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Abstract 

Traumatic events such as accidents or vascular and circulatory disorders often lead to 

amputation of the lower limb below the knee joint. The surgery is followed by fitting of 

a prosthetic device and rehabilitation process to help the individual recover mobility. 

The recovered gait of the individual depends to a large extent on his/her health, the 

amputation technique, and the functional level of the prosthesis. Prior research in 

amputee gait has focused mostly on assessing gait symmetry, movement of the healthy 

joints, activities of the unaffected muscles, and the metabolic energy consumption in 

individuals who had undergone traditional amputation. Very little research has been 

carried out on the performance of individuals with non-traditional amputation 

procedures designed to maximize the ability of the residual limb to support body weight 

at the extremity and to maintain the ability of the affected muscles. Moreover, majority 

of the studies were limited to gait tests in laboratory environments which restricted the 

mobility of the individuals. 

Current ankle/foot prostheses for people with below-knee amputation are primarily 

passive devices whose performance cannot be adapted or optimized to meet the 

requirements of different users. The adverse consequences of wearing poorly 

functioning prosthetic feet include asymmetric gait, increased metabolic consumption, 

limited blood flow, instability, and pain. Over the long term, the amputees, especially 

ones with diabetes, might have to undergo hip replacement procedure and use wheel-

chair on a daily basis. 

There exists a high and increasing demand for an advanced prosthetic foot that is 

comfortable and able to replicate the function of the biological foot. Some of the factors 
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hindering the development and performance validation of such an actively controlled 

foot are the lack of complete understanding of the gait, the interaction between the 

residual limb and the controller, presence of human in the control loop, unknown 

interaction between the terrain and the foot, and stringent requirements on the 

mechanical power and rigidity of the foot. 

This dissertation aims to address these shortcomings in a systematic fashion in order to 

develop an intelligent ankle/foot prosthesis system. The following are the key steps in 

the process adopted in this dissertation. 

• First, a gait monitoring device and algorithms for gait analysis will be developed 

to study the gait of people with below-knee amputation in real time during 

work-related activities. Experimental protocols are then designed to collect gait 

data from individuals with below-knee amputation in order to understand the 

activity of the residual muscles and the ability of the prosthetic device to support 

body weight during gait.  

• The dependence of the interfacial socket forces and electromyography signals 

from the muscles in the residual limb on the type of the gait and gait-related 

events will then be studied. The use of this dependence to recognize user gait 

and the corresponding ankle displacement pattern for the controlled prosthetic 

foot will be investigated.  

• Finally, hierarchical learning-based control strategies will be developed to 

adaptively compensate for the unknown, changing ankle dynamics and drive the 

prosthetic ankle joint along the desired trajectories. It is anticipated that the 

learning capabilities of these control strategies will enable the prosthetic ankle 
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joint to not only replicate the movement of the healthy ankle, but also improve 

the stability of the gait and optimize the performance. 

The above approaches are demonstrated in this dissertation in two parts. The analysis of 

the gait of a group of otherwise healthy men with non-traditional amputation technique 

called transtibial osteomyoplastic amputation (TOA) is considered in the first part of the 

dissertation. The TOA procedure is prescribed for healthy, young individuals who 

desire a very active lifestyle. TOA offers stable bony residuum capable of bearing the 

weight of the individual and residual muscles that are active throughout the gait cycle. 

The gait study carried out in this dissertation is shown to confirm loading at the distal 

end-bearing area of the residual limb and active contraction of the residual muscles 

below the knee during gait of all participants. The interfacial forces in the socket and 

the activity of the residual muscles in subjects with TOA are shown to be related to and 

dependent on the type of gait, as well as the type of prosthetic feet used. In addition, the 

potential of residuum socket interface forces in recognition of the gait is also 

demonstrated. 

Learning-based control of the prosthetic ankle joint is addressed in the second part of 

the dissertation. Two hierarchical learning-based control algorithms that take into 

account the ankle dynamics, foot-ground interaction, and the movement of upper body 

are considered. The first strategy uses an artificial neural network-based feedback 

linearization controller to learn the unknown and changing dynamics of the ankle joint 

and to track a desired ankle displacement profile. In the second strategy, a neural 

dynamic programming-based controller that can track an ankle displacement profile 

while optimizing a cost function based on the tracking error is considered. Actual gait 
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data obtained from the subjects in the first part of this dissertation is used to study the 

effectiveness of the control strategy. For the first time, an adaptive controller has been 

demonstrated that can address changes in terrain and in user requirements to provide 

consistent and stable functioning of the prosthetic ankle. It is anticipated that the 

strategy developed in this dissertation will help build an intelligent prosthetic foot that 

can significantly improve the mobility and long-term health of people with amputation 

of the lower limb. 
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Chapter 1: Introduction 

1.1 Motivation 

Impaired mobility has far-reaching consequences on the health and economic well-

being of an individual and the society. In 2008, 1.6 million Americans, or roughly 1 in 

190 persons, were living with a loss of a limb [1]. Amongst them, 62% had undergone 

an amputation of the lower extremity. It is anticipated that the number of people living 

with limb loss would increase to 3.6 million by the year 2050, with over 1.4 million of 

them being under 65 years of age.   

Amputation of a limb below the knee is prescribed for people who have undergone 

extreme trauma or those suffering from vascular or circulatory disorders. These 

individuals are then fitted with a prosthetic device designed to comfortably fit their 

residual limb and restore a minimum level of comfort and mobility. It comprised of a 

socket that is designed to fit the residual limb, a shank that connects the socket to the 

foot, and a flat foot typically with fixed ankle capable of flexing and supporting body 

weight during gait. Below-knee prosthetic feet are divided into three categories: 

conventional feet that merely support body weight and basic walking tasks; energy 

storage and return feet that release stored energy to facilitate forward motion during 

walking; and powered, controlled prosthetic feet (bionic feet) whose primary goal is to 

replicate the biomechanics of the healthy limb. 

Gait of below knee amputees has been studied in the literature primarily with a goal of 

understanding the effect of amputation on the mobility of the individual. Temporal-

spatial gait parameters (e.g., stance time, gait time, step length, stride length), kinematic 

measurements (e.g., angular joint trajectories, angular joint velocities) kinetic 
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measurements (e.g., joint forces, reaction forces), muscular measurements (e.g., muscle 

contraction, muscle force) and energy expenditure (e.g., oxygen consumption, heart 

rate) were usually recorded in a laboratory setting from subjects during gait. These 

methods mainly focused on assessing the asymmetry between the intact side and the 

amputated side, movement of the residual limb and muscle activity during gait. Some 

researchers also investigated the ability of amputees to adapt to varying terrain and gait, 

and effect of prosthetic components on the gait of the individual [2-7]. However, very 

limited research has been conducted to study the ability of the residual limb to support 

the body weight at the distal areas and the contraction of the residual muscles or the 

effect of end-bearing and muscle contractions on the stability of the gait. 

Clinical studies indicate that between 68 to 88% of amputees wear prostheses at least 7 

hours a day [8, 9] and desire an active lifestyle [10]. These people need highly 

functional prostheses in order to maintain healthy and high quality of life [1]. However, 

the prostheses that are currently available for people with below-knee (transtibial) 

amputation are passive devices that focus primarily on the ability of the individual to 

bear his/her body weight on the affected limb, have adequate balance, and retain a 

minimal degree of mobility. The studies also indicate that a high percentage of below-

knee prosthesis users suffer on a daily basis from discomfort arising from inadequate 

prostheses [11, 12]. Further, individuals with unilateral below-knee amputation have 

asymmetric gait and tend to favor the intact side while walking [13, 14]. In the short 

term, the use of passive prosthetic foot with fixed ankle can lead to asymmetric gait [13, 

14], increased muscle contraction on the intact side [15], and higher metabolic energy 

expenditure in an individual [16]. Long-term health complications such as osteoarthritis, 
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osteoporosis, back pain, and other musculoskeletal problems can also be linked to the 

poor fit and improper alignment of the prosthesis and can lead to poor overall quality of 

life of the individuals [17].  

Development and performance verification of the bionic feet have drawn much 

attention recently due to the advances in computational and control technology. Several 

bionic feet including Proprio Foot [18] and BIOM [19] have been commercialized. 

These feet are typically equipped with active components to modify the dynamic 

characteristics of the prosthetic ankle joint during gait. However, these prosthetic 

devices utilize a classical control technique, e.g., PD control, with fixed control 

parameters. Therefore, although amputee gait improvement have been observed in 

several case studies [20-22], the performance of these prosthetic feet might be degraded 

in the presence of disturbances created by the walking terrain, human body movement, 

and unknown intent of the users.  

The development of an intelligent prosthetic ankle that can replicate the functioning of 

the biological ankle can have far-reaching impact on the quality of life of people with 

below-knee amputation and is the motivation for the research presented in this 

dissertation. 

1.2 Scope of the dissertation 

This dissertation aims to address the shortcomings of existing prosthetic feet in a 

systematic fashion in order to develop an intelligent ankle/foot prosthesis system. The 

following are the key steps in the process adopted in this dissertation. 

• First, a gait monitoring device and algorithms for gait analysis will be developed 

to study the gait of people with below-knee amputation in real time during 
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work-related activities. Experimental protocols are then designed to collect gait 

data from individuals with below-knee amputation in order to understand the 

activity of the residual muscles and the ability of the prosthetic device to support 

body weight during gait.  

• The dependence of the interfacial socket forces and electromyography signals 

from the muscles in the residual limb on the type of the gait and gait-related 

events will then be studied. The use of this dependence to recognize user gait 

and the corresponding ankle displacement pattern for the controlled prosthetic 

foot will be investigated.  

• Finally, hierarchical learning-based control strategies will be developed to 

adaptively compensate for the unknown, changing ankle dynamics and drive the 

prosthetic ankle joint along the desired trajectories. It is anticipated that the 

learning capabilities of these control strategies will enable the prosthetic ankle 

joint to not only replicate the movement of the healthy ankle, but also improve 

the stability of the gait and optimize the performance. 

The above approaches are demonstrated in this dissertation in two parts. The first part 

presents the analysis of the gait of a group of otherwise healthy men with non-

traditional below-knee amputation called transtibial osteomyoplastic amputation, or 

TOA. The TOA procedure is prescribed for healthy, young individuals who desire a 

very active lifestyle. TOA offers stable bony residuum capable of bearing the weight of 

the individual and residual muscles that are active throughout the gait cycle. Expected 

outcomes of the TOA procedure are confirmed through the presence of loading at the 

distal end-bearing area of the residual limb and active contraction of the residual 
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muscles below the knee. The interfacial forces in the socket and the activity of the 

residual muscles in individuals with TOA are found to be related to and dependent on 

the type of gait, as well as the type of prosthetic feet used. In addition, the potential of 

residuum socket interface forces in recognition of the gait is also demonstrated. 

In the second part of the dissertation, learning-based control of the prosthetic ankle joint 

is addressed. Two hierarchical learning-based control algorithms that take into account 

the ankle dynamics, foot-ground interaction, and the movement of upper body are 

considered. The first strategy uses an artificial neural network-based feedback 

linearization controller to learn the unknown and changing dynamics of the ankle joint 

and to track a desired ankle displacement profile. In the second strategy, a neural 

dynamic programming-based controller that can track an ankle displacement profile 

while optimizing a cost function based on the tracking error is considered. Actual gait 

data obtained from the subjects in the first part of this dissertation is used to study the 

effectiveness of the control strategy. For the first time, an adaptive controller has been 

demonstrated that can address changes in terrain and in user requirements to provide 

consistent and stable functioning of the prosthetic ankle. It is anticipated that the 

strategy developed in this dissertation will help build an intelligent prosthetic foot that 

can significantly improve the mobility and long-term health of people with amputation 

of the lower limb. 

1.3 Contributions of the dissertation 

This dissertation addressed the development of an intelligent ankle prosthesis. For the 

first time, a systematic procedure was presented that was mathematically rigorous and 

guaranteed the stability of the prosthetic limb which could adapt to changing gait and 
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terrain conditions and optimized the performance over time. The dissertation also added 

key knowledge to our understanding of amputee gait and the effects of different 

prosthetic components on the gait. Key contributions of this dissertation are listed 

below. 

a) Develop a procedure to detect abnormality in amputee gait. 

In this dissertation, the mobile gait monitoring device named OUPAM (OU 

Prosthetic Activity Monitor [23]) was used to capture the gait data and Matlab-

based analysis utilities were developed to segment the data and extract critical 

gait parameters such as stance time and swing time. These parameters were 

shown to be crucial in detecting asymmetry in gait and also in capturing the 

effect of prosthetic components in gait.  

b) Confirm the expected outcomes of the TOA procedure. 

In this dissertation, the expected outcomes of the TOA procedure in retrieval of 

the residual limb function through the presence of loading at the distal end-

bearing area of the residual limb and active contraction of the residual muscles 

under the knee were successfully confirmed by quantitative measurements for 

the first time. The dependence of the interfacial force and residual muscle 

activities on the type of prosthetic feet and type of gait was clearly demonstrated 

and filled an important gap in the literature. 

c) Provide a method for recognizing the gait in real time and planning a desired 

ankle displacement profile for the recognized gait. 

A new method for recognizing the type of gait in real time using residuum 

socket interface force and residual muscle activities was introduced in this 
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dissertation. Such method could be adopted for the synthesis of the desired ankle 

displacement profile which was appropriate for the recognized gait and could be 

used for control of a prosthetic foot.   

d) Develop intelligent control strategies that adapt to the changes in gait and 

terrain and improve the gait performance over time. 

Finally, learning-based control strategies with hierarchical structures were 

implemented to adaptively compensate for the unknown, changing ankle 

dynamics and drive the prosthetic ankle joint along the desired trajectories. With 

the learning capabilities of these control strategies and the incorporation of the 

actual gait data, the prosthetic ankle joint could not only replicate the healthy 

ankle movement, but also improve the gait stability and optimize the gait 

performance 

1.4 Organization of the dissertation 

The rest of this dissertation is organized as follows. 

• Necessary backgrounds for the research carried out in this dissertation are 

provided in Chapter 2. These include the human gait cycle and the ankle joint 

characteristics during gait, below-knee amputation and outcomes, prosthetic 

sockets, residuum socket interface force, and residual muscles contractions. An 

overview of gait analysis and the development of prosthetic feet for below-knee 

amputees are also presented in this chapter.  

The first part of this dissertation, which includes Chapter 3 to Chapter 6, focuses on the 

gait analysis for participants with unilateral transtibial osteomyoplastic amputation.  
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• In Chapter 3, temporal-spatial gait parameters and muscle activities in subjects 

with unilateral TOA are investigated in order to highlight the consequences of 

undergoing a below-knee amputation on these factors. 

• The effect of three prosthetic feet including Renegade Foot® (Freedom 

Innovations©), Venture FootTM (College Park©), and Proprio Foot® (Össur) on 

the residuum socket interface force of an individual with unilateral TOA is 

elucidated in Chapter 4. 

• In Chapter 5, the restoration of the residual tibialis anterior and gastrocnemius 

muscles and their relationship with the socket contact force under the residual 

limb are investigated.  

• Dependence of the residuum socket interface force and residual muscle activities 

on the changing walking speeds is assessed in Chapter 6. Potential of these 

measurements in recognition of the gait types is also evaluated in this chapter. 

In the second part of this dissertation, Chapter 7 to Chapter 9 concentrate on modeling 

and control of the prosthetic ankle joint in the framework which incorporates the ankle 

dynamics as well as its interaction with the unaffected joints and walking terrain. 

• In Chapter 7, the framework in which the dynamics of the prosthetic ankle joint 

during gait are described and the goal for control of the prosthetic ankle joint in 

that framework are discussed. 

• The implementation of an artificial neural network for control of the prosthetic 

ankle joint is described in Chapter 8. The resulted hierarchical controller is 

shown to adaptively compensate for the unmodeled dynamics and disturbances 
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during changing gait conditions and provide closed loop stability with 

guaranteed tracking performance. 

• In Chapter 9, the implementation and performance of an adaptive dynamic 

programming-based structure, named direct neural dynamic programming, for 

control of an active prosthetic ankle joint are presented. 

Finally, conclusions of the dissertation and outlines for the future research are discussed 

in Chapter 10. 
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Chapter 2: Background of Gait Analysis and Prostheses for People 

with Below-knee Amputation 

This chapter covers the backgrounds on the human gait analysis and summarizes recent 

results and trends in improving the mobility of people with below-knee amputation. 

Definition of the human gait cycle, description of each gait phase and the biomechanical 

characteristics of the human ankle joint during gait are first discussed. Below-knee 

amputation procedures and the need for studying the residuum socket interface (RSI) 

force and residual muscle activities are then presented. Common approaches in gait 

analysis for people with below-knee amputation are discussed with a focus on 

understanding the goals required for such studies. The chapter concludes with an 

overview of the current status of below-knee prosthetic feet, the desired performance 

and challenges in development of advance prostheses. 

2.1 Human gait cycle and the ankle joint during gait 

Walking constitutes a very important aspect of human locomotion. The sequence of foot 

movements by which a person moves forward is called 'gait'. A typical human gait cycle 

is shown in Figure 2.1 [24] and can be divided into two phases: the stance phase when a 

foot contacts with the ground and the swing phase when a foot is swinging in the air 

[25]. According to [26], the stance phase constitutes approximately 62% of the gait 

cycle and includes five sub-phases: Initial Contact, Loading Response, Mid-stance, 

Terminal Stance, and Pre-swing . The swing phase constitutes the remaining 38% of the 

gait cycle and comprises of three sub-phases: Initial Swing, Mid-swing, and Terminal 

Swing. 
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Initial Contact of the stance phase is a time instance at which the leading foot hits the 

ground while the opposite foot is still in contact with the ground. At this point, the body 

weight starts shifting to the leading foot. The Loading Response phase starts after the 

Initial Contact, and comprises 10% of the gait cycle. During this phase, the foot 

gradually comes into full contact with the ground and entire body weight is transferred 

from the trailing foot to the leading foot. This phase terminates when the leading foot 

supports the entire body weight and the trailing foot starts Initial Swing by lifting off the 

ground. The Mid-stance phase starts at the end of the Loading Response phase and 

terminates when the opposite foot aligns with the stance foot. This phase constitutes 10 

to 30% of the gait cycle. The Terminal Stance phase which constitutes 30 to 50% of the 

gait cycle, starts at the end of Mid-stance and terminates after the opposite foot finishes 

Mid-swing, Terminal Swing and contacts the ground. This marks the occurrence of 

Initial Contact and starts a new gait sequence on the opposite foot.  

 

Figure 2.1. Human gait cycle [24]. 
 

As can be seen in Figure 2.1, the human foot is subjected to varying loads and torques 

as it transitions through the gait cycle. The unique design of the human ankle and foot 
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enables them to absorb shock and generate energy for propulsion. Further, the ankle can 

guarantee stability, mobility, and withstand 1.5 times the body weight during normal 

ambulation and 8 times the body weight during running [27]. During gait, the ankle can 

adjust the stiffness of the ankle joint, perform dorsiflexion and plantarflexion of the 

foot, and provide propulsion power to aid the human body as it moves forward. These 

capabilities help humans walk effortlessly in different walking conditions (changing 

walking speed, varying step length, etc.) on different terrains (level ground, ramps, 

staircases, etc.) and with individual preferences such as type of shoes, height of a heel, 

carrying heavy objects, etc. 

During gait on level ground, the human ankle joint follows a typical trajectory as shown 

in Figure 2.2. The displacement profile in Figure 2.2 [28] is shown normalized with 

respect to the gait cycle and is related to the phases and events of the gait [24, 25, 28]. 

This joint displacement profile is typical for all humans and is presumed to minimize 

the energy consumption during gait [29, 30]. 

 

Figure 2.2. Typical human ankle displacement profile. 
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It is also known that during the gait of non-amputee subjects, dorsiflexion and 

plantarflexion of the foot are achieved by the contraction of the tibialis anterior (TA) 

and gastrocnemius (GAS) muscles. Contractions of those muscles have been studied by 

analyzing electromyography (EMG) signals obtained using either surface electrodes or 

needle electrodes [31, 32]. In principle, large muscle contractions are indicated by EMG 

signals with higher magnitudes. Normalized EMG signals over one gait cycle of tibialis 

anterior and gastrocnemius muscles [31] (Appendix Table 5.22 and Table 5.24)  are 

shown in Figure 2.3.  

 

Figure 2.3. Normalized tibialis anterior and gastrocnemius muscle activities. This 

figure is reproduced using data from [31] (HS – Heel Strike; FF – Foot Flat; HO – 

Heel Off; TO – Toe Off). 
 

The mechanisms of the tibialis anterior and gastrocnemius muscles in Figure 2.3 and 

their relationships to gait phases and ankle movement in Figure 2.2 are explained as 

follows [31, 33]. At the Initial Contact (or Heel Strike), the tibialis anterior contracts at 

its highest level (EMG signal reaches the highest magnitude) controlling plantarflexion 
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through eccentric contraction. After the foot is completely flat on the ground (Foot Flat) 

and during Mid-stance, this muscle contributes very little to the movement of the foot 

relative to the leg. As the body weight is shifted toward the opposite limb, the weight 

bearing heel starts to lift off from the ground (Heel Off), and EMG activity of the TA is 

increased until Toe Off. The TA muscle is also active during the swing phase while 

dorsiflexing the foot and providing toe clearance. In contrast, the gastrocnemius is more 

active during Foot Flat and Mid-stance to control tibial progression and generate 

propulsion power. Gastrocnemius plays little role during the swing phase as well as 

between the Heel Strike and Foot Flat phases of the gait [25, 31]. 

It can be seen that during the gait cycle, the human ankle joint adjusts its characteristics 

to accommodate movements of the human body. The ankle has low stiffness at Heel 

Strike to allow for controlled plantarflexion of the foot during the initial Loading 

Response phase. On the other hand, the ankle demonstrates high stiffness between Mid-

stance and Heel Off. The quasi-stiffness of the ankle joint, denoted by the slope of the 

ankle moment versus the ankle angle curve during the stance phase, appears to change 

during gait and the relationship between the moment and angle during loading becomes 

more nonlinear as the walking speed increases [34]. These characteristics imply that the 

human ankle joint can be represented by a rotational spring and a damper for slow to 

normal walking speeds. However, to replicate the characteristics of the human ankle 

during walking at fast speeds, an augmented system would be necessary [34, 35]. 

2.2 Below-knee amputation 

Below-knee or transtibial amputations (TTA) are typically performed on people who 

suffer from vascular or circulatory disorders or who experience traumatic events such as 
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combat wounds or traffic accidents. The ideal amputated length is from the proximal 

one third to the middle of the limb [36]. One way to classify below-knee amputation is 

based on whether the procedure aims to provide end-bearing for the residual limb 

and/or retain the contraction/elongation of the residual muscles. In traditional lower 

limb amputation, the distal end of the residual limb is not allowed to bear weight and 

the residual muscles (tibialis anterior, gastrocnemius) are left disconnected at the distal 

end of the limb. As a result, people with traditional amputation are typically fitted with 

a patellar tendon bearing (PTB) socket, wherein the loading is mainly distributed 

around the anterior area under the knee cap (patellar). Such concentrated loading of the 

body weight can lead to sores and frequent joint pains. A loss of the length-tension 

relationship in these unsecured muscles can also lead to a decrease in muscle 

contraction, blood circulation, and gait performance [37]. On the other hand, there are 

techniques that allow the amputated limb to bear weight at the extremity (e.g., Lisfranc 

amputation, Syme amputation, Ertl transtibial osteomyoplastic amputation) or enable 

the residual muscles to contract during gait (e.g., myoplasty, myodesis) [36].  

In the transtibial osteomyoplastic amputation (TOA) procedure, the fibular and the tibial 

ends are connected to each other by a “bony bridge” (Figure 2.4) which helps stabilize 

the anatomy of the residual limb and allows weight bearing at the distal end [38]. This 

procedure aims to add rigidity to the lower limb extremity, aid load transfer between the 

residual limb and the prosthetic socket, provide more uniform load distribution on the 

residual limb by enabling amputees to wear total surface bearing (TSB) sockets, and 

provide stability during the gait. This procedure reduces the incidence of sores seen 

with PTB sockets and allows for increased weight to be supported by the amputated 
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limb [39]. In addition, TOA procedure also secures the distal ends of the residual tibialis 

anterior and residual gastrocnemius to the bony foundation to re-establish the length-

tension relationships of these muscles. It is anticipated that each of these residual 

muscles has a contraction profile similar to that of the corresponding muscle of non-

amputee subjects. Some researchers have studied the gait characteristics of people with 

TOA in order to understand the outcomes and maximize the potential advantages of the 

procedure [40, 41]. While personal anecdotes validate the clinical outcomes of the 

TOA procedure, there has been no clinical evaluation or quantitative data in the 

literature on the success of this procedure. 

 

Figure 2.4. Radiograph of the bony bridge in transtibial osteomyoplastic 

amputation procedure [42]. 
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2.3 Prosthetic sockets and residuum socket interface force 

The prosthetic socket plays a critical role in providing comfort, appropriate load 

transmission, and efficient movement control in people with below-knee amputation 

[43]. Adverse consequences of ill-fitting socket or improper loading include soft tissue 

injury, bleeding, bruising, pressure sores, and pain, which in the short term reduce the 

functional ability of people with amputation. If left unaddressed, these can diminish 

their health and quality of life [44, 45].  

The force distribution at the interface between the prosthetic socket and the residual 

limb is a critical consideration in the design and fit of a socket to a patient [46-48]. 

Proper distribution of an individual’s weight across the surface of the residuum plays a 

critical role in the comfort and function in people with TTA [49, 50]. Further, the design 

of the socket is dictated by the type of amputation that was performed on the subject. 

The load distribution inside the socket depends on a combination of factors, including 

the method of construction of the socket (pressure casting, hand casting, etc.) [45, 51-

53], socket and prosthetic alignment [46, 54], suspension system of the prosthesis [55], 

and the type of gait [20, 56]. Computational methods such as finite element analysis 

[57], artificial neural network, and magnetic resonance image scan can be used to 

measure the residuum socket interface pressure/force and understand the load 

distribution and its characteristics during gait [48, 58]. These advanced tools have 

potential in predicting the RSI force distribution and in aiding the design and fabrication 

of the prosthetic sockets [47, 59, 60]. However, there is no device that is currently 

available in the market that can simultaneously measure and analyze the 

interfacial forces and EMG signals during actual gait. There exists a high demand 
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for subject-specific wearable measurement systems which are capable of real-time 

monitoring of the socket force and real-time evaluation of prosthetic fit and gait 

performance [61, 62].  

2.4 Residual muscles 

Electromyography signals which are captured by placing electrodes on the muscle 

bellies from the lower limbs can provide insight into how the muscular systems 

generate joint movements and stabilize limbs for both normal and pathological gait 

analysis [25, 28]. Since the magnitude of the electrical signals generated by muscles 

during gait is very small, measurement and analysis of EMG signals from muscles 

require specialized hardware and procedures [32, 63]. Muscle contraction profiles from 

the lower limbs and their dependence on the walking speed and walking terrain can also 

be used to explain the variations in ambulatory energy consumption [64].  

For individuals with below-knee amputation, alterations in lower limb muscles 

compared to those of able bodied also indicate the compensation strategies for the 

missing limb [65, 66]. However, most of the studies on muscle contraction focus on the 

muscles which are outside the prosthetic socket or in other words, above the knee. 

Measurement of the activity of the residual muscles below the knee of the residual limb 

requires the surface electrodes to have high sensitivity and be thin enough for placement 

inside the prosthetic socket. Recently, there has been increasing interest in 

characterizing the contractions of the below-knee residual muscles in order to observe 

the recovery of those muscles after amputation [67], explain their activities during gait 

[68, 69], and evaluate the potential of those muscles in gait recognition and prosthetic 

development [70]. However, activities of the residual muscles inside the socket and 
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their relationships to the variations of the RSI forces in individuals with TOA 

during actual gait have not been adequately addressed. 

2.5 Overview of gait analysis for individuals with below-knee amputation 

Gait analysis has been extensively performed in the last few decades to characterize the 

human gait, study the performance of the human joints and muscles during gait, and 

understand the reasons for pathological gait [25, 31]. Different gait analysis systems 

have been developed to capture the temporal-spatial gait parameters, joint movements, 

ground reaction forces, muscle contractions, and metabolic energy consumption in order 

to obtain a complete picture of the gait mechanism [26, 71, 72]. In recent years, there 

has been an increasing number of applications of computational tools such as artificial 

intelligence, digital signal modeling and processing in gait analysis, especially in 

recognition of abnormal gait phenomena and classification of gait pathologies [73-76]. 

Results from gait analysis of abled bodied individuals provide insight into the 

development of prosthetic feet [34, 77, 78]. Gait analysis using wearable sensors [79] or 

mobile gait labs has also drawn much attention. VICON [80], Organic Motion [81], and 

IDEEA [82] are examples of some of such systems. 

Gait analyses for below-knee amputees have also been carried out to study the effect of 

amputation on standard gait measurements such as gait asymmetry, joint movements, 

and muscle activities that contribute to higher energy consumption [3, 83]. Gait analysis 

also considers the interfacial contact force between the prosthetic socket and the 

residual limb as well as the contraction of the residual muscles. Standard gait 

measurements from the amputees are usually compared to that of able bodied subjects 

to understand the consequence of amputation procedure as well as the individual’s 
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strategy to adapt to the changes in gait and mobility [14, 84]. Gait measurements are 

also compared among subjects wearing different prosthetic systems to evaluate the 

effectiveness of the prosthetic feet and socket design [3-5]. Outcomes of rehabilitation 

process can also be beneficial from the gait analysis results [85]. While gait analysis can 

provide insight into the gait performance and effect of prosthetic components, one has 

to take into account the discrepancies in amputation techniques, socket concepts, 

prosthetic foot models, and activity levels of the amputees before any conclusions can 

be drawn [86]. 

2.6 Development of prosthetic feet for people with below-knee amputation 

Recovery of full locomotion capability in TTA's requires the development of highly 

functional prosthetic foot that can replicate the biomechanics of a healthy ankle joint 

and adapt to amputees’ gait. However, existing prosthetic devices are designed 

primarily to support body weight and provide stability during stance and gait. The state 

of the art in prosthetic feet and the requirements for the next generation intelligent feet 

are discussed in this section.  

2.6.1 Current status of prosthetic feet 

Below-knee prosthetic feet can be divided into three categories: conventional feet, 

energy storage and return feet (ESR), and controlled prosthetic feet [77]. Conventional 

foot, such as solid ankle cushion heel (SACH) foot or Single Axis Foot mainly helps 

support the body weight and aid in basic walking. Although these feet have limited 

functionality, they are still very popular, especially in rural areas and in developing 

countries due to their low cost, simple design, and easy maintenance.   
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Energy storage and return feet (e.g., Flex Foot, Venture Foot) have spring-like 

components to store the energy that the human body asserts during the Loading 

Response phase and then release that stored energy during the end of Terminal Stance 

and Pre-swing to help propel the body forward. It has been shown in some studies that 

the energy storage and return prosthetic feet help improve the gait and energy 

expenditure [5, 87, 88]. However, other studies did not find evidence of significant 

improvement of ESR prostheses over the SACH foot [89, 90] and benefit of such 

designs on knee and hip output powers are still unclear [91]. Moreover, none of the 

current ESR prosthetic feet can return the required energy (1.7 times the body weight) 

during push off (Terminal Stance) phase [77, 92] or dorsiflex the ankle joint to reduce 

the incidence of tripping during the swing phase of the gait. 

Some advanced prosthetic feet are equipped with active components that can modify the 

characteristics (ankle joint stiffness and joint movements) of the prosthetic ankle joint in 

order to adapt to changing terrain and gait needs. These prosthetic feet have either 

pneumatically driven or electrically driven actuators which generate enough torque to 

modify ankle movement and provide propulsion energy during gait. Commercially 

available below-knee controlled prostheses such as Proprio Foot [18] and BIOM Ankle 

system [19, 93] are capable of manipulating the movement of the ankle joint [77, 94]. 

Improved gait performance obtained using these controlled prostheses has been reported 

in several case studies [20-22]. Performance of other active foot prototypes such as 

SPARKy [95] and PPAMs [96] in generating ankle movement and push-off power 

during late stance phase is also promising. However, both systematic and subject-
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specific tests are necessary in order to fully evaluate the benefits of these bionic feet 

[21, 92, 97]. 

2.6.2 Desired performance of the controlled prosthetic feet 

The lack of an active prosthetic joint that can dynamically adapt to changing terrain and 

gait needs is a limiting factor in attaining adequate comfort and mobility in below-knee 

amputees. Thus, it is necessary to design a prosthetic device and an associated 

control mechanism that can replicate the biological ankle joint in altering its 

stiffness and movement during gait [34], providing enough propulsion power, 

adapting to walking environment in real time, while being robust to dynamic 

uncertainties of the prosthetic ankle, measurement noises, and actuator noises. The 

outcomes of these advanced prosthetic feet would be evaluated by accessing the 

improvement in the gait symmetry, reduction in the unnecessary kinematics and muscle 

compensation, and decrease in the metabolic energy consumption.  

However, developing a prosthetic foot that meets the desired performance described 

above is not easy and has to overcome several challenges. Important among these 

challenges are the following. 

• Mechanical design of the prosthetic foot has to be rigid, able to support the body 

weight, and provide shock absorption during gait activities. Power requirement 

(i.e., batteries) and joint actuators also create challenges for a proper 

implementation of the prosthetic feet. In addition, the rigidity and power 

required during the gait are usually varying depending on the activity pursued by 

the individual. 
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• The lack of an accurate dynamic model describing the characteristics of the 

prosthetic ankle and the variations of the biomechanics of a human ankle during 

different walking conditions make it difficult to apply the traditional control 

approaches to this problem. The addition of human-in-the-loop further makes 

the system much more complicated and highly nonlinear. 

• Wearable sensors can be attached to the prosthetic foot or the human body in 

order to capture the user intent or gait variations. However, accessibility to the 

measured signals, reliability of the captured data, portability of the measurement 

systems, and data processing and interpretation are not trivial tasks. 

• Changing gait types and walking terrains create another obstacle for the 

traditional control approaches which have fixed control structure and 

parameters. It is noted that the currently available powered prosthetic feet are 

typically controlled using classical techniques, e.g., PD control. Once the 

controller is tuned, its parameters are usually fixed irrespectively of any changes 

in gait. It also requires additional tests to evaluate and compare the performance 

of different control strategies [94]. 

2.6.3 Additional trends in development of controlled prosthetic feet 

Development of advanced prosthetic feet is a multidisciplinary area in which the 

following trends are being observed.  

• It is now a common understanding that the advanced prosthetic foot will 

improve the gait performance if it is capable of replicating the dynamic 

characteristics of the biological limb [34, 77, 92]. Development of controlled 
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prosthetic feet will be further supported by experimental and theoretical 

biomechanical research on both non-amputee and amputee gait. 

• Another trend in the development of advanced prosthetic feet is the utilization of 

kinematic and electromyography signals measured from the users’ movement 

for recognition of gait and detection of gait events. Data measurement 

techniques and interpretation algorithms applied to gait analysis for able bodied 

will be extended to generate trigger signals for control mechanism for the ankle 

devices [70, 98, 99]. 

• There will be more studies on contraction of the residual muscles and the 

relationship between their contraction profiles and the gait. These studies hold 

out promise and are likely to motivate the use of signals from residual muscles 

to control the prosthetic foot [68, 100]. 

• Combination of the mechanical control and biological-based signal monitoring 

and interpretation will result in hierarchical prosthetic control structures [94]. 

Fundamental control loops such as impedance, position, and torque controls 

which are specifically designed for each gait mode will incorporate supervisory 

control that can interpret the gait and switch between different gait modes. The 

resulting control structure will be capable of detecting gait change and providing 

required ankle stiffness, movement, and power. 

• Finally, performance of advanced prosthetic feet will be evaluated by 

quantitative performance indices such as the deviation of the joint ankle from 

the desired trajectory, mechanical energy, metabolic energy consumption [3, 93, 

101], etc. 
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2.7 Framework of the experimental gait study 

In this dissertation, the shortcomings identified in the previous subsections will first be 

addressed through the development of a portable gait analysis system. The detail of the 

device and the experimental setup are discussed below. This framework is used 

subsequently in Chapter 3 to Chapter 6. 

2.7.1 Criteria for subject selection 

Subjects for the experimental studies are recruited from the amputee populations who 

live in the state of Oklahoma for at least 6 months following unilateral below-knee 

amputation surgery. All subjects are between 18-64 years of age and capable of walking 

independently without using any other assistive devices except their own prosthetic feet. 

All subjects are free of medical conditions such as cardio-respiratory, peripheral 

vascular, neuromuscular, inflammation, diabetes, and open wound on the residuum. All 

the selected subjects speak English and can independently give written consent to 

participate in the study. Non-amputee subjects are also recruited for the study to serve 

as a control group. 

2.7.2 Protocol 

Several protocols are approved by the Institutional Review Board at the University of 

Oklahoma Health Sciences Center (OUHSC) for protection of human subjects [40, 41] 

(IRB# 15948, IRB# 15713). All subjects use their own prosthetic systems (socket and 

prosthetic foot) during the studies. A certified prosthetist is available onsite to adjust 

socket alignment and fit. Heart rate, pulse, blood oxygen level, and the Borg index of 

participants are monitored by a healthcare professional from the College of Allied 

Health, OUHSC. 
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2.7.3 Measurement and sensors 

Gait parameters 

A gait monitoring device called Intelligent Device for Energy Expenditure and Physical 

Activity (IDEEA®) by MiniSunTM [82] will be used to obtain the gait parameters from 

the subjects (Figure 2.5). Each subject will wear an IDEEA unit during the gait. 

Information such as stance time, gait cycle duration, step length and stride length will 

be determined using the analysis software provided by MiniSun.  

 

Figure 2.5. Intelligent Device for Energy Expenditure and Physical Activity. 

 

RSI force measurement 

Residuum socket interface force will be measured inside the prosthetic sockets using 

ultrathin FlexiForce® A201 piezo-resistive sensors (thickness – 0.208mm; active 

sensing area – 0.713cm2; force sensitivity range – 20g - 2200kg; response time – 5-

20µsec; linearity – <±5%) [102]. The force sensors are secured to the inner wall of the 

prosthetic socket by medical tapes (Figure 2.6a). With the short response time, wide 

sensitivity range and small thickness, these sensors enable non-intrusive and real-time 

loading measurement without affecting the comfort and mobility of the subjects during 

gait. The amount of applied force on each sensor can be converted into the voltage by 
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an amplifying circuit similar to Figure 2.6b. All force sensors will be calibrated prior to 

the data collection. 

 
(a) 

 
(b) 

Figure 2.6. (a) Placement of FlexiForce
®

 sensors inside the socket; (b) Force-to-

voltage signal converter. 
 

Electromyography 

Electromyography signals generated by muscle activities will be measured using 

disposable surface stimulating and recording Ag/AgCl electrodes (square, sensing area 

of 1.44cm2) [103]. For each muscle, a pair of electrodes will be placed 2.5cm apart 

longitudinally along the muscle (Figure 2.7a). Skin surface at the selected location will 

be shaved and cleaned with alcohol and conductivity gel will be applied before 

placement of the EMG electrodes. Since the magnitude of the electromyography signal 

is very small, a differential amplifying circuit (Figure 2.7b) will be used to increase the 

signal magnitude to a measurable level. 
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(a) 

 
(b) 

Figure 2.7. (a) Placement of EMG electrodes on the muscles; (b) Differential 

amplifying circuit for EMG signals. 

 

2.7.4 Data acquisition 

Two versions of data acquisition systems will be used for the experimental studies. The 

first version, which is designed to be used in the experimental study in Chapter 4, is 

shown in Figure 2.8a. This system includes a Mobile Demand© tablet computer (CPU 

U25000 – 1.20GHz, 1.99GB RAM) which is equipped with a 12-bit data acquisition 

and control board PC-CARD-DAS16/12 AO (Measurement Computing©) and a 

customized signal conditioning box. Matlab®, Simulink® and Real-time Windows 

TargetTM (Mathworks®) will be used to develop an embedded application which 
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sampled, collected, and organized the experimental data. Signals are sampled at the rate 

of 500Hz. During the test, the signal conditioning box will be strapped to the subject’s 

thigh and the tablet computer will be placed inside a backpack and carried by the 

individual (Figure 2.8b). 

 
(a) 

 
(b) 

Figure 2.8. (a) Data acquisition unit – version 1; (b) An individual wearing the data 

acquisition unit during gait. 
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The second version which is named OUPAM (University of Oklahoma Prosthetic 

Activity Monitor, [23]) will be used for experimental studies in Chapter 3, Chapter 5, 

and Chapter 6. This unit includes a box containing the signal conditioning circuits and 

data acquisition boards and two tubes which house the cables for capturing the signals 

from the prosthetic socket on the amputated side and muscles on both sides of the 

subjects (Figure 2.9a). OUPAM is equipped with an Atmel® development board 

STK525 (with 8-bit micro-controller AT90USBxxxx) and an Atmel® extension board 

ATEVK525 with SD card slot for data acquisition [104]. OUPAM can acquire data at 

the rate of 1000Hz which is sufficient to capture all variations of the EMG signals in 

real time. Both customized signal conditioning circuits and Atmel® boards will be 

placed inside a box which is carried by the subjects during the gait (Figure 2.9b). 

 

       
                                          (a)                                                                  (b) 

Figure 2.9. (a) Data acquisition unit – OUPAM; (b) An individual wearing 

OUPAM during gait. 
 

It is important to note that the developed gait acquisition systems allow the subjects to 

walk freely on various terrain during the study. Dependence on laboratory setup is 
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therefore eliminated and data is collected while the subject walks under normal 

conditions.  

2.7.5 Data analysis 

All data analysis and graphical illustrations will be performed in Matlab® environment 

with its toolboxes including DSP System ToolboxTM, Statistic ToolboxTM, and Neural 

Network ToolboxTM. Customized Matlab scripts will be written for each experimental 

study. 

The next four chapters will present the design and results of the experimental studies 

carried out in this dissertation. Each chapter is structured into the following parts: 

Background which identifies the need for each study and states the motivation; 

Objectives and Hypothesis of the study; Methods including information about 

subjects, protocol, and data analysis; Results of the study; Discussion of the results; 

and Conclusions drawn from the study. 
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Chapter 3: Asymmetry in Gait Parameters and Muscle Activities in 

People with Unilateral Below-knee Amputation 

In the literature, there is little research into the gait performance of people with 

transtibial osteomyoplastic amputation. Therefore, the investigation of temporal-spatial 

gait parameters and muscle activities in individuals with TOA is addressed in this 

chapter. Twenty non-amputee, i.e., intact subjects and fifteen amputee subjects are 

recruited under an IRB protocol designed to study the effect of amputation on the gait 

and muscle activities of the individuals. Temporal gait parameters (stance time and gait 

cycle duration), and spatial gait parameters (step length and stride length) will be 

obtained from both subject groups during 2 minutes walking with self-selected speed on 

the level ground. Signals from the rectus femoris, a major quadriceps muscle, are 

captured from both limbs of individuals in each subject group. The data from each 

subject group will be examined for evidence of asymmetry in gait parameters and 

dissimilarities in muscle contractions. 

3.1 Background 

During the late stance phase (Pre-swing), active contraction of the healthy 

gastrocnemius muscle allows the ankle joint to generate more propulsion power than it 

stores during the early stance phase (Loading Response) of the gait. The ankle joint 

performs approximately 50% of the work required during locomotion while the hip and 

knee joints contribute the remainder [105]. While energy storage and return feet are 

designed to store energy during the loading phase and return it to the body during the 

Pre-swing phase of the gait, these designs are yet to match the performance of the 

biological ankle joint [92]. Such mismatch causes excessive strain on the residual joints 
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and muscles and is one of the causes of long-term deterioration in the health of the 

individual. Some of the effects of inadequate prostheses are discussed below.  

Persons with below-knee amputation tend to have lower self-selected walking speed 

and asymmetric gait with shorter stance time and longer step length on the amputated 

side compared to the sound side [13, 14]. In [106] where all subjects wore PTB socket 

with solid ankle cushion heel feet, such asymmetry was attributed to the stiffness of the 

prosthesis ankle. The lack of trust on the prosthetic feet also forced the users to quickly 

transfer weight onto the sound limb during gait [13, 14].  Users also had shorter stance 

time on the affected limb to subconsciously protect the soft tissue at the bottom of the 

residual limb from damage. Although the asymmetry in temporal and spatial gait 

parameters might not necessarily be the best metrics for assessment of quality of gait or 

performance of prostheses [3], gait asymmetry is one of the indicators of long-term 

secondary complications such as mandatory osteoarthritis of the knee and/or hip joints 

of the intact limb [17].  

The second consequence of the amputation is the excessive demands on the quadriceps 

muscles in the amputated limb during gait. In order to satisfy the dual requirements for 

gait stability and forward progression [107], the quadriceps muscles on the amputated 

side of unilateral below-knee amputees have been observed to be active for a longer 

duration at a higher amplitude compared to the same muscles on the intact side. The 

additional effort of the quadriceps muscles on the amputated side is supposed to 

compensate for the loss of plantarflexion of the ankle joint [15, 65, 66]. The stiffness of 

the prosthetic ankle joint corresponds to the amount of returned energy in the period 

before Toe Off and affects the activity of the quadriceps muscles on the amputated side 
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[108]. Such interaction results in almost 25% increase in energy cost during gait 

compared to people without below-knee amputation [16]. 

The temporal-spatial gait parameters and the contraction of a major quadriceps muscle, 

rectus femoris (RF), during the gait of individuals with unilateral TOA are investigated 

in this chapter. It is known through gait analysis that the contraction profile of the rectus 

femoris muscle is related to the movements of the joints/limbs during gait [25, 28].  

First, the muscle is active before and during the early stance phase (Loading Response) 

to absorb the shock of Heel Strike and remains active until early Mid-stance for 

controlling the extension of the knee. Then during late stance phase (Pre-swing), this 

muscle is active again to restrain excessive passive knee flexion. Finally, it contracts 

during Initial Swing to assist hip flexion and to lift the foot for limb advancement [25]. 

Therefore in the subsequent section, activities of the rectus femoris muscle at specific 

sub-windows that covering these gait durations will be extracted for study. 

It is noted that experimental study in this chapter is designed so that the subjects can 

select their preferred walking speeds and are not limited by any specific types of 

prosthetic feet. Therefore, consideration of different prosthetic components on gait 

parameters and muscle contractions are out of the scope of this chapter. To the best of 

our knowledge, this is the first comprehensive study of the gait parameters and muscle 

activities in amputees with unilateral TOA. 

3.2 Objectives and hypotheses 

The overall goal of this study is to investigate temporal-spatial gait parameters and 

activities of the rectus femoris muscle in persons with unilateral below-knee amputation 
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in order to examine the effect of below-knee amputation. The specific objectives and 

hypotheses of this investigation are as follows. 

Objective O3A: Study the temporal-spatial gait parameters and gait asymmetry 

in individuals with unilateral TOA during walking on level ground with self-selected 

speed. Hypothesis H3a states that there will be significant differences between the gait 

parameters measured from the amputated side and intact side of the subjects. 

Hypothesis H3a will be verified by comparing the stance time, gait cycle duration, step 

length and stride length between the amputated leg and the intact leg. Support of 

hypothesis H3a will indicate gait asymmetry. 

Objective O3B: Study the activities of the rectus femoris muscles in subjects 

with unilateral TOA during walking on level ground. In order to achieve this objective, 

Hypothesis H3b states that the activation levels of the rectus femoris muscle on the 

amputated side will be significant higher compared to the intact side. EMG data from 

rectus femoris muscles on amputated side and intact side during specific durations of 

the gait cycle will be compared to see whether H3b is supported.  

3.3 Methods 

3.3.1 Subjects 

Fifteen subjects with unilateral below-knee amputation participated in this study. They 

were otherwise healthy and capable of walking for long duration without dependence on 

any walking assistive devices except their own prostheses. The subjects wore their own 

prosthetic socket and foot during this study. Twenty subjects without amputation 

(control subjects) also participated as references. All participants gave formal consent to 

participate in this study. Information about the subject is shown in Table 3.1.  
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Table 3.1. Subject information 

 Control subjects Subjects with amputation 

Number of subject 20 15 

Age (year) 30.2±10.1 39.8±11.1 

Weight (kg) 84.2±16.2 95.7±17.1 

Height (m) 1.79±0.09 1.81±0.07 

Walking speed (m/s) 1.28±0.12 1.27±0.13 

Amputation side NA 8 Left 7 Right 

 

3.3.2 Protocol 

The following protocol was approved by the Institutional Review Board at the 

University of Oklahoma Health Sciences Center for protection of human subjects. 

Gait: During the study, each subject performed a two-minute walking on level ground 

with self-selected walking speed.  

Measurements: Temporal gait parameters (stance time and gait cycle duration) and 

spatial gait parameters (step length and stride length) were obtained from the MinisunTM 

Intelligent Device for Energy Expenditure and Activity (IDEEA®, Section 2.7.3) [82] 

which was worn by each subject during the gait. Signals from rectus femoris muscle 

from both sides (amputated side and intact side of subjects with amputation, and left 

and right in control subjects) were capture by two pairs of disposable EMG electrodes 

(Ag/AgCl electrodes, square shape, sensing area of 1.44 cm2). Placement of the EMG 

electrodes followed the procedure described in Section 2.7.3. EMG signals were 

captured by the portable gait monitoring device OUPAM (Section 2.7.4) and stored to a 

SD card. The EMG signals were sampled at the rate of 1000 samples per second. 

3.3.3 Data analysis 

Preprocessing: Temporal and spatial gait parameters were obtained from an analysis 

software provided by IDEEA®. EMG signals from rectus femoris muscles were 
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preprocessed by a linear envelope (full-wave rectifier + low pass filter with a cut-off 

frequency of 8Hz) following by a symmetry moving window averager of 150ms 

(±75ms). For each muscle of each subject, multiple curves which corresponded to 

multiple gait cycles were obtained. Magnitudes of signals from each muscle were 

normalized by the peak value of the same muscle during the gait while the durations of 

the signals were also normalized by the gait cycle duration. The normalized curves then 

had the range [0, 1] and constituted [0-100%] of the gait cycle. The average contraction 

profile for each muscle of each subject was obtained by superimposing and averaging 

multiple curves captured during the two-minute walking. 

Calculation: From the average curve of each muscle of each subject, the following sub-

windows which corresponded to specified durations of the gait cycle were considered. 

Sub-window 1: from Heel Strike (HS) to 15% of the gait cycle (GC) after Heel 

Strike ([HS] � [HS + 15%GC]), which covered the duration of Loading 

Response. 

Sub-window 2: from 15% of the gait cycle prior to Toe Off (TO) to Toe Off 

([TO-15%GC] � [TO]), which covered the duration of Pre-swing. 

Sub-window 3: from Toe Off to 15% of the gait cycle after Toe Off ([TO] � 

[TO+15%GC]), which covered the duration of Initial Swing.  

These sub-windows were selected in order to cover the specific durations in which the 

rectus femoris was active as analyzed in Section 3.1. Root Mean Square (RMS) values 

were then calculated from each sub-window to represent the activation level of the 

muscle in the interested durations of the gait. Figure 3.1 shows the selection of sub-

windows from a typical rectus femoris activation profile during a complete gait cycle. 
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Figure 3.1. Sub-windows from a typical contraction profile of the rectus femoris. 

 

Statistical analysis:  

For evaluation of the hypothesis H3a for the gait parameters, stance time, gait cycle 

duration, step length, and stride length from the amputated side and intact side were 

compared by statistical t-tests (paired, alpha = 0.05).  

It was hypothesized in the experiment (H3b) that during the level ground walking with 

self-selected speed, the contraction levels of the rectus femoris muscle on the amputated 

are higher than the rectus femoris muscle on the intact side as a strategy to compensate 

for the lack of ankle movement. Such compensation and resulting imbalance in muscle 

activity are not expected in the control subjects. In order to compare between rectus 

femoris muscle activities from two sides of each subject group, paired t-tests 

(significant level alpha = 0.05) were carried out to compare between RMS values 

calculated from the corresponding sub-windows. For individuals with amputation, RMS 
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values from each sub-window of the RF muscle on the amputated side were compared 

to the RMS values from the same sub-window of the RF muscle on the intact side. 

Similarly, RMS values from each sub-window of the RF on the left side of the control 

subjects were compared to the RMS values obtained from the same sub-window of the 

RF muscle on the right side. 

3.4 Results 

Temporal-spatial gait parameters: All the subjects were able to finish the experiment 

while maintaining their preferred walking speed without any difficulty. Individuals with 

below-knee amputation walked slightly slower than the non-amputee groups as seen in 

the Table 3.1 (1.27±0.13m/s compared to 1.28±0.12m/s). No significant difference was 

found in any of the considered gait parameters between the amputated side and intact 

side (hypothesis H3a was rejected).  

Stance time on the amputated side of the individuals with amputation was not 

significant shorter compared to the sound side. In this group, the temporal parameters 

between two sides were less symmetric compared to the group of control subjects. 

Differences between temporal parameters from two sides were higher in the subjects 

with amputation (Table 3.3) compared to the other (Table 3.2). 

Table 3.2. Gait parameters from control subjects. 

 Left side Right side Difference 

Stance time (s) 0.698±0.046 0.696±0.048 0.007±0.007 

Gait duration (s) 1.118±0.067 1.118±0.066 0.001±0.003 

Step length (m) 0.644±0.060 0.674±0.078 0.039±0.032 

Stride length (m) 1.305±0.134 1.316±0.132 0.016±0.013 

 

In subjects with amputation, step length on the amputated side seemed to be longer than 

the intact side while difference in the stride length between two sides was minor.  
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Table 3.3. Gait parameters from subjects with amputation. 

 Amputated side Intact side Difference 

Stance time (s) 0.783±0.107 0.781±0.119 0.075±0.042 

Gait duration (s) 1.177±0.123 1.190±0.118 0.026±0.039 

Step length (m) 0.755±0.226 0.659±0.154 0.251±0.153 

Stride length (m) 1.445±0.325 1.376±0.255 0.139±0.209 

 

Electromyography: Figure 3.2 shows the activation profile of the rectus femoris 

muscles from left and right side of the control subjects (top plots) as well as from the 

amputated side and intact side of persons with amputation (bottom plots). Standard 

deviations at each data point of the normalized curve are presented by the shaded area 

around the mean curve.  

 

 

Figure 3.2. Rectus femoris muscle contraction from two subject groups. 
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Root Mean Square values calculated from the selected sub-windows and the 

corresponding statistical test results are shown for both groups in Table 3.4 and Table 

3.5. At all of the selected sub-windows, the left and right rectus femoris of the control 

subjects contracted at the similar levels. In amputees, during the first sub-window ([HS] 

� [HS + 15%GC]) which covered the duration of Loading Response, rectus femoris on 

the amputated side and intact side contracted similarly. However, amputated side rectus 

femoris contracted significantly stronger than the intact side RF during the second sub-

window ([TO – 15%GC] � [TO], p-value = 0.011) and the third sub-window ([TO] � 

[TO + 15%GC], p-value = 0.028) 

 

Table 3.4. Root mean square values from sub-windows of rectus femoris 

muscles of the control subjects 

Sub-window Left side Right side 

[HS] � [HS + 15%GC] 0.82±0.132 0.85±0.087 

[TO-15%GC] � [TO] 0.39±0.234 0.38±0.217 

[TO] � [TO + 15%GC] 0.40±0.220 0.40±0.213 

 

Table 3.5. Root mean square values from sub-windows of rectus femoris 

muscles of subjects with amputation 

Sub-window Amputated side Intact side 

[HS] � [HS + 15%GC] 0.72±0.202 0.73±0.210 

[TO-15%GC] � [TO] 0.53±0.273 0.32±0.203 

[TO] � [TO + 15%GC] 0.50±0.276 0.32±0.223 

The shaded boxes indicate the support of H3b 
 

3.5 Discussion of the results 

3.5.1 Temporal-spatial gait parameters 

First, individuals with unilateral below-knee amputation in this study seemed to have a 

lower self-selected walking speed compared to the control subjects, which was in 
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agreement with other studies [13, 14]. However, the difference between two groups was 

not significant. The difference between stance duration on intact and amputated side 

was larger than the difference between two sides of non-amputees. For the amputee 

subjects, the stance durations between two sides were different, but not significant. 

These results differentiated from studies in which subjects had undergone traditional 

transtibial amputation [13]. In those studies, the decreased time spent on the amputated 

leg was the result of an effort to protect the soft issue of the residual limb. In 

conventional amputation, such area was not suitable for weight-bearing because of the 

pain, discomfort, and instability inside the socket [109]. The significant difference was 

reported in a group of persons who wore SACH foot and patellar tendon bearing socket 

with which very little weight-bearing was distributed to the distal end of the residual 

limb [110]. In this study, all subjects had transtibial osteomyoplastic amputation 

(Section 2.2) and wore total surface bearing socket which allowed significant amount of 

weight-bearing at the residuum end. With that additional body support and the 

flexibility in selecting preferred walking speed, the subjects might have gained the trust 

on their prostheses and developed a more balance weight transfer between two legs 

during the gait. 

Observations on the spatial gait parameters from subjects with amputation in this study 

agreed with the review in [3]. While the stride lengths were similar between two sides, 

the step length on the amputated side was slightly longer than the intact side. These 

outcomes are in agreement with other works in the literature and might relate to the 

stability of the prosthesis or function of the prosthetic ankle/foot system [3, 14]. 
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3.5.2 Muscles activities 

No significant difference was observed between the left and right rectus femoris 

muscles in the control group in all of the considered sub-windows. This result was 

expected since the control subjects in this study were healthy and free of any muscular 

problems. 

In [15], the author reported the increased activities of the rectus femoris muscle on the 

amputated side compared to the intact side during the braking phase (0 – 50% of stance 

phase) of level ground walking with speeds of 0.9 m/s, 1.2 m/s, and 1.5 m/s. It was 

explained that the individuals tented to contract their amputated side quadriceps 

muscles more in order to provide additional body support and absorb the ground 

reaction force. Such observations were not seen in our data. Indeed, during the first sub-

window which covered the Loading Response phase as well as first 50% of the stance 

phase, there was no significant difference between the rectus femoris activities on the 

two sides. It is important to note that different from the protocol used in [15], 

participants with amputation in this study wore total surface bearing sockets after 

undergoing the TOA procedure and they also had flexibility in choosing their preferred 

walking speeds. The TOA and TSB were expected to provide additional body support 

by allowing users to put more weight on the distal end of the residual limb. In addition, 

the co-contraction of the residual muscles below the knee [111] might have helped in 

stiffening the limb inside the socket to reduce the impact due to ground reaction and 

stabilize the gait.  

During the second sub-window which covered the Pre-swing phase, significant higher 

activities were observed from the rectus femoris on the amputated side compared to the 
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intact side. Besides playing its natural role in restrain excessive passive knee flexion 

[25, 72], the increased activities on the residual leg rectus femoris muscles indicate the 

individuals’ attempt to compensate for the lack of active ankle joint movements which 

are needed for the advancement of the residual limb.  

Finally, during the Initial Swing which was covered by the third sub-window, rectus 

femoris on the amputated side contracted significantly higher than the intact side. In the 

individual without amputation of the lower limb, lifting the foot and ankle and 

providing swing clearance are the responsibilities of the pretibial muscles and long toe 

extensors [72]. Since the biological ankle and foot were missing in individuals with 

below-knee amputation, the rectus femoris would contract stronger to lift and create 

clearance for swinging of the residual limb. 

3.6 Conclusions 

In this chapter, temporal-spatial gait parameters and muscle activities of individuals 

who had undergone the transtibial osteomyoplastic amputation procedure and wore the 

total surface bearing socket during level ground walking with self-selected speed were 

investigated. There were evidences of gait asymmetry in the subjects with amputation. 

However, such asymmetry was not statistically significant in comparison to results in 

literature where subjects had undergone traditional amputation and wore patellar tendon 

bearing sockets and classical solid ankle-based prosthetic feet. The lack of proper 

plantarflexion of the prostheses used also linked to higher contraction levels of the 

rectus femoris on the amputated side compared to the intact side. Such additional 

contraction could be a result of the effort needed to advance the movement and provide 

swing clearance for the residual limb. Results of this chapter motivates the development 
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of highly functional prosthetic feet that can replicate the human ankle joint to possibly 

improve the gait symmetry and preserve energy expenditure during gait of users with 

unilateral below-knee amputation  
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Chapter 4: Effect of Prosthetic Foot on Residuum Socket Interface 

Force and Gait Characteristics 

The dependence of the residuum socket interface force and gait parameters of 

individuals with TOA procedure on the type of prosthetic feet has not been studied in 

the literature. Among the prosthetic feet that are fitted for individuals with below-knee 

amputation, Renegade Foot® (Freedom Innovations©), Venture FootTM (College Park©), 

and Proprio Foot® (Össur®) are 3 of the most common prostheses. Therefore, the effect 

of these feet on the RSI force of an individual with unilateral TOA will be elucidated in 

this chapter. Gait activities include level ground walking with normal and fast speed, 

walking up and down a staircase, and walking up and down a ramp. Contact forces will 

be measured from six locations inside the socket including the distal (end-bearing) 

anterior, middle posterior, and four proximal locations. Gait parameters will be 

extracted from the load distribution. Statistical analysis will be carried out to examine 

the dependence of the RSI forces and gait parameters on the changes in gait and 

prosthetic foot. 

It is anticipated that during gait activities, significant force will be observed at distal 

area (end-bearing) of the residual limb (under the bony bridge which stabilized the 

residual limb anatomy) as well as middle posterior point (where the length-tension 

relationship of the residual gastrocnemius muscle was retrieved). Moreover, such TOA 

procedure allows the persons with below-knee amputation to wear a TSB socket which 
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will lead to uniform force distributions at four proximal locations (anterior, posterior, 

lateral, and medial)1. 

4.1 Background 

Unlike traditional transtibial amputation techniques, proponents of the transtibial 

osteomyoplastic amputation procedure (as described in Section 2.2) contend that the 

TOA allows the functional restoration of the residual limb extremity by providing 

weight bearing capability at the distal area of the residuum and restoring the length-

tension relationship of the residual muscles [38, 40]. Such an end-bearing limb can 

theoretically stimulate the skin and deep tissue and minimize atrophy of the residuum 

due to disuse. End-bearing is also expected to reduce pain, improve sensation and blood 

flow, and improve walking ability and prosthetic wear. Although several studies have 

examined force distribution inside the TTA prosthetic socket with a wide variety of 

prosthetic alignment [54, 112], socket material [113], type of socket [45, 46, 114, 115], 

or type of gait activity [56, 62], there was little reported research on the effect of 

different prosthetic feet on force distribution inside the socket of amputees with TOA. 

In this chapter, distribution of the RSI force inside the prosthetic socket of an otherwise 

healthy individual with TOA and its relationship to the type of prosthetic foot will be 

investigated.  

                                                
1 This chapter is adapted from [A. Mai, S. Commuri, C. P. Dionne, J. Day, W. J. J. Ertl, and J. L. Regens, 
"Effect of prosthetic foot on residuum-socket interface pressure and gait characteristics in an otherwise 
healthy man with transtibial osteomyoplastic amputation," Journal of Prosthetics and Orthotics, vol. 24, 
pp. 211-220, 2012]. 
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4.2 Objectives and hypotheses 

The primary purpose of this experimental study is to investigate the effect of different 

prosthetic feet on RSI force and temporal gait parameters of a healthy man with 

unilateral TOA. The specific objectives and hypotheses are as follows. 

Objective O4A: As the TOA procedure allows loading at the distal residuum, 

this study aims to quantify and compare the forces at the distal location to forces at 

other locations inside the socket during different gait activities. Hypothesis H4a states 

that during the same gait activity with the same prosthetic foot, there will be significant 

amount of forces detected at the distal area of the residuum. Hypothesis H4a will be 

examined by comparing the mean forces measured at the distal locations to the maximal 

mean forces at other locations during each gait activity. 

Objective O4B: Examine the effect of different prosthetic feet on RSI force 

distributions and temporal gait parameters. In order to achieve this objective, 

Hypothesis H4b states that between any two prosthetic feet, the peak (mean) forces 

observed at the same socket location during the same gait activity will be different. 

Support of the hypothesis H4b will suggest the effects of prosthetic feet on the RSI 

force distribution and their contributions in achieving desired socket loading profiles.  

4.3 Methods 

4.3.1 Subject 

The subject was a 43 year-old man (height – 1.91m, weight – 109.1 kg) with left TOA 

due to a traumatic event. He was otherwise healthy without comorbidity and gave 

informed consent to be a participant in this study. Following amputation and provision 
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of a prosthesis system, the subject returned to walking on various terrains without an 

assistive device.  

4.3.2 Protocol 

Gait: In this study, the subject performed the following six gait activities: walking 

forward on level ground with self-selected pace (FOR – Forward), walking on level 

ground with fast pace (FOB – Forward brisk), ascending and descending a staircase 

(UPS – Stair-up and DOS – Stair-down, 53o – 24 steps), and ascending and descending 

a ramp (UPR – Ramp-up and DOR – Ramp-down) designed for wheel chair access (8o 

inclination). 

Prosthesis: The subject’s prosthesis had an end-bearing, modified total surface bearing 

socket with 6mm AlphaTM Locking liner and BulldogTM Lock. The feet studied were the 

Renegade Foot® (Freedom Innovations© [116]), Venture FootTM (College Park© [117]), 

and Proprio Foot® (Össur [18]), all of the size 27cm. The Renegade Foot had a 

deformable carbon fiber spring-type keel to absorb shock and provide dynamic 

response. The Venture Foot provided significant energy return and had a multi-axial 

configuration that allowed maximal terrain compliance. Finally, the Proprio Foot was 

an advanced design with the ability to detect the walking terrain and automatically 

adjust the ankle angular position. During the study, the subject wore his own prosthetic 

socket for consistent RSI fit. All prosthetic feet were aligned by a certified prosthetist 

for consistency in fit and function. There were 3 trials in the study. In each trial, the 

subject wore one of three prosthetic feet and performed all gait activities. 

Measurement: Ultra-thin force resistive sensors (FlexiForce® A201, Section 2.7.3) 

were placed inside the socket to measure RSI force at the distal anterior (DA) point 
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under the residuum, middle posterior (MP) point at the middle level, and four points at 

the proximal level including proximal anterior (PA), proximal posterior (PP), proximal 

lateral (PL), and proximal medial (PM) of the residual limb (Figure 4.1). During each 

trial, voltage signals that represented the applied force values were captured by a data 

acquisition unit described in Section 2.7.4 (Figure 2.8). 

 

 
 

Figure 4.1. Placement of force sensors inside the prosthetic socket. 
 

4.3.3 Data analysis 

Preprocessing: Signals representing the applied forces were converted into force 

values, filtered by a low pass filter with the cut-off frequency of 3Hz, and normalized to 

100% of the gait cycle. For each activity, the gait cycle was divided into stance phase 

when there was loading on the residual limb, and swing phase when the amount of 

loading was negligible. 
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Calculation: The peak force, mean force, and mean sustained force MF80+ (i.e., average 

of all force values above 80% of the peak force) at each measured location over the 

stance phase were calculated. The mean sustained force MF80+ represented the sub-

maximal tissue loadings [54, 56]. For each measured location, the coefficient of 

variations of MF80+ was calculated from the MF80+ values of all six gait activities to 

quantify the variations of the sustained sub-maximal loading.  

Statistical analysis: Testing of hypotheses H4a and H4b was performed as follows.  

Hypothesis H4a was tested for 18 cases (6 gaits × 3 prosthetic feet) by two-sample, both 

tailed t-tests (alpha = 0.05). Results of these statistical tests would help evaluate the 

significance of the end-bearing capability at the distal residuum. 

Similarly, there were totally 216 cases (6 gaits × 2 parameters × 3 prosthetic feet = 36 

cases at each of 6 locations) two-sample, two-tailed t-tests (alpha = 0.05) for the 

hypothesis H4b. Hypothesis H4b was performed between peak (mean) force calculated 

from any two prosthetic feet at the same location during the same gait activity. 
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4.4 Results 

 

Figure 4.2. Residuum socket interface forces. 
 

Figure 4.2 shows average forces recorded at each of the sensor locations during the gait 

activities. The duration of each force curve was normalized to represent the 

corresponding stance phase. Swing phases are not shown since there was no contact 

during that duration.  

The mean sustained forces MF80+ at distal anterior and middle posterior locations during 

six gait activities are shown in Figure 4.3. In each column, the MF80+ at the distal 

anterior end-bearing location is represented by the light vertical bar while the dark 

vertical bar represents the MF80+ at the middle posterior.  Across different gait activities, 
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MF80+ at the distal sensor averaged at 74.8±17.2, 74.4±13.8, and 51.6±9.1 for Renegade, 

Venture, and Proprio foot, respectively. These measures at the middle posterior were 

4.9±0.6, 4.1±0.7, and 27.4±5.6 for the three feet. 

 

Figure 4.3. Mean sustained force MF80+ observed at distal anterior and middle 

posterior locations. 

 

Figure 4.4 shows the mean sustained force MF80+ at four proximal sensor locations. At 

the proximal anterior location, the mean sustained force MF80+ across all gait activities 

were 7.7±1.2, 6.9±2, 18.1±3.1 for Renegade, Venture, and Proprio foot, respectively. 

Similarly, the average MF80+ of other three proximal sensors (proximal posterior, 

proximal lateral, and proximal medial) were 5±0.9 (Renegade), 4.5±0.7 (Venture), and 

8.7±2.1 (Proprio). 
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Figure 4.4. Mean sustained force MF80+ observed at four proximal locations. 

 

The mean forces at the distal anterior location were significantly higher than the 

maximum of mean forces at other locations (in 17 out of 18 cases, except with Proprio 

Foot during walking up a ramp, Table 4.1). 

Table 4.1. Mean forces (N) at distal anterior location and maximum of 

mean forces at other locations 

Gait activity Renegade Foot Venture Foot Proprio Foot 

Forward 42.4±1.1 (4.9±0.1) 53.9±1.1 (4±0.2) 26.7±0.9 (19.9±1.2) 
Forward brisk 46.8±2.6 (4.7±0.1) 44.4±0.9 (4.1±0.2) 25.4±1.4 (22.2±1.2) 

Stair-up 57.9±1.3 (4.5±0.2) 34.1±1.7 (3.5±0.2) 44.2±1.3 (24.8±3) 

Stair-down 31.2±1.6 (3.8±0.3) 60.7±2.3 (3.9±0.2) 45±1.7 (12.6±2.1) 
Ramp-up 51.7±2.9 (3.7±0.2) 52±1.1 (3.2±0.1) 30.3±3 (29.3±1.3) 

Ramp-down 54.1±1.9 (3.9±0.2) 52.3±1.5 (3.5±0.1) 34.8±1.5 (22.7±6.6) 

Maximum of mean forces at other locations are inside the parentheses 

 

At the distal anterior location, the peak forces were significantly different between any 

two feet in each gait activity (Hypothesis H4b was supported in all 18 cases). The mean 

forces were also significantly different in 15 out of 18 cases when the subject wore 

different feet (except between Renegade Foot and Venture Foot during forward brisk, 

walking up and down a ramp, Table 4.2).  
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Table 4.2. Peak and mean forces (N) at distal anterior location 

Gait activity Peak force Mean force 
Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Forward 69.5±1.9 84.4±1.1 44±1.4 42.4±1.1 53.9±1.1 26.7±0.9 
Forward brisk 104±6.2 80.6±2.8 52.2±3.1 46.8±2.6 44.4±0.9 25.4±1.4 

Stair-up 92.6±2.8 58±3.1 66±1.9 57.9±1.3 34.1±1.7 44.2±1.3 
Stair-down 52.5±3.3 104.3±6.1 66.1±3.6 31.2±1.6 60.7±2.3 45±1.7 

Ramp-up 86.4±5.1 79.5±2.4 50.9±3.2 51.7±2.9 52±1.1 30.7±3.2 

Ramp-down 88.7±4 80.8±2.5 54.3±2.5 54.1±1.9 52.3±1.5 34.8±1.5 

The shaded boxes indicate the rejection of H4b. 

 

At the middle posterior location (Table 4.3), both peak and mean forces were 

significantly changed when the subject changed his feet (except between Renegade and 

Venture Foot during walking down a staircase).  

Table 4.3. Peak and mean forces (N) at middle posterior location 

Gait activity Peak force Mean force 
Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Forward 5.8±0.2 4.7±0.2 28.3±1.5 3.7±0.1 2.8±0.3 19.9±1.2 
Forward brisk 6.6±0.2 6.1±0.2 32.8±4.6 3.7±0.2 3.3±0.1 22.2±1.2 

Stair-up 5.9±0.2 4.2±0.5 32.8±3.8 3.1±0.2 2.2±0.3 24.8±3 

Stair-down 5±0.5 4.5±0.2 20±3.1 2.9±0.2 2.7±0.2 12.6±2.1 
Ramp-up 5±0.2 4.1±0.2 38.9±3 3.1±0.2 2.6±0.1 29±1.6 

Ramp-down 5.1±0.2 4.4±0.1 30.7±7.4 2.8±0.1 2.6±0.1 22.7±6.6 

The shaded boxes indicate the rejection of H4b. 

 

Similarly, Table 4.4 – Table 4.7 show the peak and mean forces at four proximal 

locations. At this level, different feet led to significant difference in peak forces (61 out 

of 72 cases) and mean forces (54 out of 72 cases). 
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Table 4.4. Peak and mean forces (N) at proximal anterior location 

Gait activity 

Peak force Mean force 
Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Forward 9.2±0.3 7.3±0.2 15.1±0.8 3.9±0.3 3±0.1 9.6±0.4 
Forward brisk 10.2±0.3 11.7±0.3 23±1.7 4.1±0.3 3.9±0.3 11±0.6 

Stair-up 8.9±0.7 5.4±0.8 17.6±2 3.4±0.4 2.5±0.6 9.9±1.2 
Stair-down 6.5±1.3 6.9±0.2 22.8±2.3 3.3±0.6 3.4±0.3 9.8±1 

Ramp-up 7.8±0.4 6.5±0.2 18.2±2 2.6±0.4 2.7±0.2 8.4±1.4 

Ramp-down 7.9±0.3 7±0.4 21.8±4.9 3±0.2 3±0.3 11.1±1 

The shaded boxes indicate the rejection of H4b. 

 

Table 4.5. Peak and mean forces (N) at proximal posterior location 

Gait activity 

Peak force Mean force 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Forward 7.4±0.3 5.2±0.1 8.5±0.7 4.9±0.1 2.9±0.2 5.3±0.6 
Forward brisk 7.8±0.3 6.4±0.3 9±0.8 4.7±0.1 3.2±0.1 5.6±0.6 

Stair-up 6.8±0.3 4.1±0.5 9.1±1.2 4.5±0.2 2.8±0.4 6.5±0.9 

Stair-down 4.7±0.6 5.8±0.3 8.8±0.8 3.4±0.5 3.8±0.2 5.3±0.6 
Ramp-up 5.6±0.3 4.6±0.1 13.7±1.1 3.7±0.2 3.1±0.1 9.2±0.7 

Ramp-down 6.4±0.3 5±0.2 8.9±2.1 3.9±0.2 3.4±0.2 6.2±1.9 

The shaded boxes indicate the rejection of H4b. 

 

Table 4.6. Peak and mean forces (N) at proximal lateral location 

Gait activity 

Peak force Mean force 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Forward 5.8±0.2 5.4±0.2 8.6±0.7 4±0.2 4±0.2 5.7±0.5 

Forward brisk 6.4±0.4 6.6±0.4 9.4±1 3.7±0.1 3.9±0.3 5.2±0.4 
Stair-up 5.1±0.3 3.6±0.3 13.2±1 3.4±0.2 2.5±0.1 9.9±0.9 

Stair-down 4.3±0.3 5.3±0.4 9.5±0.8 3±0.2 3.2±0.2 6.2±0.8 
Ramp-up 4.7±0.3 4.4±0.3 10.7±1.9 3.2±0.2 3±0.2 7.8±1.4 

Ramp-down 4.9±0.5 4.5±0.3 7.5±2.7 3.3±0.3 3.2±0.3 4.9±2.4 

The shaded boxes indicate the rejection of H4b. 
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Table 4.7. Peak and mean forces (N) at proximal medial location 

Gait activity 

Peak force Mean force 
Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Renegade 

Foot 

Venture 

Foot 

Proprio 

Foot 

Forward 4.6±0.3 5±0.2 6.4±0.5 2.4±0.2 2.8±0.2 4.1±0.5 
Forward brisk 5.6±0.4 5.6±0.2 9.9±0.8 2.7±0.2 3.5±0.2 6.4±0.9 

Stair-up 5.1±0.1 5.5±0.4 14.1±1.3 2.9±0.2 3.5±0.2 10.5±0.9 
Stair-down 5.6±0.3 5.2±0.4 6.3±0.8 3.4±0.4 3.5±0.2 3.6±0.4 

Ramp-up 4.9±0.3 4.3±0.3 13.7±1.9 2.8±0.3 3±0.3 9.5±0.7 

Ramp-down 5.1±0.2 4.3±0.3 10.5±2.9 2.7±0.2 2.9±0.2 7.6±2.5 

The shaded boxes indicate the rejection of H4b. 

 

Finally, Table 4.8 shows the stance and gait cycle durations during the gait activities. 

For each gait activity, the coefficient of variations of the stance duration was calculated 

as the ratio of the standard deviation of stance durations from three feet to their mean 

values. Similar calculation was used for the variations of the gait cycle durations. 

 

Table 4.8. Temporal gait parameters of each gait activity and each prosthetic 

foot 

Gait activity 

Stance duration (s) 
Stance time 
CV (%) 

Gait cycle duration (s) 
Gait cycle 
CV (%) 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Renegade 
Foot 

Venture 
Foot 

Proprio 
Foot 

Forward 0.84 0.86 0.71 10.1% 1.20 1.21 1.13 3.7% 
Forward brisk 0.70 0.72 0.62 7.8% 0.96 1.00 0.99 2.1% 
Stair-up 0.81 0.75 0.76 4.2% 1.14 1.13 1.12 0.9% 
Stair-down 0.72 0.65 0.64 6.5% 1.07 1.01 1.04 2.9% 
Ramp-up 0.78 0.77 0.78 0.7% 1.11 1.14 1.08 2.7% 
Ramp-down 0.78 0.78 0.68 7.7% 1.08 1.11 1.10 1.4% 

Average    6.2%    2.3% 

 

4.5 Discussion of the results 

4.5.1 Effect of prosthetic feet on distal anterior force 

First of all, significant forces which were recorded at the distal anterior location during 

all gait activities verified that end-bearing occurred with the TOA procedure. This result 

emphasized the outcome of the TOA procedure in allowing persons with below-knee 
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amputation to wear total surface bearing socket and bear significant amount of the body 

weight at the distal end of the residual limb. Such phenomena was not observed in 

persons with traditional transtibial amputation and patellar tendon bearing socket in 

which the body weight was mainly distributed around the knee joint [2, 113]. As seen in 

Figure 4.2, the RSI forces at the distal anterior sensor measured were greater compared 

to other locations. This was seen with all prosthetic feet during all gait activities. Figure 

4.3 and Figure 4.4 show that the mean sustained force MF80+ was also higher at the 

distal anterior location compared to any other studied locations inside the socket.  

Moreover, such end-bearing was not only affected by the type of gait activities but also 

to some extend dependent on the type of prosthetic feet. 

Table 4.1 shows the mean forces measured by the distal anterior sensor and test results 

of hypothesis H4a. Hypothesis H4a was supported in 17 out of 18 cases except during 

walking up a ramp with the Proprio Foot, when the mean forces at the distal anterior 

location was similar to the greatest mean force recorded at other locations in the socket 

(30.3±3 and 29.3±1.3). As shown in Table 4.2, during the gait Forward, different mean 

forces were observed when using different prosthetic feet. However, no appreciable 

differences were observed between Renegade Foot and Venture Foot during Forward 

brisk, Ramp-up, and Ramp-down gait activities. All failed cases involved the 

comparison between Renegade and Venture feet while the statistical tests involving 

Proprio Foot were supported. These results might be due to the adaptation nature of the 

Proprio Foot, which placed it in a different configuration at the Heel Strike moment 

compared to other feet.  
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4.5.2 Effect of prosthetic feet on middle posterior force 

The RSI forces at the middle posterior location were similar in the tests conducted when 

the subject was using the Renegade Foot and the Venture Foot, but significantly higher 

when using the Proprio Foot (Figure 4.2, Figure 4.3). This effect of Proprio Foot on 

middle posterior location was in agreement with the results reported by Wolf et.al.,[20]. 

The peak and mean forces observed at this location (Table 4.3) were both characteristics 

of the foot used and validated hypothesis H4b, i.e., the observed values when the 

subject wore the Proprio Foot were distinct from those seen when either the Renegade 

or the Venture Foot was used. Even when Renegade and the Venture Foot were 

compared, the observed forces at the middle posterior location on the RSI were distinct 

in a majority of the test cases and the hypothesis H4b was validated in all but two 

instances when the subject was descending the stairs (Stair-down). Similar to hypothesis 

tests at the distal anterior location, failed statistical tests (H4b was rejected) at the 

middle posterior did not involve Proprio Foot. Again, the adaptation mechanism of the 

Proprio Foot might have had a distinct effect on the force observed at this location. 

Additionally, there was less variations in mean sustained force (CV= 12.1%) using the 

Renegade Foot than the Proprio Foot (CV = 20.5%) when the gait activities were 

switched. 

4.5.3 Effect of prosthetic feet on the force at the proximal locations 

During all gait activities with each of the feet considered in this study, the observed 

forces at the proximal level were similar for all locations with slightly higher values in 

the proximal anterior point (Figure 4.2 and Figure 4.4). When testing for different peak 

forces at the proximal locations, hypothesis H4b was rejected in fewer cases compared 
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to when testing for different mean forces. Between any two prosthetic feet, significantly 

different peak forces were detected in 61 out of 72 cases, while significantly different 

mean forces were detected in 54 out of 72 cases (Table 4.4 – Table 4.7). These 

observations suggested that while different prosthetic feet produced similar mean forces 

at the proximal level during the entire stance phase, they still had different effects on the 

peak forces. Greater instances of failed statistical tests were observed using data from 

the proximal level (anterior: 5 cases; posterior: 3 cases; lateral: 13 cases; medial: 8 

cases) compared to data from distal anterior (3 cases) and middle posterior (2 cases). 

Furthermore, at the proximal level, failed tests also involved Proprio Foot, which was in 

contrast to the outcomes of the hypothesis tests using data from other sensors (middle 

and distal). This implied that the adaptation mechanism in the Proprio Foot had less 

effect on the proximal contact forces than the forces at distal anterior end-bearing and 

middle posterior locations. The difference in prosthesis mechanism might also have 

more effect on the force distribution along the anterior-posterior direction than the 

lateral-medial direction. There was greater number of failed tests along the lateral-

medial direction (proximal lateral: 13 cases; proximal medial: 8 cases) than failed tests 

along the anterior-posterior direction (proximal anterior: 5 cases; proximal posterior: 3 

cases).  

4.5.4 Effect of prosthetic feet on temporal gait parameters 

In general, differences in prosthetic feet had more effect on the stance duration than on 

the gait cycle durations. During walking on level ground with normal speed (Forward), 

while the gait cycle durations of three feet varied only by 3.7%, the stance duration 

variation was 10.7% (Table 4.8). By taking the average of all gait activities, different 
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prosthetic feet varied the stance durations by 6.2% while the gait cycle durations 

changed by only 2.3% (Table 4.8). This implied that wearing different prosthetic feet 

could alter the tissue loading time of the residual limb with little changes on the gait 

cycle.  

During walking on the level ground (Forward and Forward brisk) with the Proprio 

Foot, the stance phase was shorter compared to when using the Renegade or Venture 

Foot (Table 4.8). The stance/gait ratio of the Proprio Foot was also closed to the gait of 

typical non-amputees (~62%) while that ratio of Renegade or Venture Foot was higher 

(~71%). This might be beneficial from the dorsiflexion of the controlled ankle joint 

during the swing phase to create toe clearance and plantarflexion before ground contact 

[118].  

When walking on stairs, the stance duration was higher with the Renegade Foot 

compared to the others (Table 4.8). It was possible that the multi-axis functions of the 

Venture Foot and Proprio Foot provided the participant with more flexibility to walk on 

an unconventional terrain as stairs.  

Finally when walking up a ramp, differences in prosthetic feet did not affect the stance 

or gait cycle durations. On the other hand, active plantarflexion of the ankle joint of the 

Proprio Foot before ground contact might have contributed to the shorter stance time 

during ramp descending. 

4.6 Conclusions 

The study reported in this chapter provided evidence that the choice of prosthetic feet 

impacted force distributions inside the socket during six gait activities in an otherwise 
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healthy person who had undergone a TOA procedure. Significant end-bearing, which is 

an expected outcome of the TOA procedure, was observed in all gait activities.  

While nominal forces were observed in the proximal locations, greater forces were 

observed at the distal anterior location of the socket (supported by 17 out of 18 

statistical t-tests). Furthermore, at the same socket location during the same gait 

activity, different peak (mean) forces were observed between any two prosthetic feet 

(182 out of 216 statistical t-tests confirmed). Each prosthetic foot also uniquely affected 

the temporal gait parameters. This experimental study showed that the residuum socket 

interface force, which related to the comfort and long-term health of amputees, and the 

gait parameters were the function of the prosthetic feet.  

Results of this study provides credence to the principles motivating the design of 

prosthetic feet, as well as the role of the dynamic response characteristics of these feet 

in generating desired distribution of force inside the socket. Taken as a whole, these 

results indicate that for the same socket design, loading characteristics inside the socket 

vary with changes in both the selected gait and the type of prosthetic feet used by the 

subject. Although this study was restricted to one individual, the results highlight the 

important role of prosthesis design in modifying the loading response and providing 

desired residuum socket interface force distributions. 
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Chapter 5: Contraction of Residual Muscles in Individuals with Below-

knee Amputation 

The relationships between the contraction of the residual below-knee muscles and the 

variations of the residuum socket interface forces in individuals with transtibial 

osteomyoplastic amputation during gait have not been addressed. In this chapter, an 

investigation into the restoration of the residual tibialis anterior and gastrocnemius 

muscles in persons with unilateral TOA will be presented. Ten subjects will perform 

three gait activities including 2-minute level ground walking with self-selected speed, 2-

minute level ground walking with fast speed, and 25-feet level ground walking while 

carrying an additional weighted box. Statistical analysis will be carried out to examine 

the relationships between activities of the considered muscles to the gait cycle and the 

contact forces inside the prosthetic socket2. 

5.1 Background 

As the expected outcome of the TOA procedure, individuals with TOA can put more 

body weight on the distal area (end-bearing) of the residuum and actively contract their 

residual muscles voluntarily and during gait activities. To the best of our knowledge, 

the relationships between the contraction of the residual below-knee muscles and the 

variations of the RSI forces in individuals with TOA during gait have not been 

addressed. 

Studies on the relationships between residual muscle activities and residuum socket 

interface force in the literature were limited to people with above-knee amputation 

                                                
2 This chapter is adapted from [A. Mai, S. Commuri, C. P. Dionne, J. Day, W. J. J. Ertl, and J. L. Regens, 
"Residual muscle contraction and residuum socket interface force in men with transtibial osteomyoplastic 
amputation," Journal of Prosthetics and Orthotics, vol. 25, pp. 151-158, 2013]. 
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[119]. Most studies on gaits of people with below-knee amputation investigated the 

activities of proximal muscles above the knee (e.g., vastus medialis and biceps femoris) 

[15, 106, 108]. There was only a few studies on the activation of residual below-knee 

muscles (e.g., tibialis anterior and gastrocnemius) during gait [69, 120, 121]. 

Furthermore, recent trends of using electromyography signals from residual muscles in 

recognition of locomotion modes [70] and in control of active prostheses [100] 

motivated the effort to retrieve and understand the contraction of these muscles. 

In this chapter, the contraction of the residual muscles and their relationships with the 

RSI force variations in a group of otherwise healthy individuals who had undergone the 

transtibial osteomyoplastic amputation procedure are investigated. Motivated by the 

desired outcomes of the TOA procedure namely limb stabilization, end-bearing, and 

restoration of residual muscle contraction, this study aims at quantitative verification of 

the effectiveness of the TOA procedure. 

5.2 Objectives and hypotheses 

This study investigates the similarities between the contraction profiles of the residual 

tibialis anterior and residual gastrocnemius muscles of the residual limb and the same 

muscles from persons without below-knee amputation. The following objectives and 

hypotheses are developed. 

Objective O5A: Investigate whether the residual tibialis anterior and residual 

gastrocnemius muscles are active during the gait of subjects with TOA. Hypothesis 

H5a states as there will be significant difference between the maximum and the 

minimum contraction levels from each muscle. If hypothesis H5a is supported for both 
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residual muscles, the expected outcomes of the TOA procedure in reestablishment of 

the length-tension relationship in these muscles will be confirmed. 

Objective O5B: Investigate whether the residual tibialis anterior and 

gastrocnemius muscles contract at the designated gait phases as compared to non-

amputee subjects. The relationships between gait phases and the RSI force were 

observed in previous studies [42, 122]. Therefore, the correspondence between residual 

muscle contraction and gait phases will be determined by studying how the muscle 

signals related to the RSI force. Hypothesis H5b1 states that the residual tibialis anterior 

muscle will contract more when the distal RSI force shows the highest variations (early 

and late stance) than when the distal RSI force shows the lowest variations (Mid-

stance). On the other hand, Hypothesis H5b2 states that the residual gastrocnemius 

muscle will contract less when the distal RSI force shows the highest variations (early 

and late stance) than when the distal RSI force shows the lowest variations (Mid-

stance). Specifically, contraction profiles of the residual tibialis anterior and 

gastrocnemius muscles in individuals with unilateral TOA will be similar to these 

muscles from non-amputees if the hypotheses H5b1 and H5b2 are respectively 

supported.  

5.3 Methods 

5.3.1 Subjects 

Experimental protocol was approved by the Institutional Review Board at the 

University of Oklahoma Health Sciences Center for protection of human subjects. Ten 

otherwise healthy men with unilateral transtibial osteomyoplastic amputation consented 

to participate in this study (Table 5.1). All subjects wore their own prosthetic systems 
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(socket and prosthetic foot) during the tests, therefore the distal RSI force and muscle 

activities quantified in this study would be similar to their values during daily activities. 

A certified prosthetist was available onsite to assure socket alignment and fit.  

 

Table 5.1. Subject information 

Subject 
Amputation 

side 

Age 

(year) 
Height (m) 

Weight 

(kg) 

Length of 

residual limb 

(cm) 

Years since 

amputation 

S1 L 40 1.78 97.1 22 1.5 

S2 L 55 1.78 93.0 13 2 

S3 R 50 1.80 111.1 18 3 

S4 L 38 1.83 79.4 16 3.5 

S5 L 50 1.83 122.5 18 7.5 

S6 L 53 1.75 72.6 16 1.5 

S7 R 27 1.83 90.7 20 1 

S8 R 53 1.75 72.6 16 6 

S9 L 30 1.88 93.9 24 3 

S10 R 45 1.70 89.8 27 7 

Mean  44.1 1.79 92.3 18.9  

Std.  10.0 0.051 15.8 4.3  

 

5.3.2 Protocol 

Gait: During the study, the participants performed common work-related gait activities 

including 2-minute level ground walking with self-selected speed (Forward), 2-minute 

level ground walking with fast speed (Forward brisk), and 25-feet level ground walking 

while carrying a box with weight at capacity (Weight carrying). 

RSI force measurement: Residuum socket interface force at the distal residuum was 

measured using 4 ultra-thin FlexiForce® A201 piezo-resistive sensors (Section 2.7.3). 

These sensors were placed at anterior, posterior, medial, and lateral locations at the 

distal end of the prosthetic socket of each individual (Figure 5.1a). Placement and 

calibration of these force sensors followed the procedure described in Section 2.7.3. 
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Contact forces captured by these four distal sensors were used to confirm the presence 

of distal loading as the result of the TOA procedure. 

Electromyography: Activities of the tibialis anterior and gastrocnemius muscles in 

both amputated and intact limb of the subjects were measured using disposable surface 

stimulating and recording Ag/AgCl electrodes (square, sensing area of 1.44cm2) [103]. 

A pair of EMG electrodes was placed on each muscle (Figure 5.1b) as described in 

Section 2.7.3.  

Signals representing the applied forces and muscle activities were captured by the gait 

monitoring device OUPAM (Section 2.7.4) at the rate of 1000 Hz. During the tests, 

each subject also wore a gait monitoring device called Intelligent Device for Energy 

Expenditure and Physical Activity (IDEEA®) by MiniSunTM [82] (Section 2.7.3). Gait 

parameters obtained by the IDEEA® system were used to validate the stance and swing 

phases of the gait detected using distal RSI force measurements. 

  

      

                          (a)                                                                (b) 

Figure 5.1. (a) Placement of force sensors inside the socket; (b) Placement of EMG 

electrodes on residual tibialis anterior muscle. 
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5.3.3 Data analysis 

During the stance phase, positive forces were observed at the distal RSI, whereas 

negligible forces were recorded during the swing phase of the gait. The duration of the 

stance phase was then normalized in time domain and represented by 120 data points. 

Stance phase was further divided into 10 equal segments with each segment contained 

12 data points and corresponded to 10% of the stance phase [123].  

Distal residuum socket interface force: Signals representing the applied forces were 

filtered using a first-order low pass filter with the cut-off frequency of 3Hz to eliminate 

high frequency noises without affecting the signal content. The total distal RSI force 

was generated by adding up the forces measured at four locations (i.e., anterior, 

posterior, medial, lateral) at the bottom of the residual limb (Figure 5.1a). The distal 

force curve was then normalized to represent 100% of the stance phase with 120 data 

points used. For each segment as defined above, the variation of the distal RSI force, 

FVAR(%), was calculated as the percentage between the standard deviation and the mean 

value of 12 data points contained in that segment. Higher FVAR value in a particular 

segment implied larger variations in the force transferred between the socket and the 

distal end of the residual limb. 

Electromyography: Each EMG signal was processed through a linear envelope 

constructed with a full-wave rectifier followed by a low pass filter with the cut-off 

frequency of 8Hz [28]. The Root Mean Square curve of the filtered signal, ERMS, was 

then obtained using a symmetric moving window averager of 150ms wide (±75ms) and 

normalized to represent the stance phase (with 120 data points). For each subject, the 

EMG curve of each muscle during each gait activity was normalized by the maximal 
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ERMS value obtained from the same muscle of the same subject throughout the study. 

The resulted signal was then divided into 10 equal segments with each segment 

corresponded to 10% of the stance phase (12 data points in each segment) [123]. 

Activation level of each muscle in each segment was represented as the average of the 

12 data points. For each subject and during each gait activity, 10 values of normalized 

ERMS in 10 segments (i.e., one ERMS value in each segment) were calculated. 

Statistical analysis: Hypothesis H5a was tested by two-sample t-tests (two-tailed, 

paired, alpha = 0.05) which looked for significant difference between the maximum and 

minimum ERMS values of each residual muscle. In addition, maximum and minimum 

values of the distal RSI force variation FVAR were obtained for each subject during each 

gait activity. Hypotheses H5b1 and H5b2 were then tested by two-sample t-tests (one-

tailed, alpha = 0.05) using the residual tibialis anterior and gastrocnemius ERMS values 

which were obtained from the segments where the maximum and minimum FVAR were 

observed. 

5.4 Results 

Variations in residuum socket interface force: Average normalized distal RSI forces 

are shown in the top 3 plots in Figure 5.2. Each curve was normalized by the maximum 

distal RSI force observed throughout three tests. Table 5.2 reports the minimum and 

maximum RSI force variations FVAR and the time durations when they occurred.  
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Table 5.2. Minimum and maximum distal residuum socket interface force 

variations FVAR(%) 

Subject 

Forward Forward  Brisk Weight Carrying 

Lowest 

variation 

Highest 

variation 

Lowest 

variation 

Highest 

variation 

Lowest 

variation 

Highest 

variation 

FVAR 

(%) 

At (% 

stance) 

FVAR 

(%) 

At (% 

stance) 

FVAR 

(%) 

At (% 

stance) 

FVAR 

(%) 

At (% 

stance) 

FVAR 

(%) 

At (% 

stance) 

FVAR 

(%) 

At (% 

stance) 

S1 1.24 50-60 54.4 80-90 1.27 50-60 77.1 90-100 0.78 50-60 81.7 0-10 

S2 2.86 80-90 71.2 0-10 2.58 70-80 65.2 90-100 2.65 20-30 70.8 0-10 

S3 3.02 70-80 91.2 90-100 1.64 20-30 77.0 90-100 2.04 30-40 58.9 90-100 

S4 2.79 70-80 67.8 90-100 4.94 70-80 78.3 90-100 0.49 50-60 65.0 0-10 

S5 0.82 50-60 68.8 0-10 1.17 50-60 66.0 0-10 2.31 30-40 75.4 0-10 

S6 2.88 70-80 73.6 90-100 6.61 70-80 81.3 90-100 0.60 30-40 79.4 90-100 

S7 3.00 60-70 73.0 0-10 1.34 40-50 69.4 90-100 3.71 60-70 77.2 90-100 

S8 7.96 10-20 82.7 0-10 5.57 10-20 77.2 80-90 3.04 20-30 81.4 90-100 

S9 1.52 50-60 74.8 90-100 1.64 60-70 78.0 0-10 0.74 60-70 70.6 0-10 

S10 1.00 50-60 32.4 90-100 3.11 20-30 49.0 90-100 1.02 30-40 61.9 90-100 

 

 

During Forward gait, the minimum and maximum FVAR were 2.71±2.05% and 69±16%, 

respectively. During Forward brisk gait, FVAR ranged from 2.99±2.01% to 71.8±9.78%. 

Finally, FVAR varied from 1.74±1.16% to 72.2±8.17% during the Weight carrying. For 

all three gait activities, maximum RSI force variations were observed at either the first 

10% or the last 20% of the stance phase. In contrast minimum RSI force variations 

occurred predominantly (except subject S2 during Forward gait) during 10-80% of the 

stance phase. 
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Figure 5.2. Normalized distal residuum socket interface force, tibialis anterior, and 

gastrocnemius EMG. 
 

Residual muscle activities: The average normalized electromyography signals of the 

tibialis anterior and gastrocnemius muscles of both amputated side and intact side of 

participants are shown in bottom 6 plots in Figure 5.2. It can be seen that for the 

subjects in this study, tibialis anterior and gastrocnemius muscles of both limbs 

contracted at the highest levels during the Forward brisk gait. There were significant 

differences between the maximum ERMS and the minimum ERMS of the residual TA 

muscle (Table 5.3): 0.94±0.046 compared to 0.04±0.035 (p(H5a was rejected) < 0.001), 

0.96±0.027 compared to 0.014±0.005 (p(H5a was rejected) < 0.001), and 0.91±0.079 

compared to 0.033±0.021 (p(H5a was rejected) < 0.001) for Forward, Forward brisk, 

and Weight carrying, respectively. Also from Table 5.3, there were significant 

differences between the maximum and minimum ERMS of the residual GAS muscle 
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during the gaits Forward (0.93±0.058 compared to 0.05±0.032; p(H5a was rejected) < 

0.001), Forward brisk (0.97±0.031 compared to 0.028±0.029; p(H5a was rejected) < 

0.001), and Weight carrying (0.90±0.061 compared to 0.031±0.032; p(H5a was 

rejected) < 0.001). 

Table 5.3. Normalized tibialis anterior and gastrocnemius ERMS  

Residual tibialis anterior 

Gait Minimum ERMS Maximum ERMS p(H5a was rejected) 

Forward 0.04±0.035 0.94±0.046 <0.001 
Forward brisk 0.014±0.005 0.96±0.027 <0.001 

Weight carrying 0.033±0.021 0.91±0.079 <0.001 

Residual gastrocnemius 

Gait Minimum ERMS Maximum ERMS p(H5a was rejected) 

Forward 0.05±0.032 0.93±0.058 <0.001 
Forward brisk 0.028±0.029 0.97±0.031 <0.001 

Weight carrying 0.031±0.032 0.90±0.061 <0.001 

 

Relationship between the residual muscle activities and RSI force variations: Table 

5.4 reports the results of testing hypotheses H5b1 and H5b2 for the relationships 

between ERMS values at instances corresponding to the lowest and highest RSI force 

variations. When the RSI force variation was maximum (highest FVAR), the residual TA 

muscle ERMS was 0.84±0.14, 0.72±0.18, and 0.7±0.217 compared to 0.19±0.23 (p(H5b1 

was rejected)<0.001, Forward), 0.4±0.39 (p(H5b1 was rejected)≈0.0187, Forward 

brisk), and 0.30±0.269 (p(H5b1 was rejected)≈0.001, Weight carrying) when the lowest 

FVAR occurred. On the other hand, hypothesis H5b2 was not supported in any of gait 

activities considered in this study. The probability of rejecting the hypothesis H5b2 was 

high for all three walking conditions. Especially during the Forward gait, the hypothesis 

H5b2 was completely rejected.  
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Table 5.4. Normalized tibialis anterior and gastrocnemius ERMS at the lowest 

and highest variation FVAR 

Residual tibialis anterior 

Gait ERMS at lowest FVAR ERMS at highest FVAR p(H5b1 was rejected) 

Forward 0.19±0.23 0.84±0.14 <0.001 
Forward brisk 0.4±0.39 0.72±0.18 0.0187 

Weight carrying 0.30±0.269 0.7±0.217 0.001 

Residual gastrocnemius 

Gait ERMS at lowest FVAR ERMS at highest FVAR p(H5b2 was rejected) 

Forward 0.20±0.16 0.79±0.2 1 

Forward brisk 0.36±0.35 0.61±0.268 0.958 
Weight carrying 0.25±0.27 0.60±0.261 0.9956 

 

5.5 Discussion of the results 

5.5.1 Distal residuum socket interface force variations 

In general, the distal RSI forces had the highest variation during the first 10% of the 

stance phase (early stance) and the last 20% of the stance phase (late stance) whereas 

the lowest variation was observed during 20-80% of the stance phase (Mid-stance). The 

only exception occurred with subject S2 where the distal RSI force did not increase in 

the late stance phase of the Forward gait. As can be observed from Table 5.1, subject 

S2 had the shortest residuum limb as well as the smallest residuum-limb/body-height 

ratio among all subjects in this study.  

The stance and gait durations extracted from the distal RSI forces agreed with the 

temporal gait parameters obtained by footswitches placed under the prosthetic foot. 

Data collected independently using the gait monitoring system IDEEA® (MiniSunTM) 

[82] validated the stance and the gait events. For the subjects in this study, the temporal 

differences between the two systems (OU-PAM and IDEEA®) were 0.051±0.029s and 

0.037±0.024s for the stance phase and gait cycle durations, respectively. This implied 

that the RSI force could distinguish the stance and swing durations, therefore related to 
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the phases of the gait. For that reason, contraction profiles of the residual tibialis 

anterior and gastrocnemius muscles during the gait cycle could be analyzed through the 

relationships with the distal RSI force. 

5.5.2 Residual muscle contraction 

Contraction profiles of residual TA and GAS muscles (Figure 5.2) were in agreement 

with the preliminary results in [120, 121], which confirmed contraction of these muscles 

following a myoplasty procedure. Through investigation of hypotheses H5a (Table 5.3), 

the contractions of residual TA and GAS muscles were confirmed, even though the 

activation profile of the residual GAS muscle was not similar to that of the GAS muscle 

from the intact limb. 

5.5.3 Residual tibialis anterior activation profile 

The residual tibialis anterior was more active during early and late stance (when the RSI 

force showed highest variation) compared to Mid-stance (when the RSI force showed 

lowest variation) (Table 5.4). These relationships indicated the correspondence of the 

residual TA muscle activity to the phases of the gait cycle. This result supported the 

expectation of the TOA procedure in restoration of residual muscle contraction [38].  

5.5.4 Residual gastrocnemius activation profile 

Although the residual GAS muscle was active and its contraction was measureable 

(Figure 5.2 and Table 5.3), its activation profile was not similar to the intact limb GAS 

muscle (Figure 5.2) or GAS muscles from non-amputee subjects (as seen in Figure 2.3). 

This implied that the residual GAS muscle activities did not relate to the RSI force 

variations and gait phases in an expected manner. Instead, the residual GAS muscle 

tended to contract in a manner similar to the residual TA muscle which was more active 
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during early and late stance and less active during Mid-stance of the gait. This might be 

due to the co-contraction of the residual TA and GAS muscles in an effort to stiffen the 

limb inside the prosthetic socket. These co-contractions could be individuals’ effort to 

enhance the stability of the gait, as observed in the literature [69]. 

5.6 Conclusions 

In this chapter, the contraction of residual tibialis anterior and gastrocnemius muscles 

during work-related gaits in subjects with unilateral transtibial osteomyoplastic 

amputation was examined. Analysis of experimental data confirmed the presence of 

loading at the bottom of the residual limb and restoration of length-tension relationship 

of residual muscles. Both of these outcomes were expected results attributable to the 

TOA procedure. Furthermore, it was shown that the contraction of residual tibialis 

anterior related to the phases of the gait through the variations in distal RSI forces. Such 

relationships were not observed in the residual gastrocnemius muscle activities. Instead, 

there were evidences of the co-contractions of the tibialis anterior and gastrocnemius 

muscles on the residual limb. Further research along this line would be beneficial to the 

design of prosthetic sockets and establishment of possible exercise regimen during 

rehabilitation [124]. 
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Chapter 6: Potential of Residuum Socket Interface Forces and 

Residual Muscle Activities in Recognition of Amputee Gait 

In order to properly control the prosthetic feet to adapt to the changing gait, it is 

necessary to recognize the characteristics such as gait type, walking speed, and terrain. 

The problem of identification of the type of gait of individuals with below-knee 

amputation using the RSI force and EMG signals captured from the residual muscles 

will be presented in this chapter.  

A group of nine subjects with unilateral TOA will perform 3 level ground walking gaits 

with preferred slow, normal, and fast speeds. Contact forces and residual muscle 

activities will be measured from the individuals during the gait. Statistical analysis will 

be carried out to examine the effect of changing walking speeds on the RSI force and 

residual muscle activities. An artificial neural network (ANN) will then be trained with 

the parameters calculated from the RSI force and residual muscles to recognize the gait 

with different walking speeds. It is anticipated that the RSI forces and residual muscle 

activities will vary as the walking speed changes and therefore can be used for 

identification of the gait of the individuals. 

6.1 Background 

In the development of advanced below-knee prosthetic feet, there is a common trend in 

replicating the biomechanical characteristics and specifically the stiffness profile and 

movement of the biological ankle joint [77, 93, 95]. Research on biomechanics of the 

human ankle joint has indicated that the ankle stiffness profile varies with the changes 

in walking speed [34]. In addition, activities of the muscles that control the biological 

ankle joint also depend on the walking speed [125]. Wearing prosthetic feet which 



77 

cannot adapt to the users’ intent also requires below-knee amputees to develop 

strategies to compensate for the lack of ankle movement by increasing muscle 

contractions [15, 65] which lead to additional energy consumption during gait [16]. 

Therefore, in order to design prosthetic feet which can adapt their behaviors to the gait 

demands, it is necessary to recognize the gait conditions such as gait type, walking 

speed, and terrain [77, 126]. 

Footswitches and kinematic-based sensors have been used in identification of different 

gait and walking terrain [94] in order to select proper control commands for the 

prosthetic feet. The general rules for recognition of gait using these measurements 

usually assume that movements of the amputees’ limb during gait are similar to non-

amputees. However, the general rules are not guaranteed to be applicable for individuals 

with different gait characteristics or different level of amputation and activity. 

Recently, activities of the residual muscles inside the socket of below-knee amputees 

have started drawing attention. Residual muscle contraction has been captured in order 

to recognize the movement of the upper limb [127] or above-knee residuum [128]. It 

has been shown that the EMG signals can be measured and have potential for used in 

recognition of gait and control of prosthetic feet [67, 68]. That approach highly depends 

on the availability, measurability and reliability of the signals from residual muscles. 

Furthermore, sophisticated measurement devices and careful preparation of the skin 

surfaces are required in order to obtain good EMG signals from the muscles.  

Studies on the dependence of the RSI force and residual muscle activities on walking 

speeds in persons with unilateral below-knee amputation are very little. Most of the 

studies on RSI forces aimed at investigating the influence of socket concepts [45, 114, 
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115], socket fit and alignment [54, 112], or socket materials [113]. Majority of 

researches on muscle activities in below-knee amputees did not address the variations of 

residual muscles below the knee (e.g., tibialis anterior and gastrocnemius) when the 

walking speed changed. 

6.2 Objectives and hypotheses 

This chapter aims to investigate the dependence of the RSI force and activities of 

residual muscles inside the prosthetic socket on the walking speed. Objectives and 

hypotheses of this study are as follows. 

Objective O6A: Show that during gait on level ground, the RSI force and residual 

muscle EMG of subjects with TOA depend on the walking speed. Hypothesis H6a 

states that for each subject, changes in walking speed will lead to significant difference 

in both RSI forces and residual muscle activities. Hypothesis H6a will be verified by 

multiple comparisons between the parameters calculated from the RSI force (mean 

force, peak force, force-time integral) during 3 walking speeds (slow, normal, and fast). 

Similarly, root mean square values and signal-time integral of the residual muscle EMG 

signals will be compared between 3 gaits. The results will be prerequisites for 

achievement of the next objective. 

Objective O6B: Investigate the potential of using parameters calculated from the 

RSI force and residual muscle EMG in recognition of gaits with different walking 

speeds. Selected parameters which are calculated from the RSI force or EMG signals 

will be used to train an artificial neural network to recognize the type of gait of each 

participant. 
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6.3 Methods 

6.3.1 Subjects 

This study included nine male subjects with unilateral transtibial osteomyoplastic 

amputation (age: 40±12years; weight: 94.5±15.5kg.; height: 1.83±0.05m) with at least 6 

months following amputation surgery and had active lifestyles (Table 6.1). All subjects 

were capable of walking independently without using any assistive walking devices. 

They wore total surface bearing socket and their own prostheses during the study. The 

following protocol was approved by the Institutional Review Board at the University of 

Oklahoma Health Sciences Center for protection of human subjects. Formal consent 

was obtained from each subject prior to the study. 

6.3.2 Protocol 

Gait: In order to assess the dependence of the RSI force and EMG activity on the 

walking speed, each subject performed three gaits labeled slow, normal, and fast along a 

hallway for 2 minutes. Each subject could select comfortable and safe walking speeds. 

Measurement: RSI forces were measured from the participated subjects using ultrathin 

force sensors (FlexiForce® A201, [102], Section 2.7.3) which were placed inside the 

prosthetic socket at 10 locations allocated in 3 levels: end-bearing distal level (anterior, 

medial, posterior, lateral), middle level (anterior, medial, posterior, lateral), and 

proximal level (anterior, posterior) (Figure 6.1). EMG signals were collected from 

residual tibialis anterior and gastrocnemius muscles of the residual limb by placing 

disposable surface electrodes [103] on the corresponding muscle compartments of each 

subject. For each muscle, a pair of electrodes was placed ~2.5cm apart from each other 

along the muscles’ belly (Figure 6.1 and Section 2.7.3). Signals representing the applied 
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RSI force and muscle contractions were captured at the rate of 1000Hz. Signal 

conditionings such as amplification and filtering were done by a portable gait 

monitoring device worn by subjects during gait (OUPAM, Section 2.7.4). 

 

 

(a) 

      

                               (b)                                                                     (c) 

Figure 6.1. (a) Locations of force sensors inside the socket; (b) EMG electrodes on 

the residual tibialis anterior and (c) gastrocnemius muscles. 
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6.3.3 Data analysis 

Preprocessing: Low-pass filters with cut-off frequency of 3Hz were applied to signals 

representing the applied forces to remove the noises generated by the electronics 

components and motion artifacts. The amplified EMG signals were preprocessed by a 

linear envelope (full-wave rectifier and low-pass filter, with cut-off frequency of 8Hz) 

and a symmetric moving window averager (±75 milliseconds). For each subject, the 

RSI force and muscle EMG curves were normalized by the corresponding maximal 

values observed from 3 walking gaits. 

Calculation: From the normalized RSI forces, Fm  – the mean force during each gait 

cycle, Fp  – the peak force during each gait cycle, and Fa  – the force-time integral 

during each gait cycle, were calculated. For each normalized muscle signal, the 

following parameters were calculated: Em  – root mean square of the signal during each 

gait cycle, and Ea  – the signal-time integral during each gait cycle.  

Statistical analysis: Since the RSI forces were measured at 10 locations inside the 

socket and EMG signals were measured from 2 residual muscles, each walking speed 

was represented by 34 parameters (10 RSI locations × 3 parameter-per-RSI-location + 2 

muscles × 2 parameter-per-muscle). A multiple comparison routine (significant level 

alpha of 0.05) provided by The Mathworks® Statistical ToolboxTM [129] was executed 

to compare parameters from different walking speeds and thereby verifying the 

hypothesis H6a. Results from the multiple comparisons would help determine whether a 

particular parameter was significantly dependent on the walking speed.  
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6.4 Results 

Significant differences were found between walking speeds of the slow gait 

(0.90±0.08m/s), normal gait (1.31±0.14m/s), and fast gait (1.73±0.21m/s) as shown in 

Table 6.1. 

 

Table 6.1. Subject information and walking speeds 

Subject 
Age 

(year) 

Weight 

(kg) 

Height 

(m) 

Walking speed (m/s) 

Slow Normal Fast 

S1 56 93.0 1.77 0.97 1.19 1.69 

S2 39 86.2 1.82 0.94 1.17 1.46 

S3 47 111.1 1.93 1.00 1.34 1.82 

S4 51 124.7 1.82 0.79 1.34 1.76 

S5 54 72.6 1.77 0.88 1.24 1.64 

S6 31 94.3 1.87 0.96 1.53 2.00 

S7 25 93.0 1.82 0.94 1.37 1.91 

S8 32 93.9 1.82 0.77 1.11 1.36 

S9 29 81.6 1.82 0.83 1.46 1.90 

Mean±Std 40±12 94.5±15.5 1.83±0.05 0.90±0.08 1.31±0.14 1.73±0.21 

 

Typical normalized RSI forces and residual muscle EMG signals during gaits with 

different walking speeds are shown in Figure 6.2 and Figure 6.3 respectively. 

Results of the multiple comparisons further illustrated the dependence of the RSI forces 

on the walking speed at 4 to 10 locations inside the socket. When the walking speed 

changed, number of locations at which significantly different force parameters were 

observed varied from 9 to 10 locations (2 subjects S4, S6), 6 to 7 locations (5 subjects 

S1, S3, S5, S8, S9), and at 4 locations (2 subjects S2, S7) (Table 6.2). 
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Figure 6.2. Typical normalized RSI forces during slow, normal, and fast gaits. 
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Figure 6.3. Typical normalized EMG signals during slow, normal, and fast gaits. 
 

Similarly, multiple comparisons between parameters from the residual muscle EMG 

signals showed their dependence on the walking speed. Significantly different 

activation levels were seen at the residual tibialis anterior of all 9 subjects as the 

walking speed changed. Residual gastrocnemius muscle in 7 out of 9 subjects showed 

the dependence on walking speed (Table 6.2).  

 Table 6.2. Residuum socket interface locations and residual muscles whose 

measurements were significantly dependent on the walking speed 

Subject 
RSI location  

(max = 10) 

Residual muscles 

(max = 2) 

S1 7 (DA, DM, DL, MA, MM, ML, PP) 1 (TA) 

S2 4 (DP, ML, PA, PP) 2 (TA, GAS) 

S3 7 (DA, DM, MA, MP, ML, PA, PP) 2 (TA, GAS) 

S4 10 (DA, DM, DP, DL, MA, MM, MP, ML, PA, PP) 2 (TA, GAS) 

S5 6 (DL, MA, MM, ML, PA, PP) 2 (TA, GAS) 

S6 9 (DA, DM, DP, DL, MA, MM, ML, PA, PP) 2 (TA, GAS) 

S7 4 (DA, DP, MM, ML) 2 (TA, GAS) 

S8 7 (DA, DP, MM, MP, ML, PA, PP) 2 (TA, GAS) 

S9 6 (DM, DP, MA, MM, ML, PA) 1 (TA) 

DA,DM,DP,DL – Distal (anterior, medial, posterior, lateral) 

MA,MM,MP,ML – Middle (anterior, medial, posterior, lateral) 

PA, PP – Proximal (Anterior, posterior) 

TA – Tibialis anterior; GAS – Gastrocnemius 
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ANN-based gait recognition: The dependence of the RSI forces and residual muscle 

EMG signals on the walking speed motivated the use of these measurements in 

recognition of gait with different paces. Parameters ( ), ,
F F F

m p a  calculated from the 

distal RSI force (anterior, medial, posterior, and lateral) and ( ),
E E

m a  from residual 

tibialis anterior and gastrocnemius EMG were used for recognition of gaits with 

different walking speeds. Only distal RSI locations were chosen because the force 

sensors were easily embedded at the bottom of the prosthetic socket and shifting of the 

sensors was minimum compared to force sensors at the middle and proximal levels. 

Accuracy of gait recognition: The percentages of correct recognition were 98.48%, 

98.39%, and 97.25% respectively for 3 gaits when features from both distal RSI forces 

and residual muscle EMG signals were used to train the ANN. By using only the 

parameters from the distal forces, the percentages of correct gait recognition were 

95.74%, 92.40%, and 90.78% for 3 gaits slow, normal, and fast, respectively (Table 

6.3).  

 

Table 6.3. Confusion matrices of the gait recognition. 

 

Use features from distal socket force 

and residual muscles 

Use features from only distal socket 

force 

Slow 

 (predict) 

Normal 

(predict) 

Fast  

(predict) 

Slow 

 (predict) 

Normal 

(predict) 

Fast  

(predict) 

Slow 

 (actual) 
98.48% 1.52% 0.00% 95.74% 1.82% 2.43% 

Normal 

(actual) 
0.46% 98.39% 1.15% 1.61% 92.40% 5.99% 

Fast 

(actual) 
1.18% 1.57% 97.25% 4.51% 4.71% 90.78% 

 



86 

6.5 Discussion of the results 

In this study, RSI forces and residual muscle activities were simultaneously measured 

from inside the prosthetic socket of subjects with unilateral transtibial osteomyoplastic 

amputation. By using ultrathin force and EMG sensors and allowing the subjects to 

select their preferred walking speeds, the captured signals were similar to what would 

be observed under conditions of daily activities. These factors were different from [67, 

68] in which subjects wore thicker electrodes (~5mm) and walked on a treadmill. Since 

each subject had a unique residual limb geometry and personal preference in choosing 

walking speeds, subject-specific analysis for each individual was performed. 

6.5.1 Effect of walking speeds on in-socket measurement 

First, there was no general rule applied for all subjects regarding the influence of the 

walking speed on the RSI forces measured inside the socket (Table 6.2). At the distal 

level of all 9 individuals, different walking speeds significantly influenced the RSI force 

parameters of at least 1 location. The significant differences were also found at 2 distal 

locations of 4 subjects, 3 distal locations of 1 subject and all 4 distal locations of 2 

subjects. RSI force at the middle levels was also significantly affected by the changes in 

walking speeds. Different gaits led to differences in at least 1 middle location of all 9 

subjects, 2 locations of 1 subject, 3 middle locations of 6 subjects and all 4 middle 

locations of 1 subject. Finally, RSI force parameters at 2 proximal locations of 6 

individuals and at least 1 proximal location of 8 subjects were significantly different as 

the walking speed changed.  

Four subjects S1, S3, S6, S8 showed significantly different force parameters at about 

half (~17 out of 30) of the total 30 parameters (10 locations × 3 parameter-per-location). 
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Less than half (~10 out of 30) force parameters of subjects S2, S5, S7, and S9 were 

significantly dependent on the walking speed. Subject S4 showed more than half (25 out 

of 30) significantly different force parameters. Although no general rule was applied, 

the results illustrated the dependence of RSI force of each individual on the walking 

speed as the combined outcomes of the geometry of the residual limb, socket alignment, 

socket fit, and prosthesis used. 

On the other hand, although each subject had unique residual limb and prosthesis 

characteristics, dependence of the residual muscle activities on walking speed seemed to 

be more general. At least one residual muscle of all 9 subjects was significantly 

depended on the walking speed. Different walking speeds also led to significant 

changes in both residual tibialis anterior and gastrocnemius muscles in 7 out of 9 

individuals. Majority of the subjects (except S1 and S9) showed significant differences 

at all of the 4 EMG parameters (2 locations × 2 parameter-per-location).  

6.5.2 Gait recognition with parameters from in-socket measurement 

As seen in Table 6.3, gaits with different walking speeds could be recognized with high 

accuracy (~98%) when both distal RSI forces and residual muscle EMG signals were 

used to train the artificial neural network. However, using electromyography signals 

required placement of the EMG electrodes on a carefully prepared skin surface. 

Furthermore, the EMG electrodes could be shifted during the gait therefore affecting the 

reliability of the muscle signals. It would be desirable to use the sensor type that had 

less restriction while still providing accurate recognition capability. In fact, fairly high 

correct percentage (~93%) in Table 6.3 indicated that the ANN which was trained by 

only distal RSI forces still yielded good recognition results compared to when the 
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muscle EMG [70] or kinematic sensors [73] were used. The ultra-thin force sensors can 

be easily embedded inside the prosthetic socket to provide real-time force measurement 

without affecting the mobility and gait of the subjects. Placement of the sensors at the 

bottom of the socket also decreases the chance of sensor shifting which might lead to 

inaccuracy in recognition of gait. In addition, distal RSI forces not only perform the task 

of gait recognition but also allow real-time monitoring of the tissue loading inside the 

socket. 

6.6 Conclusions 

Results of the gait analysis in this chapter indicated that the RSI forces and residual 

muscle EMG signals in individuals with TOA were significantly dependent on the 

walking speed. As the walking speed changed, all subjects showed significant 

differences in at least 4 out of 10 force locations and at least 1 out of 2 residual muscles. 

Significant differences in more than half of the force locations and both residual 

muscles were also seen in the majority of the subjects (7 out of 9). An average correct 

recognition percentage of ~98% was obtained when the ANN was trained with features 

from both end-bearing distal force and residual muscle EMG. When only the distal RSI 

force was used to train the ANN, the performance was still good with the correct 

recognition percentage of ~93%. Real-time monitoring of RSI force/muscle EMG 

therefore could be beneficial to both control of prosthetic feet and analysis of the gait of 

individuals with below-knee amputation. 
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Chapter 7: Framework for Modeling and Control of a Prosthetic 

Ankle Joint 

A framework that is based on modeling and simulation of the prosthetic devices will 

benefit the studying of the effectiveness of prostheses on kinematic behaviors and other 

aspects of the gait without posing a risk of injury due to prosthetic malfunctions when 

testing on human subjects. In this chapter, the framework in which the dynamics of the 

prosthetic ankle joint during gait are described and the ankle control algorithms are 

implemented will be presented. First, the link-segment representation will be used to 

describe the dynamics of the prosthetic ankle in the interaction with the biological knee 

and hip joints of the residual leg as well as effects of foot-ground interaction and the 

upper part of the body. The goal for control of the prosthetic ankle joint will then be 

formulated as a tracking control problem. Necessary conditions for implementation of 

the control algorithms are also discussed. 

7.1 Gait modeling and control of prosthetic ankle joint  

Mathematical models and experimental data can be effectively combined to study 

normal and pathological gaits [130-133]. Figure 7.1 shows the diagram of the control-

based approach which concentrates on generating suitable control signals to drive the 

model dynamics along desired trajectories obtained from the analysis of human gait 

[134]. In this approach, different methods of generating the joint torque can be 

analytically evaluated and the overall performance can be improved by feedback 

modification. Similarly, simulation approaches which combine mathematical gait 

models and experimental data can be used to study the effect of prostheses on kinematic 

behaviors and other aspects of the gait [135, 136] without posing a risk of injury due to 
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prosthetic malfunctions when testing on human subjects [137]. Such frameworks enable 

a quick evaluation of the performance of prosthetic devices under different operating 

conditions and extend the understanding of the prosthetic ankle-foot systems [4]. 

Modeling and control of the prosthetic devices could also be beneficial from the 

approaches used in robotics systems as they are sharing some common characteristics 

[138]. Modeling and control approaches not only provide useful insight into the 

contribution of muscles and prostheses in walking mechanism of people with below-

knee amputation [139] but also can aid the development and functional evaluation of 

future prosthetics devices [135, 140].  

 

 

Figure 7.1. Control-based approach to the modeling and control of human gait. 
 

Next generation prosthetic feet are likely to be equipped with controlled actuators to 

provide continuous displacement of the artificial ankle joint and help achieve desired 

gait performance [77]. However, control of the ankle prosthesis to replicate the 
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movement of a healthy ankle by tracking a displacement profile during gait is a difficult 

task. The reasons are 

a) The ideal ankle displacement profile depends on several factors such as user gait 

(e.g., stance time, swing time, step length, and stride length), selected walking 

speed, inclination of the terrain, and type of activity (e.g., walking on level 

ground, ascending/descending stairs), etc. Due to changes in gait and terrain and 

unknown intent of the user, the ideal ankle displacement profile cannot be 

specified a priori.  

b) During gait, the movement of the prosthetic foot is influenced by the reaction 

force due to the interaction with the terrain. This ground reaction force (GRF) 

plays a critical role in supporting the body weight, ensuring stability, and 

providing the propulsion for the gait [25]. GRF causes a reaction torque at the 

joint that has to be compensated for proper tracking behavior. However, GRF is 

usually computed using motion tracking systems and force plates in a laboratory 

setting [28] which is not applicable for the prosthetic control purpose. 

c) The dynamics of the foot are affected by the nonlinear coupling effects between 

the prosthetic ankle joint and the biological knee and hip joints of the 

individuals with below-knee amputation. These effects not only depend on 

anthropometric measurements of the human body but also vary with gait. 

Neglecting these interactions will lead to larger tracking errors for a specified 

ankle displacement profile. 

A framework for modeling and control of the prosthetic ankle joint will be developed to 

overcome those difficulties. In this framework, the following steps will be implemented. 
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a) First, the dynamic representation of movement of the leg on the amputated side 

of an individual with unilateral below-knee amputation will be modeled by a 

link-segment diagram in the sagittal plane using the Euler-Lagrange approach. 

The resulted mathematical model will be comprised of the biological knee and 

biological hip joints of which the movements are assumed to be controlled by 

the residual leg, and the prosthetic ankle joint which is controlled by an external 

actuator. 

b) Then the dynamics of the prosthetic ankle joint will be extracted from the full 

gait model. The ankle dynamics itself and the reflected dynamics from the knee 

and hip joints contribute to the unknown ankle dynamics during gait. The ankle 

dynamical model will also include the disturbance torque from the Head-Arm-

Trunk as well as effect of the ground reaction torque.  

c) The control goal for the prosthetic ankle joint will be formulated as the tracking 

control problem of a desired (ideal) ankle joint trajectory. 

d) However, the ideal joint profile is not available due to unknown users’ intent 

and changes in walking terrain. Gait data measured from the amputees will aid 

in recognizing the gait type and detecting the gait events. Then a desired ankle 

joint displacement profile will be generated correspondingly to the recognized 

gait type and used in the development of control algorithms. 

e) Since the actual ground reaction torque is not available, the gait-based ground 

reaction torque will be generated based on the recognized gait and the actual 

ground reaction will be compensated by an empirical viscoelastic contact model 

describing the foot-ground interaction during gait. 
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f) Boundary conditions which are required for implementation of the control 

algorithms will also be discussed. These conditions include the bounds on the 

gait-based ankle trajectory, gait-based ground reaction torque and the 

disturbance torques.  

g) Error dynamic representation of the prosthetic ankle joint will be described to 

illustrate the relationship between the control torque and the ankle joint tracking 

error. 

h) Finally, two learning-based control approaches with the use of multi-layer 

neural networks will be implemented. In the first approach, a neural network is 

trained to learn the unknown ankle dynamics and used for computation of the 

ankle torque. The second approach involves the optimization of a gait-related 

performance index and generation of an optimal torque for the ankle joint. The 

control torque is computed online to adapt to the change in gait of an individual.  

The remaining of this chapter will describe all the steps above except the last step of 

control algorithm implementations. In Chapter 8 and Chapter 9, the multi-layer neural 

network-based ankle torque control strategies will be described in more details. 

7.2 Framework for modeling of the prosthetic ankle joint during gait 

In this section, the leg on the amputated side of a person with unilateral below-knee 

amputation is modeled by a link-segment diagram in the sagittal plane where most of 

the ankle joint movements occur during gait. This representation includes a biological 

knee joint, a biological hip joint, and a prosthetic ankle joint on the prosthetic foot. 

Euler-Lagrange approach is used to derive the dynamics of this representation. By 
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assuming the total human control of the biological joints, this section then concentrates 

on dynamics and control of the ankle joint. 

7.2.1 Link-segment diagram 

 

Figure 7.2. Link-segment diagram of the residual limb and prosthetic foot. 
 

Figure 7.2 represents the link-segment diagram of the leg on the amputated side of an 

individual in the sagittal plane. The dynamics of this diagram can be obtained using the 

Euler-Lagrange approach [28, 141] and presented as follows: 

( ) ( ) ( ), ,dM V Gθ θ θ θ θ θ τ τ+ + + =�� � �  (7.1)

with the time-dependent joint variable θ (rad), input torque τ (Nm) and disturbance 

torque dτ (Nm). The joint variable ( ) ( ) ( ) ( ) 3T

a k ht t t tθ θ θ θ= ∈   �  represents the 

angular position of the prosthetic ankle joint, the biological knee joint, and the 

biological hip joint. Input torque to the model is ( ) [ ]
T

a aG k htτ τ τ τ τ= +  with ( )a
tτ  

is the external torque generated by the actuator at the prosthetic ankle joint; ( )aG
tτ  is 

the ground reaction torque (GRT) and caused by the interaction between the prosthetic 
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foot and the ground during gait; ( )k
tτ  and ( )h

tτ  describe the internal torques 

generated by the biological knee and hip joints, respectively. The additional component 

( ) [ ]
T

d ad kd hdtτ τ τ τ=  represents the disturbance torque which is generated by the 

movement of the Head-Arm-Trunk (HAT), i.e., upper body, during gait. It is important 

to note that total human control is assumed at the biological knee joint and biological 

hip joint [28]. Therefore, knee torque ( )k
tτ  and hip torque ( )h

tτ  are purposely 

generated by the user to compensate for the coupling effects from the ankle joint, effect 

of ground reaction, and disturbance torque from the HAT. Finally, nonlinear terms in 

(7.1) include the inertia matrix ( )M θ , the vector of Coriolis and Centripetal forces 

( ),V θ θ θ� � , and the vector representing gravitational forces ( )G θ . Detailed dynamical 

equations and the parameters of the model are given in Appendix A1. 

7.2.2 Ankle joint dynamics 

Since total human control is assumed at the biological knee joint and the biological hip 

joint of the residual limb, this dissertation focuses on the dynamics and control of the 

ankle prosthesis. Dynamics of the prosthetic ankle joint can be extracted from (7.1) as 

follows: 

  independent reflected dynamics refected dynamics 
ankle dynamics of knee joint of hip joint

aa a aa a a ak k ak k ah h ah h

UNKNOWN ANKLE DYNAMICS

M V G M V M Vθ θ θ θ θ θ+ + + + + + +�� � �� � �� �
��������� ������� �������

���������������������

� � �
  disturbance control ground reaction 
from the HAT torque        torque

.ad a aGτ τ τ= +

 

(7.2)

Unknown dynamics of the prosthetic ankle joint (7.2) include the dynamics that depend 

only on the ankle angular position and its derivatives ( )aa a aa a aM V Gθ θ+ +�� � , the coupling 

between the ankle joint and the biological knee joint ( )ak k ak kM Vθ θ+�� � , and the coupling 
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between the ankle joint and the biological hip joint ( )ah h ah hM Vθ θ+�� � . The components 

aa
M , aa

V , a
G , ak

M , ak
V , ah

M  and ah
V  are nonlinear functions of the joint angles as 

listed in the Appendix A1. Ankle dynamics are also affected by the ground reaction 

torque aGτ  and the HAT disturbance torque adτ .  

7.3 Framework for control of the prosthetic ankle joint 

Commonly used approaches in control of prosthetic feet treat the unknown dynamics in 

(7.2) as disturbances and ignore them, thereby degrading the performance and 

efficiency of the device. These devices are based on linearized dynamics and use 

proportional-derivative control with fixed control parameters. While these controllers 

guarantee local stability, their performance might deteriorate quickly in the presence of 

unmodeled system dynamics and measurement noises. The use of these systems will 

require prior validation on a large number of subjects under different gait and terrain 

conditions [41]. 

In this framework, the goal for control of the prosthetic ankle joint is to track a desired 

ankle displacement profile during gait. Effectiveness of this control is measured by the 

deviation of the actual ankle joint angular position from the desired trajectory [134]. 

That desired, gait-based trajectory is specifically generated for the type of gait which 

can be recognized by continuous measurement and interpretation of the gait data 

captured from the persons with below-knee amputation. Control torque aτ  is then 

computed by different control algorithms for manipulating the movement of the 

prosthetic ankle joint to follow the gait-based ankle displacement profile. The detailed 

control framework and problem formulation are discussed in the next section. 
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7.3.1 Goals for the prosthetic ankle control 

As described earlier in Section 2.1, the prosthetic ankle is controlled by a torque 

generated by an external actuator to follow a displacement profile similar to that of a 

natural ankle (Figure 2.2). The control system of the prosthetic ankle joint is therefore 

required to overcome the challenges described in Section 2.6.2 and summarized in 

Section 7.1. The goals for the control system of the prosthetic ankle joint are listed 

below:  

• Recognize the type of gait and detect the gait events in real time using actual 

gait data measured from the users  

• Determine an ankle joint displacement profile corresponding to the selected gait 

of users 

• Compensate the effect of ground reaction aGτ  

• Implement a control algorithm to generate a control torque aτ  that provides 

guaranteed tracking performance  

 

Figure 7.3. Block diagram of the learning-based control structure of the prosthetic 

ankle joint. 
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7.3.2 Recognition of gait and detection of gait events 

Recognition of gait and detection of gait events can be done using actual gait data such 

as residuum socket interface force measured from the prosthetic socket of individuals 

with below-knee amputation. RSI forces that the residual limb applies on the prosthetic 

socket during gait can be captured by ultra-thin FlexiForce® sensors [102] and a gait 

monitoring device as seen in Figure 2.9 [23]. These sensors (Figure 6.1) can be 

embedded inside the socket to provide non-intrusive force measurement in real time and 

during daily activities outside the laboratory setup. 

 

Figure 7.4. Normalized socket contact force and gait events from foot switches. 

 

It has been shown that the recorded RSI forces relate to the gait [122] and can be used 

to distinguish between different gait types (e.g., normal self-paced walk, brisk walk, 

ascending/descending stairs, walking on a ramp), and detect gait parameters (Heel 

Strike, Mid-stance, Toe Off , stance time, etc.) for each detected gait [142]. Comparison 

of RSI forces with gait events measured using foot switches is shown in Figure 7.4. The 
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typical double peak shape of the loading profile in Figure 7.4 also confirms that the 

mechanisms of the weight transferred between the prosthetic side and the intact side of 

persons with unilateral below-knee amputation have common characteristics with 

subjects without amputation of the lower limb. 

As in Chapter 6, features extracted from the RSI force measured from the distal end-

bearing locations inside the prosthetic sockets of a group of subjects with transtibial 

osteomyoplastic amputation can be used to distinguish the gaits with different walking 

speeds and provide promising results (Table 6.3). 

Based on the recognized gait type and detected gait events, the updated gait-based 

kinematic references and approximated ground reaction torque are then specifically 

generated for the recognized gait type and are activated at the moment when ground 

contact (Heel Strike) is observed. Then, the proposed control approach uses these gait-

based quantities to calculate an appropriate control torque for the recognized gait. 

7.3.3 Gait-based displacement profile 

In traditional control, the tracking error is computed as the error between the ideal and 

actual displacement of the joint. In the case of prosthetic ankle control, the ideal joint 

profile is not available due to unknown users’ intent and changes in walking terrain. 

Therefore, as the first step, an approximated ankle joint displacement profile is 

generated based on the gait detected in real time.  

Figure 7.3 shows the block diagram of the controlled 'residual limb–prosthetic foot' 

system. During the gait, the Amputees’ Intent Recognition block (Figure 7.3) recognizes 

the intent of users using the actual gait data measured from the prosthetic socket and the 

Residual Limb [142]. Then, the corresponding gait-based kinematic references 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T
g g g g

r r r r

T
g g g g

r ar kr hr

T
g g g g

r ar kr hr

T
g g g g

r ar kr hr

t t t t

t t t t

t t t t

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

 =
 

 =  

 =  

 =  

� ��

� � � �

�� �� �� ��

 (7.3)

are generated specifically for the recognized gait. The superscript ( ).
g
 indicates that 

these profiles are generated based on the determination of the type of gait. Let 

T
T T T

r r r r
θ θ θ θ =  

� ��  denotes the ideal kinematic profiles which are not available to the 

computation of the control input aτ . Then, the difference between the ideal kinematic 

references and the gait-based references are defined as 

.

T
T T T

r r r r

g

r r r

g

r r r

g

r r r

θ θ θ θ

θ θ θ

θ θ θ

θ θ θ

 =   

= −

= −

= −

� ��� � � �

�

�� � �

��� �� ��

 (7.4)

7.3.4 Gait-based ground reaction torque 

Calculation of the ground reaction torque aGτ during gait requires kinematic tracking 

systems and force plates in the laboratory environments [28, 71]. Therefore under 

normal gait conditions, aGτ  is not available for the calculation of the control input aτ . In 

the control scheme shown in Figure 7.3, the gait-based ground reaction torque g

aG
τ  is 

generated based on the recognized gait and an empirical model describing the foot-

ground contact. The gait-based torque g

aG
τ  is then included into the control computation 
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to compensate for the actual aGτ . The difference between the gait-based g

aG
τ  and the 

actual ground reaction torque aGτ  at the prosthetic ankle joint is defined as 

.g

aG aG aG
τ τ τ= −�  (7.5)

The actual ground reaction torque aGτ  (Figure 7.2) is approximated by  

( ) ( ) ( ) ( ) ( ) ,g

aG aZ X aX Z
t d t F t d t F tτ = +  (7.6)

where t  is the gait time, (N)XF , (N)ZF  are the horizontal and vertical ground reaction 

forces, and (m)aXd , (m)aZd  are the horizontal and vertical distances between ankle joint 

and the center of pressure (contact point) during gait. These quantities depend on the 

height and weight of the individual, as well as the terrain and type of gait.  

During gait on level ground, ground reaction forces ,X ZF F  can be modeled by a 

combination of a spring and a position-dependent damper as follows [130, 131, 143]: 

( )
e

Z PEN d PENF k z c z= + �  (7.7)

( )sgn ,X Z PF F xµ= �  (7.8)

in which (m), (m/s)
PEN PEN

z z�  are the penetration and penetration rate of the foot into 

the ground; (N/m),k e  are spring coefficient and spring exponent; (N/(m/s))dc  is the 

damping coefficient; µ  is the friction coefficient; (m/s)
P

x�  is the horizontal velocity of 

the contact point with respect to the ground, and ( )sgn .  is the sign function. These 

parameters can be obtained using experiments similar to the works in [131] and [143]. 
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The distances ,aX aZd d  depend on the gait-based references 
g

rθ , temporal gait 

parameters, and the contact profiles assumed for the prosthetic feet. 

7.3.5 Boundary conditions 

This section discusses the boundary conditions which are necessary for implementation 

of the control algorithms in Chapter 8 and Chapter 9. 

Bound on the gait-based kinematic references and the reference error 

The gait-based kinematic references 
g

rθ  satisfying the bound condition g
r

g

r B
θ

θ ≤ ∈�  

can be generated for each gait type. Since the human gait and joint movements are 

cyclic in nature, the gait-based kinematic references can be generated using Fourier 

series as follows [131]  

( ) ( ) ( )
5

0

1

cos sin ,g g

g

k kg

r g g g g g g g

k

t a a k w t b k w tθ
=

= + +∑  (7.9)

where t  denotes gait time and the parameters ( )0 , , ,g gk k

g g g g
a a b w  can be obtained for 

specific gait types. Since the sine and cosine functions in (7.9) are bounded, the gait-

based kinematic patterns 
g

rθ  are also bounded. The ideal kinematic references 
rθ  are 

also bounded, i.e., 
rr Bθθ ≤ ∈�  due to the cyclic nature of gait and the human control 

of the movement of the residual limb to follow specific joint patterns which help 

minimize the metabolic energy consumption during gait [30]. Finally, the kinematic 

reference error rθ�  is also bounded because ,
g

r rθ θ  are both bounded and 
g

r r rθ θ θ= −� . 

Bound on the gait-based ground reaction torque 

It can be seen that g

aG
τ  in (7.6) is bounded because ,X ZF F  in (7.7) and (7.8) are 

modeled by passive mechanical components and finite penetration, and aXd , aZd  are 
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functions of the bounded kinematic references. The actual ground reaction torque  is 

also bounded due to its cyclic nature and the finite body weight. Therefore, the 

difference g

aG aG aG
τ τ τ= −�  is bounded. 

 

Figure 7.5. Approximated ground reaction force and loading profile from actual 

foot pressure sensors. 

 

The dependence of the vertical ground reaction force generated by the empirical model 

on the gait cycle (7.7) is confirmed by the actual foot loading profile during a normal 

gait on level ground of an able bodied. The normalized foot loading profile in Figure 

7.5 is calculated as the summation of the forces measured by force sensors (FlexiForce® 

A201,[102]) placed under the heel, the outer ball of the foot, and the toe of the foot. The 

typical double peak shape of the modeled ground reaction force also agrees with ground 

reaction force captured using force plates as found in the literature [28, 71]. 

Bound of the disturbance torque 

aG
τ
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It has been shown that the upper body movement and arm swing during gait are passive 

and mainly powered by the movement of the lower body [144]. These movements are in 

fact the human efforts to further stabilize the gait and reduce metabolic energy 

consumption during gait [145]. Calculation of the Head-Arm-Trunk torque from the 

quantitative gait data in [28] also confirms that this is a bounded quantity. In the ankle 

dynamics (7.2), the external disturbance ad
τ  represents the HAT torque, therefore is 

bounded.  

7.3.6 Error dynamics 

The (pseudo) ankle joint tracking error is defined as 

.g

a ar a
e θ θ= −  (7.10)

Then the dynamics in (7.2) can be expressed as  

.

g g

aa a aa a aa ar aa ar a

ak k ak k ah h ah h ad a aG

M e V e M V G

M V M V

θ θ

θ θ θ θ τ τ τ

= − + + + +

+ + + + + − −

�� ��� �

�� � �� �
 (7.11)

Unknown terms in (7.11) are grouped into 

( ) ( ) ( )

.

g g

aa ar a aa ar a a a

ak k ak k ah h ah h

f M e V e G

M V M V

θ λ θ λ θ

θ θ θ θ

 = + + + + + 

   + + + +   

�� ��

�� � �� �
 (7.12)

Defining the filtered tracking error as 

,
a a

r e eλ= +�  (7.13)

with 0λ > . Then, using (7.11), the closed loop error dynamics can be expressed as  

.
aa aa ad a aG

M r V r f τ τ τ= − + + − −�  (7.14)
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The actual tracking error of the prosthetic ankle joint is calculated as the difference 

between the ideal displacement profile 
ar

θ  (which is not available to the control 

computation) and the actual ankle angular position 
a

θ  as follows. 

.actual

a ar a
e θ θ= −  (7.15)

It is important to note that ae  in (7.10) defines the (pseudo) tracking error similar to the 

traditional neural network control approach [146]. 

7.4 Conclusions 

In this chapter, a framework for the modeling and control of the prosthetic ankle joint 

was described. Dynamical model of the ankle joint and its interaction with the 

unaffected joints of the residual leg and foot-ground interaction were obtained. In the 

next two chapters, the ankle torque control a
τ  in (7.14) will be computed using two 

different approaches. The control algorithm in Chapter 8 will primary focus on learning 

the unknown ankle dynamics which are described in (7.12) and reducing the filtered 

tracking error r  as defined in (7.13). In Chapter 9, the control approach aims to 

minimize a long-term cost function which relates to the tracking performance of the 

prosthetic ankle joint.  
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Chapter 8: Neural Network Control of a Prosthetic Ankle Joint 

Current active prosthetic feet on the market utilize traditional control approaches which 

tent to ignore the dynamical interactions between the prosthetic ankle joint and the 

biological joints and the foot-ground relationship during gait. These factors are treated 

as disturbances and can quickly degrade the performance of the prostheses when the 

gait and terrain conditions change. In this chapter, an artificial neural network-based 

hierarchical controller is implemented to adaptively compensate for the unmodeled 

dynamics and disturbances for closed loop stability with guaranteed tracking 

performance. The closed-loop stability will be rigorously analyzed using Lyapunov 

stability theory and the robustness of the controller will be studied using actual gait data 

collected from human subjects. Numerical simulations in the presence of noises, 

uncertainties in terrain interaction, disturbance torques, and changes in gait will be 

performed to evaluate the tracking performance and robustness of the control approach. 

8.1 Approximation of the unknown ankle dynamics 

In this section, an artificial neural network will be used to approximate the unknown 

nonlinear terms (in equation (7.2)) that represent the interaction between the prosthetic 

ankle joint and the biological knee and hip joints of the residual limb (Figure 7.3). 

Inputs to the ANN are obtained from the actual angular kinematics of the ankle joint 

( ),a aθ θ�  and the gait-based kinematic references, 
g

rθ , which are generated specifically 

for the recognized gait type. It is important to note that, the control structure in Figure 

7.3 performs tracking of the gait-based reference g

arθ  instead of the predetermined 

trajectory ar
θ  as in a traditional neural network-based control approach. 
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The physical constraints on the joints imply that ( ), ,
a k h

θ θ θ  and their derivatives are 

finite. Therefore, the function f  in (7.12) is a real function and is bounded on a 

compact region in � . Since human gait comprises of multiple gait cycles, f  is also a 

periodic function. Therefore, f can be approximated by an artificial neural network with 

one hidden layer and ideal target weights 1,h x hN N N

f f
W V

× ×∈ ∈� �  as follows: 

( ) ( ) ,T T

f ff x W V xσ ε= +  (8.1)

in which, 1xN
x

×∈�  is the vector of the neural network inputs, ε  is the bounded 

approximation error, i.e., 
B

ε ε< ∈� , ( ).σ  is a sigmoidal activation function, and h
N  

is the number of nodes in the hidden layer. The neural network input x  is selected as 

follows: 

.
T

g g g g g g g g g

a a ar ar ar kr kr kr hr hr hr
x e e θ θ θ θ θ θ θ θ θ =  

� �� � �� � ���  (8.2)

The ideal weights ,f fW V  are unknown but they can be approximated by adjustable 

weights 1ˆ ˆ,h x hN N N

f fW V
× ×∈ ∈� �  with the network weight errors 

ˆ

ˆ .

f f f

f f f

W W W

V V V

= −

= −

�

�
 (8.3)

Then, the unknown function f  is therefore approximated by 

( ) ( )ˆ ˆ ˆ ,T T

f f
f x W V xσ=  (8.4)

with the neural network approximation error given by 

( ) ( )ˆ ˆ ˆT T T T

f f f f
f f f W V x W V xσ σ ε= − = − +�  (8.5)



108 

Using Taylor series expansion of ( )T

fV xσ  around ( )ˆT

f
V x  for a given x , (8.5) can be 

expressed as 

( ) ( )( ) ( ) ( )
( )

( )

ˆ ˆ ˆ ˆ ˆ. .

ˆˆ ˆ ˆ. .

ˆ ˆ . . ,

T T T T T T T

f f f f f f f

T T T

f f f

T T T T

f f f f

f W V x V x V x V x H OT W V x

W V x H OT W

W W V x W H OT

σ σ σ ε

σ σ σ ε

σ σ ε

 ′= + − + − +
 

 ′= + + − + 

′= + + +

�

�

� �

 (8.6)

where ( )ˆˆ T

f
V xσ σ= , ( )

ˆ
ˆ

T T
f f

T

f
V x V x

V xσ σ
=

′ ′=  is the Jacobian matrix of the activation 

function with respect to its inputs, ˆT T T

f f fV x V x V x= −� , and ( ). .H O T  represents all high 

order terms in the Taylor series expansion of ( )T

fV xσ . 

8.2 Control algorithm 

Based on the discussions on the boundary conditions in Section 7.3.5, the following 

assumptions are made for the stability analysis of the control algorithm.  

Assumption 8.2.1 

The ideal kinematic references, gait-based kinematic references, and their differences 

are bounded, i.e., , g
r r

g

r rB Bθ θ
θ θ≤ ∈ ≤ ∈� �  and 

r
r

B
θ

θ ≤ ∈�� � . 

Assumption 8.2.2 

The difference between the modeled ground reaction torque and the actual ground 

reaction torque experienced at the prosthetic ankle joint is bounded, i.e., 
aG G

Bτ ≤ ∈� � .  

Assumption 8.2.3 

The disturbance torque ad
τ  due to the motion of the Head-Arm-Trunk is bounded, i.e., 

ad d
Bτ ≤ ∈� . 

Assumption 8.2.4 
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Ideal ANN weights are constant for each gait type and bounded, i.e., f ZF
Z B≤ ∈�  

where .
F

 represents the Frobenius norm and 
f

f

f

W
Z

V

Θ 
=  Θ 

. 

Theorem 8.2.1 
Given the control structure in Figure 8.1, let the ankle torque be computed as: 

ˆ ,g

a aG V
f K r vτ τ= − + −  (8.7)

with  

• f̂  – approximation of unknown nonlinear function f  in (7.12) 

• g

aG
τ  – torque required to compensate for the actual ground reaction torque aG

τ  

• r – filtered tracking error ( aa eer λ+= � ), 

( ) ,
V V a a

K r K e eλ= +�  (8.8)

• and v  is the robustifying term 

( )ˆ .Z f Z
F

v K Z B r= − +  (8.9)

Further, let the neural network weights be updated according to 

ˆ ˆ ˆˆ ˆ T

f f fW R r R V xr kR r Wσ σ ′= − −
�

 (8.10)

( )ˆ ˆ ˆˆ
T

f f f
V Qx W r kQ r Vσ ′= −
�  (8.11) 

where vK , ,R Q  and k  are real, positive design parameters. Then, the actual tracking 

error actual

a
e  defined in (7.15) and the neural network weight errors ,

f f
W V� �  are uniformly 

ultimately bounded.  
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Structure of the prosthetic ankle control system 

The controller proposed in this chapter can be viewed as a hierarchical structure. At the 

lowest level, the controller is responsible for generating a control torque aτ  which drives 

the ankle joint to follow a gait-based reference trajectory g

arθ . This level reduces the 

tracking error by approximating the unknown ankle dynamics using an ANN and 

compensating the terrain interaction through the use of the gait-based ground reaction 

torque g

aGτ . In the higher level of the hierarchy, the Amputees’ Intent Recognition block 

(Figure 8.1) processes the gait data measured in real time from the individuals to 

recognize the type of gait and detect the gait events. Appropriate gait-based kinematic 

references 
g

rθ  and ground reaction torque approximation g

aG
τ  are then generated based 

on the users’ gait. 

 

Figure 8.1. Block diagram of the feedback linearization neural network-based 

control structure of the prosthetic ankle joint. 
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The control approach in Figure 8.1 can also be viewed as a multi-loop structure. The 

inner most nonlinear loop comprises of an ANN that is responsible for approximating 

the unknown ankle dynamics. The outer tracking loop helps reduce the tracking error by 

comparing actual kinematic feedback ( ),a aθ θ�  with the gait-based references ( ),g g

ar arθ θ� . 

Finally, the monitoring loop processes the actual measured gait data to recognize the 

intent of an user. Compared to PD control of a prosthetic foot, this structure requires 

smaller control gains and is robust to external disturbances and changes in gait. 

8.3 Stability analysis 

With the control signal (8.7), the closed loop error dynamics (7.14) can be expressed as 

( )

( )

ˆ

.

g

aa aa V ad aG aG

aa V ad aG

M r V K r f f v

V K r f v

τ τ τ

τ τ

= − + + − + − + +

= − + + + − +

�

� �
 (8.12)

Substituting f�  from (8.6), then (8.12) can be written as 

( ) ( )

( ) ( ) [ ]

( ) ( ) [ ]

( ) ( ) [ ]

ˆ ˆ . .

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ .

T T T T

aa aa V f f f f ad aG

T T T T

aa V f f f f

T T T T T T

aa V f f f f f f

T T T T T T

aa V f f f f f f

M r V K r W W V x W H O T v

V K r W W W V x

V K r W W V V x W V x

V K r W V x W V x W V x

σ σ ε τ τ

σ σ

σ σ σ

σ σ σ σ

′  = − + + + + + + − + 

′= − + + + + +

′ ′= − + + + − + +

′ ′ ′= − + + − + + +

� �� �

� � � …

� � � …

� � � …

 (8.13)

Define the total uncertainty δ  as 

( )ˆ . . ,T T T

f f f ad aG
W V x W H OTδ σ ε τ τ′= + + + −� �  (8.14)

then the closed-loop error dynamics can be simplified as 

( ) ( )ˆ ˆˆ ˆ ˆ .T T T T

aa aa V f f f f
M r V K r W V x W V x vσ σ σ δ′ ′= − + + − + + +� ��  (8.15)

Lemma 8.3.1 – Bound on the neural network inputs 

The neural network input x  is bounded by 
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2 3 ,x C C r≤ +  (8.16)

where r  is the filtered tracking error defined in (7.13), and 2 3,C C  are positive 

constants. 

Proof: Given in the Appendix A2. 

Lemma 8.3.2 – Bound on the high order terms in neural network approximation 

( ). .H OT   

The high order terms in the neural network approximation are bounded by 

2 3. . 1 ,T T

f f
F F

H O T C B Z C B Z rσ σ≤ + +� �  (8.17)

where r  is the filtered tracking error, f

f

f

W
Z

V

 Θ
=  

Θ  

�
�

�
, ˆ Bσσ ′ ≤  and 2 3,C C  are 

positive constants. 

Proof: Given in the Appendix A3. 

Lemma 8.3.3 – Bound on the uncertainty δ   

The uncertainty term δ  is bounded by  

4 5 6 ,T T

Z f Z f
F F

C C B Z C B Z rδ ≤ + +� �  (8.18)

Where r  is the filtered tracking error, f

f

f

W
Z

V

 Θ
=  

Θ  

�
�

�
, f ZF

Z B≤  and 4 5 6, ,C C C  are 

positive constants. 

Proof: Given in the Appendix A4. 

Proof of Theorem 8.2.1 

With the selection of finite neural network input x  in (8.2), the ideal neural network 

( )T T

f fW V xσ  can be defined in a compact set { },x xS x x B= <  and therefore provides a 

bounded approximation for the nonlinear function f . The proof of the theorem includes 
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two parts. First, the boundedness of the (pseudo) tracking error a
e  in (7.10) is showed 

using a procedure inspired by the traditional neural network control approach [146]. 

Then the actual error actual

ae  in (7.15) which describes the movement tracking 

performance of the prosthetic ankle joint is showed to be bounded due to the triangle 

inequality of vector norms. 

The neural network ( ) ( )ˆ ˆ ˆT T

f f
f x W V xσ=  is defined for x  on a compact set 

{ },x xS x x B= <  to approximate the unknown nonlinear function f  in (7.12). From the 

inequality (8.16), define the compact set { },r rS r r B= <  in which ( )2 3r x
B B C C= − , 

then the universal approximation property of the neural network holds for all r
r S∈ . 

Now, consider the Lyapunov function 

{ } { }1 11 1 1
,

2 2 2
T T

aa f f f f
rM r tr W R W tr V Q V− −= + +� � � �
  (8.19)

with r  defined in (7.13), ,
f f

W V� �  in (8.3), and ,R Q  in (8.10)-(8.11), respectively. 

Taking derivatives of 
   

{ } { }1 11
,

2
T T

aa aa f f f f
rM r rM r tr W R W tr V Q V− −= + + +

� �� � � � � ��
  (8.20)

then with aa
M r�  from (8.15), 

( ) ( )

{ } { }1 1

1 ˆ ˆˆ ˆ ˆ2
2

.

T T T T

V aa aa f f f f

T T

f f f f

rK r r M V r r W V x W V x v

tr W R W tr V Q V

σ σ σ δ

− −

 ′ ′= − + − + − + + +
 

+ +

� � � �


� �� � � �
 (8.21)

The term ( )2aa aar M V r−�  vanishes because aaM  is a constant and the choice of the 

reference frame makes 0
aa

V = . Then (8.21) can then be simplified as, 
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( ){ }
( ){ } ( )

1

1

ˆˆ ˆ

ˆ ˆ

T T

V f f f

T T

f f f

rK r tr W R W r V xr

tr V Q V xrW r v

σ σ

σ δ

−

−

′= − + + − +

′+ + + +

�� � �


�� �
 (8.22)

Since the ideal neural network weights ,f fW V  are constant, then 

ˆ ˆ ˆ ˆˆ ˆ T

f f f f f fW W W W R r R V xr kR r Wσ σ ′= − = − = − + +
� ��� �  (8.23)

( )ˆ ˆ ˆ ˆˆ ,
T

f f f f f f
V V V V Qx W r kQ r Vσ ′= − = − = − +

� ���  (8.24)

and  (8.22) becomes, 

( ){ } ( ) .T

V f f f
rK r k r tr Z Z Z r vδ= − + − + +� � �
  (8.25)

Since ( ){ } ( )T

f f f f Z f
F F

tr Z Z Z Z B Z− ≤ −� � � �  and δ  is bounded as in (8.18), by 

selecting 6Z
K C> , then 

( ){ }4 5 .V f Z f f
F F F

r K r k Z B Z C C Z≤ − − − − −� � � �
  (8.26)

Defining  

5
7 ,

Z

C
C B

k
= +  (8.27)

then (8.26) can be written as: 

2 2
7 7

4 .
2 4V f

F

C kC
r K r k Z C
   

≤ − + − − −  
   

� �
  (8.28)

LaSalle extension of the Lyapunov stability theory [147] states that the filtered tracking 

error r  and the neural network weight error 
f

Z�  will be uniformly ultimately bounded 

(UUB) if 0>
  in a compact set { },r rS r r B= < ⊂ �  and 0<�
  outside a smaller 

compact set contained in r
S .  
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Then in order to make 0<�
 , since 
2

7 0
2f

F

C
k Z
 

− > 
 
�  and 0

V
K r > , we need 

2
7

4 0
4V

kC
K r C− − >  or 

2 2
7 7

4 0
2 4f

F

C kC
k Z C
 

− − − > 
 
� . These conditions imply 

2
4 7 / 4

,r

V

C kC
r b

K

+
> ≡  (8.29)

2

5 5 2 .
2 2

f
F

C C C
Z

k

 
> + + 

 
�  (8.30)

Conditions (8.29)(8.30) define the compact set outside which the derivative of the 

Lyapunov function 0<�
 . From (8.29), in order to satisfy r r
b B< , then the control gain 

V
K  has to be selected as 

( )22
3 4 74 7

2

/ 4/ 4
.

V

r x

C C kCC kC
K

B B C

++
> =

−
 (8.31)

Finally, since r  is bounded i.e., r L∞∈  then a
e L∞∈  and a

e L∞∈�  [148], or the tracking 

error of prosthetic ankle joint displacement is bounded, i.e., 
a a

e ε≤ ∈� .  

Since the actual tracking error in (7.15) can be written as

( ) ( ) ( )actual g g

a ar a ar ar ar ae θ θ θ θ θ θ= − = − + − , then  

( ) ( )

( ) ( )

,

actual g g

a ar ar ar a

g g

ar ar ar a

ar a

e θ θ θ θ

θ θ θ θ

θ ε

= − + −

≤ − + −

≤ + ∈� �

 (8.32)

or the actual tracking error is bounded. 
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8.4 Numerical simulation 

8.4.1 Experimental setup 

The performance of the controller designed in the previous section is studied during gait 

of a person with unilateral below-knee amputation. Performance of the proposed control 

approach is evaluated through simulation in Matlab/Simulink environment. The 

simulation model includes the link-segment diagram dynamics (7.1) with both 

prosthetic ankle joint and biological joints of the residual limb. A fully connected 

artificial neural network with random initial weights is trained with inputs from the gait-

based kinematic references 
g

r
θ  and the pseudo tracking error ( ),

a a
e e�  to approximate 

the unknown nonlinear ankle dynamics f  in (7.12). Tuning rules (8.10), (8.11) update 

the neural network weights online during the simulation. Gait-based ground reaction 

torque is generated using (7.6) from the reaction forces (7.7), (7.8). The ankle torque of 

the ANN+PD approach is then calculated by (8.7). A classical PD-only control 

( )PD PD PD g

a V a a aGK e eτ λ τ= + −�  (8.33)

is also simulated for comparison. Table 8.1 lists the parameters used in the control 

algorithms. 

Table 8.1. Control and neural network parameters 

Parameters Value 

Control gain V
K  2 

Design parameter λ  5 

Number of nodes in input layer x
N  11 

Number of nodes in hidden layer h
N  22 

Number of nodes in output layer 1 
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The control approaches are simulated in different simulation scenarios (Table 8.2) under 

the effect of noisy measurement ( ), 1
aa noisy a

nθθ θ= + , noisy control ( ), 1
aa noisy a

nττ τ= + , 

ground reaction torque compensation error aG
τ� , disturbance torque ad

τ , error in 

detection of gait event HS
t∆  which is defined as the difference between the occurrence 

of the actual Heel Strike and the Heel Strike detected by the RSI force (Figure 7.4), and 

changes in the type of gait (changes in walking speed). During walking on level ground, 

three gait types with different walking speeds are considered. 

Table 8.2. Simulation scenarios 

Scenario 
a

nθ
 

a
nτ

 
aG

τ�  ad
τ  HS

t∆  

S1 – Ideal 0 0 0 0 0 

S2 – Noisy [ ]5 10± ÷ % [ ]5 10± ÷ % 0 0 0 

S3 – GRT error 0 0 20% g

aG
τ±  0 0 

S4 – Disturbance torque 0 0 0 +20Nm 0 

S5 – HS detection error 0 0 0 0 
20ms±
  

S6 – Gait change 0 0 0 Varied  0 

 

The simulation paradigm includes 5 gait cycles of which the first 3 gait cycles are 

simulated under the ideal condition S1 (Table 8.2). Simulation scenarios S2 – S6 then 

continue at the beginning of the 4th gait cycle (Heel Strike). In the noisy condition S2, 

magnitudes of the noises 
a

nθ
 and 

a
nτ

 are between 5% and 10% of the measured ankle 

angle a
θ  and the calculated ankle torque a

τ . In the scenario S3, magnitude of the actual 

GRT experienced by the prosthetic foot varies within 20% of the GRT estimated by 
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(7.6). A positive constant torque 20Nm
ad

τ =  is added in the scenario S4 to represents 

the disturbance created by the Head-Arm-Trunk movement during gait. In the scenario 

S5, the actual Heel Strike event might happen before being detected by the measured 

gait data (late detection with positive detection error +20ms), or the gait data might 

indicate the Heel Strike when that event has yet happened (early detection with negative 

detection error 20ms− ). In the scenario S6, the walking speed increases from Slow to 

Normal and Normal to Fast, or decreases from Fast to Normal and from Normal to 

Slow. All those changes occur at the beginning of the 4th gait cycle. Gait-based 

kinematic references 
g

r
θ  for these walking speeds are adapted from [31] and 

approximated by Fourier series with adjustable parameters as in (7.9). 

8.4.2 Simulation results 

The ankle displacements resulted from the ANN+PD and PD-only control approaches 

in the ideal condition S1 are shown in Figure 8.2. The vertical dashed lines indicate the 

beginning of each gait cycle (Heel Strike). Initially, PD-only control with 2PD

V
K =  and 

5PDλ =  does not yield stable performance. Parameters for the PD-only control are then 

increased to 6PD

V
K =  and 20PDλ =  so acceptable tracking performance is obtained. 

These parameters are then used for simulation of the PD-only control algorithm in other 

scenarios in Table 8.2. 
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Figure 8.2. Ankle joint displacement in ideal conditions (S1). 
 

Tracking performance of the prosthetic ankle joint of both control approaches in 

scenarios S2 – S5 are shown in Figure 8.3. The longer vertical dashed line indicates the 

beginning of the 4th gait cycle when the changes in gait condition occur. The shorter 

vertical dashed line indicates the beginning of the 5th gait cycle after the neural network-

based controller has learned the new dynamics and adapted to the changes. It can be 

seen that the ANN+PD control outperforms the PD-only control in guaranteeing robust 

tracking performance in the presence of unmodeled dynamics and unwanted effects on 

the gait. 
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Figure 8.3. Ankle joint displacement under the effects of noises (S2), ground 

reaction torque error (S3), disturbance torque (S4), and temporal error in 

detection of Heel Strike event (S5) 
 

Finally, when the walking speed changes (scenario S6), the artificial neural network 

approximates the nonlinear ankle dynamics and adapts to the new gait. Figure 8.4 

shows the tracking performance of both control algorithms.  
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Figure 8.4. Ankle joint displacement with the changes in walking speed (S6) 

 

It is important to note that in all non-ideal conditions (scenarios S2 – S6), the ANN-

based control approach needs at most one gait cycle to learn the new dynamics before 

providing good tracking. The performance of the proposed control structure can be 

improved by parameterizing and continuously adjusting the parameters used in 

approximation of the gait-based kinematic references (7.9), real-time estimating of the 

ground reaction torque (7.6), and increasing the accuracy of the gait recognition and 

gait event detection. 

8.5 Conclusions 

A hierarchical control approach which features the adaptation of the prosthetic ankle 

joint movement to the users’ intent during gait was presented in this chapter. The ankle 

joint displacement reference was specifically generated for the type of movement which 
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could be recognized by the actual gait data measured from the users. An artificial neural 

network learnt the varying nonlinear ankle dynamics while the interaction between the 

foot and the walking terrain was compensated by an empirical model of the ground 

reaction force. The resulting control torque manipulated the prosthetic ankle joint to 

follow its displacement reference during the gait.  

Simulation results showed that tracking performance was achieved in the presence of 

measurement/actuator noises, uncertainties in terrain interaction, disturbance torques, 

variations in gait parameters, and changes in walking speed. Theoretical analysis 

established the bound of the actual tracking error and neural network weights. The 

entire system has the multi-level structure which aligns with the current trends in 

development of highly functional prosthetic feet. Issues such as parameterization of the 

gait patterns, real-time approximation of ground reaction torque, and performance of 

this control approach in different walking terrains should be addressed in the future 

work. 
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Chapter 9: Optimization-based Control of a Prosthetic Ankle Joint 

The optimization principles associated with the synthesis of the movement of human 

body during locomotion can also be used to not only generate a control torque and 

synthesize the gaits for people with below-knee amputation but also evaluate the 

performance of the prosthetic devices. The potential of an adaptive dynamic 

programming-based control strategy which can adapt in real time to any gait variations 

in a noisy environment while optimizing a gait-related performance index will be 

presented in this chapter. A learning-based control strategy including an adaptive 

dynamic programming-based controller and augmented learning rules will be 

implemented to generate an ankle torque which drives the prosthetic ankle joint along 

the designed kinematic patterns. Numerical simulations will be carried out to evaluate 

the performance of the control approach3.  

9.1 Optimization principle in human gait  

Theoretical studies of the human gait have shown that, there exists optimization 

principles associated with the synthesis of the movement of human body during 

locomotion [131, 134, 149, 150]. Moreover, these optimization principles can be 

parameterized [133] and defined by different metrics such as dynamic effort (i.e., 

integration of squares of all joint torques over time), or deviations of the joint position 

from a desire trajectory, or metabolic energy [134, 151, 152], etc. The problem can be 

solved in continuous time domain or by numerical method with the associated 

constraints by joint angle limits, joint torque limits [134, 153], etc. By optimizing those 

performance metrics, optimal joint torques are generally obtained to generate the 
                                                
3 This chapter is adapted from [A. Mai and S. Commuri, "Adaptive dynamic programming-based control 
of an ankle prosthetic joint," in Lecture Note in Electrical Engineering. vol. 325, ed: Springer, 2015, pp. 
91-105]. 
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motion. Several studies have shown that the similar optimization principles can also be 

extended to not only generate a control torque and synthesize the gaits for people with 

below-knee amputation [135, 154] but also evaluate performance of the prosthetic 

devices [101]. 

In this chapter, a control algorithm which aims at optimizing the performance metric 

which relates to the deviation of the ankle joint kinematics from its desired profiles for 

the gait will be presented. Performance and potential of an adaptive dynamic 

programming-based control structure, named direct neural dynamic programming 

(DNDP) [155] for control of an active prosthetic ankle joint is demonstrated. DNDP has 

been shown to be suitable for control of complex nonlinear systems with unknown 

dynamics and disturbances [156, 157]. Furthermore, this approach also tries to 

minimize the long-term cost function in the sense of Bellman’s principle of optimality. 

With these properties, DNDP appears to be a good candidate for a challenging task such 

as control of a prosthetic ankle. 

9.2 Direct neural dynamic programming control structure 

The DNDP-based control structure comprises of two neural networks: critic network 

and action network. The critic network is responsible for approximating of the long-

term cost function which satisfies the Bellman’s principle of optimality. The action 

network is responsible for generating a control signal which leads to the optimization of 

the approximated long-term cost (i.e., output of the critic network). Figure 9.1 presents 

the two-network configuration of the DNDP-based control. 

Critic network 
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From the discussion on the optimization principles of human gait in Section 9.1, it can 

be hypothesized that there exists a finite optimizable index which indicates the long-

term performance of the prosthetic ankle joint in tracking of the desired gait-based 

trajectory. According to the Bellman’s principle of optimality, such long-term 

performance index is expressed as the weighted sum of the short-term (instantaneous) 

cost at the subsequent iterations as follows: 

2

[ 1] [ ] [ 1] [ 2]

[ ] [ ]

k k k k

k k

L S S S

S L

α α

α

− + +
= + + +

= +

…
 (9.1)

in which 
[ 1]k

L
−

 is the long-term performance index at the iteration 1k − , [ ]k
S  is the 

instantaneous cost at iteration [ ]k  and so on, and 0 1α< <  is the discount factor. 

In the direct neural dynamic programming approach, that performance index is 

approximated by a multilayer neural network (critic network) with ideal weights 

1hCN

C
W

×∈�  and xC hCN N

C
V

×∈ �  as 

( )
[ ] ( )

[ ]

T T

C C C C Ck k

L x W V xσ ε = + 
 (9.2)

in which, 1xCN

C
x

×∈�  is the vector of the neural network inputs, 
Cε  is the bounded 

approximation error, i.e., 
C BC

ε ε< ∈� , ( ).σ  is a sigmoidal activation function, and 

hCN  is the number of nodes in the hidden layer. For simplifying purpose, the notation of 

the iteration 
[ ]k

 will be presented only when needed. The ideal weights ,C CW V  in 

(9.2) are unknown but they can be approximated by adjustable weights 1ˆ hCN

C
W

×∈�  and 

ˆ xC hCN N

CV
×∈�  with the network weight errors 



126 

ˆ

ˆ .

C C C

C C C
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V V V

= −

= −

�

�
 (9.3)

As a result, the critic network will generate ( )C
J x  which is the approximation of the 

cost function defined in (9.2): 

( ) ( ) ( ) ( ) ( )
1 1

ˆ ˆ ˆ ˆˆ ˆ1, , ,1
hC xCN N

T T T T

C C C C C C C C C

i j

J x W V x W i V i j x jσ σ
= =

 
= =  

 
∑ ∑  (9.4)

with hCN  is the number of nodes in the hidden layer, and xCN  is the number of inputs 

to the critic network 

The backpropagation error of the critic network indicates how closely the approximated 

long-term cost function J  follows the Bellman’s principle of optimality and is defined 

as follows: 

[ ] [ ] [ ] [ ]�1C k k k k

CURRENTTARGET
OUTCOME

e J S Jα
−

 = − −
 �������

 
(9.5)

Action network 

The action network is responsible for generating a control action which results in the 

optimization of the approximated long-term cost function J , i.e., the output of the critic 

network. During the gait of an individual with below-knee amputation, it is 

hypothesized that such optimal control signal exists and is formulated as 

( )

( ) ( ) ( ) ( )
1 1

ˆ ˆ ˆ ˆˆ ˆ1, , ,1
hA xA

T T

A A A A A A

N N
T T T T

A A A A A A A A

i j

u W V x

W V x W i V i j x j

σ ε

σ σ
= =

= +

 
≈ =  

 
∑ ∑

 (9.6)

in which 1 ,hA xA hAN N N

A A
W V

× ×∈ ∈� �  are ideal network weights, 1xAN

Ax
×∈�  is the vector 

of the neural network inputs, 
Aε  is the bounded approximation error, i.e., 
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A BA
ε ε< ∈� , ( ).σ  is a sigmoidal activation function, hAN  	is the number of nodes in 

the hidden layer, and xAN  is the number of inputs to the action network. The ideal 

weights ,
A A

W V  in (9.6) are unknown but they can be approximated by adjustable 

weights 1ˆ hAN

A
W

×∈�  and ˆ xA hAN N

AV
×∈�  as in (9.6) with the network weight errors 

ˆ

ˆ .

A A A

A A A

W W W

V V V

= −

= −

�

�
 (9.7)

In order to quantify the performance of the action network in generating a control signal 

which leads to the optimization of the cost function J , the backpropagation error of the 

action network is calculated in term of the ultimate control target as follows: 

[ ] [ ]� [ ]�
A Ck k k

TARGET CURRENT
OUTCOME

e U J= −  
(9.8)

where 
[ ]C k

U  is an ultimate control goal, or the target for the long-term cost approximate 

[ ]k
J . 

Performance index 

The short-term (i.e., instantaneous) cost is calculated as follows: 

2 2
1 1

2 2

g g

ar a ar a

aM aM

S
θ θ θ θ

θ θ

   − −
= − −   

   

� �

�
 (9.9)

where { },a aθ θ� , { },g g

ar arθ θ�  and { },aM aMθ θ�  are actual, desired, and maximal values of 

the ankle joint angular position and velocity. By defining the cost in term of the 

deviations of the prosthetic ankle joint position and velocity from their desired profiles, 

the performance measurement is related to the stability of the gait [134]. This selection 

also relates to the gait efficiency in the way that if the prosthetic ankle joint can perform 
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as closed as possible to the biological ankle, then the hip and knee joints do not have to 

perform unnecessary works to compensate for gait degradation. As a result, people with 

below-knee amputation can walk with no or little unnecessary extra effort/energy 

consumption. Ultimately, the overall human-prosthetic system can perform a normal 

gait. 

The desire for optimization of the gait efficiency can be expressed as the optimization 

of the approximated long-term cost function J  in the DNDP framework. Since the 

short-term cost function S  is defined in term of tracking errors as in (9.9), the ultimate 

control goal for J  is selected as  

0CU =  (9.10)

The learning algorithms for the critic and action networks that are presented in the next 

section are designed to make the backpropagation errors of the two networks go to zero, 

i.e., 0Ce →  and 0Ae → . The relationship between the network errors going to zero and 

the selection of short-term cost function S  and the ultimate control goal 
CU  can be 

explained as follows.  

First, the critic network is trained so that its backpropagation error 0Ce → . As 0Ce → , 

it can be easily seen from (9.5) that 
[ ] [ ] [ ]1k k k

J J Sα
−

 → −
 

 or 

[ 1] [ ] [ ]k k k
J S Jα− = +  (9.11)

By comparing (9.11) to (9.1), it is clear that J L→ , i.e., the critic network generates 

the true approximation of the long-term performance index.  
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The action network is trained so that its output will make the backpropagation error 

0Ae → . Because 
A Ce U J= − , the output of the critic network J  will converge to the 

ultimate control goal 
CU  which is 0 . If the critic network is trained, then J L→ , and 

this implies that the long-term performance index L  also goes to zero, i.e., 0L → . 

Because L  is defined in term of the short-term cost function S  as in (9.1) and S  is 

always a negative function as in (9.9), the instantaneous cost S  also vanishes, i.e., 

0S → . Since S  is defined as the sum of the squares of the deviations of the ankle joint 

kinematics from its desired profiles, 0S →  implies that the ankle joint tracking errors 

will go to zero, i.e., 0ae →  and 0ae →� .  

Finally, as the short-term cost S  gets smaller, the smaller target for J  in the subsequent 

iteration will be calculated. The critic network will repeat its training paradigm to 

generate an output that closely approximates the new target. As a result, the long-term 

performance index which is approximated by the output of the critic network J  will be 

improved over time. That is the basic idea of adaptive dynamic programming-based 

controls which incorporate iterating and updating the approximated long-term 

performance index J  over time (i.e., reinforcement learning) and simultaneously 

satisfying the Bellman’s principle of optimality (i.e., dynamic programming). 

9.3 Control algorithm 

In addition to Assumption 8.2.1 - Assumption 8.2.3, the following assumption is made 

for the implementation of the DNDP-based control algorithm.  

 

 

 

 

 



130 

Assumption 9.3.1 
Ideal weights of the critic and action networks are constant and bounded, i.e., 

C

C CZF
C F

W
Z B

V

Θ 
= ≤ ∈ Θ 

�  and A

A AZF
A F

W
Z B

V

Θ 
= ≤ ∈ Θ 

�  where .
F

 

represents the Frobenius norm. 

Theorem 9.3.1 
Given the control structure in Figure 9.1, the ankle torque can be computed as: 

,g

a A aG Vu K rτ τ= − +  (9.12)

with  

• 
Au  –  control signal generated by the action network in (9.6) 

• g

aG
τ  – compensation for the actual ground reaction torque aGτ  

• r  – filtered tracking error ( aa eer λ+= � ), 

( ) ,
V V a a

K r K e eλ= +�  (9.13)

Further, let the critic and action neural network weights be updated according to 

2
ˆˆ

C C C C C C C CW F e k F e Wα σ∆ = −  (9.14)

2
ˆ ˆˆT

C C C C C C C C C CV G e x W k G e Vα σ ′∆ = −  (9.15) 

2
ˆ ˆ ˆ ˆˆ ˆ ˆ T

A A A A CA C C A A A A A A A AW F e V W F V x r k F e Wσ σ σ′ ′∆ = − −  (9.16)

2
ˆ ˆ ˆ ˆˆ ˆT

A A A A CA C C A A A A A AV G e x V W W k G e Vσ σ′ ′∆ = −  (9.17) 

in which α  is the discount factor, ˆ
CA

V  is contained in ˆ
C

V  to map from ( )A Au x  to the 

hidden node outputs of the critic network, , , , , ,C C C A A AF G k F G k  	are real, positive 

design parameters, ˆ
Cσ ′  and ˆ

Aσ ′  are the Jacobian matrices defined as: 
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Then, the actual tracking error actual

ae  defined in (7.15) and the neural network weights 

errors ,C CW V� �  in (9.3) and ,A AW V� �  in (9.7) are uniformly ultimately bounded.  

Discussions 

The DNDP-based control in Figure 9.1 also has a hierarchical structure similar to the 

feedback linearization neural network-based control in Chapter 8.  

 

Figure 9.1. Block diagram of the direct neural dynamic programming-based 

control of the prosthetic ankle joint. 
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At the supervisory level, the gait data measured from the persons with below-knee 

amputation is used to recognize the type of gaits, detect the gait events, and generate the 

corresponding gait-based reference joint patterns. The control level comprises of a 

learning control algorithm that bases on a critic-action structure, a PD control, and an 

approximation of the ground reaction torque. This level is responsible for driving the 

prosthetic ankle joint along the desired gait-based ankle angle profile and improving a 

gait-related performance index over time. 

The monitoring loop and tracking loop of the DNDP-based control in Figure 9.1 

perform the tasks similar to the control algorithm in Figure 8.1. However, the most 

inner loop does not approximate the unknown ankle dynamics. Instead, that loop aims 

to evaluate the control quality, and calculates a control action that yields an optimized 

performance.    

9.4 Numerical simulation 

9.4.1 Experimental setup 

Both networks use sigmoid activation functions and are fully connected with randomly 

initialized weights in the range [ ]1,1− . The critic network and action network weights 

are updated using (9.14)-(9.15) and (9.16)-(9.17), respectively. Equation (9.9) is used to 

calculate the short-term cost at each time step. Table 9.1 lists the network and control 

parameters. 
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Table 9.1. Direct neural dynamic programming-based control and 

neural network parameters 

Parameters Value 

Control gain VK  5 

Design parameter λ  10 
Discount factor α   0.95 

Number of nodes in input layer of critic network xCN  5 

Number of nodes in hidden layer of critic network hCN  10 

Number of nodes in output layer of critic network 1 

Number of nodes in input layer of action network xAN  4 

Number of nodes in hidden layer of action network hAN  8 

Number of nodes in output layer of action network 1 
 

The vector of inputs to the critic network is defined as: 

T
T

C A A
x x u =    (9.19)

in which Ax  is the vector of inputs to the action network  

T

A a a a a
x e e θ θ =  

��  (9.20)

and Au  is the control signal generated by the action network as in (9.6). 

Table 9.2 lists the scenarios for simulation of the gait model and the control approaches. 

These scenarios illustrate the varying noises and gait conditions as follows.  

Ideal condition: In this ideal condition, the system is simulated with 20 steps of normal 

speed without any measurement and actuator noises. 

Effect of measurement and actuator noises: Uniformly distributed measurement 

noises are added to the ankle position and angular velocity. Torque output generated for 

the ankle joint is also added with uniformly distributed actuator noise as follows: 
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τ τ ρτ
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= +

= +

� � �  (9.21)

where ρ  is in the range [ ]2%,2%−  (or [ ]5%,5%− ). The system is simulated with 20 

steps of normal walking speed and increasing measurement and/or actuator noises. Four 

simulation scenarios with different levels of measurement noises and actuator noises are 

summarized in Table 9.2. In all scenarios N1 – N4, the measurement noises and 

actuator noises are added to the simulation model at the beginning of the 6th step. 

Effect of variations in walking speed: Control configurations similar to previous 

simulation scenarios are repeated here to evaluate the performance of the DNDP-based 

control in the presence of variations in walking speed. The system is simulated with 5% 

measurement noise, 5% actuator noise, and 4 different walking setups as shown in 

Table 9.2. Three gaits labeled Slow, Normal, and Fast indicate different walking speeds. 

Table 9.2. Simulation scenarios with noises and changing gaits 

Effect of 

noises 

N1 2% measurement noise 

N2 5% measurement noise 

N3 5% measurement noise and 2% actuator noise 

N4 5% measurement noise and 5% actuator noise 

Effect of 

changing gaits 

G1 10 normal walking + 10 fast walking 

G2 10 normal walking + 10 slow walking 

G3 10 normal walking + 5 fast walking + 5 slow walking 

G4 10 normal walking  + 5 slow walking + 5 fast walking 

 

For the comparison purpose, the simulation is repeated with other types of control at the 

ankle joint including Proportional-Derivative control (PD) as: 
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( )PD PD PD g

a V a a aGK e eτ λ τ= + −�  (9.22)

and feedback linearization neural network-based control (FLNN): 

ˆ ,g

a aG V
f K r vτ τ= − + −  (9.23)

in which f̂  is the approximation of the unknown ankle dynamics in (7.12), v  is the 

robustifying term to compensate for approximation errors and unknown disturbances. It 

is noted that the approximation of f̂  bases on backpropagation of the tracking errors 

and does not involve the optimization of the approximated long-term cost ( )CJ x  as 

used in (9.8). 

9.4.2 Simulation results 

Figure 9.2 shows the tracking performance, short-term cost S  and the accumulative 

cost A S= Σ  from one step during the Normal gait under the ideal condition (no noises, 

and no gait changes).   
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Figure 9.2. Performance of the DNDP-based control during normal gait under 

ideal conditions. 

 

All the controls can drive the ankle joint along the desired trajectory with a small 

tracking error. It can be seen that during the gait, although there are instances when the 

short-term cost S of the DNDP-based control exceeds the short-term cost of the FLNN 

or PD control, the accumulative cost of the DNDP-based control during the entire gait 

cycle is lower than the other control algorithms. 
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Figure 9.3. Accumulative cost with the measurement and actuator noises. 

 

Accumulative costs from one gait cycle of the simulation scenarios N1 – N4 with the 

presence of the measurement and actuator noises are showed in Figure 9.3 for all 

control algorithms. Table 9.3 reports the accumulative cost (per sample) over the entire 

simulation period which includes 20 steps of the gait with normal walking speed and 

different levels of noises. It can be seen that as the measurement/actuator noises 

increase, the DNDP-based control outperforms other control methods by producing 

robust tracking performance with lower accumulative cost. 
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Table 9.3. Accumulative cost after 20 steps of normal walking speed with 

increasing measurement/actuator noises 

Noise levels PD FLNN DNDP 

2% measurement noise (N1) 0.715 0.239 0.075 

5% measurement noise (N2) 3.96 2.003 0.118 

5% measurement noise and 2% actuator noise (N3) 3.961 2.079 0.120 

5% measurement noise and 5% actuator noise (N4) 3.966 2.336 0.130 

 

Similar setups are repeated here to evaluate the performance of the DNDP-based control 

in the presence of variations in walking speed. The system is simulated with 5% 

measurement noise, 5% actuator noise, and 4 different walking setups (Table 9.2). 

 

Figure 9.4. Accumulative cost with the changing gaits. 

 

Figure 9.4 shows the accumulative cost of the 11th step of the scenarios G1 and G2 

(when the walking speed was changed from Normal to Fast and from Normal to Slow, 
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respectively) and of the 16th step of the scenarios G3 (Fast to Slow), and G4 (Slow to 

Fast). Accumulative costs calculated from the entire simulation duration of the 

scenarios G1 – G4 are shown in Table 9.4. 

It can be seen from Figure 9.4 and Table 9.4 that when the walking speed changes, the 

DNDP-based control is still able to provide lower accumulative performance cost 

compared to other control strategies. 

Table 9.4. Accumulative cost with 5% measurement noise, 5% actuator noise, 

and combinations of different walking speeds. 

Gait PD FLNN DNDP 

10 normal + 10 fast (G1) 2.140 0.567 0.100 

10 normal + 10 slow (G2) 3.910 1.915 0.106 

10 normal + 5 fast + 5 slow (G3) 2.233 0.461 0.082 

10 normal + 5 slow + 5 fast (G4) 2.206 0.490 0.084 

 

9.5 Conclusions 

In this chapter, the performance and potential of a model-free adaptive dynamic 

programming-based controller for a prosthetic ankle joint were evaluated. By 

optimizing the performance metric which was defined in term of the deviation of the 

ankle kinematics from its desired profiles, the control approach in this chapter could 

guarantee the stability and increase the efficiency of the gait by reducing the 

unnecessary works for the biological knee and hip joints. Simulation scenarios indicated 

that with the DNDP-based control, the prosthetic ankle joint was able to provide stable, 

robust, and reduced performance cost during gait. Future works should evaluate the 

effectiveness of the proposed control structure with different performance indices such 

as dynamic effort (i.e., integration of squares of all joint torques over time), or 

metabolic energy consumption.  
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Chapter 10: Conclusions and Future Research 

The design of an intelligent prosthetic ankle that is able to perceive user gait and adapt 

its performance in real time was addressed in this dissertation. Inability to support body 

weight during gait as well as inadequate function of the prosthetic foot can lead to gait 

anomalies that adversely affect the health of individuals with amputation below the 

knee. While transtibial osteomyoplastic amputation procedure has been advocated to 

improve end-bearing as well as retention of muscle activity in the affected limb, the 

clinical outcomes of the procedure were not validated in the literature. Further, gait 

assessment for individuals with transtibial amputation was performed in a gait 

laboratory primarily to detect asymmetry in gait and study energy expenditure during 

locomotion. Such studies were not conducted to study gait under normal work-related 

activities or to study the environment in the prosthetic socket during gait. Further, the 

prosthetic ankle was a passive device with minimal energy storage and return 

capability. Even the active devices were not designed to detect user intent or adapt to 

changing gait and environmental conditions. For the first time in the literature, a 

systematic procedure has been demonstrated to study the gait of individuals with TOA 

and design control strategies that not only guarantee tracking of the ankle displacement 

profiles that can replicate normal human gait, but can also adapt to changing gait 

conditions and optimize the performance in real time. The stability and robustness of 

the proposed design has been rigorously proven and the performance has been validated 

using actual gait data collected during the course of this dissertation.  

The following are some of the results of the research presented in this dissertation. 
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a) A gait monitoring device and gait analysis software were developed in this 

dissertation to provide a method to assess the gait asymmetry and quantitatively 

evaluate the outcomes of the transtibial osteomyoplastic amputation procedure 

(Chapter 3, Chapter 4, Chapter 5, and [111, 122]). Simultaneous presence of the 

load at the distal area of the residual limb and activities of the residual muscles 

were successfully confirmed for the first time. Using the procedure developed in 

this dissertation, additional evidence was obtained to validate the effectiveness 

of the TOA procedure. 

b) For the first time, the residuum socket interface force and the residual muscle 

activities of individuals with TOA were captured in real time during work-

related gait activities. Contraction/elongation of the residual muscles inside the 

socket and their relationships to the variations of the RSI forces in individuals 

with TOA during gait were also studied. The dependence of the interfacial 

socket force and residual muscle activities on the type of prosthetic feet and type 

of gait was clearly demonstrated and filled an important gap in the literature 

(Chapter 4, Chapter 5, and [111, 122]).  

c) Socket forces and residual muscle activities captured from the participants in 

this dissertation provided a new method to recognize the gait types and detect 

gait events. This method allowed the synthesis of ankle displacement profile 

similar to that of a normal ankle to be used in the control of a prosthetic foot 

(Chapter 6 and [142]). 

d) Finally, learning-based control strategies with hierarchical structures were 

implemented to adaptively compensate for the unknown, changing ankle 
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dynamics and drive the prosthetic ankle joint along the desired trajectories. With 

the learning capabilities of these control strategies and the incorporation of the 

actual gait data, the prosthetic ankle joint could not only replicate the healthy 

ankle movement, but also improve the gait stability and optimize the gait 

performance (Chapter 7, Chapter 8, Chapter 9, and [158, 159]). 

It is anticipated that the results from this dissertation will lead to better understanding 

on the effect of the amputation procedure and prosthetic components on the long-term 

health of the individual. 

Limitations and future directions 

This dissertation focused on a specific group of individuals with unilateral TOA, using 

the socket design for their residual limb but with different foot components, thus 

allowing for general interpretation of the results. In order to obtain more specific 

conclusions on the effect of gait and prostheses on socket force and residual muscle 

contraction, systematic gait studies should be designed with a larger group size and 

consistency in the type of prosthetic feet. Kinematic and kinetic measurements (e.g., 

joint movement, joint force) as well as quantitative metric of metabolic energy 

consumption should also be incorporated.  

In this dissertation, control of the prosthetic ankle joint was carried out in a framework 

which was based on modeling and simulation. Such frameworks enabled a quick 

evaluation of the performance of prosthetic devices under different operating conditions 

without introducing the risk of injury due to prosthetic malfunctions when testing on 

human subjects. Although the control performance was promising, designing a 

controlled prosthetic foot is a long-term task and several milestones need to be 
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addressed before the proposed approach can be applied. First and foremost, a 

mechanical design and prototype foot which satisfy the requirement on rigidity, 

mobility, and power has to be built. Dynamical model of the ankle joint during gait 

should be obtained using mathematical modeling and refined with actual gait 

measurement. The control approach will then be tested and adjusted on the refined 

model. Additional, issues such as accuracy of gait recognition, parameterization of the 

gait patterns, real-time approximation of the ground reaction torque should be 

addressed. Finally, performance of the controlled prosthetic foot should be tested 

through both mechanical property testing and quantitative gait analysis. Extension of 

the study to individuals with bilateral TOA as well as transfemoral (above-knee) 

amputation is also the scope for future research. 
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Appendices 

Appendix A1 – Link segment and ankle joint dynamics 
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Appendix A2 – Proof of Lemma 8.3.1 

The physical/design constraints of the prosthetic ankle joint guarantee that the actual 

ankle angular position aθ  and velocity 
a

θ�  are always bounded. In addition, the gait-
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based kinematic references ( ), ,g g g

r r rθ θ θ� ��  are also bounded since they are approximated 

by finite Fourier series (Discussions). The tracking error ( )g

ar aθ θ−  is therefore finite 

and since a ar e eλ= +� , the filtered tracking error r is also finite, i.e., r L∞∈ . 

By replacing ae�  in (8.2)by ar eλ− , one can show that 

2 3x C C r≤ +  

 

where 2 0C >  and 3 0C >  depend on the initial tracking error ( )0
a

e , the bound g
r

B
θ

 and 

design parameter λ . With the input vector x  in a compact set 1xN

x
x S

×∈ ⊂ � , the 

approximation (8.1) holds. 

Appendix A3 – Proof of Lemma 8.3.2 

 

From Taylor series expansion of ( )T
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Since the sigmoid activation functions and their derivatives are bounded, i.e., 

ˆ1, 1σ σ< <  and ˆ Bσσ ′ ≤ , we have 
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Appendix A4 – Proof of Lemma 8.3.3 

Since ,
B ad d

Bε ε τ≤ ≤ , and aG GBτ ≤� , 
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