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The March of Progress
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10 racks @ 1000 lbs per rack
270 Pentium4 Xeon CPUs,                

2.0 GHz, 512 KB L2 cache
270 GB RAM, 400 MHz FSB
8 TB disk
Myrinet2000 Interconnect
100 Mbps Ethernet Interconnect
OS: Red Hat Linux
Peak speed: 1.08 TFLOP/s
(1.08 trillion calculations per second)

One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.edu
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TeraFLOP, Prototype 2006, Sale 2011

http://news.com.com/2300-1006_3-6119652.html

9 years from room to chip!
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Moore’s Law
In 1965, Gordon Moore was an engineer at Fairchild 

Semiconductor.
He noticed that the number of transistors that could be 

squeezed onto a chip was doubling about every 18 months.
It turns out that computer speed is roughly proportional to the 

number of transistors per unit area.
Moore wrote a paper about this concept, which became known 

as “Moore’s Law.”
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Fastest Supercomputer vs. Moore
Fastest Supercomputer in the World
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The Tyranny of
the Storage Hierarchy
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Henry’s Laptop

n Pentium 4 Core Duo T2400             1.83 
GHz w/2 MB L2 Cache

n 2 GB (2048 MB)                               667 
MHz DDR2 SDRAM

n 100 GB 7200 RPM SATA Hard Drive
n DVD+RW/CD-RW Drive (8x)
n 1 Gbps Ethernet Adapter
n 56 Kbps Phone Modem

Dell Latitude D620[4]
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The Storage Hierarchy

n Registers
n Cache memory
n Main memory (RAM)
n Hard disk
n Removable media (e.g., DVD)
n Internet

Fast, expensive, few

Slow, cheap, a lot

[5]

[6]
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RAM is Slow
CPU 351 GB/sec[7]

10.66 GB/sec[9] (3%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.
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Why Have Cache?
CPUCache is nearly the same speed

as the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second!

351 GB/sec[7]

10.66 GB/sec[9] (3%)

253 GB/sec[8] (72%)
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Henry’s Laptop, Again

n Pentium 4 Core Duo T2400             1.83 
GHz w/2 MB L2 Cache

n 2 GB (2048 MB)                               667 
MHz DDR2 SDRAM

n 100 GB 7200 RPM SATA Hard Drive
n DVD+RW/CD-RW Drive (8x)
n 1 Gbps Ethernet Adapter
n 56 Kbps Phone Modem

Dell Latitude D620[4]
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Storage Speed, Size, Cost

Henry’s 
Laptop

Registers
(Pentium 4 
Core Duo
1.83 GHz)

Cache
Memory

(L2)

Main
Memory

(667 MHz 
DDR2 

SDRAM)

Hard 
Drive
(SATA 
7200 
RPM)

Ethernet
(1000 
Mbps)

DVD+RW
(8x)

Phone 
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

359,792[7]

(14,640 
MFLOP/s*)

259,072 
[8]

10,928       
[9]

100      
[10]

125 10.8             
[11]

0.007

Size
(MB)

304 bytes**
[12]

2 2048 100,000 unlimited unlimited unlimited

Cost
($/MB) –

$46 [13] $0.14     
[13]

$0.0001 
[13]

charged
per month
(typically)

$0.00004 
[13]

charged 
per month 
(typically)

*   MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers
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Storage Use Strategies
n Register reuse: Do a lot of work on the same data before 

working on new data.
n Cache reuse: The program is much more efficient if all of 

the data and instructions fit in cache; if not, try to use 
what’s in cache a lot before using anything that isn’t in 
cache.

n Data locality: Try to access data that are near each other 
in memory before data that are far.

n I/O efficiency: Do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O.
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A Concrete Example
n OSCER’s big cluster, topdawg, has Irwindale CPUs: single 

core, 3.2 GHz, 800 MHz Front Side Bus.
n The theoretical peak CPU speed is 6.4 GFLOPs (double 

precision) per CPU, and in practice we’ve gotten as high as 
94% of that.

n So, in theory each CPU could consume 143 GB/sec.
n The theoretical peak RAM bandwidth is 6.4 GB/sec, but in 

practice we get about half that.
n So, any code that does less than 45 calculations per byte

transferred between RAM and cache has speed limited by 
RAM bandwidth.



Good Cache Reuse 
Example
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A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:
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The definition of A = B • C  is

for r ∈ {1, nr}, c ∈ {1, nc}.
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Matrix Multiply: Naïve Version
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
&                                   nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_naive
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Performance of Matrix Multiply
Matrix-Matrix Multiply
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Tiling
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Tiling
n Tile: A small rectangular subdomain of a problem domain.  

Sometimes called a block or a chunk.
n Tiling: Breaking the domain into tiles.
n Tiling strategy: Operate on each tile to completion, then 

move to the next tile.
n Tile size can be set at runtime, according to what’s best for 

the machine that you’re running on.
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Tiling Code
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
&           rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize
qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

&                                   rstart, rend, cstart, cend, qstart, qend)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_by_tiling
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Multiplying Within a Tile
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
&             rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_tile
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Reminder: Naïve Version, Again
SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &
&                                   nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq

dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)
END DO

END DO
END DO

END SUBROUTINE matrix_matrix_mult_naive
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Performance with Tiling
Matrix-Matrix Mutiply Via Tiling (log-log)
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The Advantages of Tiling
n It allows your code to exploit data locality better, to get 

much more cache reuse: your code runs faster!
n It’s a relatively modest amount of extra coding (typically a 

few wrapper functions and some changes to loop bounds).
n If you don’t need tiling – because of the hardware, the 

compiler or the problem size – then you can  turn it off by 
simply setting the tile size equal to the problem size.
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Why Does Tiling Work Here?
Cache optimization works best when the number of 

calculations per byte is large.
For example, with matrix-matrix multiply on an n × n matrix, 

there are O(n3) calculations (on the order of n3), but only 
O(n2) bytes of data.

So, for large n, there are a huge number of calculations per 
byte transferred between RAM and cache.



Multicore/Many-core 
Basics
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What is Multicore?
n In the olden days (i.e., the first half of 2005), each CPU chip 

had one “brain” in it.
n More recently, each CPU chip has 2 cores (brains), and, 

starting in late 2006, 4 cores.
n Jargon: Each CPU chip plugs into a socket, so these days, 

to avoid confusion, people refer to sockets and cores, rather 
than CPUs or processors.

n Each core is just like a full blown CPU, except that it shares 
its socket with one or more other cores – and therefore 
shares its bandwidth to RAM.
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Dual Core
Core Core
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Quad Core
Core   Core
Core   Core
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Oct Core
Core   Core   Core   Core
Core   Core   Core   Core
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The Challenge of Multicore: RAM
n Each socket has access to a certain amount of RAM, at a 

fixed RAM bandwidth per SOCKET.
n As the number of cores per socket increases, the contention 

for RAM bandwidth increases too.
n At 2 cores in a socket, this problem isn’t too bad. But at 16 

or 32 or 80 cores, it’s a huge problem.
n So, applications that are cache optimized will get big 

speedups.
n But, applications whose performance is limited by RAM 

bandwidth are going to speed up only as fast as RAM 
bandwidth speeds up.

n RAM bandwidth speeds up much slower than CPU speeds 
up.
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The Challenge of Multicore: Network
n Each node has access to a certain number of network ports, 

at a fixed number of network ports per NODE.
n As the number of cores per node increases, the contention 

for network ports increases too.
n At 2 cores in a socket, this problem isn’t too bad. But at 16 

or 32 or 80 cores, it’s a huge problem.
n So, applications that do minimal communication will get 

big speedups.
n But, applications whose performance is limited by the 

number of MPI messages are going to speed up very very 
little – and may even crash the node.



A Concrete Example:
Weather Forecasting
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Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/
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Weather Forecasting
n Weather forecasting is one of many transport problems.
n The goal is to predict future weather conditions by 

simulating the movement of fluids in Earth’s atmosphere.
n The physics is the Navier-Stokes Equations.
n The numerical method is Finite Difference.
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Cartesian Mesh
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Finite Difference
unew(i,j,k) = F(uold, i, j, k, Δt) =

F(uold(i,j,k),
uold(i-1,j,k), uold(i+1,j,k),
uold(i,j-1,k), uold(i,j+1,k),
uold(i,j,k-1), uold(i,j,k+1), Δt)
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Ghost Boundary Zones



Software Strategies
for Weather Forecasting
on Multicore/Many-core
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Tiling NOT Good for Weather Codes
n Weather codes typically have on the order of 150 3D arrays 

used in each timestep (some transferred multiple times in the 
same timestep, but let’s ignore that for simplicity).

n These arrays typically are single precision (4 bytes per 
floating point value).

n Thus, a typical weather code uses about 600 bytes per mesh 
zone per timestep.

n Weather codes typically do 5,000 to 10,000 calculations per 
mesh zone per timestep.

n So, the ratio of calculations to data is less than 20 to 1 –
much less than the 45 to 1 needed (on  mid-2005 hardware).
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Weather Forecasting and Cache
n On current weather codes, data decomposition is by process. 

That is, each process gets one subdomain.
n As CPUs speed up and RAM sizes grow, the size of each 

processor’s subdomain grows too.
n However, given RAM bandwidth limitations, this means 

that performance can only grow with RAM speed – which 
increases slower than CPU speed.

n If the codes were optimized for cache, would they speed up 
more?

n First: How to optimize for cache?
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How to Get Good Cache Reuse?
1. Multiple independent subdomains per processor.
2. Each subdomain fits entirely in L2 cache.
3. Each subdomain’s page table entries fit entirely in the 

TLB.
4. Expanded ghost zone stencil allows multiple timesteps 

before communicating with neighboring subdomains.
5. Parallelize along the Z-axis as well as X and Y.
6. Use higher order numerical schemes.
7. Reduce the memory footprint as much as possible.
Coincidentally, this also reduces communication cost.
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Cache Optimization Strategy: Tiling?
Would tiling work as a cache optimization strategy for weather 

forecasting codes?
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Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3
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Why Multiple Subdomains?
n If each subdomain fits in cache, then the CPU can bring all 

the data of a subdomain into cache, chew on it for a while, 
then move on to the next subdomain: lots of cache reuse!

n Oh, wait, what about the TLB? Better make the subdomains 
smaller! (So more of them.)

n But, doesn’t tiling have the same effect?
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Why Independent Subdomains?
n Originally, the point of this strategy was to hide the cost of 

communication.
n When you finish chewing up a subdomain, send its data to 

its neighbors non-blocking (MPI_Isend).
n While the subdomain’s data is flying through the 

interconnect, work on other subdomains, which hides the 
communication cost.

n When it’s time to work on this subdomain again, collect its 
data (MPI_Waitall).

n If you’ve done enough work, then the communication cost 
is zero.
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Expand the Array Stencil
n If you expand the array stencil of each subdomain beyond 

the numerical stencil, then you don’t have to communicate 
as often.

n When you communicate, instead of sending a slice along 
each face, send a slab, with extra stencil levels.

n In the first timestep after communicating, do extra 
calculations out to just inside the numerical stencil.

n In subsequent timesteps, calculate fewer and fewer stencil 
levels, until it’s time to communicate again – less total 
communication, and more calculations to hide the 
communication cost underneath!
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An Extra Win!
n If you do all this, there’s an amazing side effect: you get 

better cache reuse, because you stick with the same 
subdomain for a longer period of time.

n So, instead of doing, say, 5000 calculations per zone per 
timestep, you can do 15000 or 20000.

n So, you can better amortize the cost of transferring the data 
between RAM and cache.
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New Algorithm
DO timestep = 1, number_of_timesteps, extra_stencil_levels

DO subdomain = 1, number_of_local_subdomains
CALL receive_messages_nonblocking(subdomain,

timestep)
DO extra_stencil_level=0, extra_stencil_levels - 1

CALL calculate_entire_timestep(subdomain,
timestep + extra_stencil_level)

END DO
CALL send_messages_nonblocking(subdomain,

timestep + extra_stencil_levels)
END DO

END DO
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Higher Order Numerical Schemes
n Higher order numerical schemes are great, because they 

require more calculations per zone per timestep, which you 
need to amortize the cost of transferring data between RAM 
and cache. Might as well!

n Plus, they allow you to use a larger time interval per 
timestep (dt), so you can do fewer total timesteps for the 
same accuracy – or you can get higher accuracy for the 
same number of timesteps.
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Parallelize in Z
n Most weather forecast codes parallelize in X and Y, but not 

in Z, because gravity makes the calculations along Z more 
complicated than X and Y.

n But, that means that each subdomain has a high number of 
zones in Z, compared to X and Y.

n For example, a 1 km CONUS run will probably have 100 
zones in Z (25 km at 0.25 km resolution).
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Multicore/Many-core Problem
n Most multicore chip families have relatively small cache per 

core (e.g., 2 MB) – and this problem seems likely to remain.
n Small TLBs make the problem worse: 512 KB per core 

rather than 2 MB.
n So, to get good cache reuse, you need subdomains of no 

more than 512 KB.
n If you have 150 3D variables at single precision, and 100 

zones in Z, then your horizontal size will be 3 x 3 zones –
just enough for your stencil!
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What Do We Need?
n We need much bigger caches!

n 16 MB cache è 16 x 16 horizontal including stencil
n 32 MB cache è 23 x 23 horizontal including stencil

n TLB must be big enough to cover the entire cache.
n It’d be nice to have RAM speed increase as fast as core 

counts increase, but let’s not kid ourselves.
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attention!
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