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CHAPTER I

INTRODUCTION

Field seismic sections are not simple images of the
subgurface geometry due to the complex behavior of the
geismic =sections=s. Interpretation can be very difficult,
egpecially when the geology is complicated. One method to
gain an understanding of the complex behavior of the
geigmic reflections is modeling, which consgists of
mathematical efforte to match the seismic responses that
resgult from geological changes=s. Seismic modeling tests a
geologic concept, analyzes the seismic response of the
geologic concept, and produces synthetic seismic sections
(May and Hron, 1978). Figure 1 sghows a procedure for two-
dimensional seismic modeling.

Over-gimplified assumptions can lead to erroneous
interpretations. If the geologic model does not fit real
conditions, a computer model with the correct assumptions
doesg not give the same or similar response. Obtaining
identical seismic responses from highly different
subsurface configurations is the other possibility (Figure
2) (Mc@uillin and others, 1984).

The index map of Oklahoma (Figure 3) shows the

locations of the areas which were madeled. The first model
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is of Geary Field, T13N-R10W, Canadian County, QOklahoma.
The entire =seismic stratigraphic investigation for this
field is already completed (Clement, 1977). The reason for
doing a modeling study in thie field i=s to enable the
calibration of the program and the choosing of the correct
model parameters for the =second model, Eastern Dewey
County, Oklahoma. The =zecond modeled area, Eastern Dewey
Couﬁty, containg =sixteen adjacent townshipe T16N to T19N,
R14W to R17W.

The objectives of this study are to investigate the
Morrow Formation seismically and to present the results of
zelsmic modeling study of the Morrow Formation in the
eagtern portion of Devey Gauﬁty, Oklahoma. More
specifically, the following has been determined: 1)
Whether or not the Morrow Formation geometry produces a
geigmic anomaly, 2) The 1limit of vertical resolution for
the Morrow Formation, 3) Whether or not the geologic models
match the =seismic sections. Thig will be accomplished
using the Geosim Seismic Modeling programs package. The
geologic data from which the =seismic model is derived,
Eastern Dewey County, has been very well documented by

Bentkowski, 1985.
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CHAPTER II
SEISMIC MODELING

vSeismic madeling is a computational procedure which
g2imulates seismic re=ponse of assumed subsurface geologic
features. Thege featuree are defined in term= of all
available geophysical and geological asgsumptions and
information including interval properties such as
dengity, velocity, and attenuation and other acoustically
important parameterz as well as interface geametry
({Neidell, 1975).

Modeling i2 classified into two groups: 1) s=trati-
graphic and 2) structural. Stratigraphic models are
mathematical efforte to fit the seismic responses that
would be generated from facies= changes. In structural
modeling the primary objective i2 subsurface geometry.
Although many prohlems=2 consist of members of both types of
madeling, experience indicatez that moast modeling
applications can be commonly regarded in ane of the=se
groupsg (Lindsey and Dedman, 1975-a).

Modeling is aleo divided into three cla=ses,

depending on the number of dimensiong us=sed: 1) oane-
dimensional, 2) two-dimensional, and 3) three-
dimensional modeling. The one-dimensional model



(Figure 4-a) concerns vertical, straight ray paths, and
agsumes that each layer ig harizontal and flat. A geismic
wvave penetrates the layers and returns to the geophone
along the same vertical straight ray path. In order to
obtain reflection character, the thicknees, density, and
velocity values of the layers are used. Synthetic
seisﬁograms are the most common example of one-dimensional
modeling. To generate a gynthetic seismogram, velocity and
density values obtained from well logs2 and a propagating
wvavelet shape are usged (Figure 5). Q0One-dimensional
gynthetic seismograms obtained from one borehole log data
get are uged in di=stinguishing primary reflections from
multiple reflections and in determining reflections with a
particular interface. If the generated synthetic
gseismogram does not fit the real seiswmic section, the
propagating wavelet shape can be changed until the best fit
of the geismogram and the sgeismic section iz achieved.

Both the two and the three-dimensional models are used when
geaometric characteristice of the geclogic section are of
primary interest. If the =stratigraphy does not change
significantly in the horizantal direction, perpendicular to
the spread, the two-dimensional model i=s used (Fig. 4-h)
(Angona, 1960). Seiegmic ray paths are refracted across
dipping boundaries. For the purpose of obtaining
reflection character, the two-dimensional model uses
thickneas, density, velocity, and lateral distribution of

the layers. Two-dimensional modeling requires the
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congtruction of a geoclogic cross section in the plane of
the seismic =section with gufficient detail to reproduce the
vertical and lateral distribution of =seismic events
(Gallaoway and others, 1977). Figure & shows the
methodology for generating the two-dimen=ional model.

Seismic madeling is subdivided intq two major types:
1) 4inverse and 2) forward (direct) modeling. Inverse
modeling involves computing a po=sible madel from the
obgervation of the geophysical effects. It includes the
whole interpretation process and always contains ambiguity
and uncertainity. In forward modeling, the geophysical
effects are calculated from the model and compared actual
measured data. A gingle word, "modeling", often infers
forward modeling (Sheriff and Geldard, 1985). Fofward
modeling can be accomplished by u=ing physical and computer
models and is2 a very useful tool for interpreting real
seismograme and planning field data acquisition. In order
to obtain a complete =2olution in complex geological
structures, a combination of computer and phy=ical maodeling
methods may be neces=sary. Physical modeling i= well
equipped to =solve problem= of wave propagation in
complicated s2tructures (Sheriff; 1985; Marhadi, 1983; and
Liang, 1981). Phy=ical modeling involves experiments in
the laboratory with miniature physical modelsg which must be
geometrically, dynamically, and kinematically similar to
the gections being modeled. Geometrical similarity i=

achieved by utilizing equal angles and proportional lengths
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to those in the system. Dynamic similarity concerns the
ratio of mase distribution whereas kinematic similarity
concerns the ratio of times. The Poisson ratio, which is a
dimensionless quantity, of the miniature physical model and
the gections being modeled must have the same value
(Sheriff, 1985). However, there are two major
disadvantages of phys=ical modeling: 1) 1t is almost
impossible to construct a complete model, in large
sectiong, without disturbing the geometric, dynamic, and
kinematic analogies, and 2) building a complete model and
performing the measurements is very time consuming (Meister
and Dresen, 1987). Physical modeling has become les=ss
common, because of the disadvantages mentioned above, and
hag been replaced by Ray Trace modeling (Figure 7).

Rays are the paths and perpendiculars to the
instantaneous wavefront (Figure 8). The ray trace theory
agsumes that a wavefront may be depicted by a few typical
rays pointing in the direction of the propagation of
enerqy. If thizs assumption fails, an inaccurate picture of
the energy propagation results. Because one particular ray
may not be a representative of the surrounding rays, it is
necesgsary to use wave theory calculations (Lind=ey and
Dedman, 1975). Although the ray trace solution ie= an
approximation, it is2 very helpful in determining which
portions of complex two-dimensional structures can be
expected to be seen on the seismic section, that is, to

identify gross effects, and to help interpreters visgsualize
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wvhere recorded energy originates. A Bynthetic =eismic
gection produced by ray tracing represents the main
reflection alignment= in very close places. However, the
gynthetic section also shows holes, blind zonees, and breaks
in continuity. On the real section, these are filled by
diffractiona and multiples (Anstey, 1977).

Wave theory is2 based upon the Huygense’ Principle,
ﬁhich states that every point on a wavefront is the =ource
of a new spherical wave (Figure 9-a). If the radii of the
spherical waves are large enough, the waves can he treated
a2 plane wavesg (Figure 9-h). The magnitude of reflection
from each point on the boundary depends on both 1, the
inclination of the particle motion, and r, the distance
from the source. If 1 equals zero degrees, the energy
returned to the receiver i= a maximum contribution. A 90
degree 1 angle, signifie= that the propagation of the
particle motion is parallel to the boundary, therefore, the
enerqgy contribution iz minimum and i= negligible. If the
shape of the wavefront 12 sgimilar to the geometry of the
boundary, the reflected energy iz focused on the =same point
by all points of the boundary, producing a strong
reflection (Hicks, 1983).

At leazt partial answers to the following gquestions
ghould be obtained from each model study:

"1 - What iz2 the probable geologic cause of the

anomaly?

2 - What iz the character of anomaly?



/

SOURCE
AND
RECEIVER

16

BOUNDARY b

Figure 9. Wavefront Propagation and Huygens' Principle:
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I= a =2eiamic anomaly associated with a given
field?

What is the probability that the given layers can
be detected with field seismic data?" (Ryder and

others, 1981).
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CHAPTER III

GEOLOGIC OVERVIEW

Numerous papers dealing with the surface and
subeurface geology of the Anadarko Basin have been
published. South (1983) and Bentkowski (1985) have
reviewed the geology of Anadarko Basin in detail.

In the Anadarko basin, the early and middle
Missiesippian rocks are composed of fine grained cherty
limestone and dolomite. ' The latest Chesterian (latest
Missiszsippian) rocks are represgented by carbonate in the
north and black shale in the south (Bentkowski, 1985). The
Morrow Formation is classified as lower Pennsylvanian in
age, and conesists of a sequence of sandstone, shale, and
thin limestone. These sediments unconformably overlay the
Chesterian rocks. The upper boundary of the Morrow lies at
the baze of the Atokan Thirteen Finger Limestone which is
compoged of interbedded limestone and black shale (Benton,
1972).

The Morrow Formation is subdivided into two units:

1) the Upper Morrow and 2) the Lower Morrow. The Lower
Morrow represents primarily marine deposition, whereas the
Upper Morrow contains sediment deposited in a fluvial

enviraonment. The Lower Morrow is further divided inte

18
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eight depositional strikes of the s=ands which are labled
from the oldest, M1, to the youngest, M8 (Flates 2 to 7).
M1 exists just outside of the area, to the =southeast
(Bentkowski, 1985).

At the time of the deposition of the Morrow, Anadarko
Basin was basically flat. The eroded and faulted surface
of the Chester had been filled by sediments. Today these
sands are around 9000 feet deep below the =surface
(Halverson, 1987) and range in thickness from S0 to 1000
feet in the study areas.

The lacal structure is simple; the layere dip to the
gouthwe=st and there are na major faults. The dip gradient
to the southwest i=s between 17% and 2.9%. In the south-
central section of the study area, the dip is steepest;
whereag the dip is most gentle in the east-central region.
An overview of the Morrow isopach (Figures 10 and 11) shows
that the thickness of the isopach rangezs from 53 feet in
the northeast to 1023 feet in the southwest (Bentkowski,
1s85).

Lane and Straka (1974) correlated the Springer bheds
with the Lower Morrow and proposed that the "usage of the
term ‘Springeran’ ag a visible subdivision of the lower
Pennsylvanian be discontinued. " Based on thiz= statement,
the term "Springer"™ has been eliminated within the study
area and the entire interval between the bottom of Atoka
and the top of Mississippilan-Chesterian is now termed

"Morrowan" (South, 1983, Bentkowski, 1985).
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The Morrow sands are encased within hundreds of feet
of shale. The sonic and density loge indicate that the
interval velocity of shale ranges from 9800 to 11500
ft/sec and the density varies from 2.4 to 2.55 gr/cm?;
while the velocity of =sand spans 13900 to 17000 ft/sec and
has a density range of 2.4 to 2.65 gr/cm?. The velocity of
Atoka and Parvin limestone varies from 18000 to 21500
ft/gec and its density has a range of 2.65 to 2.75 gr/cm?.
Thege density and velocity contrasts result in good
acoustic impedance contrasts. If the Morrow sands did not
exist, the sgeismic energy would pass2 through the =shale
without reflection (Figure 12, ray paths A and B).
However, the sand does exist and therefore reflects the
geisgmic energy at the sand shale interfaces (Figure 12, ray
path B) and thus will be shown as a reflector on the
seismic section.

Depogition of Morrow =sediments in the western Mid-
Continent (Figure 13) was generally confined to the
subsiding Anadarko and Ardmore Basins. Non-deposition
controls the limite of the Morrow (Bentkowski, 1985).

Figure 14, a geologic column based on the gamma ray
and registivity logs, illustrates the morrow and adjacent
formations. A detailed stratigraphic correlation of the
Morrow Formation was based on the interpolation of

conventional wire-line logs.
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CHAPTER IV
METHODOLOGY

The primary hardware required in this modeling study
cangiste of a portable IBM-PC (or a system compatible with
the IBM-PC) with an 8087 meth co-processor, a color
graphice card, a double disk drive system, a digitizer
(MM1812 used), and Epson JX-80 and Okidata-Microline-193
printers.

The software utilized in this study is Geos=im’s
geismic modeling software. This software includes four
different programs: (1) Log Aseist, (2) Synthetics Plus,
(3) Step, and (4) Seiemic Modeling System II with Ray

Trace option.
Log Assiet

Log Asesist was designed to prepare log data for use in
the other programs of the Geos=im package. This program can
be used to digitize, edit, convert, and print any log. It
uses Faust’s equation for converting data obtained from a
registivity log to a sonic log and Lindseth’s and Gardner'’s
equationas for converting sonic logs to density or density
loge to sonic. Faust‘’se, Lindseth’s, and Gardner’=s

equations are generalized empirical relationships that may
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or may not apply to the area selected to conduct seismic
modeling. Many experiences indicate that these equations,
which were derived from older rocks, are not applicable to
younger rockse such as the ones found in the Gulf Coast.
Before applying theese equations to model the area, these
empirical equations= should be calibrated against the actual
field data for formation velocity and density. Adjusting
gome of the constantz in an equation will make it

applicable to the area being worked (Geosim Manual, 1987).
Synthetice Plus

The primary function of Synthetice Plus is to generate
one-dimensional synthetic seismograms from sonic, density,
or both sonic and density logs. This program can be used
to digitize wavelete as well as saonic and density logs and
to generate and plot time-depth charts.

If only one of the twa, deneity or sonic logs, 1is
available, the program uses Gardner’s or Lind=seth'’s
equation to create the second log. Then, it calculates the
reflection coefficients and convolves them with a wavelet
in order to obtain a synthetic =seismagram (Geosim Manual,

1987).
Step

Step allows the utilization of density or sonic logs
in building geologic models and in creating interpolated

log sections as well as two-dimensional synthetic
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seiegmogrameg from thesge interpolated log sections. Up to 30
layers and S0 log= can be usged in one model (Geosim Manual,

1987).
Seigmic Modeling System II

Seiemic Modeling System II is used to build geologic
maodels and to generate two-dimens=ional synthetic seismic
gections ueing depth, velocity, and density data. Thie
program employs ray-theory which is based on Snell’s Law.
The synthetic seismic section, created by Seismic Modeling
Syatem II, i=s noige free and utilizes vertical incidence
ray paths. Thigs section is directly comparable to migrated
geigmic data. The ray trace option creates normal
incidence seismic sectiona which are comparable to
unmigrated sections. The ray trace option (normal
incidence) is very useful as= an aid in solving compiex
structural problems (Geosim Manual, 1987). The procedure
of the flow path utilized in this modeling study i=2 shown
in figure 15.

The effects of =spherical spreading, =hort and long
period multiples, difracted events, inelastic attenuation,
and random noise were not included in this study. Zero-
phase wavelets were usged hecause, as Schoenberger (1974)
indicates, =zero-phase wavelets have greater resolution
capabhility than minimum-phase wavelets.

In the initial approach to =zeismic modeling of the

Geary Field 40, 60, and 80 Hz symmetrical Ricker wavelets
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were used (Appendix A). Frequency of 80 Hz was chosen as
the frequency value to be used for all further seismic
maodeling, a2 it provide= the best results.

Normal incidence sections were also generated by using
the ray trace option of the Seismic Modeling System II in
the Gearf Field =tudy, however, these models did not differ
from fhe vertical incidence models. Thus, the ray trace

option was not used in the Eastern Dewey County model.
Model Site Selection

Previousg investigations dealing with seismic modeling
of the Geary Field, Canadian County, Oklahoma have been
conducted by Clement (1977). Geosim Seismic Modeling
software was applied to Geary Field for testing and
calibrating the programs. Corrected model parameters
(velocity, density, wavelet) were obtained and correlated
with the available =eismic data. The calibrated model
parameters were then applied to the Eastern Dewey County
test site where no real seismic data i1s available. Dewvey
county iz2 approximately 8 milee northwest of Geary Field
and has similar‘subsurface geology (Clement, 1977 and

Bentkowski, 1985).
Acoustic Stratigraphy

Both Geary Field and Eastern Dewey County are abundant
in well control. All wells= in these areas have been logged

with resgistivity tools as well as with gamma ray,
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spontaneous potential, and/or density and sonic tools
{(Clement, 1977 and Bentkowski, 1985).

Sandstone velocities, calculated from sonic logs,
range from 14000 to 17000 ft/sec, depending on the type of
cementation, shale content, and amount of porosity.
Accompanying densities from logse span 2.4 to 2.6 gr/cm?.
Shale.velocities vary from 9800 to 11500 ft/sec, and their
accompanying densitie=s fall between 2.4 and 2.535 gr/cm?.
The bracketing limestaones have densities ranging from 2.65
to 2.75 gr/cm?, and velocities measuring 18000 to 21500
ft/sec (Clement, 1977).

The generalized acoustic stratigraphic model for the
Morrow Formation in eastern Dewey County consists of an
interval of 50 to 1000 feet and i=2 bracketted, top and
bottom, by one high velocity limestone, Atoka Limestone,
and one quite low velocity shale, Mississippian-Chesterian
Shale (Bentkowski; 1985). The Geary Field interval iz 330

to 800 feet (Clement, 1977).
Modeling Procedures

The following modeling parémeters vere extracted from
the geologic crose sections and their associated borehole
logs: (1) density in gr/cm?, (2) wvelocity in ft/=sec,

(3) thickness in ft, and (4) geaometry. Thege borehole
logs, which consist of resistivity, gamma ray, density, and
gonic logs, were digitized and input into the software.

Generated synthetic sonic or density logs were also
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abtained. Each geoclogical model was constructed using a
flat datum in order to remove structural dip.

All available resistivity, gamma ray,vsonic, and
density loge were digitized by using the Log Assi=st program
and the Summagraphics MM1812 digitizer. Faust’s equation
was used by Log Assist to transform resistivity logs toA
sonic.

Faust'’s empirical relation between resistivity and
gonic velocity, which was used as a default value in the
program, can be stated as follows:

Sonic Value = 900 x (reeistivity x depth)Exp 0. 16667.
After several tests and comparisons between field sonic and
computer-generated =sonic logs, the constant value in
Faust’s equation was changed from 900 to 1400. In the
procesee of converting =onic logs to den=ity logs=, the
constant values in Gardner’s equation remained unaltered.

Synthetic =seismograme and digitized =sonic, digitized
density, or computer-generated sonic loge were used in the
Synthetics Plus program to obtain one dimensional synthetic
seiamic sectiaons. Then, the synthetic =eismograms, which
were obtained from Synthetics Plus, were compared with
actual seismic lines. If the results of the comparison
wvere negative, then the wavelet type or the frequency of
propagating wavelet was changed. Thue, the correct wavelet
type, which will be used in Step and Seismic Modeling
System II, was selected.

As defined in the previous =section, both Step and
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Seismic Modeling System II create two-dimensional =synthetic
seismic sections. Step uses only sonic and density logs.
The input of computer-generated or actual sonic and denesity
loge into the Step program produced two-dimensional log
interpolations. These interpolated logzs were then
convolved with the wavelet and two-dimensional synthetic
seismic sections were obtained.

The depth, geometry, denasity, and velocity values,
wvhich vere taken fraom the geologic croass sections and
borehole loge, for each layer were loaded into the Seismic
Modeling System II program. Two-dimensional vertical
incidence and, using the ray trace option, two-dimensional
normal incidence synthetic seismic sections were obtained.
The ray trace option was u=sed only in the Geéry Field
modeling study. These synthetic sectione were then

compared with actual =seisgmic line=s.



CHAPTER V

MODEL APPLICATIONS

Sensitivity Analysis

One concept that has direct relevance to the seismic
expreggion of the Morrow Formation is tuning thickness.
The dominant frequency and its corresponding wavelength
placed the seismic response of the Morrow sands within the
thin bed regime and below the tuning point where there is
a direct relationship between the amplitude of reflection
and the thicknessz of the sands (Halverson, 1987). The
maodel in Figure 16-a illustrate= the geologic model of a
gand wedge, higher velocity, which is encased within a
shale of lower velocity. The tuning thickness model was
applied to the sand wedge pres=sent in the geologic model
uging gas, o0il, and water saturation conditions. Figures
lé-b, c, and d show the =seismic responses to the geologic
model under the various fluid saturation conditions. As
the wedge becomes thinner, the reflections from the top
and the base of the sand wedge merge together, resulting
in a constructve interface between the two reflections.

At the point where it becomes impo=sible to distinguish
two different reflectors, the constructive interface i=s at

itg maximum; in other words, the amplitude iz maximum at
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this point. This point is referred to as the tuning
point. Beyond thies point, the amplitude of the reflection
decreases linearly as the wedge thickness decreases.
Different tuning thicknesses were obtained for each
fluid saturation condition. The assumptions, which were
derived from sonic and density logs, of the velocity and
density values asg well a= the resulting tuning thicknesses

aof the sand wedge and surrounding shale are as= follaws:

V (ft/=ec) d (gr/cm?) Tun. Thick.
Shale t 11500 . 2,38 0 s-=---
Sand w/ gas 15000 | 2. 50 50
Sand w/ oil : 15500 2.57 60*
Sand w/ brine: 17000 2.65 70°

Thege velocity and density wvalues represent deeply buried
low poroeity sediments. The density contrast attributed
to the fluid content does not create a significant
cantrast between the shale and sandstone. 0On the other
hand, sediments found in the Gulf Coast and in California
characteristically have lower velocity and density values
wvhich are generally assoaciated with higher porosities.
The density contrast of the fluids associated with higher
porosities leads to higher contrast between shale and gas-
filled sandstone; therefore, it is difficult to
distinguish between the shale and gas-filled sandstone.
The results of the sensitivity analysis shaow that the
vertical resolution varies from 50 to 70 feet for

different fluid saturation conditions. Thi=z can be
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attributed to the proximity of the velocity and density
values Qf‘the sandetone and shale. It i= apparent that
sandatone must range in thickness bhetween 350 and 70 feet
in order to be differentiated on the synthetic =seismic
sections (Figuree 27 through 32). Thies range in thickness
corresponde to core data collected in the Eastern Dewey
County study (Bentkowski, 1985). Unfortunately, detailed

core data was not available from Geary Field.
Geary Field Model

The reference map (Figure 17) shows the position of
the =seiswmic lines and the gix wells in Geary Field,
Canadian County, Oklahoma, which were used to construct
the geological cross section (Plate 1) and to aobtain the
velocity and density values for each layer. Wells
Robinson #1, Thunder #1-18, Cruse #1, Huff #1, Leck #1,
and Delana were used to construct the geologic cross
gection and wells Cruse #1 and Leck #1 were u=sed to
conagtruct the synthetic =ei=smagrame {(one-dimensional
models). Cross section Al-A2 cuts acro=s seismic lines
181 and 383, which cro=s= each other approximately 3/4

miles south of well Cruse #1.
Synthetic Seismograms

The synthetic seismograms (one-dimensional models)
from wella Cruse #1 and Leck #1 are illustrated in Figures

18 and 19. The density logs were loaded into the program
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and the synthetic sonic logs were derived through the
program using Gardner’s equation. Then, the program
generated the reflection coefficiente which were convolved
with the 50 Hz zero phase Ricker wavelet, producing the
gynthetic seismograms. Figurese 20 and 21 show the
comparizon of the synthetic seismograms from wells Cruse
#1 and Leck #1 and seismid lines 383 and 189,
regpectively. Ingpection of the synthetic seismograms in
relation to the seismic data allows one to notice a
gatisfactory correlation. The synthetic =sei=mogram for
Cruse #1 showe one amplitude anomaly, whereas the
seismogram for Leck #1 showse two amplitude anomalies;
therefore, Cruse #1 and Leck #1 can not be correlated with
seismic lines. These unexpected anomalie= can be caused
by the domination of shale content or vertical changesz= in
density and velocity, conversion from density logs to
sonic or sonic loge to density, or recording errors.

After several tests changing velocity, density, and
vavelet frequency, the following values were found to
gupply the best fit to the synthetic =meismograms and the
actual seismic sections:

Atoka Limestone : 19000 ft/sec, 2.70 gr/cm?

Parvin Limestone: 20000 ft/gec, 2.70 gr/cm?

Mch Shale : 10000 ft/sec, 2.40 gr/cm?
Upper Morraw t 14000 ft/sec, 2.50 gr/cm?
Lower Morrow : 17000 ft/sec, 2.65 gr/cm?

Ricker wavelet : 50 H=z
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Two-Dimensional Models

Two-dimensional synthetic seismic sections for the
geologic model have been obtained by using Step and
Seismic Modeling System II.

The saonic loge from wells Thunder #1-18, Cruse #1,
Huff #1, and Leck #1 were loaded into the Step program and
an interpolated log section (Figure 22-;) was generated.
Then, the program generated a two-dimensional seismic
section (Figufe 22-h). The Atoka Limestone-Upper Morrow,
Laower Morrow-Mississippian Chesterian Shale (Mch Shale),
and Mch Shale-Parvin Limestone boundaries are easily seen;
however, the Upper Mor;ow—Lower Morrow boundary is not
easily detectable. Several frequencies for the wavelet
were teeted, and the best result was achieved using the 50
Hz frequency in Step.

The geologic model (Plate 1, cross section Al-A2) was
developed from the resistivity logse of the six wells. The
velocity and density values for each layer were obtained
by inspecting the velocity and density logs. In order to
create a noise-free two-dimensional seismic maodel, the
geologic model, velocity values, and density values for
each layer were placed into the Seismic Modeling System II
program. Figures 32, 33, 34, and 35 (Appendix A) shaow
the seismic responses of the geologic model for the 40, 60
and 80 Hz frequencies. The resulte of these frequency

applications show that the higher the frequency, the
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higher the resolution. The 80 Hz frequency provided the
best result. In figures 33 through 35, the diagrame= on
the upper portion of each page show vertical incidence and
are labeled as "a", whereas the diagram=2 on the lawer
portion of each page show normal incidence, which is'the
product of the ray trace option of Seismic Maodeling Sy=stem
II, and are labeled a= "bh". It is evident that the
vertical incidence models and the normal incidence models
are almost indentical due to the simple structure of the
layers. As was previously mentioned, normal incidence
gsections are very useful when complex structural problems
exist. Figure 23 shows the comparison between the two-
dimensional synthetic seismic section and the actual
seismic section, line 383. The northern portion of the
synthetic and actual seismic sections, between wells
Robin=son and Cruse #1, have been compared. This

caomparison provided an excellent fit.
Eastern Dewey County Model

The reference map in Figure 24 shows the cross
gections from Al1-A2 through F1-F2 and the well locations.
Table I (Appendix B) contains the list of file, company,
and well names used to construct the cross sections of
eastern Dewey County.

Synthetic seismogramg for wells Blaine Simon #1
(Figure 25), Addis #1 (Figure 36, Appendix B), and Prophet

#1 (Figure 37, Appendix B) were constructed by using the
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sonic logs, generated from the resgistivity logs, and the
density logs, derived from computer-generated =aonic logs.
The Synthetics Plus program calculated the reflection
coefficients and, by convolving these reflection
coefficients with the 50 Hz Ricker wavelet, produced the
gynthetic seismograms. Thege synthetic seismagrams
gatigefactorily fit each other azs well as the synthetic
geismograms from wells Cruse #1 and Leck #1, which were
uged in the Geary Field model.

The interpolated log sections and the corresponding
two-dimensional synthetic seismic sections for each cross
gection are shown in Figures 38 through 43 (Appendix C).
The resulte of the log interpolations are reasonable and
the layer boundaries are detectable. However, this is not
true for the two-dimensional =synthetic seismic =sections,
especilially cross section D1-D2. In the other cross
gectione, the Atoka-Morrow houndary can be seen hut the
Morrow-Mis=si=ssippian Chesterian Shale (Mch Shale) boundary
is not detectable. It is obvious that during the
interpolation process logs interfere with each other, and,
as a result, an unknown percentage of noige can be added
to interpolated log=. Thig noi=e, along with vertical
changes of velocity and density and unavoidable errors
which occur during the conversion of resistivity loge to
sonic loge and/or sonic logse to density logs is
regpongible for the inaccuracies in the synthetic seismic

section.
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For the geowmetry, which was developed using
registivity and gamma-ray logs (Plates 2 to 7, cross
gections Al-Al through F1-F2 in pocket), the following
velocity and density values have heen loaded into the
Seigmic Modeling Syestem II progam:

Atoka Limestone : 19000 ft/sec, 2.70 gr/cm?

Mch Shale t 9800 ft/mec, 2.65 gr/cm?
Upper Morrow t 14000 ft/=sec, 2.50 gr/cm?
Ma :t 16000 ft/sec, 2.60 gr/cm?
M7 : 15000 ft/=sec, 2.45 gr/cm?
M& t 14200 ft/sec, 2.65 gr/cm?
M3 : 153500 ft/sec, 2.54 gr/cm?
M4 t 14000 ft/sec, 2.42 gr/cm?
M3 : 16000 ft/sec, 2.60 gr/cm?
M2 : 15000 ft/=sec, 2.50 gr/cm?
M1 : 14000 ft/=ec, 2.65 gr/cm?

The noise-free vertical incidence, two-dimensional

gynthetic seiswmic sections, and the corresponding geologic

models are shown in color (in pocket) and in black and
white (Figures 26 through 31). The results are quite
impressive. The Atoka-Upper Morrow, Upper Morrow-Lower
Morrow, and Lower Morrow-Mch Shale boundarie= can easily
be detected, although the =zand layers in the Lower Morrow
are not detectable due to the thickness of the layers and
the close acoustic impedance contrasts hetween these

layers.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The seismic expression of the Morrow Formation in two
fields has been demonstrated. Extensive modeling has been
performed succesfully by utilizing the Geosim Seismic
Modeling package and has been tied to the seisgmic data in
Geary field.

Faust'’s, Gardner’s, and Lindseth’s equations, which
were used for converting the logs from resi=stivity to
sonlic, sonic to density, or density to sonic, are
empirical relationships. For example, Faust’s equation,
which 12 given as a default value in the Log Assist
program,

Sonic = 900 x (Depth x Resistivity)Exp 0. 16667
congiders depth anly. Conversgely, not anly depth but also
fluid content, environmental pressure, mineral
compasition, granular nature of the rock matrix, and age
affect rock reesgistivity, density, and velaocity. It is
obvious that neglecting each of these factors will cause
additional errors in the converted sonic logs. A= a
result, when tranzforming these converted sonic logs to
density logs by using one of the equations mentioned

above, the margin for error will be doubled. Therefore,
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the two-dimensional log interpolations and synthetic
seismic sectionse created by the Step program were positive
but not very impressive. In the Geary Field study, the
real density loge from welle Cruse #1 and Leck #1 were
uged in the Synthetice Plus program to derive sonic logs
and the results were positive. Computer-generated =sonic
and density loge were used in the eastern Dewey County
g8tudy for wells in which both sonic and density logs were
not available.

Fresnel zone effect= and lateral and vertical changes
of velocity and density have not been coneidered during
thizs study. However, two-dimensional synthetic =seiswmic
sectiong, generated by the Seismic Modeling System II
program, appear to provide an excellent match with the
field seismic data for Geary Field. Nevertheless, it
cannot be guaranteed that the resultse of the maodeling
gtudy of the eastern Dewey County section will give an
excellent match.

The following is a list of important summaries and
conclusions:

1. Due to the poseibility of producing =imilar
geisamic responses from different geologic
conditions, seismic modeling is one of the maost
important partse of =seismic interpretation (Figure
2).

2. The resulte of the sgensitivity analyesis (Figures

i16-a, b, ¢, and d) show that the vertical
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regsolution varies from S0 to 70 feet for gas,
o0il, and water saturation conditions. It was
concluded that this variance can be attributed to
the proximity of the velocity and density wvalues
of the sandstone and shale.

Thiz modeling study showed that i1f the thickness
of a layer is2 less than 50 feet, the layer will
not be detectable (Figures 16-a, b, c, and d).
The velocity and density contrasts between sand,
shale, and limestone create acoustic impedance
and reflection coefficients, which make the
boundarieg detectable and responsible for
reflections.

The density, velocity, geometry and thickness of
each layer can be obtained by analyzing wire line
logs.

The Seismic Modeling System II program does not
permit any noise that may exist in nature to be
congidered. If the program did allow the
addition of a percentage of these noise levels,
such as 10%, 26%, 30% or more, the limitations of
thie noise could have been demonstrated.

Using computer-generated sonic and density logs
should be avoided in the Synthetices Plus and Step
programe because of the empirical relationships
(explained in Chapter IV, METHODOLOGY, Modeling

Procedures) used in deriving them.
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The Seismic Modeling Syestem II Program gives
quicker and more realistic results than the Step
program (Figuree 26 through 32 vsa. Figurees 38

through 43, respectively).
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APPENDIX A

GEOLOGIC MODEL FOR GEARY FIELD

AND ITS SEISMIC RESPONSE FOR

DIFFERENT FREQUENCIES
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Figure 33.

Seismic Response of the Geologic Model for Frequency
40 Hz: a) Vertical incidence b) Normal Incidence
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Seismic Response of the Geologic Model for Frequency
80 Hz: a) Vertical incidence b) Normal incidence
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TABLE 1

FILE, COMPANY, AND WELL NAMES USED TO
CONSTRUCT GEOLOGIC CROSS SECTIOMS
OF EASTERN DEWEY COUNTY

FILE NAME COMFANY . WELL NAME
Al-A2

YUSUF=-2Z (F1-F2) Champlin Expl. Thompsen B #1

YUSUF-2 Unit Drilling Squire #1

YUSUF -3 (E1-E2) Woods Fetro. Moldrup #25-2

YUSUF -4 ) Michigan—-Wisconsin Duke #1

YUSUF-S (D1-D2) Southland Royalty Ward #1-1
B1-B2

YUSUF-6 Hickersan 0il Robertson #1

YUSUF-24 (F1-F2) Enserch Expl. Prophet #1

YUSUF-9 (E1-E2) Calvert Drilling Addis #1

YUSUF-11 (D1-D2) McCulloch 0Oil L.L.Light #1-34

YUSUF-12 , Brock Hydrocarb. Blackwomen #1-17
Ci-Cc2

YUSUF—-1Z Sunray DX 0il Frars #1

YUSLF-14 Amoco Frod.Cao. Frans A Unik #1

YUSUF-1S Fossil 0Oil & Gas = Rice #1-71

YUSUF-16 Apache Coarp. Blane Simon Unit #1

YUSUF-17 (D1-D2) Lvo Corp. F. Wills #1
Di1-D2

YUSUF-S (Al1-A2) Southland Ravalty Ward #1-1

YUSUF-18 Calvert Drilling Clark #1

YUSUF-11 (B1-B2) McCulloch Qil L.L.Light #1-34

YUSUF-19 Ladd Fetroleum B.F.Evans #2

YUSUF-17 (C1-C2) Lvo Corp. ’ P.Wills #1
E1-E2

YUSUF-20 TXO Spies #%#1

YUSUF-Z (A1-AZ2) Woods Fetro. Molcrup #2E-2

YUSUF -9 (BR1-EBZ) Calvert Drilling Acdi=s #1

YUSUF-22 Hall-Jdona2s Fansy Becl #1
F1-F2

YUSUF—-27 (A1-A2)  Champlin Expl. Thomosen B #1

YUsJF-24 (B1-E2) Enserch Euxpl. Fropnet #1

YUSUF-2ZS Motil Gil M.V.Herring #1

YUSUF-Zo © Mecil 01l C.5.Dobbins #1
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OVERVIEW OF BASIC SEISMIC PRINCIPLES

Basic Seismic Principles

A simplified view of the seismic method can be
demonstrated by setting up an energy source, transmitting
this source into the subsurface formations, and then
recording the echoes as the energy is reflected from
interfaces between formations.

The seismic waves that are transmitted through the earth
consist of alternating compressions and dilatations. When
these waves travel through an elastic and homogeneous medium,
the particles of the medium are first compressed and then
become farther apart during dilatation. Figure 44-a shows
the particle motion for a compressional wave (P wave) passing
through an elastic, homogeneocus medium. Waves also cause
particle motion at right angles to the direction of
propagation; these are caused by shear or transversal waves
(S waves). Figure 44-b shows the particle motion for a shear
or transversal wave. In addition, there are other types of
vaves that travel along the earth’s surface: Rayleigh waves,
vhich travel along the free surface with elliptical particle
motion (Figure 44-c), and Love waves, which have transversal
particle motion, and occur in a low-speed surface layer

overlying a high speed layer.
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P waves travel in a =2olid at a higher speed than S
waveg, therefore, their reflection times are much shorter
than S waves’ reflection times. On land, the geophones used
in seismic prospection are designed specifically for the P
wvaveg and do not respond to S5 waves. P waves are the
daminant type of waves assocciated with =seismic reflection
energy.

The =seismic reflections that return to the surface
depend on»the angle of incidence at which a ray strikes each
layer, and the acoustic impedance, which i= given by the
product of density and velocity, contrast across each
reflecting boundary. A= 1t has been formulated by Snell
(1621) and referred to in numerous books and articles,
Snell’=s law states that seilismic energy travels the fastest
path, not the shortest path, between two points. This law
alsoc states that when a ray propagates (Figure. 45) from one
medium with velocity Vl, to another medium with velocity V2,

its direction of propagation i=:

Sin 1 ) V1
Sin r V2
Where:
i : incidence angle
r ¢ refracted angle
Vlz velocity of first medium

V.: veloclity of underlying medium
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= 3
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vy = 12500 ft/sec
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7000 ft/sec

2.2 gr/cm3
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9000 12500 12500 7000 P
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]
it
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[

2 12500 - 2.9 = 36250
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An - An-—l

Reflection Coefficient: R= ____
An + An_l

36250 - 22500

R, = = +0.234
+ 36250 + 22500
R 15400 - 36250

, = = -0.404

15400 + 36250

Figure 45. Snell's Law and Numerical Examples of
Acoustic Impedance and the Reflection
Coefficient
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If a series of horizontal layers, this equation can be

written as:

Sin i

Where:
| V : velocity
p : raypath constant.

If the incidence angle is greater than critical angle, total
reflection occurs.

The incident energy is divided between the reflected
and transmitted waves. The amount that is reflected is
associated with the observed amplitude for each reflection on
the recordings. The reflected amplitude is controlled by the
reflection coefficient, which is defined by Dobrin (1966, p.
41) as the square root of the ratio of reflected energy in a
P wave to the incident energy at a boundary. The amount of
reflected energy in this boundary is dependent upaon the
acoustic impedance, which is the product of density and
velocity, contrast of each layer, and has a value between +1
and -1 for incident angles which are less than critical.

Reflection coefficient is computed from:

Where:
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R : reflection coefficient

E : reflected energy

E,: incident energy

i
dl: dengity of the first layer
Vl: velocity of the first layer

d.: density of underlying layer
V,: velocity of underlying layer
A = (dY- (V) : acoustic impedance
Peterson and others (1955) showed that this formula can

be approximated as:

1 d, V
R = iln
2 d. V

Gardner and others (1974) gave the empirical relationship

between density and velocity as:

d = 0.23 VO'25

Combining Peterson’s and Gardner’s equations we obtain:

Vi

Va

R = 0.625 1ln

Rock density and velocity depend upon the
intergranular elastic behavior of the mineral composition of
the rock matrix, fluid content, cementation, porosity, and
environmental pressure (Gardner et. al. 1974). Faust (1953)
confirmed that density and velocity increase with an increase
in age of formulations and depth of burial. Figure 46 shows
dengity-velocity relationships in rocke of different

lithology.
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The magnitude of the acoustic impedance contrast
controle the magnitude of the reflection. In other words,
the magnitude of reflections i2 a function of the acoustic
impedance contrast; large reflections are produced by large
impedance contrasts between layers. If the thicknesses of
the units are large enough and/or the units have large
impedance contrast, then the units can be easily ilidentified
on a seismic section. Haowever, 1if the units are thin and/or
the acoustic impedance contrast is lower, the units might not
he seismically visible. Therefore, the acoustic impedance
contrasts between the layer and the adjacent layers and the
thickness of the layers are the two critical factors which
determine whether or not the layers are viz=ible on a seismic
gsection.

Figure 47 is a =chematic diagram shaowing the =eismic
vigibility of a unit. The =zone, sgeparating visible and
invigible zones, depends on the wavelet shape, frequency, the
quality of amplitude preservation and the signal-to-noise
ratio. In ghort the zone is dependent on the quality of the
geismic data. Reflection coefficients are convolved with a
propagating =seismic wavelet to obtain a seismic trace.

A geismic wavelet propagates as an incident wave through
different layers while each boundary of layers yields= a
reflected wave similar to the incident wave. The propagating
wavelet, which 12 a s2ymmetrical and relatively
broad band, is a two-sided, =zero-phase signal (Figure 48),

which i=s ideal. Schoenberger (1974) indicated that these
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tvo-=ided zero-phaze signals possess a superior degree of
seismic respanze resolution. In addition, these signals
provide a precise indication of reflector depth, reflection
time, and reflector spacing. Unfortunately, in real
conditiong the wavelets are not symmetrical and total =seismic
regponge of the layers is seriously deteriorated. In figure
47, individual reflections associated with shale-water s=sand
interfaces occur within a rapid time sequence so that the
responding wavelets overlap. This produces the total seismic
regponge which is the summation of the individual responses,
and each waveform has some meaning that is related to
acougtic impedance (Dedman and others, 1975 a, b).

Frequency, continuity of feflections, and amplitude are
important parameters which are used to interpret a seismic
gection. For example, frequency, which is the reciprocal of
period, is related to lateral changes= in interval velocity.
The continuity of a reflection gives information about
depositional environment and proces=s, and bed continuity. As
it is explained by Sheriff (1975), the third parameter,
amplitude, provides information about fluid content, lateral
variation in lithology, layer thickness and spacing, and
acoustic impedance of layer boundaries. Figure 49 and Table
2 show factors affecting seismic amplitudes=s. The type of
pore fluid can significantly change the reflection amplitude
depending on the acoustic impedance contrast with the
surrounding lithologies. Principally, because of the changes

in pore fluid, three modifications in reflection amplitude
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Figure 49. Factors Which Affect Amplitude
(From Sheriff, 1975)



TABLE II

FACTORS AFFECTING SEISMIC AMPLITUDES
(From Sheriff, 1975)

Amplitude Factor

The effect . Comments

is constant for  increases depends on  depends on  contains subsurface

entire record with time offset frequency information
Source strength yes
and coupling ves possibly
Spherical divergence ves: slightly )
and raypath curvature ves slightly in a sense
Absorption ' ves yes probably
Scattering Background noise
Intervening interfaces ves slightly
Peg-leg multiples ves slightly . yes in a sense
Superimposed noise somewhat in a sense
Interference of events usually in a sense
Attenudtion in near surface ves possibly
Geophone sensitivity ves . .
and coupling ves possibly
Array directivity _v;cs yes yes
Instrumentation possibly possibly possibly
Reflection ves
Reflector curvature in a sense structural
and velocity focusing "in a sense in a sense
Reflector sharpness Minor effect
-and rugosity Minor effect
Incident angle yes yes

66
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regpaonge are! (1) increase in trough amplitude resulting in an
amplitude anomaly bright spot, (2) decrease in peak amplitude
regulting in a dim spot, and (3) a peak-to-trough change
within a 2mall distance resulting in polarity reversal
(Figure 50) (Mackel and Nath 1977).

Internal friction, inelasticity, plezoelectricity,
hysteresis, and thermoelectricity are physical factors in
connection with absorption. Low frequencies are attenuated
s8lower than high frequencies (Figure 51-a ), therefore,
absorption acts as a low-pass filter. Absorption decreases
the amplitude of the propagating =ignal; the resulting
frequency loss deforme the wavelet shape (Sheriff 1975).
Accaording to Huygen’s Principle, if a P wave is2 not normal to
the boundaries between adjacent regions, it will produce a
series of P waves and S waves at each acoustic impedance
changeﬁﬁ' Energy which ig converted into S waves also helps
the loss of amplitude. Spherical divergence causes the
greatest decrease in amplitude with propagating distance
(Figure 51-b). The energy decreasges as the inverse square of
the propagating distance and thiz energy loss causes the loss

of amplitude (Sheriff 1975).
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Horizontal Resolution

A Fresnel zone (Figure 52), which i2 a concept that
controle horizontal resolution, is an area of a reflector
between contact pointe with the wavefront. This area, which
ig principally respongible for the reflection event, i=
called the First Fresnel Zone (Figure 52). This =zone returns
energy to a receiving point on the surface so that construc-
tive interference take= place at the receiving point. In the
vertical incidence case (Figure 52-b), the data obtained i=
not information about the reflector at poiﬁt P, but is an
average over the whole Fresnel =zone.

Figure 53-a and b show nomograms= for determining Fresnel
zone radii. In Figure 53~a, a straight line connecting the
frequency and two-way travel time intersects the central line
at the =ame point as a straight line connecting the velocity
and the radius of the Fresnel zone. For example, a reflection
at 2.0 =2econds with a 30 Hz component correspondé to a
Fresnel zone radius of 1290 ft. for an average velocity of 10
kilofeet per =second (kft/s).

The s2ize of the Fresnel zone depends on wavelength
frequency (Figure 52 c) and the depth of the reflector. The
radius of the Fresnel zone can be calculated using the

following mathematical relations=:

1 172 1 t 172
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Where:
R : radius of Fresnel zone
X : wavelength = V/£f
h : depth
V : velocity
t : the arrival time

f : frequency
For a high frequency wave, the wavelength and Fresnel
zone are small, and more seismic detail can be detected.
Figure 54 shows the seismic signature of some sandstone
bhodies. When the widths of the =zand=stone bodies are narrover
than the Fresnel zone, the seismic signature loses all

reflection character and appears as a point diffraction.

Vertical Resolution

Vertical resolution .ie the ability to distinguish the
reflectiong from the top and bottom of a layer. Vertical
regolution depend= on the sharpness of the wavelet; the
sharper the pulee, the thinner the layer. The sharpness of
the wavelet depends on its bandwidth. Better bandwidth i=
obtained by using a good source, spread geametry, and
recording filters. The sharpness also depends= on the phase,
the most accurate i= the zero-phase. A zero-phase wavelet is
gsymmetrical about a peak (black) for a normal (positive)
wvavelet, and about a trough (white) for a reverse (negative)
wavelet (Anstey, 1980) (Figure.35). Vertical resolution

also depends upon the distance between the layers compared to






NORMAL REVERSE

Figure 55. Zero-phase (Symmetri-
cal) Normal (Posi-
tive), and Reverse
(Negative) Wavelets
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the wavelength. Widese (1973) stated that the limit of
vertical resolving powver is 1/8 of the wavelength of the
daminant frequency, which can be estimated by measuring the
peak-to-peak or trough-to-trough length of individual
high-amplitude reflections, of a source (Figure S6). When
layer thickness b is large enough between each of the two
interfaces, individual reflected wavelets are fully
separated. When the thickness of the layer is2 equal to 1/8
of the wavelength, thé two wavelets =superpose to form a
gingle wavelet that has anomalously high amplitude. Thie
thickness has been termed the critical resolution thickness
or tuning thicknes=es (Figure.57). If the layer thickness
becomesz thinner than tuning thickness, all res=olution
information become weaker and disappears.

Figure 358 showe the limit of vertical res=olution for a
g8ingle low-velocity thin bed u=ing a 20 Hz Ricker and an 8 to
32 Hz Butterworth band-pase wavelet to compute the seiswmic
maodels. A maximum amplitude takes place at the tuning
thicknege where the peak-to-trough =eparation becomes
invariant (Neidell and Poggiagliolmi, 1977). Figure 39
illuztrates the seismic reasponses of the thin and thick
transitional bed contacts. The amplitude of a reflected wave
decrease=s as the thickness of the transitional =zone of an
acougtically thin bed increases. Also the amplitude
decreage=s as the thickness of the transitional zone of an
acoustically thick bed bhecomes thicker (Meckel and Nath,

1977).
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The threshold of re=olution depends an: 1) the
slignal-to-noise ratio, 2) the predominant frequency of the
incident wavelet, 3) the form and duration of the incident
vavelet, 4) the wavelet shape, and 5) the =seismic equipment
uged (Wide=ss 1977).

The shape, thickness, velocity, and den=ity of a bed,
variation in attenuation of the recorded reflections,
frequency, amplitude, continuity, vertical and lateral
changes in acoustic impedance, wavelet shape and frequency
range, Fresnel zaone, and fluid content of the bed control the

regolution and detection of a bed.
Wavelet Selection and Procesesing

Wavelet selection 12 an important =tep in seismic
modeling. Figure 60 illustrates a geologic model of a
zandstone layer and three seismic models that were obtained
by using three different band-pass wavelets. The =sandstane
layer has relatively uniform thickness. The upper 60 feet of
thigs sandstone i=2 gas-saturated. The seismic response of
thizs gas-sand is a bright spot (amplitude anomaly). It ie
impoggible to =zee more stratigraphic detail in the first
two seismic models due to low frequency wavelets. In the
third model, the gas-sand/hater-sand contac£ can be seen.

The contact iz seismically vieible because of the higher
frequency of the wavelet. Since the frequency of this wavelet
is too high, the ps=eudo sand appears helow the base of the

sand. The wavelet frequency value between the A and
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B values would best simulaté the geologic model.

Figure 61 illustrates a geologic model of a horst block
and two wave-theory simulated seismic models that show the
importance of choosing the correct wavelet. In the first
seismic model, a zero-phase wavelet is used. On the contrary,
in the second model the nonsymmetrical complex wavelet i=s
used. in the second model, a pinchout is seen at 3.3
geconds. The superposition of the incorrect wavelet and the
g8lightly discordant geometry have caused the pinchout which
doeg not exist.

Figure 62 illustrates four seismic sections which are
differently processed, over the =same bright spot. Sections a
and ¢ are processed conventionally without and with automatic
gain control. The sections b and d are wavelet processed
without and with automatic gain control. Figure 62-a has a
lengthy and complex wavelet which i=s simplified by wavelet
proceseing (Figure 62-b). This section shows that the
reflection character of the bright spot at 1.4 seconds as
well as that of the secondary bright spot below 1.55 seconds
iz gimplified. The purpose of automatic gain control is to
make the wavelet character more visible at locations= other
than the amplitude anomaly (bright spot) (Figure 62-d).

Thug, the layers that are relatively thin and have low
acousgtic impedance contrast may be seismically visible.
There are two major lobes in figure 62-d. The first one
(white lobe) i1s deflecting to the left, and the second one

(black lobe) is2 deflecting to the right.
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These lobes are the responses indicating the tap and the base
of the sand respectively (Schram et al., 1977).

The advantages of wavelet processing are: (1) different
wavelete are converted to a basic =imple wavelet, (2) a
lengthy and complex wavelet is reduced to a short and simple
wavelet, (3) bhetter stacked data iz obtained because of the
improved velocity analysis, (4) a valid relative acoustic
impedance section can be generated, (3) borehole acoustic
measurements more dependably match seismic measurements, (6)
an improved relationship between the seismic section and

lithology can be aobtained (Hicks, 1983).

Stratigraphic Interpretation of Seismic

Reflection Configurations

Seismic stratigraphic interpretation should contain the
distribution of facie= and their po=sition within depositional
sequences. Depositional facies are bounded by surfaces whose
origins are inferred from sedimentary structures, bedding
characteristice, and textural variations. Seismic
stratigraphic interpretation requires geophy=ical processing
techniqueas to suppress seismic noise. Otherwvise, the seismic
regponge of the features is hidden by the noi=se.

Seismic faciez= units are the reflection configurations
which result from the seismic response to various
depositional facieeg units (=2eismic facies= units). Seismic

facies units are groups of seismic reflections whoese
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configquration, amplitude, frequency, continuity, and
interval velocity differ from adjacent reflection groups.

Major groups of reflection configurations are parallel,
subparallel, divergent, chaotic, reflection-free and
prograding (Figure 63). Prograding reflection configurations
can bhe subdivided into =sigmoid, obhlique, complex
sigmoid-dblique, ghingled, and hummocky clinoform
canfigurations ( Mitchum et al., 1977 ). The interwval
velocity contains information about fluid content, gro=ss
lithology, and lateral lithologic variations. A sufficient
knowledge of the arrangement of depositional systems and
their geismic expressions ieg important for making an

interpretation of variationzs on the seigmic section.
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