
Parallel & Cluster
Computing
Multicore Madness

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma
SC08 Education Program’s Workshop on Parallel & Cluster Computing

August 10-16 2008

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 2

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 3

Outline
n The March of Progress
n Multicore/Many-core Basics
n Software Strategies for Multicore/Many-core
n A Concrete Example: Weather Forecasting

The March of Progress

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 5

10 racks @ 1000 lbs per rack
270 Pentium4 Xeon CPUs,

2.0 GHz, 512 KB L2 cache
270 GB RAM, 400 MHz FSB
8 TB disk
Myrinet2000 Interconnect
100 Mbps Ethernet Interconnect
OS: Red Hat Linux
Peak speed: 1.08 TFLOP/s
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.edu

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 6

TeraFLOP, Prototype 2006, Sale 2011

http://news.com.com/2300-1006_3-6119652.html

9 years from room to chip!

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 7

Moore’s Law
In 1965, Gordon Moore was an engineer at Fairchild

Semiconductor.
He noticed that the number of transistors that could be

squeezed onto a chip was doubling about every 18 months.
It turns out that computer speed is roughly proportional to the

number of transistors per unit area.
Moore wrote a paper about this concept, which became known

as “Moore’s Law.”

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 8

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 9

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 10

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 11

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 12

Moore’s Law in Practice

Year

lo
g(

Sp
ee

d)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 13

Fastest Supercomputer vs. Moore
Fastest Supercomputer in the World

1

10

100

1000

10000

100000

1000000

10000000

1992 1997 2002 2007

Year

Sp
ee

d
in

 G
FL

O
Ps

Fastest
Moore

GFLOPs:
billions of

calculations per
second

The Tyranny of
the Storage Hierarchy

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 15

Henry’s Laptop

n Pentium 4 Core Duo T2400 1.83
GHz w/2 MB L2 Cache

n 2 GB (2048 MB) 667
MHz DDR2 SDRAM

n 100 GB 7200 RPM SATA Hard Drive
n DVD+RW/CD-RW Drive (8x)
n 1 Gbps Ethernet Adapter
n 56 Kbps Phone Modem

Dell Latitude D620[4]

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 16

The Storage Hierarchy

n Registers
n Cache memory
n Main memory (RAM)
n Hard disk
n Removable media (e.g., DVD)
n Internet

Fast, expensive, few

Slow, cheap, a lot

[5]

[6]

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 17

RAM is Slow
CPU 351 GB/sec[7]

10.66 GB/sec[9] (3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 18

Why Have Cache?
CPUCache is nearly the same speed

as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

351 GB/sec[7]

10.66 GB/sec[9] (3%)

253 GB/sec[8] (72%)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 19

Henry’s Laptop, Again

n Pentium 4 Core Duo T2400 1.83
GHz w/2 MB L2 Cache

n 2 GB (2048 MB) 667
MHz DDR2 SDRAM

n 100 GB 7200 RPM SATA Hard Drive
n DVD+RW/CD-RW Drive (8x)
n 1 Gbps Ethernet Adapter
n 56 Kbps Phone Modem

Dell Latitude D620[4]

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 20

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Pentium 4
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz
DDR2

SDRAM)

Hard
Drive
(SATA
7200
RPM)

Ethernet
(1000
Mbps)

DVD+RW
(8x)

Phone
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

359,792[7]

(14,640
MFLOP/s*)

259,072
[8]

10,928
[9]

100
[10]

125 10.8
[11]

0.007

Size
(MB)

304 bytes**
[12]

2 2048 100,000 unlimited unlimited unlimited

Cost
($/MB) –

$46 [13] $0.14
[13]

$0.0001
[13]

charged
per month
(typically)

$0.00004
[13]

charged
per month
(typically)

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 21

Storage Use Strategies
n Register reuse: Do a lot of work on the same data before

working on new data.
n Cache reuse: The program is much more efficient if all of

the data and instructions fit in cache; if not, try to use
what’s in cache a lot before using anything that isn’t in
cache.

n Data locality: Try to access data that are near each other
in memory before data that are far.

n I/O efficiency: Do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 22

A Concrete Example
n OSCER’s big cluster, topdawg, has Irwindale CPUs: single

core, 3.2 GHz, 800 MHz Front Side Bus.
n The theoretical peak CPU speed is 6.4 GFLOPs (double

precision) per CPU, and in practice we’ve gotten as high as
94% of that.

n So, in theory each CPU could consume 143 GB/sec.
n The theoretical peak RAM bandwidth is 6.4 GB/sec, but in

practice we get about half that.
n So, any code that does less than 45 calculations per byte

transferred between RAM and cache has speed limited by
RAM bandwidth.

Good Cache Reuse
Example

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 24

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

!
"#"""

!
!
!

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

!
"#"""

!
!
!

B

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

!
"#"""

!
!
!

C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, !

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 25

Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_naive

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 26

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Init

Better

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 27

Tiling

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 28

Tiling
n Tile: A small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.
n Tiling: Breaking the domain into tiles.
n Tiling strategy: Operate on each tile to completion, then

move to the next tile.
n Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 29

Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize
qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_by_tiling

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 30

Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_tile

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 31

Reminder: Naïve Version, Again
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_naive

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 32

Performance with Tiling
Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 33

The Advantages of Tiling
n It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!
n It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).
n If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 34

Why Does Tiling Work Here?
Cache optimization works best when the number of

calculations per byte is large.
For example, with matrix-matrix multiply on an n × n matrix,

there are O(n3) calculations (on the order of n3), but only
O(n2) bytes of data.

So, for large n, there are a huge number of calculations per
byte transferred between RAM and cache.

Multicore/Many-core
Basics

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 36

What is Multicore?
n In the olden days (i.e., the first half of 2005), each CPU chip

had one “brain” in it.
n More recently, each CPU chip has 2 cores (brains), and,

starting in late 2006, 4 cores.
n Jargon: Each CPU chip plugs into a socket, so these days,

to avoid confusion, people refer to sockets and cores, rather
than CPUs or processors.

n Each core is just like a full blown CPU, except that it shares
its socket with one or more other cores – and therefore
shares its bandwidth to RAM.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 37

Dual Core
Core Core

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 38

Quad Core
Core Core
Core Core

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 39

Oct Core
Core Core Core Core
Core Core Core Core

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 40

The Challenge of Multicore: RAM
n Each socket has access to a certain amount of RAM, at a

fixed RAM bandwidth per SOCKET.
n As the number of cores per socket increases, the contention

for RAM bandwidth increases too.
n At 2 cores in a socket, this problem isn’t too bad. But at 16

or 32 or 80 cores, it’s a huge problem.
n So, applications that are cache optimized will get big

speedups.
n But, applications whose performance is limited by RAM

bandwidth are going to speed up only as fast as RAM
bandwidth speeds up.

n RAM bandwidth speeds up much slower than CPU speeds
up.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 41

The Challenge of Multicore: Network
n Each node has access to a certain number of network ports,

at a fixed number of network ports per NODE.
n As the number of cores per node increases, the contention

for network ports increases too.
n At 2 cores in a socket, this problem isn’t too bad. But at 16

or 32 or 80 cores, it’s a huge problem.
n So, applications that do minimal communication will get

big speedups.
n But, applications whose performance is limited by the

number of MPI messages are going to speed up very very
little – and may even crash the node.

A Concrete Example:
Weather Forecasting

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 43

Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 44

Weather Forecasting
n Weather forecasting is one of many transport problems.
n The goal is to predict future weather conditions by

simulating the movement of fluids in Earth’s atmosphere.
n The physics is the Navier-Stokes Equations.
n The numerical method is Finite Difference.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 45

Cartesian Mesh

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 46

Finite Difference
unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),
uold(i-1,j,k), uold(i+1,j,k),
uold(i,j-1,k), uold(i,j+1,k),
uold(i,j,k-1), uold(i,j,k+1), Δt)

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 47

Ghost Boundary Zones

Software Strategies
for Weather Forecasting
on Multicore/Many-core

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 49

Tiling NOT Good for Weather Codes
n Weather codes typically have on the order of 150 3D arrays

used in each timestep (some transferred multiple times in the
same timestep, but let’s ignore that for simplicity).

n These arrays typically are single precision (4 bytes per
floating point value).

n Thus, a typical weather code uses about 600 bytes per mesh
zone per timestep.

n Weather codes typically do 5,000 to 10,000 calculations per
mesh zone per timestep.

n So, the ratio of calculations to data is less than 20 to 1 –
much less than the 45 to 1 needed (on mid-2005 hardware).

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 50

Weather Forecasting and Cache
n On current weather codes, data decomposition is by process.

That is, each process gets one subdomain.
n As CPUs speed up and RAM sizes grow, the size of each

processor’s subdomain grows too.
n However, given RAM bandwidth limitations, this means

that performance can only grow with RAM speed – which
increases slower than CPU speed.

n If the codes were optimized for cache, would they speed up
more?

n First: How to optimize for cache?

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 51

How to Get Good Cache Reuse?
1. Multiple independent subdomains per processor.
2. Each subdomain fits entirely in L2 cache.
3. Each subdomain’s page table entries fit entirely in the

TLB.
4. Expanded ghost zone stencil allows multiple timesteps

before communicating with neighboring subdomains.
5. Parallelize along the Z-axis as well as X and Y.
6. Use higher order numerical schemes.
7. Reduce the memory footprint as much as possible.
Coincidentally, this also reduces communication cost.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 52

Cache Optimization Strategy: Tiling?
Would tiling work as a cache optimization strategy for weather

forecasting codes?

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 53

Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 54

Why Multiple Subdomains?
n If each subdomain fits in cache, then the CPU can bring all

the data of a subdomain into cache, chew on it for a while,
then move on to the next subdomain: lots of cache reuse!

n Oh, wait, what about the TLB? Better make the subdomains
smaller! (So more of them.)

n But, doesn’t tiling have the same effect?

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 55

Why Independent Subdomains?
n Originally, the point of this strategy was to hide the cost of

communication.
n When you finish chewing up a subdomain, send its data to

its neighbors non-blocking (MPI_Isend).
n While the subdomain’s data is flying through the

interconnect, work on other subdomains, which hides the
communication cost.

n When it’s time to work on this subdomain again, collect its
data (MPI_Waitall).

n If you’ve done enough work, then the communication cost
is zero.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 56

Expand the Array Stencil
n If you expand the array stencil of each subdomain beyond

the numerical stencil, then you don’t have to communicate
as often.

n When you communicate, instead of sending a slice along
each face, send a slab, with extra stencil levels.

n In the first timestep after communicating, do extra
calculations out to just inside the numerical stencil.

n In subsequent timesteps, calculate fewer and fewer stencil
levels, until it’s time to communicate again – less total
communication, and more calculations to hide the
communication cost underneath!

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 57

An Extra Win!
n If you do all this, there’s an amazing side effect: you get

better cache reuse, because you stick with the same
subdomain for a longer period of time.

n So, instead of doing, say, 5000 calculations per zone per
timestep, you can do 15000 or 20000.

n So, you can better amortize the cost of transferring the data
between RAM and cache.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 58

New Algorithm
DO timestep = 1, number_of_timesteps, extra_stencil_levels

DO subdomain = 1, number_of_local_subdomains
CALL receive_messages_nonblocking(subdomain,

timestep)
DO extra_stencil_level=0, extra_stencil_levels - 1

CALL calculate_entire_timestep(subdomain,
timestep + extra_stencil_level)

END DO
CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)
END DO

END DO

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 59

Higher Order Numerical Schemes
n Higher order numerical schemes are great, because they

require more calculations per zone per timestep, which you
need to amortize the cost of transferring data between RAM
and cache. Might as well!

n Plus, they allow you to use a larger time interval per
timestep (dt), so you can do fewer total timesteps for the
same accuracy – or you can get higher accuracy for the
same number of timesteps.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 60

Parallelize in Z
n Most weather forecast codes parallelize in X and Y, but not

in Z, because gravity makes the calculations along Z more
complicated than X and Y.

n But, that means that each subdomain has a high number of
zones in Z, compared to X and Y.

n For example, a 1 km CONUS run will probably have 100
zones in Z (25 km at 0.25 km resolution).

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 61

Multicore/Many-core Problem
n Most multicore chip families have relatively small cache per

core (e.g., 2 MB) – and this problem seems likely to remain.
n Small TLBs make the problem worse: 512 KB per core

rather than 2 MB.
n So, to get good cache reuse, you need subdomains of no

more than 512 KB.
n If you have 150 3D variables at single precision, and 100

zones in Z, then your horizontal size will be 3 x 3 zones –
just enough for your stencil!

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 62

What Do We Need?
n We need much bigger caches!

n 16 MB cache è 16 x 16 horizontal including stencil
n 32 MB cache è 23 x 23 horizontal including stencil

n TLB must be big enough to cover the entire cache.
n It’d be nice to have RAM speed increase as fast as core

counts increase, but let’s not kid ourselves.

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 63

Okla. Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &

Engineering
Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2008.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Tue Oct 7 2008 @ OU
Over 250 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

FREE! Parallel Computing Workshop
Mon Oct 6 @ OU sponsored by SC08
FREE! Symposium Tue Oct 7 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Sc08 Parallel & Cluster Computing: Multicore Madness
University of Oklahoma, August 10-16 2008 64

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

