
Parallel & Cluster
Computing

Distributed Parallelism
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma

SC08 Education Program’s Workshop on Parallel & Cluster Computing
August 10-16 2008

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 2

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 3

Outline
n The Desert Islands Analogy
n Distributed Parallelism
n MPI

The Desert Islands
Analogy

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 5

An Island Hut
n Imagine you’re on an island in a little hut.
n Inside the hut is a desk.
n On the desk is:
n a phone;
n a pencil;
n a calculator;
n a piece of paper with numbers;
n a piece of paper with instructions.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 6

Instructions
n The instructions are split into two kinds:
n Arithmetic/Logical: e.g.,

n Add the 27th number to the 239th number
n Compare the 96th number to the 118th number to see

whether they are equal
n Communication: e.g.,

n dial 555-0127 and leave a voicemail containing the
962nd number

n call your voicemail box and collect a voicemail from
555-0063 and put that number in the 715th slot

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 7

Is There Anybody Out There?
n If you’re in a hut on an island, you aren’t specifically aware

of anyone else.
n Especially, you don’t know whether anyone else is working

on the same problem as you are, and you don’t know who’s at
the other end of the phone line.

n All you know is what to do with the voicemails you get, and
what phone numbers to send voicemails to.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 8

Someone Might Be Out There
n Now suppose that Horst is on another island somewhere, in

the same kind of hut, with the same kind of equipment.
n Suppose that he has the same list of instructions as you, but

a different set of numbers (both data and phone numbers).
n Like you, he doesn’t know whether there’s anyone else

working on his problem.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 9

Even More People Out There
n Now suppose that Bruce and Dee are also in huts on islands.
n Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.
n And suppose that the phone numbers that people call are each

others’. That is, your instructions have you call Horst, Bruce
and Dee, Horst’s has him call Bruce, Dee and you, and so on.

n Then you might all be working together on the same problem.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 10

All Data Are Private
n Notice that you can’t see Horst’s or Bruce’s or Dee’s

numbers, nor can they see yours or each other’s.
n Thus, everyone’s numbers are private: there’s no way for

anyone to share numbers, except by leaving them in
voicemails.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 11

Long Distance Calls: 2 Costs
n When you make a long distance phone call, you typically

have to pay two costs:
n Connection charge: the fixed cost of connecting your phone

to someone else’s, even if you’re only connected for a second
n Per-minute charge: the cost per minute of talking, once

you’re connected
n If the connection charge is large, then you want to make as

few calls as possible.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 12

Like Desert Islands
n Distributed parallelism is very much like the Desert Islands

analogy:
n Processors are independent of each other.
n All data are private.
n Processes communicate by passing messages (like

voicemails).
n The cost of passing a message is split into the latency

(connection time) and the bandwidth (time per byte).

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 13

Latency vs Bandwidth on topdawg
n In 2006, we benchmarked the Infiniband interconnect on

OU’s large Linux cluster (topdawg.oscer.ou.edu).
n Latency – the time for the first bit to show up at the

destination – is about 3 microseconds;
n Bandwidth – the speed of the subsequent bits – is about 5

Gigabits per second.
n Thus, on topdawg’s Infiniband:
n the 1st bit of a message shows up in 3 microsec;
n the 2nd bit shows up in 0.2 nanosec.
n So latency is 15,000 times worse than bandwidth!

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 14

Latency vs Bandwidth on topdawg
n In 2006, we benchmarked the Infiniband interconnect on

OU’s large Linux cluster (topdawg.oscer.ou.edu).
Latency – the time for the first bit to show up at the

destination – is about 3 microseconds;
Bandwidth – the speed of the subsequent bits – is about 5

Gigabits per second.
Latency is 15,000 times worse than bandwidth!
That’s like having a long distance service that charges
n $150 to make a call;
n 1¢ per minute – after the first 10 days of the call.

Distributed
Parallelism

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 16

Like Desert Islands
Distributed parallelism is very much like the Desert Islands

analogy:
n processes are independent of each other.
n All data are private.
n Processes communicate by passing messages (like

voicemails).
n The cost of passing a message is split into:

n latency (connection time)
n bandwidth (time per byte)

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 17

Parallelism

Less fish …

More fish!

Parallelism means doing
multiple things at the
same time: you can get
more work done in the
same amount of time.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 18

What Is Parallelism?
Parallelism is the use of multiple processing units – either

processors or parts of an individual processor – to solve a
problem, and in particular the use of multiple processing
units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on
different pieces of the problem’s data.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 19

Kinds of Parallelism
n Shared Memory Multithreading (our topic last time)
n Distributed Memory Multiprocessing (today)
n Hybrid Shared/Distributed

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 20

Why Parallelism Is Good
n The Trees: We like parallelism because, as the number of

processing units working on a problem grows, we can solve
the same problem in less time.

n The Forest: We like parallelism because, as the number of
processing units working on a problem grows, we can solve
bigger problems.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 21

Parallelism Jargon
n Threads: execution sequences that share a single memory

area (“address space”)
n Processes: execution sequences with their own independent,

private memory areas
… and thus:
n Multithreading: parallelism via multiple threads
n Multiprocessing: parallelism via multiple processes
As a general rule, Shared Memory Parallelism is concerned

with threads, and Distributed Parallelism is concerned
with processes.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 22

Jargon Alert
In principle:
n “shared memory parallelism” è “multithreading”
n “distributed parallelism” è “multiprocessing”
In practice, these terms are often used interchangeably:
n Parallelism
n Concurrency (not as popular these days)
n Multithreading
n Multiprocessing
Typically, you have to figure out what is meant based on the

context.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 23

Load Balancing
Suppose you have a distributed parallel code, but one process

does 90% of the work, and all the other processes share 10%
of the work.

Is it a big win to run on 1000 processes?

Now, suppose that each process gets exactly 1/Np of the work,
where Np is the number of processes.

Now is it a big win to run on 1000 processes?

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 24

Load Balancing

Load balancing means giving everyone roughly the
same amount of work to do.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 25

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per process.
Or load balancing can be very hard.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 26

Load Balancing Is Good
When every process gets the same amount of work, the job is

load balanced.
We like load balancing, because it means that our speedup can

potentially be linear: if we run on Np processes, it takes 1/Np
as much time as on one.

For some codes, figuring out how to balance the load is trivial
(e.g., breaking a big unchanging array into sub-arrays).

For others, load balancing is very tricky (e.g., a dynamically
evolving collection of arbitrarily many blocks of arbitrary
size).

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 27

Parallel Strategies
n Client-Server: One worker (the server) decides what tasks

the other workers (clients) will do; e.g., Hello World, Monte
Carlo.

n Data Parallelism: Each worker does exactly the same tasks
on its unique subset of the data; e.g., distributed meshes
(weather etc).

n Task Parallelism: Each worker does different tasks on
exactly the same set of data (each process holds exactly the
same data as the others); e.g., N-body.

n Pipeline: Each worker does its tasks, then passes its set of
data along to the next worker and receives the next set of
data from the previous worker.

MPI:
The Message-Passing

Interface

Most of this discussion is from [1] and [2].

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 29

What Is MPI?
The Message-Passing Interface (MPI) is a standard for

expressing distributed parallelism via message passing.
MPI consists of a header file, a library of routines and a

runtime environment.
When you compile a program that has MPI calls in it, your

compiler links to a local implementation of MPI, and then
you get parallelism; if the MPI library isn’t available, then the
compile will fail.

MPI can be used in Fortran, C and C++.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 30

MPI Calls
MPI calls in Fortran look like this:

CALL MPI_Funcname(…, errcode)
In C, MPI calls look like:

errcode = MPI_Funcname(…);
In C++, MPI calls look like:

errcode = MPI::Funcname(…);
Notice that errcode is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS indicating
that MPI_Funcname has worked correctly.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 31

MPI is an API
MPI is actually just an Application Programming Interface

(API).
An API specifies what a call to each routine should look like,

and how each routine should behave.
An API does not specify how each routine should be

implemented, and sometimes is intentionally vague about
certain aspects of a routine’s behavior.

Each platform has its own MPI implementation.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 32

Example MPI Routines
n MPI_Init starts up the MPI runtime environment at the

beginning of a run.
n MPI_Finalize shuts down the MPI runtime environment at

the end of a run.
n MPI_Comm_size gets the number of processes in a run, Np

(typically called just after MPI_Init).
n MPI_Comm_rank gets the process ID that the current process

uses, which is between 0 and Np-1 inclusive (typically called
just after MPI_Init).

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 33

More Example MPI Routines
n MPI_Send sends a message from the current process to some

other process (the destination).
n MPI_Recv receives a message on the current process from

some other process (the source).
n MPI_Bcast broadcasts a message from one process to all of

the others.
n MPI_Reduce performs a reduction (e.g., sum, maximum) of

a variable on all processes, sending the result to a single
process.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 34

MPI Program Structure (F90)
PROGRAM my_mpi_program
IMPLICIT NONE
INCLUDE "mpif.h"
[other includes]
INTEGER :: my_rank, num_procs, mpi_error_code
[other declarations]
CALL MPI_Init(mpi_error_code) !! Start up MPI
CALL MPI_Comm_Rank(my_rank, mpi_error_code)
CALL MPI_Comm_size(num_procs, mpi_error_code)
[actual work goes here]
CALL MPI_Finalize(mpi_error_code) !! Shut down MPI

END PROGRAM my_mpi_program

Note that MPI uses the term “rank” to indicate process identifier.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 35

MPI Program Structure (in C)
#include <stdio.h>
#include "mpi.h"
[other includes]

int main (int argc, char* argv[])
{ /* main */

int my_rank, num_procs, mpi_error;
[other declarations]
mpi_error = MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

[actual work goes here]
mpi_error = MPI_Finalize(); /* Shut down MPI */

} /* main */

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 36

MPI is SPMD
MPI uses kind of parallelism known as

Single Program, Multiple Data (SPMD).
This means that you have one MPI program – a single

executable – that is executed by all of the processes in an
MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have if statements:

if (my_rank == server_rank) {
…

}

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 37

Example: Hello World
1. Start the MPI system.
2. Get the rank and number of processes.
3. If you’re not the server process:

1. Create a “hello world” string.
2. Send it to the server process.

4. If you are the server process:
1. For each of the client processes:

1. Receive its “hello world” string.
2. Print its “hello world” string.

5. Shut down the MPI system.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 38

hello_world_mpi.c
#include <stdio.h>
#include <string.h>
#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */
const int maximum_message_length = 100;
const int server_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error; /* Error code for MPI calls */
[work goes here]

} /* main */

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 39

Hello World Startup/Shut Down
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error = MPI_Init(&argc, &argv);
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != server_rank) {

[work of each non-server (worker) process]
} /* if (my_rank != server_rank) */

else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 40

Hello World Client’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {

sprintf(message, "Greetings from process #%d!“,
my_rank);

destination = server_rank;
mpi_error =
MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 41

Hello World Server’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */
else {

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 42

How an MPI Run Works
n Every process gets a copy of the executable: Single

Program, Multiple Data (SPMD).
n They all start executing it.
n Each looks at its own rank to determine which part of the

problem to work on.
n Each process works completely independently of the other

processes, except when communicating.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 43

Compiling and Running
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi

Greetings from process #1!

% mpirun -np 3 hello_world_mpi

Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 hello_world_mpi

Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: The compile command and the run command vary from
platform to platform.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 44

Why is Rank #0 the server?
const int server_rank = 0;

By convention, the server process has rank (process ID) #0.
Why?

A run must use at least one process but can use multiple
processes.

Process ranks are 0 through Np-1, Np >1 .
Therefore, every MPI run has a process with rank #0.
Note: Every MPI run also has a process with rank Np-1, so you

could use Np-1 as the server instead of 0 … but no one does.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 45

Why “Rank?”
Why does MPI use the term rank to refer to process ID?
In general, a process has an identifier that is assigned by the

operating system (e.g., Unix), and that is unrelated to MPI:
% ps

PID TTY TIME CMD
52170812 ttyq57 0:01 tcsh

Also, each processor has an identifier, but an MPI run that
uses fewer than all processors will use an arbitrary subset.

The rank of an MPI process is neither of these.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 46

Compiling and Running
Recall:
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi
Greetings from process #1!

% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 47

Deterministic Operation?
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are printed is deterministic.
Why?

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =

MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

This loop ignores the receive order.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 48

Message = Envelope+Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents:

Size (number of elements of data type)
Data type
Source: rank of sending process
Destination: rank of process to receive
Tag (message ID)
Communicator (e.g., MPI_COMM_WORLD)

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 49

MPI Data Types
C Fortran 90

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE
PRECISION

MPI_DOUBLE_PRECISION

MPI supports several other data types, but most are
variations of these, and probably these are all you’ll
use.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 50

Message Tags
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are printed in deterministic order not because
messages are sent and received in order, but because each has
a tag (message identifier), and MPI_Recv asks for a specific
message (by tag) from a specific source (by rank).

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 51

Parallelism is Nondeterministic
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are printed in non-deterministic order.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 52

Communicators
An MPI communicator is a collection of processes that can

send messages to each other.
MPI_COMM_WORLD is the default communicator; it contains

all of the processes. It’s probably the only one you’ll need.
Some libraries create special library-only communicators,

which can simplify keeping track of message tags.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 53

Broadcasting
What happens if one process has data that everyone else needs

to know?
For example, what if the server process needs to send an input

value to the others?
MPI_Bcast(length, 1, MPI_INTEGER,

source, MPI_COMM_WORLD);
Note that MPI_Bcast doesn’t use a tag, and that the call is

the same for both the sender and all of the receivers.
All processes have to call MPI_Bcast at the same time;

everyone waits until everyone is done.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 54

Broadcast Example: Setup
PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, &
& mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, &
& mpi_error_code)
[input]
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 55

Broadcast Example: Input
PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code
[MPI startup]
IF (my_rank == server) THEN

OPEN (UNIT=99,FILE="broadcast_in.txt")
READ (99,*) length
CLOSE (UNIT=99)
ALLOCATE(array(length), STAT=memory_status)
array(1:length) = 0

END IF !! (my_rank == server)...ELSE
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 56

Broadcast Example: Broadcast
PROGRAM broadcast
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
[other declarations]
[MPI startup and input]
IF (num_procs > 1) THEN

CALL MPI_Bcast(length, 1, MPI_INTEGER, source, &
& MPI_COMM_WORLD, mpi_error_code)

IF (my_rank /= server) THEN
ALLOCATE(array(length), STAT=memory_status)

END IF !! (my_rank /= server)
CALL MPI_Bcast(array, length, MPI_INTEGER, source, &

MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": broadcast length = ", length

END IF !! (num_procs > 1)
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 57

Broadcast Compile & Run
% mpif90 -o broadcast broadcast.f90
% mpirun -np 4 broadcast
0 : broadcast length = 16777216
1 : broadcast length = 16777216
2 : broadcast length = 16777216
3 : broadcast length = 16777216

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 58

Reductions
A reduction converts an array to a scalar: for example,

sum, product, minimum value, maximum value, Boolean
AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two
routines to handle them:

MPI_Reduce: sends result to a single specified process
MPI_Allreduce: sends result to all processes (and therefore

takes longer)

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 59

Reduction Example
PROGRAM reduce
IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER :: value, value_sum
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank,
mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs,
mpi_error_code)
value_sum = 0
value = my_rank * num_procs
CALL MPI_Reduce(value, value_sum, 1, MPI_INT, MPI_SUM, &
& server, MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": reduce value_sum = ", value_sum
CALL MPI_Allreduce(value, value_sum, 1, MPI_INT, MPI_SUM, &
& MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": allreduce value_sum = ", value_sum
CALL MPI_Finalize(mpi_error_code)

END PROGRAM reduce

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 60

Compiling and Running
% mpif90 -o reduce reduce.f90
% mpirun -np 4 reduce
3 : reduce value_sum = 0
1 : reduce value_sum = 0
2 : reduce value_sum = 0
0 : reduce value_sum = 24
0 : allreduce value_sum = 24
1 : allreduce value_sum = 24
2 : allreduce value_sum = 24
3 : allreduce value_sum = 24

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 61

Why Two Reduction Routines?
MPI has two reduction routines because of the high cost of

each communication.
If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.
But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and
then broadcast to all.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 62

Non-blocking Communication
MPI allows a process to start a send, then go on and do work

while the message is in transit.
This is called non-blocking or immediate communication.
Here, “immediate” refers to the fact that the call to the MPI

routine returns immediately rather than waiting for the
communication to complete.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 63

Immediate Send
mpi_error_code =

MPI_Isend(array, size, MPI_FLOAT,
destination, tag, communicator, request);

Likewise:
mpi_error_code =

MPI_Irecv(array, size, MPI_FLOAT,
source, tag, communicator, request);

This call starts the send/receive, but the send/receive
won’t be complete until:

MPI_Wait(request, status);

What’s the advantage of this?

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 64

Communication Hiding
In between the call to MPI_Isend/Irecv and the call to
MPI_Wait, both processes can do work!

If that work takes at least as much time as the communication,
then the cost of the communication is effectively zero, since
the communication won’t affect how much work gets done.

This is called communication hiding.

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 65

Rule of Thumb for Hiding
When you want to hide communication:
n as soon as you calculate the data, send it;
n don’t receive it until you need it.
That way, the communication has the maximal amount of time

to happen in background (behind the scenes).

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 66

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 67

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

SC08 Parallel & Cluster Computing: Distributed Parallelism
University of Oklahoma, August 10-16 2008 69

References

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT
Press, 1999.

