
EXPERT SYSTEM FOR COMPUTER

ASSISTED FLORISTIC

CLASSIFICATION

By

LINDA WOODRING BARNES

Bachelor of Science

Oklahoma state University

Stillwater, Oklahoma

1974

submitted to the Faculty of the
Graduate College of the

Oklahoma state University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1988

EXPERT SYSTEM FOR COMPUTER

ASSISTED FLORISTIC

CLASSIFICATION

Thesis Approved:

Dean of the Graduate College

laO.Z592
ii

ACKNOWLEDGMENTS

I wish to express my appreciation to IBM who

allowed me time to attend graduate school on a full time

basis to enhance my career opportunities within the

company.

Many thanks to my advisors Dr. Mike Folk, Dr. G. E.

Hedrick, and Dr. Ronald J. Tyrl for their suggestions and

encouragement during my thesis.

A special thanks also goes to Dr. K. M. George and

Dr. Donald Fisher for their guidance and support during

my graduate studies.

I would also like to thank both by mother, Sherry

Woodring and my mother-in-law Lois Barnes for their

emotional support to myself and my family while working

on my masters degree.

Thanks also goes to my two sons, Micah and Brandon

and my daughter Andrea who joined our family during my

studies.

Finally, a very special thanks to my husband, Frank.

This endeavor would not have been possible without his

loving support and belief in my abilities. Without his

artistic ability, the illustrations in the students' guide

would not have been possible.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION.

computers in Education
Taxonomic Keys .
Intent of study.

II. REVIEW OF LITERATURE.

The Case for Computer Use
in Education

Botanical Classification
Expert Systems
Programming Languages ..

III. PROGRAM DESIGN CONSIDERATIONS .

Program Objectives ...
Plant Families
Inference Engine Design.

IV. PROJECT ASSESSMENT.

Program Design
Testing Results.

V. SUMMARY AND FUTURE WORK

BIBLIOGRAPHY

APPENDICES .

summary. . .
Future Work.

APPENDIX A- TEACHER'S GUIDE.

APPENDIX B - USER'S GUIDE ..

iv

Page

1

1
3
5

7

7
9

11
14

18

18
21
24

26

26
30

37

37
39

41

43

44

62

LIST OF TABLES

Table

I. Taxa in Botany Program

II. summary of Responses .

LIST OF FIGURES

Figure

1. Types of Taxonomic Keys ...

Page

23

34

Page

4

2. Example of a Running Program. 20

3. Main Menu 29

4. Pre-Test. 32

5. student Questionnaire . 33

6. Turbo Prolog Main Menu. 50

7. Turbo Prolog Main Menu after Resizing Windows 52

v

CHAPTER I

INTRODUCTION

computers in Education

In the last few years, schools and universities in

many parts of the world have acquired large numbers of

computers (Bork, 1987). students are now becoming computer

literate in elementary school. Only a few years ago,

computer literacy did not occur until college. Sitting

before a microcomputer at home or at school is becoming as

commonplace for students as turning on a television

(Crovello, 1982).

several state and national committees are investi­

gating the crisis in science education. There has been a

reexamination of the foundations of science education, and

there has been a restructuring of the goals and methods of

science teaching. computer technology is receiving high

priority among the new topics of study. As a result,

science educators are now asking: "Why use computers in the

classroom?" (Ellis, 1984)

Computers can permit one to teach subject matter that

is already taught, but help teach it more efficiently by

increasing the student's interest in the subject matter.

For example, students required to take general biology

1

2

become excited about the subject of taxonomy when part of

their assignment is to use the computer to identify what

species an unknown maple specimen belongs (Crovello, 1974).

Most of the early applications of computers in educa­

tion focused on the computer as a teacher. These programs

presented material, asked questions, and branched appro­

priately. New educational programs differ from the

traditional computer assisted instruction (CAI) approach

that uses the computer for drill and practice. They

instead use a new branch of computer science, artificial

intelligence. Recent advances in arti~icial intelligence

have opened up the possibility of using computers as

"expert tutors". The key distinction between this form of

software and early CAI is that in an expert tutor the

student remains the primary agent in the student-computer

dialogue. In an expert tutor, the student acts as the

primary problem solver (Balkovich, Lerman, and Parmelee,

1985).

one area in science education that is traditionally

frustrating for a beginning student is learning to classify

unknown organisms. This study looks at how learning the

taxonomy of one group of organisms, the flowering plants,

can be made simpler and less confusing for the student by

using the computer. This will be accomplished by the use

of an expert system which takes the student step by step

through the keying process.

3

Taxonomic Keys

Identification of unknown plants is typically accom­

plished by means of a dichotomous taxonomic key. such a

key pre%ents the user with progressive choices between

pairs of alternative characteristics. The user examines

the unknown plant, then chooses one alternative or the

other. Selection of the most applicable alternate leads to

other pairs of alternatives and ultimately to a scientific

name.

Keys provide a convenient shortcut method of iden­

tifying plants by outlining and grouping related types.

There is somewhat of a "knack" in using keys which an

individual develops mostly by constant practice and ex­

perience (Harrington and Durrell, 1957). Because keys

frequently use scientific technical terminology and several

characteristics at once to determine the next pair of

alternatives, their use initially can be frustrating for

the student. If the initial reaction to keying plants is

negative, it is difficult to excite the student or even

interest him further in identification and taxonomy. When

the student has a good understanding of the descriptive

terms commonly used and can relate them to the plant being

identified, then use of the key is not difficult and

becomes a learning experience.

Two types of taxonomic keys are commonly used (see

Figure 1). In the bracket key the two choices of a pair

always are positioned together and given the same number

4

or letter. Some authors do not indent alternate pairs

of choices as is illustrated. The indented key is much

like a outline and easier to use because each new pair

of choices is indented to the right. Each pair of alter-

native choices is given a number or alphabetic character.

This particularly is useful in a long key when the members

of a pair may be separated by numerous other pairs. Groups

and the characters that characterize them are more easily

seen in an indented key. The majority of modern taxon0mic

manuals use the indented type of key (Harrington and

Durrell, 1957).

BRACKET KEY

1. Flowers red................................ 2
1. Flowers blue. 5

2. ·leaves simple.. 3
2. leaves compound. 4

3. Petals 4 Species no. 1
3. Petals 5 Species no. 2

4. leaflets 5 species no. 3
4. leaflets 9-11 Species no. 4

INDENTED KEY

A. Flowers red
B. Leaves simple

c. Petals 4 Species no. 1
c. Petals 5 Species no. 2

B. Leaves compound
D. Leaflets 5 Species no. 3
D. leaflets 9-11 species no. 4

A. Flowers blue
E. Flowers sessile Species no. 5
E. Flowers pediclled

F. Inflorescence a raceme Species no. 6
F. Inflorescence a panicle Species no. 7

FIGURE 1. Types Of Taxonomic Keys

5

Keys may be difficult to use for several different

reasons. The key may use characters not present on the

specimen at hand. The meaning of some terms may vary from

key to key. Several characteristics may be given in each

alternative and the characters given in the one alternative

of the pair may not be contrasted in the second.

The uniqueness of terms used in taxonomy poses a stum­

bling block for most beginning students. Many terms are

encountered only in keys and the student must learn how to

use the key plus a set of terms at the same time.

Intent of Study

The purpose of this study is to demonstrate how using

a computer during a student's first introduction to keying

unknown plants can make the process less frustrating and

more enjoyable. This objective will be accomplished by

writing a computer-assisted plant identification program

utilizing an expert system written in Prolog. Instead of

presenting the student with multiple pairs of choices

simultaneously as occurs where a traditional taxonomic key

is used, the program reduces the keying technique to one

decision at-a-time regarding the plant's characteristics.

The scientific terms used to describe the plants have been

simplified and eliminated as much as possible.

Expert systems differ from traditional computer pro­

grams by usually using declarative languages or shells.

This makes the program easier to modify and update. Once

6

the program has been written, a teacher with a limited

computer programming background should be be able to make

changes to the program to fit his or her own individual

needs. A teachers' guide will be provided for this purpose

(see Appendix A).

CHAPTER II

REVIEW OF LITERATURE

The case For Computer Use In Education

Educational software has existed almost as long as

computers have been available in academic settings. The

amount, diversity, and quality of such software has under­

gone great changes, but never as rapidly as the present.

Today 16 and even 32 bit microprocessor-based microcom­

puters are becoming available. Educators soon will have

much of the capacity of a mainframe computer on their

classroom tables. Crovello's article "Evolution of Educa­

tional Software'' documents the changes in educational

software and predicts future developments.

There have been many major hardware changes important

in educational computing. These include increased abili­

ties in storage, graphics, access ability, and decreased

price. From 1980 to the present, microcomputers changed

significantly the evolution of hardware and thus of soft­

ware available to educators. New educational programs are

taking advantage of these changes. To utilize the latest

in educational packages, schools must budget or find out­

side endowment money to purchase the latest microcomputers

available.

7

The abilities and attitudes of teachers also are

changing. More educators have become comfortable with

computers and are less hesitant to consider their use.

They now are demanding quality software in their class­

rooms. The result is healthy competition among software

suppliers which, in turn, are producing innovative,

valuable pr0grams.

A question frequently asked is: "Why isn't there

more good instructional software for the microcomputer?"

There are several reasons for the lack of high quality

instructional software (Spain, 1985). One of the major

problems in courseware development is that it simply

takes a lot of time to develop a polished product.

Between two and five years may elapse, after an idea is

conceived and the time the program finally is published.

Second, relatively few people have both the subject area

knowledge and the skill to design instructional software

and to program it as well. Third, the financial rewards

are not very great for the author of an educational pro­

gram. An author may make the equivalent of only $1.50 an

hour for a program that is targeted for use by a very

specific audience in the school.

8

Computing is now recognized as the fourth basic skill,

along with reading, writing, and arithmetic (National

Science Foundation, 1979). In the article "A Rationale for

Using Computers in Science Education", Ellis relates the

economic status of our country to our successful transfer-

mation to an information society and to the level of our

nations' scientific and technological literacy. The rapid

transformation of the nation into an information society

compels educators to establish computer literacy as an

important goal.

Computer literacy can best be developed in subject

areas. Restricting computers to classes in computer

literacy separates the skill from the application. That

is similar to restricting the activity of reading only

to a reading class. The skill obtains relevance in its

use in a realistic problem situation (Ellis, 1984).

Botanical Classification

9

Programs were developed using the computer to create

taxonomic keys during the late 60's and 70's. Programs

that created keys embodied the use of data matrices.

Information on the features of various taxa was presented

in tabular form using the data matrix method (Morse, 1974).

Taxa were positioned along one axis and various characters

along the other. By providing matrices for taxa of differ­

ent ranks, the data could be linked hierarchically using

both forward and backward pointers. Hall (1970) also used

a data matrix form and ass~gned a numeric property value

for scaling characteristics observed. Advantages of compu­

ter efficient key can be found in "Botanical Keys Generated

by computer" by Pankhurst (1971). The major advantages are

the ease of editing the key and the fact that through

10

computer networking one could get an immediate revision of

a manuscript key for a taxonomist in his laboratory or

herbarium.

Another extension of the key-editing system involves

computer identification of individual specimens, using as

input a list of observed characteristics (Morse, Beaman,

and Shetler, 1968). several programs of this nature have

been developed. one such program is described by Goodall

(1968). After the user has specified the value of an

attribute displayed on the computer screen, he is told how

many taxa are still consistent with the characters so far

entered. He is given the options of specifying another

attribute value, being given the names or full descriptions

of the taxa, or being given a list of attributes which can

distinguish among the remaining taxa. This program could

only be done by using a large main frame computer due to

the size of the required information. Morse recognized

that routine application of computer-stored data matrices

to specimen identification presents problems: (1) termi­

nals must be located in herbaria; and (2) a network of

accessible taxonomic data matrix files must be prepared

and be available.

Due to the complexity of both types of programs,

only those individuals competent in taxonomy could utilize

them. There are advantages of such a national or inter­

national taxonomic information system: completeness,

standardization, and revisability (Morse, 1971). Copies of

11

the entire data base printed periodically could be kept as

historical records.

Identification aided by the computer is possible

with present technology. Programs available are designed

primarily for the experienced taxonomist and not easily

used by novices. Today the use of artificial intelligence

techniques can make identifying plants possible for the

beginner using a microcomputer. An expert system can

reduce the code so that by using a personal computer, a

subset of a large plant identification program can be

brought directly into the classroom.

Expert Systems

Artificial intelligence (AI) is simply the transfer

of intelligence to machines (Levine, Orang, and Edelson,

1986). Expert Systems deal with a small area of expertise

that can be converted from human to AI . They work with a

knowledge base in a particular field, drawing inferences in

one way or another (Simons, 1985). This single area of ex­

pertise is referred to as the domain of the expert system.

What is generally considered to be "intelligence" can

be divided into a collection of observations or facts and

a means of utilizing these facts to reach goals. For

example, a goal might be to determine why a car will not

start. The expert system prunes these facts to eliminate

from consideration any facts and rules that won't lead the

user to a specified goal. The portion of intelligence that

generates new facts from existing ones and to arrive at

the goal is the "inference mechanism".

12

Expert systems can be applied to problems that are

solved primarily using formal reasoning. The problem is

solved through a dialog, or "consultation,'' with the expert

system (Townsend, 1987). In a simple expert system, each

question is answered with "yes" or "no''. After each ques­

tion, either the program may request an answer to another

question or it makes an inference based on the facts it

already has accumulated.

Knowledge engineers are used to develop expert sys­

tems. They are skilled at observing and analyzing the

methods used by human experts to solve problems in a

particular discipline. These methods, or heuristics,

are stored as part of the data.

There are three basic components of an expert system.

The first component, the rule-base, is a static database

that contains all the knowledge about the domain. The

second component, the working memory, houses the dynamic

database to store the new facts obtained from the user or

inferred from known facts. The inference engine is the

third component. It contains the general problem-solving

logic.

one of the most common types of expert systems is

the ruled-based system. In a rule-based system, knowledge

is represented as IF-THEN statements (rules}. When the IF

portion of a rule is true in the current situation, the

13

action specified by the THEN portion is executed or said to

fire.

A typical rule for finding the disease of a plant

might be (Latin, Miles, and Regginger, 1987):

IF the plant symptom is wilt,
and the wilt is rapid,
and no yellow tissue is associated with wilted

leaves,
and bacterial streaming can be demonstrated

from freshly cut sterns,

THEN the disease is bacterial wilt.

The working memory contains facts that describe what

is known about a particular problem. When a program is

started, the working memory is empty. As the consultation

progresses and the system learns more about the problem,

the new knowledge is put into working memory. The knowl-

edge in working memory is used to fire additional rules.

As each rule fires, the conclusion is added to working

memory with the facts already known.

The inference engine has two tasks: one is inference,

and the second is control. The inference component uses

the facts in working memory to try to trigger new rules.

After all conditions of a rule are triggered, the rule

fires and the conclusion is added to working memory. The

control component determines the order in which the rules

are scanned.

Most expert systems use two types of search strate-

gies, forward chaining and backward chaining, to control

the order in which the system goes about using the rules

14

and finding the final goal. Like inductive logic, forward

chaining reasons forward from existing facts and rules to

derive additional facts that must hold, while following all

possibilities suggested by the data. Like deductive logic,

backward chaining reasons backwards from a given goal,

searching the knowledge base for facts or rules supporting

that goal and declaring them true (Williams, 1986).

Insight into the special nature of expert systems can

be gained from a comparison of expert systems to conven­

tional programs. Each require different developmental

approaches. The most fundamental difference is that con­

ventional programs deal with data, whereas expert systems

deal with knowledge. Knowledge implies an awareness or

understanding gained through experience or study. con­

ventional programs operate according to algorithms, formal

procedures designed to produce correct or optimal solu­

tions. Expert system rules embody judgmental knowledge,

rules of thumb, or simplifications used by experts.

conventional programs use a top-down approach which make it

difficult to change system design once coding has begun.

Uncoupling knowledge from its application makes a data­

driven system much easier to modify as the expert system

evolves (Williams, 1986).

Programming Languages

Traditional programming languages have not proved to

be well suited to computer applications in expert systems

15

(Simons, 1985). Expert systems have been written in cobol,

Pascal, Ada, Fortran, c, and Basic, but such languages are

far from ideal in representing knowledge required by AI.

The emergence of new programming tools has stimulated the

development of AI-related systems. Perhaps more than

anything else, the lack of an adequate language hindered

the development of expert systems for productive applica­

tions on the personal computer (Townsend, 1987).

Special languages, notably Lisp and Prolog, have been

developed to facilitate the programming of AI applications.

Aware of the need for a language to process symbolic infor­

mation, John McCarthy invented Lisp in the early 1960's at

MIT. In 1972, Alain Colmerauer and P. Roussel at the

University of Marseilles began the development of Prolog.

such languages are often called descriptive, declarative,

relational, or logic programming languages. Traditional

languages are referred to as procedural languages.

Four commands are central to Lisp's symbol­

manipulation capability. These basic commands can sort

out symbols, build up lists, determine the truth or

falsity of a function, and can match the if-side of a

production rule. In general, Lisp's goal is to evaluate

something and return a value (Myers, 1986). Most of the

larger expert systems have been written in LISP or in a

LISP-based languages such as OPS5. Disadvantages to using

LISP are that it is best suited to an expensive workstation

or superminicomputer, and it is not the easiest tool to use

(Lisp experts are still in relatively short supply)

(Simons, 1985).

Prolog usually is regarded as much easier for the

novice to understand (Simons, 1985). It was selected in

1981 as the basis for the Japanese Fifth Generation

computer project. It is now gaining acceptance in the

United state as well (Myers, 1986}.

16

Prolog is short for Programming in Logic. It was

created especially for answering questions about a

knowledge base that consists of rules and facts (Levine,

orang, and Edelson, 1986). Writing expert systems using

Prolog is particularly easy compared to other languages

because it has backward chaining built in and also utilizes

another technique known as "backtracking." Recall that

backward chaining assumes a conclusion to be true, and then

a knowledge base of rules and facts is examined to see if

it supports the assumption. If the original assumption is

not correct, backtracking replaces it with a new one.

Today, several powerful Prolog compilers are available

for the personal ~omputer. In 1985, the Arity Prolog

compiler was marketed. Borland's Turbo Prolog was

introduced in May 1986. A user can now compile a true

expert system with hundreds of rules that will function on

a personal computer.

Prolog does have a few disadvantages. First, the

order of the rules and facts is important to their meaning.

Second, all rules must reside in the computer's memory.

17

The number of rules that the expert system can use is

limited by the memory size of the computer. With most

versions of Prolog there are methods by which the disk can

be used as an extension of memory, but this alternative

virtually ensures a very slow program for an interactive

session.

Programming in a AI language such as LISP or Prolog

is completely different from using a procedural language.

If a programmer has spent years learning procedural

languages, he will have to go through an "unlearning"

experience before he can begin to get proficient in these

languages. There is an advantage: The computer can be

used to solve new problems that are not adaptable to

solution using traditional languages.

CHAPTER III

PROGRAM DESIGN CONSIDERATIONS

Program Objectives

The main objective of this project is to write an

educational program that allows beginning botany students

at the high school and college levels to identify flowering

plants with the assistance of a computer. various program

designs can be employed to accomplish this goal. To ensure

a quality program six goals are identified before the

design process begins. These goals reflect upon both how

the teacher and students will accept the program.

The first goal is that minimal typing is to be done

by the student. Many students and teachers use the "hunt

and peck" method when at a computer. Programs that require

large amounts of keystrokes are frustrating for these indi­

viduals and add greatly to the time it takes to identify a

plant. The user is assumed to have minimal typing skills.

All questions are written to require only a one keystroke

answer.

The second subgoal is to make the decision process

as simple as possible. This can be accomplished by remov­

ing technical botanical terms whenever·possible. Many

terms used in plant taxonomy can be translated into

18

descriptions familiar to the user. The use of technical

terminology in keys of professional taxonomists is one

of the reasons that keying plants is so difficult for a

beginner. To aid the student in understanding terms used

in the program, a glossary of terminology used and illus­

trations is provided to the student with the program {see

Appendix B).

19

The decision process can also be simplified by redu­

cing the decision to one characteristic at a time. The

characteristics that the student must observe and make a

decision about can be minimized. By selecting the families

to be keyed in advance, only those characteristics required

to differentiate between the families need to be included

in the program.

Making the program attractive and appealing to the

eye and easy to read is the third goal. This is accom­

plished by a dual window screen. see figure 2 for an

example of a running program. Questions to be answered

always appear on the left hand side of the screen and facts

gathered from the user always appear on the right hand side

of the screen. For those students with color monitors,

each window uses contrasting colors to further separate the

two functions of the windows. When a class, family, sub­

family, genus, or species is determined, the appropriate

name of the taxon appears on a line by itself and is

highlighted. The highlighting emphasizes which character­

istics are used to determine the plant's family ,etc.

20

~PLANT IDENTIFICATION PROGRAM!----~ ~---------CHARACTERISTICS----------~

Does the family description
fit your plant (y/n)? y

Is the capsule more than 3 seeded
versus 3 seeded (y/n)? y

Are the flowers in a head versus
not in a head (yjn)? y

Do leaves have partitions(septate)
versus no partitions (y/n)?

FAMILY DESCRIPTION FOR JUNCACEAE:
plant a monocot; carpels 3 united;
ovary superior; petals and sepals
similar appearing to be green or
brown; fruit a capsule

FAMILY IS JUNCACEAE

many seeded capsule
GENUS IS JUNCUS

flowers in a head

Figure 2. Example of a Running Program

The fourth requirement is to allow a teacher with a

limited computer science background to modify the program.

The teacher can add families of plants that are abundant or

unique to his area. The design of the program should there-

fore be as simple as possible, but still incorporate the

other goals. A maintenance manual written for the teacher

accompanies the program (see Appendix A).

The program's fifth objective is to be accurate. In

order for the teacher to have faith in the program, it is

imperative the data inputted by the student leads to the

correct identification. The program will be based on a

dichotomous key authored by U. T. Waterfall (1972). This

key is accepted as the standard reference for the vascular

21

plants of Oklahoma by the scientific community. The pro­

gram will be compared with Waterfall two times for verifi­

cation. As the teacher makes modifications to the program,

he must ensure accuracy in order to maintain the integrity

of the program.

Because most high schools do not have access to a

mainframe computer, the sixth and last goal requires

the program to run on a personal computer. To be less

confusing to the students, the program is written to

be a standalone program. The student, therefore needs

only to insert the diskette and turn on the computer.

This program was developed using an IBM Personal System/2

Model 30 and designed to run on any IBM or IBM compatible

personal computer with 640K of memory.

Plant Families

Because the memory size in a personal computer is

limited relative to a mainframe, a taxonomic key for all

of the flowering plants of a one state could not fit in

main memory. Oklahoma, for example, has approximately

152 families, 834 genera, and 2600 species. The selection

of which families, genera, and species to incorporate into

the program is a major design decision. With the assis­

tance of Ronald J. Tyrl in the Department of Botany and

Microbiology at Oklahoma state University, it was decided

to include 10 families in the program. More families can

be included but space constraints prevent the inclusion of

22

additional genera and species. It is important that the

beginning student be introduced to the classification

levels of genus and species in order to show how organisms

are grouped in a hierarchy of categories and how organisms

are classified from general characteristics shared to

specific characteristics that are unique to that organism.

The hierarchy of classification of organisms shows the

student the diversity of the biological world.

The 10 families chosen include plants that are

commonly fourtd throughout the United states. Some

families are similar except for one characteristic and

others are quite different in their characteristics. Of

the 10 families included, one family has a key to the

subfamililes level, five families have keys to their

genera, and three genera have keys to the species level.

Table I lists the taxa represented in the program.

Table I

TAXA IN BOTANY PROGRAM

FAMILY SUBFAMILY GENUS

Asteraceae

Iridaceae Nemastylis

Fabaceae Mimosoideae
caesalpinioideae
Papilionoideae

Fagaceae

Juncaceae

Lamiaceae

Liliaceae

Tigridia
Sisyrinchium
Belamcanda
Iris

Fagus
castanea
Quercus

Juncus J.
J.
J.
J.
J.
J.

Luzula L.
1·

SPECIES

tenuis
interior
coriaceus
torreyi
accuminatus
marginatus

echinata
~U!P¢f::&9.

Magnoliaceae Magnolia M. acuminata
M. tripetala

Rosaceae

Verbenaceae Verbena
Phyla
callicarpa

23

24

Inference Engine Design

Most of the inference design and control of a program

is built into Turbo Prolog by its pattern matching and

backtracking techniques. Prolog systems are predominately

backward-chaining systems. Through pattern matching, it

starts with an hypothesis and tries to prove it working

backwards. For example, in this program instead of gather­

ing characteristics about the plant and then finding a

family, the program finds the first family listed and

questions the student about the characteristics that fit

that family. If the hypothesis fails, Prolog goes forward

until it can find the next family, then uses backward

chaining again.

Prolog uses a depth-first search strategy. Details

are pursued as deeply as possible until the goals fail.

After an outcome is proven false, the system backs up and

then pursues the next outcome. All characteristics rela­

tive to a specific family, genus, or species are considered

together and either accepted or rejected.

Because the inference engine is internal to Prolog,

the programmer does not have to spend time designing the

inference engine. It does however, limit the programmer to

the search strategies that Prolog supports: depth-first

searching using backward chaining and limited forward

chaining.

When classifying plants, one moves from the most

general category to more specific ones. By listing the

25

most inclusive characteristics first as is done in a

dichotomous key, the program can quickly reduce the search

space in correctly identifying a family. Instead of

repeating the general characteristics at the genus level,

the first characteristic would be the family. At the

species level, the first characteristic would be the genus.

For example, if the student was identifying the species

Luzula bulbosa, the following code is used.

fa~ily(juncaceae) :­
check(monocot),
check(ovary superior), not(check(sepals_petaloid}),
!,desc(juncaceae).

desc(junaceae):-
write("\nFAMILY DESCRIPTION FOR JUNCACAE:"),
write("\n several write staments describing"),
write("\n Juncacae"),
ck desc, /* checks with student if the

- description is correct */ write("\n
FAMILY IS JUNCACEAE"),
highlight,
asserta(dbase(juncaceae,'y')),
genus () , ·
species(} .

genus(luzula) :-
check(juncaceae), /*family name*/
not(check(gt3 seed capsule)),
write("\n GENUS IS-LUZULA"),
highlight,
asserta(dbase(luzula, 'y')) .

species(bulbosa):-
check(luzula), /*genus name*/
check(rectangular head),
write("\n SPECIES-IS L. BULBOSA"),
highlight,
asserta(dbase(bulbosa, 'y')).

CHAPTER IV

PROJECT ASSESSMENT

Program Design

The basic design of the program proved to be fairly

simple because the inference engine is built into Turbo

Prolog. Townsend's Mastering Expert Systems with Turbo

Prolog (1987), presents a step by step procedure for de-

signing and building an expert system specifically with

Turbo Prolog. An expert system to diagnose failures for

IBM PC compatible computers is included in the text as an

appendix. Using portions of this code as templates was an

invaluable time saving aid.

Prolog does not use calls to subroutines, gotos,

if-then-elses, or other similar structures used in proce-

dural languages. Instead, it basically employs one

construct known as a rule for execution control. A rule

takes the following form:

<conclusion> :- <requirements>.

An example of two rules might be:

parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).

This would read X is Y's parent if X is Y's mother or X is

Y's parent if X is Y's father. A goal somewhere else in

26

27

the program would call parent. If the first parent rule

succeeds, then true would be returned to the calling goal.

If the first parent rule failed, then the 2nd parent rule

would be tried. If both rules fail, then a fail would be

returned to the calling goal.

By asking the student questions with a yes/no answer,

characteristics about the plant are easily retained in the

database. For instance, if the student responded to the

question "Is the ovary superior?" with a "y", then an entry

of (ovary_superior, 'Y') is inserted into the database. If

a "n" is entered an entry of (ovary_superior, 'n') is in-

serted into the database.

The requirements for a conclusion in Prolog may be

multiple, in which case, all must be true before the con-

elusion is proved to be true. To determine if a plant

belongs to a certain family, the program checks multiple

characteristic of each family one at a time until either

all of the characteristics of one family match or defaults

to the rule family(undet) (i.e. family undetermined). For

example, the rule for Juncaceae was written as follows:

family(juncaceae):-
check(monocot),
check(ovary superior),
not(check(petaloid_perianth_seg)), desc(juncaceae).

When the goal family{) is encountered, the program

searches the database for the entry (monocot, 'y') or

{monocot,'n'). If neither entry is found it then asks

28

the user the appropriate question or questions to determine

the status of monocot. If the answer is true the program

then checks the data base for (ovary_superior,'y').

Again if the answer is true the program continues to the

next subgoal. To succeed this time, however, the

program looks for (petaloid_perianth_seg, 'n'). The

preceding "not" negates the fail returned from

(petaloid_perianth_seg,'n'). A subgoal of desc is then

triggered to describe Juncaceae and asks the student

to verify if he is at the right family before proceeding

to the genus level. If the student does not accept the

family description, a fail is returned to the goal

family(juncaceae) which then returns a fail to the run

subgoal. The student then is asked if he wants to try

again.

The main menu allows the student to enter the program

at three places (see Figure 3). If the family is known,

the student can go directly to the family's description.

If the class is known (monocot/dicot), a jump to the class

description is made. If neither family nor class is known,

a "don't know" option is available which asks two questions

to determine the class. This multiple entry approach

allows the student to bypass several questions as he

becomes more knowledgeable of taxa and more competent in

identifying unknown plants.

At any point in the program where the student is

asked a characteristic about the plant, the student may

29

return to the main menu by hitting the escape key. The

student may realize that he entered the wrong character-

istic after an entry has already been made. If he is

working at the genus or species level, he can avoid repeat-

ing the first questions by selecting the appropriate

family.

PLANT IDENTIFICATION PROGRAM CHARA CTERISTICS

SELECT ONE OF FOLLOWING FAMILES
OR CLASS IF KNOWN:

'FAMILIES:
a) LILIACEAE
b) JUNCACEAE
C) IRIDACEAE
d) FABACEAE (OR LEGUMINOSAE).
e) VERBENACEAE
f) LAMIACEAE (OR LABIATAE)
g) ASTERACEAE (OR COMPOSITAE)
h) ROSACEAE
i) FAGACEAE
j) MAGNOLIACEAE

CLASS IF FAMILY NOT KNOWN:
k) MONO COT
1) DICOT

m) DON'T KNOW

Figure 3. Main Menu

The database is cleared each time the main menu

goal is called. An early version of the the program

continued to question the student when the program should

have ended, if the student used the escape key during the

program session to return to the main menu. This occurred

30

because Prolog uses a backtracking method (tries to prove

previous subgoals after a failure of a subsequent subgoal)

and the database is cleared each time the main menu goal is

called. To alleviate this problem·a second database called

"escape" was inserted. Before printing any questions,

family descriptions, or class descriptions, the program

first checks whether the escape key has been pressed. This

allows the program to backtrack in the background without

the user's knowledge and return the user to the main menu.

For the most part, this application proved to be

easily done in Turbo Prolog. The database facility was

used to hold the working memory of the expert system. The

rule-base component was easily constructed by inserting the

appropriate characteristics under each family, subfamily,

genus, or species name. The built-in inference engine of

Turbo Prolog was cumbersome only when the escape key was

added. A trace feature of Turbo Prolog was invaluable in

determining the inference engine's control pattern. Built­

in features to create and manipulate windows made designing

the program fun and easy.

Testing Results

The program was tested in two high schools. The first

test class comprised 14 current or past botany students at

McLoud High School, McLoud, Oklahoma. The majority of

students had taken one semester of botany, while a few

students had taken two semesters during the previous school

31

year. Taxonomy and identification of unknown plants was

strongly emphasized by the instructor. The second test

class, 38 students, came from two honors biology classes at

Memorial High School, Tulsa, Oklahoma. The students

received two days of instruction in plant identification

immediately prior to the testing. The two groups were

selected in order to test the suitability of the program

for a broad spectrum of high school students - novices,

beginners, experts.

Before using the program, each student was given a

short quiz covering basic plant structure to insure that

each had a minimum knowledge of plant morphology and terms

(see Figure 4). After each student or pair of students

identified one to three unknown plants via the computer, an

program evaluation questionnaire was taken anonymously (see

Figure 5). The students working in pairs used an IBM

Personal System/2 to test the program.

Both test classes passed the pretest. Individuals

in the botany classes scored an average of 86 percent while

those in the honors biology classes scored an average of

96 percent. The difference in average score is probably

due to the fact the honors biology classes were drilled for

the pretest the day before testing. In contrast, students

in honors biology had never identified plants before using

the program. The students in botany class had keyed an

average of 24 plants prior to testing the program: Stu­

dents in th.e botany class gave the program higher scores

32

in all aspects of the program. Table II compares the

responses of three main questions on the student evaluation

questionnaire. Their previous exposure to keying plants

using a dichotomous key and using technical terms undoubt-

tedly allowed them to make comparisons between the program

and the traditional keys that they had used.

FLOWER PARTS PRE-TEST

Instructions: Name the parts of the flower indicated

Question: How many carpels are there in the above
structure?

Figure 4. Pre-test

-·~--- ··~ -----~·

QUESTIONNAIRE TO BOTANY COMPUTER PROGRAM

1. List on the back of this paper any confusing termin­
ology you could not understand AFTER using the user's
guide.

2. Circle the grade you are currently in.

Freshman Sophomore Junior senior

33

3. Have you had before or are you currently enrolled in a
botany class?

Yes No

4. Is this the 1st time you have keyed a plant?

Yes No
If no, approximately how many plants have you keyed
out.

5. on a TIMED classification test, which would you prefer
to use?

computer Printed dichotomous key

6. Did you correctly identify your plant on the 1st try?

Yes No
If no, how many tries?

7. on a scale of 1 to 5 were the program's instructions
{not questions) easy to understand?

1 2 3 4 5
Hard Easy

8. Overall on a scale of 1 to 5 how would you rank the
program's ease of use?

1 2 3 4 5
Hard Easy

9. on a scale of 1 to 5 how would you rank the user's
guide?

1
Poor

2 3 4 5
Excellent

10. Are there any changes to the program and/or user's
guide that would make them easier to use? If so, what
are they?

Figure 5. Student Questionnaire

34

Table II

SUMMARY OF RESPONSES

Question no. Min Max Ave Class

7 2 5 4.3 Honors
Biology

7 3 5 4.7 Botany
(Were the program's instructions easy to understand?)

8 1 5 4.3 Honors
Biology

8 4 5 4.9 Botany
(Rank the program's ease of use)

9 1 5 2.9 Honors
Biology

9 2 5 3.9 Botany
(Rank the Users' guide)

students in the the honors biology classes were given

brief instructions on the use of a dichotomous key but none

were successful in identifying their plants using a key.

Both groups had a 71 percent success rate for correctly

identifying the plant on the first try when using the

computer. The honors biology classes, which had no pre-

vious botanical experience, were given easier plants to

identify and given assistance regarding the intent of the

questions when requested.

After using the program, many of the students ex-

35

pressed a desire to use the program again to identify

plants. The botany students, after using a dichotomous

key, were most vocal on enjoying the computer assisted

method of keying plants. one hundred percent of the

students in both test groups indicated on the questionnaire

that they preferred to use the computer instead of a

printed dichotomous key on a timed identification test.

The major problem that was revealed in the question­

naire responses concerned the users' guide. At test time

the glossary contained 13 definitions without illustrations

and 11 definitions with illustrations. The students had

problems locating terms in the guide. The guide was re­

designed and expanded to contain 53 terms in alphabetical

order. Every term used in the program is contained in the

glossary. After each word is a brief description and

refers to a figure number in the user's guiae for a

pictorial aide and further description where applicable

(see Appendix B). This should facilitate quick access to

key word information.

Another problem that surfaced in the honors biology

class was one of technical terms. Even though many of the

technical terms had been eliminated or simplified when

writing the program, many students still had difficulty

with those that remained. These terms were also replaced

with less technical terminology. The reduction of techni­

cal terms, along with the expanded user's guide, should

alleviate the problems indicated by those students with

minimal botanical experience.

36

CHAPTER V

SUMMARY AND FUTURE WORK

summary

A challenge for botany teachers is finding an enjoy­

able and successful method of introducing beginning high

school and college level students to identifying and

classifying plants. The traditional method of using a

dichotomous key is frustrating for most students. The key

contains unique botanical technical terms and decisions

which typically must be made about several characteristics

at one time. This frustration can be reduced by replacing

technical terms, by using the minimum number of character­

istics the student needs to identify the plant, and by

reducing the decision process to one characteristic at a

time. To make the introduction to identifying plants more

enjoyable, these modifications to the traditional key can

be implemented with a educational computer package written

for a personal computer and taken directly into the class­

room.

By approaching the problem as an expert system,

teachers have the capacity to modify the program by simply

adding the characteristics of plants. Flowers that are

commonly found in the teacher's locale can be added. Gen-

37

38

era keys can be added to families. A teachers' guide was

developed with step by step instructions for program modi­

fications (see Appendix A).

Honors biology classes were tested using the program.

Thirty-eight students participated in the testing after two

days of instruction on plant classification methods. With

minimal assistance from the instructor, 71 percent of the

class correctly identified a flowering plant on the first

try and 14 percent on the second try. The main objective

of the program was to reduce the frustration level begin­

ning students have when keying their first plant. The

students appeared to be having fun and were not bogged down

with highly technical terms.

This program should be used quite easily, not only

by students in botany classes but also by students in

biology classes in school systems that do not offer botany.

It is recommended that teachers spend more than two days of

instruction on basic botany terminology because the test

group consisted of honor students. Increasing preparation

time also will give the student more confidence when keying

for the first time and require less assistance from the

teacher.

Results of the program testing indicated that this

type of program can be used in the high school classroom

to introduce plant identification. The success rate on the

first attempt by novice students, which is not common when

using printed dichotomous keys, suggests that frustration

was reduced substantially.

Future Work

Advanced botany students can also use this program.

Technical terms could be used in abundance. As micro­

computers with large memories become more common, the

program can be extended to include more families or to

include more genera and species of each family.

For college level classes that may have access to

a mainframe database, the program can be expanded to

include all the families, genera, and species known to a

given area of the country. If this is done, a study to

produce the most efficient search pattern should be

considered. Families, genera, and species that are the

most common should appear in the program at the top of

their rule section because Prolog begins with the first

rule and sequentially tries each rule in order until it

succeeds.

39

A method of allowing the student to redo a character­

istic when the escape key is engaged could be developed.

Increasing the complexity of the program in this matter,

however, would preclude an instructor from modifying the

program unless he had a strong computer programming back­

ground.

The glossary and illustrations could be added online.

According to a study by Houghton (1984), however, users

without prior computer experience do poorly with online

aids. The memory requirements for illustrations and

glossary however, would be better utilized for further

expansion of genera and species levels. A very simplified

version of this program could be written using illustra­

tions for younger students limiting identification to the

families.

40

BIBLIOGRAPHY

Balkovich, E., Lerman, s. and Parmelle, R. "Computing in
Higher Education: The Athena Experience." Commun.
ACM, Vol 28, Nov 1985, pp 1214-1224.

Bork, A. "The Potential for Interactive Technology".
Byte, Feb 1987, pp 201-206.

Crovello, T. "Evolution of Educational Software''. The
American Biology Teacher, Vol 46, No 3, March 1984, pp
140-145.

crovello, T. "Computers in Biological Teaching".
Bioscience, Vol 24, Jan 1974, pp 20-23.

Ellis, J. "A Rationale for Using Computers in Science
Education". The American Biology Teacher, Vol 46,
April 1984, pp 200-206.

Goodall, D. "Identification by Computer". Bioscience,
Vol 18, June 1968, pp 485-488.

Hall, A. "A computer-Based System for Forming
Identification Keys". Taxon, Vol 19, Feb 1970,
pp 12-18.

Harrington, H. and Durrell, L. How to Identify Plants.
Chicago, IL: The swallow Press-rnc., 1957.

Latin, R., Miles, G. and Rettinger, J. "Expert Systems in
Plant Pathology". Plant Disease, Vol 71, Oct 1987, pp
866-872.

Levine, R., Drang, E. and Edelson, B.
Guide To AI and Expert Systems.
1986. -- --

A comprehensive
McGraw-Hill, Inc.,

Morse, L. "Computer-Assisted storage and Retrieval
of the Data of Taxonomy and Systematics".
Taxon, Vol 23, Feb. 1974, pp 29-43.

Morse, L., Beaman, J., and Shetler, s. "A computer system
for Editing Diagnostic Keys for Flora
North America". Taxon, Vol 17, Oct 1968,
pp 479-483.

41

Morse, L. "Specimen Identification and Key construction
with Time-Sharing Computers 11 • Taxon, Vol 20,
May 1971, pp 269-282.

42

Myers, W. 11 Introduction to Expert Systems". IEEE Expert.
Spring 1986. pp 100-109.

National Science Foundation. Technology in science
education: the next ten years-perspectives and
recommendations.----washington, D.C. 1979.

Pankhurst, R. "Botanical Keys Generated by Computer 11 •

watsonia, 8, 1971, pp 357-368.

Simons, G. L. Experts Systems and Micros. NCC
Publications, 1985.

Spain, J. "Why Isn't There More Good Instructional
Software?". The American Biology Teacher, Vol 47, No
6, Sept 1985, pp 378-380.

Townsend, c. Mastering Expert Systems with Turbo Prolog.
Indianapolis, IN: Howard w. sams & company, 1987.

Waterfall, U. T. Keys to the Flora of Oklahoma, 5th edit,
1972, Published by-author, Oklahoma State University
Bookstore, Stillwater, OK.

Williams, c. "Expert Systems, Knowledge Engineering, and
AI Tools-An overview". IEEE Expert, Winter 1986, pp
66-70.

APPENDICES

43

APPENDIX A

TEACHERS' GUIDE

44

45

NOTE TO THE TEACHER

This program was written as an introduction to keying

plants for the high school student or college level student

in a beginning botany class. It may also be used in a

biology class with a botany unit. It is highly recommended

before using this program your students are well versed in

basic botany terminology.

Many of the difficult technical terms unique to botan~

have been removed and replaced with simpler terminology.

The students' guide to the program contains a glossary with

all the terms currently used in the program. The following

is a list of terms that is considered a minimum knowledge

level to successfully utilize the program by a student:

dicot
monocot
ovary
petals
pistil
sepals
stamens
stigma
style

The system requirements to run this program are a IBM

or IBM compatible PC with 640K memory with two floppy disk

drives or one floppy disk drive and a hard disk drive, and

PC-DOS OR MS-DOS operating system, version 2.0 or later.

·If you want to modify the program to add your own families

or take some of the existing families to a lower classifi-

cation level you must purchase Turbo Prolog by Borland.

This is a Prolog compiler which may be purchased directly

from Borland, most major personal computer stores that sell

IBM or IBM compatible PCs, or mail order software busi­

nesses advertised in personal computer journals. Instruc­

tions to modify the program are presented in the next

section of the teachers' guide.

Using this program should provide to your students

a rewarding and fun first experience in keying plants.

I hope as a teacher this tool will assist you to light

the spark of interest in classifying plants in your

students.

FAMILIES KEYED IN PLANT IDENTIFICATION PROGRAM

There are ten families (see Table 1) identified in

this program. Several of the families key to the genus

and species level. For those students more knowledgeable

in classifying plants, the main menu provides them the

opportunity to go directly to the family level.

46

FAMILY

Asteraceae

Iridaceae

Fabaceae

Fagaceae

Juncaceae

Lamiaceae

Liliaceae

Magnoliaceae

Rosaceae

verbenaceae

Table I

TAXA IN BOTANY PROGRAM

SUBFAMILY

Mimosoideae
Caesalpinioideae
Papilionoideae

GENUS

Nemastylis
Tigridia
Sisyrinchium
Belamcanda
Iris

Fagus
Castanea
Quercus

Juncus

Luzula

Magnolia

Verbena
Phyla
Callicarpa

SPECIES

J. Tenuis
J. Interior
J. coriaceus
J. Torreyi

47

J. Accuminatus
J. Marginatus
L. Echinata
L. Bulbosa

M. Acuminata
M. Tripetala

PROGRAM MODIFICATION

Files Required

You may modify this program to expand families to

the genus or species leve1, add families, or substitute

families already keyed. It is strongly recommended that

you have some experience in programming, if you make

modifications. You must have Turbo Prolog by Borland to

make changes to the program.

Your program diskette contains four files:

autoexec.bat
command. com
botany.exe
botany.pro

To make a backup diskette, format a system diskette

using the /S parameter when you format, to copy your

command.com file. Copy the remaining three files to the

backup diskette with the DOS copy command. Botany.pro

contains the source code for the program.

48

The Turbo Prolog diskette used to modify your program

must contain at least these seven files:

prolog.exe
prolog.ovl
prolog.sys
prolog.err
prolog.hlp
prolog.lib
init.obj

Make a backup diskette using the DOS copy command.

The instructions will assume the Prolog diskette is in

drive A and the botany diskette is in drive B. If your

PC includes a hard drive, then load the seven Prolog files

49

onto it.

When you purchase Turbo Prolog, you will receive a

detail manual from Borland describing how to use the Turbo

Prolog system and features of the language. This guide

will give you enough basics about Turbo Prolog to modify

your program. Refer to the manual for any further assis-

tance.

Loading Turbo Prolog

To use Turbo Prolog, you first load the program:

A> prolog

Press the enter key to display the copyright screen

Now press the space bar and the Turbo Prolog main menu

and four systems windows: editor, dialog, message, and

trace will appear (see Figur~ 6}. The editor window is
'

used to enter or change progr~ms.

The main menu shows the commands and pull-down menus

available. Select an item on the menu by pressing the

associated highlighted capital letter or by first moving

the highlighted bar using the arrow keys and then pressing

the enter key. You may return to the main menu anywhere

in Turbo Prolog by continuing to hit the escape key until

the main menu appears or by ctrl Break.

Resizing Windows and Setup Option

Select the setup option from the main menu. Now

select the Windowsize option, then the Edit option to

so

enlarge the editor window. use your right arrow key to

expand the editor window over the dialog window to the

right edge of the screen. If you want to use the whole

screen for editing,· you may also use the down arrow key to

cover the message and trace windows with the editor window.

Do not cover the bottom line of the screen. The function

keys appear on the bottom line of the screen during an edit

session. The message window is used for compile errors

during compilation and the trace window traces the path of

your program during a run if the trace command is in your

program. You may exit from any portion of Turbo Prolog

with the escape key and reformat your window sizes using

the setup option again.

Run Compile Edit Options Files Setup Quit

coi
Editor Dialog

Line 1 1 Indent Insert WORK.PRO

r-------'- Message -------.~~ r--- Trace

Use first letter of option or select with -> or <-

Figure 6. Turbo Prolog Main Menu

51

Hit the escape key twice to return to the Setup

option's pull-down menu. Select the Directory option.

Change the directory path of any files not correctly

specified. For instance, with a two drive system, your

botany.pro file, botany.obj, and botany.exe file are on

drive B. You must one at a time move ·the menu bar to the

file extension name, hit the enter key, enter b, and the

enter key again. When all files are correct, hit escape to

exit.

Loading the Botany Program

You are now ready to load the program into the editor.

If you are not at the main menu (see Figure 7), hit escape

until the main menu appears. Select the Files option, then

the Load option. You can enter botany or use the enter key

to display all the .pro files on the diskette in the drive

specified with the Setup Directory option. Move the menu

bar to the correct file to load then hit the enter key.

The botany program is now loaded in the editor. If the

system can not find your file, make sure the .pro file

directory path in the Setup Directory option is correct.

After the program has been loaded, Turbo automatically

returns you to the main menu.

saving Your Program

When you are through making changes to your program,

you will need to save the edited program. Return to the

52

main menu. Select the Files option, then the Save option.

The name of your program will appear on the screen. Hit

enter if you want to save it under that name or enter the

new name first if you want to change it. Hit the escape

key to return to the main menu. You will probably want to

save your program periodically during the edit session in

case of a power outage. When you save a program, Turbo

automatically creates a backup copy of your old version

before edits were made using your file name and a .bak

extension.

Run Compile

Line 1· Col 1

Edit Options Files Setup Quit

Editor -----------------------------,
Indent Insert WORK.PRO

,....---------Message------------, r---- Trace-----,

._____ __ II.___
Arrows:Resize Ctrl Arrows:Fast resize Shift Arrows:move Any other ~ey:E:~1

Editing

Figure 7. Turbo Prolog Main Menu after
Resizing Windows

Select the Edit option and you are ready to edit the

53

Turbo Prolog program. The Turbo Prolog editor uses

Wordstar-like commands. A complete description of all

the editor commands can be found in the Turbo Prolog man-

ual. If a list of function keys is not at the bottom of

your screen in edit mode, return to the Setup Window-size

option and decrease the size of your editor window with the

up arrow key. The insert key acts as a toggle switch to

insert/overwrite when in edit mode. The cursor may be

moved using the arrow keys, page up and page down keys,

carriage return key, tab key, and backspace key. Only use

the backspace key when you want to delete the character

left of the cursor. Press the Help key, Fl, to display a

pop-up menu containing information about the function keys.

Exit from the edit mode with the escape key or FlO key.

General Turbo Proloq Rules

Some general rules about Turbo Prolog follow:

1) All like clauses must be grouped together.
{i.e. All Check{) clauses appear together in
one section of the code.)

2) To begin a new line use \n in a write statement
between quotes or write nl.

3) When naming a symbol, you may use any character
sequence of letters, numbers, and underscores,
with the first character in lower-case.
symbols are objects used in predicates. For
example, leaves simple in check(leaves simple)
is a symbol for-the predicate check. -

4) To make comments in your program begin the
comment section with /* and end the comment
section with*/.

54

Modifying the Program

Before you begin to modify your program, make sure

you have a backup copy of the original program diskette.

It will also be easier to the follow the instructions, if

you obtain a printed copy of the program source code. You

may get a copy after you have loaded the program into the

editor. From the main menu, select the Files option, then

the Print option. When the printout is completed, hit the

escape key until the main menu appears again. When making

changes to the program the following clauses will need

modifying:

main menu:-

1) To add a family

a) Add a write statement using the next letter
of the alphabet after the last family name.

b) Push the letter of the alphabet down
appropriately for the choices on the main
menu for monocot, dicot, and don't know.
For example, monocot is alphabet character
'k'. If you add one family, monocot would
become a '1', dicot a 'm', and don't know a
'n'.

c) Change the statement z > 96 to add one to
the ASCII number for each family added.
For example, if one family is added, then
96 would become 97.

d) Go to ck_family instructions.

2) To substitute a family

a) Change the write statement from the
substituted family's name to the new
family's name.

b) Go to ck_family instructions.

55

3) To key a family to a lower classification

a) Go to desc(family name) instructions.

ck_family('character'):-

1) To add a family

a) Add a new ck family('char') clause with the
letter of thi alphabet used in the
main menu clause for the new family.

b) The symbol in the desc(symbol) statement
should be the new family name.

c) Change the characters in the ck family
clauses for monocot, dicot, and-don't know
to match the new alphabetic characters in
the main menu clause.

2) To substitute a family

a) Find the ck family clause that matches
the substituted family name.

b) Change the family name in the desc(symbol)
statement to the new family name.

3) To key a family to a lower classification

a) no changes needed.

desc(family name):-

1) To add a family

a) Create a new desc(family name} clause
using the new family name.

b) Find a family to use for a template in the
desc(family name) clauses. Use a family
that keys to the same level of your new
family. For example, the family Liliaceae
keys only to the family level, the family
Iridaceae keys to the genus level, and the
family Juncaceae keys to the species level.

2) To substitute a family

a) Follow the steps in adding a family.

56

b) Save the desc(family name) of the substi­
tuted family, in case you want to add it to
the program at a later date, by commenting
out that section of the code. Insert /*
at the beginning of the code and */ at the
end of the code.

3) To key a family to a lower classification

a) Follow step lb in adding a family, changing
your family desc clause to the correct
format instead of adding a new family desc
clause.

b) Go to the genus(genus name) instructions
if adding genera.

c) Go to the species(species name)
instructions if only adding species.

family(family name):-

1) To add a family

a) Use a dichotomous key to find the charac­
teristics that distinguish the new family
from the families in the program.

b) For those characteristics not in the
check(characteristic) clause section, add
the characteristics using one of the the
check(characteristic) clauses as a
template. Be sure to keep track which
characteristic is assumed for a 'n' answer.

c) Using a family(family name) clause as
a template, write a new clause for the
added family. The characteristics should
be given in the order you would find them
in the dichotomous key. A not in front of
the check(character-istic) clause means the
student answered 'n' to the question re­
garding that characteristic.

d) Make sure your new family(family name)
clause appears before the family(undet)
clause in the code.

57

e) You must repeat steps la through ld
for each place in the dichotomous key your
family can be identified to. For example:
Asteraceae can be keyed to 4 different
groups, so family(asteraceae) appears 4
times in my program code.

2) To substitute a family

a) Follow steps la through le in adding a
family name.

b) Comment out the code for the substituted
family in case you want to use add it in
the program at a later date. Insert /* at
the beginning of the code and */ at the end
of the code.

3) To key a family to a lower level

a) No changes needed.

genus(genus name):-

1) To expand a family to genus level

a) Use a dichotomous key to find the charac­
teristics that distinguish the genera of a
family from each other.

b) For those characteristics not in the
check(characteristic) clause section, add
the characteristics using one of the the
check(characteristic) clauses as a tem­
plate. Be sure to keep track which
characteristic is assumed for a 'n' answer.

c) Using a genus(genus name) clause as a
template, write a new clause for each added
genus. The characteristics should be given
in the order you find them in the di­
chotomous key. A not in front of the
check(characteristic) clause means the
student answered 'n' to the question re­
garding that characteristic. Make sure
that first characteristic is the family
name.

d) Make sure to add your genus(genus name)
clause in the code before genus(undet).

58

e) Go back to the desc(family name) clause
section and modify the desc clause for your
family name using as a template a family
name that keys to the genus level if you
have not done so.

2) To delete a genus

a) Comment out the code with a /* at the
beginning of the code and a */ at the end
of the code in case you want to add it back
at a later date.

b) Go back to the desc(family name) clause
section and modify the desc clause for your
family name using as a template a family
name that does not key to genus level.

species(species name):-

1) To expand a family to species level

a) Use a dichotomous key to the find the
characteristics that distinguish the
species of a genus from each other.

b) For those characteristics not in the
check(characteristic) clause section, add
the characteristics using one of the
check(characteristic) clauses as a
template. Be sure to keep track which
characteristic is assumed for a 'n'.answer.

c) Using a species(species name) clause as a
template, write a new clause for each added
species. The characteristics should be
given in the order you find them in the
dichotomous key. A not in front of the
check(characteristic) clause means the
student answered 'n' to the question re­
garding that characteristic. Make sure
that first characteristic is the genus
name.

d) The write statement for the species name
should include the first initial of the
genus name immediately before the species
name.

e) Make sure to add your species(species name)
clause in the code before species(undet).

59

f) Go back to the desc(family name) clause
section and modify the desc clause for your
family name using as a template a family
name that keys to the species level if you
have not done so.

2) To delete a species

a) comment out the code with a /* at the
beginning of the code and a */ at the end
of the code.

b) Go back to the desc(family name) clause
section and modify the desc clause for your
family name using as a template a family
name that keys to the genus level or family
name that keys to the family level if the
genus is also removed.

compiling and Running the Program

To compile your program, return to the main menu.

Select the compile option. If you have an error during

compilation, Turbo automatically puts you into the edit

mode and positions the cursor under the error. An error

message will appear at bottom left side of the screen.

After the program successfully compiles, select the Run

option from the main menu to run the program. When the

program has completed its run, Turbo will instruct you

to hit the space bar. You will then be returned to the

main menu.

After you are satisfied with your program changes,

you may want to have your program in an executable form.

Once the program is in executable form, it is no longer

necessary to have Turbo Prolog to run the program. To

do this, select the Options option from the main menu.

Move the selection bar to the Exe file (auto link)

60

selection. Hit the enter key. Turbo will then take you

back to the main menu and convert your program to execu-

table form the next time you compile the program.

To have the program compiled in memory again, return

to the main menu and select the Options option. Move the

selection bar to the Memory selection and hit the enter

key. When you first load Turbo Prolog, the Memory option

is automatically selected for you.

Programming Errors

There are several types of programming errors you

might encounter. If you key to the wrong family, genus,

or species check the following:

1) Make sure the spelling in all clauses are the same
for characteristics and family, genus, or species
names.

2) Make sure the characteristics are in the same
order you find them in the dichotomous key.

3) Make sure you don't have the same characteristics
used by another family, genus, or species. If you
do, you need to find another characteristic to
distinguish between them.

4) If you still can't find the error, retrace your
steps in making the changes with the directions in
this guide making sure to use correct templates.

5) You may also uncomment the trace feature in the
program. Remove the /* and */ at the beginning of
the program around the trace statement. Make sure
your edit window does not cover the trace window
and run the program after recompilation. The
trace window displays each goal that is called and
the cursor is under the current running portion of
your program. Hit the FlO key to continue running
the program. You may use the escape key any time
you want to leave the running trace. After you
have solved your problem, be sure to recomment out
the trace statement.

61

If you have errors in formatting your output, remember

these rules:

1) Both the Characteristics window and the Plant
Identification Program window has a 38 character
width length. If you use a write statement equal
to or greater than the length of the window, the
cursor will wrap to the next line automatically.
This means if your write statement is exactly the
length of your window, then the next write state­
ment does not require a /n or nl to begin a new
line.

2) If you want to highlight a line across the window,
such as family is family name, etc., you must pad
the right hand side of the write statement with
spaces to the length of the window minus one (to
allow for line wrapping) to highlight the entire
line. If your line is not highlighted, you may
have to many spaces padded.

APPENDIX B

USERS' GUIDE

62

GLOSSARY

ALTERNATE - one leaf arising at a node (see figure 1)

AROMATIC - strong odor given off by flower or leaves

BRACTS - a modified leaf situated near a flower (see
figure 2)

BULB - a underground stem with fleshy scale leaves and
roots arising from base like an onion (see figure 3)

CAPSULE - a dry fruit splitting along several seams to
release seeds

63

CARPEL - unit of a pistil consisting of highly modified
leaf; pistil may have one carpel or more than one (see
figure 4)

COMPOUND - structure consisting of more than one part; a
compound leaf has blade completely divided into two or
more leaflets (see figure 5); a compound pistil has
two or more carpels.

CORM - thickened, vertical solid underground stem bearing
aerial growth from single terminal bud (see figure 3)

DICOT - plant with flower parts usually in fours or fives,
sometimes numerous; leaves net-veined; taproot or
fibrous root system; woody or herbaceous

FIBROUS - root system composed of roots all same size
and resembling fibers

FRUIT - ripened ovary and any other structure that
encloses it at maturity

HEAD - dense cluster of sessile or nearly sessile flowers
or fruits on a very short axis and partially
surrounded by bracts (see figure)

HERB - plant whose stems and leaves are green and die
back to the ground at the end of the growing season

IMPERFECT - flower with either stamens or pistils but
not both

INFERIOR OVARY - ovary located below where the sepals are
attached and appears to be sunken in the stem; flower
parts appear to arise from top of the ovary (see
figure 6)

64

INFLORESCENCE - the arrangement of flowers on a plant; may
be solitary or only one per stem, or many in a head,
or loosely clustered; inflorescence may be terminal
(flowers located at the tip of the stems) or lateral
{flowers found along the stem in axils of leaves)

IRREGULAR SYMMETRY - flower in which petals are not alike
or different in size (see figure 7)

LEGUME - characteristic fruit of pea family; splits open
along two seams (see figure 8)

LOMENT - legume fruit conspicuously constricted between
seeds (see figure 8)

MONOCOT - petals, sepals, and stamens usually in threes,~

leaves parallel veined; fibrous root system only;
herbaceous only

NET VEINED - leaves with one large vein in the center of
the leaf with smaller veins radiating from it; the
small veins connecting to each other and forming a net
(see figure 9)

NUTLET - small, hard nut-like fruit characteristic of mint,
vervain, and borage families; formed from four lobed
ovary.

OPPOSITE - two leaves arising at a node and situated across
the stem from each other (see figure 1)

OVARY - basal part the pistil that contains the seeds;
develops into fruit (see figure 11)

PARALLEL VEINED - leaves with the major veins running the
length of the leaf parallel to each other; most
parallel veined leaves are long and narrow; (see
figure 9)

PARTITIONS - structures that divide flower and vegetative
parts

PERFECT - flower with both stamens and pistils

PETALOID - condition where the petals and sepals look
alike and both appear to be colored and conspicuous

PETALS - parts of flower that are usually colored and
conspicuous; found inside the green sepals (see figure
10)

65

PISTIL - female organ of the flower that produces the
seeds; consists of the tip called the stigma, the
middle portion called the style, and and enlarged base
called the ovary which contains the seeds (see figure
10 & 11)

RECEPTACLE - the more or less expanded tip of the flower
stalk from which the sepals, petals, stamens, and
pistil arise (see figure 10)

REGULAR SYMMETRY - flower in which petals are all alike
in size and form (see figure 7)

RHIZOME - A more or less horizontally elongated stem
growing partly or completely beneath the surface of
the ground (see figure 3)

SEPAL - outermost parts of flower that are are usually
green and protect or enclose the petals in the bud
(see figure 10)

SEPARATE - condition where flower parts are separate from
each other and not fused together (see figure 12)

SEPTATE - divided by a partition

SHRUB - plant with several woody stems generally less
than two meters in height

SIMPLE - structure consisting of only one part, not
completely divided into separate segments; simple leaf
has one blade (see figure 5)

SPHERICAL - round in outline or shape; like a globe

STAMENS - male organs of the flower that produce pollen;
consists of anther and filament (see figure 10)

STANDARD - the upper, usually larger petal of flowers of
pea family (see figure 13)

STIGMA - part of pistil that receives the pollen; at apex
of style, usually hairy, bumpy, or sticky (see figure
11)

STIPULATE - pair of appendages of tissue(stipules) at the
base of leaf petiole at either side of its attachment
to the stem (see figure 14)

STYLE - the stalk-like part of the pistil connecting the
ovary with the stigma (see figure 11)

SUBSPHERICAL - oval shaped; not quite round or spherical

66

SUPERIOR OVARY - ovary located above where sepals, petals,
and stamens are attached (see figure 7)

TAPROOT - thick tapering root with much smaller lateral
roots; like a beet or carrot (see figure 3)

TEPALS - petals and sepals that are alike in size, shape,
and color; may be colored and showy or green and
inconspicuous

TERMINAL - located at tip of structure

TREE - plant with one large woody stem (trunk) and smaller
branches; generally more than two meters in height

UNITED - condition where flower parts are fused together
not separate; petals to petals or sepals to sepals
(see figure 12)

WHORLED - three or more leaves arising at a node (see
figure 1)

WOODY - plant of which some of its stems or trunk is not
green, usually fibrous in nature

67

~··

Alternate Opposite Whorled

Figure 1

flowers·-

~--

Figure 2

~

Bulb (1. s.) Corm Rhizome

Figure 3

68

~ T ~~ y---.

II
II
li
1.1

€) @ @
(a) (b) (c)

A simple pistil (a) has one style, one undivided stigma
and an unlobed ovary with seeds attached in one row inside.
A tompound pistil (b,c) has more than one style or more
than one stigma and/or a lobed ovary and/or more than one
row of seeds inside. The number .of carpels is usually
determined by counting the number of stigma lobes the
pistil has.

Figure 4

Simple compound

Figure 5

Inferior superior

Figure 6

69

Irregular Regular

Figure 7

Legume Lament

Figure 8

Net-veined Paralled-veined

Figure 9

70

Pistil

Figure 10

~~·~------------Stigma
Pistil

--~·

Style

Ovary

Figure 11

71

Separate United

Figure 12

--t--- standard

Figure 13

Figure 14

VITA

Linda w. Barnes

candidate for the Degree of

Master of Science

Thesis: EXPERT SYSTEM FOR COMPUTER ASSISTED FLORISTIC
CLASSIFICATION

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Bellville, Illinois, February
18, 1952, the daughter of Larry L. and Sherry L.
Woodring. Married to Frank M. Barnes on August
19, 1972. Son Micah J. Barnes, born March 31,
1976. son Brandon L. Barnes, born May 26, 1980.
Daughter Andrea M. Barnes, born February 20,
1987.

Educational: Graduated from sapulpa High School,
Sapulpa, Oklahoma, in May, 1970; received
Bachelor of Science Degree in Business Education
from Oklahoma State unversity in May, 1974;
completed requirements for the Master of Science
degree at Oklahoma State University in May, 1988.

Professional Experience: Dispatcher and Senior
Inventory Control Specialist, International
Business Machines, Tulsa, Oklahoma, June 1974 to
June 1985.

