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Abstract 

The protection of critical infrastructures has recently garnered attention with an 

emphasis on analyzing the risk and improving the resilience of such systems. With the 

abundance of data, risk managers should be able to better inform preparedness and 

recovery decision making under uncertainty. It is important, however, to develop and 

utilize the necessary methodologies that bridge between data and decisions. The goal of 

this dissertation is to (i) predict the likelihood of risk, (ii) assess the consequences of a 

disruption, and (iii) inform preparedness and recovery decision making.  

 This research presents a data-driven analysis of the risk and resilience of critical 

infrastructure systems. First, a new Bayesian kernel model is developed to predict the 

frequency of failures and a Beta Bayesian kernel model is deployed to model resilience-

based importance measures. Bayesian kernel models were developed for Gaussian 

distributions and later extended to other continuous probability distributions. This 

research develops a Poisson Bayesian kernel model to accommodate count data. 

Second, interdependency models are integrated with decision analysis and resilience 

quantification techniques to assess the multi-industry economic impact of critical 

infrastructure resilience and inform preparedness and recovery decision making under 

uncertainty.  

Examples of critical infrastructure systems are inland waterways, which are 

critical elements in the nation’s civil infrastructure and the world’s supply chain. They 

allow for a cost-effective flow of approximately $150 billion worth of commodities 

annually across industries and geographic locations, which is why they are called 

“inland marine highways.” Aging components (i.e., locks and dams) combined with 
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adverse weather conditions, affect the reliability and resilience of inland waterways. 

Frequent disruptions and lengthy recovery times threaten regional commodity flows, 

and more broadly, multiple industries that rely on those commodities. While 

policymakers understand the increasing need for inland waterway rehabilitation and 

preparedness investment, resources are limited and select projects are funded each year 

to improve only certain components of the network. As a result, a number of research 

questions arise. 

What is the impact of infrastructure systems disruptions, and how to predict 

them? What metrics should be used to identify critical components and determine the 

system’s resilience? What are the best risk management strategies in terms of 

preparedness investment and recovery prioritization? 

A Poisson Bayesian kernel model is developed and deployed to predict the 

frequency of locks and dams closures. Economic dynamic interdependency models 

along with stochastic inoperability multiobjective decision trees and resilience metrics 

are used to assess the broader impact of a disruption resulting in the closure of a port or 

a link of the river and impacting multiple interdependent industries. Stochastic 

resilience-based measures are analyzed to determine the critical waterway components, 

more specifically locks and dams, that contribute to the overall waterway system 

resilience. A data-driven case study illustrates these methods to describe commodity 

flows along the various components of the U.S. Mississippi River Navigation System 

and employs them to motivate preparedness and recovery strategies.  
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Chapter 1  

Introduction  

A number of infrastructure systems, both in the U.S. and globally, have been 

identified as critical due to their ubiquitous influence on society’s way of life. Among 

these critical infrastructures are energy, healthcare, and transportation sectors (DHS, 

2009).  Their criticality is due to their interconnectedness with other infrastructure 

systems, as well as industries and workforces which rely upon them.  A disruption to 

such a critical infrastructure, whether the result of a terrorist attack, a natural disaster, 

an accident, or common failure, could incur widespread losses of functionality that 

affect not only the infrastructure itself but all the industries depending on it.  Therefore, 

to effectively plan for the protection of these infrastructures from failure, and more 

importantly the response to and recovery from such failures when they inevitably occur, 

an important challenge exists in (i) estimating the likelihood of a disruptive event, (ii) 

portraying the widespread economic losses resulting from a disruptive event, as well as 

(iii) measuring the efficacy of risk management to determine the appropriate investment 

to enable preparedness and recovery. 

Of interest in this work are transportation systems, specifically inland waterway 

navigation systems, though the methodologies developed in this dissertation have 

broader applicability to preparedness in other infrastructure systems.  As truck traffic 

continues to increase, congestion on highway networks will worsen and become a major 

issue for commodity flows (USDOT, 2009, 2011; NCFRP, 2010; GAO, 2011).  The 

highway and railway networks in many cities near coastal ports are already 

experiencing bottlenecks. A viable alternative to these modes for freight transport is the 
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inland waterway navigation system. Vital to commodity flows in the U.S., almost 80% 

of all U.S. international trade is transported through coastal ports, with 40% of these 

shipments moving inside the U.S. through inland ports before reaching their final 

destination (Haveman & Shatz, 2006).  However, commodity flows through inland 

waterways are a distant third behind highway and rail traffic (USACE, 2010), giving 

them an opportunity for expanded use. 

Infrastructure networks in today’s global landscape can been characterized as 

exhibiting the characteristics of many complex and large-scale systems: (i) a large 

number of interacting components and subsystems, (ii) a large number of decision and 

state variables, (iii) complicated, complex, and often nonlinear functional relationships, 

(iv) uncertainty and variability, (v) hierarchical and/or networked interdependencies, 

(vi) multiple and often conflicting performance objectives, (vii) multiple decision 

makers, and (viii) dynamic changes, among others (Haimes, 2009b). As such, disruptive 

events, whether malevolent attacks, natural disasters, manmade accidents, or common 

cause failures, can have devastating, widespread, and often unpredictable, results. 

Consider, for example, the August 2003 US blackout which “contributed to at 

least 11 deaths and cost an estimated $6 billion” (Minkel, 2008), or the largest blackout 

in history experienced by India during August 2012, affecting over 600 million people. 

Against the effects of these events, most research efforts have been devoted to 

developing traditional measures of protection (hardening) (Ramirez-Marquez, Rocco, & 

Levitin, 2011; Levitin & Hausken, 2010; Bier, Haphuriwat, Menoyo, Zimmerman, & 

Culpen, 2008) and policies that can be expensive, degrade typical performance, and are 

non-reactive. Recent attention has been placed on preparedness, response, and recovery 
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from these events (e.g., in the large-scale homeland security preparedness domain 

(DHS, 2009)). A perspective that has recently been collectively referred to in the 

systems engineering community as designing for resilience, is considered an essential 

component in the design of systems and enterprises (Comfort, Boin, & Demchak, 

2010). 

The goal of this dissertation is to develop and utilize data-driven methods and 

statistical tools as well as stochastic simulation to address the preparedness for, 

response to, and recovery from critical infrastructure systems disruptions. The main 

objectives of the research are to (i) predict the likelihood of a disruption, (ii) assess the 

consequences, and (iii) provide recovery insights. 

General Literature Review 

While a more specific literature review will be presented in each chapter in the 

dissertation, the following is a general overview of the risk analysis, resilience 

modeling, and inland waterways research literature. Significant methodological and 

theoretical contributions that founded this research will be presented in subsequent 

chapters. 

Risk Analysis 

According to Lowrance (1976), risk is a “measure of the probability and severity 

of adverse effects.” The analysis of risk is composed of the (i) risk assessment and (ii) 

risk management. The risk assessment would generally consider three questions 

(Kaplan & Garrick, 1981): 

(i) What can go wrong? 

(ii) What are the chances of something going wrong? 
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(iii) What are the consequences if the undesirable event occurs?  

Haimes (2009b) complements these questions with another set of three questions 

aiming at risk management: 

(i) What can be done? 

(ii) What options are available and what are the associated tradeoffs in terms of 

cost, risks, and benefits? 

(iii) What are the impacts of the current management decisions on future 

options? 

The work in this dissertation addresses the second and third question of the risk 

assessment as well as the three questions of the risk management. Statistical methods 

are used to estimate the frequency of disruptions occurring in a critical infrastructure 

system. Interdependency modeling is used to assess the consequences of disruptions, 

and integrated with decision analysis techniques, it is used to identify risk management 

strategies and assess their efficacy. Finally, statistical tools and stochastic simulation 

techniques are deployed to assess current decisions on the system’s resilience in the 

future. 

 Probabilistic Risk Assessment (PRA) is a common tool used to analyze the risk 

as it has been applied in cases where there is little to no data available such as the case 

with the estimation of accidents in nuclear power plants (Lewis et al., 1979). The 

method relies on the functional form and the physical structure of the system coupled 

with other techniques (e.g., fault tree, event tree, among others) that are used to extract 

the analysis from a component-level to a system-level. Ezell, Farr, & Wiese (2000) 

deploy PRA techniques for the risk analysis of infrastructure systems.  
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 Guikema (2009) highlights the need to consider statistical data-driven methods 

to address the risk assessment of large-scale critical infrastructure systems facing 

natural disasters. The structure of such systems is too complex for PRA methods and 

they have an abundance of data for which statistical tools would be more suitable such 

as the Generalized Linear Models (GLM). The use of statistical techniques to provide 

data-driven analysis of the risk of infrastructure systems has recently emerged with 

applications in the prediction of power outages (Liu, Davidson, Rosowsky, & Stedinger, 

2005), traffic accidents (Lord, Washington, & Ivan, 2005), and water distribution 

systems reliability (Yamijala, Guikema, & Brumbelow, 2009), among others. The key 

factor of utilizing such tools is the selection of the best model based on the type of data 

available and the outcome variable. 

 The first part of this dissertation develops a new statistical tool to analyze the 

risk in critical infrastructures. Such systems are large and complex in nature that PRA 

would be computationally expensive to implement. However, the data available for 

some of these systems is not always abundant enough to provide robust estimation 

using traditional statistical methods such as GLM. The proposed model has the potential 

of addressing risk using data-driven analysis when data is scarce.   

Resilience Modeling 

The importance of having robust and resilient infrastructure systems has gained 

the attention of decision makers and government officials in the past decade. Critical 

infrastructure systems, such as power grids and transportation systems have been 

vulnerable to numerous disruptive events including natural disasters, willful attacks, and 

accidents. DHS announced a set of grant programs targeting different areas prone to 
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willful attacks or natural disasters (DHS, 2012), aiming to provide resources helpful in 

supporting the National Preparedness Goal (NPG) in succeeding in its mission of 

insuring “a secure and resilient Nation with the capabilities required across the whole 

community to prevent, protect against, mitigate, respond to, and recover from the 

threats and hazards that pose the greatest risk” (DHS, 2011). Further motivation comes 

from Boin, Comfort, & Demchak (2009): 

“If we accept that dominant trends such as globalization, increasing 

interdependence and complexity, the spread of potentially dangerous 

technologies, new forms of terrorism, and climate change create new and 

unimaginable threats to modern societies, it is only a small step to recognizing 

and accepting the inherent shortcomings of contemporary approaches to 

prevention and preparation. If we cannot predict or foresee the urgent threats 

we face, prevention and preparation become difficult. The concept of resilience 

holds the promise of an answer.” 

Resilience is often thought of as the ability exhibited by a system to “bounce 

back” following a disturbance. In material science, a modulus of resilience is also 

defined to represent the energy absorbed per unit volume of material when stressed to 

the proportional limit (Ugural, 2003). In socio-ecological systems, resilience is defined 

as the magnitude of disturbance that can be absorbed before the system changes its 

structure by changing the processes that control behavior (Holling, 1973; Carpenter, 

Walker, Anderies, & Abel, 2001). Regarding enterprise systems, Jackson (2007, 2009) 

defines resilience as the ability of organizational, hardware, and software systems to 

mitigate the severity and likelihood of failures or losses, to adapt to changing 
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conditions, and to respond appropriately. In business terms, resilience has been defined 

as the ability of an organization to sustain the impact of a business interruption and 

recover and resume operations to continue to provide minimum services (Hoffman, 

2007). With respect to critical infrastructure, the Infrastructure Security Partnership 

(2011) noted that a resilient infrastructure sector would “prepare for, prevent, protect 

against, respond or mitigate any anticipated or unexpected significant threat or event” 

and “rapidly recover and reconstitute critical assets, operations, and services with 

minimum damage and disruption.” In an engineering context, Hollnagel, Woods, and 

Leveson (2007) promote resilience engineering as a new paradigm for safety 

engineering. And many others have defined resilience in various ways (Fiksel, 2003; 

Wreathall, 2006; Vogus & Sutcliffe, 2007; Rose, 2009). 

This research utilizes the resilience modeling framework developed by Henry 

and Ramirez-Marquez (2012) that quantifies resilience based on the system’s service 

function. The framework is the basis for the modeling approach developed to analyze 

the resilience of critical infrastructure systems and its impact on decision making under 

uncertainty.  

Inland Waterways Research 

“The current system of inland waterways lacks resilience. Waterway usage is 

increasing, but facilities are aging and many are well past their design life of 50 

years. Recovery from any event of significance would be negatively impacted by 

the age and deteriorating condition of the system, posing a direct threat to the 

American economy.” 2009 Report Card for America’s Infrastructure, American 

Society for Civil Engineers (ASCE) (2009). 
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The multi-modal transportation system plays a vital role in maintaining 

commodity flows across multiple industries and multiple regions. As a result of their 

critical role, the effects of large-scale disruptive events could result in the closure of key 

transportation links and nodes. These critical components in a transportation network 

(e.g., inland waterways) are particularly susceptible to disruptions in commodity flows 

(Lee, Park, & Lee, 2003; Sacone & Siri, 2009; Lee & Kim, 2010). The recovery of 

transportation networks from disruptions has been given some recent attention 

(Cadarso, Marín, & Maróti, 2013; Chen & Miller-Hooks, 2012; Zeng, Durach, & Fang, 

2012; Zhang & Peeta, 2011).  

Although inland ports face many of the same risks as coastal ports, relatively 

few studies have developed risk assessments of inland ports (Folga et al. 2009; Pant, 

Barker, Grant, & Landers, 2011; MacKenzie, Barker, & Grant,  2012a). Some studies 

have focused on forecasting commodity flows in inland waterway networks (Babcock 

& Lu, 2002; Beuthe, Jourquin, Geerts, & a Ndjang'Ha, 2001), however, such models do 

not capture the effect of uncertain disruptive events and their impacts on the commodity 

flows. Pant et al. (2011) provide a simulation model of inland port activities to 

parameterize a port disruption within a multi-regional interdependency model, while 

MacKenzie et al. (2012a) focus on the multi-regional impacts in functionality and in 

economic losses of decision making for shipping alternatives following an inland port 

disruption. 

During recent ASCE testimony to the U.S. Senate, it was stated that the costs 

attributed to delays in U.S. inland waterways were $33 billion in 2010 (rising to $49 

billion by 2020), with interdependent impacts cascading to economic sectors that 



9 

require inland waterway transport (e.g., petroleum, coal) (ASCE, 2013a). As such, the 

study of the risk and resilience of inland waterway networks is an important area of 

focus. 

The case study for inland waterways is analyzed for each of the methods 

developed. In each chapter, an aspect of the risk or resilience of the network is analyzed 

such as the prediction of the frequency of disruptions (Chapter 2), the assessment of 

interdependent economic impacts of a port closure and the corresponding risk 

management efficacy analysis (Chapter 3), the impact of the resilience of the waterway 

network on the interdependent economic impacts of a disruption (Chapter 4), the 

prioritization of recovery activities sets after a disruption occurred (Chapter 5), and 

finally, the identification of resilience-based critical components of the inland waterway 

(Chapter 5). 

Research Contributions 

Each chapter in the dissertation outlines the methodology and modeling 

approach for the risk and resilience analysis with an application to the inland waterway 

network. Thus, each chapter will address a specific literature review of the tools 

discussed.  

There are three levels of contributions in this research: theory, methodology, and 

application. A contribution is made to the theory of statistics and machine learning 

through a new model, the Poisson Bayesian kernel model, which expands on the class 

of Bayesian kernel methods to accommodate count data (Chapter 2). The work has 

appeared in Floyd, Baroud, & Barker (2014).  A methodological contribution is made to 

the field of risk analysis through the deployment of the Poisson Bayesian kernel model 
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in the risk analysis of critical infrastructure systems, in particular, inland waterways 

(Baroud, Barker, & Lurvey, 2013a). Other methodological contributions include the 

integration of the economic interdependency model (i) with stochastic decision trees to 

analyze the impact of port closures and assess risk management strategies (Chapter 3), 

the work has appeared in Baroud, Barker, & Grant (2014a), and (ii) with resilience 

metrics to quantify the impact of the resilience of the disrupted infrastructure system on 

the multi-industry economic impacts (Chapter 4), the work appears in  Baroud, Barker, 

Ramirez‐Marquez, & Rocco (2013b, 2014c). Finally, the third type of contribution is at 

the application level where Bayesian kernel methods are used to model the resilience of 

critical infrastructures. In particular, the Beta Bayesian kernel model is used to analyze 

resilience-based importance measures to identify critical components of the inland 

waterway network. Data-driven and statistical tools have not been previously deployed 

to analyze the resilience of critical infrastructure systems. This work has appeared in 

Baroud and Barker (2014). 
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Chapter 2  

Bayesian Kernel Methods for the Prediction of Risk 

In many situations, the likelihood of an event is found using the average rate at 

which the event occurs. And often that rate is a function of characteristics surrounding 

the event.  To integrate the impacts of both the component characteristics and any prior 

failure information, a Bayesian kernel model is proposed as an approach to a more 

accurate estimation of the rate of occurrence of an event. More specifically, an extended 

version of this method is developed, the Poisson Bayesian kernel model to 

accommodate count data and estimate the rate of occurrence. This chapter includes an 

extensive literature review of Bayesian kernel methods and count data models. The 

Poisson Bayesian kernel model is introduced as a new approach to predict the 

likelihood of occurrence of an event. An empirical analysis of this model using different 

types of data sets and measures of goodness of fit and prediction accuracy is used to 

validate the model in comparison to classical approaches. Finally, the Poisson Bayesian 

kernel model is deployed in a case study to analyze the rate of disruptions along an 

inland waterway network, the Mississippi River Navigation System. 

Literature Review 

Kernel methods, first introduced in a pattern recognition setting several decades 

ago (Aizerman, Braverman, & Rozonoer, 1964), have found popularity across a number 

of data mining domains, including bioinformatics (Schölkopf, Guyon, & Weston, 2003; 

Ben-Hur & Noble, 2005), sensing (Arias, Randall, & Sapiro, 2007; Camps-Valls, Rojo-

Alvarez, & Martinez-Ramon, 2006), and financial risk management and forecasting 

(Wang & Zhu, 2010; Mitschele, Chalup, Schlottmann, & Seese, 2006), among many 
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others. Kernel functions are used to map input data, for which no pattern can be 

recognized, to a higher dimensional space, where patterns are more readily detected. 

Such functions enable algorithms designed to detect relationships among data in the 

higher dimensional space, including least squares regression and support vector 

machines (SVM) classification (Cherkassky & Mulier, 1998; Cristianini & Shawe-

Taylor, 2000; Hastie, Tibshirani, & Friedman, 2001). Integrating Bayesian methods 

with kernel methods has recently garnered attention (Seeger, 2000; Bishop & Tipping, 

2003, Mallick, Ghosh, & Ghosh, 2005; Zhang, Dai, & Jordan, 2011), as Bayesian 

methods make use of historical data to estimate posterior probability distributions of the 

parameter of interest given that it follows a specific prior distribution.  

The integration of Bayesian and kernel methods enables a classification 

algorithm which provides probabilistic outcomes as opposed to deterministic outcomes 

(i.e., such as those resulting from SVM classification). That is, rather than assigning a 

class to a data point, Bayesian kernel methods assign a probability that the data point 

belongs to a particular class. Several extensions to Bayesian kernel models have 

appeared, including (i) the relevance vector machine (RVM) which assumes a Gaussian 

distribution for the probability to be estimated (Tipping, 2001; Schölkopf & Smola, 

2002), and (ii)  non-Gaussian distributions for binary problems (Montesano & Lopes, 

2009; Mason & Lopes, 2011; MacKenzie, Trafalis, & Barker, 2014b). However, there 

has been no Bayesian kernel model developed for count data.  

Bayesian Methods 

The classic Bayes rule assumes that a prior probability for an event of interest, 

A, is given as 𝑃(𝐴), and a likelihood of event 𝐵 conditioned on the occurrence of 𝐴 is 
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given as 𝑃(𝐵|𝐴). With these probabilities, along with 𝑃(𝐵), one can calculate the 

posterior distribution for the event of interest given knowledge of 𝐵, or 𝑃(𝐴|𝐵), shown 

in Eq. (2-1) (Bayes & Price, 1763). 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (2-1) 

This manifests itself, for example, when one wants to develop a posterior 

distribution for a parameter of interest, 𝑡, from (i) the prior distribution for that 

parameter, 𝑃(𝑡), and (ii) the data describing that parameter in the form of a likelihood 

function, 𝑃(𝑥|𝑡), which is a conditional likelihood of obtaining the data given the 

parameter. In such a case, the denominator does not depend on the parameter of interest 

and can be excluded from the Bayes rule equation when maximum likelihood 

calculations are performed. More specifically, the posterior probability distribution for 

this parameter t can be estimated as being proportional to its prior distribution 

multiplied by the likelihood function, as depicted in Eq. (2-2). 

 𝑃(𝑡|𝑥) ∝  𝑃(𝑡)𝑃(𝑥|𝑡) (2-2) 

An important concept used in the Bayesian framework is the notion of conjugate 

priors, which assumes that the posterior, P(t | x), and the prior, P(t), distributions are 

from the same family of distributions. Having the prior and posterior follow the same 

distribution insures that the overall data properties are kept while modifying the details 

of the distribution such as the parameters to better explain the trends. In addition, 

conjugate priors provide analytical solutions for the posterior distribution, allowing for 

a much faster computation time than other Bayesian tools that require simulation or 

optimization techniques. MacKenzie et al. (2014b) use the Beta-Bernoulli conjugate 

prior to build non-Gaussian Bayesian kernel models for binary classification. The 
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research in this dissertation uses the Gamma conjugate prior to construct a Poisson 

Bayesian kernel method to model count data. 

Kernel Methods 

Algorithms for detecting non-linear relationships have started to emerge with 

heuristic tools such as decision trees (Breiman, Friedman, Olshen, & Stone, 1984; 

Quinlan, 1983, 1986) and artificial neural networks (ANN) (Yegnanarayana, 2009) with 

applications across many disciplines such as healthcare (Baxt, 1995; Fonarow et al., 

2005), geotechnical engineering (Shahin, Jaksa, & Maier, 2001), and atmospheric 

sciences (Gardner & Dorling, 1998), among many others. These techniques lack 

theoretical foundation and robustness, and they have a tendency to overfit the data. In 

addition, ANN can be computationally expensive (Broussard, Kennell, Ives, & Rakvic, 

2008).  

Kernel methods introduced a new class of machine learning for non-linear 

classification that was more flexible, capable of accommodating different types of data 

and detecting different types of relations (Vapnik, 2013; Vapnik & Vapnik, 1998). As 

mentioned earlier, a kernel function maps the data to a higher dimensional space, called 

the feature space, and detects linear classifiers in that space. Such technique provides 

simple and easy detection to nonlinear and complex relations among the data. For 

example, Figure 2-1 is a graphical representation of a simple binary classification 

problem. The kernel function is used to map the input data in R2 (plot on the left hand 

side) into the feature space R3 (plot on the right hand side) in which the inner product is 

computed then integrated into the classification algorithm to find a linear classifier in 

the feature space that would be equivalent to an ellipse in the input space.  
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Figure 2-1: Binary classification example using a polynomial kernel function 

(Schölkopf & Smola, 2002) 

 

The kernel function used to map and compute the inner product in the figure above, is 

the polynomial kernel function of degree 𝑑 = 2, Eq. (2-3), where 𝜙 is the mapping 

function that maps a two-dimensional data point, (𝑥1, 𝑥2), to a three-dimensional point 

in the feature space, 𝜙(𝑥) = (𝑥1
2, 𝑥2

2, √2𝑥1𝑥2), then the kernel function computes the 

dot product of the mapped data points. 

 

𝐾(𝑥, 𝑦) =< 𝜙(𝑥), 𝜙(𝑦) > 

= 𝑥1
2𝑦1

2 + 2𝑥1𝑥2𝑦1𝑦2 + 𝑥2
2𝑦2

2 

= (𝑥1𝑦1 + 𝑥2𝑦2)2 

= (< 𝑥, 𝑦 >)2 

(2-3) 

 

Note in the equation above, the kernel is able to implicitly perform both the mapping 

and the dot product computation in the feature space in a single function. This is one of 

the most attractive properties of kernel methods, called the kernel trick, which saves 

computation time and complexity. The kernel matrix, 𝐊, resulting from such a 
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computation is symmetric and positive definite where each entry is a similarity measure 

corresponding to the kernel between two data points. 

 𝐊 = [
𝐾(𝑥1, 𝑥1) ⋯ 𝐾(𝑥1, 𝑥𝑚)

⋮ ⋱ ⋮
𝐾(𝑥𝑚, 𝑥1) ⋯ 𝐾(𝑥𝑚, 𝑥𝑚)

]  (2-4) 

 

Algorithms that use such technique include but are not limited to Parzen’s Windows 

(Schölkopf & Smola, 2002), Support Vector Machines (SVM) (Cristianini & Shawe-

Taylor, 2000; Shawe-Taylor & Cristianini, 2004), Ridge Regression (Saunders, 

Gammerman, & Vovk, 1998), Fisher Linear Discriminant Analysis (LDA) (Schölkopft 

& Mullert, 1999), and Principal Component Analysis (PCA) (Schölkopf, Smola, & 

Müller, 1997).  

While kernel methods have a wide range of uses in different applications, this 

research employs kernel functions as a similarity measure to improve the prediction 

accuracy of Bayesian methods for count data and introduce probabilistic predictions to 

traditional classification tools. In particular, the kernel matrix produced by the implicit 

mapping and the computation of the inner product is used to integrate information from 

the covariates in the input data into the Bayesian computation of the parameters of the 

posterior distribution. 

Bayesian Kernel Models 

Bayesian kernel methods have recently been introduced to the machine learning 

literature providing probabilistic solutions as opposed to deterministic solutions. Most 

Bayesian kernel methods are developed with Gaussian prior distributions (Figueiredo, 

2001; Tipping, 2001; Zhang et al., 2011). For an 𝑚 × 𝑑 data matrix 𝐗 with rows 

corresponding to 𝑚 data points each with 𝑑 attributes, the function 𝐭(𝐗) is considered to 
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be a random vector of length 𝑚 mapping input data 𝐗 into a class. Gaussian Bayesian 

kernel models assume the vector-valued function 𝐭 follows a multivariate normal 

distribution with mean 𝐸[𝐭(𝐗)] = 𝟎 and covariance matrix Cov(𝐭(𝐗)) = 𝐊, where 

matrix 𝐊 is positive definite and matrix element K𝑖𝑗 is the kernel function 𝑘(𝑥𝑖, 𝑥𝑗), 

between the 𝑖𝑡ℎ and 𝑗𝑡ℎ data points. The multivariate normal distribution for the 

realization of 𝐭 is found in Eq. (2-5). 

 𝑃(𝐭) =
1

√(2𝜋)𝑚
(𝑑𝑒𝑡 𝐊)−1 2⁄ 𝑒𝑥𝑝 (−

1

2
𝐭𝑇𝐊−1𝐭) (2-5) 

 

As computing the inverse of the kernel matrix in the probability density function of 𝐭 

can be cumbersome, Schölkopf and Smola (2002) introduce a new vector-valued 

variable of length 𝑚, 𝛚, such that 𝑡(𝐱𝑖) = 𝐤(𝐱𝑖, 𝐗)𝛚, whose prior is also a multivariate 

normal distribution, Eq. (2-6). 

 𝑃(𝛚) =
1

√(2𝜋)𝑚
(𝑑𝑒𝑡 𝐊)−1 2⁄ 𝑒𝑥𝑝 (−

1

2
𝛚𝑇𝐊𝛚) (2-6) 

 

Since the first term in the probability density function, 
1

√(2𝜋)𝑚
(det 𝐊)−1 2⁄ , does not 

depend on the parameter 𝛚, the prior distribution can be reduced to Eq. (2-7). 

  𝑃(𝛚) = 𝑒𝑥𝑝 (−
1

2
𝛚𝑇𝐊𝛚) (2-7) 

 

In the case of a binary classification, an appropriate likelihood function would be the 

logit function shown in Eqs. (2-8) and (2-9). 

 𝑃(𝑦 = 1|𝑡(𝐱)) =
1

1 + 𝑒𝑥𝑝(−𝑡(𝐱))
 (2-8) 
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 𝑃(𝑦 = −1|𝑡(𝐱)) =
1

1 + 𝑒𝑥𝑝(𝑡(𝐱))
 (2-9) 

 

The posterior distribution is then the product of the likelihood function and the prior 

distribution for a data set of 𝑚 data points, found in Eq. (2-10) . 

 

𝑃(𝝎|𝒚) α ∏ (
1

1 + 𝑒𝑥𝑝(−𝐤(𝐱𝑖, 𝐗)𝝎)
)

0.5+0.5𝑦𝑖
𝑚

𝑖=1

 

               × ∏ (
1

1 + 𝑒𝑥𝑝(𝐤(𝐱𝑖, 𝐗)𝝎)
)

0.5−0.5𝑦𝑖
𝑚

𝑖=1

 

                     × 𝑒𝑥𝑝 (−
1

2
𝝎𝑇𝐊𝝎) 

(2-10) 

 

To estimate the parameter of interest, 𝝎, Eq. (2-10) is maximized (or its negative log is 

minimized) using any of several optimization algorithms (e.g., the Newton-Raphson 

method). 

An important extension to the basic Bayesian kernel model is the non-Gaussian 

Bayesian kernel model (Montesano & Lopes, 2009; Mason & Lopes, 2011; MacKenzie 

et al., 2014b), which can improve the predictive accuracy for certain problems where a 

Gaussian distribution for model parameters should not realistically be assumed. 

MacKenzie et al. (2014b) highlight some of the drawbacks of using the Gaussian 

distribution for binary classification problems, use a Beta conjugate prior, and offer an 

alternative likelihood function to the logit. The research expands on previous work done 

on Non-Gaussian kernel models (Montesano & Lopes, 2009; Mason & Lopes, 2011) by 

introducing a more generalized model based on the Beta conjugate prior which provides 

much faster computation time than traditional Bayesian kernel methods that rely on 
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either optimization or simulation to find the solutions. Beta Bayesian kernel methods 

will be revisited in details in Chapter 5 to model the resilience of infrastructure systems.  

Bayesian Kernel Model for Count Data 

This dissertation proposes a new Bayesian kernel method that can accommodate 

count data. The purpose of such model is to integrate prior information in the form of 

experts’ knowledge with historical data and attribute information to produce a 

probability distribution of the rate of occurrence of a particular event. Using this 

distribution, the frequency of events such as disruptions can be predicted. This section 

first reviews count data modeling approaches in the literature then discusses the 

structure of the Poisson Bayesian kernel model. The model is empirically tested using 

sample data and deployed in a case study of a critical infrastructure system disruptions 

prediction. 

Count Data Modeling 

One of the classical approaches used to analyze count data are Generalized 

Linear Models (GLM) (Agresti, 2002; Cameron & Trivedi, 2013; Nedler & 

Wedderburn, 1972). The Poisson GLM is most commonly used to model count data. 

The method assumes that the rate to be estimated has an exponential relationship with a 

set of covariates representing coefficients for the different attributes, shown in Eq. 

(2-11).  

 �̂� = 𝑒𝛽𝑖𝑋 (2-11) 

 

Under the Poisson GLM, the response follows a Poisson distribution, Eq. (2-12), and 

the log function is the link function that relates the set of covariates and coefficients to 

the response variable. 
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 𝑃(𝑦) =
𝜆𝑦𝑒−𝜆 

𝑦!
 (2-12) 

 

Another type of GLM for modeling count data is the Negative Binomial GLM 

which relaxes the constraints of homoscedasticity imposed by the Poisson GLM (Cox, 

1983; Lawless, 1987). The Negative Binomial GLM assumes that the marginal 

distribution of the response follows a Negative Binomial distribution, Eq. (2-13), where 

𝑘 is the overdispersion parameter and λ is assumed to follow a Gamma distribution. 

 𝑃(𝑦) =
Γ (𝑦 +

1
𝑘

)

Γ(𝑦 + 1)Γ (
1
𝑘

)
(

𝑘λ

1 + 𝑘λ
)

𝑦

(
1

1 + 𝑘λ
)

1
𝑘
 (2-13) 

 

The Negative Binomial GLM also assumes a log function for the link function and as a 

result, the response variable has an exponential relationship with the covariates. While 

the Negative Binomial GLM is a formal way of handling overdispersion in count data, 

other approaches developed extensions to the classical Poisson regression (Breslow, 

1984; Paul & Placket, 1978; Johnson, Kotz, & Kemp, 2005; Yip, 1991). A well-known 

approach is to add a dispersion parameter such as the case with the Quasi-Poisson 

regression.  Many other count data regression models have been developed to introduce 

further flexibility and complexity into the modeling approach.  

One example of added complexity to the Poisson GLM is the Zero-Inflated 

Poisson (ZIP) model which assumes a form of mixture modeling to account for a 

specific type of data expressing a large number of occurrences that are equal to zero. 

Such an approach has shown improved goodness of fit compared to Poisson and 

Negative Binomial GLM, but it is a much more complicated approach, it is difficult to 

interpret, and it is only applicable to particular cases where the majority of the response 
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variable observations are equal to zero. Examples of such applications are insurance 

claims (Mouatassim & Ezzahid, 2012), dental caries prevention methods (Hall & Shen, 

2010), and defects in manufacturing (Lambert, 1992), among others. Also, since the 

likelihood is constructed for a mixture of models, there is no analytical solution for the 

estimation of parameters, instead, algorithms such as Newton-Raphson or EM (Fong & 

Yip, 1993) are used to maximize the log-likelihood function and compute estimates of 

the coefficients.  

An example of added flexibility to count data modeling is the Conway-Maxwell 

Poisson GLM (Conway & Maxwell, 1962). The model can address both overdispersion 

and underdispersion in one framework and has been applied in the risk and reliability 

context using a Bayesian framework to account for the uncertainty in the regression 

parameters and improve on their accurate estimation (Guikema & Goffelt, 2008). Since 

such Bayesian techniques employ simulation, the higher accuracy comes at the cost of a 

longer computation time. 

Other approaches of analyzing count data using a Bayesian framework are 

conjugate priors. These methods are quite attractive as they offer the benefit of 

uncertainty modeling using Bayesian techniques without adding any computational 

cost. Given a specific prior distribution and a specific likelihood function, the posterior 

distribution will have the same form as the prior distribution but with updated posterior 

parameters. Different forms of conjugate priors are discussed in this dissertation, one of 

which is the Gamma conjugate prior used to model count data. The method assumes 

that the rate of occurrence follows a Gamma prior and updates the distribution using 

information represented by a Poisson likelihood. The Gamma conjugate prior is the 
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foundation of the Poisson Bayesian kernel model proposed in this research and will be 

further discussed in the following section. Sophisticated extensions to this conjugate 

prior include the analysis of the parameters of the gamma prior distribution 

(Winkelmann, 2008). Other extensions to Bayesian Poisson methods consider 

hierarchical models (Tunaru, 2002). The model is based on the multivariate Poisson-log 

normal distribution with a hierarchical Bayesian application. This multivariate 

distribution is used to model discrete multiple count data and is shown in Eq. (2-14).  

 

 

                          𝑌𝑘𝑖|𝜆𝑘𝑖~
ind Pois(𝜆𝑘𝑖) 

(log(𝜆𝑘𝑖))𝑖=1,…,4|𝜇, 𝑇~iid𝑁4(𝜇, 𝑇) 

                                   𝜇𝑖~
iid𝑁(0,0.0001) 

                                 𝑇~Wishart(𝑅, 4)  

(2-14) 

 
 

𝑁𝑀(𝜇, 𝑇) is the M-dimensional multivariate normal distribution. The mean vector is 

represented by 𝜇, and 𝑇 is the inverse of the covariance matrix. The hyperprior 

parameters 𝑅 and 𝜋 =  𝑀 are known. The model is advantageous in that it can model 

joint responses and can detect relationships among the categories of count variables. 

However, Markov Chain Monte Carlo methods are utilized to make inferences about 

the model parameters, for which computation can oftentimes be complex and lengthy.  

The Poisson Bayesian kernel model developed in this research is simple enough 

to avoid expensive computations but detailed enough to overcome issues in basic 

Bayesian modeling approaches, such as the Gamma conjugate prior, and in count data 

regression models, such as the GLM. 



23 

Poisson Bayesian Kernel Model 

Poisson Bayesian kernel methods estimate the rate of occurrence of the event 

rather than estimating a deterministic value for the number of times the event is 

estimated to occur. A common distribution to model count data within a Bayesian 

framework is the Gamma-Poisson conjugate prior. The development of the Poisson 

Bayesian kernel method discussed can be found in Baroud et al. (2013a) and Floyd et 

al. (2014). The approach uses the Gamma conjugate prior as the basis of the model. 

It is assumed that the parameter to be estimated is the rate of occurrence, 𝜆 > 0, 

which follows a Gamma prior distribution with parameters 𝛼 > 0 and 𝛽 > 0, as shown 

in Eq. (2-15). 

 𝑃(𝜆) =
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e(−𝛽𝜆) (2-15) 

For the likelihood function, the product of the Poisson density function, shown in Eq. 

(2-16), is used, since this is a Gamma-Poisson conjugate prior approach. 

 𝐿 = ∏ 𝑃(𝑦𝑖)

𝑚

𝑖=1

= ∏
(𝜆𝑖

𝑦𝑖𝑒−𝜆𝑖)

𝑦𝑖!

𝑚

𝑖=1

=
𝜆𝑖

∑ 𝑦𝑖
𝑚
𝑖=1 𝑒−𝑚𝜆𝑖

∏ 𝑦𝑖!
𝑚
𝑖=1 

 (2-16) 

Thus, the posterior distribution is the product of Eqs. (2-15) and (2-16). Rearranging the 

product of the likelihood function and the prior distribution function results in a Gamma 

posterior distribution where 𝛼∗ = ∑ 𝑥𝑖
𝑚
𝑖=1 + 𝛼 and 𝛽∗ = 𝑚 + 𝛽. 

 

𝑃(𝜆|𝑥) = (
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆) (𝜆∑ 𝑦𝑖

𝑚
𝑖=1 𝑒−𝑚𝜆) 

=
𝜆(∑ 𝑦𝑖

𝑚
𝑖=1 +𝛼−1) 𝑒−𝜆(𝑚+𝛽)(𝑛 + 𝛽)∑ 𝑦𝑖

𝑚
𝑖=1 +𝛼

Γ(∑ 𝑦𝑖
𝑚
𝑖=1 + 𝛼)

 

= Gamma (𝛼∗,  𝛽∗) 

(2-17) 
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This result is the basic Gamma conjugate prior approach used in Bayesian analysis. This 

approach assumes the notion of exchangeability meaning that for different sets of 

training and testing data, the resulting posterior parameter will be similar since they are 

a function of the prior parameter, the size of the dataset, and the summation of all the 

data points. The characteristics of each outcome are not taken into consideration in this 

case, but rather the overall property of the dataset (Mackenzie et al., 2014b).  

The Poisson Bayesian kernel approach extends the notion of the conjugate prior 

such that the posterior parameters computation not only depends on the prior parameters 

and the historical data but also on the attributes through the kernel matrix.  The 

parameters for the Bayesian kernel model for counts are expressed in Eqs. (2-18) and 

(2-19). 𝐊 is the 𝑚 ×  𝑚 kernel matrix, 𝐘 is an 𝑚 ×  1 vector containing the output data 

associated with the 𝑚 observations of 𝐗, and 𝐕 is an 𝑚 ×  1 vector containing ones. 

Each entry in the kernel matrix represents the similarity measure between the attributes 

of the testing set and the training set. As such, the new data point is compared with the 

training set and according to the similarities of the attributes, new values for the 

parameter of the posterior distribution are computed. Note that in this case, the training 

and testing sets are assumed to have the same size, 𝑚. However, when the model is 

deployed, the sets can be of different sizes, and in some cases, the testing set could 

include only one data point such as in a leave-one-out analysis that will be illustrated in 

the case study.  

 𝛼∗ = 𝐊𝐘 + 𝛼 (2-18) 

 

 𝛽∗ = 𝐊𝐕 + 𝛽 (2-19) 
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 As with other statistical and mathematical models, there are a few assumptions 

underlying the deployment of such modeling approach. Even though the form of the 

prior distribution is known from the conjugate prior, the model user would still need to 

identify the values of the prior parameters. While there are formal ways to determine 

the prior parameters (Kass & Wasserman, 1996), the selection of such parameters might 

not always be considered (Montesano & Lopes, 2009; Mason & Lopes, 2011). 

Oftentimes, the priors are either assumed to be known or are assigned such that the prior 

distribution is non informative.  In other cases, these parameters are estimated using 

data and prior knowledge by matching the sample mean and variance to those of the 

prior distribution (MacKenzie et. al, 2014b; Carlin & Louis, 2008). Further discussion 

on the choice and impact of prior parameters is provided in the case study of this 

chapter. Another assumption to consider is the choice of the kernel function which 

depends on the application and the model user. This research uses the most popular 

kernel function, the radial basis function (RBF) in Eq. (2-20), where 𝑘(𝐱𝑖, 𝐱𝑗) is one 

entry in the matrix 𝐊 representing the kernel function between the attributes of the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ data points. 

 𝑘(𝐱𝑖 , 𝐱𝑗) = exp (−
‖𝐱𝑖 − 𝐱𝑗‖

2

2𝜎2
) (2-20) 

 

In addition to being commonly used in kernel methods, RBF has nice properties. The 

function has only one parameter, 𝜎, to be tuned to an optimal value. This reduces 

computation efforts significantly in comparison to other kernel functions with two or 

more parameters requiring a grid search to estimate them. Also, the structure of the 

function is based on the Euclidean distance, whereby similar data points are closer to 
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each other in the feature space. Finally, the kernel matrix of the RBF has full rank and 

the entries fall between zero and one resulting in kernel functions of the data points 

acting as weights in the computation of the posterior parameters (Schölkopf & Smola, 

2002). More discussion on the tuning process of the RBF parameter, 𝜎, will follow in 

the empirical analysis of this chapter.  

The rate for the new data point follows then a Gamma distribution with 

parameters 𝛼∗ and 𝛽∗.  As a point estimate for this parameter, the expected value of the 

posterior distribution is considered, shown in Eq. (2-21) as the ratio of the Gamma 

distribution parameters 𝛼∗ and 𝛽∗.  

 �̂� =
𝛼∗

𝛽∗
 (2-21) 

Note that a different point estimate for the rate can be used such as the median, the 

mode, or the variance, depending on the type of problem and the model users. 

Goodness of Fit Measures 

In order to assess the performance of the model, goodness of fit measures are 

analyzed to identify the capability of the model to capture data patterns. The empirical 

analysis and the case study compare the Poisson Bayesian kernel (PBK) model to other 

classical methods for modeling count data, the Poisson generalized linear model (GLM) 

and the Negative Binomial GLM (Cameron & Trivedi, 1986, 2013). The Poisson and 

Negative Binomial GLM, presented above, assume that the rate to be estimated has an 

exponential relationship with a set of covariates representing coefficients for the 

different attributes, �̂�𝑃𝐺𝐿𝑀 = 𝑒𝛽𝑖𝑋, while the predicted rate for the PBK is equal to the 

expected value of the posterior probability distribution, �̂�𝑃𝐵𝐾 =
𝐊𝐘+α

𝐊𝐕+β
. 
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The functional values of two metrics are used to compare how well the models 

fit the data and are able to explain the variance. The first metric is the deviance, which 

computes the difference in the log-likelihood function between the fitted model and the 

saturated model, Eq. (2-22), where 𝑦𝑖 is the true value of the data point and �̂� is the 

estimated rate for the particular data point. 

 𝐷 = 2 × (𝑙(𝒚|𝒚) − 𝑙(�̂�|𝒚)) (2-22) 

The deviance is the generalized form of the sum of squared errors used in the linear 

regression model, it is a metric that analyzes the discrepancy between the observed and 

estimated values and it is the most commonly used goodness of fit measure by GLM 

users (McCullagh & Nelder, 1989). The deviance for a Poisson regression model is 

represented in Eq. (2-23), where 𝑦𝑖 log(𝑦𝑖 �̂�𝑖⁄ ) = 0 when 𝑦𝑖 = 0.  𝐷𝑃 is used to assess 

how well the fitted values are representing the observed rate of occurrences in the 

Poisson Bayesian kernel model in comparison to the Poisson and Negative Binomial 

GLM. 

 𝐷𝑃 = 2 × ∑ 𝑦𝑖 log (
𝑦𝑖

�̂�𝑖

) − (𝑦𝑖 − �̂�𝑖)

𝑚

𝑖=1

 (2-23) 

The second metric used is the functional value of the log-likelihood, shown in 

Eq. (2-24), which is to be maximized. The log-likelihood function represents the joint 

probability of the observed data as a function of the parameter of interest which is �̂� in 

this case. The larger the value of this function, the better the model is able to capture the 

data patterns using the estimated parameters. 

 𝑙(�̂�|𝒚) = ∑[𝑦𝑖ln (�̂�𝑖

𝑚

𝑖=1

) − �̂�𝑖 − ln (𝑦𝑖!)]  (2-24) 



28 

Prediction Accuracy 

The ultimate objective of building the Poisson Bayesian kernel model is to 

deploy it in risk analysis problems, such as predicting the frequency of disruptions in a 

particular network system. While the goodness of fit is important to assess whether the 

model is capturing the pattern and variability in the data, is it equally important to 

analyze the prediction power of a statistical model if it is going to be used for 

forecasting purposes. Prediction accuracy is assessed by the out-of-sample error, which 

accounts for the discrepancy between the estimated parameter and the actual 

observation of data points that were not in the set used to train the model. Figure 2-2 is 

a representation of the error in the training sample (in-sample error) and the test sample 

(out-of-sample error) as a function of the model complexity.  

 

Figure 2-2: Test and training error as a function of the model complexity (Hastie et al., 

2001) 
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Adding complexity to the model will decrease the training error but may cause 

overfitting at some point resulting in a poor prediction accuracy when the model is 

applied to an independent data set. Depending on the ultimate application of the 

method, a model can be selected based on either the test or the training error. The model 

developed in this dissertation is aimed at ultimately predicting the frequency of 

disruptions to inform preparedness and recovery decision making strategies and 

investment. An accurate prediction represented by a small test error is desired.  

 In order to validate the prediction power of the models, several metrics are 

evaluated to assess the out-of-sample error, and they are summarized in Table 2-1. 

Table 2-1: Prediction error measurement metrics 

Prediction accuracy metrics Formula 

Root Mean Square Error              𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (𝑌𝑖 − �̂�𝑖)

2
 𝑛

𝑖=1  

Normalized Root Mean Square Error 

𝑁𝑅𝑀𝑆𝐸𝐷 =
1

𝑛
√∑ (𝑌𝑖−�̂�𝑖)

2
 𝑛

𝑖=1

𝑠𝑑(𝑌𝑖)
          

        𝑁𝑅𝑀𝑆𝐸𝑀 =
1

𝑛
√∑ (𝑌𝑖−�̂�𝑖)

2
 𝑛

𝑖=1

𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

Mean Absolute Error          𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|

𝑛
𝑖=1  

 

While RMSE and MAE are the most commonly used measurements of error, the 

normalized RMSE (NRMSE) is also considered to account for the variability across the 

different data sets evaluated in the empirical study. NRMSE can either be normalized 

based on the standard deviation of the observed values, 𝑠𝑑(𝑌𝑖), or the range of values in 

the testing set, 𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚, and both cases are considered as the different 
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data sets exhibit different variability patterns in the observed values of the outcome 

variable. 

Empirical Analysis 

The PBK is applied to several data sets (Agresti & Finlay, 2008; Kutner, 

Nachtsheim, Neter, & Li, 2005; Lovett & Flowerdew, 1989; Roberts & Foppa, 2006; 

Sepkoski & Rex, 1974), and its performance is compared to the Poisson and Negative 

Binomial GLM using the goodness of fit and prediction accuracy metrics discussed in 

the previous section. A brief description of the data sets is found in Table 2-2. Most of 

the data sets are similar in terms of the number of predictors and the size of the data. 

One of the sets has a larger number of predictors for a small data set, and another is a 

large data set with a small number of predictors. Note that the number of predictors in 

all the models is held constant across the data sets to ensure consistency in the 

comparison. Also, the parameters of the prior distribution for all data sets are assumed 

to be 𝛼 = β = 1, also in order to maintain consistency in the evaluation of the 

performance of all models. 
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A holdout analysis is performed where each data set is randomly split into 

training and testing sets for 100 trials. Traditional holdout analyses would train the 

model on a portion of the data and deploy it on the testing set to make predictions and 

compare them to the actual observations. With the PBK, an intermediate step in the 

training process is added to tune the unknown parameter, 𝜎, in the kernel function. This 

parameter is optimized based on the minimum mean square error. As a result, 30% of 

the data was used for testing the model, with 50% of the data used as a training set and 

20% as a tuning set. The training and the tuning sets were then combined into one 

training set to perform the testing. For each of the three models, the estimated rate of 

occurrence is computed for the testing test and used to evaluate the deviance, the log-

likelihood functional value, and the four out-of-sample error measurements given the 

observed values. This process is repeated 100 times where, at each iteration, random 

samples of training, tuning, and testing sets are chosen. Table 2-3 contains a summary 

of the analysis. The performance metrics values presented in the table below are the 

average values of the performance measures evaluated over 100 trials. PBK refers to the 

Poisson Bayesian kernel model and PGLM refers to the Poisson GLM, and NBGLM 

refers to the Negative Binomial GLM. Recall that the model with a smaller deviance 

and errors and a larger log-likelihood functional value is a better model. 
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    Table 2-3: Performance metrics results for the empirical analysis 

Data Metrics PBK PGLM NBGLM 

Crime 

LL -276.25 -256.56 -155.61 

DEV 352.87 313.49 343.14 

RMSE 26.47 33.15 37.69 

NRMSEM 0.28 0.35 0.39 

NRMSED 0.89 1.13 1.29 

MAE 21.26 21.97 23.19 

Murder 

LL -120.96 -77.79 -77.79 

DEV 107.69 21.38 21.38 

RMSE 9.81 3.85 3.86 

NRMSEM 0.28 0.17 0.17 

NRMSED 0.98 0.58 0.58 

MAE 4.68 2.59 2.59 

Mussels 

LL -97.33 -78.91 -78.72 

DEV 66.55 29.71 26.43 

RMSE 5.60 5.84 5.83 

NRMSEM 0.27 0.31 0.31 

NRMSED 0.96 1.08 1.07 

MAE 4.00 4.32 4.31 

Customer 

LL -230.02 -194.46 -194.46 

DEV 149.15 78.04 77.69 

RMSE 5.13 3.58 3.58 

NRMSEM 0.18 0.13 0.13 

NRMSED 0.77 0.55 0.55 

MAE 3.78 2.75 2.75 

West Nile virus in birds 

LL -135.35 -103.94 -80.76 

DEV 181.74 118.93 36.14 

RMSE 7.78 8.44 9.14 

NRMSEM 28.85 33.47 36.44 

NRMSED 98.22 113.65 123.84 

MAE 4.91 5.09 5.23 

West Nile virus in equines 

LL -40.12 -40.47 -39.42 

DEV 43.42 44.12 32.57 

RMSE 1.75 2.08 2.05 

NRMSEM 0.30 0.41 0.41 

NRMSED 0.95 1.24 1.25 

MAE 1.17 1.33 1.29 

Apprentices Migration to 

Edinburgh 

LL -127.98 -106.03 -64.46 

DEV 442.9 146.62 25.78 

RMSE 31.23 32.29 32.45 

NRMSEM 0.43 0.53 0.51 

NRMSED 1.32 1.61 1.55 

MAE 15.98 14.71 15.86 
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Overall, there are five out of seven data sets for which the Poisson Bayesian 

kernel model outperforms the Poisson and Negative Binomial GLM in terms of the 

predictive accuracy. In particular, those five cases are all among the six small data sets. 

The RMSE, NRMSEM, NRMSED, and MAE all behave similarly for all the datasets 

and lead to the same conclusion of the model performance, except for a minor 

difference in the Apprentices Migration to Edinburgh where the PBK performs 

similarly to the NBGLM and slightly worse than the Poisson GLM in terms of MAE 

values. With respect to goodness of fit measures, the GLMs perform better than the 

PBK. Overall, the Negative Binomial fits the best. PGLM and NBGLM perform 

similarly in the two data sets for which the GLM outperforms the PBK in the predictive 

accuracy, Customer and Murder. The Poisson Bayesian kernel model appears to be a 

good model for prediction purposes when the data set is small with a small number of 

predictors, a situation known to cause issues with regression modeling (Cameron & 

Trivedi, 1986, 2013).  

Case Study: Prediction of Inland Waterways Disruptions 

With over 200 lock chambers and more than $150 million worth of goods 

flowing yearly (US Army Corps of Engineers, 2011), the inland waterway system plays 

an important role in the nation’s economy. Unfortunately, the system’s reliability is 

declining due to the aging components of the network (Grier, 2009). According to the 

American Society of Civil Engineers’ most recent report card on America’s 

infrastructure, inland waterways received a grade of “𝐷−“ while dams received a grade 

of “𝐷”. Among the most common causes for the degrading status of inland waterways 

are aging components. On average, dams in the United States are 52 years old, and by 
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the year 2020, 70% of the dams will be over 50 years old (ASCE report card, 2013b). 

As a result, locks and dams are frequently closed for unscheduled or scheduled 

maintenance which causes delays in the flow of commodities and incurs large economic 

losses across the nation. In 2009, 90% of locks and dams in the US experienced service 

interruption resulting in an average of 52 delays a day. 

The Poisson Bayesian kernel model is applied to analyze the frequency of lock 

closure due to disruptive events on the Mississippi River transportation network. The 

network has 29 locks acting as key connectors between different ports nationwide. The 

navigation system reflects 9,000 miles of navigable waterway with 70.5% of the U.S. 

inland waterway commodity flowing through the network (Clark, Henrickson, Thoma, 

2005).  

The data, retrieved from the database collected by the U.S. Army Corps of 

Engineers (2011), contains detailed information on each lock’s characteristics including 

the river mile, the total number of vessels passing by the lock, the total tonnage, and the 

frequency and average delay for the vessels and tows experiencing delay time due to the 

lock’s closure. In addition to that, data is available on the yearly frequency of closure 

for each lock which is considered in this case the outcome to be estimated. A sample of 

the data is represented in Table 2-4.  
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Table 2-4: Sample of the inland waterway disruption data 

 𝒀 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 … 

Lock & 

Dam 

Closure 

Frequency 
River Mile Vessels Tonnage Lockages . . . 

L&D 3 0 797 9,397 6,747 4,406 . . . 

L&D 13 6 523 2,810 14,545 3,155 . . . 

L&D 2 0 815 4,478 6,735 2,893 . . . 

L&D 20 23 343 2,508 20,828 3,582 . . . 

L&D 22 40 301 2,280 22,476 3,486 . . . 

L&D 8 6 679 4,333 10,277 2,620 . . . 

... ..
. 

..
. 

..
. 

..
. 

..
. 

. . . 

 

Empirical Analysis of the Inland Waterway Data 

The goal of deploying the Bayesian kernel model is to obtain an accurate 

prediction of the frequency of disruptions to inform preparedness strategies and 

investment decision making. Using the Poisson Bayesian kernel model, decision makers 

are able to produce a probability distribution of the number of times a particular lock 

and dam will close each year. The distribution can be used to improve risk management 

along the inland waterways and make them a more reliable transportation system.  

 As a first step, the prediction accuracy of the PBK model is tested in comparison 

with the PGLM and the NBGLM. Similarly to the analysis done in the empirical study, 

a holdout analysis is performed to assess the goodness of fit and prediction accuracy of 

PBK for the inland waterway, and the results are summarized in Table 2-5. 
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    Table 2-5: Performance metrics results for the inland waterway data analysis 

 Metrics PBK PGLM NBGLM 

Full model 

LL -285.06 -148.06 -75.09 

DEV 486.03 211.65 23.89 

RMSE 32.82 63.94 131.03 

NRMSEM 0.34 0.66 1.24 

NRMSED 0.94 1.88 3.45 

MAE 21.53 33.23 57.15 

Best model - PGLM 

LL -252.25 -146.01  

DEV 420.53 208.06  

RMSE 32.60 42.37  

NRMSEM 0.34 0.46  

NRMSED 0.95 1.34  

MAE 20.76 25.08  

Best model - NBGLM 

LL -238.07  -78.13 

DEV 391.33  24.15 

RMSE 28.46  46.74 

NRMSEM 0.30  0.54 

NRMSED 0.87  1.56 

MAE 18.00  26.01 
 

 

According to the values of the average out-of-sample error expressed in the four 

metrics, RMSE, NRMSEM, NRMSED, and MAE, PBK does a better job at making 

accurate predictions of the average frequency of lock and dam closures even though 

based on the values of the log-likelihood and deviance, GLM, more specifically the 

Negative Binomial GLM is better at fitting the data. One of the reasons a GLM might 

not be providing good prediction errors is overfitting. In order to check whether the 

results obtained, after fitting a full model that includes all covariates, are due to the 

GLM overfitting the data, the analysis is performed given the best version of the GLMs. 

The selection of covariates for each of the Poisson and Negative Binomial GLM is 

based on Akaike’s Information Criterion (AIC) (Akaike, 1970) that penalizes additional 

parameters contributing to the model complexity. In terms of goodness of fit measures, 

both reduced GLMs did not express any change in the values of the log-likelihood and 
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deviance from the full model. However, the prediction accuracy improved significantly 

for the reduced model with about 60% decrease in the values of RMSE, NRMSEM, 

NRMSED, and MAE for NBGLM and about 30% decrease for PGLM error 

measurement values. The covariates selected for the best models were also included in 

the PBK evaluation for consistency. The PBK still performed better than the best 

version of both GLMs and maintained better predictive error measures even though the 

reduced versions of GLMs significantly improved their prediction accuracy.  

Prior Distribution Implications 

One of the advantages of using Bayesian methods in risk analysis is the 

flexibility of the approach in (i) establishing assumptions, and (ii) interpreting the 

results. Any prior belief about the risk measure to be estimated can be embedded in the 

prior distribution. Determining the prior parameters can be challenging and can result in 

significant implications on the posterior parameters’ estimation. Not much work has 

been devoted to analyzing priors, but discussions on selecting priors can be found in 

MacKenzie et al. (2014b), Carlin & Louis (2008), and Guikema (2007). So far, the 

analysis considered the same prior distribution with prior parameters 𝛼 = 𝛽 = 1 to 

insure consistency in the empirical study across the different data sets and models. This 

section examines the implications of changing the priors on the posterior parameters.  

In risk analysis problems, experts in the field can help in assessing any prior 

knowledge about the parameter to be estimated. Ideally, risk managers are interviewed, 

and using probability elicitation techniques (Spetzler & Stael von Holstein, 1975), a 

prior probability distribution is defined. Three levels of knowledge are considered in 

this case that influence the estimation of the priors. For each case scenario, the posterior 
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frequency of disruptions is computed and compared to results from fitting a PGLM and 

a NBGLM. The distribution of the RMSE across the three models under each case 

scenario is used to assess the impact of the priors. 

The first approach assumes the experts have a perfect knowledge about the 

frequency of disruptions and the prior parameters are estimated from the data using the 

method of moments, Eq. (2-25) , where �̅� and 𝑠2 are respectively the mean and variance 

of the historical data. 

 

𝛼 =
�̅�2

𝑠2
 

𝛽 =
�̅�

𝑠2
 

(2-25) 

The plot in Figure 2-3 shows that the distribution of RMSE values is skewed towards 

the smaller values (around 25), while the PGLM and NBGLM distributions of RMSE 

values are spread across larger values with thicker tails. The dashed lines correspond to 

the mean RMSE showing that PBK performs the best in terms of prediction accuracy. 

 

             Figure 2-3: RMSE distribution with perfect prior knowledge 
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The second case scenario assumes that the risk managers have some prior 

knowledge but it is not perfect like in the first approach. The bias introduced by the risk 

managers is modeled with a random noise and the distribution of RMSE for the three 

models is depicted in Figure 2-4. The expected value of RMSE and the overall 

distribution of the values are both quite similar to the case where the knowledge is 

assumed to be perfect. Note that the added noise in this case is not very significant. If 

the risk manager expressed a stronger bias, more noise would be added which could 

impact the prior parameters estimation and ultimately the posterior distribution and 

predicted values of the frequency of disruption.  

 

             
              Figure 2-4: RMSE distribution with imperfect prior knowledge 

 

 For the third approach, it is assumed that the risk managers have no prior 

knowledge, or there is no access to a reliable source of information to estimate informed 

prior parameters. Therefore, the priors are arbitrarily determined and the distribution of 

the RMSE values is plotted in Figure 2-5. The smaller values of RMSE still have the 
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highest frequency in the distribution of RMSE for PBK; however this peak is now 

centered around values equal to 50 as opposed to 25 in the first two approaches. The 

overall distribution shifted to the right, towards larger values of the RMSE, and the 

distribution is overlapping with PGLM and NBGLM RMSE distributions. In addition, 

the expected value of RMSE for PBK increased and is approaching the RMSE expected 

value of the PGLM, although it is still significantly smaller. 

 
              Figure 2-5: RMSE distribution with no prior knowledge 

 

 The selection of prior parameters has an implication on the form of the posterior 

distribution. A poorly formulated prior distribution can impact the performance of the 

PBK in predicting the frequency of lock and dam closures. On the other hand, a perfect 

prior distribution relying solely on the historical data is unrealistic. Therefore, the model 

user must carefully formulate the prior distribution and prior parameters to ensure 

accurate posterior inferences. 
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Research Outcome 

 The model developed in this chapter can impact the decision making process for 

the protection and rehabilitation of the U.S. inland waterways. As mentioned earlier, 

this critical infrastructure system is suffering from aging components resulting in 

frequent disruptions of the flow of commodities across the nation. The Department of 

Homeland Security announced a set of grant programs to protect and rehabilitate critical 

infrastructure systems. These grants are normally assigned based on the priority of the 

rehabilitation project due to the limited availability of resources. Using the hold-one-out 

analysis approach, the PBK is used to produce a rank of the locks and dams of the 

inland waterway network. Such a ranking of an infrastructure system’s components is 

one way to implement data-driven risk analysis into real world decision making. Table 

2-6 contains the top five locks & dams with the highest predicted frequency of closures 

per year. 

Table 2-6: Locks/dams with highest frequency of closures 

Ranking Lock/Dam ID 

1 L&D 27 

2 Mel Price L&D 

3 L&D 19 

4 L&D 21 

5 L&D 22 

 

 Frequent disruptions might be one indication of a component’s reliability and 

urgent need for rehabilitation. As such, the ranking produced in the table above can 

either be used to allocate grants accordingly or it can be integrated into a multiobjective 

decision tool that incorporates other factors into the assessment of a rehabilitation 
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project. In fact, the methodologies developed throughout this dissertation yield different 

ways to prioritize the inland waterway recovery and repair strategies. Other factors are 

considered in the following chapters such as the economic interdependent impacts of a 

disruption and cost of preparedness strategies (Chapter 3), the resilience interdependent 

effects and cost of repair (Chapter 4), and the resilience importance measures of each 

component (Chapter 5). 

Concluding Remarks 

Bayesian kernel methods are powerful tools in forecasting data. These models 

make use of the Bayesian property by relying on historical data and experts’ knowledge, 

but they also add more specificity to the model by using the kernel function. Gaussian 

Bayesian kernel models became very popular recently and were extended and applied to 

a number of classification problems. An important extension to those models is the non-

Gaussian model which gives more flexibility in applying this methodology to all types 

of data set, however, there has been no Bayesian kernel model in the literature that 

addresses count data. 

This chapter introduced count data modeling to the class of Bayesian kernel 

methods. Using the notion of the conjugate prior, the rate of occurrence is assumed to 

follow a Gamma prior and posterior distribution using the Poisson likelihood function. 

The parameters of the posterior distribution are constructed using results from the 

classical Bayesian Gamma conjugate prior and the exchangeability argument. 

The Poisson Bayesian kernel model presented in this chapter is empirically 

tested and compared with the classical Poisson and Negative Binomial GLM. The three 

models were used to fit several datasets having similar characteristics in terms of the 
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size of the data and the number of predictors. The evaluation of the performance of each 

model is based on the values of metrics corresponding to the goodness of fit and 

prediction accuracy. Based on the results obtained, the Poisson Bayesian kernel model 

outperforms the Poisson and Negative Binomial GLM in the majority of the sets for 

most of the performance metrics representing the out-of-sample error. Also, the Poisson 

Bayesian kernel model is potentially a better model for small-sized data sets having few 

predictors. Such a result can be very useful in risk analysis applications to estimate the 

rate of occurrence of a certain disruption in transportation systems or power grids. In 

such cases, data can be limited due to the lack of occurrence of the event and the 

possible factors that might cause a disruption. The need for a more accurate estimation 

of the rate of disruption can help save lives and lead to more efficient preparedness and 

recovery investment and allocation. 

The Poisson Bayesian kernel model is illustrated using waterway transportation 

network data of the frequency of lock closure along the Mississippi river, and compared 

to the classical Poisson and Negative Binomial GLM for the six metrics used in the 

empirical study. While GLMs exhibit a better fit of the data, the Bayesian kernel model 

produces a smaller out-of-sample error suggesting a better prediction power. 

Accurate predictions of the frequency of disruptions are used to rank the locks 

and dams and allocate rehabilitation resources accordingly. Realistically, the rank 

would be one of many criteria used in the decision making process. This chapter 

addresses the prediction of risk of infrastructure disruptions, the second step would be 

to understand and quantify the interdependent economic impacts of a disruptive event 

and how they influence preparedness decision making accordingly. 
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Chapter 3  

Managing the Risk of Interdependent Impacts of Infrastructure 

Disruptions 

Decision making for managing risks to critical infrastructure systems requires 

accounting for (i) the uncertain behavior of disruptive events which was addressed in 

Chapter 2, and (ii) the interdependent nature of such systems that lead to large-scale 

inoperability which will be addressed in this chapter. This work integrates a dynamic 

risk-based interdependency model, the Dynamic Inoperability Input-Output Model, with 

a multiobjective decision tree to analyze preparedness decisions. The use of a dynamic 

model allows for resilience and recovery decisions to be incorporated in the decision 

making framework, and uncertainty is accounted for using probability distributions. The 

multiobjective inoperability decision tree is applied to the study of transportation 

infrastructure disruptions, namely closures of an inland waterway port.  

Research focusing on economic impact analyses of disruptions to transportation 

systems has primarily been devoted to highway and railway transport systems (Sohn, 

Hewings, Kim, Lee, & Jang, 2004; Gordon et al. 2004; Ham, Kim, & Boyce, 2005a,b) 

and coastal ports (Rosoff & von Winterfeldt, 2007; Park, 2008; Jung, Santos, & 

Haimes, 2009).  Little work is done to understand the impacts of inland waterway port 

and network closures: Pant et al. (2011) provide a simulation model of inland port 

activities to parameterize a port disruption within a multi-regional interdependency 

model, while MacKenzie et al. (2012a) focus on the multi-regional impacts in 
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functionality and in economic losses of decision making for shipping alternatives 

following an inland port disruption.  

This work integrates a dynamic interdependency modeling methodology with a 

stochastic decision analysis methodology to assess investment strategies for 

infrastructure preparedness, guided by prior work by Santos, Barker, & Zelinke Iv 

(2008), who developed a static formulation for the interdependent effects of biofuel 

subsidies and the widespread adoption of biofuels. The dynamic interdependency model 

and the stochastic decision tree have both been separately used in risk analysis and 

decision making problems. However, the integration of both approaches with the 

addition of uncertainty analysis through probabilistic measures is a novel idea 

constituting the main contribution of this work. The sections of this chapter, in order, 

provide: the methodological background of the dynamic multiobjective inoperability 

decision tree (MOIDT); an extension of the MOIDT to address stochastic decision tree 

problems; a case study of a disruption of the Port of Catoosa, an inland waterway port 

on the Mississippi River Navigation System near Tulsa, Oklahoma; and concluding 

remarks. This research has appeared in Baroud et al. (2014a). 

Literature Review 

This section provides a discussion of several of the components that will make 

up the dynamic stochastic multiobjective inoperability decision tree deployed for 

infrastructure preparedness. 

Stochastic Decision Tree 

A common tool for aiding the decision making process through the graphical 

depiction of a sequence of decisions and uncertain events is the decision tree (Raiffa, 
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1968). A simple one-period decision tree is depicted in Figure 3-1, with notation from 

Santos et al. (2008) and Barker and Wilson (2012). Decisions are made at decision 

nodes, designated by squares in the decision tree, and branches extending from a 

decision node represent actions, options, or alternatives from which the decision maker 

has to choose. The notation in Figure 3-1 for the 𝑙th  decision alternative for the 𝑘th 

time period in which that decision is made is alternative 𝑎𝑙
𝑘. Chance nodes are 

designated with a circle, and branches emanating from a chance node represent the 

states of nature, the occurrences which occur with some known probability. The 𝑗th 

state of nature in the 𝑘th time period in which the chance event may occur is 

represented by 𝑠𝑗
𝑘.  The probability of occurrence of a state of nature is represented by 

𝑝(𝑠𝑗
𝑘), where ∑ 𝑝(𝑠𝑗

𝑘)𝑗∈𝐽𝑖
𝑘 = 1 and set 𝐽𝑙

𝑘 refers to the set of state of nature subscripts 

which follow the 𝑙th alternative in period k and which themselves occur in period k.  

Stochastic decision trees, like that depicted in Figure 3-1, can better incorporate 

uncertainty by using probability distributions for the likelihood of the occurrence of 

states of nature instead of probability point estimates (Hespos & Strassman, 1965). The 

use of probability distributions in stochastic decision trees, as opposed to the point 

estimates in the traditional decision trees, provides a more comprehensive way to model 

uncertainty and a wider selection of decision key parameters. For example, some 

decision makers might be interested in the mean of the distribution while more risk 

averse decision makers base their analysis on the 70th or higher percentile. The point 

estimate alone does not offer sufficient information in the selection of parameters 

representing the outcome function. 
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Figure 3-1: Depiction of a general stochastic decision tree 

 

The outcome of a particular path of alternatives and states of nature is quantified 

with the function 𝑟(∙). Alternatives are compared by the rollback method, which 

consists of computing the expected value of each outcome resulting from a specific path 

followed in the tree. For a v-period tree, the expected value for the lth alternative at the 

𝑣th decision is 𝐸[𝑎𝑙
𝑣] = ∑ 𝑝(𝑠𝑗

𝑣)𝑗∈𝐽𝑙
𝑣 𝑟(𝑎𝑖

𝑣, 𝑠𝑗
𝑣), and in prior periods, the expected value 

of the 𝑙th alternative at the 𝑘th decision is 𝐸[𝑎𝑙
𝑘] = ∑ 𝑝(𝑠𝑗

𝑘)𝑗∈𝐽𝑙
𝑘 𝐸[𝑎𝑗

𝑘−1]. If outcome 

𝑟(∙)  represents an adverse outcome (e.g., risk), the alternative which minimizes 𝐸[𝑎𝑙
𝑘] 

would be chosen at time 𝑘.  Likewise, if 𝑟(∙) represents a beneficial outcome (e.g., 

profit), the alternative that maximizes 𝐸[𝑎𝑙
𝑘] would be chosen. Folding back stochastic 

decision trees is done using Monte Carlo simulation, as the point estimates 𝑝(𝑠𝑗
𝑘) are 

replaced with distributions (Dicdican & Haimes, 2005), and consequently 𝑟(∙) functions 

1

1a

1

2a

 11

2 , jsar

 11

1 , jsar

 1

jsP

 1

jsP



49 

follow a distribution function. The decision is then based on the probability distribution 

of the expected value. 

There are typically a finite number of alternatives and states of nature. The 

drawback of using a decision tree is that the number of branches emanating from the 

nodes must be small, otherwise computations can easily become cumbersome. In 

addition, it might not be possible to sufficiently specify all the alternatives necessary to 

represent the uncertainty of the event. 

Many real-world decisions often require the trade-off of multiple objectives.  

Haimes, Li, and Tulsiani (1990) provide an approach for dealing with multiple 

objectives in sequential decision making with the multiobjective decision tree (MODT).  

The single outcome function 𝑟(∙) corresponding to a sequential set of alternatives is 

replaced with a vector-valued outcome function or a vector of 𝑚 outcomes, (𝑟1(∙

), . . . , 𝑟𝑚(∙)). The rollback procedure for MODTs is similar to that for decision trees 

with a single objective.  Each sequential path of decisions and chances results in a 

vector-valued outcome function at the final period v, generally represented as 

[𝑟1(𝑎𝑖
𝑣, 𝑠𝑗

𝑣), . . . , 𝑟𝑚(𝑎𝑖
𝑣, 𝑠𝑗

𝑣)], noting again that the value of the vector-valued outcome 

function is found for a specific path of alternatives and states of nature from periods 1 to 

𝑣.  When each of the 𝑚 outcomes in (𝑟1(∙), . . . , 𝑟𝑚(∙)) represents an adverse outcome, a 

minimum to the vector-valued function is sought at each decision node.  However, there 

may exist no single optimal alternative to roll back to the previous period but more 

likely a set of noninferior, or Pareto-optimal, solutions.  A noninferior solution is 

defined as a solution to a multiobjective problem where any improvement in one 

objective comes only at the expense of another objective (Chankong & Haimes, 2008).  
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Trade-offs among the 𝑚 competing objectives can be calculated between each string of 

alternatives. 

Interdependency Model 

A widely accepted model for describing the interconnected relationships among 

infrastructure systems and industry sectors is the Nobel Prize-winning economic input-

output model (Leontief, 1966), as shown in Eq. (3-1). For a set of 𝑛 infrastructure and 

industry sectors, 𝑛  1 vector 𝐱 quantifies production outputs in each sector, 𝑛  𝑛 

matrix 𝐀 represents the proportional interdependence among sectors (that is, 𝐀𝐱 

represents intermediate demand resulting from the production of 𝐱), and 𝑛  1 vector 

𝒄 provides final exogenous consumer demand. As such, Eq. (3-1) describes how 

changes in consumer demand lead to widespread changes in sector production.  

 𝐱 = 𝐀𝐱 + 𝐜 ⟹ 𝐱 = [𝐈 − 𝐀]−1𝐜 (3-1) 

The extensive usage of input-output models is due, in part, to the availability of 

economic interdependency data describing the interconnected nature of infrastructures 

and industries in a number of countries (OECD, 2011), including an extensive data 

collection effort by the US Bureau of Economic Analysis (BEA), which maintains 

input-output tables at different levels of aggregations (BEA 2010). The input-output 

framework has also been used in modeling interdependent systems that are not 

economic in nature (e.g., by Setola and De Porcellinis (2008)).  

The input-output model was extended to describe the propagation of 

inoperability, or the proportional extent to which sectors are not performing in an as-

planned manner (e.g., reduced production capability), through several interdependent 
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infrastructure and industry sectors (Santos & Haimes, 2004b). This model, the 

Inoperability Input-Output Model (IIM), is expressed in Eq. (3-2). 

 𝐪 = 𝐀⋆𝐪 + 𝐜⋆ ⟹ 𝐪 = [𝐈 − 𝐀⋆]−1𝐜⋆ (3-2) 

Vector 𝐪 is a vector of infrastructure and industry inoperabilities, proportional 

reductions in production, describing the extent to which ideal functionality is not 

realized following a disruptive event. Inoperability for sector 𝑖 is defined in Eq. (3-3), 

where as-planned total output is represented with �̂�𝑖 and degraded total output resulting 

from a disruption is represented with �̃�𝑖.   

 𝑞𝑖 = (�̂�𝑖 − �̃�𝑖) �̂�𝑖⁄  ⟺ 𝐪 = [diag(�̂�)]−1(�̂� − �̃�) (3-3) 

An inoperability of 0 suggests that an industry is operating at normal production 

levels, while an inoperability of 1 means that the industry is not producing at all. 

Normalized interdependency matrix 𝐀∗ is a modified version of the original 𝐀 matrix 

describing the extent of economic interdependence among a set of infrastructure and 

industry sectors. Shown in Eq. (3-4), 𝐀∗ is an interdependency matrix in which every 

entry represents how much inoperability is contributed by the column industry to the 

corresponding row industry.  

 𝑎𝑖𝑗
⋆ = 𝑎𝑖𝑗(�̂�𝑗 �̂�𝑖⁄ )  ⟺ 𝐀⋆ = [diag(�̂�)]−1𝐀[diag(�̂�)] (3-4) 

Such a matrix would translate the relationship between industries and the impact 

caused to an industry by the disruption of another industry sector. If, for example, a 

disruption affects petroleum production, electric power and transportation industries 

would also be adversely impacted by the disruption. Note that industry sectors are 

impacted differently by the disruption of one particular industry, and in some cases, the 

impact is infinitesimal or does not exist, as a result, the matrix entry would be null. Eq. 
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(3-5) calculates 𝐜⋆, a vector of normalized demand reduction, that drives inoperability 

in the demand-reduction IIM (Santos, 2006).  

 𝑐𝑖
⋆ = (�̂�𝑖 − �̃�𝑖) �̂�𝑖⁄  ⟺ 𝐜⋆ = [diag(�̂�)]−1(�̂� − �̃�) (3-5) 

The elements of 𝐜⋆ represent the difference in as-planned demand �̂�𝑖 and perturbed 

demand �̃�𝑖 divided by as-planned production, quantifying the reduced final demand for 

sector 𝑖 as a proportion of total as-planned output. The effects of inoperability across 

multiple sectors can be expressed with total economic losses, Q = xTq, or the amount of 

production made inoperable due to a disruption. 

A dynamic version of this model, the Dynamic Inoperability Input-Output 

Model, or DIIM, calculates the inoperability at any point in time using the recursive 

formula in Eq. (3-6), quantifying the temporal nature of how inoperability propagates 

across sectors then dissipates with recovery (Lian & Haimes, 2006). The inoperability 

vector, 𝐪(𝑡), as well as the vector of demand perturbation, 𝐜⋆(𝑡), change in time. An 

𝑛  𝑛 resilience matrix, 𝐊, represents the capability of a certain sector to recover from 

the disruptive event and reach a desired performance state. 

 𝐪(𝑡 + 1) = (𝐈 − 𝐊)𝐪(𝑡) + 𝐊[𝐀⋆𝐪(𝑡) + 𝐜⋆(𝑡)] (3-6) 

One way to estimate the entries in matrix 𝐊 is in Eq. (3-7), a result of the 

dynamic version of Eq. (3-6) with no temporal demand perturbations (Lian & Haimes, 

2006). Value 𝑞𝑖(0) is the initial inoperability experienced in sector 𝑖 following a 

disruptive event, 𝑞𝑖(𝑇𝑖) is the desired inoperability state after recovery (assumed to be 

small but nonzero), which requires 𝑇𝑖  time periods to achieve, and 𝑎𝑖𝑖
∗  is the diagonal 

entry in the interdependency matrix. 
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𝑘𝑖 =

ln (
𝑞𝑖(0)
𝑞𝑖(𝑇𝑖)

)

𝑇𝑖(1 − 𝑎𝑖𝑖
∗ )

 
(3-7) 

The IIM and its extensions have been used in a number of risk-based 

applications, including inventory decision making (MacKenzie, Santos, & Barker, 

2012b; Barker & Santos, 2010a), workforce disruptions (Barker & Santos, 2010b; Orsi 

& Santos, 2010), and electric power outages (MacKenzie & Barker, 2012; Anderson, 

Santos, & Haimes, 2007), among others. 

Distribution Assumptions 

Two sources of uncertainty enter the analysis of infrastructure preparedness as 

described here: (i) the uncertainty associated with the states of nature that may occur, as 

depicted in the decision tree, and (ii) the uncertainty associated with how sequences of 

decisions and states of nature will impact demand perturbations in the interdependency 

model (thereby driving the calculation of inoperability across sectors). These two 

representations of uncertainty are described subsequently.  

Discussed in more detail in the methodological development section, the states 

of nature describe the magnitude of a disruptive event at the inland port, where such an 

event may be rare in nature with large impacts. Originally introduced through the idea 

of the scale invariance (Richardson, 1948), which is an inverse power scaling between 

independent and dependent variables, the power-law distribution has been used to 

model different social, political, and financial patterns in history. Studies aimed at 

determining the probability distribution of the severity of a terrorist attack agree that, 

according to empirical data on worldwide terrorist events from 1968 to 2008, the 
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probability of a terrorist event claiming x deaths follows a power-law distribution 

(Clauset & Young, 2005; Johnson et al., 2006; Clauset, Young, & Gleditsch, 2007). 

 𝑓(𝑑) = 𝐶𝑑−𝜆 (3-8) 

This model, which is provided in Eq. (3-8), for scale parameter 𝜆 and normalizing 

constant 𝐶, has been extended to a more general form to describe other covariates such 

as the size and experience of the terrorist organization and the type of weapons used in 

the attack (Clauset & Gleditsch, 2012; Clauset & Wiegel, 2009). Power-law 

relationships are also used to model the severity of natural disasters such as tornadoes 

(Malamud & Turcotte, 2012), other severe weather conditions (Dessai & Walter, 2000), 

and large earthquakes (Mega et al., 2003), among others. Statistical methods such as the 

least square method, the maximum likelihood function, or an extended combination of 

these with other statistical tests are used to estimate the parameters of this distribution 

(Clauset, Shalizi, & Newman, 2009): , 𝐶, and minimum value of the random variable 

𝑑𝑚𝑖𝑛. 

 The manner in which the disruptive event affects changes in demand is itself 

represented with a probability distribution. Like Santos et al. (2008) and Santos (2008), 

the beta distribution is used here to describe uncertainty in 𝐜⋆. An advantage of using 

this distribution, whose probability density function is shown in Eq. (3-9), is that its 

support is on [0,1]. This is beneficial in describing a parameter such as 𝑐𝑖
⋆, the minimum 

and maximum are controllable, and the range of values of its parameters determine 

several shapes for the probability distribution.  

 𝑓(𝑥) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 (3-9) 
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The mean and variance of the beta distribution are shown in Eqs. (3-10) and (3-11), 

respectively. 

 𝜇 =
𝛼

𝛼 + 𝛽
 (3-10) 

 

 𝜎2 =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 (3-11) 

The parameters of this distribution are estimated using the method of moments. Given 

the values of the sample mean, �̅�, and sample variance, 𝑠2, the parameters are estimated 

with Eqs. (3-12) and (3-13). 

 �̂� = �̅� (
�̅�(1 − �̅�)

𝑠
− 1) (3-12) 

 

 �̂� = (1 − �̅�) (
�̅�(1 − �̅�)

𝑠
− 1) (3-13) 

 

Methodology: Dynamic Multiobjective Inoperability Decision Tree 

Extending a static version of the multiobjective inoperability decision tree 

(MOIDT) (Santos et al., 2008), this section describes a dynamic and stochastic MOIDT 

to model the (i) investment in infrastructure preparedness, and (ii) the interdependent 

benefits of such investments (or adverse impacts of a lack of investment).  

 The use of the DIIM considers the cumulative effect of the total economic loss, 

a risk measure of interest to decision makers. Also, the problem is solved here by taking 

into account the uncertainty in the parameters of the DIIM as well as in the states of 

nature in the decision tree. As a consequence, the parameters of the beta distribution for 
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each entry in the demand perturbation vector, 𝐜⋆, depend on the state of nature as well 

as on the point estimates of each entry. 

Infrastructure Preparedness Decision Problem 

An influence diagram is a useful graphical tool that helps to visualize the 

decision problem in terms of the decision, uncertainties, objectives, and the influential 

relationship each has on the others. For the infrastructure preparedness decision 

problem in Figure 3-2, the decision to make, represented by a rectangle, is a certain 

amount of dollars invested in preparedness activities. This decision will directly affect 

one of the objective functions, represented by a diamond shape, which is the cost. It will 

also indirectly affect the other objective function which is the expected total economic 

loss as it will impact two uncertainties, represented by a circular shape: (i) the 

probability of a disruptive event occurring (in case of a manmade attack), and (ii) the 

severity of the disruptive event. Hence, the problem presented is a multiobjective 

decision problem in which the decision maker is interested in minimizing both the cost 

of preparedness and the expected total economic loss in case of a disruptive event. Both 

objectives are competing (as increased investment in preparedness would expectedly 

lead to fewer losses). And while both are measured in dollar terms, the objectives are 

noncommensurable in that investment budgets would likely come primarily from 

government sources, while losses would be experienced across a wide number of 

infrastructure and industry sectors. 
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Figure 3-2: Influence diagram describing the infrastructure preparedness investment 

decision-making process 

 

From Figure 3-2, the preparedness investment decision directly affects the cost, and this 

investment has an effect on the likelihood and severity of a disruptive event. The way in 

which the investment affects these others quantities is through a factor of influence, 𝜃𝐼, 

linearly related to the investment amount, 𝐼, and the maximum amount to be invested, 

𝐼𝑚𝑎𝑥, as shown in Eq. (3-14). 

   𝜃𝐼 =
𝐼

𝐼𝑚𝑎𝑥
 (3-14) 

The factor of influence is used as a translation of the amount invested from 

dollars to fraction terms expressing how large is the investment compared to other 

possible investments. In particular, the amount invested is compared to the maximum 

investment that can be made and is then expressed as a value between 0 and 1, 

providing the factor of influence. The impact of the investment on the likelihood and 

severity of the disruption can then be modeled using this factor. A simple linear 

relationship between the investment and the factor of influence is more than enough to 
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express how large the investment is in proportion terms. A more sophisticated 

relationship would make unnecessary complications to the overall model. Note that the 

impact of investment through that factor of influence may not be as simple as a linear 

relationship and is thoroughly discussed in the following section. 

Decision Tree Construction and Parameters 

 A dynamic MOIDT is constructed in Figure 3-3 to address the investment in 

infrastructure preparedness, where the decision addresses the amount of investment in 

period 𝑘, 𝐼𝑗
𝑘. Two chance nodes are assumed: the first concerns the occurrence of a 

disruptive event, and the second concerns the severity of the event if it occurs.  The 

occurrence of the event is a deterministic chance node where the likelihood of 

occurrence is known to be 𝑝. The second chance node representing the severity has 

infinitely many states of nature to represent the severity of the disruption (thus, a 

stochastic chance node), and consequently the demand perturbation and ultimate total 

economic losses across all sectors. The stochastic nature of the severity of the disruption 

is modeled with the power law distribution, and the demand perturbation is modeled 

with the beta distribution. While multiple planning periods could be explored with this 

problem, a one-period tree is addressed here.   
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Figure 3-3: Multiobjective stochastic inoperability decision tree for infrastructure 

preparedness 

 

 The outcome of each sequential decision and state of nature is a (i) cost of 

investment and (ii) total economic loss across all sectors resulting from the disruptive 

event corresponding to the chance node. The relationships below describe how the 

investment decision, through the factor of influence, 𝜃𝐼, from Eq. (3-14), alters the 

different parameters in the model. The probability of a disruptive event occurring is 

decreased with increasing investment, as governed by Eq. (3-15). 

 𝑝𝐼 = 𝑒−𝜃𝐼𝑝 (3-15) 

That is, depending on the nature of the investment, some amount of protection is 

assumed in preventing the event (or reducing its likelihood of occurrence). The 

probability of the occurrence of the event, 𝑝, is reduced to 𝑝𝐼. 

Dynamic Recovery Model 

It is assumed that a disruptive event befalling the infrastructure system impacts 

demand for commodities whose flow or production is enabled by the infrastructure 

(e.g., commodities that flow through a port would be impacted by the port’s closure). 
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Such a demand perturbation for some commodities could be the result of a supply 

reduction in other commodities. Given the magnitude of disruptive events in 

infrastructure systems and their large economic impacts, industries and consumers 

overall tend to become more conservative in demand activity due to the instability of 

the economy after the disruption. In addition, supply or production could also be 

impacted by the disruption. In fact, the inoperability vector in the DIIM is 

representative of the supply reduction following disruptive events. To account for the 

uncertainty in the demand reduction, the values of the entries in the 𝐜⋆ vector are drawn 

from the beta distribution whose parameters depend on the severity of the disruptive 

event. The severity is generated from the stochastic chance node in the decision tree 

following a power-law distribution.  

 The severity of the event and the amount invested in preparedness activities are 

two factors having opposite impacts on several distributional parameters as well as 

other parameters in the model. As noted earlier, the shape and scale parameters of the 

beta distribution for 𝐜⋆ are estimated using the method of moments according to Eqs. 

(3-12) and (3-13). This method considers the sample mean and variance to be known. 

The sample mean of the demand reduction, �̅�, is directly related to the maximum 

demand perturbation 𝐜max
⋆ , with the latter representing the worst case scenario that 

could occur. For example, this could describe a one-year closure of a transportation 

facility (e.g., inland waterway port) or any type of prolonged dysfunction of an 

infrastructure affecting the economy. Such scenarios are generally assessed by means of 

expert solicitation.  



61 

 The sample mean of the demand perturbation is in fact a proportion of the 

maximum perturbation, and this proportion, 𝛾, depends on the severity of the event. For 

example, if severity is measured in terms of the number of months a certain facility is 

closed, and the worst case scenario assumes a full year of closure, then 𝛾 = 0.75 for a 

nine-month closure.  Further, the sample mean has a negative exponential relationship 

with the factor of influence, 𝜃𝐼, computed in Eq. (3-14). This relationship ensures that 

as the amount of investment is increased, the reduction in demand after a disruptive 

event is exponentially decreased. These relationships are represented in vector form in 

Eq. (3-16), where �̅� increases as the proportion of the maximum demand perturbation 

increases, depending on the severity of the event, and it decreases exponentially as the 

factor influence (or equivalently the amount invested) increases.  

 �̅� = 𝛾𝑒−𝜃𝐼𝐜max
⋆  (3-16) 

Likewise, standard deviation 𝐬 is computed by assuming that the maximum 

demand perturbation lies three standard deviations above the mean, shown in vector 

form in Eq. (3-17). No further restrictions or assumptions are applied to the sample 

variance, which results in larger variations when the sample mean is smaller. 

 𝐬 =
1

3
(𝐜max

⋆ − �̅�) (3-17) 

 Similar to the sample mean, the initial inoperability is a function of both the 

investment strategy, 𝜃𝐼, and the severity of the event, 𝛾, as shown in Eq. (3-18), where 

𝐪max(0) represents the vector of initial inoperability under the most extreme 

circumstances. The values of 𝐪max(0) could either be determined by experts or 

estimated depending on the system considered in the application.  
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 𝐪(0) = 𝛾𝑒−𝜃𝐼𝐪max(0) (3-18) 

The concept of resilience will be revisited in much more details and in-depth 

analysis in Chapter 4 and Chapter 5. For the purpose of this analysis, resilience is 

defined in two aspects: (i) reducing the impact of a disruptive event, and (ii) improving 

the speed with which recovery occurs (Henry & Ramirez-Marquez, 2012; Zobel, 2011).  

The effect of an investment in improving the first aspect is found in Eqs. (3-16) and 

(3-18), where the initial inoperability and the initial demand perturbation experienced 

after a disruptive event is lessened with an investment in infrastructure preparedness. 

The second aspect is addressed in Eq. (3-19), where preparedness investments can also 

decrease the time to full recovery of industry 𝑖, 𝑇𝑖. Like the previous relationships, 

recovery time is reduced according to 𝑒−𝜃𝐼𝑇𝑖, an exponentially decreasing function of 

the factor of influence, 𝜃𝐼. As recovery commences, inoperability decreases over time, 

consequently impacting total economic losses across all sectors over time, 𝑄(𝑡) =

𝐱(𝑡)𝑇𝒒(𝑡). 

  
𝑘𝑖 =

ln (
𝑞𝑖(0)

𝑞𝑖(𝑒−𝜃𝐼𝑇𝑖)
)

(𝑒−𝜃𝐼𝑇𝑖)(1 − 𝑎𝑖𝑖
⋆ )

 
(3-19) 

The amount invested in port security and system hardening, in general having an 

exponential impact on the effect of a disruption, is a more realistic representation of the 

real life behavior of improvements in the risk management of infrastructure systems. 

The idea is deemed useful in such as way that is not too simplistic, such as the case of a 

linear relationship, and not too complicated in a manner to make it problem-specific. 

Similar ideas have been implemented in other scenarios, such as resource allocation 

problems (MacKenzie, Baroud, & Barker, 2014a). 
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 Note the double effect on the input parameter from the severity of an event 

leading to more perturbation, more inoperability, and less resilience; while risk 

management helps in decreasing the initial impact and increasing the recovery rate by 

decreasing the time required to full recovery.  

It is also worth noting that the demand perturbation, which is a function of time, 

starts to decrease as recovery commences and is updated at discrete time points from 

𝑡 = 1 to 𝑡 = 𝑇 = max(𝑇1, 𝑇2, … , 𝑇𝑛) . Updating the demand reduction during the 

recovery process depends on the case study and will be further developed in the case 

study section. The decision is then based on the aggregate economic loss computed at 

the time, 𝑇, when all industries are fully recovered, and since the decision tree is a one-

period, more precisely one-year decision tree, there is one investment to be made. 

Simulation of the Decision Tree 

Alluded to previously, stochastic decision trees require the use of Monte Carlo 

simulation in the folding back process. For each alternative emanating from the first 

decision node, a fixed cost representing the amount invested is assumed, and 𝜃𝐼 for an 

investment of I can be computed. The following steps guide the simulation for a 

sufficiently large number of iterations. 

1. Generate a random variable from the power law distribution within the 

bounds of the minimum and maximum severity, guided by Eq. (3-8).  

2. Given the severity, factor of influence, 𝜃𝐼, and the elicited values 𝐜max
⋆  and 

𝐪max(0), calculate the sample mean, �̅�, and standard deviation, 𝐬, of the 

demand perturbation from Eqs. (3-16) and (3-17), the parameters of the 
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DIIM from Eqs. (3-18) and (3-19), and the probability, 𝑝𝐼, of a disruptive 

event occurring from Eq. (3-15). 

3. Using the method of moments, compute estimates for the parameters of the 

beta distribution from Eqs. (3-12) and (3-13) and draw random variables 

from this distribution for each industry element in the demand perturbation 

vector. It is assumed that the number 𝑛′ of initially perturbed industries can 

represent a subset of all industries, 𝑛′ ≤ 𝑛. 

4. Compute the inoperability vector at each point in time from Eq. (3-6). 

5. Compute the total economic loss, 𝑄 = 𝑄(𝑇) = 𝐱𝑇 ∑ 𝐪(𝑡)𝜏
𝑡=1 .  

6. Compute the expected value of the total economic loss as the product of the 

loss and the probability 𝑝𝐼 of a disruptive event, 𝐸𝑄 = 𝐸𝑄(𝑇) = 𝑄(𝑇)𝑝𝐼 

Repeating the above steps for a number of iterations, 𝑁, for one particular investment 

cost results in a distribution for EQ under this specific investment. The mean values of 

the EQ distributions for each investment could be compared to determine the 

appropriate investment level. Further, the conditional expected value (upper-tail value) 

provides an idea of how each investment performs in extreme conditions (Asbeck & 

Haimes, 1984). 

Case Study: Inland Waterways Preparedness Strategies Assessment   

The methodology developed is illustrated with a decision problem regarding 

inland waterway port security and resilience. This data-driven case study involves the 

Port of Catoosa in Tulsa, Oklahoma, the largest inland port in the U.S. in terms of area. 

Located on McClellan-Kerr Arkansas River, the port is part of the Mississippi River 

Navigation System and roughly two million tons of commodities flow annually through 
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the port. As such, preparing for disruptive events is crucial to the port itself as well as to 

the economic system depending on the trading activity at the port. 

Motivation 

The Department of Homeland Security announced a set of grant programs 

targeting different areas prone to willful attacks or natural disasters (DHS 2012). 

Among this set of grants is the Port Security Grant Program (PSGP) whose purpose is 

“to support increased port-wide risk management; enhanced domain awareness; training 

and exercises; expansion of port recovery and resiliency capabilities; and further 

capabilities to prevent, detect, respond to, and recover from attacks…and…assist ports 

in obtaining the resources required to support the NPG’s associated mission areas and 

core capabilities” (DHS, 2012).  According to the grant overview report (DHS 2012), 

the ports in the U.S. were categorized into three different groups, and DHS divided the 

grant of the PSGP among the three groups. However, the ports within each category 

were to compete for the funding available in their group. According to that report, the 

group in which the Tulsa Port of Catoosa is placed contains a total of 22 ports and 

received a grant of $4,875,000. The approach developed in this research could provide a 

helpful means to determine the appropriate investment amount allocated to each port 

based on the port’s size, its mix of annual commodity flows, and its location, among 

other factors impacting the probability of a disruptive event occurring as well as its 

consequences in terms of economic losses. 

Assumptions 

The probability of a (rare) event causing a disruption of an extreme nature at the 

port is assumed to be similar to the probability of a terrorist attack since this type of 
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event would incur large impacts and rarely occurs. This assumption is merely for 

illustration purposes, a sensitivity analysis will follow to address scenarios with 

different probabilities. Bun (2006) developed a mathematical model to measure the 

probability of a nuclear terrorist attack, finding that, with a set of plausible parameters, 

the probability of a nuclear terrorist attack in the next 10 years is 0.29. Extending from 

this result, the probability associated with a terrorist event occurring in a one-year 

period is assumed to be 0.29/10 = 0.029 which corresponds to one period of a decision 

tree. This computation assumes independence between probabilities of occurrence of a 

terrorist attack over the years and generalizes the likelihood of a nuclear terrorist attack 

to any broadly-defined disruptive event. Therefore, a baseline probability for a 

disruptive event occurring in one year is assumed to be 0.02 for this particular 

application. Given that the result used is specific to a nuclear attack, it might seem 

unrealistic to model any type of disruptive event occurring at the port of Catoosa. 

However, a baseline probability is set to be slightly less than the given result and 

followed up by a sensitivity analysis considering other values for the probabilities. The 

choice of this value serves solely for illustration purposes, though motivated from 

previous work.  

Generally extreme events that are modeled with a power-law distribution result 

in an estimated scale parameter ranging between 2 and 3, for further discussion on the 

distribution of disruptive events, please refer to the Distribution Assumptions section 

above. It is then assumed that λ = 2.5. In addition, it is assumed that the severity of the 

disruptive event is bounded with a minimum and a maximum number of days during 

which the port is closed, between 15 and 60 days. 
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 The cost of investment, 𝐼, ranges from $0 to $1,000,000 and the proportion 

parameter of the severity of the event, 𝛾, is the number of days the port is closed 

divided by 365, meaning that the maximum perturbation and initial inoperability 

represent a one year closure of the port. Since this case study is motivated by the 

amount of grant from PSGP allocated to the group of ports to which the Port of Catoosa 

belongs, the maximum amount of investment is determined accordingly. It is also 

assumed that all the industries require the same time, 𝑇 = 𝑇𝑖, to fully recovery, where 𝑇 

depends on the duration of the closure of the port. In this particular example it is 

assumed that 𝜅 = 0.5, and that if the port was closed for 𝑑 days, the industries relying 

on the port as well as the interdependent industries will all recover in 𝑇 = 𝜅𝑑 days. This 

assumes that while the port was closed, the products that were supposed to be exported 

were held at the port and those that were supposed to be imported were held at their 

original port, and after the port reopens, the port needs 𝑇 days to ship all the products 

held and hence the industries would be fully recovered. This would mostly affect the 

manner in which the demand perturbation is decreasing in the recovery period, and 

instead of adding 𝐜⋆(𝑡), in Eq. (3-6), the change in the demand perturbation, Δ𝐜⋆, Eq. 

(3-20), is added, which considers that once the recovery starts, the commodity flows 

through the port at a rate of 1/κ. In this case the flow is twice as much as it usually is to 

make up for the loss and the time during which the commodity had to wait at the port. 

During the recovery, the daily demand perturbation is subtracted from the initial 

demand perturbation and updated accordingly every day until Δ𝐜⋆(𝑇) = 0. Note that 

while the port was closed for d days, the recovery process does not start until the port 

reopens. This suggests that the port and associated industries are not functioning for d 
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days, after which the recovery process commences and spans 𝑇 = 𝜅𝑑 days before the 

port and industries are fully recovered. However, since the DIIM models the recovery 

process, the model is implemented for 𝑇 = 𝜅𝑑 days and not the full period of time 

required to fully recover,  𝑑 + 𝜅𝑑. 

 

Δ𝐜⋆(1) = 𝐜⋆(0) −
1

𝑒−𝜃𝐼𝑇
𝐜⋆(0) 

Δ𝐜⋆(𝑡) = Δ𝐜⋆(𝑡 − 1) −
1

𝑒−𝜃𝐼𝑇
𝐜⋆(0) 

(3-20) 

Finally, the demand perturbation comes from the loss in exports and is 

computed as the ratio of exports of industry 𝑖 to the total production output of that 

industry at a specific time, 𝑡, as shown in Eq. (3-21).  

 𝑐𝑖
⋆(𝑡) =

𝑒𝑖(𝑡)

𝑥𝑖(𝑡)
 (3-21) 

Similarly, the inoperability is the result of imports not reaching the port and causing a 

shortage in the material needed to produce in the industries relying on such commodity, 

it is then the ratio of imports to the total production output of industry 𝑖, provided in 

Eq.(3-22) (MacKenzie et al., 2012a; Pant et al., 2011).  

 �̂�𝑖(𝑡) = (
𝑚𝑖(𝑡)

𝑥𝑖(𝑡)
) (3-22) 

If both the numerator and the denominator in Eqs. (3-21) and (3-22) are yearly 

estimates, the above metrics can serve as the maximum demand perturbation and the 

maximum inoperability since the worst case scenario is considered to be a full year of 

port closure and they are used to compute the initial demand perturbation and 

inoperability. The elements of the sample mean and initial inoperability vectors in Eqs. 

(3-16) and (3-18) are then expressed in Eqs. (3-23) and (3-24), where 𝑒𝑖(𝑡), 𝑚𝑖(𝑡), and 
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𝑥𝑖(𝑡) respectively represent the exports, imports and total production output for industry 

𝑖 at time 𝑡 of one year. 

 �̅�𝑖 = 𝛾𝑒−𝜃𝐼 (
𝑒𝑖(𝑡)

𝑥𝑖(𝑡)
) (3-23) 

 

 𝑞𝑖(0) = 𝛾𝑒−𝜃𝐼 (
𝑚𝑖(𝑡)

𝑥𝑖(𝑡)
) (3-24) 

The input data described above relies on either (i) parameter assumptions that 

could be altered depending on the application, or (ii) port-specific data. Several data 

sources from the Tulsa Port of Catoosa, the US Army Corps of Engineers, and the 

Bureau of Transportation Statistics were used by MacKenzie et al. (2012a) to derive 

estimates of the dollar amount of commodities flowing through the port of Catoosa. 

These estimates are inputs to Eqs. (3-21) and (3-22). The interdependencies between the 

critical infrastructure and the rest of industries are expressed by two matrices in the 

DIIM model: (i) the 𝐀∗ matrix describes how inoperability propagates among industries 

when the infrastructure is disrupted, and (ii) the 𝐊 matrix governs the recovery of 

infrastructure and industry sectors. The entries in the 𝐀∗ matrix are computed using data 

from the Bureau of Economic Analysis, and the formula for the entries of the 𝐊 matrix 

is discussed the Interdependency Model background section, Eq. (3-7). The idea of 

expressing initial inoperability and demand perturbation as a fraction of the worst case 

scenario has been used in a different study on port disruptions (Pant et al., 2011). The 

length of closure of the port is chosen to be anywhere between two weeks and two 

months, a reasonable assumption in the case of any disaster (Pant et al., 2011). And the 

time to full recovery controlled by 𝜅, is randomly chosen. These parameters can be 
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altered according to each case and largely depend on the decision makers and the type 

of risk they seek to mitigate. 

Decision Tree Solution 

A simulation of 100,000 iterations is performed, and several metrics related to 

inoperability and economic loss are computed for each investment amount using the 

aggregate inoperability throughout the recovery period. 

 The distribution of total economic loss without preparedness is depicted in 

Figure 3-4. The property of the power-law distribution can be easily seen, as disruptive 

events with larger impacts have a smaller chance of occurring while less impactful 

events are more common. An important feature of this distribution is that it does not 

rule out extreme events as outliers but rather considers them as events with an 

infinitesimal likelihood of occurrence, important for a risk averse decision maker who is 

interested in minimizing extreme risks. 
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Figure 3-4: Frequency distribution of the expected total economic losses across all 

regional industries 

 

Recall that this MOIDT is constructed for two minimization objectives: (i) 

expected total economic loss across all industries, and (ii) investment amount. While 

both of these objectives are measured in dollars, they are not necessarily commensurate 

as the preparedness investment would likely come from a port authority or DHS 

funding program while economic losses would be shared across multiple industries.  

The resulting Pareto-optimal frontier plotting expected total economic loss, 𝐸𝑄(𝑇), 

computed once the industries are fully recovered versus investment is shown in Figure 

3-5. Note that, as Figure 3-4 suggests, there exists a probability distribution for expected 

total economic loss for each realization of investment. Shown in Figure 3-5 are the 

mean, 𝑀, of these distributions, as well as conditional means 𝐶𝑀0.01 and 𝐶𝑀0.05. 
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Although the Pareto-optimal frontiers in Figure 3-5 are not completely smooth, it is 

concluded that none of the investment strategies is dominant due to the overall shape of 

the curve. Additional iterations would likely result in smoother curves. 

 

Figure 3-5: Pareto frontier for expected total losses versus the amount invested toward 

preparedness activities 

 

The conditional expected total economic loss values are upper-tail or extreme values 

associated with higher consequence, but lower probability, events (Asbeck & Haimes, 

1984). The conditional expected value is found with Eq. (3-25) and indicator function in 

Eq. (3-26). 

 𝐶𝑀𝑟 = 𝐸[𝐸𝑄|𝛽 < 𝐸𝑄 < ∞] =
∑ 𝛿(𝑖)𝐸𝑄(𝑖)𝑁

𝑖=1

∑ 𝛿(𝑖)𝑁
𝑖=1

 (3-25) 
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 𝛿(𝑖) = {
1 if 𝐸𝑄(𝑖) > 𝛽
0 otherwise

 (3-26) 

The use of an upper-tail conditional expected economic loss calculation is particularly 

telling for the power-law distribution, which naturally has high consequence, low 

probability values in its upper tail. The indicator function is used to select the 

observations falling under the upper-tail of the probability distribution and include them 

in the computation of the conditional expectation, a means to determine the extent to 

which the extremity of the event is considered. Depending on the decision maker, more 

or less extreme case scenarios could be analyzed to determine the amount of 

preparedness investment needed (e.g., risk averse decision makers tend to be prepared 

for more extreme events). Hence, using the indicator function, it is possible to 

determine the degree of risk aversion of the decision maker (Santos & Haimes, 2004b). 

The formula in Eq. (3-27) calculates the significance level which is the probability 

corresponding to the upper-tail portion of the distribution of EQ. 

 𝑟 =
1

𝑁
∑ 𝛿(𝑖)

𝑁

𝑖=1

 (3-27) 

The larger the 𝑟, the less risk averse is the decision maker since the calculation is 

incorporating more points into the expectation and the risk aversion is moving towards 

a risk neutral decision making that uses the mean. According to Figure 3-5, all the 

metrics decrease as the investment cost increases, suggesting that the more the risk 

manager invests, the less impactful is the disruptive event in terms of economic losses. 

If the investment is higher than $800,000, both the mean and conditional means provide 

very similar estimated values for the expected total economic loss. 𝐶𝑀0.01 and 𝐶𝑀0.05 

are two conditional expectation for different levels of risk aversion. Risk averse 
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decision makers would have to invest much more to get the same expected total 

economic loss as a risk neutral decision maker. For example, a risk neutral decision 

maker investing $100,000 would see an expected total economic loss of about $10 

million, while a risk averse decision maker aiming to reach the same level of expected 

economic loss would need to invest $500,000 to $700,000 depending on their extent of 

risk aversion. 

 Recall that no particular restriction was applied to the variance of the beta 

distribution except that 𝐜max
⋆ = �̅� + 3𝑠. Figure 3-6 is a plot of the standard deviation of 

the total expected economic loss as the investment changes. Note that the variation in 

the expected total economic loss decreases as the investment increases, suggesting that 

no further restriction is required for the variance of the beta distribution as the model 

accounts for the behavior of the variance of the expected total economic loss, ensuring 

that it decreases with larger investments. Noted previously, additional iterations would 

result in smoother curves and hence the small jumps along the curve should be 

considered insignificant. 
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Figure 3-6: Behavior of standard deviation of the expected total economic loss as 

investment increases 

 

Trade-off Analysis 

 A trade-off analysis is necessary to study the additional effect on the total 

economic loss of investing an extra dollar in port security. The trade-off analysis is 

done using the generalized trade-off function for discrete strategies used in Santos et al. 

(2008). The trade-off of a risk function 𝑓𝑚 with respect to another risk function 𝑓𝑛 for 

two different risk management strategies 𝑆𝑖 and 𝑆𝑗 is computed in Eq. (3-28). 

  𝜆
(𝑓𝑚, 𝑓𝑛|𝑆𝑖𝑆𝑗)

= −
𝑓𝑛|𝑆𝑖

− 𝑓𝑛|𝑆𝑗

𝑓𝑚|𝑆𝑖
− 𝑓𝑚|𝑆𝑗

     for 𝑖 ≠ 𝑗 (3-28) 

The trade-off analysis gives insights on the efficacy of additional risk management 

investments. It is true that the more the decision maker invests, the less the expected 

economic loss would be, however, how efficient is this additional investment? Consider 
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the numerical example in Eq. (3-29), investing $100,000 more would decrease the 

expected total economic loss by $5 million. A trade-off of 50 means that the total 

expected loss decreases by $50 for each $1 invested in preparedness. 

 𝜆 = −
30 − 35

0.2 − 0.1
= 50 (3-29) 

 As long as the trade-off is positive, neither of the two strategies considered 

dominates the other. However, the value of that trade-off indicates how efficient the 

investment is. Note in Figure 3-7 that the trade-off decreases as the amount invested 

increases while it remains positive. This means that although the investment is helping 

to decrease the expected total economic loss, the efficiency of that risk management 

procedure is decreasing as the investment increases. The same pattern is observed in 

Figure 3-8, in which the trade-off is based on the values of 𝐶𝑀0.01 from Figure 3-5. 

Although it has a similar pattern of decreasing the efficiency of the investment as more 

money is invested, however the value of the trade-off is much larger than the one 

computed using the mean value of the expected total economic loss. That is due to the 

decision maker being risk averse, any additional investment would highly impact the 

risk function the decision maker is trying to minimize. 
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Figure 3-7: Trade-off as a function of the cost of investment for a risk-neutral decision 

maker 
 

 

Figure 3-8: Trade-off as a function of the cost of investment for a risk-averse decision 

maker, 𝒓 = 𝟎. 𝟎𝟏 
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Sensitivity Analysis 

A number of input parameters needed to be estimated in this methodology, 

therefore a sensitivity analysis is useful in determining the impact of these parameters 

on the output of the model. One of the key parameters in this paper is the probability 𝑝 

of a disruptive event occurring, an important issue addressed in the probabilistic risk 

analysis applications. Determining the probability of an accident, a willful attack or a 

natural disaster occurring is challenging and has been a subject of research in the past 

decade.  

A sensitivity analysis is performed to determine the effect of the probability of a 

disruptive event on the expected economic loss as a function of different preparedness 

investment strategies. Figure 3-9 depicts the mean of the distribution of the expected 

total economic loss, 𝑀, as a function of different preparedness strategies for several 

possible probabilities of a disruptive event occurring ranging from 0.01 to 0.05. 

Naturally, the higher the probability, the higher is the expected economic loss under any 

preparedness strategy. However, the more the decision maker chooses to invest, the less 

is the effect of the probability on the economic loss. More precisely, for preparedness 

investments of $600,000 or higher, the average expected total economic loss is almost 

the same regardless of the estimated value used to express the probability of a disruptive 

event.  
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Figure 3-9: Sensitivity analysis on the probability of a disruptive event 

 

Concluding Remarks 

Preparedness decision making is an important issue that critical infrastructure 

systems have been dealing with for the past decade given their vulnerability to 

disruptive events and their interdependence with other industries. Therefore, it is crucial 

to consider accurate measures of the risk functions and use the appropriate 

methodologies to solve such decision problems. This research provides a new 

framework for analyzing such infrastructure preparedness problems, by integrating two 

well-known methodologies in risk analysis and decision making, a stochastic decision 

tree and a dynamic interdependency model to capture the uncertain and widespread 

economic impacts of disruptive events. With this framework, more comprehensive 

means are contributed to quantify risk and measure the efficacy of risk management 



80 

while accounting for uncertainties in the parameters of the models used in this 

integrated approach. Particular distributions, namely the power law and beta 

distributions, are used here, though any appropriate distributions could describe the 

parameters of the decision problem.  

 The framework is applied to an inland port preparedness investment problem. 

Results suggest that while an increase in the investment is providing better protection to 

the port in terms of the average and conditional expectation of the upper tail of the total 

economic loss distribution as well as the likelihood of a disruptive event occurring, the 

decision maker should be aware of the value this increased investment is adding. 

Sometimes investing an additional dollar in port security might not greatly improve the 

port security, depending on the risk preference of the decision maker.  

 The methodologies presented in this chapter aimed at introducing the concept of 

interdependent impacts of disruptions and their effect on decision making. 

Interdependent economic losses resulting from disruptive events play a key role in risk 

management and preparedness strategies. But how do these interdependencies impact 

the recovery process? And what are the best ways to account for the economic 

interdependent impacts given the resilience of the disrupted critical infrastructures? 

These questions are addressed in the following chapter. 
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Chapter 4  

Interdependent Impacts of Infrastructure Systems Resilience Modeling  

Recent studies in system resilience have proposed metrics to understand the 

ability of systems to recover from a disruptive event, often offering a qualitative 

treatment of resilience. This work provides a quantitative treatment of resilience and 

focuses specifically on measuring resilience in infrastructure networks. Inherent cost 

metrics are introduced: Loss of Service Cost and Total Network Restoration Cost. 

Further, “costs” of network resilience are often shared across multiple infrastructures 

and industries that rely upon those networks, particularly when such networks become 

inoperable in the face of disruptive events. As such, this work integrates the quantitative 

resilience approach with a model describing the regional, multi-industry impacts of a 

disruptive event to measure the Interdependent Impacts of Network Resilience. The 

approaches discussed are deployed in a case study of an inland waterway transportation 

network, the Mississippi River Navigation System. 

Several qualitative schema have recently been offered for describing resilience 

(Haimes, Crowther, & Horowitz, 2008; Haimes, 2009a; Woods, 2006; Bruneau et al., 

2003), with a quantitative treatment by Henry and Ramirez-Marquez (2012) describing 

how system performance is affected by the change of the state of the system in the 

presence of a disruption and throughout the recovery process. It is this resilience 

paradigm, developed for deterministic (Henry & Ramirez-Marquez, 2012) and 

stochastic (Pant, Barker, & Ramirez-Marquez, & Rocco, 2014) analyses that drives the 

resilience cost metrics in this research. 
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Figure 4-1 and Figure 4-2 illustrate a general approach for visualizing system 

performance over time when faced with a disruptive event 𝑒𝑗. The states of the system 

are depicted across the bottom of Figure 4-1: the original system state 𝑆0 transitions to 

disrupted state 𝑆d following event 𝑒𝑗, and then to recovered state 𝑆f following a 

recovery effort. The performance of the system is quantified with the system’s service 

function 𝜑(𝑡) (e.g., 𝜑(𝑡) could represent commodity flows along a waterway network). 

In Figure 4-1, larger values of 𝜑(𝑡) are preferred (therefore 𝑒𝑗 leads to reduced 𝜑(𝑡)), 

with the opposite (smaller values of 𝜑(𝑡) preferred) depicted in Figure 4-2. The 

reliability, vulnerability, survivability, and recoverability system descriptors, among 

other details of the state transition, can be found in Baroud, Ramirez‐Marquez, Barker, 

& Rocco, (2014d). Note that a recovered state of the system need not necessarily be the 

same as the initial state prior to the disruptive event. For instance, the state of 

infrastructure following the 2010 earthquake in Haiti may be improved over pre-

disruption levels, as the recovery activities aiming at helping the infrastructure system 

regain its functionality might at the same time be helping in improving the system. 

Further, system performance could fluctuate over time even when no disruption occurs. 
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Figure 4-1: Graphical depiction of state transitions over time with respect to an 

increasing system service function, (t) 

 

 

Figure 4-2: Alternative depiction of state transitions describing a decreasing system 

service function, (t) 
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Resilience is considered as a time-dependent proportional measure of how the 

system is performing relative to an as-planned performance level 𝜑(𝑡0), namely in how 

different the disrupted performance level 𝜑(𝑡d) is from 𝜑(𝑡0). Given that 𝑅 is 

historically reserved for quantifying reliability, resilience is given the notation of Я and 

computed at time 𝑡 as the ratio of the network performance recovered by time 𝑡 over the 

loss of the performance after the disruption occurred, Eq. (4-1). As such, resilience is a 

function of the extent of loss experienced at time 𝑡d (or vulnerability) and the speed at 

which the system recovers (or recoverability) (Henry & Ramirez-Marquez, 2012; Pant 

et al., 2014; Baroud et al., 2014d). 

 Я(𝑡) = Recovery(𝑡)/Loss(𝑡𝑑) (4-1) 

A thorough analysis of the recovery dynamics in a network are useful to 

accurately assess the time (Baroud et al. 2014d) and cost needed for a system to regain 

its functionality and improve the risk-informed decision making in regards to allocating 

resources after the disruption. Such costs resulting from a disrupted system are due to 

inherent costs such as (i) the loss of service, (ii) the cost of restoring the system back to 

a functional state, and other losses such as (iii) the interdependent effects on industries 

relying on the disrupted system (Baroud et al., 2013b). For example, if the power grid 

was disrupted in a certain region, (i) the loss of service could be quantified in terms of 

energy not supplied (megawatts-hours) to a number of customers, (ii) the cost of 

restoration involves the work crews and equipment needed for repair, and (iii) one of 

the interdependent impacts could be the loss of production in industries relying on the 

power generation in that area (and broader to the interdependent relationships outside of 

the directly impacted area). Other examples include a disruption in certain river links of 
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a waterway transportation network impacting the commodity flow throughout the entire 

system and in particular, disrupting the functionality of neighboring ports and industries 

relying on the import and export of commodities through the port. 

This work, which appeared in Baroud et al. (2013b) and Baroud et al. (2014c), 

deals with cost and impact metrics aimed at assisting risk managers in accurately 

identifying and quantifying the multiple costs of a disruptive event in the context of 

building resilience with particular emphasis given to decision making under uncertainty. 

The primary contribution of this research is the integration of (i) the resilience modeling 

paradigm in Figure 4-1 and Figure 4-2 for a disrupted network with (ii) an economic 

interdependency model to more accurately quantify the resilience trajectory of 

indirectly impacted sectors and more effectively make network recovery decisions. A 

literature review section provides the methodological background with respect to 

stochastic resilience metrics. Inherent cost metrics are then introduced in the 

methodology section followed by a case study of the application to the Mississippi 

River Navigation System. 

Literature Review 

This section details the resilience metrics derived from the depiction of 

resilience in Figure 4-1 and Figure 4-2. For a review on the interdependency model, 

please refer to the Literature Review section in Chapter 3. The background on these 

methodologies will motivate the development of the inherent cost and interdependent 

impact metrics proposed thereafter. The discussion of resilience that follows will be 

centered on networks as opposed to general systems. 
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 Assume that disruptive event 𝑒𝑗 affects the original network state 𝑆0 at time te. 

The effect on the network is assessed by quantifying the damage to the network service 

function 𝜑(∙).  For example, if the network under study is an inland waterway network, 

𝜑(∙) could measure commodity flows, noting that lower service function values are 

considered undesirable. After a period of degradation of length (𝑡d − 𝑡e) the network 

service function is damaged from its original state, 𝑆0 (with corresponding 𝜑(𝑡0)), to a 

disrupted state, 𝑆d (with corresponding 𝜑(𝑡d)). That is, the disruptive effect of such an 

event is quantified via the analysis of a function 𝜑(𝑡) describing the behavior of the 

network as a function of time. After a disrupted state of length (𝑡s − 𝑡d), the network 

restoration commences until it reaches a stable system state, 𝑆f, with corresponding 

𝜑(𝑡f). Eq. (4-2) provides a more specific quantification of the value of resilience 

Я𝜑(𝑡𝑟|𝑒𝑗) evaluated at time 𝑡𝑟 ∈ (𝑡d, 𝑡f) (Henry & Ramirez-Marquez, 2012). Set 𝒟 is 

the set of possible disruptive events. 

 Я𝜑(𝑡𝑟|𝑒𝑗) =
[𝜑(𝑡𝑟|𝑒𝑗) − 𝜑(𝑡d|𝑒𝑗)]

[𝜑(𝑡0) − 𝜑(𝑡d|𝑒𝑗)]
  ∀𝑒𝑗 ∈ 𝒟 (4-2) 

This model enables quantifying and tracking the changes in the network state as a 

function of time and accurately observing the network response to the recovery 

strategies employed. Using this metric, decision makers can dynamically assess their 

resilience-building decisions during the aftermath of a disruption. It could also be used 

as a preparedness decision tool, whereby risk managers decide on investments in 

vulnerability reduction and/or increased recoverability.  
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The resilience from Eq. (4-2), Я𝜑(𝑡𝑟|𝑒𝑗), is operationalized  with a set of three 

metrics describing the time required to achieve different resilience and restoration goals 

(Ramirez-Marquez & Rocco, 2012; Pant et al., 2014; Baroud et. al 2014d).  

First, the metric Time to Total Network Restoration, 𝑇𝑇(𝑒𝑗), records the total 

time spent from the point when recovery activities commence, at time 𝑡s, up to the time 

when all recovery activities finalize, 𝑇𝑇(𝑒𝑗). Since these are stochastic metrics, one can 

calculate the probability that total system restoration is finished before mission time 𝑡 as 

𝑃𝑅(𝑡) = 𝑃(𝑇𝑇(𝑒𝑗) ≤ 𝑡).  

The second metric, Time to Full Network Service Resilience, 𝑇𝜑(𝑡0)(𝑒𝑗), records 

the total time spent from the point when recovery activities commence, at time 𝑡s, up to 

the exact time, 𝑡f, when network service is completely restored. From 𝑇𝜑(𝑡0), one can 

define the probability that network service restoration is finished before mission time 𝑡f 

as 𝑃𝐹(𝑡f) = 𝑃(𝑇𝜑(𝑡0)(𝑒𝑗) ≤ 𝑡f). Note that 𝑇𝑇(𝑒𝑗) ≥ 𝑇𝜑(𝑡0)(𝑒𝑗), or the time at which the 

network is fully restored, is at least as lengthy as the time until a desired network 

resilience, say Я𝜑(𝑡𝑟|𝑒𝑗) = 1 (though a different target, either better or worse than 

𝜑(𝑡0), may be desired), is achieved. For example, flows along a network can occur with 

full capacity despite not all arcs being restored: full capacity would suggest full network 

service resilience without all network components being completely restored.   

Finally, the metric Time to α100% Resilience, 𝑇𝛼(𝑒𝑗), records the total time 

spent from the point when recovery activities commence, at time ts, up to the exact time, 

𝑡𝛼, when the system service is restored to 𝛼𝜑(𝑡0). From 𝑇𝛼, one can define the 

probability that network service is restored by α100%, or 𝛼𝜑(𝑡0), before mission time 
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𝑡𝛼 as 𝑃𝛼(𝑡𝛼) = 𝑃(𝑇𝛼(𝑒𝑗) ≤ 𝑡𝛼). This metric provides a means to compare different 

recovery strategies, determining which strategy achieves α100% resilience the 

quickest holding resilience constant. Similarly, Я𝜑(𝑡𝑟|𝑒𝑗) can be found for different 

strategies, holding 𝑡𝑟 constant.  

A comparison of the different distributions for the different resilience time 

metrics can help decision makers choose the best recovery strategy that would lead to 

the optimal time to full recovery. For a more detailed discussion on these metrics and a 

stochastic analysis of the time to full recovery in inland waterways, more specifically 

the Mississippi River Navigation System, please refer to Baroud et al. (2014d).  

The work in this chapter utilizes the concept of resilience in Eq. (4-2) to model 

cost and economic impacts of resilience by developing resilience-based economic 

interdependent metrics of critical infrastructure disruptions. More specifically, the 

resilience paradigm of Eq. (4-2) is integrated with a risk-informed interdependency 

model to quantify the economic impact of a disruptive event on the interdependent 

industries that rely on the directly impacted and disrupted network.   

This work is using the DIIM that has been presented and reviewed in Chapter 3. 

The interdependency model from Eq. (3-6) uses an 𝑛  𝑛 resilience matrix, K, 

representing the capability of a certain sector to recover from the disruptive event and 

reach a desired performance state. One means to estimate the entries in matrix K is to 

use the formula in Eq. (3-7) (Lian & Haimes, 2006) that assumes a constant recovery 

rate over time. In this case, K is a diagonal matrix with zero non-diagonal entries and 

𝑘𝑖𝑖 as its diagonal entries. An alternative approach to estimate K that incorporates the 

resilience paradigm of Eq. (4-2) is proposed in this chapter. 
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Methodology: Inherent Cost Metrics 

Alluded to previously, two primary inherent costs of network resilience are (i) 

the cost of lost service and (ii) the cost of restoring the system back to a desired state. 

Stochastic measures of these two costs are described here. 

Loss of Service Cost 

When a disruptive event occurs, a loss in the service of the disrupted network is 

expected, and the change in the service function quantifies the extent of loss. For 

example, in the case of a road transportation network, the performance measure could 

be the traffic flow. Different problems might use different performance measures for the 

same network, with relevant performance measures determined by the risk manager or 

the decision maker.  

A disruptive event is assumed to impact a certain number of components in the 

network. For road networks, components would be bridges or roads; for inland 

waterway networks, river links, ports, or dams/locks. Impacted components are 

assumed to cease functioning for a certain period of time during which the network is in 

a disrupted state (Figure 4-1). It is assumed that the length of the disrupted state 

depends on the severity of the event. In Baroud et al. (2014a), the intensity of a 

disruptive event is assumed to follow a power-law distribution suggesting that more 

severe events resulting in longer disrupted state periods of time have a lower probability 

of occurring. For more details on the power-law distribution, please refer to the 

Distribution Assumptions section of Chapter 3. 

The distribution used to model the severity of a disruptive event is presented in 

Eq. (3-8) where 𝑑 is the number of days the impacted components are not functional 



90 

(i.e., the period of time during which the system is in a disrupted state). The loss of 

service cost is then computed as a function of the severity of the disruptive event. If the 

performance measure is the commodity flow, then the loss of service is the aggregate 

commodity that was supposed to flow across the disrupted components for the duration 

of the disruption. Eq. (4-3) is the performance measure of the network system at the 

disrupted state.  

 𝜑(𝑡𝑑) = 𝜑(𝑡0) − ∑  𝜑𝑖(𝑡0) ×
𝑑

365

𝑚

𝑖=1

 (4-3) 

𝜑𝑖(𝑡0) is the original performance measure of component 𝑖 prior to disruption 

𝑒𝑗. It is assumed that annual flow  𝜑(𝑡0) across the network is the sum of individual 

𝜑𝑖(𝑡0) such that flows are not counted more than once in the sum. If daily commodity 

flow are available and if a disruption renders 𝑚 components completely inoperable for 

𝑑 days, then the disrupted flow across the network, 𝜑(𝑡𝑑), can be measured with Eq. 

(4-3). Since 𝑑 follows a probability distribution, simulation techniques (e.g., Monte 

Carlo) can be used to construct the probability distribution of the loss of service. 

Total Network Restoration Cost 

Restoring a disrupted network is not only time consuming but costly as a 

consequence. Careful preparedness strategies and accurate resource allocation should be 

made to determine the right amount of resources invested at the right time.  

To develop a probability distribution for the cost of network restoration, it is 

assumed that the cost of repairing one component is stochastic. More specifically, 

𝐶𝑖(𝑒𝑗) = 𝐶𝑖
𝑗
 is introduced to be the cost of repairing link 𝑖 disrupted by event 𝑒𝑗. 𝐂(𝑒𝑗) 

defines the vector of costs for all the links disrupted by the same event. The individual 
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component’s restoration cost probability distribution is described in Eq. (4-4). Note that 

this distribution could also be a function of the severity of the event, the relationship 

between the component restoration cost distribution and the severity of the event would 

be case dependent. One particular example will be explored in the case study. 

 𝐶𝑖
𝑗

= {𝐶𝑖
𝑗
|𝑃(𝑐𝑠 < 𝐶𝑖

𝑗
≤ 𝑐𝑟) = ∫ 𝑓(𝑐𝑖

𝑗
)𝑑𝑐𝑖

𝑗
𝑐𝑟

𝑐𝑠

} (4-4) 

The total network restoration cost would then be the sum of the individual 

components’ restoration costs. However, note that taking the sum assumes that 

component repair is performed in series. To account for potential parallel recovery 

activities, a constant factor 𝜃𝑖 is introduced that would depend on the order in which 

components are repaired. This factor would have higher values in cases where more 

components are repaired in parallel and would be multiplied by the individual 

component’s cost of restoration, shown in Eq. (4-5). This is similar to the idea of a 

weighted average, where more weight (in this case higher cost), is given to components 

repaired in parallel. 

 𝐶total(𝑒𝑗) = ∑ 𝜃𝑖𝐶𝑖
𝑗

𝑖

 (4-5) 

Similar to the loss of service cost, the total network restoration cost’s probability 

distribution is constructed by means of simulation, such as Monte Carlo simulation. 

Ultimately, decision makers would be interested in a metric describing the 

overall aggregate cost of the entire disruptive event that covers both the loss of service 

and the cost of restoration. Such a metric can also be computed using simulation of each 

of the other metrics, provided that they are expressed in the same unit, either dollars, 

tons of commodity flow, or other units. 
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Interdependent Impacts of Network Resilience 

A disruptive event impacting an infrastructure network does not only have 

impacts on the network itself but also on the surrounding regional infrastructure systems 

and industries related to and relying upon it. The costs discussed previously are 

considered to be inherent costs related directly to the disrupted network, and indirect 

impacts would be losses and costs incurred by infrastructures and industries related to 

the disrupted system that were not necessarily directly impacted by the disruptive event. 

In order to quantify for those indirect losses, an integration of the resilience 

paradigm in Eq. (4-2) with the discrete time dynamic interdependency model in Eq. 

(3-6) is developed. The original interdependency model considered a resilience matrix 

𝐊 that is held constant throughout the recovery time. That matrix represented the 

capability of the economy to restore its functionality without taking into consideration 

the resilience of the underlying disrupted physical infrastructure. Hence, the 𝐊 matrix in 

Eq. (3-6) assumed Я(𝑡) = 1 for the disrupted sector, and not effectively accounting for 

the recovery of the underlying physical infrastructure that caused the economic 

perturbation in the first place. 

The approach considers a dynamic version of the resilience matrix that governs 

the trajectory of interdependent recovery, introducing a matrix whose values are 

functions of time, 𝐊(𝑡). Further, the resilience matrix is updated with information 

regarding the trajectory of resilience as a function of time, shown in Eq. (4-6). Matrix 𝐊 

is considered to be a baseline matrix of recovery trajectory whose entries are computed 

according to Eq. (3-7) which updates the resilience matrix at each point in time with the 

cumulative resilience of the physically disrupted system. It is also assumed that the 
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perturbation is expressed through a production inoperability, hence, 𝐜⋆(𝑡) = 0, ∀ 𝑡. The 

new resilience-based dynamic interdependency model is expressed in Eq. (4-7), where 

0 < Я𝜑(𝑡|𝑒𝑗) ≤ 1. 

 𝐊(𝑡) = 𝐊 𝑒Я𝜑(𝑡|𝑒𝑗) (4-6) 

 

 𝐪(𝑡 + 1) = (𝐈 − 𝐊(𝑡))𝐪(𝑡) + 𝐊(𝑡)[𝐀⋆𝐪(𝑡)] (4-7) 

The disrupted system might recover before the rest of the economy does, for which case 

Я(𝑡) = 1 for all 𝑡 ≥ 𝑡𝑟, where 𝑡𝑟 is the time at which the physically disrupted 

infrastructure network is recovered. In some other instances, the economy’s recovery 

does not start until the physically disrupted system is fully recovered, which is the case 

of a port closure for example. In other cases in which components of the system (nodes 

or links) are disrupted, the recovery of the economy would overlap with the recovery of 

the physically disrupted system, the relation in Eq. (4-6) takes into account the 

quantitative analysis of such overlap and how the recovery strategy of the physically 

disrupted system impacts the recovery trajectory of the entire economy. 

Case Study: Interdependent Impacts of Inland Waterways Resilience 

The methodology discussed is applied to the Mississippi River Navigation System. This 

type of transportation system has a special feature that differentiates it from other 

regular network systems. Generally, there is a single point to point access: there is no 

redundancy due to the nature of the links being a part of the river. 

The nation’s economy depends strongly on this waterway as it carries the 

equivalence of 51 truck trips of commodity circulating through the network each year 

(ASCE 2013b). The National Waterway Network (NWN) is composed of a large 
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number of links and nodes. A link represents either a shipping lane or simply a path in 

open water, and a node could be a facility such as a port, lock, dam, or perhaps another 

intermodal terminal. The case study analyzes the resilience of a known number of links 

that might become completely inoperable due to a disruptive event. The US Army 

Corps of Engineers database was used to construct the 3046 links of the Mississippi 

River Navigation System network shown in Figure 4-3. 

 

       Figure 4-3: Inland waterway network of the Mississippi River Navigation System 

 

The Mississippi River is prone to different types of disruptive events, including 

periods of drought (Schwartz, 2012) and flooding (Jevis & Bath, 2012). Closing 

sections of the river impacts the nation’s economy by incurring losses to a large number 

of industries relying on the shipments that are being delayed, with macro-level, 
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interdependent losses becoming quite significant (MacKenzie et al., 2012a; Pant et al., 

2011). As such, resilience planning for inland waterway networks is of high importance.  

Parameters and Assumptions 

A few assumptions were made in this case study. There is one disruptive event 

impacting four specific links of the river, highlighted in red in Figure 4-3. Note that the 

four links represent in fact 10 segments of the river according to the data of the Army 

Corps of Engineers. Those segments were condensed into four links due to similar 

commodity flow capacities and proximity of their location. Hence, the event in this case 

is disrupting operations along a stretch of 141.6 miles of the river located in the area 

surrounding the port of Catoosa in Oklahoma resulting in delays in the flow of imports 

and exports to and from Oklahoma. The individual component restoration cost follows a 

uniform distribution, with a multiplicative relationship with the severity of the event, 

Eq. (4-8). The severity is expressed in terms of days of disrupted state, 𝑑, and follows a 

power-law distribution, Eq. (4-9). 

 𝐶𝑖~UNI(0,1) × 𝑑 (4-8) 

 

 𝑓(𝑑) = (1.5 × 𝑑min
1.5 )𝑑−2.5 (4-9) 

Generally, extreme events that are modeled with a power-law distribution result 

in an estimated scale parameter 𝜆 ranging between 2 and 3 (as discussed in Chapter 3). 

It is then also assumed that 𝜆 = 2.5 in this case. In addition, the severity of the disruptive 

event is bounded with a minimum and a maximum number of days during which the 

links are disrupted, between 𝑑min = 5 and 𝑑max = 30 days. The values chosen for the 

parameters can be thought of as starting values, and sensitivity analysis should be done 
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to observe the model’s outcome over a specific range for the parameters. For example, 

𝜆 controls the spread of the probability distribution, with larger values resulting in a 

larger spread of the likelihood of more severe events. Risk averse decision makers 

might consider larger values to design preparedness options that account for extreme 

events expressed by the upper tail of the distribution. Also, since the application 

pertains to a transportation network measured with the number of days transportation 

flow capability is reduced, there is a need to specify a threshold for the severity of the 

event to avoid unreasonable impacts that alter the preparedness decision and resource 

allocation without a significant tradeoff of protection.   

In the interdependency model, industry inoperability is assumed to be the result 

of imports failing to reach the port and causing a shortage in the material needed to 

produce in the industries relying on that commodity. As such, inoperability in industry 

𝑖 is then the ratio of its imports to its total production output, as an industry can only be 

as productive as its most disrupted supplier (MacKenzie et al., 2012a; Pant et al., 2011). 

Eq. (4-10) illustrates this thought process as the maximum initial inoperability 

experienced in industry i. The yearly estimate of imports from industry j is 𝑚𝑗, the total 

production output for industry j is 𝑥𝑗, and the number of industries that typically 

circulate on the disrupted links is h. This maximum perturbation corresponds to a 

disruption lasting for a year, therefore for a disruption of duration d days, the initial 

inoperability is computed in Eq. (4-11). This approach has been used in previous 

interdependent impact analyses for disruption of inland waterway ports (MacKenzie et 

al., 2012a; Baroud et al., 2014a). 

 𝑞𝑖
max = max (

𝑚1

𝑥1
, … ,

𝑚𝑗

𝑥𝑗
, … ,

𝑚ℎ

𝑥ℎ
) 

(4-10) 
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 𝑞𝑖(0) = (
𝑑

365
) 𝑞𝑖

max (4-11) 

Commodity flow data for each link in the Mississippi River Navigation system 

is provided by the US Army Corps of Engineers, comprised of the yearly tonnage of 

commodity flow, with the commodity flows of five chosen links provided in Table 4-1. 

The daily commodity flow is assumed to be the annual flow divided by 365 days.  

Table 4-1: Annual commodity flow (in tons) across the five links chosen from the 

Mississippi River Navigation System 

Link ID Total annual commodity flow 

231500 5,007,904 

231600 240,925 

231709 4,766,979 

231810 6,236,462 

 

Three possible recovery activities sets are considered for the four disrupted links 

with IDs 500, 600, 709, and 810, the first three numbers of the ID are omitted to 

simplify the notation. The recovery sets are described in Table 4-2. 

Table 4-2: Four recovery sets considered for the restoration of the four disrupted 

waterway links 

Recovery set Description 

W1 
Repair links in series in the order: 500 – 600 – 709 

– 810 

W2 
Repair link 500 first, then 600 and 709 in parallel 

in the second order, and 810 in the third order 

W3 
Repair link 500 first, then links 600, 709, and 810 

in parallel in the second order 

 

Resilience and Restoration Time Results 

One possible realization for the resilience trajectory over time is first observed. 

One observation is drawn from a triangular distribution with parameters randomly 
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selected for each link, and the resilience is computed at each point in time using Eq. 

(4-2) based on the three strategies in Table 4-2. Note the difference in the time required 

to achieve full network resilience, portrayed in Figure 4-4. W1 requires approximately 

15 additional time units of recovery activities when compared with W2, and almost 35 

additional time units when compared with W3. Also, W2 and W3 differ by 20 time 

units. Clearly, as more links are repaired in parallel, the trajectory towards a fully 

resilient network tends to be faster leading to a shorter recovery time. Note that the step 

function is used here to describe the resilience over time, while other types of linear and 

non-linear functions can be investigated (Zobel, 2014). 

 

Figure 4-4: Resilience trajectory based on one realization of the distribution of recovery 

time 

 

To more effectively represent the variability in the underlying model 

parameters, 2000 scenarios of possible disruptive events were simulated and the 

cumulative distribution function (cdf) of time to full restoration under the three 

strategies was constructed. The conclusions align with the observations from Figure 

4-4, as more links are repaired in parallel, the overall time to full network restoration 
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decreases. Figure 4-5 suggests that W3 generally dominates the other two strategies for 

much of the length of the cdfs. For example, the probability that full network restoration 

occurs before 20 days is approximately 0.2 for W1, 0.60 for W2, and 0.80 for W3. Also, 

the average point estimate of the simulated times to full recovery suggests a similar 

outcome. There is, on average, a decrease of 9.5 time units between W1 and W2, 15.4 

between W1 and W3, and 5.9 between W2 and W3. It is clear that going from strategy 

W1 to strategy W2 has a greater impact, almost double, than going from strategy W2 to 

strategy W3. To make a better decision regarding which strategy to choose, risk 

managers look at other objectives, such as costs and interdependent impacts, to 

determine the trade-off between the strategies. 

 

Figure 4-5: Cumulative distribution function for the time to full network restoration 

 

Inherent Cost Results 

Mentioned previously, the cost of a disruptive event has several dimensions: the 

loss of service cost, the cost of network restoration, and the cost incurred by 

interdependent impacts. Using the 2000 simulations of possible scenarios for disruptive 

events, the probability distribution function (pdf) and cumulative probability 



100 

distribution (cdf) are constructed for the two cost metrics: the loss of service cost in 

Figure 4-6a and Figure 4-6c, and the total restoration cost in Figure 4-6b and Figure 

4-6d for recovery strategy W1. Given the nature of the power-law distribution, smaller 

values of cost are more likely to occur with extreme values becoming increasingly less 

likely. Also, note the difference in the units of the cost between the loss of service cost 

and the network restoration cost: the loss of service cost is measured in terms of tons of 

commodity flow and the restoration cost is measured in thousands of dollars. To 

commensurate costs, the commodity flow in tons would be converted into dollar 

amounts (if available) before adding the two random variables and generating a 

distribution for the total cost of the disruption. 

  

(a) (b) 

  

(c) (d) 

 

Figure 4-6: Approximate pdf results for 2000 simulations of (a) the loss of service cost 

and (b) the network restoration cost, along with their respective cdfs in (c) and (d). 

 



101 

The loss of service cost depends solely on the severity of the event and is not 

impacted by the difference in the recovery strategies. However, from Eq. (4-5), different 

strategies have different costs that increase as more links are repaired in parallel, which 

impacts the cost incurred by the recovery activities. The individual cost for repairing 

each link is multiplied by the number of links that are being repaired in parallel with 

this particular link. Given the manner in which this is modeled in Eq. (4-5), Figure 4-7 

suggests that W3 incurs the highest cost with three out of the four disrupted links being 

repaired in parallel, while W1 has the lowest cost with all links being repaired in series. 

Also, note that going from W2 to W3 involves a larger investment than going from W1 

to W2. In fact, on average, W2 cost more than W1 by 9.4 cost unit and by 19.2 for W3, 

this will help decision makers in choosing a recovery strategy by assessing the trade-off 

between the strategies. 

 

Figure 4-7: Cumulative distribution function for the network restoration cost 
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Interdependent Impacts Results 

This section examines the interdependent impacts of a disruptive event in the 

waterway network on the industries relying on the commodities flowing on the network, 

in light of the resilience quantification and the three strategies considered above. 

Figure 4-8 depicts the relationship among (i) network resilience, Я𝜑(𝑡|𝑒𝑗), 

represented as a dark line, and (ii) inoperability of a selected number of industries, 

𝑞𝑖(𝑡), represented with lighter gray lines. The selected industries are those with imports 

flowing primarily on the disrupted links: food and beverage and tobacco products 

(FBT), petroleum and coal products (PC), chemical products (CH), nonmetallic mineral 

products (NMM), primary metal products (PM), and fabricated metal products (FM). 

Originally considered over 120 days in Figure 4-5, the number of days is reduced along 

the horizontal axis in Figure 4-8 to better illustrate (i) when Я𝜑(𝑡|𝑒𝑗) approaches 1, or 

full network resilience, and (ii) when 𝑞𝑖(𝑡) approaches 0 for the selected industries. 

Inoperability is depicted on the vertical axis on the left, while resilience, ranging from 0 

to 1, appears on the vertical axis on the right. 

Naturally, resilience as measured by 𝜑(𝑡) is increasing with time, while 

inoperability is decreasing. For these particular recovery examples, the individual 

sectors recover faster with strategies W2 and W3 with steeper decreasing trajectories for 

the individual industries’ inoperability. This is due to the parallel recovery activities in 

strategies W2 and W3 speeding the recovery of the disrupted system and hence 

resulting in a faster recovery for the rest of the economy. Also, note that for recovery 

strategies W1 and W2, the full recovery of the economic sectors almost aligns with the 

full recovery of the disrupted system, while for strategy W3, the disrupted system 
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recovered very fast and the economy fully recovers shortly after that. Finally, for one of 

the sectors, the inoperability continues to increase at the beginning, this is mainly due to 

the relatively high initial inoperability resulting in an infinitesimal impact of the 

resilience matrix on the recovery process. Such observation might trigger a need for 

system hardening or extra resources if decision makers want this sector to start to 

recover sooner. 

 

(a) W1 

 
(b) W2 

 

(c) W3 

Figure 4-8: Resilience (black line, right vertical axis) and sector inoperabilities (gray 

lines, left vertical axis) over 50 time periods for the three recovery strategies 
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When economic losses are aggregated across time, that is the cumulative effect 

of inoperability multiplied by the as-planned output of each industry, the effect of 

recovery strategy can impact industries in different ways. The average economic losses 

from 2000 simulations are depicted in Figure 4-9 for the three strategies. The same 

pattern is seen across all three strategies: the Petroleum and Coal Products industry 

experiences the most economic losses by far, with Fabricated Metal Products next, and 

the Chemical Products industry affected the least in economic terms. However, the 

extent to which these industries are impacted does depend on the strategy, with W3 

resulting in the fewest losses across industries. Such a breakdown can point a decision 

maker in the appropriate direction when patterns point to key industries. 
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(a) W1 

 

(b) W2 

 

(c) W3 

Figure 4-9: Average economic losses experienced in each of the six primary waterway 

industries for the three network recovery strategies 

 

Figure 4-8 and Figure 4-9 provide average behavior when 𝑑, the number of days 

the waterway links are disrupted, is treated as a random variable. Figure 4-10 focuses on 

four particular disruption lengths: 𝑑 = 5, 𝑑 = 10, 𝑑 = 15, and 𝑑 = 20. Behavior of 

economic losses across all industries is depicted with the blue curve, corresponding to 

the left axis. The trajectory of resilience over time is depicted with the green curve and 
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the right axis ranging from 0 to 1. Note that resilience reaches 1 in a shorter time as the 

recovery strategies are switched from W1 to W3 for one particular disruptive scenario, 

and it takes longer for scenarios with larger impacts. Also, economic losses increase as 

the disruptive event’s severity increases, but they decrease as recovery strategies 

become faster. Total economic losses range roughly from $45 to $1,200 million for 

disruptions lasting from 5 to 20 days under strategy W1, for example. The decrease in 

total economic losses for faster recovery strategies can be observed by examining plots 

of the same disrupted scenario as the y-axis of the total economic loss is the same across 

different recovery strategies. Hence, observations in the plots below align with the 

conclusions from Figure 4-8 and Figure 4-9. A faster recovery strategy means that at a 

certain point in time the resilience of the disrupted system is larger than one of a slower 

recovery strategy, and this results in more resilient industries being able to recover 

faster which is portrayed by larger entries in the resilience matrix, according to Eq. 

(4-6). 



107 

   

(a) d = 5, W1 (b) d = 5, W2 (c) d = 5, W3 

   

(d) d = 10, W1 (e) d = 10, W2 (f) d = 10, W3 

   

(g) d = 15, W1 (h) d = 15, W2 (i) d = 15, W3 

   

(j) d = 20, W1 (k) d = 20, W2 (l) d = 20, W3 

Figure 4-10. Economic losses across the six primary waterway industries (blue curve, 

left vertical axis) and network resilience (green curve, right vertical axis) over time for 

the three recovery strategies and four disruptive scenarios. Note that the economic loss 

axis is held constant for the same disruptive scenario 

 

In order to compare the three recovery strategies W1, W2, and W3, 

interdependent impacts for a particular disruption scenario (d = 10) are further 

examined. Consider first the total economic loss, an aggregation of the losses incurred 

across all sectors at each point in time from the disruption through recovery. This 

function is cumulative, therefore naturally exhibits an increasing pattern, illustrated in 



108 

Figure 4-11. Note that the total economic loss is larger under strategy W1, and W3 

results in the lowest estimate for the total economic loss. Also, note that the different 

recovery strategies are impacting the interdependency model through (i) the resilience 

trajectory and (ii) the time to full recovery. A faster recovery of the disrupted system 

leads to less total economic losses incurred as the economy can recover faster and more 

effectively. However, the faster the strategy is, the more costly it is.   

 

Figure 4-11. Total economic loss computed under three recovery activities  

Strategies 

 

Rather than a multi-industry economic loss perspective, focus could be given to 

a particular industry. In particular, the industries whose commodities flow along the 

disrupted waterway links are considered: food and beverage and tobacco products 

(FBT), petroleum and coal products (PC), chemical products (CH), nonmetallic mineral 

products (NMM), primary metal products (PM), and fabricated metal products (FM). 

Figure 4-12 and Figure 4-13 are plots of the difference in the inoperability of the 



109 

individual sectors when considering strategies W1 and W2, and strategies W2 and W3, 

respectively.  

In both cases, the sector of primary metal products is the most impacted by the 

change of strategies while the rest of the sectors have comparable and a smaller change 

in the estimated inoperability. Note that all observe the same pattern in the difference in 

inoperability over the time to full network recovery. This pattern suggests that opting 

for a faster recovery strategy is not always beneficial. After time 𝑡 =  15, the 

magnitude of the tradeoff of switching to W2 from W1 starts to decrease, suggesting 

that this might be a good time for decision makers to switch back to a cheaper strategy. 

A similar conclusion can be drawn from the comparison between W3 and W2 with an 

overall much smaller difference in the inoperability between the two strategies. 

 

Figure 4-12. Impact on individual sector inoperability for adopting strategy W2 as 

opposed to W1 
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Figure 4-13. Impact on individual sector inoperability for adopting strategy W3 as 

opposed to W2 

 

Figure 4-14 shows the inoperability trajectory for the sector of primary metal 

products under the three different recovery strategies. The results shown comply with 

Figure 4-11, total economic loss under the three recovery strategies. Adopting strategy 

W1 results in an estimation of a largest inoperability, while W3 results in a much 

steeper decreasing trajectory for the inoperability of the Primary Metal Products sector.  

With such an extensive analysis, decision makers have a range of metrics to 

consider in order to choose the best recovery strategy that balances cost and risk 

management. Using the metrics above, decision makers can examine the possible 

strategies that minimize the cost (W1), or minimize the total economic losses (W3), or a 

combination of the two based on how a strategy is significantly better than the other 

over time.  
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Figure 4-14. Sector inoperability over time for the Primary Metal Products industry for 

the three recovery strategies 

 

Concluding Remarks 

Risk managers preparing for all such sources of disruptive events must plan for 

the interconnected relationship of infrastructure networks with the industries that rely 

upon them. Most work in infrastructure networks addresses esoteric graph theoretic 

measures of topology (e.g., centrality, betweenness) that may provide little insight for 

decision making (Hines et al., 2010). However, the ultimate usefulness of understanding 

interdependent effects for a sustained decision making is not just a descriptor of 

physical damage, but of economic interruption (the result of a lack of functionality) 

(Tierney, 1997; Webb, Tierney, & Dahlhamer, 2000). That is, the benefit of physical 

models of interdependence is lost unless they ultimately translate into (i) dollars of 

losses incurred, and (ii) extent and duration of system inoperability. 

This work presents a stochastic approach to compute three metrics of the 

resilience of an infrastructure network following a disruption: (i) the loss of service 
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cost, (ii) the total network restoration cost, and (iii) the cost of interdependent impacts. 

These three metrics extend from prior work in stochastic network resilience (Ramirez-

Marquez & Rocco, 2012; Baroud et. al 2014d). The first two metrics are modeled using 

simulation of probability distributions. The economic impacts of a disruptive event is a 

well-studied topic (Rose, 2009; Hallegatte, 2008, 2014; Okuyama, 2004; Jiang & 

Haimes, 2004), as a result, the third metric developed here represents a first step in 

measuring the broader multi-industry impacts of resilience in infrastructure networks, 

integrating a network resilience model and an economic interdependency model. 

A case study involving the disruption of links on a waterway infrastructure 

network, the Mississippi River Navigation System, illustrates these concepts, and 

results demonstrate the importance of considering such measures in risk-informed 

decision making problems. Incorporating resilience in the interdependency model is 

helpful to accurately assess the patterns in the cost metrics over time as the system is 

recovering. Strategies differ in their cost of implementation and interdependent impacts, 

allowing a decision maker to understand tradeoffs among different objectives. In this 

particular example, the Petroleum and Coal Products industry was most impacted on 

average by the disruption, measured by a stochastic duration of commodity flow 

stoppage, and the interdependent inoperability in the Primary Metal Products industry 

was most affected by the change in recovery strategy. 

Resilience in this chapter has been modeled using simulation techniques and 

integrated into data-driven techniques, the interdependency model. In addition, the 

decisions to be made using the analysis above would be based on the overall cost and 

economic impact of the disruption. As a result, two questions arise. Is it possible to use 
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data to model resilience metrics using data-driven tools and statistical methods as 

opposed to simulation of probability distributions? Also, with respect to preparedness 

and recovery decision making, how can risk managers identify critical components 

based on their resilience as opposed to analyzing the overall resilience of the disrupted 

system discussed in this chapter? The following chapter addresses both of these 

questions to complement the resilience analysis framework of infrastructure systems. 
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Chapter 5  

Bayesian Kernel Methods for Resilience Importance Measures 

Prediction 

When planning for transportation networks such as inland waterways, it is 

important to understand which components (e.g., locks, dams, waterway links) are most 

influential on the performance of the entire network and are most influenced by other 

components in the network. This is a well-studied topic in reliability engineering, with 

component importance measures (CIMs) quantifying the influence of particular 

components on the overall structural performance or reliability of the system (Leemis 

2009; Kuo & Zhu, 2012). Other explorations of CIMs in a network context include 

those by Murray-Tuite and Mahmassani (2004), who determine transportation link 

importance based on the disruption of an optimal traffic assignment network, Jenelius, 

Petersen, & Mattsson (2006), who provide several vulnerability-based importance 

measures for transportation networks, and Nagurney and Qiang (2007) and Qiang and 

Nagurney (2008), who develop a more general flow efficiency metric with which to 

rank the importance of transportation network components. Natvig, Huseby, and 

Reistadbakk (2011) suggest that importance measures are helpful in (i) determining 

which components merit resources to improve overall system performance, and (ii) 

preparing an efficient component repair checklist in the event of system failure. This 

work addresses these two items in the context of waterway transportation resilience.  

As the quantification of resilience has become a vital component of 

infrastructure risk analysis, stochastic simulation and the Beta Bayesian kernel model 

are used to estimate resilience metrics to analyze the recovery process of disrupted 
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critical infrastructure systems. More specifically, stochastic resilience based component 

importance measures are assessed using the component’s characteristics and disruption 

data. Such estimates would help risk managers determine the overall best recovery 

strategy of an infrastructure system in case of a disruption impacting multiple 

components. The model is deployed in an application to an inland waterway 

transportation network, the Mississippi River Navigation system, for which the recovery 

activities sets are analyzed based on the components’ resilience importance measures. 

These measures are estimated using either stochastic simulation techniques or statistical 

tools such as Bayesian kernel models. 

The contributions of this research lie in (i) deploying and validating resilience-

based importance measures (Barker, Ramirez-Marquez, & Rocco, 2013) to study the 

important links of inland waterway networks and (ii) improving the prediction of 

resilience-based importance measures using data-driven and statistical methods. The 

importance measures, extended from stochastic measures of the time required for a 

network to achieve full resilience after a disruption (Pant et al., 2014; Baroud et al., 

2014d), along with the cost of recovery activities, are aimed at determining the best 

recovery set to restore the service in the disrupted links.  

The first section of this chapter presents a stochastic analysis of the resilience 

importance measures that highlights a decision making approach to prioritize recovery 

for disrupted links of the river (Baroud, Barker, & Ramirez-Marquez, 2014b). The 

second section provides a data-driven modeling approach to estimate and predict 

resilience-based importance measures of locks and dams which constitute nodes in the 

waterway network (Baroud & Barker, 2014). The case study of the Mississippi River 
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Navigation System is used in each section to illustrate the two approaches in identifying 

critical components of the waterway network.  

Stochastic Analysis of Resilience Importance Measures 

Literature Review 

Common reliability-based CIMs include (Vasseur & Llory, 1999): (i) Birnbaum 

importance, or 𝜕𝑅𝑆/𝜕𝑅𝑖 where 𝑅𝑆 and 𝑅𝑖 are system and component 𝑖 reliability, 

respectively, which describes the probability that component 𝑖 is critical to the 

functioning of the system, (ii) reliability achievement worth (RAW), or the maximum 

proportion increase in system reliability generated by a given component, (iii) risk 

reduction worth (RRW), an index that quantifies the potential damage to a system 

caused by a particular component, and (iv) Fussell-Vesely, or an index quantifying the 

maximum decrement in system reliability caused by a particular component. Several 

other discussions of importance measures include those by Ramirez-Marquez and Coit 

(2005), Zio, Marella, and Podofillini (2007), and Rocco and Ramirez-Marquez (2012), 

among others, and they generally calculate CIMs as a ratio of the measure of 

component contribution to system reliability and a measure of system reliability itself. 

When considering component importance in a resilience setting, one may want 

to understand the effect that both the disruption magnitude and the recovery speed of 

components will have on the time to full network service resilience, 𝑇𝜑(𝐱(𝑡0))(𝑒𝑗), 

introduced in the literature review of Chapter 4.  

This first resilience-based CIM is illustrated in Eq. (5-1), where  𝑉𝑖
𝑗
 refers to a 

component’s vulnerability, or its ability to maintain performance after the disruptive 

event 𝑒𝑗, and 𝜑(𝑡) refers to the system’s performance measure (for more discussion on 
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the performance measure, please refer to the literature review in Chapter 4). For 

example, when 𝑥𝑖(𝑡) describes traffic flow on the 𝑖th highway link,  𝑉𝑖
𝑗

= 0.3 suggests 

a 30% reduction in flow at the onset of the event. Decreasing performance 𝜑(𝑡) occurs 

until 𝑡𝑑 when the new disrupted state is reached, 𝑥𝑖(𝑡d) = (1 − 𝑉𝑖
𝑗
)𝑥𝑖(𝑡0). A complete 

reduction in the functionality of the link occurs when 𝑉𝑖
𝑗

= 1, and 𝑉𝑖
𝑗

= 0 when the 

event does not impact the functionality of link 𝑖. The numerator in Eq. (5-1) quantifies 

the network service loss due to the disruption effect on link 𝑖, while the denominator 

describes the maximum loss among all the links. This ratio is then multiplied by the 

time required to restore the system service to its original state, providing the proportion 

of restoration time attributed to each link.  

 

CIЯ𝜑,𝑖(𝑡r|𝑒𝑗)

=
𝜑(𝐱(𝑡0)) − 𝜑 ((𝐱(𝑡0), 𝑥𝑖(𝑡𝑑|𝑉𝑖

𝑗
)))

max𝑖 {𝜑(𝐱(𝑡0)) − 𝜑 ((𝐱(𝑡0), 𝑥𝑖(𝑡𝑑|𝑉𝑖
𝑗
)))}

𝑇
𝜑(𝒙(𝑡0)|𝑉𝑖

𝑗
)
 

(5-1) 

As 𝑉𝑖
𝑗
 and 𝑇

𝜑(𝐱(𝑡0)|𝑉𝑖
𝑗

)
 are stochastic terms, a probability distribution can be generated 

for CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) for 𝑡r ∈ [𝑡s, 𝑡f]. This CIM is comparable to the risk reduction worth 

(RRW) importance measure (Ramirez-Marquez, Rocco, Gebre, Coit, & Tortorella, 

2006) 

 The second resilience-based CIM addresses the perspective of reliability 

achievement worth (RAW). That is, Eq. (5-2) defines the “resilience worth” of link , 

WЯ𝜑,𝑖(𝑡r|𝑒𝑗), or an index that quantifies how the time to total network service 

resilience is improved for event 𝑒𝑗 if link i is invulnerable (or 𝑉𝑖
𝑗

= 0). 
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 WЯ𝜑,𝑖(𝑡r|𝑒𝑗) =

𝑇
𝜑(𝒙(𝑡0)|𝑉𝑖

𝑗
)

− 𝑇
𝜑(𝒙(𝑡0)|𝑉𝑖

𝑗
=0)

𝑇
𝜑(𝒙(𝑡0)|𝑉

𝑖
𝑗

)

 (5-2) 

These two resilience-based CIMs are illustrated using general networks in Barker et al. 

(2013). In this work, these metrics are (i) integrated with a decision making approach, 

(ii) used in a Beta Bayesian kernel model, and (iii) applied to the study of inland 

waterway network resilience.  

Methodology: Recovery Strategies Decision Process 

A disruptive event could impact one or more links, and in the case of the 

disruption of multiple links, a decision should be made regarding the order in which the 

links should be repaired. That order is dependent on several factors such as the degree 

of importance of the links, the time required to achieve full recovery, and the resources 

available to perform recovery activities, among others. A heuristic approach is 

presented here to determine the optimal recovery strategy as a function of three metrics 

representing several factors impacting the overall recovery: (i) the time to network 

restoration importance, CIЯ𝜑,𝑖(𝑡r|𝑒𝑗), (ii) the resilience worth, WЯ𝜑,𝑖(𝑡r|𝑒𝑗), and (iii) 

the total cost of recovery. 

Recall, 𝐶𝑖(𝑒𝑗) = 𝐶𝑖
𝑗
 as the cost of repairing link 𝑖 disrupted by event 𝑒𝑗. 𝐂(𝑒𝑗) 

is then the vector of costs for all the links disrupted by the same event. 

For a disruptive event 𝑒𝑗, the recoverability strategy, 𝐬𝑗(𝑒𝑗) = (𝑠1
𝑗
, 𝑠2

𝑗
, … , 𝑠𝑚

𝑗
), 

is a vector of link recovery activities to restore the performance of the system following 

disruptive event 𝑒𝑗. Each element of the recovery activity vector 𝐬𝑗(𝑒𝑗) is described by 

(i) the order in which recovery is performed, and (ii) the cost required for recovery to 

occur. This is represented with a duple, as shown in Eq. (5-3). 
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𝐬(𝑒𝑗) = (𝐨(𝑒𝑗), 𝐂(𝑒𝑗)) 

= ((𝑜1
𝑗
, 𝐶1

𝑗
), … , (𝑜𝑖

𝑗
, 𝐶𝑖

𝑗
), … , (𝑜𝑚

𝑗
, 𝐶𝑚

𝑗
)) 

(5-3) 

To count link 𝑖 among those links that are disrupted by 𝑒𝑗,  �̃�𝑖
𝑗
 is introduced in Eq. 

(5-4). 

 

 �̃�𝑖
𝑗

= {1 if 𝑉𝑖
𝑗

> 0

0 otherwise
 (5-4) 

As such, Eqs. (5-5) and (5-6) describe the (𝑜𝑖
𝑗
, 𝐶𝑖

𝑗
) duple in more detail, 

respectively. The order in which the recovery activity for link 𝑖 is accomplished is 

represented by 𝑜𝑖
𝑗
 and the cost required to complete this activity is 𝐶𝑖

𝑗
, and both are 

respective to the disruptive event, 𝑒𝑗. For example, if all disrupted links are repaired at 

the same time, 𝑜𝑖
𝑗

= 1, ∀ 𝑖. Also, 𝐶𝑖
𝑗
 is a random variable described by its probability 

density function (pdf), 𝑓 (𝑐𝑖
𝑗
(𝑒𝑖

𝑗
)). 

 𝑜𝑖
𝑗
(𝑒𝑗) = {𝑜𝑖

𝑗
|𝑜𝑖

𝑗
= ℎ, ℎ ∈ 𝑍+, ∑ 𝑜𝑖

𝑗

𝑖

=  ∑ �̃�𝑖
𝑗

𝑖

} (5-5) 

 

 𝐶𝑖
𝑗
(𝑒𝑗) = {𝐶𝑖

𝑗
|𝑃(𝐶s < 𝐶𝑖(𝑒𝑗) ≤ 𝐶𝑟) = ∫ 𝑓(𝑐𝑖

𝑗
)𝑑𝑐𝑖

𝑗
𝐶𝑟

𝐶𝑠

} (5-6) 

If the recovery orders are known and the probability distributions for the 

components recoveries are given, then a schedule for recovery can be devised. The set 

 𝐴ℎ =  {𝑠𝑖
𝑗
|𝑜𝑖

𝑗
= ℎ, ∀𝑖} is the collection of all those components having the same order 

of recovery planning. The recovery planning activity schedule is thus given in Eq. (5-7). 

Each element in set  𝐴ℎ shows those activities which are planned in parallel (i.e., all 
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occurring at order h), while the different sets show the series planning of the overall 

recovery activities, 𝑊𝑝(𝑒𝑗).  

 𝑊𝑝(𝑒𝑗) =  {𝐴1, 𝐴2, … , 𝐴𝑙 , 𝑙 ≤ ∑ �̃�𝑖
𝑗

𝑖

}  where 𝑝 = 1, … , 𝑃𝐿 (5-7) 

Special cases include scenarios where all the recovery activities are in series, 𝑙 = �̃�𝑖
𝑗
, or 

when they are all in parallel, 𝑙 = 1. The number, 𝑃𝐿, of possible recovery sets, 𝑊𝑝, is 

governed by the different combinations of recovery activities the sets contain. If the 

number of element sets, 𝐴ℎ, is fixed to 𝐿, then the number of possible recovery sets can 

be represented in Eq. (5-8).  

 𝑃𝐿 = ∑ … ∑ ∑ ∏ (
𝑛 − 𝑛1 − ⋯ 𝑛𝑖

𝑛𝑖
)

𝐿

𝑖=1

𝑛

𝑛1=0

𝑛−𝑛1

𝑛2=0

𝑛−𝑛1−⋯−𝑛𝐿

𝑛𝑟=0

 (5-8) 

One way of solving this optimization problem is to consider all the possible, 𝑃𝐿, 

combinations of recovery sets and choosing the best set with respect to either time to 

full network resilience (Baroud et. al, 2014d) or with respect to the total cost of 

recovery activities (Baroud et. al, 2014c). Another option would be to consider a bi-

objective optimization problem examining the tradeoffs between the time to full 

network resilience and recovery cost. The approach considered here is different in a 

way that it does not need to check on all the possible recovery set combinations. The 

approach consists of first identifying recovery sets satisfying the priority ranking of the 

disrupted links according to the resilience-based CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) and WЯ𝜑,𝑖(𝑡r|𝑒𝑗), of 

each disrupted link. Once the recovery sets are identified, the best recovery set is chosen 

as a function of the total cost required for each set to achieve full network resilience.  
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Such an optimization problem is of a stochastic order in nature (Dentcheva & 

Ruszczyński, 2003, 2004), hence a heuristic stochastic ranking approach based on the 

Copeland Score (CS) method is used to rank the different recovery sets. The CS is a 

technique used to rank objects characterized by a set of attributes (Al-Sharrah, 2010). 

The technique assumes that the ranking of the objects could be defined without 

considering the decision maker’s preferences and it is considered a nonparametric 

approach. The CS is computed based on pairwise comparisons between objects in a set 

and is defined as the difference between the number of times an object 𝑎 is better (with 

respect to attribute 𝑞𝑘) than the other objects and the number of times that object 𝑎 is 

worse (with respect to the same attribute 𝑞𝑘) to the other objects. 𝐶𝑘(𝑎, 𝑏) provides a 

value based on a comparison between object 𝑎 and object 𝑏 for attribute 𝑞𝑘, 𝑘 =

 1, … , Ω, performed according to the rule in Eq. (5-9). Note that a minimum to the 

objective is desired in this case. Before the first attribute, 𝑞1, 𝐶0(𝑎, 𝑏) is initialized at 

zero, and Eq. (5-9) iterates through all Ω attributes.  

 𝐶𝑘(𝑎, 𝑏) = {

𝐶𝑘−1(𝑎, 𝑏) − 1 𝑞𝑘(𝑎) < 𝑞𝑘(𝑏)

𝐶𝑘−1(𝑎, 𝑏) + 1 𝑞𝑘(𝑎) > 𝑞𝑘(𝑏)

𝐶𝑘−1(𝑎, 𝑏) 𝑞𝑘(𝑎) = 𝑞𝑘(𝑏)
 (5-9) 

The method by Al-Sharrah (2010) dictates that the CS of object 𝑎 is obtained by adding 

𝐶𝑖(𝑎, 𝑏) over all 𝑏, each representing the other objects, as shown in Eq. (5-10). The 

object with the largest CS value is assumed to stochastically dominate all other objects 

with respect to the set of attributes. Note that CS assumes that all attributes have the 

same importance. If this assumption is not valid for a decision maker, then other 

approaches could be considered such as the ordered weighted averaging (Yager, 1988). 
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 CS(𝑎) = ∑ 𝐶Ω(𝑎, 𝑏)

𝑏≠𝑎

 (5-10) 

Mathematically, the algorithm is performed according to the conditions outlined 

in the steps in Eq. (5-11). 

 

 

Step 1 

𝑊1 = {𝐴1, 𝐴2, … , 𝐴𝑙 , 𝑙 ≤ ∑ �̃�𝑖
𝑗

𝑖 |𝐶𝑆CIЯ1
< 𝐶𝑆CIЯ2

< ⋯ < 𝐶𝑆CIЯ𝑙
 } 

 

Step 2 

𝑊2 = {𝐴1, 𝐴2, … , 𝐴𝑙 , 𝑙 ≤ ∑ �̃�𝑖
𝑗

𝑖 |𝐶𝑆WЯ1
< 𝐶𝑆WЯ2

< ⋯ < 𝐶𝑆WЯ𝑙
 }  

 

Step 3 

𝑊∗ = {𝐴1, 𝐴2, … , 𝐴𝑙 , 𝑙 ≤ ∑ �̃�𝑖
𝑗

𝑖 | 𝑃 (𝑇𝐶(𝑒𝑗) < 𝑐
{𝑊∗}

) ≥ 𝑃 (𝑇𝐶(𝑒𝑗) < 𝑐
{𝑊1,𝑊2}

) }  

(5-11) 

In Eq. (5-11), 𝐶𝑆CIЯℎ
 represents the Copeland Score for links that have an order ℎ of 

recovery activity computed based on the CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) of those links. Similarly 𝐶𝑆WЯℎ
is 

the Copeland Score computed according to WЯ𝜑,𝑖(𝑡r|𝑒𝑗). Step 1 selects one recovery 

activity set satisfying the Copeland Score for CIЯ𝜑,𝑖(𝑡r|𝑒𝑗), meaning that the strategy 

chosen in this case repairs network components that are most impactful according to the 

importance of the component from a resilience perspective. In a second step, another 

recovery set is selected based on the Copeland Score for WЯ𝜑,𝑖(𝑡r|𝑒𝑗). Note that more 

than one recovery set could be selected in each of steps 1 and 2. Step 3 chooses between 

the recovery sets selected in the first step and second step, the selection in this step is 

done with respect to the cost of implementing each recovery set. 

Case Study: Stochastic Analysis of Locks and Dams Resilience Importance Measures 

This section applies (i) the stochastic time-to-resilience metric, (ii) the 

resilience-based component importance measures, and (iii) the resulting stochastic 
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ranking approach to a case study focusing on the Mississippi River Navigation System. 

More information on this waterway network and its important contribution to the U.S. 

economy is highlighted in the case studies of Chapter 3 and Chapter 4. The case study 

of this chapter analyzes the resilience of a known number of links that might go 

completely or partially inoperable due to a disruptive event. Note that the links in this 

illustration are randomly selected and are different than the links considered in Chapter 

4 which were specifically selected to be near the port of Catoosa in order to analyze 

regional interdependent impacts. 

Each link is considered to be subject to a disruptive event. The impact on each 

link is dictated by the vulnerability parameter 𝑉𝑖
𝑗
 which is a random variable following 

a uniform distribution, 𝑉𝑖
𝑗
~ UNI(0,1). In addition to that, the time each link requires to 

recover after the disruption also follows a uniform distribution with values going from 0 

to 1 time unit, 𝑈𝑖
𝑗

(𝑉𝑖
𝑗
(𝑒𝑗)) ~ UNI(0,1). The network performance measure 𝜑(𝑡) is the 

total weight of commodities flowing throughout the Mississippi River Navigation 

System in a certain period of time (or the sum of the commodity flow for each link over 

all 3046 links comprising the network). Commodity flow data for each link in the 

Mississippi River Navigation System is provided by the US Army Corps of Engineers, 

comprised of the yearly tonnage of commodity flow, with the commodity flow of five 

chosen links provided in Table 5-1. The IDs of the links are 210, 310, 500, 708, and 800 

(the first three numbers are omitted in this case to simplify the notation). The daily 

commodity flow is assumed to be the annual flow divided by 365. A disruption 

resulting in a vulnerability of 0.25 for a certain link would decrease the commodity flow 

for that link by 25%.  
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Table 5-1: Annual commodity flow (in tons) across the five links chosen from the 

Mississippi River Navigation System 

Link ID Total annual commodity flow 

200210 1,626,645 

200310 20,402,014 

200500 15,240,458 

200708 62,011,198 

 

Recall the linear behavior of 𝜑(𝑡f) between 𝑡e and 𝑡d in Figure 4-1 and Figure 

4-2. Another functional form could be considered (e.g., exponentially decreasing), 

though this case considers the linear form. 

One means to identify the importance of each link is to investigate how the 

vulnerability of each link affects the vulnerability of the entire system. According to the 

plot in Figure 5-1, links 708 and 800 are the most impactful for the whole system in the 

event they are disrupted. Link 210 is the least important in terms of adverse effects on 

the system in a disruption. 

 

Figure 5-1: Total network-wide vulnerability (in tons) as a function of individual 

component vulnerability 
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The first importance measure, CIЯ𝜑,𝑖(𝑡r|𝑒𝑗), is applied to the five links of the 

waterway network. Figure 5-2 depicts the cumulative probability distribution 

of CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) for each link constructed using 2000 simulations of possible disruptive 

events. Note that links 310 and 800 are overall dominated by the rest of the links. Links 

210, 500, and 708 have a CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) that is always less than roughly 0.1, while links 

310 and 800 could reach much higher measures of resilience. This means that links 310 

and 800 are the most impactful to the overall system’s resilience when a disruptive 

event occurs. In this specific example, the cumulative distributions are easily 

distinguishable, and an initial recovery set can be identified in this case to be 𝑊1 =

{𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5} such that 𝐴1 = {𝑠310
1 }, 𝐴2 = {𝑠800

1 }, 𝐴3 = {𝑠210
1 }, 𝐴4 = {𝑠708

1 }, 𝐴5 =

{𝑠500
1 }. This recovery set performs recovery activities with the sequence 310-800-210-

708-500.  

 

Figure 5-2: Cumulative probability distribution for the resilience-based component 

importance measure, 𝐂𝐈Я𝝋,𝒊(𝒕𝐫|𝒆𝒋) 
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Although a Copeland Score analysis is not necessarily needed in that case, the 

Copeland scores are computed and shown for those links as an illustration and 

validation of the method. According to the histogram in Figure 5-3, the same recovery 

set is suggested based on the value of the Copeland score for each link, suggesting that 

link 310 is the most impactful, followed by links 800, 210, 708, and 500. The choice of 

order priorities in this case is solely based on the value of the Copeland Score, meaning 

that the link with the highest score is first repaired. However, different decision makers 

might interpret the scores differently: (i) as 310 and 800 stand out from the rest, they 

could be repaired in parallel first, then the remaining three each repaired in series, or (ii) 

310 and 800 could be repaired in parallel, then 210, 708, and 500 could be repaired in 

parallel. These two recovery activities sets are defined below as 𝑊1′ and 𝑊1′′.  

(i) 𝑊1′ = {𝐴1, 𝐴2, 𝐴3, 𝐴4} such that 𝐴1 = {𝑠310,
1 , 𝑠800

1 }, 𝐴2 = {𝑠210
1 }, 𝐴3 =

{𝑠708
1 }, 𝐴4 = {𝑠500

1 }, 𝐴4 = {∅}, this recovery set performs recovery activities 

with the sequence 310-210-708-500 in series with 800 in parallel.  

(ii) 𝑊1′′ = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5} such that 𝐴1 = {𝑠310,
1 , 𝑠800

1 }, 𝐴2 =

{𝑠210
1 , 𝑠708

1 , 𝑠500
1 }, 𝐴3 = {∅}, 𝐴4 = {∅}, 𝐴5 = {∅}, this recovery set repairs 

links 310 and 800 in parallel at first then repairs links 210, 708, and 500 in 

parallel. 
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Figure 5-3: Copeland Score for each link computed based on the resilience-based 

component importance measure, 𝐂𝐈Я𝝋,𝒊(𝒕𝐫|𝒆𝒋) 

 

The second importance measure, WЯ𝜑,𝑖(𝑡r|𝑒𝑗), quantifies how time to full 

network resilience improves when a particular link is not affected by the disruptive 

event. Given that the time to full network resilience is stochastic, it is possible to 

construct the corresponding cumulative probability distribution of the resilience worth 

of a link using simulation techniques. Figure 5-4 illustrates the cumulative probability 

distribution for WЯ𝜑,𝑖(𝑡r|𝑒𝑗) for all five links, expressing the probability that the 

resilience worth of a link is smaller than a target value. The distributions are constructed 

using the same simulation technique in Figure 5-3. For example, consider the target 

value WЯ𝜑,𝑖(𝑡r|𝑒𝑗) = 0.5 on the horizontal axis. Note that links 708 and 800 have a 

smaller probability of having a resilience worth less than 0.5, while the rest of the links 

have a higher probability for this target value suggesting that links 708 and 800 are 

more impactful in terms of time to full recovery. That is, the time to full network 



128 

resilience is much shorter when either link 708 or 800 is not disrupted. Also note that 

the probability distributions are not easily ranked as in the CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) case. For 

example, comparing the distributions of WЯ𝜑,𝑖(𝑡r|𝑒𝑗) for links 210 and 310 depends on 

the target value considered. For resilience worth values smaller than 0.5, link 310 is 

more impactful, while link 210 is more impactful in cases where the resilience worth is 

larger than 0.5. The Copeland Score method is deemed useful in distinguishing those 

differences. The plot for the cumulative probability distribution helps in identifying the 

first three links to be repaired which are links 800, 708, and 500. The ranking of the last 

two links will be determined by the corresponding Copeland Score of each link. 

 

Figure 5-4: Cumulative probability distribution for the component resilience-worth, 

𝐖Я𝝋,𝒊(𝒕𝐫|𝒆𝒋) 

 

Figure 5-5 is a histogram of the values of the Copeland scores for each link, as 

expected from the analysis of the cumulative probability distributions, the links with the 

highest scores are links 800, 708, and 500 in descending order. The comparison of links 

210 and 310 is much clearer with the Copeland Score, where link 310 is deemed more 

impactful with a higher score than link 210. Another candidate for the optimal recovery 



129 

set based on WЯ𝜑,𝑖(𝑡r|𝑒𝑗) is 𝑊2 = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5} such that 𝐴1 = {𝑠800
1 }, 𝐴2 =

{𝑠708
1 }, 𝐴3 = {𝑠500

1 }, 𝐴4 = {𝑠310
1 }, 𝐴5 = {𝑠210

1 }, performing series recovery activities 

with the sequence 800-708-500-310-210. Similarly to the analysis of the CIЯ𝜑,𝑖(𝑡r|𝑒𝑗), 

different decision makers might have different perspectives on how to interpret such 

results and might choose different recovery sets. For the purpose of this research, the 

value of the score is used to rank the links, and having links repaired in parallel would 

only be the case where the links have the same value of the Copeland Score. 

 

Figure 5-5: Copeland Score for each link computed based on the component resilience-

worth, 𝐖Я𝝋,𝒊(𝒕𝐫|𝒆𝒋) 

 

Consider only recovery sets 𝑊1 corresponding to 310-800-210-708-500 from 

the CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) and 𝑊2 corresponding to 800-708-500-310-210 from the 

WЯ𝜑,𝑖(𝑡r|𝑒𝑗). These recovery strategies are compared with the third step of Eq. (5-11) 

using the cost of implementation. This example is for illustration purposes, and the cost 

for repairing each link is drawn from a discrete uniform distribution with parameters 

randomly assigned to each link that range from 1 to 10 time units, larger values were 
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randomly assigned to lengthier links without having a specific relationship between the 

parameters of the distribution and the length of the link. Ideally, such a distribution and 

such parameters would either be determined using expert solicitation or in the case of 

the availability of historical data, they would be determined using statistical analysis 

and distribution fitting of the data. For instance, in this particular case, risk managers 

might want to fit a triangular distribution determining the minimum, maximum and 

most likely value for the cost of repairing a particular link. The parameter might highly 

depend on the available resources and workers who perform repair activities, it is then 

linked to the geographic location of the disrupted links, among other factors. By 

examining Figure 5-6, it is impossible to choose the best recovery set as the cumulative 

probability distributions overlap in some instances while in other cases one recovery set 

outperforms the other. The best recovery set is then determined using the Copeland 

Score method with a slight variation from Eq. (5-9). Since a smaller value of cost is 

preferred, a larger Copeland Score value represents the preferred option in Eq. (5-12).  

 𝐶𝑘(𝑎, 𝑏) = {

𝐶𝑘−1(𝑎, 𝑏) + 1 𝑞𝑘(𝑎) < 𝑞𝑘(𝑏)

𝐶𝑘−1(𝑎, 𝑏) − 1 𝑞𝑘(𝑎) > 𝑞𝑘(𝑏)

𝐶𝑘−1(𝑎, 𝑏) 𝑞𝑘(𝑎) = 𝑞𝑘(𝑏)
 (5-12) 
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Figure 5-6: Cumulative probability distribution of the total cost (in thousands of dollars) 

of each recovery set 

 

With a Copeland score equal to 4, recovery set 𝑊1 is chosen to be the optimal recovery 

set in terms of cost. That is, the recovery set according to CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) results in a 

lower cost to implement than WЯ𝜑,𝑖(𝑡r|𝑒𝑗). Thus, an appropriate balance between link 

importance and cost is met.  

Decision makers might choose to include more options into the last analysis by 

taking more possibilities for the recovery sets. For example, if more than five links were 

considered, a mix of the results from the two importance rankings could help guide 

series and parallel repair to appropriately balance cost considerations. The analysis in 

this case study has been guided by a simulation of possible values of the resilience-

based importance measures that rely on random generations of the time, vulnerability, 

and cost of the recovery process. A more accurate way of quantifying resilience 

importance measures is to use statistical methods to draw inference from data.  
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Data-Driven Prediction of Resilience-Based Importance Measures 

There has been a particular emphasis on data-driven methods recently as more 

decision makers are incorporating statistical analysis of historical data into the decision 

making process to provide accurate quantification of risk and resilience metrics. 

Chapter 2 of this dissertation developed a new class of machine learning tools to predict 

critical infrastructure risk by estimating the frequency of disruptions using historical 

data, experts’ knowledge, and characteristics of the system. The work here is concerned 

with using data-driven tools to improve the way resilience importance measures are 

computed. Resilience has often been evaluated qualitatively. In this dissertation, 

methods were developed to quantify resilience. More specifically, this section is 

reinforcing the quantification mechanism with data-driven methods and statistical 

modeling.  

This work uses the Beta Bayesian kernel model to assess the resilience 

importance of critical infrastructure networks. More specifically, the model is used to 

predict the resilience worth, WЯ𝐹,𝑖(𝑡r|𝑒𝑗), that was deployed in a stochastic analysis in 

the preceding section. Most of the methodological background has been reviewed in 

earlier sections and chapters. The literature review of this section will present the Beta 

Bayesian kernel method followed by a discussion of how the model is used to assess the 

resilience worth of critical infrastructure systems. The model is deployed in a case study 

of inland waterways. More specifically, the application illustrates how the model can 

help analyze the resilience of locks and dams along the Mississippi River Navigation 

System. 
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Literature Review 

Recall that kernel functions are used to map input data, for which no pattern can 

be recognized to model their behavior, to a higher dimensional space, where patterns 

are more readily detected.  Such functions enable algorithms designed to detect 

relationships among data in the higher dimensional space. On the other hand Bayesian 

methods make use of previous data to estimate posterior probability distributions of the 

parameter of interest that follows a specific prior distribution. As a result, the 

integration of Bayesian and kernel methods allows for a classification algorithm which 

provides probabilistic outcomes (i.e., probability of a data point belonging to a 

particular class) as opposed to deterministic outcomes (i.e., the mere classification of a 

data point to a particular class).  A detailed overview of Bayesian methods, kernel 

functions, and Bayesian kernel models is presented in Chapter 2. 

The basic form of Bayesian kernel methods assumes a Gaussian distribution. 

Several extensions have been applied to Bayesian kernel models which assume both 

Gaussian and non-Gaussian distributions for this classification probability to be 

estimated.  In particular, for the non-Gaussian case, models were developed with a Beta 

conjugate prior to model binary classification by estimating the probability of a data 

point belonging to one class (MacKenzie et al. 2014b), while another used a Poisson 

Bayesian kernel model based on the Gamma conjugate prior to estimate the frequency 

of disruptive events (Baroud et al., 2013a; Floyd et al., 2014). The Poisson Bayesian 

kernel model has been developed, tested, and applied to a case study in Chapter 2 of this 

dissertation.  
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In this chapter, a Beta Bayesian kernel model is presented and deployed to 

estimate the resilience of components of a critical infrastructure system. The Beta 

Bayesian kernel model developed by MacKenzie et. al (2014b) is reviewed here. The 

other methodological background used in this section has been reviewed earlier in the 

chapter such as the concept of resilience worth, WЯ𝐹,𝑖(𝑡r|𝑒𝑗) and the Copeland score 

method to rank probability distributions.  

Since the Beta Bayesian kernel model is developed based on a conjugate prior, 

both the prior and the posterior distributions of the parameter of interest, 𝜃𝑖, are a Beta 

distribution with parameters (𝛼, 𝛽) and (𝛼∗, 𝛽∗), respectively. Eq. (5-13) shows the 

relationship between prior and posterior parameters. 

 

𝛼∗ = 𝛼 +
𝑚−

𝑚
∑ 𝑘(𝑥𝑖, 𝑥𝑗)

{𝑗|𝑦𝑗=1}

 

 

𝛽∗ = 𝛽 +
𝑚+

𝑚
∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

{𝑗|𝑦𝑗=−1}

 

(5-13) 

The kernel function is 𝑘(𝑥𝑖 , 𝑥𝑗) and 𝑚+ is the number of positive labels while  

𝑚− is the number of negative labels in the training set of size 𝑚. The ratios representing 

the proportions of each class insure an unbiased estimation of the posterior parameters 

in the presence of imbalanced data sets. Finally, a radial basis kernel function is used, 

Eq. (2-20), to compute the kernel matrix. 

Methodology: Resilience Worth Data-Driven Prediction 

 The work presented so far in this research computes the resilience worth by 

assuming that the time to full network resilience is stochastic and follows a particular 

probability distribution. WЯ𝐹,𝑖(𝑡r|𝑒𝑗) is then computed by means of simulation. This 
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section provides a similar approach to the non-Gaussian Bayesian kernel models 

discussed above and applies it to model the resilience worth of the components of a 

network. The outcome of the model, WЯ𝐹,𝑖(𝑡r|𝑒𝑗), is a number between 0 and 1, where 

0 represents a non-impactful component and 1 represents a highly impactful component. 

Therefore, a suitable conjugate prior in this case is the Beta distribution for which the 

range of the random variable is [0,1]. Eq. (5-14) is a representation of the Beta 

probability distribution with parameters α > 0 and β > 0,  where WЯ is the resilience 

worth described in Eq. (5-2) and Β(α, β) is the beta function. Bayesian kernel methods 

provide a more accurate estimate of the resilience worth as the posterior probability 

distribution relies on information pertaining to experts’ knowledge, the component’s 

characteristics, and historical data of disruptions.  

 𝑃(WЯ) =
WЯ𝛼−1(1 − 𝑊Я)𝛽−1

Β(α, β)
 (5-14) 

There are two ways to analyze the outcome of the resilience worth from the Beta 

Bayesian kernel model. One possibility is to analyze components using a point estimate 

(e.g., the expected value or condition expected value of the posterior distribution) and 

examine the resilience worth of a component based on this estimate. The larger the 

estimate is, the more impactful the component is. Another possibility is to analyze 

components using the entire probability distribution instead of only the point estimate.  

This has a great benefit in assessing the resilience worth of components with similar 

characteristics as information about the entire probability distribution is being used in 

the analysis. The former way was used in Chapter 2 to analyze the outcome of the 

Poisson Bayesian kernel model and estimate the frequency of disruption. The predicted 

frequency in that case was equal to the mean of the posterior distribution, although 
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other possibilities could have been considered such as the conditional mean in the case 

of a risk averse decision maker. Conditional expectations were used in Chapter 3 to 

inform preparedness decision making given the interdependent economic impacts of a 

critical infrastructure disruption.  

The analysis in this chapter will look into the entire probability distribution 

instead of considering one point estimate (e.g. expected value or conditional expected 

value). In order to compare probability distributions of the resilience worth the 

Copeland Score (CS) method is used, which is, in general, a multiattribute ranking 

technique (Al-Sharrah, 2010). As applied here, the CS method will be used to compare 

different components according to the distribution of their WЯ importance measure, 

where the attributes studied here are different percentiles of the distribution. Since the 

most critical components (largest WЯ) needs to be identified, a maximum Ck(a,b) is 

desired according to Eq. (5-9). For more discussion on how the Copeland Score is 

computed, please refer to the literature review of the previous section in this chapter. 

In case of a disruptive event impacting several components in the system, 

determining the components’ resilience worth helps decision makers in identifying the 

best strategy to recover the disrupted critical infrastructure by ordering the components’ 

repairs according to their resilience worth. 

Case Study: Bayesian Kernel Modeling of Locks and Dams Resilience Importance 

Measures 

The framework discussed above is applied to analyze the resilience worth of 

locks and dams on the Mississippi River Navigation System network. The river has 29 

locks acting as key connectors between different ports nationwide. The data, retrieved 
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from the database collected by the U.S. Army Corps of Engineers (2011) contains 

detailed information on each lock’s characteristics including the river mile, the total 

number of vessels passing by the lock, the total tonnage, the frequency and average 

delay for the vessels and tows experiencing delay time due to the lock’s closure, and the 

yearly frequency of closure for each lock. A sample of the data is presented in Table 

2-4. No prior data are available for the resilience worth, but it is assumed that such data 

can be elicited from risk managers or government officials. Given the characteristics of 

each lock and dam, an individual can be asked to classify each lock and dam as either 

impactful or non-impactful.  

Using the Beta Bayesian kernel model and a uniform Beta distribution for the 

prior, the posterior distribution parameters 𝛼∗ and 𝛽∗ are computed and the distribution 

of the expected value is presented in Figure 5-7. Note that the distribution is dispersed 

around a range of values going from approximately 0.25 to 0.4. Variability is mainly 

due to the data set being small. Also, the median of the distribution reflects the actual 

number of positive classification originally in the data. With such information, risk 

managers can identify the degree to which the lock and dam is impactful with the 

probabilistic outcome rather than a simple classification of 0 or 1. This helps in a more 

accurate allocation of recovery resources. 
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Figure 5-7: Distribution of the posterior expected value of the resilience worth 

 

The five most impactful locks/dams are considered judging by the expected 

value of resilience worth. Based on the cumulative probability distributions of the 

resilience worth of these five most impactful locks and dams in Figure 5-8, it is difficult 

to distinguish their actual ranking of importance, which is the case for locks and dams 

with similar characteristics. Such cases arise when disruptions occur in a particular 

region and result in the closure of a number of similar locks and dams. Since it is 

possible to construct the posterior probability distribution with the Beta Bayesian kernel 

model, the locks and dams can be ranked according to their Copeland score with 

approximated percentiles of the resilience worth as attributes (the top five appear in 

Figure 5-9). Table 5-2 shows the ranking of the locks and dams based on (i) the 

posterior expected value and (ii) the posterior Copeland Score. Note that each method 

results in a different ranking, the reason for which is that the Copeland Score represents 

the entire distribution (lower and upper tails) while the expected value is only a point 

estimate of the average resilience worth.  



139 

 

Figure 5-8: Posterior cumulative probability distribution of the five most impactful 

locks and dams of the navigation system 

 

 

Figure 5-9: Copeland score of the five most impactful locks and dams of the navigation 

system 

 

Table 5-2: Lock and dam repair order based on the resilience worth values 

𝑾Я ranking Posterior expected value Posterior Copeland score 

1 L&D 24 L&D 22 

2 L&D 5 L&D 27 

3 L&D 27 L&D 20 

4 L&D 20 L&D 5 
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Recall the ranking provided by the Poisson Bayesian kernel method in Table 

2-6, it was based on locks and dams that have the highest frequency of closures and 

could have also been used to inform recovery decision making. The ranking in Table 

5-2 is based on the contribution these locks and dams have on the recovery of the 

overall waterway network in the case of a disruptive event. Note that some locks and 

dams are common between the two rankings such as L&D 27. There is not one single 

correct answer to which component is the most critical or needs to be prioritized in 

resource allocation. Instead, decision makers should account for multiple factors when 

determining the importance of a link or a node in an infrastructure system. This 

dissertation has provided several means to approach this problem by considering 

different criteria to produce a ranking of the most critical components in the inland 

waterway network. 

Concluding Remarks 

The ability of a network to “bounce back” from seemingly inevitable disruptive 

events is a vital consideration. Hence, the ability to quantify the vulnerability and 

recoverability of inland waterways, as it pertains to the inclusive measure of network 

resilience, is addressed in this chapter.  

A means to quantify vulnerability, or the initial impact experienced in a network 

following a disruptive event, and recoverability, or the ability of a network to recover 

functionality in a timely manner is presented. As such the work in this chapter 

contributes a new way to implement two approaches to measure the importance of 

network components from the perspective of component contribution to network 

resilience as a function of stochastic vulnerability and recoverability terms. 
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The first resilience-based component importance measure, CIЯ𝜑,𝑖(𝑡r|𝑒𝑗) in Eq. 

(5-1), quantifies the potential adverse impact on system resilience at time 𝑡𝑟 when 

disruption 𝑒𝑗 affects link 𝑖. Analogous to the risk reduction worth CIM common in the 

reliability engineering literature, it measures the proportional contribution of link 𝑖 to 

the time required to achieve full network service resilience. The second resilience-based 

component importance measure, WЯ𝜑,𝑖(𝑡r|𝑒𝑗) in Eq. (5-2), quantifies the potential 

positive impact on network resilience when vulnerability-strengthening measures are 

put into place such that link 𝑖 cannot be disrupted. 

The two importance measures discussed in this chapter can serve as a guide to 

prioritize resilience improvement activities. Using the two measures, the links are 

ranked with respect to their importance to the overall system resilience, the rank is then 

used to construct candidates for the optimal recovery strategy that would be later 

determined based on the cost of implementation of the strategy. Due to the stochastic 

nature of the elements comprising CIЯ𝜑,𝑖(𝑡r|𝑒𝑗), WЯ𝜑,𝑖(𝑡r|𝑒𝑗), and the cost, ordering 

the components according to such measures requires a stochastic ranking technique and 

the ranking of links and recovery sets is done using the Copeland Score method. 

The case study illustrates a particular case of systems, which is the waterway 

transportation system. Such system is not redundant, and hence, component importance 

analysis has a large impact on the decision making under uncertainty. As illustrated by 

the results of the analysis of disruptive events along the Mississippi River Navigation 

System, some links are deemed more important than other and might require special 

consideration from risk managers. While the case study in this chapter considers the 

disruption of five links, the methodology can be used to solve more complex problems 
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due to the inexpensive computation effort of the Copeland Score and the simplification 

strategy of the feasible region in the optimization.  

Another methodology is presented in this chapter to quantify resilience 

importance metrics using data-driven and statistical methods. A Beta Bayesian kernel 

model is applied to analyze the resilience of critical infrastructure networks by 

estimating the resilience worth of each component in the network using prior 

information as well as the component’s characteristics and historical data. The 

methodology is applied to an inland waterway transportation network, and the resilience 

worth of locks and dams is estimated to rank components depending on how impactful 

they are to the rest of the network. Results show that while the expected value can be 

used as an estimator, a more accurate metric is the Copeland Score which considers the 

entire posterior distribution and accounts for more uncertainty in all the possible 

disruption scenarios. Such analysis assists risk managers and decision makers in 

allocating resources and determining the ranking order of the repair activities in case of 

an event resulting in multiple disrupted components.  

Based on the ranking of the locks and dams and the analysis of the best recovery 

set, improvement activities can be suggested to address the prioritized components or 

recovery sets. Such activities can be in the form of vulnerability reduction policies (i.e., 

protecting or hardening components) or in the form of accelerating the speed of 

recovery activities.  
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Chapter 6  

Conclusions 

The contributions of this research are focused on three main areas: (i) risk 

analysis, (ii) interdependent impacts, and (iii) resilience modeling. The tools developed 

and deployed in this research are used to predict risk, analyze its consequences, and 

suggest recovery strategies.  

This chapter includes an overview of the key findings in this dissertation and a 

discussion of the future direction of this research. 

Insights and Lessons 

Statistical Modeling for Risk Analysis 

 The theoretical contribution of this research is made to the statistics and machine 

learning literature through the Poisson Bayesian kernel model. It is the first Bayesian 

kernel method that can be applied to count data. The model has been tested with sample 

count data and found to outperform traditional count data modeling approaches such as 

the Poisson and the Negative Binomial GLM in the prediction accuracy. The majority 

of the data sets (five out of seven sets) in the empirical study had better predictive 

accuracy for the proposed model across the four different metrics considered. The 

Poisson Bayesian kernel model appears to be a good model for prediction purposes 

when the data set is small with a small number of predictors, which is common among 

risk analysis problems. 

 The Poisson Bayesian kernel model has been applied to predict the frequency of 

disruptions in critical infrastructure systems, which is considered to be a methodological 

contribution to the risk analysis field in which data-driven tools have received little 
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attention due to the limited availability of data. A case study to an inland waterway 

network, the Mississippi River Navigation System, illustrates the advantages of using 

the Poisson Bayesian kernel model as opposed to GLM. The model proposed in this 

research provides more accurate predictions for the number of closures of locks and 

dams along the waterway. In addition, the Poisson Bayesian kernel is a flexible tool 

where decision makers are able to input their knowledge and expertise into the prior 

distribution to guide the inference process. Also, the decision makers’ risk preference 

can be taken into account in the analysis. The case study assumed a risk neutral decision 

maker and considered the expected value of the posterior distribution as a point estimate 

of the frequency of closures. However, risk averse decision makers will be interested in 

either a different point in the upper tail of the posterior distribution expressed through a 

conditional expected value, or the variability in the prediction.  

 Overall, the Poisson Bayesian kernel model is a tool that integrates several 

sources of information (such as the decision maker’s expertise, prior information, 

historical data, and predictors) to provide a more comprehensive quantification and 

analysis of risk.  

Economic Impacts of Disruptions 

 The first part of this dissertation answered questions related to the likelihood of 

a disruptive event: What can go wrong? What are the chances of something going 

wrong? The second part is concerned with the impact of a disruptive event: What are 

the consequences if the undesirable event occurs? (Kaplan & Garrick, 1981). 

 Analyzing the impacts of a disruption in critical infrastructure systems goes 

beyond assessing the losses pertaining to disrupted system. As discussed in the 
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introduction and case studies throughout this dissertation, critical infrastructure systems 

are highly interdependent. As a result, accounting for the impact of a disruption is 

concerned with a number of factors at different levels. Chapter 3 and Chapter 4 

developed tools that integrate the inoperability interdependency model with decision 

analysis and resilience modeling techniques aimed at (i) quantifying the interdependent 

economic impacts of a disruption, (ii) assessing the efficacy of risk management 

strategies, and (iii) analyzing the impact of infrastructure resilience on the economic 

losses. 

The deployment of these methods in the case study of the Mississippi River 

Navigation System revealed insights in inland waterway preparedness strategies and 

interdependent impacts modeling. Results from the Stochastic Multiobjective 

Inoperability Decision Tree suggest that while an increase in the investment is 

providing better protection to the port in terms of the average and conditional 

expectation of the total economic losses distribution as well as the likelihood of a 

disruptive event occurring, the decision maker should be aware of the value this 

increased investment is adding. Sometimes investing an additional dollar in port 

security might not greatly improve the port security, depending on the risk preference of 

the decision maker. In addition, the interdependent analysis provided commodity 

specific resilience insights. In the particular case of the Mississippi River Navigation 

System, the Petroleum and Coal Products industry was most impacted on average by 

disruptions, measured by a stochastic duration of commodity flow stoppage, and the 

interdependent inoperability in the Primary Metal Products industry was most affected 

by the change in recovery strategy.  
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The tools developed in Chapter 3 and Chapter 4 allow for a general analysis of 

the interdependent impacts and risk management strategies assessment of the overall 

inland waterway system, while also considering the impact of industry-specific 

resilience of the disrupted and interdependent systems. Such methods can inform 

decision making at a higher systems level as well as provide specific insights about the 

different components of the system and any other interdependent systems for a more 

targeted resource allocation effort. 

Resilience Modeling 

 The third part of this dissertation is concerned with resilience modeling. 

Resilience is identified by four dimensions: reliability, vulnerability, survivability, and 

recoverability. It has been modeled from different perspectives such as analyzing the 

time to full network recovery, assessing the system’s performance measure, and 

modeling the cost of recovery activities, among others.  

 This research deploys resilience-based importance measures developed by 

Barker et al. (2013) to assess the resilience importance of inland waterways. More 

specifically, the stochastic analysis gives insights on the system’s resilience contributed 

by certain links of the network. The links that are deemed more important than others 

would require special consideration from risk managers.  

 In order to analyze the resilience-based importance of locks and dams which are 

considered to be nodes in the waterway network, a data-driven approach is used to rank 

the components based on their resilience worth. The method utilizes prior belief in the 

form of experts’ knowledge integrated with characteristics of the network component to 

produce a probability distribution expressing the magnitude of the resilience worth.
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 Risk managers can utilize the outcome of this research to inform their decisions 

by either relying on a particular ranking of components or recovery sets, or by 

integrating the different results for a more comprehensive analysis of the overall system 

resilience. 

Future Research 

A number of research extensions can be investigated to expand on the ideas 

developed in this dissertation. This section provides a discussion on the future direction 

of the research in each of the three parts of the dissertation. 

Bayesian Kernel Methods 

 Modeling extensions can be incorporated into the Poisson Bayesian kernel 

method to make it more flexible and generalized. 

 Recall the discussion on the prior parameters estimation in the case study of 

Chapter 2. Results show that the selection of the priors has an impact on the posterior 

parameters estimation and prediction accuracy. One way to overcome the 

misspecification of the priors is to assign a hyperprior distribution to account for the 

uncertainty in estimating the prior parameters. This class of methods is called 

Hierarchical Bayesian models which have been used in different applications but were 

never integrated with Bayesian kernel models.  

 The analysis performed for the Poisson Bayesian kernel model did not account 

for the impact of covariates on the performance metrics. To maintain consistency all 

covariates were included in the models for the empirical analysis. However, for the case 

study, reduced models were considered to compare the Poisson Bayesian kernel model 

to the best version of the GLM. A next step would be to explore model selection criteria 
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and techniques for Bayesian kernel methods to investigate the possibility of improving 

the model’s performance as a function of the predictors. 

Interdependency Modeling 

The uncertainty modeling of the stochastic multiobjective decision tree 

developed in Chapter 3 considered two sources of uncertainty: (i) the uncertainty 

associated with the likelihood of a disruption occurring, and (ii) the uncertainty 

associated with the severity of a disruption and its impact on the demand perturbations. 

The two uncertainties considered are not related to the interconnectedness of the 

economy represented by the 𝐀⋆ matrix. Therefore, although the interdependent impact 

between industries involves uncertainties, this is not analyzed in the study. An 

integration of the suggested approach with models that consider not only the uncertainty 

of the inoperability but also the uncertainty of the 𝐀⋆ matrix (Barker & Rocco, 2011; 

Oliva, Panzieri, & Setola, 2011) constitutes the subject of future research. 

Another extension to this research would be to consider multi-period decision 

trees and incorporate resource allocation in addition to preparedness decisions. Also, 

using a multi-regional dynamic interdependency model is useful in indicating the 

regional expected total economic losses. 

The case study in Chapter 4 analyzed three possible recovery strategies. A more 

exhaustive set of strategies could be considered and compared with a stochastic 

ordering technique (Copeland score or optimization). Future work would include the 

resilience-based analysis of a more extensive set of disruptive scenarios and recovery 

strategies, as well as the exploration of network examples where disruptive events are 

not as localized as inland waterways.  
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Resilience Modeling 

Note that the approach considered in the analysis of resilience importance 

measures in Chapter 5 does not take into account the cascading effect of a disruption in 

the system, this might be a concern in applications that are not related to waterway 

network systems, such as in power grids or other transportation networks. In that case, 

the methodology described here could be extended to a dynamic version whereby the 

measures are updated with newly disrupted links due to the cascading effect at each 

point in time. 

While the resilience importance measures are key factors in determining the 

recovery strategy, it is equally important to account for the overall cost and time of 

implementing the strategy. Future research is involved in determining the optimal 

recovery strategy by taking into account the tradeoff of the Bayesian kernel estimates of 

the component importance and the time and cost of recovery.  
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