CH}	4.6	$4.8 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{HECH}^{\text {H }}$	0.43	$0.4 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{HHCC}^{\text {c }}$	0.14	$0.15 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
F_{HC}	0.4	$0.4 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{F}_{\mathrm{HC}}{ }^{\prime}$	-0.05	-0.05 md/ A°	$\mathrm{C}_{2} \mathrm{H}_{6}$
k^{\prime}	0.04	$0.5 \mathrm{md} \cdot \mathrm{A}^{\circ} / \mathrm{rad}^{2}$	$\mathrm{C}_{2} \mathrm{H}_{6}$
K_{CC}	3.6	$2.8 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{C}_{2} \mathrm{H}_{6}$
F_{FH}	0.06	$0.12 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$
$\mathrm{F}_{\mathrm{FH}}{ }^{\prime}$	-0.01	- . $045 \mathrm{md} / \mathrm{A}^{\circ}$	$\mathrm{CF}_{3}-\mathrm{CH}_{3}$

table 4-II

VIbRATIONAL FREQUENCIES OF $\mathrm{CF}_{3}-\mathrm{CH}_{3}\left(\mathrm{in} \mathrm{cm}^{-1}\right)$

Species	Observed	Calculated Present Work Pan and Nielsen	
A $_{1}$	2975	2970	
	1408	1447	1478
	1280	1287	1158
	830	857	831
	602	581	632
	3035	3028	1367
	1443	1263	1242
	1233	968	1046
	970	563	601
	365	373	320

TABLE 4-III

ELEMENTS OF THE TRANSFORMATION MATRIX $L^{-1}\left(\times 10^{12}\right)$

Species $A_{1}:$					
	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
$\mathrm{Q}_{1}(2975)$	1.276	.017	.122	.045	.013
$\mathrm{Q}_{2}(1408)$	-.144	.187	-.390	.856	.105
$\mathrm{Q}_{3}(1280)$.024	-1.297	2.210	.353	-.470
$\mathrm{Q}_{4}(830)$.079	4.981	2.490	.214	-.154
$\mathrm{Q}_{5}(602)$.108	-1.888	3.080	.253	3.378

Species E:

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$
$\mathrm{Q}_{1}(3035)$	1.230	.001	.048	-.014	-.005	-.004
$Q_{2}(1443)$.069	.002	-.030	.039	.853	.013
$Q_{3}(1233)$	-.045	2.525	-.432	-.278	-.017	-.177
$Q_{4}(970)$.105	1.880	1.361	.023	.103	.021
$Q_{5}(541)$.082	2.091	-.245	1.509	-.054	2.825
$Q_{6}(365)$.207	1.795	-.370	3.569	-.100	-1.260

TABLE 4-IV

CHANGES IN THE CALCULATED FREQUENCIES (cm^{-1}) DUE TO AN INCREASE of Various force constante by $0.1 \mathrm{md} / \mathrm{A}$

	V_{1}	ν_{2}	ν_{3}	ν_{4}	ν_{5}	V_{6}	V_{7}	V_{8}	ν_{9}	χ_{10}	ν_{11}
$\mathrm{F}_{\text {FF }}$	0	0	0	6	3	0	0	4	1	6	1
$\mathrm{F}_{\mathrm{FF}}{ }^{\prime}$	0	- 1	-17	0	-10	0	0	5	1	-25	- 7
F_{FC}	0	1	1	13	7	0	0	0	1	0	14
$\mathrm{F}_{\mathrm{FC}}{ }^{\prime}$	0	1	3	0	7	0	0	15	0	0	24
F_{FH}	4	6	8	2	2	3	2	1	10	2	5
FFH^{\prime}	39	-28	- 1	0	0	4	- 2	-12	-27	- 3	- 7
$\mathrm{H}_{\mathrm{FCF}}$	0	1	11	2	13	0	0	3	1	38	10
HFCC	0	0	14	0	15	0	0	13	0	4	37
R_{CF}	0	0	2	3	0	0	9	1	0	0	0
k	0	0	15	7	12	0	0	2	0	3	-25

CEAPTER V

F AND G MÁTRICES EOR $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$

The validity of a set of force constants may be tested by using them to predict the vibration frequencies of molecules similar to the one for which they have been determined. In the present case the frequencies of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ can be calculated with essentially the same constants as obtained for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$.

The following paragraphs describe the modification of the F and G matrices needed for the calculation of the vibrational frequencies of ethane. The corresponding matrices for $C_{2} F_{6}$ have the same form.

The ethane frequencies could be obtained from the previous matrices by the simple substitution of carbon-hydrogen bond lengths, force constants, and masses for the corresponding carbon-flumpline quantities. However, this would not take advantage of the additional factoring of the F and G matrices possible because of the higher symmetry, $D_{3 d}$, of the ethane molecule. The correlation between the relevant irreducible representations of the $C_{3 v}$ and $D_{3 d}$ groups is indicated by the following diagram. ${ }^{1}$

Symmetry coordinates of the three $A_{1 g}$ and two $A_{2 u}$ vibrations for ethane can be formed as linear combinations of the A_{1} symmetry coordinates of $\mathrm{Cr}_{3} \mathrm{CH}_{3}$ after modification required by the substitution of hydrogen for fluorine. Linear combinations of the six symmetry coordinates of the species E of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ can be combined into two sets of three symmetry coordinates for the E_{g} and E_{u} species of ethane. Thus, the symmetry coordinates for ethane in terms of the appropriately modified symmetry coordinates of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ are:
$A_{1 g} \quad S_{1}=1 / \sqrt{2}\left(S_{1}{ }^{A_{1}}+S_{2}{ }^{A_{1}}\right)$
$S_{2}=1 / \sqrt{2}\left(S_{4}{ }^{A_{1}}+S_{5}{ }^{A_{1}}\right)$

$$
s_{3}=s_{3}^{A 1}
$$

$A_{2 u}: \quad s_{1}=1 / \sqrt{2}\left(-s_{1}{ }^{A_{1}}+s_{2}^{A_{1}}\right)$
$S_{2}=1 / \sqrt{2}\left(-S_{4}{ }^{A_{1}}+S_{5}{ }^{A_{1}}\right)$
$\mathrm{E}_{\mathrm{g}}: \quad \mathrm{S}_{1}=1 / \sqrt{2}\left(\mathrm{~S}_{1}{ }^{\mathrm{E}}+\mathrm{S}_{2}{ }^{\mathrm{E}}\right)$

$$
S_{2}=1 / \sqrt{2}\left(S_{3}^{E}+S_{4}^{E}\right)
$$

$$
s_{3}=1 / \sqrt{2}\left(s_{5}^{E}+s_{6}{ }^{E}\right)
$$

$E_{u}: \quad S_{1}=1 / \sqrt{2}\left(-S_{1}{ }^{E}+S_{2}{ }^{E}\right)$
$S_{2}=1 / \sqrt{2}\left(-S_{3}{ }^{E}+S_{4}{ }^{E}\right)$
$S_{3}=1 / \sqrt{2}\left(-S_{5}{ }^{E}+S_{6}{ }^{E}\right)$.
Since the symmetry coordinates for both molecules are orthogonal, the F and G matrices for ethane can be obtained by similarity transformation. Thus, $\mathrm{F}\left(\mathrm{C}_{2} \mathrm{~F}_{6}\right)=\mathrm{UF}\left(\mathrm{CF}_{3}-\mathrm{CH}_{3}\right) \mathrm{U}^{-1}$, where U is the transformation matrix from the symmetry coordinates of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ to those of ethane. The blocks of the F and G matrices are listed in Tables 5-I and 5-II.

TABLE 5-I

F MATRICES FOR $\mathrm{C}_{2} \mathrm{H}_{6}$

Species $A_{1 g}$:
$X+2 X^{\prime}+W+2 W^{\prime}$

$$
\begin{array}{lr}
\left(N+A+2 A^{\prime}-2 Q\right) / \sqrt{2} & \sqrt{6} \mathrm{Z} \\
\frac{E+E^{\prime}+C+L}{2}+F+C^{\prime}+L^{\prime}-I & \sqrt{3} T
\end{array}
$$

Species $\mathrm{A}_{2 \mathrm{u}}$:
$x+2 x^{\prime}-w-2 W^{\prime}$
$\left(N-A-2 A^{\prime}-2 Q\right) / \sqrt{2}$
$\frac{E+E^{\prime}-C-L}{2}+F-C^{\prime}-L^{\prime}-I$

Species E_{g} :
$x-X^{\prime}+W-W^{\prime}$
$N+a-A^{\prime} \quad Q / 2$
$\mathrm{E}^{\prime}-\mathrm{I}+\mathrm{C}-\mathrm{C}^{\prime}$
I/2
E-F + L - \mathbf{L}^{\prime}

Species $\mathrm{E}_{\mathbf{u}}$:
$x-x^{\prime}-w+w^{\prime}$
$N-A+A^{\prime}$
Q/2
$E^{\prime}-I-G+C^{\prime}$
I/ 2
$E^{\prime}-\mathrm{F}-\mathrm{L}+\mathrm{L}^{\prime}$

TABLE 5-II
G MATRICES FOR $\mathrm{C}_{2} \mathrm{H}_{6}$

Species $\mathrm{A}_{1 \mathrm{~g}}$:

$W_{H}+W_{C} / 3$	$4 W_{C} / 3 d$
$W_{H} / d^{2}+W_{C} / \epsilon a^{2}$	$-8 W_{C} / \sqrt{6}$
	$2 \cdot W_{C} / \sqrt{6} d$

Species $A_{2 u}$:

$W_{H}+W_{C} / 3$	$4 W_{C} / 3 d$
	$W_{H} / d^{2}+W_{C} / 6 d^{2}$

Species E_{g} :

$$
\begin{array}{lll}
W_{H}+W_{C} / 3 & -\sqrt{2} W_{C}\left(\frac{1}{3 d}+\frac{2}{R}\right) & -2 \sqrt{2} W_{C} / 3 d \\
& \frac{W_{H}}{d^{2}}+W_{C}\left(\frac{1}{6 d^{2}}+\frac{2}{R d}+\frac{6}{R^{2}}\right) & W_{C}\left(\frac{2}{R d}+\frac{1}{3 d^{2}}\right)-\frac{W_{H}}{4 \mathrm{~d}^{2}} \\
& \frac{5 W_{H}}{2 d^{2}} \frac{8 W_{C}}{3 d^{2}}
\end{array}
$$

Species E_{u} :
$W_{H}+W_{C} / 3$

$$
\begin{array}{ll}
-\sqrt{2} W_{C} / 3 d & -2 \sqrt{2} W_{C} / 3 d \\
\frac{W_{H}}{d^{2}}+\frac{W_{C}}{6 d^{2}} & \frac{W_{C}}{2 d^{2}}-\frac{W_{H}}{3 d^{2}} \\
& \frac{5 W_{H}}{2 d^{2}}+\frac{8 W_{C}}{3 d^{2}}
\end{array}
$$

CHAPTER VI

RESULIS FOR $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$ AND DISCUSSION

All but three force constants obtained for $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ were used in the calculation of the vibrational frequencies of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$. Since the interaction between two hydrogen or fluorine atoms at opposite ends of the molecule is not the same as between such atoms in the same end-group, the force constants F_{FH} and F_{FH}, are replaced by new constants $\mathrm{F}_{\mathrm{HH}}{ }^{+}, \mathrm{F}_{\mathrm{HH}}{ }^{+\prime}$, $\mathrm{F}_{\mathrm{EF}}{ }^{+}$, and $\mathrm{F}_{\mathrm{FF}}{ }^{+^{\prime}}$. Also, in order to obtain satisfactory agreement between calculated and observed frequencies it was found necessary to use a separate constant $K_{C C}$ for the two moiecules. The values of these special force constants and other molecular constants for $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ are listed in Table 6-I.

The vibrational frequencies of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ calculated in the present work and by Shimanouchi ${ }^{5}$ are listed in Table 6-II. The rather close agreement between the two sets of calculated frequencies is not surprising, since the final force constants obtained here for $\mathrm{C}_{2} \mathrm{H}_{6}$ differ little from those determined by Shimanouchi for CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$. The calculated frequencies agree well with those observed, except for the lowest frequency of the species E_{g}. It is possible that the experimental value of this frequency is in error, since, although it is Raman-active, it has never been observed directly but has been inferred from three infrared combina-
tion bands.
The calculated frequencies for $\mathrm{C}_{2} \mathrm{~F}_{6}$ seem satisfactory, although tending to be slightly lower than the observed values. This may indicate that $\mathrm{C}-\mathrm{F}$ forces are also strengthened by the increasing fypurination of ethane.

The calculated C-F stretching frequencies, of species E_{g} and E_{u} are separated by about $100 \mathrm{~cm}^{-1}$, while the observed frequencies are approximately equal. Since in this case there seems to be little doubt about the assignment, this lack of agreement is either caused by a difference of force constants of $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ or by an inadequacy of the potential function.

A strong mixing of C-C and C-F stretching occurs in vibrations of species $A_{1 g}$, with the highest frequency, observed at $1417 \mathrm{~cm}^{-1}$ having largely the character of C-C stretching. The calculated C-C stretching force constant is higher in $\mathrm{C}_{2} \mathrm{~F}_{6}$ than in $\mathrm{CF}_{3}-\mathrm{CH}_{3}, 4.0$ as compared to 3.6 $\mathrm{md} / \mathrm{A}^{0}$, which is in accord with the enpirical finding that fluorine substitution strengthens the C-C bond.

There has been considerable interest in this $1417 \mathrm{~cm}^{-1}$ Raman bond since it was reported by Rank and Pace ${ }^{21}$ in the spectrum of the 1iquid and by Nielsen and Gullikson ${ }^{22}$ for the gas. It is rather surprising to have a C-C or C-F stretching frequency above $1400 \mathrm{~cm}^{-1}$ when the highest frequency of CF_{4} is at $1265 \mathrm{~cm}^{-1}$. In a recent paper, Carney et al..23
${ }^{20}$ L. G. Smith, J. Chem. Phys. 17, 139 (1949).
${ }^{21}$ D. H. Rank and E. L. Pace, J. Chem. Phys. 15, 39 (1947).
${ }^{22}$ J. Rud Nielsen and C. W. Gullikson, J. Chem. Phys. 21, 1416 (1953).
${ }^{23}$ Rose A. Carney, E. A. Piotrowski, A. G. Meister, J. H. Braun, and F. F. Cleveland, J. Mol. Spect. I, 209 (1961).
interpret the $1417 . \mathrm{cm}^{-1}$ band as the overtone of the $A_{2 u}$ fundamental at $714 \mathrm{~cm}^{-1}$ and ascribe to the highest $A_{1 g}$ fundamental the frequency 1228 cm^{-1}, chosen on the basis of infrared combination bands. While this is a possible interpretation, it seems less plausible than that adopted here.

For all three molecules the torsional vibration is in a species by itself and does not interact with the other vibrations. For $\mathrm{C}_{2} \mathrm{H}_{6}$ the torsional frequency is $278 \mathrm{~cm}^{-1},{ }^{24}$ which corresponds to a force constant of $0.036 \mathrm{md} \mathrm{A}^{0} / \mathrm{rad}^{2}$. For $\mathrm{CF}_{3}-\mathrm{CH}_{3}$ the torsional frequency has been determined by a study of infrared combination bands to be $238 \mathrm{~cm}^{-1},{ }^{17}$. corresponding to a force constant of $0.044 \mathrm{md} \cdot \mathrm{A}^{0} / \mathrm{rad}^{2}$. This value is consistent with the microwave measurements of Minden and Dailey. ${ }^{25}$ For both molecules the contribution to the potential function resulting from the intrinsic torsional stiffness of the C-C bond, as expressed by the force constant Ω, is about equal to the contributions arising from the forces between unbonded atoms.
${ }^{24}$ J. Romanko, T. Feldman, and H. L Welsh, Canadian J. Phys. 33, 588 (1955).
${ }^{25}$ H. Minden and 8. P. Dailey, Phys. Rev. 82, 338 A (1951).
table 6-I
FORCE CONSTANTS AND MOLEGULAR CONSTANTS FOR $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$

Description	Value for $\mathrm{C}_{2} \mathrm{H}_{6}$	Value for $\mathrm{C}_{2} \mathrm{~F}_{6}$
${ }^{1} \mathrm{KX}^{+}{ }^{+}$force constant	$0.035 \mathrm{md} / \mathrm{A}^{\circ}$	$0.06 \mathrm{md} / \mathrm{A}^{\circ}$
$\mathrm{F}_{\mathrm{XX}}{ }^{\prime}+$ force constant	-0.01 md/ ${ }^{\circ}$	$-0.01 \mathrm{md} / \mathrm{A}^{\circ}$
$\mathrm{K}_{\text {CC }}$ force constant	$2.8 \mathrm{md} / \mathrm{A}^{\circ}$	$4.0 \mathrm{md} / \mathrm{A}^{\circ}$
C=C bond length	$1.54 \mathrm{~A}^{\text {o }}$	$1.52 \mathrm{~A}^{0}$
C-X bond length	$1.09 \mathrm{~A}^{0}$	$1.36 \mathrm{~A}^{\circ}$
XCX bond angle	$109^{\circ} 28^{\prime}$	$109^{\circ} 28^{\prime}$
XCC bond angle	$109^{\circ} 28{ }^{\prime}$	$109^{\circ} 28^{\prime}$

table 6-il
VIBRATIONAL FRRQUENGIES OF $\mathrm{C}_{2} \mathrm{H}_{6}$ AND $\mathrm{C}_{2} \mathrm{~F}_{6}$ (in cm^{-1})

APPENDIX I

DIAGONALIZATION OF NON-SYMMETRIC MATRIX

Since many techniques are available for the calculation of the eigenvalues and eigenvectors of a matrix ${ }^{1,26}$, only that used in this work is discussed here. Let L_{i}. be a row vector composed of the elements in the i th row of the matrix L and let L_{j} be a column vector formed in a similar manner. Let the eigenvectors of a block of $G F=H$ be $L_{0_{k}}, k=1,2,-\ldots, N_{r}$ with eigen values $\boldsymbol{\lambda}_{k}$ so that $H L_{\bullet_{k}}=\boldsymbol{\lambda}_{k} L_{\bullet_{k}}$. This set of equations can also be written as $H L=L \Lambda$, where Λ is a diagonal matrix with elements λ_{k}. The equivalent form of this equation, $L^{-1} H L=A$, shows that the eigenvalues of H can be determined by diagonalization of H by similarity transformation, and that the eigenvectors of H are represented by the columns of the transformation matrix L.

Excluding the case of accidental degeneracy, the eigenvalues of a block of the GF matrix are distinct and the corresponding eigenvectors are linearly independent by the following argument. Assume there is one and only one dependency relation among the N eigenvectors of a GF block. This can be written as $L_{0_{1}}=\sum_{k=2}^{N} a_{k} L_{._{k}}$, where not all $a_{k}^{\prime \prime}$ s are $=0$. Then H L. $1=\sum_{k=2}^{N} a_{k} \lambda_{k} L_{\bullet_{k}}=\lambda_{1} L_{\bullet_{1}}=\sum_{k=2}^{N} a_{k} \lambda_{1} L_{0_{k}}$. And therefore, N ${ }_{k=2} a_{k}\left(\lambda_{k}-\lambda_{1}\right) L_{0_{k}}=0$. Since $\lambda_{k} \neq \lambda_{1}, k=2,3-\ldots N$, the last equation is a second dependency relation among the eigenvectors, in contradiction to the initial assumptions. Thus, there cannot be a single dependency relation among the eigenvectors. In a similar manner it can

[^5]be shown that there can not be two, or three, or any other number of dependency relations. The space spanned by the eigenvectors is, therefore, N dimensional.

An arbitrary column matrix X, in the space spanned by the eigenvectors, can be written as a linear combination of the eigenvectors, $X=\Sigma_{k} a_{k} \quad{ }^{L} \cdot k \cdot$ The $L .{ }_{k}$'s form a linearly independent set of vectors, since the normal coordinates are independent. If the vector X is multiplied repeatedly by H the result is : $H^{p} X=\sum_{k} a_{k} \lambda_{k}^{p} L_{k}$. If $\lambda_{1}>\lambda_{2}>\lambda_{3} \cdots$, then for p sufficiently large and $a_{1} \neq 0$ the term with $k=1$ will dominate on the right hand side of this equation. As a result,

$$
H^{p} x=H\left(H^{p-1} x\right)=\boldsymbol{\lambda}_{1}^{p} a_{1} L \cdot 1=\boldsymbol{\lambda}_{1}\left(\boldsymbol{\lambda}_{1}^{p-1} a_{1} L \cdot{ }_{1}\right)=\boldsymbol{\lambda}_{1} H^{p-1} x .
$$

Thus, $H^{p-1} \mathrm{X}$, denoted as $\mathrm{V} \cdot{ }_{1}$, is an approximation to $\mathrm{L} \cdot{ }_{1}$ the eigenvector of H corresponding to the largest eigenvalue $\boldsymbol{\lambda}_{1}$. The eigenvalue $\boldsymbol{\lambda}_{1}$ is approximately equal to the normalization constant of $H^{P} X$ divided by the normalization constant of $\mathrm{H}^{\mathrm{p}-1} \mathrm{X}$.

The matrix H is then modified for the calculation of the next largest eigenvalue and corresponding vector by the deflation method of Aitken. ${ }^{27}$ An approximate value of $\left(L^{-1}\right)_{1}$., designated U_{1}., is calculated by an iteration method similar to that above with V. 1 chosen as the first approximation. It is now easy to verify that the matrix $\mathrm{H}-\boldsymbol{\lambda}_{1}\left(\mathrm{~V} \cdot{ }_{1}\right)\left(\mathrm{U}_{1}.\right) / \sum_{\mathrm{k}} \mathrm{U}_{1 \mathrm{k}} \mathrm{V}_{\mathrm{k} 1}$ has the same eigenvectors as H and also the same eigenvalues, except for $\boldsymbol{\lambda}_{1}$ which has been changed to zero. The above proceedure is then repeated to calculate $\boldsymbol{\lambda}_{2}$, etc.
${ }^{27}$ A. C. Aitken, Proc. Roy. Soc. Edinburgh 57, 172 (1937).

PART II

VIBRATIONAL SRECTRA OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ AND $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$

CHAPTER I

INTRODUCTION

Previous Work

The replacement of some hydrogen atoms by halogens in a hydrocarbon often results in a compound with useful physical properties. The fluorocarbons are particularly interesting in that they are in general highly volatile and have low surface tension, refractive index, and dielectric constant. ${ }^{28}$ They are unusually stable, partly because the fluorine atoms form a protective shield about the carbon skeleton. Also contributing to the stability of these compounds is the strengthening of the C-C bond due to fluorine substitution, as noted in part I of this thesis.

The methyl halides and silyl halides have been thoroughly studied by Glockler and co-workers ${ }^{29}$ and by Cleveland et al. ${ }^{30}$ After satisfactory
${ }^{28}$ J. H. Simons in Fluorine Chemistry, Volume I, page 403 (New York: Academic Press, 1950).
${ }^{29}$ G. Glockler et al., J. Chem. Phys. 7, 278, 382, 553 (1939); 8, 125, 699, 897, (1940); $9,224,527$ (1941); 10, 607 (1942).
${ }^{30}$ F. F. Cleveland et al., J. Chem. Phys. 18, 346, 1073, 1076, 1081 (1950) ; 19, 119, 784, 1561 (1951); 20, 454, 1949 (1952); 22, 193 (1954); 23, 833 (1955); 25, 941 (1957).
force constants had been determined for these compounds much of the research effort in this field has turned to the more complicated ethylenes and ethanes. The molecular constants of these compounds can be determined by electron diffraction measurements, microwave spectroscopy, and by thermodynamic methods. The principal method of determining the interatomic forces for any but the most simple molecules is by study of the vibrational spectra, since the band frequencies are directly related to the strength of the chemical bonds.

At the Üniversity of Oklahoma Frofessor J. Rud Nielsen and coworkers have studied the vibrational spectra of a large number of these compounds with emphasis on fluorinated molecules. The infrared and Raman spectra of more than a dozen halogenated ethylenes have been reported ${ }^{31}$ with assignments and thermodynamical properties in most cases. More than twenty fluoroethanes and fluoro-haloethanes ${ }^{32}$ with symmetrical end groups have been examined in this laboratory. Complete assignments of the fundamentals and thermodynamic functions have been calculated for most of these compounds. More recently, Klaboe and Nielsen have extended this work to include eight compounds with no symmetrical end group. 33

[^6]
Rotational Isomerism

The relative orientation of the end groups of ethane and its halogenated derivaties has only recently been determined. For many years free rotation of the end groups about the C-C bond was assumed to occur, but this assumption was disproved by low temperature measurements of the heat capacity of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{D}_{6}{ }^{34}$ Since there is no free rotation, the equilibrium position must be either staggered or eclipsed with $D_{3 d}$ or $D_{3 h}$ symmetry, respectively.

Staggered Configuration ($\mathrm{D}_{3 \mathrm{~d}}$)

Eclipsed Configuration $\left(\mathrm{D}_{3 \mathrm{~h}}\right)$

As the selection rules for these two symetries are quite similar the correct equilibrium configuration was not definitely known until. Smith ${ }^{20}$ resolved some of the rotational fine structure of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{D}_{6}$. Later Romanko, Feldman and Welsh ${ }^{24}$ substantiated Smith's results with a high $^{\text {n }}$ resolution study of the Raman bands of ethane, proving the staggered form to be the equilibrium configuration. The substituted ethanes are also believed to exist in this configuration.

If neither end group of a halogenated ethane is symmetrical there are two or three rotational isomers. For $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ the two rotational forms called. "trans" and "gauche" are shown below.
${ }^{34}$ G. Herzberg, Infrared and Raman Spectra of Rolyatomic Molecules (New York: D. Van Nostrand Company, 1945).

In the work of Nielsen, Rlaboe, and Lakshmi ${ }^{33,35}$ values of ΔH°, the enthalpy difference between the rotational isomers, varying from 0 to nearly 1200 cal/mole were determined for various molecules of this general type.

[^7]
CHAPTER II

EXPERTMENTAL RESULTS

The samples of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ used in the present work were prepared and purified by Dr. L. H. Beck in the laboratory of Professor A. L. Henne at Ohio State University. The spectra indicate that both samples are of high purity.

The infrared spectrum of liquid $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ has previously been reported by the Naval Research Iaboratory. ${ }^{36}$ The infrared spectra of the gaseous and solid phases of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and the gaseous, liquid and solid phases of $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ were recorded in the region from 300 to $5000 \mathrm{~cm}^{-1}$ with the aid of a Perkin-Elmer double pass spectrometer equipped with CsBr, NaCl, and LiF prisms. Transmission curves plotted from these records are shown in Figs. $2-1,2, \cdots, 11$. The variation with temperature of the absorbances of the fundamentals, over the range from 25 to $110^{\circ} \mathrm{C}$ for $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ and from 25 to $150^{\circ} \mathrm{C}$ for $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$, was determined.

The Raman spectrum of liquid $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ was photographed with a 3-prisai glass spectrograph of reciprocal linear dispersion $15 \mathrm{~A}^{0} / \mathrm{mm}$ at $4358 \mathrm{~A}^{0}$, and polarization measurements were made. The Raman spectrum of
${ }^{36}$ N. R. L. Report No. 3567. Spectroscopic Spectra of Fluorinated Hydrocarbons (Naval Research Laboratory, Washington D. C., 1952).

1iquid $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ was photographed by M. Z. E1-Sabban ${ }^{37}$ at this laboratory. In Table II-1 Raman data for $\mathrm{CF}_{2} \mathrm{Cl}^{-\mathrm{CH}_{2}} \mathbf{C l}$ are listed.

The frequencies of the stronger bands in the infrared and Raman spectra of liquid $\mathrm{Cr}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ have been previously reported by R. E. Ragarise. 38 ivo previous vibrational spectra of $\mathrm{CF}_{2} \mathrm{Cl}^{38} \mathrm{CH}_{2} \mathrm{C1}$ have been published.

37J. Rud Nielsen, Report to the A E C. Division of Research Under Contract AT-(40-1)-1074, June 15, 1954.

38 R. E. Ragarise, J. Chem Phys. 24, 1264 (1956).

Fig. 2-1: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Cs Br Region)

Fig. 2-2: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Na Cl Region)

Fig. 2-3: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (Li F Region)

Fig. 2-5: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}_{-\mathrm{CH}_{2} \mathrm{Cl}} \mathrm{Cs} \mathrm{Br}$ Region)

Fig. 2-6: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}_{-\mathrm{CH}_{2} \mathrm{Cl}}$ (Na Cl Region)

Fog. 2-7: Infrared Spectrum of Gaseous $\mathrm{CF}_{2} \mathrm{Cl}^{-\mathrm{CH}_{2} \mathrm{Cl}}$ (Li F Region)

Fig. 2-8: Infrared Spectrum of Liquid and Solid $\mathrm{CF}_{2} \mathrm{Cl}^{-\mathrm{CH}_{2} \mathrm{Cl}}$ (Cs Region)

Fig. 2-9: Infrared Spectrum of Liquid $\mathrm{CF}_{2} \mathrm{Cl}_{-\mathrm{CH}_{2} \mathrm{Cl}}$ (Na Cl and Id F Region)

Fig. 2-10: Infrared Spectrum of Solid $\mathrm{CF}_{2} \mathrm{Cl}_{-} \mathrm{CH}_{2} \mathrm{Cl}$ (Na Cl Region)

Fig. 2-11: Infrared Spectrum of Solid $\mathrm{CF}_{2} \mathrm{Cl}_{-1} \mathrm{CH}_{2} \mathrm{Cl}$ (If F Region)
table 2-I
RAMAN SPECTRUM OF LIQUID $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ AT ROOM TEMPERATURE

Wave Number	Description ${ }^{\text {a }}$	Depolarization	Interpretation ${ }^{\text {b }}$
126	vvw		I, II
177	vw		I, II
195	vw		I, II
284	s, sh	0.60	I, II
~ 430	s, vd		I
433	vs, sh	0.59	II
556	w		I
577	vw		II
663	s, sh	0.33	II
~ 725	vvw		$177+556=733$ (I)
761	w, d	dp	I, II
779	vs, sh	0.39	I
811	m	0.69	II
~835	vvw		I
896	vw, vd		I, II
964	m, d	dp	I
984	vw, d		430+556=986 (I)
1022	vw	0.75	II
~ 1085	vw, vd		I
~ 1100	vw, vd		II
1185	vw		433+761=1194 (II)

TABLE 2-I (Continued)

Wave Number	Description ${ }^{\text {a }}$	Depolarization	Interpretation ${ }^{\text {b }}$
1219	vvw		I
1244	vvw		II
1251	VVW		284+964=1248 (I)
1303	w, sh	0.44	I, II
1430	m, sh	dp	I, II
2845	w	pol.	$2 \times 1430=2860$ ($1, I I$)
2973	vs		II
2983	vs	0.30	I
3036	m	0.84	I, II

The following abbreviations have been used: strong, medium, w.weak, \underline{v} very, diffuse, and sh sharp.
${ }^{\mathrm{b}} \mathrm{I}$ designates the more stable isomer, and II the less stable isomer.

CHAPTER III

INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$

The large number of strong infrared and Raman bands observed indicates that, like the previously investigated ethanes of this form, $\mathrm{CF}_{2} \mathrm{Br}-$ $\mathrm{CH}_{2} \mathrm{Br}$ exists as a mixture of rotational isomers. These are undoubtedly a "trans" form of symmetry Cs and two enantiomorphic "gauche" forms having no symmetry. The normal vibrations of the "trans" form divide into 11 of species a^{\prime} and 7 of species $a^{\prime \prime}$. The former are polarized in the Raman effect and the latter depolarized. All 18 normal vibrations of the "gauche" form belong to the same species, and all fundamentals of either isomer are both infrared and Raman active.

Assuming the internuclear distances $C-C=1.54, C-H=1.093, C-F=$ 1.37 , and $C-B r=1.98 \mathrm{~A}^{\circ}$, and tetrahedral angles, one finds the principal moments of inertia to be $209.7,1572$ and $1599 \times 10^{-40} \mathrm{~g} \mathrm{~cm}{ }^{2}$ for the "trans" form. The axis of the largest moment of inertia is perpendicular to the symmetry plane, while the axis of intermediate moment lies in the symmetry plane making an angle of $38^{\circ} 42^{\prime}$ with the C-C bond. Infrared bands of species $a^{\prime \prime}$ should therefore have type contours, and bands of species a^{\prime} should have contours that are hybrids between types A and B. However, it is not possible to make any reliable predictions of these contours on the basis of Badger and Zumwalt's curves. On the
${ }^{39}$ R. M. Badger and L. R. Zumwalt, J. Chem. Phys. 6, 711 (1938).
other hand, since the molecule is very nearly a symmetrical top, the curves of Gerhard and Dennison ${ }^{40}$ can be applied. They show that a parallel band should have a PR separation of $6 \mathrm{~cm}^{-1}$ with a Q branch having an intensity of about 17 percent of the entire band. The perpendicular bands should have a single maximum. Vibrations of species a" and a^{\prime} should give rise to perpendicular and hybrid infrared bands respectively. Since the configuration of the "gauche" isomer is not accurately known, no predictions can be made about the contours of its infrared bands; however, they should be rather similar to those of the "trans" isomer. Actually, only eight bands show more than one absorption maximum. The observed PR separations vary from 5 to $10 \mathrm{~cm}^{-1}$, the average being $7.1 \mathrm{~cm}^{-1}$. For none of these bands is a Q branch observed.

When the temperature of gaseous $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ was raised from 25° to $110^{\circ} \mathrm{C}$ six of the strong infrared bands were enhanced, while the intensities of ten strong bands decreased. The latter bands were assigned as fundamentils of the more stable rotational isomer, which will be designated I; the former bands were assumed to be fundamentals of the less stable isomer, II. A comparison of the intensities of Raman bands at 30° and $-50^{\circ} \mathrm{C}$ provided a similar basis for ascribing a few additional bands to isomers I or II. Furthermore, it was found that ali bands assigned to the less stable isomer are absent, or at least extremely weak, in the solid at $-170^{\circ} \mathrm{C}$.
rough
Since acalculation showed that the dipole moments of the isomeric forms of $\mathrm{CF}_{2} \mathrm{Br}^{-\mathrm{CH}_{2} \mathrm{Br}}$ should be equal to within less than 3 percent, no

40s. L. Gerhard and D. M. Dennison, Phys. Rev. 43, 197 (1933).
attempt was made to differentiate between the spectra of the twe isomers by observing the intensities of the infrared bande vhen eine compound is discived in solvents of different polarity.

From the fundamentals assigned to other halogenated ethanes it is possible to predict roughly the frequencies of the present compound. This was used, in conjunction with the observed spectral data, as a criterion for the assignment of the fundamentals. To account for all the fundamentals of each rotational isomer it was necessary to assume that several fundamentals of I coincide or overlap with fundamentals of II. The choice of these is rather uncertain. The asgigned fundamentals are listed in Tables $3-I$ and $3-I I$.

A test of these assignments is provided by the sum rule of Mizushima et al. ${ }^{41}$ One obtains $\sum_{i} V_{i}^{2}=27.80 \times 10^{6}$ and 27.68×10^{6} for isomers I and II, respectively. The empirical sum rule of Bernstein and Pullin ${ }^{42}$ is also satisfied quite well, the sums being $\sum_{i} \nu_{i}=16,469$ and 16,444 for I and II, respectively.

Although consideration of steric hindrance would lead one to expect that the more stable isomer is the "trans" form, it was not possible to establish this on the basis of the present data.

In terms of the assigned fundamentals it has been possible to interpret satisfactorily practically all the observed infrared and Raman bands. Only the difficulties will be mentioned here. There is some uncertainty about the correlation of the Raman bands at 530 and $544 \mathrm{~cm}^{-1}$, as well as
${ }^{41}$ S. I. Mizushima et al., J. Chem. Phys. 21, 215 (1953).
${ }^{42}$ H. J. Bernstein and A.D.A. Pullin, J. Chem. Phys. 21, 2188 (1953).
those at 639 and $648 \mathrm{~cm}^{-1}$, with the corresponding infrared bands. This may be caused by Fermi coupling with the overtones of the fundamentals at 272 and $326 \mathrm{~cm}^{-1}$. No explanation was found for the apparent splitting of the I fundamental at $756 \mathrm{~cm}^{-1}$ into two components at 753 and $758 \mathrm{~cm}^{-1}$ in the infrared spectrum of the solid. The similar splitting of the band at. 1051 and $1056 \mathrm{~cm}^{-1}$ mey be caused by Fermi coupling. The weak infrared band of the gas at $955 \mathrm{~cm}^{-1}$, which appears to belong to II, can only be explained as a ternary combination band, or as an impurity band. It seems unrelated to the infrared bands in the solid at 943 and $965 \mathrm{~cm}^{-1}$, which can be explained as binary combination bands of I, shifted somewhat due to their proximity to the fundamental at $928 \mathrm{~cm}^{-1}$. A most peculiar feature in the spectrum of the solid is the strong band at $1227 \mathrm{~cm}^{-1}$. While this can be explained as a binary combination band $(229+928=1227)$, no plausible explanation has been found for its high intensity.

TABLE 3-I

FUNDAMENTAL VIBBATION FREQUETNGIES OF THE MORR STABLE ROTATIONAL ISOMER (I) OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (in cm^{-1})

$\underset{\text { (gas) }}{\text { Infrared }}$	Infeared (liquid)	Infrared (solid)	Raman (1iquid)
			80 m
			140 m
			170 m
			299 m
~320 vvw			326 vs
374 vvw			373 m
394 vvw			397 w
~ 540 w	542 m	540 m	530 m
651 s	641 vs	638 vs	$\left.\begin{array}{l} 639 \\ 648 \end{array}\right\} \mathrm{s}$
756 s	754 s	753 s	753 vs
866 m	864 m	867 m	865 w
928 vvs	923 vvs	929 vs	923 vs
1070 vs	1062 vs	1056 s	1065 w
1217 vs	1205 vs	1197 s	1206 m
1250 vs	1256 s	1254 s	1256 s
1423 s	1420 vs	1418 m	1420 m
2999 s	~ 2976 s	2989 s	2986 s
3047 w	3049 s	3052 s	

${ }^{\text {a }}$ The following abbreviations have been used: stieng, medium, w weak, and \underline{v} very.

TABLE 3-II
FUNDAMENTAL VIBRAIION FREQUENCIES OF THE LESS STABLE ROTATIONAL ISOMER (II) OF $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ (in cm^{-1})

$\begin{aligned} & \text { Infrared } \\ & (\mathrm{gas})^{\mathfrak{s}} \end{aligned}$	Infrared (1iquid)	$\begin{aligned} & \text { Infrared } \\ & \text { (solid) } \end{aligned}$	Raman (Iiquid)
			80 m
			140 m
			187 vs
			272 m
~ 320 vw			326 vs
374 vw			373 m
394 vw			397 w
549 m	548 m	~ 547 vvw	544 m
618 m	613 s	~ 612 vvw	613 s
734 s	728 s		729 m
866 m	864 m	867 m	865 w
986 vs	978 vs	977 vvw	978 m
1097 vs	1086 vs	1079 w	1088 vw
1165 s	1167 s	1168 w	1166 vw
1247 s	1238 s		1241 vw
1423 s	1420 vs	1418 m	1420 m
2975 s	2976 s		2971 s
3047 w	3049 s	3052 s	

$a_{\text {The }}$ following abbreviations have been used: \underline{s} strong, medium, w weak, and \underline{v} very.
$\mathrm{b}_{\text {The }}$ bands listed in this columin can all be interpreted as fundamentals or combination bands of isomer I.

GHAPTER IV

INTERPRETATION OF THE VIBRATIONAL FREQUENCIES OF $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$

The infrared spectrum of $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ has fewer strong bands than observed for $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$, which indicates more overlapping of fundamentals. Otherwise, there are many similarities in the spectra, as might be expected. Both molecules have an isomer of symmetry $C s$ and the remarks made before concerning rotational isomerism, division of fundamentals according to symmetry species, and polarization of Raman bands apply also to $\mathrm{CF}_{2} \mathrm{C} 1-\mathrm{CH}_{2} \mathrm{Cl}$.

Assuming the internuclear distances $\mathbf{C - C}=1.54, \mathrm{C}-\mathrm{H}=1.093, \mathrm{C}-\mathrm{F}=$ 1.37, and $C-C l=1.77 A^{\circ}$, and tetrahedral angles, one finds for the "trans" isomer the principal moments of inertia to be 191, 642, and 659 $x 10^{-40} \mathrm{~g} \mathrm{~cm}^{2}$. The axis of the largest moment of inertia is perpendicular to the symmetry plane, while the axis of the intermediate axis makes an angle of $42^{\circ} 18^{\circ}$ with the $C-C$ bond. Since the molecule is very nearly a symmetrical top, the curves of Gerhard and Dennison ${ }^{40}$ should be of some use in predicting the contours of infrared bands. They show that a parallel band should have a $P R$ separation of $10 \mathrm{~cm}^{-1}$ and a Q branch with an intensity about 18 percent of that of the entire band. The perpendicular bands should have a single broad maximum. The $a^{\prime \prime}$ bands are perpendicular, while the a^{\prime} bands are hybrids. The two bands at approximately $891 \mathrm{~cm}^{-1}$, assigned as $a^{\text {" }}$ fundamentals involving out-ofplane C-H bending, have the broad single maxima expected of perpendicular
bands. On the other hand, the band at $819 \mathrm{~cm}^{-1}$, which is ascribed to inplane $\mathrm{C}-\mathrm{H}$ bending and is associated with a change of dipole moment roughly along the axis of smallest moment of inertia, has the predicted PQR structure and a PR separation of $10 \mathrm{~cm}^{-1}$. For the other bands the correlation between species and observed contours is less clear cut.

In the spectrum of the gas many fundamentals of the different isomers evidently overlap. In the spectrum of the liquid some of the overlapping bands are resolved because of the absence of rotational structure. Comparison of the spectrum of the liquid with that of the solid shows that many bands are almost totally absent in the solid phase. With this valuable aid for the separation of fundamentals of the isomers a reasonable assignment was achieved.

Measurement of the intensities of the infrared bands at temperatures up to $150^{\circ} \mathrm{C}$ confirmed the prevalence of overlapping bands. In the spectral region of the $N a C l$ prism only the bands at 969 and $1032 \mathrm{~cm}^{-1}$ displayed a readily measurable temperature dependence. The former decreases in intensity with increasing temperature and must therefore be a fundamental of the more stable isomer, designated I. The band at 1032 exhibit the opposite temperature effect and is almost completely absent from the spectrum of the solid. It clearly belongs to the less stable isomer, II. The approximate vibrational motion giving rise to these bands is C-C stretching, which is strongly dependent on the relative orientation of the end groups.

The normal vibrations of $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ can be conveniently divided into six which are essentially motions of the hydrogen atoms and twelve vibrations in which the heavier atoms participate strongly. There are
two C-H stretching modes near $3000 \mathrm{~cm}^{-1}$ and two $\mathrm{C}-\mathrm{H}$ bending modes at 1431 and $1303 \mathrm{~cm}^{-1}$. Two more $\mathrm{C}-\mathrm{H}$ bending modes occur at approximately 890 and $840 \mathrm{~cm}^{-1}$, with a small separation between frequencies of the two isomers.

The C-F and C-C stretching fundamentals are represented by strong infrared bands in the spectral range from 900 to $1300 \mathrm{~cm}^{-1}$. Since the fluorine stretching modes are associated with only one end group; they should have about the same frequencies in both isomers. Because of strong combination bands in this region the assignment of these fundamentals is not certain, but they are reasonably chosen as 1235 and 1103 cm^{-1} for I and 1250 and $1109 \mathrm{~cm}^{-1}$ for II. The C-C stretching fundamentals undoubtedly lie at 968 and $1029 \mathrm{~cm}^{-1}$ for I and II, respectively. Of course, such a designation of a band as resulting from a simple motion of one or two atoms is at best a rough approximation, since any normal mode envolves motion of all atoms.

The C-C1 stretching frequencies are identified with the bands at 785 and $761 \mathrm{~cm}^{-1}$ for the more stable isomer, I , and with those at 768 and $661 \mathrm{~cm}^{-1}$ for II. The separations of these bands offer some support for the natural assumption that isomer I has the "trans" form. Since the "gauche" isomer has no symmetry, interaction can occur between any two of its fundamentals. A larger separation may therefore be expected between its C-Cl frequencies than is observed for isomer I. The bands at 560 and $578 \mathrm{~cm}^{-1}$ are assigned as fundamentals involving a $\mathrm{Cr}_{2} \mathrm{Cl}_{1}$ deformation which is predominantly C-F bending. The bands at 423 and $430 \mathrm{~cm}^{-1}$ are interpreted as fundamentals associated with bending of the $\mathrm{C}-\mathrm{Cl}$ bond of the $\mathrm{CH}_{2} \mathrm{C} 1$ group, and the bands at 325 and $314 \mathrm{~cm}^{-1}$ are
ascribed to low frequency deformation of the $\mathrm{CF}_{2} \mathrm{Cl}$ group. The bands observed in the Raman spectrum at $328,284,195$ and $177 \mathrm{~cm}^{-1}$ are assumed to be common for both isomers and are assigned to rocking of the end groups. The torsional fundamental of either isomer is identified with the Raman band at $126 \mathrm{~cm}^{-1}$. The assigned fundamentals are listed in Tables 4-II and 4-III. In terms of these fundamentals it is possible to interpret satisfactorily almost all of the observed bands.

A test of these assignments is pfotivided by the sum rule of Mizushima et al. ${ }^{41}$ One obtains $\sum_{i} \nu_{i}^{2}=28.94 \times 10^{6}$ and 28.88×10^{6} for isomers I and II, respectively. The empirical sum rule of Bernstein and Pullin ${ }^{42}$ is also satisfied reasonably we11, the sums being $\sum_{i} \nu_{i}=17,302$ for I and $\sum_{i} \nu_{i}=17,359$ for II.

TABLE 4-I

FUNDAMENTAL VIBRAITON FREQUENCIES OF THE MORE STABLE ROTATIONĀL ISOMER (I) OF CF $\mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}$ (in cm^{-1})

$\begin{aligned} & \text { Infrared } \\ & \text { gas }^{\text {g }} \end{aligned}$	Infrared (1iquid)	Infrared (solid)	Raman (liquid)
			126 vvw
		-	177 vw
			195 vw
			284 s
~325 s			328 m
423 s	$\sim 422 \mathrm{vw}$	~ 421 vw	430 s
560 s	553 m	553 m	556 w
761 w	758 s	754 в	761 w
785 w	777 w	777 w	779 s
$\sim 855 \mathrm{~m}$	833 vvw	$\sim 835 \mathrm{vvw}$	$\sim 835 \mathrm{vvw}$
891 s	894 s	894 w	896 vw
968 s	964 s	962 s	964 m
1103 s	1086 s	1078 s	~ 1085 vw
$\sim 1235 \mathrm{~m}$	1217 s	1212 m	1219 vvw
1303 w	1299 m	1303 w	1303 w
1431 s	1425 m	1422 m	1430 m
2989 s	2983 m	2982 s	2983 vs
3036 m	3037 m	3035 s	3036 m

table 4-II
FUNDAMENTAL VIBRATION FREQUENCIES OF THE LIESS STABLE ROTATIONAL ISONGR (II) OF $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}(\mathrm{in} \mathrm{cm}-1)$

$\underset{(\mathrm{gas})^{a}}{\text { Infrared }}$	Infrared (liquid)	$\begin{aligned} & \text { Infrared } \\ & \text { (solid) }^{\text {b }} \end{aligned}$	Raman (1iquid)
			126 vvw
			177 vw
			195 v*
			284 s
~ 314 s			328 m
430 s			433 vs
578 s	577 m		577 vw
661 s	661 s		663 s
768 s	758 s		761 w
819 s	811 s		811 m
891 s	883 s	882 vvw	896 vw
1029 s	1019. s	1017 vvw	1022 vw
1109 s	1101 s	1110 vvw	$\sim 1100 \mathrm{vw}$
$\sim 1250 \mathrm{~m}$	1243 s	1239 vw	1244 vw
1303 w	1299 m	1303 w	1303 w
1431 s	1425 m	1422 m	1430 m
2979 s	2975 vw		2973 vs
3036 m	3037 m	3035 s	3036 m

aThe following abbreviations have been used: \underline{s} strong, m medium, W weak, and v very.
$b_{\text {The }}$ bands listed in this column can all be interpreted as fundamentals or combination bands of isomer I.

CHAPTER V

ENTHALPY DIFFERENCE BETUEEN ROTATIONAL ISOMERS

Although a potential barrier restricts the relative rotation of the end groups, it does not prohibit transition from one isomer to the other. A "trans" form is changed to one of the two enantiomorphic "gauche" forms by rotation of one of the end groups a certain angle, probably close to 120°. The standard enthalpy change in such a transition is related to the equilibrium constant R_{p} by the thermodynamic formula $\ln R_{p}=$ - $\Delta H^{\circ} /(R T)+$ const. Since $K_{p}=$ (N "trans"/N "gauche"), where N represents the number of molecules per unit volume, K_{p} is equal to $A_{t} / A_{g} x$ const., where A_{t} is the integrated absorbance of a band belonging only to the "trans" isomer and A_{g} is the absorbance of a band of the "gauche" form. If these absorbances are measured at two different temperatures ΔH° can be calculated from the equation: $\mathbf{4}^{43}$

$$
\Delta H^{o}=R\left[\ln \left(A_{t} / A_{g}\right)_{T_{2}}-\ln \left(A_{t} / A_{g}\right)_{T_{1}}\right] /\left(1 / T_{1}-1 / T_{2}\right) .
$$

Since the pressure and volume of the system remain constant during this isomeric transition, the value of ΔH^{0} is also the change of internal energy of the molecules.

Measurement of the intensity variation with temperature of the bands
${ }^{43}$ H. J. Bernstein, J. Chem. Phys. 18, 987 (1950).
of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ at 928 and $986 \mathrm{~cm}^{-1}$ indicates a value of $\Delta H^{\circ}=1030 \pm$ $100 \mathrm{cal} / \mathrm{mole}$ (gas) for this molecule. Values of $710 \pm 50 \mathrm{cal} / \mathrm{mole}$ for the gas and $1020 \pm 50 \mathrm{cal} / \mathrm{mole}$ for the liquid have been reported by Kagarise ${ }^{38}$, who based his calculations on the temperature-intensity variation of the 754 and $728 \mathrm{~cm}^{-1}$ bands. Since the dipole moments of the rotational isomers differ only alightly, being 1.92 D for the "trans" form and 2.01 D for the "gauche ${ }^{18}$ isomer, the value of $\Delta \mathrm{A}^{\circ}$ should be about the same in the gaseous and liquid phases. It is possible that the value 710 cal/mole is low because of overlapping of the 754 and 728 cm^{-1} bands of the gas.

In the case of $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$, the temperature variation of the fundamentals at 969 and $1032 \mathrm{~cm}^{-1}$ indicates a value of $\Delta H^{0}=430 \pm 100$ cailmoie (gas).

Most of the fundamentals of the two isomers of $\mathrm{CF}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$ are fairly well separated, while many fundamentals of the rotational isomer of $\mathrm{CF}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$ overlap. This is not unexpected, since the chemical bonds of the less stable isomer of either molecule are in a state of strain which is related to the magnitude of ΔH°.

Comparison of the values of ΔH^{0} of the two molecules indicated that there is greater interaction between bromine atoms than between chlorine atoms at separations of from 2.5 to $5 \mathrm{~A}^{0}$. This is probably due to the larger size of the bromine atoms, since consefiation of the dipole moments of the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ bonds leads to the conclusion that the C1-C1 repulsion should be somewhat larger.

BIBLIOGRAFHY

Books

Courant, R., Differential and Integral Calculus, Volume II. New York: Interscience Publishers, 1934.

Goldstein, H., Classical Mechanics. Reading, Mass: Addison Wesley Publishing Co., 1959.

Herzberg, G., Infrared and Raman Spectra. New York: D. Van Nostrand Co., 1945 .

Simons, J. H., Fluorine Ghemistry, Volume I. Mew York: Academic Press, 1950.

Turnbu11, H. W. and Aitken, A.C., An Introduction to the Theory of Canonical Matrices. New York: Dover, 1961.

Wigner, $\mathrm{F} . \mathrm{P}_{\mathrm{o}}$, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra. New York: Academic Press, 1949.

Wilson, E. B , Decius, J. C. and Cross, P. C., Molecular Vibrations. New York: McGraw-Hill, 1955.

Whittaker, E. T., Analytical Dynamics. New York: Dover, 1944.

Articles

Aitken, A.C., Pruc. Roy. Soc. (Edinburgh) 57, 172 (1937).
Badger, R. M. and Zumwalt, L. R., J. Chem. Phys. 6, 711 (1938).
Bernstein, H. J., J. Chem. Phys. 18, 987 (1950).
Bernstein, H. J. and Pullin, A.D.A., J. Chem. Phys. 21, 2188 (1953).
prandt, J. L. and Livingston, R. L., J. Am. Chem. Soc. 78, 3573 (1956).
Carney, R. A. et al., J. Molecular Spectroscopy 7, 209 (1961).
Cleveland, F. F. et al., J. Chem. Phys. 18, 346, 1073, 1076, 1081 (1950); $19,119,784,1561$ (1951); 20, 545, 1949 (1952); 22, 193 (1954); 23, 833 (1955); 25, 941 (1957).

Cowan, R. D., Herzberg, G. and Sinha, S. P., J. Chem. Phys. 18, 1538 (1950).

Gerhard, S. L. and Dennison, D. M., Phys. Rev. 43, 197 (1933).
Glackler G. et al., J. Chem. Phys.. 7, 278, 382, 533 (1939); 8, 125, 699, 897, (1940); 9, 224, 527 (1941); 10, 607 (1942).

Meath, D. V. and Linnett, J. W., Trans. Faraday Soc. 44, 561 (1948).
Ragarise, R.E., J. Chem. Phys. 24, 1264 (1956).
Rlaboe, P. and Nielsen, J. Rud, J. Chem. Phys. 301375 (1959); 32, 899 (1960); 34, 1819 (1961).

Klaboe, P. and Nie1sen, J. Rud, J. Molecular Spectroscopy 6, 379, 520 (1961).

Mana, D. ․ et al., J. Chem Phys. 27, 43 (1957).
Minden, H. and Dailey, B. P., Phys. Rev. 82, 338 A (1951).
Mizushima, S. -I. et al., J. Chem. Phys. 21, 215 (1953).
Nielsen, J. nud at al., J. Chem. Phys. 16, 67 (1948); 18, 1471 (1950); 20, 473, 847 (1952); 21, 383, 1060, 1070 (1953); 23, 329 (1955); 27, $264,887,891$ (1957).

Nielsen, J. Rud and Berryman, L. H., J. Chem. Phys. 17; 659 (1949).
Nielsen, J. Rud et al., J. Chem. Phys. 18, 326, 485, 812 (1950); 20, 1090,1916 (1952); 23, 1944 (1955); 26, 1374 (1957); 27, 264 (1957) ; 30, 98, 103 (1959).

Nielsen, J. Rud, Claassen, H. H. and Smith, D. C., J. Chem. Phys. 18, 1471 (1950).

Nielsen, J. Rud and Gullikson, C. W., J. Chem. Phys. 21, 1416 (1953).
Overend, J. and Scherer, J. R., J. Chem. Phys. 32, 1289, 1296, 1720 (1960) ; 33, 446, 1681 (1960); 34, 574 (1961).

Pan, C. Y. and Nielsen, J. Rud, J. Chem. Phys. 8, 1426 (1953).
Rank, D. H. and Pace, E. L., J. Chem. Phys. 15, 39 (1947).
Romanko, J., Feldman, T. and Welsh, H. L., Canadian J. Phys. 33, 588 (1955).

Russell, H., Golding, D.R.V. and Yost, D. M., J. Am. Chem. Soc. 66.
Shimanouchi, T. J., Chem. Phys. 17, 245, 734, 848 (1949); 20, 726 (1952).

Smith, L. G., J. Chem. Phys. 17, 139 (1949).
Thompson, H. W. and Temple, R. B., J. An. Chem. Sos. 90, 1428 (1948).
Urey, H. C. and Bradley, C. A., Fhys. Rev. 38, 1969 (1931).

Reports

Nielsen, J. Rud. N. R. L. Report No. 3567. Spectroscopic Spectra of Fluorinsted Eydrocarbons (Naval Research Laboratory, Washington D. C. , 1952)

Nielsen, J. Rud. Report to the A. E. C. Division of Research under Contract AT-(40-1)-1074, 1954.

[^0]: $1_{\text {E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, }}$ (New York: McGraw-Hill, 1955).

 2
 G. Herzberg, Infrared and Raman Spectra, (New York, D. Van Nostrand Co. Inc., 1945).

[^1]: ${ }^{3}$ D. F. Heath and J. W. Linnett, Trans. Faraday Soc. 44, 561 (1948).
 ${ }^{4}$ D. E. Mann, et. al., J. Chem. Phys. 27, 43 (1957).
 ${ }^{5}$ T. Shimanouchi, J. Chem. Phys. 17, $245,734,848$ (1949); 20, 726 (1952).
 ${ }^{6}$ J. Overend and J. R. Scherer, J. Chem. Phys. 32, 1289, 1296, 1720 (1960); 33, 446, 1681 (1960); 34, 574 (1961).

 7H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).

[^2]: H. Goldstein, Classical Mechanics, (Reading, Mass: Adison-Wesley Publishing Co. Inc., 1959).

[^3]: ${ }^{15}$ H. Russell, D.R.V. Golding and D. M. Yost, J. Am. Chem. Soc. 66, 16 (1944).
 ${ }^{16}$ H. W. Thompson and R. B. Temple, J. Am. Chem. Soc. 90, 1428 (1948).
 17 J. Rud Nielsen, H. H. Claassen and D. C. Smith, J. Chem. Phys. 18, 1471 (1950).
 $18_{\text {R. D. Cowan, G. Herzberg and S. P. Sinha, J. Chem. Phys. 18, } 1538}$ (1950).

[^4]: 19
 J. Rud Nielsen, Monthly Research Report of the ONR, May, 1952.

[^5]: ${ }^{26}$ H. W. Turnbull and A. C. Aitken, An Introduction to the Theory of Canonical Matrices (London: Blackie and Son Ltd., 1932).

[^6]: 3^{31} J. Rud Nielsen et al., J. Chem. Phys., 18, 326, 485, 812 (1950; 20, 1090, 1916 (1952); 23, 1944 (1955); 26, 1374 (1957); 27, 264 (1957); 30, 98, 103 (1959).
 3^{32} J. Rud Nielsen et al., J. Chem. Phys., 16, 67 (1948); 18, 1471 (1950); 20, 473, 847 (1952); 21, 383, 1060, 1070 (1953); 23, 329 (1955); 27, 264, 887, 891 (1957).
 ${ }^{33}{ }_{\text {Peter R1aboe and J. Rud Nielsen, J. Chem. Phys., 30, } 1375 \text { (1959); }}$ 32, 899 (1960); 34, 1819 (1961); J. Molecular Spectroscopy, 6, 379, 520 (1961).

[^7]: ${ }^{35}$ K. Lakshmi, "Vibrational Spectra of CFCl:CBBr $\mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{FBr}$ and $\mathrm{CF}_{2} \mathrm{Br}-$ CHBr_{2}," (Ph.D. Thesis, University of Oklahoma, 1959).

