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CHAPTER I 

INTRODUCTION 

Systolic Computing 

The scientific community, from the time computers were 

invented, or even before that, was in need of great compu

ting power. It seems that this need is never going to get 

saturated. Problems that were previously considered 

practically unsolvable are now efficiently computed while at 

the same time new areas are being explored and discovered. 

Concurrency of operations is the main principle on 

which that increase in speed is based. To be more specific: 

inherent parallelism, that is, architectures which are 

designed to exploit parallelism, are giving computer science 

that boost we notice in the recent years. Large and espe

cially Very Large Scale Integration (LSI and VLSI) made it 

possible to have architectures with tens or hundreds of 

processors, cooperating to solve a single problem. 

Inexpensive hardware, faster circuit technologies, 

smaller feature sizes and using old disciplines (eg. pipe

lining, concurrency) which were succesfully used on 

conventional Von Neumann computers, all contributed in the 
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development of the new parallel architectures. 

A highly parallel architecture has three main 

characteristics. 

1) It is composed of a large number of possibly 

heterogeneous computing elements. 

2 

2) The number of these elements is conceptually expandable, 

at a hardware cost not much greater than linear, achieving a 

speed-up that is not much lower than linear. 

3) It is used to solve one single problem at a time; (unlike 

networks such as the Xerox PARC for example). We will focus 

our attention on systolic computers. From now on we will 

refer to a systolic array processor as SAP, a systolic 

algorithm will be called a SA, and the processing elements 

PEs or cells. 

General Description 

These systems are mostly special-purpose computers, used 

for applications that are computation intensive, such as 

matrix computations, signal processing, image processing, 

etc. Sometimes, parallel systems exhibit an I/O and 

computation imbalance; that is, I/0 interfaces can not keep 

up with the very fast device speed, thus deteriorating the 

overall performance, drastically. The systolic 

architectures however, permit multiple computations for each 

memory access, thus speeding execution without increasing 

I/0 requirements. In a systolic system, data flows from the 
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computer memory in a rhythmic fashion, passing through as 

many processing cells as possible, before it is returned to 

memory. So, in essence, we have a large number of PEs 

(processing elements), connected together in a local 

fashion, with some boundary processing cells performing the 

I/0. (Systolic arrays are usually attached to a host 

computer). The systolic model of computation implies 

communication via I/O queues; i.e. the output of a PE 

becomes the input to its neighbor(s). Local memory may be 

attached to each PE in some cases, but it is small and the 

accesses are limited and are in general undesirable. A more 

detailed look at the structure of systolic systems reveals 

the following 5 characteristics. 

1. The computer consists of identical PEs, named cells, 

which are simple, performing maybe a few operations on 

incoming data and pumping the results out to nearby cell(s). 

Some of the cells are assigned as I/0 cells, i.e. some 

"boundary cells" communicate with the outside world. 

2. The interconnections between the cells are local and 

regular. It is very important to have local 

interconnections considering the fact that the number of 

cells may reach a few thousand. Systolic sys~ems can be 

linear arrays. It is amazing to see how many algorithms can 

be executed on such a simple structure. Rectangular, 

hexagonal or triangular configurations are also common, and 

increase the parallelism even more. Because of its regular 



and modular structure, such a system can be easily 

implemented, reconfigured, and expanded. 

3. Even though a SAP is often compared to a pipeline, 

it is not always true that the data flow is unidirectional. 

We may have bidirectional flow of data and in the case of 

other than linear configurations, data may flow toward any 

direction (but always to nearest neighbor PEs). 

4 

4. Systolic devices are synchronous. That is, the 

cells operate under a common global clock and may (see 5) be 

computing at each tick of the clock. There is a very 

notable and interesting exception to that rule. It is 

called wavefront array processor (WAP) and it operates using 

the exactly opposite principle as far as timing is 

concerned. The WAP is completely data driven~ it is a 

systolic data flow machine. It will be presented in a 

subsequent chapter. 

5. It is desired that all of the cells operate at all 

cycles, for maximum utilization of the array. This, 

however, is not always possible due to the characteristics 

of each algorithm. Usually a symmetry exists in the 

operation of cells, such as: all of the odd numbered cells 

are working in one cycle and all of the even ones during the 

next. The "net effect" of this operation of the PEs is that 

the programmer can create data streams with different speeds 

travelling through the SAP. 

It is usefull to see how SAPs differ from other 



multiprocessor schemes; we will list a few of these 

differences as compared to three other architectures. 
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(!) MPP (a) in general SAPs do not include programmable 

connectivity of the array edges so that we get different 

configurations such as a cylinder, torus, or leave them open 

as in the MPP. (b) SAPs do not operate in bit - slice like 

the MPP does. 

(~) SIMD arrays (a) require global buses for 

broadcasting data and instruction codes, which is one of the 

features we try to avoid in SAPs, especially if a large 

number of PEs is involved. (b) In addition, they store a 

relatively large amount of data local to each processor. 

SAPs on the other hand, have small local memories and data 

flow regularly through the network with limited access to 

memory. 

(1) Hypercube architecture (a) communicate using 

"packets". These packets contain headers as well as pure 

data. Systolic configurations on the other hand pass pure 

data to their neighbor PEs; furthermore, the communication 

in the former is not synchronous. (b) The hypercube can 

expand in such a way, that each of its nodes can be 

connected to a vast number of other nodes. In SAPs, the 

number of interconnections is small, due to the limited 

configurations of the arrays. Six connections exist at the 

most, in the case of a hexagonal array. 
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Eliminating I/0 Bottleneck 

It has been stated earlier that "I/O" could become a 

bottleneck and thus deteriorate the overall performance of 

the systolic device. (In this section we will refer to 

"I/O" as accesses to main memory or to secondary storage 

devices). The problem occurs of course in I/O-bound 

computations, but in compute-bound problems as well, if the 

architecture used is a conventional one. This occurs 

because for every operation, at least one or two operands 

have to be fetched from, or stored to, memory. So, the 

total amount of "I/O" is proportional to the number of 

operations rather than the number of inputs and outputs. 

This means that even a compute-bound problem may become 

"I/0"-bound during its execution! Systolic architectures 

tend to overcome this problem since one access (to main 

memory or disk) usually ensures multiple computations. 

However, the problem may still exist. 

7 

Three techniques are used to maximize the throughput of 

a SAP, without increasing memory bandwidth. 

1) The most obvious technique is to have all of the PEs 

perform a computation on each input data. (No idle cells 

exist at any time). 

2) Broadcasting: a data item is fetched from memory and 

then transmitted to all cells simultaneously. 



8 

3) Unbounded Fan-In: data items from all cells are 

collected, either to be further processed or to be stored as 

results into memory. 

Broadcasting and fan-in imply, of course, global data 

communications: this, in turn, means that a bus or a tree

like network must be used. This becomes a problem as the 

number of cells increases; wires become too long and we may 

have to slow down the system clock. So the first technique 

is preferable, if we want to retain the modular 

expandability of the system. In fact, the following can be 

said at this point, that also concerns the elimination of 

global communication in SAPs. If the sizes of the input and 

the output of a problem are larger than the size of the SAP, 

then all the inputs and intermediate results have to move 

during the computation. In this case, to achieve the 

greatest possible number of interactions among data we 

should let the data flow in both directions simultaneously. 

Furthermore, two-way pipelining is a powerful construct 1n 

the sense that it can eliminate the need for using 

undesirable feedback loops. This non-local communication 

would be needed in computing reccurences, etc. 

In the following example we use the same problem with 

two different designs of a systolic array, to illustrate 

methods 2) and 3). 

The Convolution problem: consider a vector X= {xi}, 



i=l, ••• ,n and a vector of weighting coefficients, W = {wj}, 

j=l, .•• ,k. In general n>>k. The convolution of X by W 
1('-l 

g iving Y is defined as y - ~w * x s-1 n-k+l• 5 - L_ i-rl i t-5 , - , ••• , , 
c':o 

(assume k=3). 

-Design 2). 

* Weights are preloaded to the cells one at each cell and 

are static. 
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* Partial results y~ are initialized to 0 and move 

systolically from left to right, one cell during each cycle, 

accumulating the correct result. 

*The input sequence of x~'s is broadcast to all cells 

during each cycle. A few cycles are shown below. 

* 1st cycle: Y, = w, x, and Y:z. = Y:; = o. 
2nd cycle: Y, = w, x, + Wz x2 ; Yz. = w1 x2 ; and y3 = 0. 

3rd cycle: Y, = w, x, + w2 x2. + w3 x3 (output); y = 
2. 

w, x2 + 

and y3 = w1 X;, and so on. 

-Design 3). 

w2. x3 ; 

* As previously, weights are preloaded to the cells and do 

not move. 

* The x; 's move systolically, from left to right. 

* After the third cycle, an adder receives (Fan-In) as 

inputs w1 * x1 , w2 * x2 , w3 * x3 and its output is the sum of 

these terms i.e. y1 ; then, during the next cycle the inputs 

to the adder wi 11 be w, * x2 , W2. * x3 , w3 * xl.t and the result 

is ~, etc. (Obviously, the cells in 2) are of a different 
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structure than those of 3); the latter ones, perform only a 

multiplication). 

Literature Review 

In recent years, a lot of attention has been given to 

systolic architectures and algorithms; many of the aspects 

of systolic computing have been examined, although in our 

opinion, there are areas still to be examined, or to be 

examined more deeply. 

SAs is the area with the most research done. Apostolico 

(1984) proposed algorithms that detect repetitions and 

statistics in strings. Chazelle (1984) deals with 

algorithms for geometrical problems that can be implemented 

on 1-dimensional SAPs; the interesting situation arose where 

the flow of data was irregular and not predetermined. 

Savage (1981, 1984) examines the design of a systolic chip 

for graph or spanning tree connectivity problems. Others 

that have examined data structures problems in terms of 

systolic computing include Shih (1987); he proposes four 

algorithms for examining 'All Pairs of Elements'. Leiserson 

in his book (1983), presents systolic priority queues. Kung 

ij. T. (1980) and Lehman (1981) construct SAPs and SAs for 

efficient implementation of relational database operations 

and in 1986 , Kung H. T. proposed SAs for image processing 

operations. Kung S. Y. (1987) proposed hexagonal and 

orthogonal arrays for execution of the Warshall algorithm 
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(for the transitive closure problem) and for the Floyd 

algorithm (shortest path problem). This paper also proposes 

a mapping procedure of these SAs to SAPs. Signal processing 

related algorithms and systolic computing can be found in 

Fisher (1981), (running order statistics problem); Cappello 

(1981) and in Kung S. Y. (1984). Proposed SAPs can be found 

in Annaratone (1986) and Kung H.T. (1986) where the WARP 

array is examined; Kung S. Y. (1982, 1987) discusses the 

design of a data-flow SAP called wavefront array, mainly 

suitable for signal processing applications. One of the few 

truly general -purpose SAPs can be found in Foulser (1987); 

the Saxpy Matrix-1 is a very flexible, matrix-oriented 

systolic architecture, with a very good performance. More 

material on integration of systolic devices into a system, 

or pipelining of the arithmetic units in a systolic array, 

etc. can be found in Bromley (1981), Drake (1987), Fortes 

(1987), Hockney (1981), Kung H. T. (1981, 1983) and Mead 

(1980). A variety of systolic designs and problems can be 

found in Leiserson (1983) and Kung H. T. (1982). We can say 

that the work done by Kung H. T. (and Leiserson) is the 

bible of systolic processing, as the basic ideas were 

proposed by them, around 1978, a·t CMU. Fundamental to the 

efficient design of SAPs and tti the execution of SAs is 

mapping and partitioning. Moldovan (1982, 1983, 1986) 

proposes mapping schemes based on the mathematical 

transformations of index sets and data dependence vectors. 



12 

Li (1985) presents a mapping procedure, based on parameters 

characterizing systolic processing, which leads to an 

optimization problem. Another method based on graphs and 

data dependencies, can be found in Miranker (1984). O'Keefe 

(1986) examines briefly two of the mapping methods, while 

Guerra (1986) is concerned with a mapping procedure for 

non-uniform data flow algorithms. A very good article on 

parallel algorithms is presented in Kung, H. T. (1980). A 

corresponding (to the mapping) procedure, for partitioning, 

can be found in Moldovan (1986). Other partitioning methods 

are discussed by Navarro (1986, 1987) and they concern 

matrix related algorithms. 



CHAPTER II 

SYSTOLIC ARCHITECTURES AND MODELS 

Systolic Architectures 

It is true that a lot of attention has been given in 

the recent years to systolic processing. It is also true 

however, that very few systolic devices have actually been 

built, tested, and successfully operated. This should not 

come as a surprise, because systematic research in the area 

of systolic computing is only a few years old. Most of the 

existing systolic devices are used as the main processing 

unit of real-time systems, where very fast responses are 

required; some SAPs can even be considered as nothing more 

than hardware implementations of given algorithms. 

Design optimality criteria 

In order to find an optimal design of a SAP, the 

optimality criteria must include many factors. The final 

choice of the optimality criteria is application dependent. 

Some typical factors are listed below. 

- Pipelining period: the time interval between two 

successive computations for a processor, it is denoted by 

'a'. This means that the processor is busy for one out of 

13 
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every 'a' time intervals. 

- Computation time: the time interval between the start of 

the first computation and the end of the last computation of 

a problem instance by the SAP. 

- Block pipelining period: the time interval between the 

initiations of two successive problem instances by the SAP. 

- Array size: the number of processors in the array. The 

array size determines the basic hardware cost. 

- I/0 channels: the number of input/output lines between the 

processor array and the outside world (the host computer). 

For the construction of a general-purpose systolic 

system, techniques are needed, so that the array has the 

capability of efficiently executing algorithms as diverse as 

possible. This can be accomplished in two ways. 

(a) Adding hardware mechanisms so as to reconfigure the 

topology and interconnection pattern of the SAP and to 

emulate the requirements of a specialized design. An 

example of this approach is CHiP (Configurable Highly 

Parallel computer), which has a programmable lattice of 

switches for reconfiguration purposes. 

(b) Use of software to map different algorithms to a fixed 

architecture. The cost to this (more flexible) approach, is 

that it usually requires the use of programming languages 

capable of expressing parallelism, development of compilers, 

operating systems, etc. The above apply to Warp, a systolic 

array, developed at Carnegie Mellon University. 



Next, we will present some of the most successful 

systolic architectures now in use. The two machines that 

follow can be considered general-purpose systolic 

architectures. 

Warp 

Warp is a 10 (or more) cell linear systolic array, 

mainly used for computation in the areas of signal, image 

and low-level vision processing. The systolic array is 

integrated into a UNIX system. 

GENERAL DESCRIPTION and FEATURES. The machine consists of 

three major components: 

1) the Warp processor array (Warp array); 

2) the interface unit (IU); 

3) the host. 

15 

The Warp array consists of a linear systolic array of 

10 cells. These cells are identical and programmable. Each 

cell has its own program memory of 4K words and two 

functional units; these handle 32-bit floating point 

multiplication and other general operations. The floating 

point processors can deliver up to 5 MFLOPS (this is for one 

cell alone). All of these components along with some 

buffers are interconnected using a crossbar switch. The 

cell microinstruction is 112-bits wide. Each cell also has 

its own microsequencer, which generates the next address for 

the microprogram of each cell. 
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Data flow through the array on two data paths named X 

andY, while addresses and systolic control signals travel 

on the Adr path. One of the features of Warp that makes it 

very efficient is its high I/O bandwidth. Each Warp cell 

can transfer up to 80 Mbytes to and from its neighboring 

cells per second; hence, it avoids that bottleneck). 

The interface unit handles the input/output between the 

array and the host and generates addresses and control 

signals for the Warp array. For address generation, the IU 

has an integer ALU capable of generating two addresses every 

200 ns. During data transfers, the IU can convert 8-bit or 

16-bit integers from the host into 32-bit floating point 

numbers for the Warp array and vice versa. One of the 

primary reasons that the Warp array is so powerful, is that 

address generation - for the cells, is basically done in the 

IU; the same holds for the loop controls. In this way, the 

cells perform mostly actual computations, rather than have 

their functional units busy, generating addresses. 

The IU is controlled by a 96-bit wide programmable 

microengine, which is similar to the Warp cell controller in 

programmability. 

The host system is UNIX based. It executes those parts 
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of an application that do not map well onto the Warp array. 

It has total control of the clock generator and coordinates 

all the peripherals. The host itself consists of a 

workstation, supporting UNIX (master) and an "external 

host", built around a bus. The "external host" consists of 

three microprocessors. Two of these work in parallel during 

computation, each handling a uni-directional flow of data 

to/from the Warp processor through the IU. The support 

processor controls peripheral I/O devices and handles 

floating point exception and other interrupt signals from 

the Warp array. 

'I..U. l. 
~ I We. .... ~ Ar""'/ 

Figure 5. Host of the Warp machine. 
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Concluding: Warp is a powerful and usable machine. It 

it relatively easy to program. To the programmer, Warp is 

an array of simple sequential processors, communicating 

asynchronously! Its cells are very flexible and the intra

cell bandwidth is high, so that a communication bottleneck 

is avoided. The implementation of Warp was done with rather 

old and conventional existing parts, so that an improvement 

is easily feasible and expected in the near future. 

Saxpy Matrix-1 

Matrix-1 uses an SIMD control hierarchy, a large global 

memory and a small number of fast processing elements. In 

the systolic array, the data paths can be either purely 

systolic or global. Other features include: 

the use of FORTRAN as the programming language; the emphasis 

on block algorithms; the provision in the hardware of 

double-buffered, software-managed local memory, for the 

systolic array to support block algorithms. 

The system consists of five principal components. 

1) The system controller, a general-purpose computer that 

executes the application program and allocates Matrix-1 

resources. 

2) The matrix processor, a linear array of up to 32 

pipelined, floating-point processors that have systolic and 

global interconnections. 

3) The system memory, which stores all data arrays for use 
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~y the matrix processor. 

4) The mass storage system, an I/O interface that provides 

access to high-speed data-storage peripherals. 

5) The Saxpy interconnect, a combined control and data bus 

that links the other four units of the Matrix-1. 

21 

The system controller is the host, a VAX that runs VMS. 

Its functions are to compile, link and execute the 

application program, send control information across the 

system and to coordinate resources; in addition to the 

above, practically all floating-point computation is 

performed in this unit. 

The matrix processor subsystem has 3 components: 

the matrix processor (the programmable array), the matrix 

processor interface (the data pathway between the processor 

array and the Saxpy interconnect) and the matrix control 

processor, (a processor that decodes commands and controls 

the interface and processor array). 

An important feature of Matrix-1 is the architecture of 

the matrix processor. It is an array of 8, 16, 24 or 32 

vector processors that are called computational zones. Each 

of the computational zones consists of an arithmetic and 

logic unit, a multiplier and a local memory of 4K. All of 

the units operate on 32-bit floating point data. The peak 

computing rate of all 32 zones working is close to 1000 

MFLOPS. The architecture of the array is such 



t I o 

. ' . 
"lone 1 ~Dote 3( 

Figure 8. The Matrix processor zone architecture. 

l 
I \ 

I 

~one 0 

I 
g ! 
5uf'FcR 1-----~ 

,__ ___ _! 

PAR 1 I A L l:<E---- "?one 3! 

I 
~ 

X- ba.,~ 

1-------''> "t.N PvT 

' l) i i---- OVIP<..>T 
BVFA:R ~1 -----4 

Figure 9. The Matrix processor interface. 

22 



23 

that makes it versatile. 

The computational zones can function in systolic mode, 

or in block mode. (In the first case, data are transferred 

linearly across the zones; in the second case all zones 

operate independently and use local data). Any subset of 

the zones may be disabled by masking. Finally, the zone 

memories allow indirect addressing, in which elements of one 

vector are used as pointers into another vector. 

The matrix processor interface, mediates between the 

system data bus and the internal buses of the matrix 

processor. Four, two-ported buffers allow for fast 

concurrent transfers with system memory and transfers with 

the matrix processor zone memories. 

The matrix control processor executes computational 

subroutines to control the flow of data between system 

memory and the matrix processor and to issue the 

computational instructions to the zones. Also, large arrays 

are decomposed here if needed, and blocks of data are 

executed. The details are hidden from the application 

level. 

In the system memory reside the data that are processed 

by Matrix-1. Its size ranges from 16 M - 128 M words. Each 

job is guaranteed to have all the available memory; no 

virtual addressing is used. Performance is therefore 

predictable and is not affected by swapping or other 
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schemes. If however, a specific application exceeds the 

memory available, then off-line memory management is needed. 

Memory cycle time is 100 ns and a wideword of 8 adjacent 

32-bit words is read/written in each cycle. Some further 

comments follow. 

-How does the relatively slow system controller (VAX), 

direct the very fast matrix processor? 

- This can be done because the system features 

1) asynchronous execution of the system controller and 

matrix processor; 

2) hierarchical control; 

3) storage of data in system memory. 

The application program in the system controller issues 

control packets and not single control instructions. These 

control packets are buffered in queues and maintained by the 

system management interface so the system controller 

proceeds independently of I/0 and the matrix processor. 

Application programs are written in a high-level 

language as FORTRAN or C and run on the system controller. 

In order to direct the matrix processor to operate on the 

large data arrays located in system memory, the application 

program makes calls to matrix processor .subroutines .. Each 

such subroutine performs a substantial amount of computation 

on a data array in system memory. So the matrix processor 

is fast but very busy too and this is why the VAX can keep 

up with it. 
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In conclusion, Matrix-1 is probably the most successful 

general-purpose systolic processor. It is flexible, since 

its matrix processor can be reconfigured, and the global 

data path can be used. The memory management contributes a 

lot to the high performance of the system. (No virtual 

memory, no cache, but a small and very fast local memory is 

used - the block store. A cache would be ineffective for 

each of the 32 processors). Extensive buffering is used as 

is a global buffer containing common data, that are shared 

by all the zones. The system is user-friendly too, as the 

applications programmer uses high-level operators and is not 

burdened with the low-level algorithmic and hardware 

details. 

The Wavefront Array Processor 

We will briefly describe the architectural model and 

the basic ideas behind the wavefront array processor (WAP). 

This computing structure differs from the architectures 

presented thus far in that its operation is asynchronous; 

that is, the computation is purely data-driven. The most 

promising configuration for a WAP seems to be the orthogonal 

one, because matrix operations are easily implemented on it. 

{A lot of problems can be transformed into matrix 

operations, including many signal processing problems, for 

which the WAP was invented). Conceptually, the requirement 

for correct timing in the systolic array is now replaced by 
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a requirement for correct sequencing 1n the wavefront array. 

The main reason that this architecture arose is that 

for a synchronous system it is necessary to distribute a 

clock signal over the entire array. For very large systems, 

the clock skew incurred in global clock distribution is a 

nontrivial factor, causing unnecessary slowdown in the clock 

rate. 

Computational wavefront. It is a term describing 

effectively the computation in a WAP. The computation 

activities resemble a wave propagation phenomenon. More 

precisely, the recursive nature of the algorithm, in 

conjuction with the localized data dependency, points to a 

continuously advancing wave of data and computational 

activity. 

Example. Consider the case of an orthogonal N x N array; 

the computation could start at the processor in the upper 

left corner, then move to processors (1, 2) and (2, 1), etc. 

Immediately after the first wave propagates we can 

execute/start a second wave, etc. 

Suppose that we want to execute a matrix multiplication 

C = A x B where all matrices are N x N. A recursive formula 

to accomplish this, is: 

cK = c~-~ + A\<. * B"', k=l, 2, ••• , N, 

where A; is column i of A, and Bt is row 1 of B. In this 

case, each wavefront would correspond to a recursion. 
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The entries of A are stored to the left (in columns), while 

those of B are stored in the memory modules on top (in 

rows). In general the (i,j)th processor will execute the k-

th recursion 
K 

Ct:,j = aL· 1 b 1j + at2 b2j + ••• + a~K bKi 
After N wavefronts, the PEs would each contain one element 

of the product matrix C. 

Central to the development of any data-flow computer is 

its language. The WAP is no exception. MDFL or matrix 

data-flow language is the language developed for the WAP. 

MDFL has two levels of programming as shown below. 

1) Global MDFL describes the algorithm from the viewpoint of 

a wavefront. The perspective of a global MDFL programmer is 

of one wavefront passing across all the processors. 

2) Local MDFL describes the actions of each processing 

element and the perspective of a programmer at this level is 

that, of one processor encountering a series of wavefronts. 

The instruction set is a reduced one, (RISC) and we can 

divide the operations into data transfer instructions, 

recursion oriented instructions, conditional instructions, 

and internal processor instructions. Of special interest 

are two constructs described below. 

1) Space invariance: the tasks performed by a wavefront in 

a particular kind of processor must be identical at all 

(2n-l) fronts. 
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2) Time invariance: recursions are identical. 

The global MDFL provides two repetitive constructs, the 

space repetitive construct 

WHILE WAVEFRONT IN ARRAY DO 

BEGIN <TASK T> END 

(T is repeated at all fronts); and the time repetitive 

construct 

REPEAT <ONE RECURSION> UNTIL TERMINATED 

(so that the same recursion is repeated). 

Each processor is a hardware interpreter of local MDFL. 

The architecture of a PE is rather conventional, consisting 

of an internal program memory, a control unit, an 

arithmetic-logic unit, and a set of registers. The only 

exception is the communication with its neighbor PEs. All 

of the processors can be categorized into 4 classes 

according to their communication needs (eg. access of the 

memory modules, etc.). These types are Corner, FirstRow, 

FirstCol and Interior processors. 

One feature that is necessary is a very fast and 

accurate ALU, required by signal processing. An effort has 

been made to implement all instructions as one-cycle 

instructions (which is a characteristic of RISC 

architectures anyway). Correct execution of the WAP is 

ensured by a two-way control scheme (handshaking). The 

other type of asynchronous communication scheme is the one-
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way control, in which data are sent without waiting for the 

acknowledgement signal of the receiver. The latter method 

is safe, as long as large buffers are available. 

Two existing WAPs are STC-RSRE and MWAP. 

1) The STC-RSRE WAP system, was developed in Britain. This 

system is reconfigurable for many applications, but is 

mainly used for adaptive beamforming. In this case, the 

STC-RSRE system consists of 33 identical PEs 21 of which are 

organized as a triangular wavefront array, performing the 

adaptive beamforming function, while the 12 remaining PEs do 

data correction and other secondary functions. 

2) The Memory-linked WAP (MWAP) was developed at Johns 

Hopkins University. Its performance is very high because of 

its very advanced res. Many MWAPs are connected on a ring 

network to form a large system. The characteristics of this 

architecture are its memory addressing structure and the 

coupling of PEs and memory modules. 

Hockney Description 

Hockney devised a notation to describe computers in a 

few lines which will contain the architecture's primary 

characteristics. For example, C = I ~-M] denotes a simple 

von Neumann computer that defines the computer C to be a 

single instruction processing unit I, controlling the units 

in the brackets. These are a single execution unit E for 

performing arithmetic, connected by a single data path (-) 



to an unbanked memory unit M. The notation is structural 

and based on a shorthand indicating the number of 
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instruction units, execution units and memory units and the 

manner of their interconnection and control. An exact 

mathematical definition of the syntax of the notation exists 

in Backus normal form (BNF). The interested reader is 

referred to Hockney (1981) for more details. 

Next we describe/summarize Warp and Matrix-1, in the 

Hockney notation. All of the information available at the 

moment about these computers is included here. In the case 

of alternatives in the design we chose the ones that have 

already been tried out. In a few cases, comments were used 

to express more clearly the specific point. 

(i) Warp: 

C(Warp) = Cl [£C2-, -2M[2.~-410s-J:t 32}, <--> ,2{C2- ,-3M[.z.s)f 10s}'n2' 

-H}, <--/--> {IO-E 100
} <--/aoo --> lOP(Warp arrayUts ; 

3"Z. 

Cl = C(Sun 2/160); 

C2 = C(Motorola 68020); 
- Zoo 1-ll'lV\ 

lOP = 10 { {Mlt,~e,. 32 , 3M2123 ,. 32 } X {F5 ( *), Fs (ALU)} } ; 

At the end of line two of the description, the subscript "s" 

stands for the "skewed model of computation". 

(ii) Saxpy Matrix-1: 

C(Matrix-1) = Cl[P-, -u];,; 

P(Matr. processor subs.) = I(Matr. ctl. proc.) ~2E X 

IOl(Matr. proc. interface8 2 ~; 
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32 ''+ {,f.t l-111>'1 

32E(zones) = 32{M14k" 32.(local mem.)-, -Fp (*)-, -Fp(ALU)} ; 

Cl(Syst.controller) = C(VAX); 

IOl(Matr. proc. interf.) = {4M2(buffers)--H(xbar)}; 

U(Mass storage syst.) = {I02(interface) <--> M3(disk, 

tapes)}; 

At the end of the description of the matrix processor 

subsystem the subscript "i" stands for the "independent 

execution of the zones". At the description of the matrix 

processor interface the connection of the buffers to H is as 

follows: 

buffer A to H is full duplex; 

buffers B and C to H are simplex to H; 

and, finally buffer D is simplex from H. 



CHAPTER III 

SYSTOLIC ALGORITHMS 

The Space of Systolic Algorithms 

This part of the thesis is concerned with various 

questions/aspects of systolic algorithms (SAs). 

Can any particular algorithm be executed efficiently on a 

systolic device? Are there any characteristics or 

properties that a SA should necessarily have? These 

questions will be investigated. 

Parallel architectures, including systolic 

architectures, are definitely more demanding than serial 

computers as far as algorithm design is concerned. Careful 

design of the algorithm is required if we want to exploit 

the systolic (or any other parallel) architecture as much as 

possible. There are issues such as: 

- synchronizing the processors for correct (and efficient) 

execution: 

- distributing the computation among the available 

processors: 

- rearranging of the data is as necessary; 

- partitioning of the problem into subproblems, that can be 
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solved in the number of PEs available; 

- determining the speed of data flow in the array; 

- reconfiguring the available architecture; (somebody may 

ask, which comes first, the algorithm design or the 

reconfiguring of the hardware?). 
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We view a parallel algorithm as a collection of 

independent task modules that can be executed in parallel 

and that communicate with each other during the execution of 

the algorithm. Three main properties of parallel algorithms 

constitute the space of parallel (and systolic as well) 

algorithms. The dimensions of {Computation Unit 

(granularity), Communication Patterns and Patterns of 

Reference to Data} - or - {Concurrency Control, Module 

Granularity and Communication Geometry} have been proposed. 

We will consider the latter triple, as proposed by H. T. 

Kung. 

1) Concurrency Control is needed because more than one task 

module can be executed at a time; we need to ensure/enforce 

the desired interactions among the modules so that the 

execution of the algorithm is correct. (Examples of 

different types of control are simplex/complex local control 

which can be synchronous/asynchronous, and also 

centralized/distributed). 

2) Module Granularity refers to the maximal amount of the 

computation a typical module can do before having to 
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communicate with other modules. The module granularity of a 

parallel algorithm reflects whether or not the algorithm 

tends to be communication intensive. An algorithm can have 

small constants, or small or large module granularities. A 

small granularity means that the modules communicate often 

with each other; by contrast, a large granularity implies 

that substantial computation is done within a module, 

without having to communicate with other modules. 

3) Communication Geometry: suppose that the task modules of 

a parallel algorithm are connected to represent intermodule 

communication. Then a geometric layout of the resulting 

network is referred to as the communication geometry of the 

algorithm. Typical geometries are crossbar, square, linear 

array, shuffle, hexagonal array, etc. 

Each of the dimensions 1), 2), 3) can be represented as a 

tree, with its leaves giving the possible choices for that 

particular property of the algorithm. 

The SAs have distributed control, achieved by simple 

local control mechanisms. The control is synchronous with 

the exception of algorithms for the wavefront array, whose 

control is asynchronous (data-driven). Task modules of SAs 

communicate often with each other; thus the granularity is 

small; furthermore, the module granularity has to be 

constant. Finally it it desirable that communication 

geometries be simple and regular. Such structures lead to 
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cheap implementations and high densities of systolic chips. 

In turn, high density implies both high performance and low 

overhead for support components. So the task modules of a 

SA should be simple; their execution should require a small 

constant amount of time (thus leading to faster arrays) and 

space. 

Utilization rates 

One of the most important characteristics of any 

multiprocessor system, including the systolic processors, is 

its utilization rate. In other words, do we keep the 

processors busy (working - not idle) for most of the 

computation time? A low utilization rate probably implies 

an inefficient algorithm or SAP design; (it is here where 

mapping can be very important). Some factors that affect 

the utilization rate are mentioned below. 

1) The size of the SAP (i.e. the number of the PEs). If a 

problem will never saturate a SAP for instance, thus never 

reaching a full utilization, then this SAP is obviously too 

big for this problem. 

2) The configuration of the SAP (linear, orthogonal, etc.); 

obviously an orthogonal array can be more "parallel" in its 

execution than a linear one. This often minimizes the 

completion time and thus usually increases the utilization 

rate. (We must say again, that some algorithms map better 

onto some configurations than onto others, so this must be 
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taken into consideration). 

3) The size of the problem. The larger the problem size the 

higher the utilization rate. This occurs because the 

completion time does not increase too fast, due to the large 

amount of parallelism and pipelining in the array; on the 

other hand, we are able to keep the array working saturated 

for a larger period of time. 

4) Timing. If only one data stream enters a SAP, do we have 

its elements separated by one clock cycle or more - in which 

case a number of idle cells exists. If multiple streams of 

data enter a SAP, do all enter the array at the same time or 

are there relative delays between each stream? 

Utilization rates in the area of 80% - 85% can be 

considered high. It is obvious that the combinations of 

different layouts of SAPs, sizes, timing, etc., produce a 

very large number of scenarios. It is true however, that 

the majority of algorithms for SAPs uses a very small number 

of all the possible configurations. We will present the 

analysis and utilization formulas for most of these commonly 

encountered configurations. 

We define the utilization rate as 

s 
u = ( 1 ) , where 

#PE * T 

U is the utilization rate of the SAP. 

S is a sum of active cells during each period. 

#PE : is the total number of processing cells in the SAP. 



T : is the completion time. This includes loading and 

draining time. 
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One can see from the formula above, that the optimum U would 

be U = 1 or 100%. In this case we would have all of the PEs 

working all of the time, i.e. U = T I T = 1. Obviously this 

is not feasible since during the loading and the draining 

phases of the array, the utilization rate is far below 

optimum. We can identify three phases in the execution of a 

SAP. 

1) Loading phase: it is the beginning of the execution of 

the algorithm: during this phase the "filling" of the array 

takes place. "Filling" does not necessarily mean that all 

of the PEs are busy; there may be a number of idle cells in 

the SAP. However, a saturation point exists. 

2) "Computing" phase: it is in this phase that the array is 

utilized in its maximum. The objective of a designer is to 

keep the SAP working "saturated" as much as possible. (The 

quotes around the word Computing are there because computing 

also occurs in 1) and 3), but it is in 2) where the bulk of 

computation takes place. 

3) Draining phase: after the data streams have been 

exhausted, utilization drops. This is the final phase; no 

new data enters the array, hence it can not be kept in the 

saturated state. Due to symmetry of the SAPs, the loading 

and the draining usually take about the same time. 

The assumption made throughout is that there are enough data 



elements to fill the array completely (phase 2)) for at 

least one clock cycle. 

Linear Array 

1) Assume that k is the total number of PEs and n is 
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the number of data elements entering the array, one at each 

cycle. The completion time is T = k+(n-1). k cycles for 

the first data element to reach the "output end" of the 

array and n-1 cycles are needed to output the remaining n-1 

elements. 

The working PEs for phase 1) are: 

1 + 2 + 3 + ••• + n-1. 

The working PEs for phase 3) are (note the symmetry): 

n-1 + n-2 + ••• + 2 + 1. 

Full utilization occurs for n-k+l cycles. 

Therefore - refering to phases 1) and 3) -
IC-1 

S = 2~j = k(k-1); (this of course will be divided by the 
~='I 

#PE). 

We can easily conclude that U = n I (k+n-1). To get an idea 

for the values of U in this case, for k = 100 we have: 

U(n=200) = 0.668 ; U(n=500) = 0.834 U(n=lOOO) = 0.909. 

2) Another common scenario for linear arrays is that a 

stream of data of size n enters the array (with a delay of 

one cycle between its elements), East- bound and k streams 

of n elements each enter the array South - bound, with each 

stream having one clock cycle delay relative to its 
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neighboring streams. The utilization for this configuration 

is the same as the one we obtained above. (A use of 2) is 

matrix - vector multiplication Ax = y; dim(A) = nxk; dim(x) 

= kxl; dim(y) = nxl. y is East - bound, x is permanently 

stored in the array and A is entered South - bound by 

columns. Another use of this configuration is for integer 

addition. To implement this, an additional set of North -

bound streams (mirror images of the South - bound streams) 

is needed. These streams are the numbers to be added while 

the carry is moving East (to higher order bits). 

Orthogonal Array 

1) Assume that we have an orthogonal array of size kxk. 

Furthermore, kxn data elements enter the SAP in the North -

South direction and similarly, kxn data elements enter from 

the East - West direction. Each data stream has n elements 

and all streams enter the array at the same time 

(see Fig. 12). 

The completion time is T = k+(n-1) as in the case of linear 

arrays. (When one of the pipelines has finished, all have 

finished). In the loading phase, elements in the first row 

and column are working; in the second cycle, we add the 

first row and column of the square internal to the previous 

one, etc. Let us list the number of the working cells as 

the computation progresses. 
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2k-l 

+ 2k-l + 2(k-l)-l 

+ 2k-l + 2(k-l)-l + 2(k-2)-l 

+ ••• + (2) 

+ 2k-l + ••• + 3. 

The cycle after the (k-l)st (last line), fills the array 

(phase 2)). Full utilization takes place for n-k+l cycles. 

The draining phase, due to symmetry, results in a sum which 

is the same as that of (2). Hence 

S' = 2( (k-1)(2k-l) + (k-2)(2k-3) + (k-3)(2k-5) + ..• + 3 ) 

So the formula becomes 

S' n-k+l 
u = ----------- + -------

#PE * T T 

2) Assume an orthogonal array with kxk PEs. As 

previously, kxn data elements enter the array in N-S 

direction and kxn enter in E-W direction. The difference 

between 1) and 2) is that the streams in the N-S direction 

enter the array with a relative delay of one clock cycle 

relative to each other. Similarly, for the ones in the E-W 

direction. 

The completion time is T = k + (n-1) + (k-1} = 2k+n-2. The 

pipeline that has the biggest delay, of k-1 clock cycles, 

determines the completion time. 

The array is filled by its diagonals, hence 

1 + (1+2) + (1+2+3) + + (1+2+3+ •.• +k)' 

fills the array up to its main diagonal. The sum 



(1+2+3+ ••• +k+(k-l)) + .•• + (1+2+3+ ••. +k+ ••• +2) 

fills the array beyond the main diagonal. The next cycle 

(i.e. the one after the last addend in the sum above), 

utilizes the array fully. This phase (2) lasts for n-2k+2 

cycles. We mention the four points that led to this. 

1. The number of diagonals is = 2k-l. 
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2. Full utilization occurs as long as there are 

elements in the upper right - corner cell which started the 

earliest. 

3. The array needs 2k-l cycles to fill up (see 1), 

hence the remaining data elements of the first row (or 

column) will be n - (2k-l) + 1 = n-2k+2. 

4. Points 1, 2, 3, give the number of cycles of full 

utilization. The draining phase, due to symmetry gives rise 

to a sum that is the same as in the loading phase. 

Further work gives us: 
K ~-• 

S' = L(j+l)j + (k-2)(k+l)k + 2~(k-j)(k-j+l) 
~~· ;~2 

and finally 

S' n-2k+2 
u = ----------- + 

#PE * T T 

Here too, the assumption has been made that the array 

operates saturated for at least one clock cycle, 

1.e. n-2k+2 >= 1 or n >= 2k-l. (The number of elements in 

each of the data streams is greater than or equal to the 

number of the diagonals in the array). 
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Band Array 

We call this the band array, because its structure 

resembles the elements of a banded matrix. This type of 

44 

array is used often in manipulating matrices, especially in 

reordering its elements, or transposing elements, etc. 

We assume that we have m rows of PEs and each row has k PEs, 

with m >= k. m data streams of n data elements each flow in 

the West - East direction; k streams of n elements each move 

in the South - North direction. No relative delays exist in 

either case. 

The structure of the cell is described as follows: each cell 

receives two inputs (from the South and the West 

directions); it performs a computation which may involve 

either or both of the inputs and routes the result to the 

North and to the East directions. Usually these types of 

arrays associate one of the directions of data flow with 

control; that is, streams of control bits are pumped through 

the array, thus controlling the actions of each cell. So 

only if input from the West exists, will we have out -

routing to two directions; else North - bound control bits 

just pass through the cells. Two cases are considered. 

1) ~ is even. First we examine the number of cells 

that are working during each cycle. 

- 1st cycle: bottom row of of PEs and leftmost PEs of each 

row, all work. So m+k-1 cells work. 

- 2nd cycle: the cells of cycle 1, plus the second cell in 
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each row (m-1) plus the cells of the second row from bottom, 

excluding some cells already counted and one that is not 

working. This gives us (k-3) cells. So, a total of 

(m-l)+(k-3) additional working cells are busy this cycle. 

Let tL denote the new (additional} working cells at cycle i, 

during the loading phase. Careful work reveals the 

following terms. 

t, = m+(k-1) 

t 2 = (m-l)+(k-3) 

tlt{2. = m-(k/2 -1) + k-(k-1) 

tl<h, -to I = m- k/2 

tK/2.1"2 = m- (k/2 +1) + 2 

tk'ft. + 3 = m- (k/2 +2) + 4 

t~ 1 = m- (k-2) + 2((k-2) - k/2) 

The array is filled during the k-th cycle. The last addend, 

depicted above is the one that takes place at the (k-1)-th 

cycle. 

From the above we conclude that the sum of working cells 

during the loading phase Sl, is given by 

Sl = t 1 + (t1 + t 2 ) + (t, + t2. + t 3 ) + •.• + (t1 + ••• + ta..:- 1 ). 

The full utilization lasts for Sc = n-k+l cycles. 

The pattern of the draining of the array is quite different 
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from that of the loading phase. It is easy to see that this 

SAP is drained by its diagonals! Thus, at each cycle of the 

draining phase, we simply "cross - out" the PEs along a 

diagonal, starting of course at the bottom leftmost cell. 

It turns out that the diagonal(s) containing the largest 

number of PEs, for k even, contain k/2 elements. The number 

of the diagonals in any array of dimensions pxq is p+q-1~ in 

our case we have m+(m+k-1)-1 = 2m+k-2 diagonals. 

Furthermore, there exists a pattern in the number of 

elements (PEs) each diagonal contains~ it is 

1, 1, 2, 2, •.. , k/2 -1, k/2 -1, k/2 (main diagonal~ this 

occurs 2m-k+2 times), k/2 -1, k/2 -1, ..• , 1, 1. 

The above holds for k >= 4, k even. In the case where k = 2 

- a trivial situation - the draining is done one cell at a 

time. Hence, the following sum of working cells is obvious 

now. 

Sd = mk-1 + 

+ mk-(1+1) + 

+ mk-(1+1+2) + .•• 

••• + mk-(1+1+2+ ••• + k/2 -1 + k/2 -1) + 

+ mk-(1+ ••• + k/2) + ••• 

.•• + mk-(1+ •.. + k/2 (2m-k+2) ) + ..• 

+ mk-(1+ •.• + k/2 (2m-k+2) + .•. +1 ). 

2) k is odd. The thinking is similar to the one 

presented in case 1. For the loading phase, let ti denote 

the additional (new) working cells at cycle i. Careful work 



reveals the following terms. 

t 1 = m+(k-1) 

t 2 = (m-l)+(k-3) 

tl!,~+l = (m- l!t/2j ) + ( k-k) 

tliS'ljt-2. = (m- ( lk/2j +1)) +1 

t~<-t = (m-(k-2) + ( (k-3)- ~/2j )2 +1. 

From the above we conclude that the sum of active cells 

during the loading phase is 
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Sl = t 1 + (t, + t 2 ) + (t 1 + t 2 + t 3 ) + •.• + (t 1 + ••• + tK-1 ). 

The formula for the sum above, holds for k > 3, k odd. In 

the case where k = 3, the sum becomes for the loading phase 

Sl = m+(k-1) + m+(k-1) + m-1 = 3m+2k-3. 

The full utilization lasts for Sc = n-k+l cycles. 

The calculation for the draining phase is similar to that of 

1. The difference is that now, we have two main diagonals; 

the one has length (PEs that is) fk12l and the other Lk/2j • 

They occur alternately, starting and ending with the largest 

diagonal. The largest of the main diagonals occurs 

f(#diag. - 4lk/2j )/2\ times while the smaller one occurs 

~#diag. - 4 ~~~ )/~ times. (Actually this one occurs 

four times more, but for symmetry reasons we do not count it 

as a diagonal then). Of course #diagonals= 2m+k-2 as we 



have previously shown. Thus the sum of the working cells 

becomes 

Sd = mk-1 + 

+ mk- ( 1 + 1) + .•. 

• • • + m k- ( 1 + 1 + .•• + lk I 2j + ~I~ ) + 

+ mk-(1+1+ ••. + ~/2j + (k;2}) + ••. 

. • • + m k- < 1 + 1 + ••. + ~I 2j + \k I 21 + •.• + 2 + 1 > • 

The above holds for m >= k, k >= 3. As far as completion 

time goes, it can be divided in three parts. 

Time for loading Tl = k-1 cycles. 

Full utilization time Tc = n-k+l cycles. 

Time for draining Td = 2m+k-3 (= #diag. -1). 

Hence completion time T = Tl + Tc + Td. 

From the above we can easily see, for both cases, that 

Sl + Sd Sc 
u = ----------- + -----

T * mk T 
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Algorithms for systolic architectures have been devised 

for almost all scientific fields. Indicative, and by no 

means complete, is the following list of 

applications/algorithms implemented as systolic: 

signal processing (FIR filter, Fourier transforms, 

convolutions, etc.); matrix operations (multiplication, LU 

decomposition, QR factorization etc.); relational database 

operations, data structure problems (sorting, queues, graph 

algorithms, etc.), pattern matching, recurrence evaluation, 

implementation of arithmetic units, computational geometry. 



Total #Cells 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
250 
250 
250 
250 
250 
250 
250 
250 

TABLE I 

UTILIZATION RATES FOR LINEAR 
SYSTOLIC ARRAYS 

Data Elements/Stream Utilization 

10 52.63 
25 73.53 
35 79.55 
50 84.75 
60 86.96 
70 88.61 
80 89.89 
90 90.91 

100 91.74 
200 95.69 
300 97.09 
400 97.80 
500 98.23 
800 98.89 

1000 99.11 
100 50.25 
200 66.89 
300 75.19 
400 80.16 
500 83.47 
600 85.84 
700 87.61 
800 88.99 
900 90.09 

1000 90.99 
1500 93.81 
2000 95.28 
2500 96.19 
3000 96.81 
4000 97.58 
5000 98.06 

250 50.10 
300 54.64 
400 61.63 
500 66.76 
600 70.67 
700 73.76 

1000 80.06 
2000 88.93 
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(%) 



Total #Cells 

25 
25 
25 
25 
25 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
400 
400 
400 
400 
400 

TABLE II 

UTILIZATION RATES FOR ORTHOGONAL 
SYSTOLIC ARRAYS 
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Data Elements Utilization rate (%) 
per Stream Case (1) Case (2) 

10 82.86 55.56 
25 91.72 75.76 
50 95.56 86.21 
75 96.96 90.36 

100 97.69 92.59 
20 80.34 52.63 
30 85.38 62.50 
40 88.37 68.97 
50 90.34 73.53 
60 91.74 76.92 
70 92.78 79.55 
80 93.60 81.63 
90 94.24 83.33 

100 94.77 84.75 
120 95.58 86.96 
140 96.17 88.61 
160 96.63 89.89 
180 96.98 90.91 
200 97.27 91.74 
220 97.51 92.44 
240 97.71 93.02 
260 97.88 93.53 
280 98.03 93.96 
300 98.16 94.34 
400 98.61 95.69 
500 98.88 96.53 
600 99.06 97.09 
700 99.20 97.49 
800 99.30 97.80 
900 99.37 98.04 

1000 99.44 98.23 
3000 99.81 99.40 

40 79.07 51.28 
80 87.53 67.80 

100 89.62 72.46 
500 97.62 92.94 

1000 98.79 96.34 



CHAPTER IV 

FORMAL APPROACHES TO OBTAINING SYSTOLIC 

ARRAYS 

Mapping and Partitioning 

Even though there are systolic systems now in 

operation, little work has been done in devising 

methodologies to design systolic arrays that are optimal for 

a large class of problems. This is referred to as the 

mapping problem. In order to match best the characteristics 

of algorithms with those of computer architectures (and 

consequently to increase the efficiency of computation), a 

careful mapping of the computational problem to the machine 

is necessary. The mapping of algorithms into systolic 

arrays is different than the mapping of algorithms into 

architectures with fixed number of processors and 

interconnections. In the case of systolic arrays, one has 

to examine issues ranging from the organization of the 

network of cells to the detailed operation of the cells. In 

fact, the mapping is nothing less than the design of the 

VLSI array, according to the properties of the SA and a set 

of design goals. 
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The Mapping Problem 

Given a class of algorithms with certain 

characteristics, obtain a set of constraints which reduces 

the possible systolic architectures to a set, from which, 

optimal design(s) can be found. 
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The other problem associated with SAPs and SAs is the 

partitioning problem. Most of the SAs that are designed 

assume the existence of a SAP with the required number of 

cells available. Unfortunately, the situation in many 

practical cases is that the interconnection topology and the 

number of PEs are fixed. This implies that some 

transformations of the original data structures are needed. 

The Partitioning Problem 

Consider an algorithm and a fixed size SAP. If the size 

of the problem is larger than the SAP can handle, then 

partition the original problem so that the transformed 

algorithm can be executed on the available SAP. (Size of a 

problem can mean the number of nested loops, or, the number 

of rows of a matrix, etc. The size of a SAP, on the other 

hand, is its number of PEs). 

Below are the basic issues and points for the MAPPING and 

the PARTITIONING methods to be efficient and correct. 

1. The mapping procedure should involve classes of 

algorithms that are as broad as possible. 
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2. The parameters/constraints on which the mapping is 

based should be complete; by complete, we mean that it must 

examine most of the aspects of a systolic execution, such as 

intervention from the host, I/0, control and data 

dependencies, etc. 

3. From the mapping procedure, we should obtain most of 

the basic features of the proposed array, such as type of 

interconnection of PEs, type of operation for each PE, 

timing of the whole array, size of the array for a problem 

of given size, etc. 

4. The partitioning techniques should apply to a large 

class of problems. 

5. The partitioning must have data transformations with 

low generation difficulties, which do not require any 

increase in the complexity of the PEs. 

6. The constraints imposed by the partitioning on the 

size of the problem and on the size of the SAP must be 

minimal (i.e. we must have a flexible/adaptable 

partitioning, so that for a variety of given sizes of SAPs, 

we can obtain transformations that allow the execution of a 

SA). 

7. The transformed problem should be equivalent to the 

original one, i.e. the set of solutions is correct and 

complete. 

8. The computation time of a partitioned algorithm is 

proportional only to the product of the number of partitions 



and the time to process one partition. In other words, no 

additional delays caused by the partitioning process are 

allowed. 
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9. The amount of overhead in external hardware and 

external communication caused by partitioning is as small as 

possible. 

We will now present the two most interesting and 

methodical procedures that can be used for mapping onto 

systolic arrays. They are the parameter method and the 

method using linear transformations (dependency method). 

The Parameter Method 

This method is based on the work done by G. J. Li and B. W. 

Wah. The systolic arrays are characterized by three classes 

of parameters: the velocities of data flows, the spatial 

distributions of data and the periods of computation. By 

relating these parameters, in constraint equations that 

govern the correctness of the design, the design is 

formulated into an optimization problem. The size of the 

search space is a polynomial of the problem size, and a 

methodology to search and reduce this space systematically 

and to obtain the optimal design is proposed. 

Thus, a systematic methodology for the design of 

optimal pure planar systolic arrays is proposed. 

A systolic array that does not have broadcast (global) buses 

and implements the algorithm in pipelines extending in 



55 

different directions is called pure. (By contrast, a semi-

systolic array uses global communications which can be 

faster, but introduces problems as the number of cells 

increases). 

Planar systolic arrays are those in which the 

interconnections can be laid out in a plane without crossing 

each other. 

Further restrictions are the following: the method works for 

linear recurrence processes; the inputs must be one or two 

dimensional and inputs with a larger number of dimensions 

have to be partitioned first. Finally, for a two 

dimensional array X used as input or output of a SAP, the 

elements along a row or column are arranged in a straight 

line and are equally spaced as they pass through the 

systolic array; their relative positions are iteration 

independent. No other forms of data distributions are 

considered. 

Linear recurrences for the computation of a two 

dimensional result z from two two dimensional inputs X and Y 

can be expressed as 

Z.t<. ( .,.._d ( . ) ( • ) ) \ f . = f z .. , x 1,k, y k,J , O=l or -1, where 1s a 
£,~ I,~ 

function to be executed by a PE and k is a positive integer 

bounded by a linear function of i, j and the problem size. 

We will use only backward recurrences. That . K • 
lS, Z lS 

l<-1 defined in terms of z • (The opposite can be true too, and 

this is called forward recurrence). In designing systolic 
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algorithms, both types have the same result; what matters, 

is only the order of evaluation of the variables involved in 

the computation; this may affect the complexity of the 

resulting design. 

The parameters for the mapping. 

Some assumptions are needed for the model of the systolic 

array onto which we expect to execute the algorithm. 

Furthermore, the theory is built on a basis which includes 

assumptions regarding the distance of the PEs and the time 

unit. The SAP consists of a mesh of interconnected PEs 

operating in synchrony. As far as timing goes, a clock cycle 

is a unit of time during which one iterative operation is 

computed in a PE, and data advance into neighboring PEs or 

buffers. We assume that we may have buffers, equally spaced 

between PEs. Each PE or buffer delays the data flow by one 

clock cycle. Furthermore, the distance between two directly 

connected PEs is defined to be unity. The three parameters 

are defined below. 

1) Velocity of data flow. The velocity of a datum x is 

defined as the directional distance passed by x during a 

clock cycle and is denoted by xd . The magnitude of id is a 

rational number i/j, where 1, j are integers i<=j. This 

means that in j clock cycles, x has propagated through i PEs 

and j-i buffers. 
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2) Data distribution. Suppose, the row and column 

indexes of an input or output two dimensional array X are i 

and j, respectively. The row displacement of X is defined 

as the directional distance between xq and Xi+tlj as X passes 

through the systolic array and is denoted by x,; . Similarly 

a column displacement is defined and it is denoted by x~ . 
If X is a one dimensional array, the index in accessing X is 

_.., 
implied and we simply have the item displacement of X (x5 ), 

which is the distance between x; and Xi+l" (Remember, that 

one of the assumptions made, was that the elements along a 

row or a column are equally spaced, so the row and column 

displacements are independent of the values of i, j). 

3) Period. This parameter is a scalar; two time 

functions are needed. !cis the time at which a computation 

is performed, and ~is the time at which an input is 

accessed for a particular computation. The following 

periods, concerning systolic execution can now be defined. 

The periods of i and j for two dimensional outputs are: 

t . -
~ - Tc (zL~,,~) 

Tt ( z t, l"~"l) 

I( 

- Tc (zi,i) and 

- T <zt~). 

The period of iterative computation for two dimensional 

outputs is 
1(+1 I( 

tl(= Tc. (z. · ) - Tc. (zi,~). Note that t 1~ is always positive 
'•I u 

because the recurrence is expressed in backward form. In 

computing z~i items, x~K and x~K+I are accessed sequentially 

(Because of the general 
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formula). Define the periods of X andY with respect to k, 

in the computation of z~i' as the time between accessing 

successive elements of X and Y. 

Thus, t,.,)C = To. ( xt' ~e-r• - Tc.. ( x,· K and 
} •) 

tl<j = Ta. (y . - T~a(YI<,~ ) . 
s---ri, a 

t I< X and tK::J may be negative depending on the order of access 

defined in the subscript access functions ~(i,~) and y(~,i). 

(Note: do not confuse x(i,k) with x~~ • The first one 

mentioned is a function giving a subscript, while the latter 

is an element of matrix X). 

Note that the computations in a SAP are periodic and 

hence all the periods are independent of i, j, k. There is 

a total of 13 parameters for two dimensional linear 

recurrences, of which 3 are for the velocities of data flow, 
._) ~ --., I I I -"> -) __.... -.p 

xd , yd , zcl , 6 are for data d1str1bUt1ons X1;, , x;5 , yt's , Ya's , 

-· -z1·.s , zis and 4 are for the periods t)(x , t/<.J , ti , tj. For 

- - -one dimensional problems, only 9 parameters exist: Jf.J, YJ, ZcJ - -) ~ , Xs , Y5 , Z5 , t~<.1' , tr~ , t~. The following theorem states 

the relationships among these parameters~ (it actually 

describes the fundamental space - time relationships in 

systolic processing). The relationships that follow, form 

the basis on which the mapping is done~ they derive the 

speed and direction of data flow, the data distribution, 

etc. In addition to these, another set of "core" equations 

(7-14) exists which basically optimizes the objective 

function(s). 



Theorem of Systolic Processing. Suppose a two 

dimensional recurrence computation 

Z ta = f ( Zi:r , X ( i , k) , y ( k, j )} 
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is implemented in a SAP; then the velocities, data 

distributions and periods must satisfy the following vector 

equations: 

(data for between computing 
IC::-1 K' 

movement X, z ZL·,i ' z .. ) • 
l,) ' 

..... ..... 
tl(,r ~ (1) tf'.l( XcJ + XK~ = 

(data movement for Y, z between computing K-t z~ . ) • z~. i ' &1 i ' 
-) 

_., _, 
( 2) tl~::t Yd + yi($ = t~o~y zd 

(data 
I'\ I~ 

movement for X, y between computing z .. zt,+J,i); l,, ' 
-? -~ -) 

( 3) t; xd + x~s = t: YcJ 

(data computing 
I( ~ 

movement for Y, z between z •. zt+llj) ; L,~ f 

-l -? -? ( 4) tl Z.J + Zis = tr Yd 

(data computing K 1<: 
movement for X, y between z .. ' zL,i+'); ,,, 

-') _., - ( 5) tj yd + Y;s = ti Xc.l 

(data computing K I,( 

movement for X, z between z .. ' z!",-;"+1); 
~~~ - -? - ( 6) • tj Z0 + zJ·~ = ta xd 

For one dimensional problems, only (1)-(4) are 

necessary. Proof: see Appendix A. 

Before we can look at how to minimize an objective 

function we need to define and discuss a few terms. (Note: 

it has been stated earlier, that a variety of objective 

functions exist. The choice of one, depends on the design 

requirements, the problem size, etc.). The following are 



needed to further enhance the mapping procedure with 

constraints and ways to determine the number of processing 

cells. First we will define the number of streams of data 

flow of an input/output matrix, (1). This is then used in 

(2) to determine the number of PEs in the SAP. Finally, 

more constraints are introduced for the design in (3). 
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- (1) Consider a matrix X; the number of streams of 

data flow of X, in the direction of data flow, is defined as 

the number of distinct lines that must be drawn in parallel 

to the direction of data flow, so that each element of the 

matrix, lies in exactly one line. For a one dimensional 

matrix X with n elements, the number of streams can be one 

(serial input), or n (parallel input). For a two 

dimensional n-by-n matrix, this number depends on the 

directions 
-) - if in opposite of Xis Xjs . they are the same or 

' ' 
directions, then the number of streams can be one (serial 

input), or n x n (parallel input- this is the extreme case 

where each element lies in a different stream). 
• _., --t 

In general, 1 f xi 5 , Xjs are in different direct ions, then 

the number of streams is given by 

n + (n - l)j, where 0 <= j <= n. 

(eg. when j=O then, each row or column of a matrix lies in 

one stream and so, the number of streams is n). 

- (2) #PE (the number of cells) depends on the 

directions in which the inputs are moving. There are four 
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possible cases. 

First, one of the input or output matrices remains in 

the systolic array (is static) and the others move. Then 

#PE is given by the size of the stationary matrix (when, of 

course, all of its elements are used). 

Second, both input and output matrices are moving in 

the same or opposite directions. Then, #PE = (min. number 

of streams of data flow) x (the distance traveled between 

the time that the first elements of the input matrices meet 

and the time that the last elements of the input matrices 

meet). 

Third, is the case where there are two independent 

directions of data flow (involving input or output 

matrices). If the two input matrices are flowing in the 

same or opposite directions and the output matrix is flowing 

in a different direction, #PE is given by the number of 

streams of data flow of the output matrix. If the two input 

matrices are flowing in different directions and the output 

matrix is flowing in a direction of one of the inputs and if 

each stream of data flow in an input matrix has to interact 

with every other stream of data flow in the other input 

matrix, #PE = (number of streams of data flow of input 

matrix-1) x (number of streams of data flow of input 

matrix-2). If the interaction of the input streams is not 

complete, #PE is as above, reduced by a term, determined 
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from the recurrence. 

Fourth, if there are three independent directions of 

data flow, #PE for the two input matrices can be computed as 

above; however, this number can be further reduced by the 

flow of the output matrix. 

- (3) In addition to the equations of Theorem 1, the 

minimization of the objective function(s) is subject to the 

following: 

1/tjma.x <= IX: I <= 1 or rx-: 1 = 0 ( 7) 

I y; I 
__, 

1/ timcu < = <= 1 or I Ycl I = 0 ( 8) 

1/tKrnax<= lz~ I <= 1 or I~ I = 0 ( 9) 

1 <= I ti I <= tivn«X; 1 <= I tJ I <= t~rnax; 

1 <= I tk I <= tl'tYl'\Qt)( (10) 

It~ II z~ I = k, <= tt~W.a.x; 

_ .. 
I t~ I I Yc1 I = k2. <= t~max; 

I tj IIi~ I = k3 <= t;l'l'l«X (11) 

-> 
I 

_, -7 (12) I xis ¢ 0; I xt<s '4 0; I Yl(, :f 0 

-~ 
I YJ·5 f: 0; lz"is I =F 0; I zJs :f: 0 (13) 

tK = It\()< I = It I<J I (14) 

Recurrence determines the relative signs of (14). The 

signs depend on the order of access of the elements of X and 

Y. k1 , k2 , k3 , t\(Yl'ICI.X' tr:1711A$, t,trr.o..xr are integers. All other 

parameters are rational numbers. Moreover, tk~?~ax, t(max, and 

~mocxr are functions of the problem size (i.e. depend on k) 

and T T , is the number of times the function f in 
ser•~r • >er,~t 



the recurrence has to be executed in order to compute all 

the required results. k1 , k2 , k3 , in (11), represent the 

distances traversed between computations. Since a 

computation must be performed in a PE, the distance 

traversed must coincide with the location of PEs. Their ---
upper bounds are the maximum values of tK, t~ , ti , because 

the maximum values of speeds are 1 (see (7), (8), (9)). 

This is true because the maximum value of speed is 

obviously, travelling from a PE to its neighbor PE -

distance of 1 -, during one cycle. Thus, no intermediate 

buffers exist. The lower bounds of (7), (8), (9) are 

obtained as it is described below. The fraction has its 
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minimum value when the denominator is maximum, that is ~~~ 

or ttrNCx or tKmcoc and the nominator indicates the unity 

distance. That is, the slowest possible speed is travelling 

from PE to PE in the maximum amount of time. When speed = 0 

then this means that the data is static. 

The total computation time is a function of tK, I tz I, I tJ I· 

In order for systolic processing to be more efficient than 

serial computation, T <= T5e..,.ic..£ must be true. If in this 

inequality we use the minimum values for two of the periods 

(t,<. = 1, It~ I= 1, ltj I= 1), the upper bound for the other 

period ( tKrt\a.l< , tLm«~t , ti,..c<.x ) is found. The constraints in 

(10) follow from their definitions. 

Based on the above, we can obtain a systolic design, 

which minimizes the objective functions #PE x TLor T. At 
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least one complete/detailed example will be presented, 

illustrating all of the definitions as well as minimization 

of both objective functions. 

~ complete example = the Minimization procedure 

The (ever-present) two-dimensional matrix 

multiplication algorithm, will illustrate derivation and 

definitions of the data distribution vectors, the periods, 

etc. and the minimization of two types of objective 

functions. The multiplication C = A x B can be expressed 

by the recurrence: 

0 
C·. = 0 1 <= i ' j <= n 

tl ~ 

1<. K-1 
bl<,i i,j,k C· • = C· • + aiK 1 <= <= n 

Ll) IIi I 

This is a backward recurrence since the k-th term is 

computed in terms of the (k-1)-th term. The data 

distribution vectors of A are defined by a)cs and a .. KS This 

is so because A is referenced by indexes i, k. The data 

distribution vectors of B, C are analogous. The periods of 

A and B with respect to k (tK~' t~b) are 1, because a~~ is 

accessed one cycle before aL:~<+t and so are bK,j ,bK-r11 j . 

The elements of A, Bare accessed in this order, 

because we have assummed that the recurrence is in backward 

form. This not only means that the (k+l)-th output element 

c~j is computed by the k-th c~~' but also that the subscript 

functions for A, Bare of the form a(i, k+l), b(k+l, j) 
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which in this case simply give i, k+l and k+l, j as 

subscripts. Thus we obtain the order of access as 

described. The periods of i, j for the output C are t; = tj 

= 1. For example: c2, 1 is fully computed at cycle 4, while 

c~ 1 is at cycle 5, thus t~ = 5-4 = 1. It can also be seen 

that the number of streams of data flow, for each of the 

matrices A, B, C, is 5. (Thus, in the formula, n + (h-l)j, 

n = 3, and j = 1). 

Streams of data flow. There are 3 independent streams 

of data flow; this means that #PE will be the product of the 

number of streams of data flow for the input matrices A, B 

i.e. 25. The output matrix C, flows in a different 

direction, so we know that the #PE can be further reduced. 

Truly, cutting off two corners of 3 cells each give us the 

hexagonal 19-cell SAP; we did this by examination - these 

cells simply did not perform any useful computation. 

Completion time. Let us now examine the completion 

time of this algorithm's implementation; furthermore, using 

the completion time we will obtain upper bounds for the 

periods. 

The Tse~.:a.t is the time needed for the serial execution. C 

has 3 x 3 elements; 3 recurrences are needed for each 

element in C, so ~e~d = 27. Execution on the SAP, 

however, requires 

T = nt~<+ (n-1) lti I + (n-1) ltJ I· ntK steps are needed to 
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compute c 1J 1 ; (n-1) I ti I steps are required for computing c,,1 

to Cn, 1 , and (n-l)lt~ I for computing cYl, 1 to cn,.,. For the 

example under consideration, n = 3 and assuming that all 

the periods are 1 we obtain T = 7. This is easily 

verifiable; the last element to be computed is c3.3 ; this 

element is separated by one clock cycle from other elements 

in its data stream. Eventually it reaches cell 1 where it 

computes its first recurrence at time 5. At time 7, it has 

been fully computed at cell number 3. As we said earlier, 

if in T we substitute the minimum for two of the periods we 

can obtain the maximum for the other period. (The minimum 

for any of the periods is 1). Proceeding in this manner we 

get timcu = tirn(Q( = 11 and t,~mcoc = 8. 

Search space complexity. Next we will obtain the 

complexity of the search space for the method. The number 

of buffers b among the PEs is what regulates the values of 

speeds and periods of the SAP. Specifically, for tK, lz~ I, 
k1 and tKma:.x , kl represents the number of PEs ("distance" = 

time x velocity, see (11) ) traversed by a datum between two 

successive iterative computations; its maximum is ~Kma~ Let 

2 be the maximum number of iterations required for computing 

a result. For a given ~~, the maximum number of PEs in the 

pipeline is (p-l)k1 +1 PEs, (i.e. remaining iterations x 

speed). Then it is obvious that the number of buffers in 

this pipeline, satisfies: 

0 <= b <= ((p-l)tKm«x + 1) - ((p-l)k, + 1) = p((tKmC(x- k,) • 



(Let this be inequality (15) ). For the last part of (15) 

we have used that k1 <= tK~~~, see (11). 

Once£ is chosen, ~~~I and ltKI can be determined. From 

(10), (11), (15) we obtain: 

I Z:.~ I = < < p-1 > k, > I < < p-1 > k, + b > • 
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From the definition of k and the above relation we obtain: 

1 t 1<. 1 = k, 1 1 z~ 1 = k , + b 1 < p-1 > • 

As a result, there are O(pt~max) combinations of values of ~ 

and lz~ I; this is an immediate result of (15) and (11). A 

reasoning that is absolutely similar to the above, 

concerning ti _.., -
and I Yd I , and tj and I xJ I gives us 

2. 

0 ( Ptima X 

and O(ptjmax> combinations of values, respectively. 

Reduction of search space complexity. The optimization 

of design of a systolic array for a given recurrence has a 

finite search space of complexity 

0 ( p3 t~mc.tl( t~ma x t~muJC) • This complexity is quite large, 

therefore we need to reduce it. There are two ways to do 

this. 

(1) Instead of requiring that T <= ~e~~t , use relation 

T <= O(Tseor~"-~ I #PE), which is a reasonable assumption for a 

SAP. This reduces the search complexity. 

- (2) The equations of Theorem 1 indicate that correctness 

of design is independent of problem size. So to reduce the 

search complexity, an optimal design for a smaller problem 

can be found. This in turn, is used to extend the systolic 

design for a larger version of the same problem. Note that 
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this method does not necessarily lead to an optimal design; 

this is true because the objective function is 

monotonically increasing with the problem size, i.e., if a 

design is best for a problem of a given size, it does not 

mean that it is going to be optimal for a problem of another 

size. 

We will elaborate some more on the minimization procedure 

for two objective functions. First in 1 and 2 we describe 

the overall procedure for the optimization of each of the 

objective functions. Following that, the specific actions 

for our example are described. 

1. Minimize the completion time T. We can identify 

seven steps. 

(a) Determine the different directions of data flows (one 

out of possible five). 

(b) Find the maximum values of tK, ti , tj • 

(c) Select from the set of possible values, a subset of t~, 

t;, and ti that minimizes the completion time. 

(d) The speeds of data flow are evaluated from (11) by using 

(k 1 = k2 = k3 = 1 initially) the values assigned to kl , k2 

and k 3 - see step (g) below. 

(e) If no feasible solution is found, repeat the procedure 

by finding another set of periods t~<, t,: , ti so that the 

completion time T is increased ~ the least amount. (Thus 

we go back to step (c) ) • 

(f) Repeat steps (b) - (e) for all 5 data flow directions! 
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(g) If still no feasible solution is found then, increase by 

1 one of k, , k2 , k3 and repeat the whole procedure. 

The first feasible solution found, is the optimal solution 

that minimizes the completion time. 

2. Minimize #PE ~ ! 2 • First we need to know the lower 

bound on #PE. For linear recurrences with two-dimensional 

(n-by-n) inputs, the lower bound on #PE can be 1 (both 

inputs serial), or n (one input is serial and the other has 

n streams of data flow), or n2 (both inputs have a degree of 

parallelism- n streams of data flow). Serial inputs 

usually do not lead to feasible solutions - so the lower 

bound is n2• 

Then we repeat the procedure 1 as described above. This 

leads to a feasible solution. Assume that we have found a 

design which requires T1 clock cycles to complete and P1 

2. 
PEs. Then we can easily see that any design with #PE = n 

( ' ' ) d 1 ' ' h h 2 2 P T:<. m1n1mum an a comp et1on t1me T2. , sue t at n Tz < 1 , 

is better. Thus, an upper bound on the completion time is 

obtained: 

T2 >= V:P T1 /n ; T2 will NOT lead to a better solution. So 

the search is continued to find better solutions with 

completion time between T1 and TL. 

Methods 1. and 2. are illustrated using the example 

used earlier. The computation time needed for the 3-by-3 

matrix multiplication is 
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T = 3tK + (3-l)lt;l + (3-l~ltjl· Obviously, it is minimized 

when t~<., It~ I , Ita I are as small as possible. We start the 

search with t~ = t( = ti = 1, on all combinations of 

directions of data flows. If no feasible solution is found, 

the signs of t( or tj are negated and we repeat the search. 

In this specific example, when data are flowing in three 

different directions tl( = ti = ti = 1 results in a solution 

that satisfies constraints (1) - (14) and minimizes the 

completion time. From Theorem 1, we can easily get the 

vectors depicted in Fig. 14 from equations (3) - (6). Using 

these vectors we can obtain the other vectors and a basic 

cell design. Concluding: we connect the cells into a mesh, 

eliminate the cells that do not perform any computation and 

we obtain the SAP as depicted. This is the fastest matrix -

multiplication scheme, with completion time 7 units of time 

and 19 cells. 

To minimize the other objective function, #PE x T: the 

search has to be continued to find out all the feasible 

designs with completion time less than Vl9 x 7/3 = 10.2 • 

By assuming that the output matrix is stationary so c~ = 0, 

we find that a feasible design with tK = ti = ~ = 1 needs 7 

units of computation time and 3 units of drain time, for a 

total of 10 time units of completion time. In fact, this is 

the optimal solution that minimizes #PE x T2 , assuming we 

retain the #PE and the structure of the cells as in the 

previous example. The configuration with the output matrix 



stationary, is depicted in Fig. 15. 

Again the fundamental relations of systolic processing led 

to this design. For example (the interpretation is not 

strict but, nevertheless sufficient ••• ) 

72 

ci5 = ac~ from (6) : means that the column displacement of c, 

has the same direction as the data flow of A. -= bd from (4) : the row displacement of C has the same 

direction as the data flow of B. We can further a:;sume that 

tKCI. = t~~:b = 1, which gives us: 
.... ~ 

0 ( 1) ad + a~<s = and 
_, -bd + bKs = 0 ( 2) • 

The first equation means that column displacement of A and 

the flow of direction of A are opposite. The second 

relation means that the row displacement of B and the 

direction of data flow of B are opposite. This follows 

directly from simple vector arithmetic, and the definitions 

of velocity and displacement of A and B. One can see that 

the discussion above leads to unique ways of distributing 

the output matrix in the SAP: its relation to the flow of 

inputs is also determined~ we can also conclude that matrix 

A is inputted by columns, while matrix B is inputted by 

rows. Furthermore corrective delays for the data streams 

ensure correct execution of the algorithm. 

The procedure described, can be summarized 1n 5 steps. 

Step !· Write the recurrence formula for the problem to be 

solved. Choice of the formula is important, as it affects 
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the design. 

Step~· Write the corresponding systolic processing 

equations (theorem of systolic processing for two -

dimensional or one - dimensional case) and the constraints 

on the values of parameters. Note that additional constraint 

equations may be imposed on the design, depending on the 

particular problem. 

Step l· Select and write the objective function, based on 

the design requirements in terms of the systolic parameters 

and the problem size. 

Step !· Find the parameter values that minimize the 

objective function by enumerating over the limited search 

space. 

Step ~· Design a basic cell for the systolic array and find 

a possible interconnection of cells from the parameters 

obtained. Eliminate cells that do not perform any useful 

computation. 

Mapping Using Linear Transformations 

This method views an algorithm as a set of nested 

loops. (This class of algorithms includes matrix 

computations and many signal processing algorithms as we 

have mentioned earlier). Furthermore, the computations 

performed within each loop should be simple and if possible 

identical. This is needed, so that the processing cells can 

be made identical. If the mathematical expressions inside a 
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loop involve too many computations, the loop can be split 

into several simpler loops; in any case we can assume that 

the computations are almost identical over the entire index 

space (=the set of all loop indices). 

A computational problem of size N, is measured by the 

number of elements in the index set, that is 

N = I1 x I2 x ... x I 71 , where I i indicates the number of 

elements along the i-th coordinate of the index set. 

The mapping is done as follows: first, computational models 

are introduced for VLSI systolic arrays and algorithms; 

second, the transformation of the algorithm into a 

"suitable" form takes place; third, the actual construction 

(mapping) of the array is done. The two models are related 

by using a transformation function. This method seeks to 

minimize the processing time and the interconnection time of 

the SAPs. 

The notation for this section is given next. 

z: refers to the set of all integers. 

I : refers to the set of all nonnegative integers. 

Cartesian powers are superscripts of the sets, eg. z'~'~. 

The points in the index space (an n-tuple in general) are 

denoted by j', j 2 , etc.; the coordinates of a point in the 

index space are denoted by j 1 , j 1 , etc. The first of the 

models and definition is concerned with the type of the 

systolic array, its interconnections and its size. 
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The VLSI array model. 

It is assumed that the computational resource consists of a 

mesh connected network of processing cells. 

Definition: a mesh connected array processor is a 

tuple 
Y'\-1 I'l-l ,_, 

(~ ,~), where J C Z is the index set of the array. That 

is, each processor can be identified by its set of 

coordinates. 
(n-l)JCr 

PE Z is a matrix of interconnection 

primitives. 

Although we consider for the sake of generality that 

SAPs are (n-1)-dimensional, practical arrays have a planar 

layout. The interconnections between the cells are 

described by the difference vectors between the coordinates 

of adjacent cells. The matrix of interconnection primitives 

is 

P = (p1 ,pz., ••. ,p:;), where Pi is a column vector 

indicating a unique direction of a communication link. Thus 

P establishes all possible interconnections between the 

cells; however, which of these connections is used, and how, 

is established later. 

Examples. Consider the array in Fig. 16; its model is 
2. . 

described by (J ,P), where 

2. 
J = {(j,,j2): 0 <= j, <= 2 , 0 <= jl <= 2}. 

c 1 -1 -1 1 0 0 1 -~) and p = ( 0) 
1 -1 1 -1 1 -1 0 
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This array has a-neighbor bidirectional connections and 

also a connection within the cell. The connection within 
t 

the cell gives us p = (0,0), while the bidirectional 
I 

connections marked by a, b, give us: 

p8 = (l,O)t, p9 = (-l,O)t for a, and 
t 

p = (0,1), 

' 
t 

p7 = ( 0 , -1 ) for b • 

The triangular array depicted in Fig. 17 is modeled by 

(Jz.,P), where 

J2. = { ( j I ,j'2.), j, <= 3 , 0 <= h<= j l }, and 

G 
1 :) p = (~ , P2 , P.; > = 
1 

This array does not have bidirectional communication. 

Triangular arrays have been proposed for algorithms such as 

matrix inversion, Cholesky decomposition, etc. 

The aloorithm model. 

The class of algorithms with nested loops is considered. In 

this model we want to include the following information 

about the algorithm: 

- The algorithm index set; {since our main concern is nested 

loops). 

- The computations performed at each index point. 

- The data dependencies which ultimately dictate the 

algorithm communication requirements. 

- The algorithm input and output variables. 



The first definition that follows, deals with the 

information about the algorithm that we want to include in 
. 

the model. It refers to the static properties of the 

algorithm. The next two, examine the execution and the 

equivalence of algorithms. (The dynamic aspects of an 

J, 

Jl. 

Figure 16. A square array with a-neighbor connections. 

Figure 17. A triangular array with 3-neighbor 
connections. 
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algorithm) . 

(The following refer to the next definition; an algebraic 

structure S is a set of elements, with some operations 

defined on them. In what follows, when we refer to an 

algebraic structure and its carrier (set) we will use the 

same symbol). 
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Definition. An algorithm A over an algebraic structure 

S is a 5-tuple A Yl = (J ,C,D,X,Y) where: 
Yl )') 

J is a finite index set of A; J C I ; that is, a finite 

subset of the cartesian product of all positive integers. 

C is the set of all computations. It is a set of 

triples (j,v,t), where ~E Jn is a point in the index set, v 

is a variable and t is a term built from operations of S and 

variables ranging overS (the carrier). We call v the 
-variable generated at j; v is on the left hand side of an 

assignment operator - an output variable. Any variable 

appearing in the term t is a used variable; this variable 

appears on the right hand side of an assignment operator. 

X is the set of input variables of A. 

Y is the set of output variables of A. 

D denotes the data dependencies in A; it is a set of 
- - - "l'\ -

triples (j,v,d), where jf J , vis variable and dis an 

element of zn. (In fact, d's are column vectors of a matrix 

Q, as we will see later). There are three types of 

dependencies in D. 

1) Input dependence (j,v,d) is an input dependence if 



vEX (v is an input variable) and v is an operand of t in 

computation (j,v,t); 
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2) Self dependence :as 1), only vis not an input variable. 

For both types of dependencies, by definition 

d = o. 
3} Internal dependence : (j,v,d) is an internal dependence 

if v is an operand oft in computation (j,v,t}, generated at 

( j ~, v, t} ; by definition d = j-j '*. So v is "defined" -

generated in j~, and used in j; so j~ must precede j. 

So, if j depends on j~,this can be depicted by a 

vector, from j~ to j in the n-dimensional index space. 
-(Hence our definition of d). The basic structural features 

of an algorithm are dictated by the data dependencies. 

These dependencies refer to precedence relations of 

computations, which need to be satisfied in order to compute 

the problem correctly. The absence of dependencies 

ind-icates the possibi 1 i ty of simultaneous operations. 

The levels at which one can examine dependencies are, 

blocks of computations level, statement (or expression) 

level, variable level, and even bit level. Our attention 

will focus on dependencies at the variable level. The data 

dependencies determine the algorithm's communication 

requirements. Systolic algorithms are in need of local and 

regular communications. Hence, the method proposed, 

transforms (among other things), the data dependencies of 
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the algorithm, in order to increase the locality of 

communications. 

Representation of dependencies. It is practical to 

represent all (internal) dependencies as a matrix. Every 

column of Dis the last element of the triple (j,v,d), and 

is labeled d~ • The subscripts imply that the dependency . 
-refers to variable v, at index point j. Usually, the point 

j is omitted, if the dependencies are valid for every index 

point. 

Example. The following algorithm, will be used throughout 

our discussion to exemplify the various aspects of the 

method. 

for j0 = 1 to N 

for j, = 1 to N 

for j1 = 1 to N 

51: a(j0 ,j 1 ,j2 ) = a(j0 -1,j 1 +1,j2 ) * b(j0 -1,j1 ,j2 +1) 

52: b(j0 ,j1 ,j 2 ) = b(j0 -l,j1 -1,j2 +2) + b(j0 ,j 1 -3,j2 +2) 

end j2 

end j 1 

end j 0 • 

The model for the algorithm (1) is as follows: 

(1) 

the index set is {i= (j0 ,j 1 ,jz ), 1 <= j0 <= N, 1 <= j 1 <= N 

and 1 <= j 2 <= N}. The set of computations C is 
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( j , b , b ( j 0 -1 , j 1 - 1 , j 2. + 2 ) + b ( j0 , j 1 - 3 , j 2 + 2 ) ) } • 

In this example, at every point in the index space, a 

multiplication and an addition are performed. The data 

dependencies can be described (as we have explained 

previously) by the difference vectors of the index points, 

where a variable is used and where that variable was 

generated. The four dependence vectors are: 

dl = (1,-1,0) for pair { a ( jo 'j, , j2. ) a ( jo -1, jl +l,jz.) } 

d2 = (1,0,-1) for pair { b( jo , jJ ' j2. ) b ( jo -1 ' j 1 ' j l + 1 ) } 

d; = (1,1,-2) for pair { b ( jo 'jl ' j 2. ) b ( j0 -1 , j 1 -1 , j z + 2 ) } 

d~ = (0,3,-2) for pair { b(jo ,j, , j2 ) b(j0 ,j1 -3,j2 +2) } 

These dependencies form the matrix D, (the order of columns 

is not important). 

t~ 
1 1 J) D = (dl d2 dJ d4) = 0 1 

-1 -2 

The first column refers to variable a, while the following 

three columns refer to b. Finally, the set of input 

variables X and the set of output variables Y are easily 

identified, using the indexes; (eg. during the first 

iteration, in statement Sl, we see that a(0,2,1) and 

b(0,1,2) must be input variables). 

Next we examine the execution of the algorithm; as our 

example algorithm executes, its index points are ordered in 

lexicographical order. This is an artificial ordering, i.e. 



it can be modified, so that parallelism extraction is 

possible, without altering the results of the algorithm. 

Definition : the execution of an algorithm 

A= (Jn,C,D,X,Y) is described by 
~ 

1) the specification of a partial ordering on J (called 

execution ordering); we will use the symbol>. This 

ordering will be such, so that for all (j,v,d)E D we will 

have d > 0. 

2) The execution rule. Until all computations in C have 

been performed, execute (j•,v,t), for all j~> j for which 

(j,v,t) have terminated. 
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The ordering (larger than zero) > is used in lexicographical 

sense, i.e. if d = j-j* > 0, it means that the computations 

indexed by j*must be performed before those indexed by j. 

Definition : two algorithms A = (Jn,C,D,X,Y) and 
A ~n ~ 
A = (J ,C,O,X,Y) are said to be! equivalent if and only if: 

1) Algorithm A is input - output equivalent to A; this is 
h denoted by A = A. This means that these algorithms map any 

set of input variables to the same set of output variables. 

The following establish a stronger equivalence between 

algorithms than the usual input - output equivalence. 

2) Index set of A is the transformed index set of A; 
~ 

J~= T(J~), where Tis a bijection function; (Tis a 

transformation). 

3) To any operation of A there corresponds an identical 
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operation in A and vice versa. 
~ 

4) Dependencies of A are the transformed dependencies of A; 
~ 
D = T(D). 

This equivalence allows us to obtain a transformed algorithm 

that is equivalent to the original one. The index set and 

the dependencies of the new algorithm are obtained via a 

simple linear transform. This algorithm is now suitable for 

VLSI implementation. 

On the transformation 

The mapping is going to be done, by linearly transforming 

the algorithm's index set and dependencies. A linear 

transformation can be expressed in general as y = Ax, where 

A is a matrix containing the transformation (mapping) of x 

to y. More formally we have the following. 

The data dependencies impose an ordering R on the index 

set J~. The elements of the index set along with the 
n 

ordering form an algebraic structure <J ,R>. The 

transformation T we seek is 

T : n ~ <J ,R> ---> <J ,RT>, 

A 

where Jn is the transformed index set and RT is the ordering 

imposed in the transformed index set (by the transformed 

data dependencies). T should have the following properties: 

1) T is a bijection and a monotonic function and 

2) the data dependencies of the new structure can be 
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selected by us! (see Theorem 1, in t,his section). 

The transformation T is partitioned into two functions 

T = ~] 
l'l A Yl "'l'l-1 Mapping n is defined as n: J --> Jl and 5: J --> J . 

Mapping n results in an execution ordering. That is, the 

first coordinate of the transformed index set preserves the 

correctness of computation by maintaining an execution 

ordering. We need to have relation nd;> 0, for all column 

vectors of the dependence matrix. This constraint arises 

from the requirement that a variable must be generated 

before it is used in a computation. We elaborate on this 

later. The rest of the coordinates can be selected , by the 

algorithm designer to meet some communication requirements. 

Hence, roughly speaking n deals with time, while S with the 

geometry and communication. 

Consider an algorithm with n nested loops (index space 

of size n) with m constant data dependence vectors. 

A linear transformation T is 
A 

sought such that J~= TJ~ (transforms the index set). Now 

since T is linear 

T( i+dj) T(i) = Tdj 
A 

= d3, for 1 <= j <= m; . "' 1 E J • 

The expression holds for all index points and so we can 
A 

collect all of the equations in TD = D. These questions 
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arise: under what conditions does T exist? Furthermore, is 

the mapping correct? (Given a computation at a cell, do all 

the necessary variables arrive at that cell at the correct 

• ? ) t1me. • The following two theorems answer these questions, 

and clarify some more the method. 
....... 

TD = D represents a 

system of nxm equations with n~unknowns (the elements ofT). 

This is so, because it has been stated earlier (property (2) 

ofT), that we assign the data dependencies in the new 

structure, hence 0 is assumed to be known. The following 

theorem indicates the necessary and sufficient conditions 

for the existence of linear transformation T; furthermore, 
....... 

it can be used as a guide to preselect D. 

Theorem 1. For an algorithm with a constant set of 

data dependencies D, there are three necessary and 

sufficient conditions so that a valid transformation T 

exists. 
A 

(1) The new data dependence vectors d~, satisfy the equation 
A 

dj = dj (mod Cj ) , for all 1 <= j <= m, where cj is the 

greatest common divisor of the elements of dJ. 

"' (2) System TD = D can be solved for T. 

(3) The first nonzero element of vector dJ is positive. 

Proof. Sufficient. Condition (1) indicates that the 

"" elements of da are multiples of the greatest common divisor 

of the elements of the respective dj. (This is how we can 
A 

preselect D). This is a necessary and sufficient condition 

that each of the nxm diophantine equations can be solved for 
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integers. According to (2) the system has a solution. 
~ 

Since the first nonzero element of d~ is positive, it 

follows that ndj> 0, thus T is a valid transformation. (It 

is necessary for the correct execution of the transformed 

algorithm, that the timing is correct; in other words an 

execution ordering is maintained. Thus, it is necessary 
• A that the transformed data dependenc1es D have for each 

column their first nonzero element positive). 

Necessary. Transformation T is a bijection and consists of 

integers, hence (1) and (2) conditions are required. 
~ 

Finally, T preserves the ordering (RT), that is dj> 0. This 

implies that the first nonzero element is positive. 

~ 

In the selection of D one should choose the smallest 

possible integers for its elements. In this way, the 

processing time and the communication requirements of the 

transformed algorithm are optimized. 

The second theorem, ensures the correctness of the global 

level mapping. (We distinguish between the operation of the 

systolic system at the array level and the activities taking 

place inside the PEs. The array level is called the global 

level and the processor level is called the local level. 

Most methods, including this one, focus their attention into 

the mapping from the algorithm to the global model as this 

is the most critical one). 

Theorem 2. A transformation 



T = [~] 
of an algorithm which satisfies Theorem 1 maps that 

algorithm into a systolic array in which the data flow is 

correct. 

Proof. Consider a typical assignment statement 
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x = E(v1 ,v1 , ••• ,v.,.) executed at the index point :f E. J 11 • From 

the definition of data dependence vectors we have 

7 " d "";"~ d · r d J=J+ ,=J+ z= ••• =J+ r-

-· l1 where jLf J and dt correspond to the generation of variable 

Vi. If we apply the linear operators nand 5 to the above 

relation we get: 

nj = flj' + nd", = n:rz + na::?. = 

Sj = 5)1 + Sd1= SJ2 + Sd2 = 

... = n3t" + nd"r 
= s)r + Sdr 

( 2) 

( 3) 

If the computations at j ~E Jn produce correctly v1. , then it 

follows from (2) and (3) that all the input variables are 

available for je. JY'l at the same time (obtained from (2)) and 

at the~ processing cell (obtained from (3)). For each vi 
A 

there corresponds a d( and D can be selected as desired. It 

follows that there is no overlap in the flow of the data 

streams and no cell is required to perform more than one 

operation at any one time. We can now say the following 

about transformation T and the specific meaning of its 

parts. 
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Time. A computation indexed by jE J~ in the original 

algorithm is processed at the time nj = jo. That is, we can 

regard correctly the first coordinate of the transformed 
A 

algorithm j0 as the time coordinate. This is true, because 

TTis selected so that TTdi> 0 for any dlE D. The total 

running time of the new algorithm is usually 

n - - A .A t = max ( j 1 - j "') + 1 = max j 0 - min j 0 ; this assumes a 

unitary time increment. In general however, the time 

increment may not be unitary; in this case it is given by 

the smallest transformed dependence, i.e. min ndZ. Thus the 

execution time of the parallel algorithm is the number of 
(l 

hyperplanes n sweeping the index space J and it is given by 

the ratio 

- - n -
for any j 1 , j 2 E J and dct D ( 4) • 

(Notice that the running time includes only the computation 

time and the communication time and not the input/output 

time). The communication time for a data stream associated 

with a dependence vector d is given by rl<] + d) - n<]> = nci, 
since n is a linear transformation. 

Network geometry. A processing cell is assigned to 

each distinct element of ~"~(rememberS : Jn--> s~1 ). The 

position or the identification number of each cell is given 
- A /\ A 

by S(j) = (j 1 ,j2 , ••• ,jn). The interconections 
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(interprocessor communications) result from the transformed 

data dependencies; in fact they are derived from the last 
~ 

n-1 rows of D. (The first row is associated with timing). 

Two observations can be made concerning the above: 

First, if the mapping of S results in the dimension of its 

range being greater than 2, then an additional one-to-one 

mapping is needed. This occurs, because multilayer VLSI 

networks may be attempted but planar arrangements are 

preferable. Second, the mapping T can be generalized so 

that the dimensionality of nand s is marked by a positive 

integer k; see appendix C. 

Implementation =example. We now proceed with 

elaborating on the mapping procedure and examples. To be 

more specific, two major parts can be identified in the 

mapping procedure. The first one, is the transforming of 

the algorithm in a suitable form for VLSI implementation. 

The second one is concerned with the derivation of the 

systolic array. For the first part we will see how S can be 

found and how it is related to other parameters. Matrix K 

is introduced which indicates the utilization of 

interconnection primitives in the array. What this method 

attempts to minimize is the completion time; it is also 

shown how space - time tradeoffs are possible in the design. 

Furthermore, it is explained how exactly the time -

hyperplanes partition the index space, what they imply, and 

of course how they can be found. 



I. Algorithm transformation. 

Fundamental equations. We want to select the 

transformation S, so that the transformed dependencies are 
A 

mapped into a VLSI array modeled as (J"~-I ,P). (We assume a 

processor array model consisting of a grid which has the 
A 

dimensionality of J~"l-1). This can be written as: 

SD = PK ( 5) • 

P is the matrix of interconnection primitives, as we have 
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previously said in (0). (The same Pis used for this example 

as well). K is a matrix that indicates the utilization of 

primitive interconnections in matrix P. That is, of all the 

possible interconnection primitives in P, some may not be 

used, depending on K. These correspond to rows of matrix K 

with zero elements. Matrix K must satisfy the following: 

kd·i >= 0 (6) 

[kji<=fldi (7). 
J 

Hence, all elements of the matrix must be nonnegative, due 

to (6), and the time between the generation and use of a 

variable must be greater than or equal to the number of 

interconnection primitives needed by the datum to travel 

from the PE in which it is generated to the PE in which it 

is used. Most often, many transformations S can be found, 

and each transformation leads to a different array. This 

flexibility apparently complicates matters, but in fact, it 

gives the designer the possibility to choose between a large 



number of arrays with different characteristics • 

(Tradeoffs between space and time characteristics are 

possible). Let us use algorithm (1) as an example to 

illustrate the method. 
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(We must note that a program has been developed at the 

University of Southern California, called ADVIS - automatic 

design of VLSI systems - This software package finds all 

valid transformations it is then up to the designer to 

choose an optimality criterion which will lead to the 

solution most suitable for his needs). 

Determine TI. The first thing to determine is 

transformation n = (t., t,z tr3> so that it satisfies ndz > 0; 

so if we multiply n with matrix D of algorithm (1) we get a 

system of 4 inequalities in which unknowns are the 3 

elements of fT. We can easily obtain that 

t 11 > t 12 > t, 3 • Additional constraints can limit the number 

of TI's. In this example the condition 

Zl t I z I <= 3 was used; the program found the following ns 
Z::.l 

n,= (2 1 0) 

f1= (1 0 -1) 

T13= (1 ·a -2) 

114= (0 -1 -2) 

n= (2 0 -1). 

n,_n = (1 2 3 2) (i.e. nd'~> 0, as required); (8), 

and n2 minimizes the parallel execution time as given by 
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(4). Hence TT= Tfz= (1 0 -1), and the time is 

t = (N -1) - (1 - N) + 1 = 2N - 1. (The denominator is 

minTTdi= 1, as given by (8). The index set for this example 

is a cube and function TTcontains the coefficients of a 

family of parallel planes. The first index points visited 

by IT are (l,X,N) and the last (N,X,l), where X is "don't 

care". For instance (l,X,N) includes points 

{(l,l,N), (1,2,N), ••• , (l,N,N)}. So, each of the dotted 

lines in Fig. 18 contains a set of points that are going to 

be executed in times ranging from 1-N to N-1. Each of the 

points in these lines extends in three dimensions by 

including all the points in j 1 • (The "don't cares"). Take 

for example points 

A = (4,l,N), B = (3,l,N-l), C = (2,l,N-2) and D = (l,l,N-3). 

All of these points will be executed at time N-4; in fact, 

for each of these points, we can extend j 1 = 1, 2, ••• ,N and 

all of these index points can be executed at the same time. 

All index points j which are contained in one plane TTat a 

given moment (as in the above set), can be processed in 

parallel because there are no dependencies between them and 

they obey equation llj = constant (=N-4 for the above 

example). In fact, the parallel processing time is nothing 

but the number of parallel planes TTnecessary to cover all 

index points! 

Determine s. The next step is to find transformation 

s. The program found twelve S matrices that satisfy 
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1"'----+·-' ----. / 

Figure 18. Index set and Hyperplanes • 

. ---------------''7 d·, 

Figure 19. Systolic array of algorithm (1). 



conditions (5)-(7). TheseS matrices, together with TT 
selected above, form twelve distinct valid transformations 

of the form 

T ·~]. 
A utilization matrix K, which satisfies ( 6) , ( 7) is 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

K = 0 0 0 0 
1 1 1 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 

This utilization matrix leads to transformation T7 = ~] 
because s7 satisfies equation S7 D = PK. (The system of 

diophantine equations is solved for 5}. 

T = T-, = ~ 0 -lJ 1 1 
0 0 
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(The program considers all possible utilization matrices K, 

which satisfy relations (6), (7)). Once the transformation 

is selected, then the new parallel algorithm results 

immediately from the definition of algorithm equivalence. 

The original index set J~ is transformed into new index set 

" - ~ 
J~ so that to every point jf J there corresponds a point 

" " ~ ":' "~'~ ~ j = (j0 ,] 1 , ••• ,]11_ 1 ) E J , J = T7 j; (in the specific example 

of course, n=3). Because of the way in which transformation 
A 

T was selected, the first coordinate j 0 indicates the time 

at which the computation indexed by the corresponding j is 
,.... "' 

computed, and ( j 1 , j 2 ) indicates the processor where that 



computation is performed. For instance, consider a 

computation indexed by (3,4,1) of algorithm (1); the 

transformed coordinates are 

( /,"' "':' ..-:" ) ( )t ( . )t 
]0 , J I , J 2 = T 7 3, 4, 1 = 2, 8, 3 • This means that 

computation time is 2 and the processor cell at which the 

computation is performed is (8,3). 

What has been our main concern so far was the 
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transformation of the algorithm. Next, we want to construct 

the entire array in which T maps algorithm (1). 

II. Array construction. 

This constitutes the second major part of the mapping. 

The algorithm considered now is not the original one, but it 

is the transformed and equivalent one to algorithm (1). The 

interconnection primitives, indicate the direction of the 

communication between the cells. The transformed data 

dependencies, dictate the algorithm's communication 

requirements. Finally, we will see how we determine the 

direction of movement for each variable within the array, 

and the construction of each cell. 

( 1) Only two interconnection 2rimitives are required; 
-e 

these are (0 1) corresponding to North - South movement of 
t 

data, and (1 0) corresponding to West - East data movement. 

This happens because the utilization matrix K is very 

sparse. All but two rows of K are zero; the nonzero rows of 



K correspond to the respective column vectors of P, which 

give us the interconnection primitives mentioned. In 

general, the simpler matrix K is, the simpler the systolic 

array we need. (It is of importance to notice that the 

array we started with was much more complex); we found 

however, that a much simpler one was needed). 

( 2) The transformed data dependencies 

A 

Q 
2 3 D D = T1 D = 0 0 ( 9) 
1 1 

a b b b 
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The first row of the transformed dependencies is given by 

nn = (1 2 3 2). Each element in the first row indicates 

the number of time units allowed for its respective variable 

to travel from the processor where it is generated to the 

processor where it is used ( communication time ). 

0.. b 

b -" .. ___ ----- -, 
I 

bEL/l'r I 

1 t.~l· I 
I 
I 
I 
I 

--t b ,_ -- -
b 

Figure 20. Cell structure. 
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(3) Furthermore, the direction of data flow, for each 

variable is represented by the last two rows in each column. 

All cells in the array are identical (see Fig. 19). The 

structure of a cell results from the computations required 

by the algorithm, as well as the timing and data 

communications, dictated by the new data dependencies. The 

cell consists of delay elements, an adder and a multiplier; 

it is assumed that the units that are doing the computations 

(+,*), also have one time unit delay. For example, variable 

a, which has dependence d 1 , moves from a cell to the next 
t 

via a vertical North - South channel, (0 1) and it has one 

unit time delay in each cell, introduced by the multiplier. 

For the second multiplication operand, which is variable b 

with dependence d 2 , there corresponds a vertical channel 
t 

(0 1) but an additional delay of one time unit is 

introduced, for a total of two time units delay. 

Let us now summarize the steps of the procedure. 

Step 1. Heuristically, find a transformation TT, such that 

TTd~> 0 and which minimizes 

t = r-~:~-~r~=n~~~-~-=-~ 
- - 'r\ -for any j 1 , j 2 E. J and diE. D. This step results the first 

row of the transformed dependencies Tfn. 
Generate all possible K matrices K 

which satisfy the following conditions: 



(a) 0 <= kJ( and 

<b> ~kii' <= ITd'i. 
~ (n-t)x"' 

Step 1· Find all possible transformations S E Z which 

satisfy two conditions. 

98 

(a) Diophantine equation SD = PK can be solved for S and 

(b) Matrix transformation T is nonsingular. As a result 

of this step, we may obtain some valid transformation T. If 

no S can be found to satisfy all the above conditions, then 

either we compromise the fast execution time by selecting 

another n (step 1), or we compromise the locality of data 

communication by selecting another set of primitives 

(hence the array model changes). 

p •• 
~ , 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Systolic computers seem to be a promising solution for 

obtaining a very high degree of parallelism with low cost. 

They consist of homogeneous processing cells that have a 

simple architecture. Hence, systolic arrays are easy to 

build and cheap in their implementation. The cells 

communicate locally with each other, via I/O queues; 

accesses to local memory are limited in most cases, thus 

resulting in a high bandwidth. SAPs are also easily 

expandable and a number of configurations is possible, thus 

providing flexibility to the designer. The speedup that can 

be expected from such a construct is in the area of O(N), 

where N is the number of processors. This is impressive, 

considering the very large number of processors usually 

involved in systolic computers. VLSI technology can give 

systolic architectures a major "thrust" forward in the near 

future. 

It is important that an I/O bottleneck be avoided; 

careful analysis is required by the designer(s) to speculate 

on global communication and/or efficient algorithm design 

advantages and disadvantages. Not all algorithms are 
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suitable for systolic implementation. The space of 

algorithms for systolic implementation has a module 

granularity which is small constants, and distributed 

control achieved by simple local control mechanisms; 

furthermore, the communication geometry of the systolic 

algorithms must be simple and regular. 
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SAPs are at the present time application dependent 

(special - purpose) devices. However, general - purpose 

systolic computers can be built in the next years. These 

computers will include flexible systolic arrays for 

computations applicable to systolic configurations; the 

processing cells increase in complexity and programmability 

and should be able to execute independently as well. Three 

general - purpose systolic schemes were examined. Warp, and 

Matrix-1, are already in operation are excellent examples of 

where systolic architectures are going to. The Hockney 

shorthand description was used to describe/summarize these 

computers and their primary characteristics. We also 

described WAP - a systolic dataflow computer; this somehow 

different approach to systolic computing, is equally 

promising and has the advantages (and disadvantages) that 

are present in any data - driven architecture. For example, 

it can be faster than a synchronized scheme; on the other 

hand there exists an overhead due to the additional 

information that has to be stored in the tokens. 



101 

An important metric of systolic computing is examined, 

the utilization rate of the processors. A variety of the 

most commonly encountered scenarios was analyzed and 

formulas were presented. A careful match between the size 

of the problem and that of the systolic array, will result 

in a high utilization rate. The configuration of the SAP 

for the specific type of problem also affects the 

utilization rate. 

The key to efficient implementation of systolic arrays 

is mapping, i.e., obtaining a configuration of a SAP with 

most of the characteristics such as timing, function of the 

cells, etc. from a set of algorithms with common 

characteristics. Two methods with different approaches were 

presented, namely, the parameter method and the dependency 

method. Both obtain SAPs (in fact, they are equivalent!) 

for a rather limited class of problems. Luckily however, 

these classes of algorithms include a vast number of signal, 

matrix related problems and others which are suitable for 

systolic implementation. The parameter method easily expands 

its set of relations on which the mapping is based; i.e. 

additional constraints are obtained, depending on the 

specific problem. The dependency method on the other hand, 

has a background which is solid and has already been tried 

out (dependency of variables). Both are limited in that 

they preassume a "specific" model of SAP on which they seek 

to map the algorithm. 
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Future research. The existing systolic computers 

involve today a rather small number of processors which may 

also communicate with global buses (thus providing 

flexibility). This situation, if we want a really modular 

system, one that is purely systolic, is highly undesirable. 

Furthermore, a possible clock skew (in the case of a large 

number of PEs) has to be eliminated. 

The architectures in use today, for example Warp, has 

been built with devices that are rather old and 

conventional. If these units are replaced with better ones, 

the resulting SAP may improve its performance dramatically. 

(For instance, the Warp cell uses the Am2910A 

microsequencer, which is slow and with many limitations). 

But then, retiming of much of the system would be necessary 

so that a timing imbalance is avoided. The portability of 

the systolic devices has to be examined, too. 

While ad hoc designs are usually efficient, systematic 

methodologies (mapping) for large classes of algorithms are 

necessary. The mapping methods should deal with a broader 

class of algorithms than what they do now. These methods 

should also include more parameters in their design 

procedures that are related for instance, to the host, to 

the memories used, etc. The design is thus optimized and 

"fitted" best into the specific environment. SAPs should be 

easily attached to a number of host computers and execute a 

variety of compute - intensive algorithms (partly or in 
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whole) thus speeding up the execution of the host. In our 

opinion, methods that are based on the dependencies of the 

variables are the ones most likely to increase in the near 

future. They resemble other procedures that have been used 

in VLSI technology already, and are based on a background -

theory that is solid and expandable. 
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APPENDIX A 

PROOF OF THE SYSTOLIC THEOREM 

The proof for the theorem of systolic processing will 

be given here. The proof is quite clear and uses direct 

manipulation (composition) of vectors to derive the 

relations (1) - (6). The assumptions made for the proof are 

(without loss of generality): 

(a) The SAP consists of PEs that are orthogonally connected 

and with diagonal connections. Obviously the situation for 

a linear array would be much simpler, while a hexagonal SAP 

is similar to the model assumed here (as far as 

communication goes). 

(b) The periods are assumed to be positive and equal, i.e. 

t 1< = tKx = tK_y > 0. 

Assume A, B, C and D are four PEs, that do not have to 

be directly connected; why this can be true will be obvious 

as the proof progresses. 

Proof of (!), (~): While PECic computing 

zt:5 = f(z~Jj, x(i,k), y(k,j)), the next element of X, xx(~~~~) 

is in PE B and the next element of Y y is in PE D. 
, "j(k;.l,j) 

(Notice how the elements of X, Y are referenced using the 
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subscript- access functions) (Fig. 2l(a)). Since the 

periods are positive i.e. tkx = tK.Y > 0, 
~ --'l • - -CB represents xK5 , (l) and CD represents Yt<s, (ii). 

According to the characteristics of systolic processing, the 

operands needed for the next iteration (recursion) must 

arrive at the same PE simultaneously after tK units of time. 

(Remember, this period is the time difference between 

computation of recurrences k and k+l, for z). 
K 

Hence, zi1j , Xx(l1 K+l) , Yy(~~.._,. 11 j) , arrive at PE A simultaneously, 

h • h t Ki"l : w 1c compu es recurrence z~j f(z~i' x(i,k+l), y(k+l,j)), 

(see Fig. 2l(b)). We have: 
_., - _, __, ...... 
CA = tl( Zd , ( i i i ) ~ BA = t.c; xd , ( i v ) ~ DA = ~< Yd , ( v ) • 

Furthermore, from the principle of vector composition, we 

have 
-"7 -) ......, 

CB + BA = CA, and using (i), (iv) and (iii) we obtain (1). 
__, ~ -Also, CD+ DA = CA, and using (ii), (v) and (iii) we obtain 

(2). (Do not forget that the periods are assumed equal). 

The cases in which tKx and t~ have different signs or are 

both negative can be proved similarly. 

Proof of (l), (!) : Suppose that while PE D is 
K IC-1 

computing Zt' 1J = f (zid , x(i,k), y(k,j)), PE Cis computing 
v 

z~ ... ,J ~· , p<k, and PE B has X • 
X(t:+l 1 K) 1 

(see Fig. 21(c)). 
-> _., 

Therefore DC = z0 , (vi) 
_., 

, and DB = xt5 , (vii). 

According to the characteristics of systolic processing, k-p 

steps of the iterative computation are performed after !~ 

units of time and at PE A 
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for the computation of Z(-..,,j Let us briefly clarify why 

this happens: t,: is defined as t( = Tc(z(.:,,i)- Tc..(z~;>. 

It is the time elapsed between the computation of two 

successive z's along the i ~dimension. Obviously, since 

element z.P1 1 and element z~· are computed at the instant 
~"t' 11 <1-D 

described, after t( units of time, (and k-p steps of 

. ) f computat1on , zt-1'1,) 
K-1 

becomes zi-rl, i and now z ~ · 
G t-1 1 ;} 

can be 

computed at PE A in terms of z~-· · 
L-t-1, 3 , x.,.< • ) and u . • 

"~-1'!,1': .!'Y(K,J) 

-'? ~ ----'? -So: BA = tixJ, (viii); CA = tzZJ, ( . ) - ....... ( ) 1 X ; DA = t /. Yd , X • 

From the principle of vector composition we have: 
_, __, ---'9 

DB + BA = DA, and using (vii), (viii) and (X) we obtain ( 3) • 

~ - -Also, DC + CA = DA, and using (vi) , ( ix) and (X) we get 

relation ( 4) • (With the i , J periods of z being equal). 

Finally, the proofs for ( 5) , (6) are absolutely similar to 

( 3) and ( 4) , respectively. 

(a.) (b) 

A D 

(d) 
B l)('lt(iYI )- -l . I c 

', I•I,J -· --· 

Figure 21. Snapshots of the Systolic Theorem. 



APPENDIX B 

PARAMETER METHOD - AN EXAMPLE 

This appendix provides an example of how to apply the 

parameter method to obtain a systolic array for 

convolutions. The problem can be expressed as a one

dimensional linear recurrence and is thus simpler than the 

two-dimensional examples discussed so far. A recurrence for 

this problem is 

0 0, 1 <= i <= Y· = n 
' 

y~ 1<-1 + 
WW\-K -t- I XWI-11: 1" i = Y· 

l • 
1 <= i <= n, 1<= k <= m. 

This recurrence evaluates the terms in reverse order as we 

will see, so that y~ is the first computed term. The 

inputs, i.e. the set of weights w and x, are accessed in the 

same order- decreasing, and hence tKw = tKx• (The reader 

is urged to refer to the definitions presented previously). 

The function to be minimized is #PE x T~. 

Completion time. It takes mt~ units of time to compute 

y1 (m is the number of weight coefficients and tK is the 

time difference between computing successive recurrences of 

y); in addition to that, (n-1) lti I units of time are needed 
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to compute the remaining y~ 's. (Remember that 

ti = Tc(Y~r} - TG(y~}}. Hence the total computation time is 

T = mtK + (n-1) lti I, excluding possible load and drain 

times. · Let us assume that m=4 and n=6. In this case 

T · o = 6 X 4 = 24. se.v-t.e~.{. 

Bounds on the periods. We can now find the bounds of 

the periods. It is required that T <= Tse .... <.·~:~t, i.e. 

4t~ + 5 !til <= 24. 

By using the minimum value (=1} of one of the periods in the 

above inequality, we obtain an upper bound for the other. 

and 

The problem is formulated as: 

2. 
Minimize #PE x ( 41 t 1< I + 51 ti I + load time + drain time } • 

subject to the equations of the systolic Theorem 

- ~ ...., 
( 1) tKx XG~ + Xs = tiC~' Yc& 

__., ~ -'t ( 2} tiM wd + Ws = tiCW yd 
...., _, ..... 

( 3) ti Xc.J + Xs = tc: Wd 
..., .... - ( 4} tt Yd + Ys = ti wd 

and a set of constraints (see corresponding part in the 

method} 

1/4 <= IWJ I <= 1 or IWd I = 0 

1/5 <= I~ I <= 1 or I~ I = 0 

1 <= ti( <= 5 1 <= It~ I <= 4 
--> 

_, -lws I "f 0 I Xs I f: 0 IYs I :(: 0 



I t,· I I~ I = k I <= 4 

tk = lt~~<l = lt~<:wl 

t\( 1 ~ 1 = k 2 <= s 

-'1 

It is not necessary to bound lxd I because Xd is 
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uniquely determined when tl(, t~· , ~ and ~ are set. At this 

point we feel it is proper to discuss two points. 

1) The procedure refers to " .• enumerating over the 

limited search space •. ". This means: examine all possible 

combinations of values of periods and vectors, and choose 

the ones that are minimal and lead to a feasible solution. 

(This way we obtain the complexity of the sea~ch space, as 

discussed previously in the thesis). So, it is valid not to 

-bound xd, since it is determined by the other values. 

2) The reader may have noticed the use of a linear 

array (which is of size m). This is not arbitrary: the 

reader is referred to that part of the method that discusses 

the #PEs. Although the case of one-dimensional problems was 

not discussed, it is easy to see that a lower bound for #PE, 

for a problem of size n is either n, or 1. The latter of 

course does not usuaily lead to any efficient solutions. 

If we assume that t~x = tKW = 1 and ti = -1 (y is 

evaluated in reverse order) and I~ I = 0, we obtain 

IY'J I = I y; I = 1 (see (4)) 

I~ I = I i; I = 1/2 (see ( 1)) 

and lw'7s I = 1 (see ( 2) and bounds on !Yeti>· 
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We note that this is a one-dimensional solution and so 

all the vectors are pointing in the same direction. 

Furthermore, the assumption IWd I = 0 simply means that the 

weights are statically placed in the cells; this is a 

natural assumption as the weights are predefined constants. 

The completion time of the algorithm is m + n - 1 = 9 time 

units. To see that this design is optimal, the performance 

measure #PE x T~ for the specific example is 4 x (9 x 9) = 

324. If the number of PEs is decreased to one (the other 

possibility), then T degrades to Tse~J = 24 and so the 

performance measure becomes #PE x T~ = 1 x (24 x 24) = 576. 

x - x' 

~' 
x':. x 

Figure 22. Systolic Array for Convolutions. 



The 

n: ~ 

J --> 

~ s . J --> . 

APPENDIX C 

DEPENDENCY METHOD GENERALIZATION 

mappings n, S can be defined in general as follows: 

n > k 
AK 
J 
A~ 
J • 

Thus the dimensionality of n, S is marked by an integer k. 

k is selected such that n alone establishes the ordering RT• 

So the role of n and S remains unchanged; only now the first 
A~ 

k coordinates of elements in J are related to time, while 

the last n-k coordinates can be related to the geometrical 

properties of the algorithm. 

In an analogous manner we have that the total number of 
n-~ 

processing cells is O(N }, (where N is the size of the 

problem; that is, each of the n indexes in an algorithm of n 

nested loops, ranges within O(N} values}. The running time 

in this case becomes O(NK}. Another observation is that 

keeping k as small as possible should be one goal in 

designing VLSI algorithms. This will increase the 

concurrency of operations at the expense of the number of 

processors. 
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