${ }^{(12)}$ United States Patent
Kapil
(10) Patent No.: US 8,647,637 B2
(45) Date of Patent:

Feb. 11, 2014

References Cited
U.S. PATENT DOCUMENTS

4,193,990	A	$3 / 1980$	Appel et al.
4,193,991	A	$3 / 1980$	Appel et al.
4,303,645	A	$12 / 1981$	Carmichael et al.
4,971,793	A	$11 / 1990$	Wood et al.
5,082,767	A	$1 / 1992$	Hatfield et al.
5,814,510	A	$9 / 1998$	Parrish et al.
5,882,652	A	$3 / 1999$	Valdes et al.
5,885,585	A	$3 / 1999$	Parrish et al.

FOREIGN PATENT DOCUMENTS
WO

0200883 A2 | $1 / 2002$ |
| ---: |
| 2008121992 |$\quad 10 / 2008$

OTHER PUBLICATIONS
Stephesen, et al. Canine Distemper Virus (CDV) Infection of Ferrets as a Model for Testing Morbillivirus Vaccine Strategies: NYVACand ALVAC-Based CDV Recombinants Protect against Symptomatic Infection. J. Virology. 1997; 71(2): 1506-1513.*
Pardo, et al. Phylogenetic Characterization of Canine Infected Dogs in North America Distemper Viruses Detected in Naturally. J. Clin. Microbiol. 2005, 43(10):5009-5017.*
(Continued)
Primary Examiner - Jeffrey Stucker Assistant Examiner - Stuart W Snyder
(74) Attorney, Agent, or Firm-Fellers, Snider, Blankenship, Bailey \& Tippens, P.C.; Terry L. Watt

ABSTRACT

Immunogenic compositions and broad-spectrum vaccines containing newly identified isolates of canine distemper virus (CDV) collected from a geographic area are provided. The newly identified isolates exhibit attributes of both European wildlife lineage CDV and one or both of Arctic and Ameri-can-2 lineage CDV. Therefore, the vaccines are broadly protective against infection with European wildlife lineage CDV and either Arctic lineage CDV or American-2 lineage CDV, or both Arctic and American-2 lineage CDV.

16 Claims, 24 Drawing Sheets

References Cited

OTHER PUBLICATIONS

Demeter, Zoltan, et al., "Controversial results of the genetic analysis of a canine distemper vaccine strain", "Veterinary Microbiology", 2010, pp. 420-426, vol. 142, Publisher: Elsevier, Published in: US. Kapil, S., etc., "(P26-1) Isolation, Molecular Characterization, and Epidemiology of Canine Distemper Virus Isolates Circulating in USA (2", Jul. 12, 2008, Publisher: Poster: American Society for Virology, Cornell University, Ithaca, NY (Jul. 12-16, 2008), Published in: Ithaca, NY.
Mochizuki, Masami, et al., "Complement-Mediated Neutralization of Canine Distemper Virus in Vitro: Cross-Reaction between Vaccine Onderstepoort an", "Clinical and Diagnostic Laboratory Immunology", Jul. 1, 2002, pp. 921-924, vol. 9, No. 4, Publisher: American Society of Microbiology.
Plotkin, Joshua B., et al., "Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influeza A virus", Jun. 10, 2003, pp. 7152-7157, vol. 100, No. 12, Publisher: PNAS, Published in: US.
Talbott, Jessica, et al., "Multiple Canine Distemper Virus Genotypes Are Circulating in the USA", Jul. 2009, Abstract: NIH Summer Scholars Program at OSU, Stillwater, OK, Published in: Stillwater, OK.
Zhao, Jian-Jun, et al., "Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon", "Veterinary Microbiology", 2010, pp. 34-42, vol. 140, Publisher: Elsevier, Published in: US.
Database Uniprot, "Hemagglutinin; Database accession No. Q52T50", May 24, 2005, Published in: US.
Pardo, et al. , "Canine distemper virus isolate 19876 fusion protein and hemagglutinin genes, complete cds", May 1, 2005, Published in: US.
Hershberg, et al. , "Selection on Codon Bias", "The Annual Review of Genetics", 2008, pp. 287-299, vol. 42, Publisher: Annual Reviews, Published in: US.
Kapil, et al. ,"Canine Distemper Virus Strains Circulating Among North American Dogs", "Clinical and Vaccine Immunology", Apr. 2008, pp. 707-712, vol. 15, No. 4, Publisher: American Society for Microbiology, Published in: US.

Kijak, et al. , "Lost in Translation: Implications of HIV-1 Codon Usage for Immune Escape and Drug Resistance", "AIDS Reviews", 2004, pp. 54-60, vol. 6, Published in: US.
Lan, et al. , "Pathogenesis and phylogenetic analyses of canine distemper virus strain 007 Lm , a new isolate in dogs", "Veterinary Microbiology", Oct. 31, 2005, pp. 197-207, vol. 110, No. 3-4, Publisher: Elsevier B.V., Published in: US.
Martella, et al., "Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy", "Veterinary Microbiology", Sep. 10, 2006, pp. 301-309, vol. 116, No. 4, Publisher: Elsevier B.V., Published in: US.
McCarthy, et al. , "Pathogen evolution and disease emergence in carnivores", "The Royal Society", Oct. 22, 2007, pp. 3165-3174, vol. 274, No. 1629, Publisher: Proceedings of The Royal Society, Published in: US.
Mueller, et al. , "Live attenuated influenza virus vaccines by com-puter-aided rational design", "Nature Biotechnology", Jun. 13, 2010, pp. 15, Publisher: Natura America, Published in: US.
Pardo, et al. , "Phylogenetic Characterization of Canine Distemper Viruses Detected in Naturally Infected Dogs in North America", "Journal of Clinical Microbiology", Oct. 2005, pp. 5009-5017, vol. 43, No. 10, Publisher: American Society for Microbiology, Published in: US.
Pepin, et al. , "Genomic Evolution in a virus under specific selection for host recognition", "Infection, Genetics and Evolution", Aug. 6, 2008, pp. 825-834, vol. 8, Publisher: Elsevier, Published in: US. Runkler, et al., "Sorting signals in the measles virus wild-type glycoproteins differently influence virus spread in polarized epithelia a", "Journal of General Virology", Jun. 25, 2009, pp. 2474-2482, vol. 90, Publisher: SGM Journals, Published in: US.
European Patent Office Invitation to Pay Additional Fees, International Application PCT/US2010/022639, mailed Apr. 27, 2010.
European Patent Office PCT International Search Report, International Application PCT/US20 10/022639, mailed Jul. 5, 2010.
European Patent Office PCT Written Opinion, International Application PCT/US2010/022639, mailed Jul. 5, 2010.
PCT/US2010/022639, International Preliminary Report on Patentability, Issued: Aug. 2, 2011, 10 pages.

* cited by examiner

07091030
AAGGTGAATTTTACTAACTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATCCT CCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTGCTACCTCAGTAG GCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTA ACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACAC ACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCA ACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCC TTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGAC GCTGGGAATATTTGGGGCAACAACTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAA AAATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCT GAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAAC GTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTG ACCTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGA (SEQ ID NO:1)

FIG. 1
07091031
GGTGAATTTTACTAACTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATCCTCC TGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTGCTACCTCAGTAGGC AGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAAC CGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACAC AAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAAC TATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGGAGTGGGCGAGTTGACACTGGCTTCCTT GTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCGGTGACGG TGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAA ATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGA GAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGT CATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTGAC СTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGTATGGATTATTATGAAAGCCC ACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCTTGGATTGATAAACAAAGCAAGTA GAGGAGACCAGTTCATTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAAGTGGGAATTGTTATTTA CCTATTCAAACATCCCAG (SEQ ID NO:2)

FIG. 2

Abstract

07091032 GGTGAATTTTACTAACTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATC CTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTGCTACCT CAGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGACCTCAAGAAAATCAGAGATAAT CAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAA GAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACATGC САTTACTCCAGACAACTAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGT GGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGT TCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGG TGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAAAAGATTC AATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCG GCTTGTCAAAGAAAATCCTACCCTATGTGCAACCCAAACGTCATGGGAACCCTTCGGAGGAGGACAGTTG CCATCTTATGGGCGG (SEQ ID NO:3)

Abstract

07101508 CTAGTAAGATCAGGTGAATTTTACTAATTACTGCTATACAATTGGGATCAGAAAATCTATTGCATCGGCA GCAAATCCCATCCTCCAGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTG GAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAA ATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCT GATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGC TGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATG TACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCAT GACAGCAATGGTTCGCAAGATAATATCCTAGTAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATC AAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTT CATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAATT TGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATGGGAACCCTTCGGAG GAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATNCAAGCACTGACCTTCAACTTAACAT ATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGNATGGATTATTATGAAAGCCCACTGTCGG (SEQ ID NO:4)

FIG. 4

07100609

AACTTGTATCCGGCTCTTGGGTTGCATGAGTTTTCCGGGGAGTTAACAACCATTGAATCCCTTATGATGC TATATCAACAGATGGGTGAAACAGCACCGTACATGGTTATTCTGGAAAATTCTGTCCAGAACAAATTTAG TGCAGGATCCTACCCATTGCTCTGGAGTTATGCTATGGGAGTTGGTGTTGAACTTGAAAACTCCATGGGA GGGTTAAATTTCGGTAGATCCTACTTTGACCCAGCTTATTTCAGGCTCGGGCAAGAAATGGTTAGAAGAT CGGCCGGTAAGGTAAGCTCTGCACTTGCCGCCGAGCTTGGCATCACCAAGGAAGAGGCTCAGCTAGTGTC AGAAATAGCATCCAAGACAACAGAGGACCA (SEQ ID NO:5)

FIG. 5

Abstract

07110098 AAGTGAATTTTACTAGTTACTGTGATACAATTGGGATCAGAAAATCCATTGCATTGGCAGCAAATCCCGT CCTTTTGTCAGCACTCTCCGGAGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTACTACT TCAGTTGGCAAATCTTTCCCCCTATCAGTATCATTATCCATGTCTTTGATCTCAAGAACATCAGAGATAA PCAATATGCTGACCTCTATCTCAGACGGAGTGTATGGTAAAACTTATTTGCTAGTGCCTGATTATATTGA AGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAAAGGTGGCTGAATGACATG CСATTATTCCAGACAACCAACTATATGATCCTCCCGGAGAATTCTAAAACCAAGGTATGTACTATAGCAG TGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGATGAGAGCACTGTATTATTATATCATGACAGCAATGG TTCACAAGATGGTATTCTAGTAGTGACGCTGGGAATCTTTGGGGCAACACCTATGGATCAAGTCGAAGAG GTGATACCTGTCGCTCACCCATCAGTCGAAAAAATACATATAACAAATCACCGTGGTTTCATAAAAGATT CAGTAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAACCTAGAGGAACAAGAAAATTGTCTGGAGTC GGCTTGTCAGAGAAAATCCTACCCTATGTGCAATCAAACATCATGGGAACCCTTTGGAGGAGGACAGTTG CCATCTTATGGGCGGTTGACGTTACATCTAGATGCAAGCATTGACCGTCAACTTAACATATCATTTACAT ACGGTCC (SEQ ID NO:6)

FIG. 6

Abstract

07111080 TCAAGAAAATCAGAGATAATCAATATGCTACCCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTAC TAGTGCCTGATTATATGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAA CGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTA AGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTT ATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATTTGGGGCAACATCT ATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACTCATCAGTAGAAAAAATACATATAACAAATCACC GTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCA AAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATGGGAACCC TTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTGACCTTCAAC TTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGTATGGATTATTATGAAAGCCCACT GTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCTTGGATTGATAAATAAAGCAAGT AGAGGAGACCAGTTCATTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAAGTGGGAATTGTT ATTTACCTATTCAAACATCCCAGATTATAGA (SEQ ID NO:7)

FIG. 7

Abstract

08010939 GAATTTTACTAATTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATCCTC CTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTGCTACCTCAG TAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAAATCAGAGATAATCAA TATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAAGAG GAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACATGCCAT TACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGG CGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGTTCG CAAGATAATATCCTAGTAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGA TACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAAT AGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCT TGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATGGGAACCCTTCGGAGGAGGACAGTTGCCAT CTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTGACCTTCAACTTAACATATCGTTTACATACGG TCCGGGTTATACTGAATGGAGACGGTATGGATTATTATGAAAGCCCACTGTCGGACTCCG(SEQ ID NO: 8)

FIG. 8

08011277A
GCCGGGCTGCATCACCCCCTAGTAAGACAGGTGAATTTTACTTATTACTGCGATACAATTGGGATCAGAA AATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCC ACCATACAGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATG TCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAA CTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGG GTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAAT TCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCA CCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAATATCCTAGTAGTGACGCTGGGAATATTTGG GGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATA ACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAAC AGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTC ATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACT GACCCTTCCAACTTAACATATCGTTTACATACCGTCCGGTTATACTTGAATGGAGACGGTATGGATAATT ATGAAAGCCCACTGTCGGACTCGGATGGCTTACCATTTCCTTCCAAAACGGAACAGTCCTTGGATTGATA AACAAACCAGTAGGGGAGACCAGTTCATTGTATCCCCCATGTGTTGACCATTGCCCCAGGGAATCAAGGG GAATGTATTTACCTATTCAACCTTCCCAAATAATGGGATAAAGGATGGCCCTCCTGAATCCAAATTACGG TGTTGCCCTAAAC(SEQ ID NO:9)

FIG. 9
08011277B
TTGGTTAAGGCCATCCTTTTTCCCTAATCTGGGCTGTTTGAATAGGTAAATAACAATTCCCCACTTGATT CCCTGGGCGCAAATGTCAACACATGGGGGATTACAATGAACTGGTCTCCCCTACTTGCTTTGTTTATCAA TCCAAGGACTGTTCCGTTTTTGGGAGGAATGGTAAGCCATCCGGAGTCCGACAGTGGGCTTTCATAATAA TCCATACCGTCTCCATTCAGTATAACCGGACCGTATGTAAACGATATGTTAAGTTGAAGGTCAGTGCTTG GATCTAGAGGTAATGTCAACCGCCCATAAGATGGCAACTGTCCTCCTCCGAAGGGTTCCCATGACGTTTG GTTGCACATAGGGTAGGATTTTCTTTGACAAGCCGACTCCAGACAATTTTTTTGCTCTTCCTGTTTCTCA GAGACCAATGCAGGCACCATCCAGGTTGCTATTGAATCTTTTATGAACCCACGGTGATTTGTTATATGTA TTTTTTCTACTGATGGGTGAGCAACAGGTATCACCTCTTCAACTTGATCCATAGATGTTGCCCCAAATAT TCCCAGCGTCACTACTAGGATATTATCTTGCGAACCATTGCTGTCATGATATAACAACACGGTGCTCTCA CCTACACACAAGGAAGCCAGTGTCAACTCGCCCACTGCTATAGTACATACCTTAGCTTTGGAATTCTCTG GGAGGACCATATAGTTGGTTGTCTGGAGTAATGGCATGTCATTCAGCCACCGTTTGATGAACCCTATCTC AAAGACTCGAATCTTTTTGTGTGTCGAACTCCTCTTCAATATAAATCAGGCACCTAGTAAATAAAGTTTA CCATACACCTCCGTTTGAGATAGCCGGTTAGCATATTGATTATCTCTGATCCTCTTGAGATCAAAGACAT GGACAATGACACTGATAGGCGGGAAAACTCTGCCTACTGAGGTAGCAGCTCTACTGCTTTTGTTGGGTGG GAAATATTTAACCCTTTGCCCCCGAAAGTGCTTACAGGAGGATGGGATTTGCTGCCGATCCAATAAATTT TCTGATCCCAATTGTATCGAAGAACTAATAAATTACCTGGACCTTACTTGGGGGGGTGATGAACCAGCGC (SEQ ID NO: 10)

FIG. 10

Abstract

08011277C AGATCAAGGTGAATTTTACTAATTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAA TСССАТССТССТGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCT GСТАССТСАGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAAATCAG AGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTA TATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAAT GACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTA TAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAG CAATGGTTCGCAAGATAATATCCTAGTAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTT GAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAA AAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCT GGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATGGGAACCCTTTCGGAGGAGG ACAGTTGCCATCTTATGGGCGGTTGAC (SEQ ID NO:11)

FIG. 11

Abstract

08011277 D CCCCAATTGGCATTGAACCATGTATCCGGCTCTTGGGTTGCATGAGTTTTCCGGGGAGTTAACAACCATT GAATCCCTTATGATGCTATATCAACAGATGGGTGAAACAGCACCGTACATGGTTATTCTGGAAAATTCTG TCCAGAACAAATTTAGTGCAGGCTCCTACCCATTGCTCTGGAGTTATGCTATGGGAGTTGGTGTTGAACT TGAAAACTCCATGGGAGGGTTAAATTTCGGTAGATCCTACTTTGACCCAGCTTATTTCAGGCTCGGGCAA GAAATGGTTAGAAGATCTGCCGGTAAGGTAAGCTCTGCACTTGCCGCCGAGCTCGGCATCACCAAGGAAG AGGCTCAGCTAGTGTCAGAAATAGCATCCAAGACAACAGAGGACCTCCCATTTGGCATTGAAACTATGTA TCCGGCTCTTGGGTTGCATGAGTTTTCCGGGGAGTTAACAACCCTTGAATCTTAATGACCTTTTTCCGCA GGGAACAAACCCACAATCGCTGAATTCTGTGAAATATGGCTCACCACATTGTGGCAGCTCGACACCGACT TTAACCTTACCTATGGAATTTGGCGTTGAAACTGTAAATCCCTCTTCGGGTTACCACCTCTTTTGATCAC TTTAACCGTTATTTACGCCGGCAGCCACGTTAGAACATATCCGCCTTCGCAAGTTTTCCTGCCTCCTCCT TCCACCCAATTAGAGGGCCCCCCTCCTTTGTTATGAACCCCCTTA(SEQ ID NO: 12)

FIG. 12

08011671

CCTGGGCGCCTTACCCCCCCCTAGTAAGCTCAGGTGAATTTTACTAACTACTGCGATACCCTTGGGATCA GAAAATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATT CССACCATACCGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTGTCAGTGTCATTGTCC ATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTA AAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGAT AGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAG AATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGA GCACCGTGTCGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATT TGGGGCAACATCTATGGATCAAGTTGAAGAGGCGATACCTGTTGCTCACCCATCAGTAGAAAAAATACAT ATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGA AACAGGAAGAGCAAAACAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAAC GTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTTAGATCCAAGCA CTGACCTTCAACTCAACATATCGCTTACATACCGTCCGGCTATACTGAATGGGAGACGGTATGGATTTTA TGACAAGCCCCCCTGTCGGACTCCCGGATGGCTTACCACCCCCTCCCAAAACCGGAACAGCTCCTTCGAT TGATAAACCAAACCAGTACGAGGAGACTCAGTTTCATTGTTATTCCCCTACGTGTTGACATTTCCGCCCC AGGCCATCCATGTCGGATTGCTCTTTACCCAATAACCCACCCCACATCATGGATACAGCTCTCCTTACTG ACTCCACACTACCGCTGTTGCCTACCCTCCCGCTCTCCCTTCCCCTA (SEQ ID NO:13)

FIG. 13

08021509
GTGAATTTTACTAATTACTGCGATACTATGGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATCC TTTTATCAGCACTCTCCGGAGGTAGAGGTGACATATTCCCACCATACAGATGCAATGGAGCTACTATTTC AGTAGGCAAGATTTTCCCCCNATCAGTATCATTATCTATGTCTTTGATCTCAAGAACATCAGAGATAATC AATATGCTAACCGCTATCTCAGACGGAGTGTATGG(SEQ ID NO:14)

FIG. 14

08030074
CAAGGTGAATTTTACTAATTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCC ATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGTGGAGCTGCTA CCTCAGTAGGCAGAGTTTTCCCCCTATCAGTGACATTGTCCATGTCTTTGATCTCAAGAAAATCAGAGAT AATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAGACTTATTTACTAGTGCCTGATTATATT GAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACA TGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGC AGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAAT GGTTCGCAAGATAATATCCTAGTAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAG AGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAAAAGA TTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAG TCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATGGGAACCCTTCGGAGGANGGACAG TTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTGACCTTCAACTTAACATATC (SEQ ID NO:15)

FIG. 15

08030776

TCCTGTTTGCCTITCCCCCCCCTAGTAAGATCAGGTGAATTTTACTAACAACTGCGATACAATTGGGATC AGAAAATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATAT TCCCACCATACAGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTC CATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGT AAAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGA TAGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGA GAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAG AGCACCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATAT TTGGGGCAACAACTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACA TATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAG AAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAA CGTTATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAG CACTGACCTTCAACTTAACATATCGTTTACATACGGTCCGGTTATCCTGAATGGAGACGGTATGGATTAT TATGAAAGCCCACTGTCGGACTCCCGATGGCTTACCATTCCTCCAAAACGGAACAGTCCTTGGATTGATA AACAAACAAGTAGAGGAGACCAGTTCATTGAATCCCCATGTGTTGACTTTTCGCCCAGGGAATCAAGTGG AATTGTATTTACTATCAACTTCCAGATTATGGATAAGATGTCCTTCTGATTCCAATACGGTGTGCCTTA (SEQ ID NO:16)

08030777
TCGTGGTGCTTAACCCCCCCTAGTAAGATCAGGTGAATTTTACTAATTACTGCGATACTATTGGGATCAG AAAATCTATTGCATCGGCAGCAAATCCCATCCTTTTATCAGCACTCTCCGGAGGTAGAGGTGACATATTC CCACCATACAGATGCAATGGAGCTACTATTTCAGTAGGCAAGATTTTCCCCCTATCAGTATCATTATCTA TGTCTTTGATCTCAAGAACATCAGAGATAATCAATATGCTAACCGCTATCTCAGACGGAGTGTATGGTAA AACTTATTTACTAATGCCTGATTATATTGAAGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGAGATA GGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGA ATTCCAAAGCCAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCTTTGTGTGTAGATGAGAG CACCGTATTGTTATATCATGACAGCAATGGTTCACAAGATGGTGTTCTAGTAGTGACGCTGGGAATATTC GGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTCGCTGACCCATTAGCAGAAAAAATACATA TAACAAATCACCGTGGGATCATAAAAGACTCAATAGCAACCTGGATGGTGCCTGCATTAGTTTCTGAGAA ACAAGAGGAACAAACAAATTGTCTGGAGTCAGCTTGTCAAAGAAAATCCTACCCTATGTGCAATCAAACG TCATGGGAACCCTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGCTGACATTACCTCTACATCCAAGCA TTGACCTCCACTTAACATATCATTTACATACGGTCCGACTATACTGAATGGAGACGGATGGCTATTATGA GAGCCCCCTGCGGACTCCGGATGGCTTACCTTTCCCTCCAGCACGGCACAGCCTGGATTGATAAACAAAG AGTAGAGGACGACCAGTTATTGTCATTCCCCTGTGTTGACATTTCGCCCCCGGCATCCACCCGAAATTGC TATTACCCTATCCCACATTCCCCTTCGCGCTCAAGATCCCCCTCCTGCTCCCCACCACGGCGCGCTCCCT ATCTCC (SEQ ID NO: 17)

FIG. 17
08031346
CCTAGTAGATCAAGGTGAATTTTACTAATTACTGCGATACAATTGGGATCAGAAAATCTATTGCATCGGC AGCAAATCCAATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCACCATACAGATGCAGT GGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTATCAGTGTCATTGTCCATGTCTTTGATCTCAAGAA AATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCC TGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGG CTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTAT GTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCA TGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATTTGGGGCAACATCTATGGAT CAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATCAC (SEQ ID NO:18)

FIG. 18
08040383
GTTTGATAGGTAAATAACAGTTTCCACTTGATTCCCTGGGTGCAAATGACAACACATGAGGGACCACAGT GAACTGGTCTCCTCTACTTGCTTTGTTTATCAATCCAAGAATTGTTCCATTCTTAGGAGGAATGGTAAGC CATCCGGATTCCAAAAGTGGGCTTTCATAATAATCCATACCATCTCCATTCAGTATAACCGGACCGTATG TAAATGATATGTTAAGTTTACGGTCAATGCTTGCATCTAGATGTAACGTCAACCGCCCATAAGATGGCAA CTGTCCTCCTCCAAAGGGTTCCCATGATGTTTGATTGCACATGGGGTAGGATTTTCTCTGACAAGCCGAC TCCAGACAATTTTCTTGTTCCTCTAGGTTCTCAGAGACCAATGCAGGCACCATCCAGGTTGCTACTGAAT CTTTTATGAAACCACGGTGATTTGTTATATGTATTTTTTCGACTGATGGGTGAGCGACAGGTATCACCTC TTCGACTTGATCCATAGGTGTTGCCCCAAAGATTCCCAGCGTCACTACTAGAATACCATCTTGTGAACCA TTGCTGTCATGATATAATAATACAGTGCTCTCATCTACACACAAGGAAGCCAGTGTCAACTCGCCCACTG CTATAGTACATACCTTGGTTTTAGAATTCTCCGGGAGGATCATATAGTTGGTTGTCTGGAATAATGGCAT GTCATTCAGCCACCTTTTGATGAACCCTATCTCAAAGACTCGAATCTTTTGCGTGTCGAACTCCCCTTCA ATATAATCAGGCACTAGCAAATAAGTTTTACCATACACTCCGTCTGAGATAGAGGTCAGCATATTGATTA TCTCTGATGTTCTTGAGATCAAAGAC (SEQ ID NO:19)

FIG. 19

Abstract

08050180 A AATGCTTCCTTTACCCACCCTAGTAAGATCAAGTAAATTTTACGGTAAATAAATAGCGATACAATTGGGA TCAGAAAATCTATTGCATCGGCAGCAAATCCTATCCTTTTATCAGCACTCTCCGGAGGTAGAGGTGACAT ATTCCCACCATACAGGTGCAGTGGAGCTACTACTTCAGTAGGCAGAGTCTTCCCCCTATCAGTATCATTG TCCATGTCTTTGGTCTCAAGAACATCTGAAATAATCAATATGCTAACCGCTATCTCAGACGGTGTGTATG GTAAAACTTATTTGCTAGTTCCTGATTATCTTGAAGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGA GATAGGGTTCATCAAACGGTGGCTGAACAACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCG GAGGATTCCAAAGCCAAGGTATGTACTATAGCGGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGATG AGAGCACCGTATTGTTATATCATGACAGCAGTGGTTCACAAGATGGTATTCTAGTGGTGACGCTGGGAAT ATTTGGGGCAACACCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATA CATATAGCAAACCACCGTGGGTTCATCAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTG AGAAACAAGAGGAACAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCA AACGTCATGGGAACCCTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCAA AGCATTGACCTCCAGCTTAACATCTCATTTACATATGGTCCGGTTATACTGAATGGAGACGGTATGGATT ATTATGAAAGTCCGCTTTTGAACTCCGGATGGCTTACCATTCCTCCCAAGAACGGAACAGTCCTTGGATT GATAAACAAAGCAAGTAGAGGAGACCAGTTCACTGTATCCCCATGTGTGACATTTGCGCCCAGGGAATCA AGTGGAATTGTATTTACCTATTCAAACATCCCAGATATGGATAAAGATGTCCTTACTGAATCCAAATTAG TGGTGTTGCCTAAC (SEQ ID NO:20)

FIG. 20

Abstract

08060351 ACCGGGGTGCTTACCCCCCCTAGTAAGATCAAGTGAATTTTACGAAAAACTGCGATCCAATTGGGATCAG GAAATCTATTGCAACGGCAGCAAATCCTATCCTTTTATCAGCACCCTCCGGAGGTAGAGGTGACATATTC CCATCATACAGATGCAGTGGAGCTACTACTTCAGTAGGCAGAGTCTTCCCCCTATCAGTATCATTGTCCA TGTCTTTGATCTCAAGAACATCTGAAATAATCAATATGCTAACCGCTATCTCAGACGGAGTGTATGGTAA AACTTATCTGCTAGTTCCTGATTATCTTGAAGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGAGATA GGGTTCATCAAACGGTGGCTGAACAACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGG ATTCCAAAGCCAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGATGAGAG CACCATATTGTTATATCATGACAGCAATGGTTCACAAGATGGTATTCTAGTGGTGACGCTGGGAATATTT GGGGCAACACCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATA TAGCAAACCATCGTGGGTTTATCAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAA ACAAGAGGAACAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACG TCATGGGAACCCTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCA TTGACCTTCAGCTTACATCTCATTTACATACGGCCCGTTATACTGAATGGAGACGGTATGGATACTATGA AAGCCCACTTTTAGACTCCGGATGGCTTACCATTCCTCCAAGAACGGAACAGTCCTTGGATTGATAAACA AAGCAAGTAGAGGAGACCAGTTCACTGTATCCCCATGTGTTGACATTTGCGCCAGGAATCAGTGGAAATT GTTATTTACCTATTCAAACTTCCCAATTATGGATAAGAGTCCTACTGGATCCAAATTATGGTGTTTCCCT AACC(SEQ ID NO:21)

Abstract

08060352 CATTGGTGCATTAACCCACCTAGTAAGACAAGTGAATTTTACTAATATACTGCGATACAATTGGGATCAG GAAATCTATTGCATCGGCAGCAAATCCTATCCTTTTATCAGCACCCTCCGGAGGTAGAGGTGACATATTC CCATCATACAGATGCAGTGGAGCTACTACTTCAGTAGGCAGAGTCTTCCCCCTATCAGTATCATTGTCCA TGTCTTTGATCTCAAGAACATCTGAAATAATCAATATGCTAACCGCTATCTCAGACGGAGTGTATGGTAA AACTTATCTGCTAGTTCCTGATTATCTTGAAGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGAGATA GGGTTCATCAAACGGTGGCTGAACAACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGG ATTCCAAAGCCAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGATGAGAG CACCATATTGTTATATCATGACAGCAATGGTTCACAAGATGGTATTCTAGTGGTGACGCTGGGAATATTT GGGGCAACACCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACATA TAGCAAACCATCGTGGGTTTATCAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAA ACAAGAGGAACAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACG TCATGGGAACCCTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCA TTGACCTTCAGCTTAACATCTCATTTACATACGGTCCGGITATACTGAATGGAGACGGTATGGATTACTA TGAAAGCCCACTTTTAGACTCCGGATGGCTTACCATTCCTCCCAAGAACGGAACAGTCCTTGGATTGATA AACAAAGCAAGTAGAGGAGACCAGTTCACTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAA GTGGAAATTGTTATTTACCTATTCCAAACATCCCAGATTATGGATAAAGGATGTCCTTACTGAAGTTCTA AATTAGTGGGGGTTTGCCCTAAGAC(SEQ ID NO:22)

FIG. 22
08080696
GCCTCCCAGGGGCACCTTCCCCCCCCAGTAGCTCAGGTGAATCTCACTTAAAACTGCGCCCCCCITGGGA TCTTACAATCTATTGCATCGGCAGCAAATCCCCTCCTTTTATCAGCACTCTCCCGAGGTAGAGGTGACAT ATTCCCACCATACCGATGCAATGGAGCTACTATTTCACTAGGCAAGATTTCCCCCCTATCAGTATCATTA TCTATGTCTTTGATCTCACGAACATCAGAGATAATCAATATGCTAACCGCTATCTCATACGGAGTGTATG GTAAAACTTATTTACTAATGCCCGACTATATTGAAGGGGAG(SEQ ID NO:23)

FIG. 23

08080941
TTGATTTCGACTCCCCGATTTTCCACTGTGCATTAACCACCTAGTAAGATCAAGGTGAATTTTACTGACT CTGGAACAAATGGGATCAAGAAATTTATTGCATGGCAGCAAATCCCATCTCCTGTCAGCACTCTATGGGG GCAGAGGTGACATATTCCCACCATACAAGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTTCCCCC TATCAGTGTCATTGGCCATGTCTTTGACCTCAAGAAAATCAGAGGATAATCAATATGCTAACCGCTATCT CAAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAA AAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATAACATGCCATTACTCCAGACAACTA ACTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGC TTCCTTGTGTGTAGGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTA GCAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACC CATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGT GCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCC TACCCTATGTGCAACCAAACGTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGA CATTACCTCTAGATCCAAGCACTGACCTTCAACTTAACATATCGTTTACGTACGGTCCGGTTATACTGAA TGGAGACGGTATGGATTATTATGAAAGCCCACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAAC GGAACAGTCCTTGGATTGATAAACAAAGCAAGTAGAGGAGATCAGTTCATTGTAATCCCCCATGTGTTGA CATTTGCGCCCAGAGAATCAAGTGGGAATTGTTATTTACCTATTCAAACATCCCATATTAGGAAAAAGGG AGGCCTACCCGGGGA (SEQ ID NO:24)

Abstract

08081112 TATGGTTCATTACCCCCCGGCGTAAGTGAATTTGAATCGTAGTAATTGCTGTGATAAAATTGGGATTGGA AATGTATTGCATTGTTATGAAATTCTACCTTTTCAGCACTTGCCTCCGTTGGTTGAGGGGACTTATTCCC ATCATACATATGCAGTGGAGCTACTACCTCATCCGGCAGAGTTATATTTGATCATCATTATTGCACATGT TTGTGACCTAAAAAACATCTGGCATATGCAATCTGCTAACCGCGATCTCATGTGGAGTGTATGGCAAAAC TTATCTGCTACTTCCTGATTTTCTTGAAGGGGAGTCCGACACTCTGCCGATGTCCGACAAGCTGATCGGG TTCATCAAACTCTGGCTGAACAACATGTTGCGCGTCTGACAACCTCCGATTTGGCCTGCCCAGAGGATTT TACAGCCAAGGTATGTACCATATCCCAGGGGAACTTCACACTGCCTTCCTTGTGTGTTAGCCAGAGCCCC ATATTGTCCCATAATGATATGAATGTCCTACAAGAGGTCATTTTCCATGTGACCCCGCGTTCATTTGTGG CAATGGCGGTGGTTCAATTGGAACAGGGTATATCTGACCCTATCTTTCACTAGAGAAATTACATATGACA AACCATCATGGCTTGATCAAAGAATAACTTCCTTTCTGGCTGACGCTTGACTTGCCCTTATATATACCAT ATTTTCTTAATAAATCGCGGTCAATTGCCTGTGGAGCCAAATTTTACCACTCTTCCAACCTTATGTTACG GGCTTTCCTTGCCGGAGGACCGTTGC(SEQ ID NO:25)

FIG. 25

08120827
GCGATTTTGCCCTGTGCATTAACCCACCTAGTAAGATCAAGGTAAATTTTACTAAATTCTGCGAAACATG TGGATCAGAAAATCTATGGCATCGGCAGCAATCCCATCCTCCTGCAGCCCTCTTGGGGCAGAGGTGACAT ATTCCCACCATACAGATGCAGTGAGGCTGCTACCTCAGTAGGCCAGAGTTTTCCCCTATCAGGGTCATTG TGCATGTCTTTGACCTCAAGAAAGTCAGAGATAATCAAATATGCTAACCCGCTATCTCAAACGGAGTGTA TGGGAAAAACTTATTTACTAGTGCCTGGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCT TTGAGATAGGGTTCATCAAACGGTGGCTGAATAACATGCCATTACTCCAGACAACTAACTATATGGTCCT CCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTA GGTGAGAGCACCGTGTTGTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGG GAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAA AATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTC TCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCA ACCAAACGTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGA TCCAAGCACTGACCTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGTATG GATTATTATGAAAGCCCACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCTTG GATTGATAAACAAAGCAAGTAGAGGAGATCAGTTCATTGTAATCCCCCATGTGTTAACATTTGCGCCCAG AGAATCAAGTGGGGGATTGTTATTTTCCTATTCAAACATGCCCATATTATGATAAAGGATGGCCTTAACC CG(SEQ ID NO:26)

FIG. 26

08120857

AGTTCGACGCACAAAAGATTCGAGTGTTGAGATAGGGITGATCGGACGAGGAGGTGAAGGACATGCCATT ACTCCAGACAGCTAACTATATGGTCCGCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGC GAGGTGGCACTGGCTTCCTTGTGTGTAGGGGAGAGCGCCGTGTTGTTATATCATGGCAGCAATGGTTCGC AAGATAGTATCGTAGCAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGAT ACCTGTTGCTCACCCATCAGTAGAGAAAATACATATAGCAAATCACCGTGGGTTCATAAAAGATTCAATA GCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTT GTCAAAGAAAATCCTACCGTATGTGCAGCCAAACGGCATGGGAACCCTTCGGAGGAGGACAGTTGCCATC TTATGGGCGGTTGACATTACCTCTAGATCCAAGCGCTGCCTTCAACTTAACATATCGTTTACATACGGTC CGGTTATACTGAATGGAGACGGTATGGATTATTATGAAAGCCCACTGTCGGGCTCCGGATGGCTTGCCAT TCCTCCCAAAAACGGAACAGTCCTTGGATTGATAAACAAAGCAAGTAGAGGAGATCAGTTCATTGTAATC CCCCATGTGTGGACATTTGCGCCCAGAGAATCAAGTGGGGGATTGTTTTTTAAACTATGCAAACGGCGCA TATGAGGGGGGAGGGGGGGCGGGAGGCT (SEQ ID NO:27)

Abstract

09011024 CAGTGAGAGCAAAAATGTAGGAAAGGGCAGGAATTCCATGCTCAAGGAGCGGATGTGGGGAGAGGTTGCG AGTCCCGCCAGCAGTGCAGGAAGGGGTACTCAGTAGCGGGGTTTCCCCCTAGGAGGGGGATTGTCCAGTC TTTGATATCAGAAAAGAAGGATATCAATATGCTAACCGCTATCGCCAAAGGAGGGTATGGTAAGAGCTTA TTGGGAGTGCCTGATTAGAGGGAGGGAAGTTCTACAGGAGAGAGATTGGAGTGGTGAGATGGGGGTTCGT CAAGCGGTGGATGAATGACATACCATTACTCCAGACAACCAAGTATAGGGGCCTCCCAGAGAATGCCAAA GCTAAGGTATGTACTATAGCAGTGGGCGAGTTACGCTGGCTTCCTTGTGTGTAGGTGAGAGCGCCGTGTT GTTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCTGTGACGCTGGGAATATTTGGGGCAGCA TCTATGGATCAAGTTGAAGAGGTGATGCCTGTTGCTCACCCATCAGTAGAAAAAATACATATAACAAATC GCCGTGGGTTCATAAAAGATTCAATAGCAGCATGGATGGTGCCTGCATTGGTCTCTGAGAAGCAGGAAGA GCAAAAAAATTGTCAGGAGTCGGGTTGTCAAAGAAAATCCTACCCGATGTGCAACCAAACGTCATGGGAA CCCTTCGGAGGAGGACAGGTGCCATCTTATGGGCGGTTGGCATTACCTCTAGAGCCAAGCACTGGCCTTC AACTTGACATATCGTTTACATACGGGCCGGTTATACTGAATGGAGACGGTATGGATTATTATGAAAGCCC ACTGTCGGACGCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCGTGGATTGATAAACAAAGCA AGTAGAGGAGGCCAGTTCATTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAAGTGGGAATT GCTATTTTCCTATTCAGAACACCCCAGATTAGGATAGAAGGAGGGGCCTGGGCCG (SEQ ID NO: 28)

FIG. 28

Abstract

09020504-3 CTTGTGGGCTTAAACCACCTAGTAATACAAAGTGAATTTTACTAATTACTGCGATACAATTGGGATCAAA AAATCTATTGCATCGGCAGCAAATCCTATCCTTTTATCAGCACTCTCCGGAGGCAGAGGTGACATATTCC CACCATACAGATGCAGTGGAGCTACTACTTCAGTAGGCAGAGTCTTCCCCTTATCAGTATCATTGTCCAT GTCTTTGATCTCAAGAACATCTGAAATAATCAATATGCTAACCGCTATCTCAGACGGAGTGTATGGTAAA ACTTATTTGCTAGTTCCTGATTATCTTGAAGGGGAGTTCGACACGCCGAAGATTCGAGTCTTTGAGATAG GGTTCATCAAACGGTGGCTGAACAACATGCCATTAATCCAGACAACCAACTATATGGTCCTCCCGGAGGA TTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTATGTGTAGATGAGAGC ACCGTATTGTTATATCATGACAGCAATGGTTCACAAGATGGTATTCTAGTGGTGACGCTGGGAATATTTG GGGCAACACCTATGGATCGAGTTGAAGAGGTGATACCTGTTGCTCACCCGTCAGTAGAAAAAATACATAT GGCAAACCACCGTGGGTTCATCAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGAAA CAAGAGGAACAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCCTACCCTATGTGCAACCAAACG TCATGGGAAACCCTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGC ATTGACCTTCACCTTAACATCTCATTTACATACGGCCCAGTTATACTGAATGGGGACGGTATGGATTATT ATGAAAGCCCACTTTTGGACTCCGGATGGCTTACCATTCCTCCCAAGAACGGAACAGTCCTTGGATTGAT AAACAGAGCAGTAGAGGAGAACAGTTCACTGTAATCCCCATGTGTTGACTTGCGCAAGGGGATCAAGTGG AAATTGTATTTACCTATTCAAACATCTTAAATTATGGATAAAGATGCCCTCACCGAGCCCAAATTAGTGG TGTTGCCTCAT (SEQ ID NO:29)

Abstract

09041289 CTCCCTTTCGGCTTGAACATGTATCCGGCTCTTGGGTTGCATGAGTTTTCCGGGGAGTTAACAACCATTG AATCCCTTATGATGCTATATCAACAGATGGGTGAAACAGCACCGTACATGGTTATTCTGGAAAATTCTGT CCAGAACAAATTTAGTGCAGGATCCTACCCATTGCTCTGGAGTTATGCTATGGGAGTTGGTGTTGAACTT GAAAACTCTATGGGAGGGTTAAATTTCGGTAGATCCTACTTTGACCCAGCTTATTTCAGGCTCGGGCAAG AAATGGTTAGAAGATCGGCCGGTAAGGTAAGCTCTGCACTTGCCGCCGAGCTTGGCATCACCAAGGAAGA GGCTCAGCTAGTGTCAGAAATAGCATCCAAGACAACAGAGGACCCGCATTTGGCATTGAAACTATGT TC CGGCTCTTGGGTTGCATGAGTTTTCCGGGGAGTTAACAACCATTGAATCCCTTGTGATGCTTTACCACCA AATGGGTGAAGGACCCCCCATGGTTATTCTTGGAAAATTTGTCCGACAAAATTAGTGCAGGATCTACCAT TGCTCTGGAGTTATGCTATGGGAGTTGGTGGTGAACTTGAAAACCCCATGGGGGGGTTAAATTTCGGCAG ATTCTTCTTTGACAGTTAATTTTAGGCTCGGCCAGAAAATGGTTAGAAAACTCGGCCGGTTAGGGG AG CTTTGTCTTTGCCCGCTTGGGTTCCCCCCCCGAAAGGTTTCCCCCCTTTTCTATATATT (SEQ ID NO:30)

FIG. 30

09041303
TGTGAATGTGAACTTCCGCGATCTCCACTGGTGCATTAACCCACTAGTAAGATCAAGGTGAATTTACTAA CTACGCGATACAATTGGGATCAGAAAATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCT CTGGGGGCAGAGGTGACATATTCCCACCATACCGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTT CCCCCTGTCAGTGTCATTGTCCATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCT ATCTCAAACGGAGTGTATGGTAAAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACAC AAAAGATTCGAGTCTTTGAGATAGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAAC САAСTATATGGTCCTCCCAGAGAATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTG GCTTCCTTGTGTGTAGGTGAGAGCACCGTGTCATTATATCATGACAGCAATGGTTCGCAAGATAGTATCC TAGCAGTGACGCTGGGAATATTTGGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCA CCCATCAGTAGAAAAAATACATATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATG GTGCCTGCATTGGTCTCTGAGAAACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAAT ССTACCCTATGTGCAACCAAACGTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTT GACATTACCTCTAGATCCAAGCACTGACCTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTG AATGGAGACGGTATGGATTATTATGAAAGCCCACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAA ACGGAACAGTCCTTGGATTGATAAACAAAGCAAGTAGAGGAGACCAGTTCATTGTAATCCCCCATGTGTT GACATTTGCGCCCAGGGAATCAAGTGGGAATTGTTATTTACCTATTCAAACATCCCAGATTATGAAAAGA TGCCTTAACCCG (SEQ ID NO: 31)

FIG. 31

Abstract

09041474 A TCTGCTGCTTAACCACCTAGTAAGATCAGGTGAATTTTACTAACTACTGCGATACAATTGGGATCAGAAA ATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATTCCCA CCATACCGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTGTCAGTGTCATTGTCCATGT CTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTAAAAC TTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGATAGGG TTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATT CCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGAGCAC CGTGTCATTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATTTGGG GCAACATCTATGGATCAAGTTGAAGAGGTGAACCTGTTGCTCACCCATCAGTAGAAAAAATACATATAAC AAATCACCGTGGGTTCATAAAAGATTCAATAGCAACTGGATGGTGCCTGCATTGGTCTCTGAGAAACAGG AAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAACGTCATG GGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCACTGAC CTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGTATGGATTATTATGAAA GCCCACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCTTGGATTGATAAACAA AGCAGTAGAGGAGACCAGTTCATTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAAGTGGGA ATTGTTATTTACCTATTCAAACATCCAGATTATGGATAAAGATGTCCTTACTGAGTCCAAATTAGTGTGT GTGCCTA (SEQ ID NO:32)

FIG. 32

09040826

ATTGGTTGCCCTTAACCCACCTAGTAAGATCAGGTGAATTTTACTAACTACTGCGATACAATTGGGATCA GAAAATCTATTGCATCGGCAGCAAATCCCATCCTCCTGTCAGCACTCTCTGGGGGCAGAGGTGACATATT CCCACCATACCGATGCAGTGGAGCTGCTACCTCAGTAGGCAGAGTTTTCCCCCTGTCAGTGTCATTGTCC ATGTCTTTGATCTCAAGAAAATCAGAGATAATCAATATGCTAACCGCTATCTCAAACGGAGTGTATGGTA AAACTTATTTACTAGTGCCTGATTATATTGAAGAGGAGTTCGACACACAAAAGATTCGAGTCTTTGAGAT AGGGTTCATCAAACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAG AATTCCAAAGCTAAGGTATGTACTATAGCAGTGGGCGAGTTGACACTGGCTTCCTTGTGTGTAGGTGAGA GCACCGTGTCATTATATCATGACAGCAATGGTTCGCAAGATAGTATCCTAGCAGTGACGCTGGGAATATT TGGGGCAACATCTATGGATCAAGTTGAAGAGGTGATACCTGTTGCTCACCCATCAGTAGAAAAAATACAT ATAACAAATCACCGTGGGTTCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTGGTCTCTGAGA AACAGGAAGAGCAAAAAAATTGTCTGGAGTCGGCTTGTCAAAGAAAATCCTACCCTATGTGCAACCAAAC GTCATGGGAACCCTTCGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGC ACTGACCTTCAACTTAACATATCGTTTACATACGGTCCGGTTATACTGAATGGAGACGGTATGGATTATT ATGAAAGCCCACTGTCGGACTCCGGATGGCTTACCATTCCTCCCAAAAACGGAACAGTCCTTGAATGATA AACAAAGCAAGTAGAGGAGACCAGTTTATTGTACTCCCTCTGTGTTTGACATTTGCGCCCAGGATCAAGT GGCATTGTTTCTACCTATCCAAACTTCCGAATTATGGATAAAGATGTCCTTACTGATCCAAACTAGTGCG TTGCTCAA(SEQ ID NO:33)

	COV solate	155	156	257	258	159	260	151	262	165	169	170	172	172	273	174	175	176	277	178	179	180	285	186	287	139
	Ondersteport	GAG	tca	ATT	GGG	ATC	AGA	AAA	GCT	TCG	CCT	ATC	CTT	TA	tra	GOC	CTA	TT	GGG	GGC	nea	AGT	cca	cac	aga	AGT
	AYS6a110 (EW)	GAT	aca	ATT	GGG	ate	aga	AAA	TCT	TCG	ccc	atc	cre	CTG	tea	GCA	cta	TCT	GGG	GGC	AGA	GGT	ca	TAC	AGA	AGT
\%	AF122189(AM-2)	gat	aca	ATt	gGg	atc	AGA	AAA	JCT	teg	сСт	atc	ст	TA	ta	gea	ст	tic	gea	gac	aga	Gढा	cca	tac	aga	ata
-	AY962112(AR)	gat	aca	ATI	GGG	atc	AsA	AAA	ICC	TGG	ccc	ATC	CT1	TA	ta	gat	cr	ICC	gea	GGC	aga	GGT	caa	tac	AGA	AGT
	9041474	GAT	aca	AT	GGG	ATC	AGA	AAA	TCT	TCG	COC	ATC	CTC	CTG	toa	GCa	CTC	TCT	Geg	GGC	áa	GGT	ca	tac	coa	AGT
	8120857	CAA	ACC	CTI	GGG	atc	AGA	AAA	TCT	JtG	ccc	atc	crc	CTG	tec	ca	Crc	TCT	GG6	GGC	aga	GGT	ca	tac	cosa	AGT
	9041303	gat	aca	AT	GGG	atc	AGA	AAA	TCT	ICG	ccc	atc	CIC	ctg	ita	gCA	cta	TCI	GGG	GGC	aga	GGT	ca	tac	CGA	AGT
	8031346	gat	aca	ATt	GGG	atc	aga	AAA	TCT	teg	cca	atc	cte	CTG	tca	cat	cra	tct	GGG	GGE	aga	GGT	ca	tac	ata	AGT
	7091032	gat	aca	ATt	GGG	atc	aga	A AA	गСt	teg	ccc	atc	стс	стG	tca	gea	$\boldsymbol{\pi}$	T	ges	gac	AGA	GG	cea	tac	aga	aGt
	7091030	gat	aca	ATI	GGG	atc	AGA	AAA	TCT	tcg	coc	ATC	cre	ctg	tea	gca	ст	TTT	GGG	GGC	aga	GGT	ca	Ja	aga	AGT
	7111080	gat	aca	ATt	GgG	atc	AGA	AAA	TCT	tCG	cce	atc	cte	CTG	TCA	gea	CTC	TCT	GGE	GGC	aga	GGT	cas	tac	aga	AGT
	08011277 A	gat	asa	ATT	geg	ATC	AGA	AAA	TCT	teg	ccc	atc	cte	CTG	ta	gca	Cr	TCT	GGG	GGC	aga	GGT	ca	tac	aga	att
	8080941	GM	aca	CTI	GGG	ATC	aga	AAA	JCT	teg	ccc	atc	cre	ctg	tca	gca	CTC	Tד	GGG	Gsc	aga	GG	can	tac	aca	AGT
	08011277C	gat	aca	ATI	GGG	atc	AGA	AAA	TCT	TEG	ccc	atc	cre	стG	toa	cat	¢	TCT	GGG	GGC	aca	GGT	can	tac	aga	agt
	7101508	tat	aca	AIt	GGG	atc	aga	asa	TCT	teg	ccc	atc	ctc	cag	TEA	ga	ст	тד	GGG	Gsc	aga	GG	can	tac	AGA	AGT
	8010939	gat	aca	ATt	GGG	atc	AGA	AAA	JCt	TKG	coc	atc	стс	CTG	ta	gca	cre	TCT	GGG	GGC	AGA	GGT	ca	TAC	aga	AGT
	7091031	Gat	aca	ATT	GGG	ATC	AGA	AAA	TCI	TCG	oce	ATC	CTC	ctg	tea	ga	cte	TCT	GG6	GSC	AGA	GG	cea	tac	aga	agt
	09020504-3(08.7589)	GAT	ACA	ATT	GGG	atc	AAA	AAA	TCT	teg	CCT	ATC	CT	TA	tica	gca	cic	TCC	gea	GGC	AGA	GGT	ca	tac	aba	nGT
	8060351	gat	ACA	ATt	GGG	atc	AGG	AAA	TCT	ACG	cct	ate	ct	TA	tea	caa	ccc	tce	GGA	GGT	aba	GGT	ta	tac	aba	aGt
	5021509	gat	Act	atg	gag	atc	AGA	AAA	TCT	teg	cce	ATC	CT	TAA	ta	gca	ст	TCC	gGa	GG	aga	GGT	ca	tac	ata	at
	9050216	gac	aca	AIT	Ggg	atc	acg	AAA	TCT	teg	cce	ATC	ст	TA	tca	ga	CTC	tec	gea	gac	aca	GG	ica	tac	aga	∞
	8050180	GAT	aca	ATt	GgG	ATC	AGA	AAA	TCT	tcg	ccc	ATC	CTI	TTA	tea	ga	ст	TCC	GGA	GGT	aga	GG	cas	tac	aga	AGT
	7100609	GGC	aca	ATT	GGG	tag	cat	GAG	गT	teg	cce	atc	CTI	TAA	ta	ga	cre	rec	gGA	gac	aga	GGT	ca	tac	aga	NGT
	8080696	GCI	cc	ATI	GGG	atc	TA	Can	TCT	tcg	ccc	atc	стс	TA	tea	ga	©	TCC	cGA	GGC	aga	GG	caa	tac	asa	M $\mathrm{AT}^{\text {a }}$
	9011024	gat	TCC	CTG	GGE	eca	cat	GTC	n ${ }^{\text {c }}$	teg	ccc	ate	(t)	TA	tca	gca	cta	TCC	GGA	GGC	nga	GGT	ca	tac	AGA	AGT
	8030777	gat	cict.	ATT	GGC	atc	Aga	AAA	TCT	tcg	cce	atc	ct	TA	tea	cea	cr	тce	gea	GGT	atan	GG	cea	tac	nea	Mat
Aratic	7110038	GAT	ACA	AIT	GGG	ATC	AGA	AAA	TCC	TTG	ccc	ATC	CTI	TAA	TEA	gca	cre	TCC	GGA	GGC	AGA	GGT	cá	tac	AGA	AGT
		Cre	tras	atri	Ees			2aak		${ }^{4085}$	${ }_{\text {cce }}$				tras			2 cos	EsG	gecc	asar	0	cosp	0	agan	
		gato	xat	ctL	8806	tzaterm		ETE	tas	tus	\ldots		atcl	tral	tes		act	[0S	emag	Est	acat		S		cen	ama
		taty	scat	atgM		gcai		casa	tus	try	crap		ctal	casa			ccep		Ctar							
		ercd	act	$\operatorname{cog} 1$				gicl																		
		gcen	accp				з зak																			
							$\begin{aligned} & \text { asgh } \\ & { }^{20 g}{ }^{\text {an }} \end{aligned}$																			
							Coth																			

Figure 34 A

Figure $34 B$

Figure 340

		\｛	ర	
			\＄	\％
		号号号号管気	Σ	寿䀾
碞岛或或			G	－
			Y	0
			U	0
㖪島きさそ			\％	0
答\} ई \} \}			S	
			d	${ }_{3}^{4}$
			O	免薄
			E	号最亘
			\％	砍茅
			U	
			O	－
H		\＄	勺	\bigcirc
			K	
			V	0
			\＆	鿬
		䚰旨完吴旨刮	E	0
N（W）	UYy		或	
			S	0
	S	S S	S	－${ }_{0}^{4}$
			友	可
		列 2	¢	\bigcirc
骨安它旨鸟			0	
			\％	
ээบзлауау	2！｜Pl｜M veadorns	z－บeว	苃	

	CDV Isolate	398	401	410	411	412	414	415	416	417	418	419	420	422	423	424	425	427	428
	Ondersteport	TTC	AGA	ACA	TTA	CCT	GAT	GCA	AGT	GTT	GAC	CTT	CAA	AAC	CTA	TCG	TTC	TAC	GGT
-	AY964110(EW)	TTC	GGA	ACA	TTA	CCT	GAT	cca	AGC	ACT	GAC	CTI	CAA	AAC	CTA	tcG	π	tac	GGT
¢	AF112189(AM-2)	ITI	GGA	ACA	TTA	cCT	gat	cca	AGC	ATT	GAC	CTI	CAA	AAC	CTC	TCG	TIT	tac	GGT
	AY962112(AR)	ITI	GGA	ACG	TA	CAT	GAT	GCA	AGC	ATT	GAC	CGT	CAA	MaC	CTA	tca	TTI	tac	GGT
	9041474	TIC	GGA	ACA	TA	CCT	GAt	cea	AGC	ACT	GAC	CTI	CAA	A ${ }^{\text {c }}$	CTA	TCG	TTT	tac	GGT
	8120857	TK	ND	no	No	ND	No	ND	ND	ND	ND	ND							
	9041303	TIC	GGA	ACA	TTA	CCT	GAT	cca	AGC	ACT	GAC	CTI	CAA	AAC	CTA	tcG	TT	tac	GGT
	8031346	TC	GGA	GAC	ATI	CCT	GAT	CCA	AGC	ACT	GAC	CTI	CAA	TAC	CTA	TCG	TIT	TAC	ND
	7091032	TIC	GGA	ACA	IT	ССт	GAT	cca	AGC	ACT	GAA	CTI	CAA	Mac	CTA	tcg	TT	tac	CGG
	7091030	TTC	GGA	ACA	TTA	CCT	GAT	CCA	AGC	ACT	GAC	CTI	CAA	AMC	CTA	TCG	TIT	TAC	GGT
	7111080	ND	No	ND	No	ND													
	08011277 A	Tre	GGA	ACA	TTA	CCT	GAT	CCA	AGC	ACT	GAC	CCT	CAA	AAC	CTA	TCG	TTI	TAC	CGT
	8080941	IT	GGA	ACT	tra	CCT	GAT	cca	AGC	ACT	GAC	CTI	CAA	AAC	ND	ND	ND	ND	ND
	$08011277 C$	TTC	GGA	ACA	TTA	CCT	GAT	CCA	AGC	ACT	GAC	CTI	CAA	AAC	CTA	TCG	TIT	tac	GGI
	7101508	TTC	GGA	aca	TTA	CCT	gat	CCA	AGC	ACT	GAC	CTI	CAA	MaC	CTA	TCG	TT	TAC	GGT
	8010939	TKC	GGA	ACA	TTA	CCT	GAT	CCA	AGC	ACT	GAC	CTI	CAA	AAC	CTA	TCG	TTI	tac	GGT
	7091031	TIC	No	ND	ND	ND	NO	ND	TAC	GGT									
	09020504-3(08-7589)	IT	GGA	ACA	TTA	CCT	GAT	CCA	AGC	ATT	GAC	CTI	CAC	AMC	ATC	TCA	TIT	TAC	GGC
	8060351	IT	GGA	ACA	TA	CCT	GAT	CCA	AGC	ATI	GAC	CTT	CAG	AMC	ATC	tca	TT	TAC	GGC
	8021509	ND	No	ND	NO	ND	ND	No	ND	tac	GGT								
	9050216	ND	No	ND	ND	ND	ND	ND	ND	NO	ND	tac	GGT						
	8050180	IT	GGA	ACA	TA	CCT	GAT	CCA	AGC	AIT	GAC	CTC	CAG	AAC	ATC	TCA	TIT	tat	GGT
	803077	IIT	GGA	ACA	TA	CCT	CAT	CCA	AGC	AIT	GAC	CTC	CaA	AAC	CTA	tea	TTT	tac	GGT
Arctic	7110098	IT1	GGA	ACG	TA	CAT	GAT	cca	AGC	ATI	GAC	CII	CAA	AAC	CTA	TCA	ITT	TAC	GGT
		tif	0	acat	tral	catP	gatD	0	0	stiv	BacD	ctt	casQ	2acN	ctal	tog 5	$t \mathrm{trf}$	tac	85tG
		ttep		2 CBT	ttr	Cat	Cath			act	gaze	CgtR	CaCH	tacy	caid	toas	ttif	tav	${ }_{5} 8$
				gacD						2 ta		ctal	$\cos Q$		atal				

Figure 34 F

Figure 36

Feb. 11, $2014 \quad$ Sheet 22 of 24

09041474 B
atgctctcctaccaagacaaggtgggtgccttctataaggataatgcaagagctaattcatccaagctgt ccctagtgacagaagagcaagggggcaggagaccaccctatttgctgtttgtccttctcatcctactggt tggaatcctggccttgcttgctatcactggagttcgatttcaccaagtatcaactagcaacgtggaattt agcagattgctaaaagaggatatggagaaatcagaggctgtacatcaccaagtcatagatgttttgacgc cgctcttcaaaattattggagatgagattgggttacggctgccacaaaaactaaacgagatcaaacaatt catccttcaaaagacaaacttcttcaatcctaacagggaattcgacttccgtgatctccactggtgcatt aacccacctagtaagatcaaggtgaattttactaactactgcgatacaattgggatcagaaaatctattg catcggcagcaaatcccatcctcctgtcagcactctctgggggcagaggtgacatattcccaccataccg atgcagtggagctgctacctcagtaggcagagttttccccctgtcagtgtcattgtccatgtctttgatc tcaagaaaatcagagataatcaatatgctaaccgctatctcaaacggagtgtatggtaaaacttatttac tagtgcctgattatattgaagaggagttcgacacacaaaagattcgagtctttgagatagggttcatcaa acggtggctgaatgacatgccattactccagacaaccaactatatggtcctcccagagaattccaaagct aagtatgtactatagcagtgggcgagttgacactggcttccttgtgtgtaggtgagagcaccgtgtcat tatatcatgacagcaatggttcgcaagatagtatcctagcagtgacgctgggaatatttggggcaacatc tatggatcaagttgaagaggtgatacctgttgctcacccatcagtagaaaaatacatataacaaatcac cgtgggttcataaaagattcaatagcaacctggatggtgcctgcattggtctctgagaaacaggaagagc aaaaaattgtctggagtcggcttgtcaaagaaaatcctaccctatgtgcaaccaaacgtcatgggaacc cttcggaggaggacagttgccatcttatgggcggttgacattacctctagatccaagcactgaccttcaa cttaacatatcgtttacatacggtccggttatactgaatggagacggtatggattattatgaaagcccac tgtcggactccggatggcttaccattcctcccaaaaacggaacagtccttggattgataaacaaagcaag tagaggagaccagttcattgtaatcccccatgtgttgacatttgcgcccagggaatcaagtgggaattgt tatttacctattcaaacatcccagattatggataaagatgtccttactgagtccaatttagtggtgttgc ctacacagaattttagatatgtcatagcaacatatgatatatcccgggacaatcatgcgatcgtttacta tgtctatgacccaattcggacgatttcttatacgtacccatttagactaactaccaaaggtagacctgat ttcctaaggattgaatgttttgtttgggatgatgatttgtggtgtcaccagttctaccgattcgaggctg acatcactaactctaccaccagtgttgagaatttagtccgtataagattctcatgtaaccgttcaagacc ttga (SEQ ID NO: 42)

Fig. 37

ATGCTCTCCTACCGAGACAAGGTGGGTGCCTTCTATAAGGACAATGCTAGAGCTAATTCATCCAAGCTGT CCTTAGTGACAGAAGAGCAAGGGGGCAGGAGACCACCCTATTTGCTGTTTGTCCTTCTCATCCTACTGGT TGGAATCATGGCCTTGCTTGCTATCACTGGAGTTCGATTTCACCAAGTATCAACTAGCAATATGGAGTTT AGCAGATTGCTGAAAGAGGATCTGGAGAAATCAGAGGCCGTACATCACCAAGTCATAGATGTCTTGACGC CGCTCTTCAAAATTATTGGAGATGAGATTGGGTTACGGTTGCCACAAAAACTAAACGAGATCAAACAATT TATCCTTCAAAAGACAAACTTCTTCAATCCGAACAGGGAATTCGACTTCCGCGATCTCCACTGGTGCATT AACCCACCTAGTAAGATCAAGGTGAATTTTACTAATTACTGCGATACTATGGGGATCAGAAAATCTATTG CATCGGCAGCAAATCCCATCCTTTTATCAGCACTCTCCGGAGGTAGAGGTGACATATTCCCACCATACAG ATGCAATGGAGCTACTATTTCAGTAGGCAAGATTTTCCCCCTATCAGTATCATTATCTATGTCTTTGATC TCAAGAACATCAGAGATAATCAATATGCTAACCGCTATCTCAGACGGAGTGTATGGTAAAACTTATTTAC TAATGCCTGATTATATTGAAGGGGAGTTCGACACGCAAAAGATTCGAGTCTTTGAGATAGGGTTCATCAA ACGGTGGCTGAATGACATGCCATTACTCCAGACAACCAACTATATGGTCCTCCCAGAGAATTCCAAAGCT AAGGTATGTACTATAGCAGTGGGCGAGTtGACACTGGCTTCTTTGTGTGTAGGTGAGAGCACCGTATTGT TATATCATGACAGCAATGGTTCACAAGATGGTATTCTAGTAGTGACGCTGGGAATATTCGGGGCAACATC TATGGATCAAGTTGAAGAGGTGATACCTGTCGCTGACCCATTAGTAGAAAAAATACATATAACAAATCAC CGCGGGATCATAAAAGATTCAATAGCAACCTGGATGGTGCCTGCATTAGTTTCTGAGAAACAAGAGGAAC AAAAAAATTGTCTGGAGTCAGCTTGTCAAAGAAAATCCTACCCTATGTGCAATCAAACGTCATGGGAACC CTTTGGAGGAGGACAGTTGCCATCTTATGGGCGGTTGACATTACCTCTAGATCCAAGCATTGACCTTCAA CTTAACATATCATTTACATACGGTCCGATTATACTGAATGGGGACGGTATGGATTATTATGAGAGCCCAC TGTTGGACTCCGGATGGCTTACCATTCCTCCCAAGAACGGAACAGTCCTTGGATTGATAAACAAAGCAAG TAGAGGAGACCAGTTCACTGTAATCCCCCATGTGTTGACATTTGCGCCCAGGGAATCAAGTGGAAATTGT TATTTACCTATTCAAACATCCCAGATTATGGATAAAGATGTCCTTACTGAGTCCAATTTAGTGGTGTTGC CTACACAGAATTTTAGATATGTCGTAGCAACATATGATATATCTCGGGACGATCATGCGATTGTTTATTA TGTITATGACCCAATACGGACGATTTCTTATACGTACCCATTTAGACTAACTACTAAGGGTAGACCTGAT TTCTTAAGGATTGAGTGTTTTGTGTGGGATGACGATTTGTGGTGTCACCAGTTTTACCGATTCGAGGCCG ACATCACCAACTCTACAACCAGTGTCGAGAATTTAGTCCGTATGAGATTCTCATGTAACCGTTCCAGACC TTGA (SEQ ID NO: 43)

MLSYQDKVGAFYKDNARANSSKLSLVTEEQGGRRPPYLLFVLLILLVGILALLAITGVRFHQVSS NVEFSRLLKEDMEKSEAVHHQVIDVLTPLFKIIGDEIGLRLPQKLNEIKQFILQKTNFFNPNREF DFRDLHWCINPPSKIKVNFTNYCDTIGIRKSIASAANPILLSALSGGRGDIFPPYRCSGAATSVG RVFPLSVSLSMSLISRKSEIINMLTAISNGVYGKTYLLVPDYIEEEFDTQKIRVFEIGFIKRWLN DMPLLQTTNYMVLPENSKAKVCTIAVGELTLASLCVGESTVSLYHDSNGSQDSILAVTLGIFGAT SMDQVEEVIPVAHPSVEKIHITNHRGFIKDSIATWMVPALVSEKQEEQKNCLESACQRKSYPMCN QTSWEPFGGGQLPSYGRLTLPLDPSTDLQLNISFTYGPVILNGDGMDYYESPLSDSGWLTIPPKN GTVLGLINKASRGDQFIVIPHVLTFAPRESSGNCYLPIQTSQIMDKDVLTESNLVVLPTQNFRYV IATYDISRDNHAIVYYVYDPIRTISYTYPFRLTTKGRPDFLRIECFVWDDDLWCHQFYRFEADIN STTSVENLVRIRFSCNRSRP (SEQ ID NO: 44)

Fig. 39

MLSYRDKVGAFYKDNARANSSKLSLVTEEQGGRRPPYLLFVLLILLVGIMALLAITGVRFHQVST SNMEFSRLLKEDLEKSEAVHHQVIDVLTPLFKIIGDEIGLRLPQKLNEIKQFILQKTNFFNPNRE FDFRDLHWCINPPSKIKVNFTNYCDTMGIRKSIASAANPILLSALSGGRGDIFPPYRCNGATISV GKIFPLSVSLSMSLISRTSEIINMLTAISDGVYGKTYLLMPDYIEGEFDTQKIRVFEIGFIKRWL NDMPLLQTTNYMVLPENSKAKVCTIAVGELTLASLCVGESTVLLYHDSNGSQDGILVVTLGIFGA TSMDQVEEVIPVADPLVEKIHITNHRGIIKDSIATWMVPALVSEKQEEQKNCLESACQRKSYPMC NQTSWEPFGGGQLPSYGRLTLPLDPSIDLQLNISFTYGPIILNGDGMDYYESPLLDSGWLTIPPK NGTVLGLINKASRGDQFTVIPHVLTFAPRESSGNCYLPIQTSQIMDKDVLTESNLVVLPTQNFRY VVATYDISRDDHAIVYYVYDPIRTISYTYPFRLTTKGRPDFLRIECFVWDDDLWCHQFYRFEADI TNSTTSVENLVRMRFSCNRSRP (SEQ ID NO: 45)

Fig. 40

IMMUNOGENIC COMPOSITIONS, VACCINES AND DIAGNOSTICS BASED ON CANINE DISTEMPER VIRUSES CIRCULATING IN NORTH AMERICAN DOGS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. provisional patent application 61/148,791, filed Jan. 30, 2009, the complete contents of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention generally relates to newly identified isolates of canine distemper virus (CDV). In particular, the invention provides improved CDV immunogenic compositions, vaccines and diagnostics that contain or take into account these newly discovered isolates, and describes a systematic protocol for selecting, based on genetic makeup, broad spectrum isolates for use in immunogenic compositions, vaccines and diagnostics.
2. Background of the Invention

Canine distemper virus (CDV) is a single-stranded RNA Morbillivirus that affects dogs of all ages. CDV causes a multi-systemic infection that may involve the ocular, respiratory, gastrointestinal, integument and nervous systems, and is usually rapidly fatal. While the disease is a devastating problem for dogs, other species are also susceptible to the virus, for example, raccoons, foxes, coyotes, wolves, various fur-producing animals, and large non-domestic cats such as lions, leopards, cheetahs, and tigers. In the past, vaccines have proven to be effective in reducing the incidence of CDV infection. However, there appears to be a resurgence of the incidence of CDV, even in fully vaccinated animals.

The hemagglutinin (H) protein of CDV is a viral surface protein that is involved in host cell-virus binding, and mutations in the protein affect host cell-virus interactions. H protein is considered to be a virulence factor for CDV. The H protein displays significant (e.g. about 10%) variation in amino acid sequence among CDV isolates, and phylogenetic analysis of this variation serves as the basis for the division of viral isolates into seven lineages: American-1, American-2, Arctic-like, Asia-1, Asia-2, Europe, and European wildlife (McCarthy, A. J., M. A. Shaw, and S. J. Goodman. 2007. Proc. Biol. Sci. 274:3165-3174). Antibodies to H protein provide protection against infection, and are thus the likely basis for vaccine efficacy. However, antibodies do not necessarily cross-react between lineages. Hence, vaccines based on a particular isolate may or may not provide the vaccine recipient with protection against infection with other isolates. This is particularly problematic given 1) the high rate of mutation exhibited by RNA viruses such as CDV and 2) the increase in the global transport of dogs from one country to another, which fosters the introduction of new lineages into territories where they were previously unknown. Further, for dogs vaccinated with a particular CDV isolate, exposure to a genetically distant CDV may lead to sequestration of the incoming CDV virus in immunologically privileged sites (e.g. brain, ganglion, spinal cord, central, autonomic nervous systems, nasal plenum and bladder epithelium), allowing the propagation and spread of the genetically distant CDV without detection, since neurological symptoms may be overlooked by veterinary practitioners due to lack of sensitivity of the diagnostic tests and expense of long term treatment of a neurological patient.

Unfortunately, CDV vaccines currently in use have not been updated for about 60 years (Woma et al., 2010. Phylogenetic analysis of the hemagglutinin gene of the current wild-type canine distemper viruses from South Africa:Lineage Africa.Vet. Microbiol. doi:10.1016/jvetmic.2009.11.013) and have not kept pace with these changes. The use of these outdated vaccines is the likely cause of recent outbreaks of CDV infection, since these vaccines may not provide protection against infection with newly emerging lineages of CDV. Moreover, PCR sequencing has revealed that the vaccine isolate used in one commercial vaccine was misidentified (Demeter et al., 2009: Controversial results of the genetic analysis of a canine distemper vaccine strain. Vet. Microbiol. Published Online), further complicating the problem of determining how to best detect, monitor, and prevent CDV infection and transmission.

Clearly, epidemiological studies to investigate the rise in CDV clinical cases are warranted, as is the development of new immunological and vaccine compositions and diagnostic methods that take into account emerging isolates of CDV.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides newly identified isolates of canine distemper virus (CDV). Accordingly, the present invention further provides updated immunogenic compositions and vaccine compositions. The vaccine compositions of the present invention are designed to provide broad-spectrum protection against emerging forms of CDV. In addition, the present invention provides updated diagnostic methods and kits for detecting CDV infection. The diagnostic methods and kits provide the ability to detect the newly evolved forms of the virus. The compositions and diagnostic methods and kits of the present invention are based, at least in part, on the discovery of previously unknown CDV variants, and take into account the emergence of mutant forms of the virus for which prior vaccine formulations and diagnostics are inadequate.
In a further aspect, the present invention provides a systematic method for selecting an antigen, e.g., a pathogenic isolate or portion thereof, that correspond to the genetic makeup of a broad spectrum of the source of the antigen, e.g. pathogen isolates or portion thereof, for use in such compositions and diagnostics.

The present invention further provides an isolated canine distemper virus (CDV) of European wildlife (EW) lineage comprising the characteristics of CDV 9041474B CDV-EW (ATCC Deposit No. PTA-10596). In another embodiment, the invention provides an attenuated strain of CDV isolated in cell cultures in which CDV strain CDV 9041474B CDV-EW (ATCC Deposit No. PTA-10596), or a progeny strain thereof, has been propagated. In a particular embodiment of this type, the attenuated strain of CDV may be plaque-purified. In yet another embodiment, the invention provides an immunogenic composition or vaccine, comprising the isolated CDV comprising the characteristics of CDV 9041474B CDV-EW (ATCC Deposit No. PTA-10596), or progeny thereof.

In still another embodiment, the invention provides an isolated canine distemper virus (CDV) of American-2 (AM2) lineage having the characteristics of CDV 08021509 CDV-AM-2 (ATCC Deposit No. PTA-10597). In yet another embodiment, the invention provides an attenuated strain of CDV isolated in cell cultures in which CDV strain CDV 08021509 CDV-AM-2 (ATCC Deposit No. PTA-10597), or a progeny strain thereof, has been propagated. In a particular embodiment of this type, the attenuated strain of CDV may be plaque-purified. In a further embodiment, the invention pro-
vides an immunogenic composition or vaccine comprising the isolated CDV having the characteristics of CDV 08021509 CDV-AM-2 (ATCC Deposit No. PTA-10597), or progeny thereof.

The present invention also provides methods of eliciting an immune response to canine distemper virus in a subject in need thereof. One such method comprises administering to the subject an immunogenic composition or vaccine comprising an isolated CDV comprising the characteristics of CDV 9041474B CDV-EW (ATCC Deposit No. PTA-10596), or progeny thereof. In another such embodiment, the method comprises administering to said subject the immunogenic composition or vaccine comprising the isolated CDV having the characteristics of CDV 08021509 CDV-AM-2 (ATCC Deposit No. PTA-10597), or progeny thereof.

The present invention also provides diagnostic kits. One such embodiment comprises oligonucleotide primers specific for amplifying a nucleotide sequence as set forth in SEQ ID NO: 42. In another embodiment, the diagnostic kit comprising oligonucleotide primers specific for amplifying a nucleotide sequence as set forth in SEQ ID NO: 43. Those of skill in the art will recognize that such primers are based on the nucleotide sequence of a nucleotide sequence of interest that is to be amplified (e.g. a sequence that is targeted). In some embodiments, primers are homologous to or complementary to unique sequences of the target sequence.

The present invention further provides the recombinant and/or isolated nucleic acid molecules of the present invention. One such nucleic acid encodes the amino acid sequence of SEQ ID NO: 44, and/or the nucleic acid complement thereof. In another such embodiment, the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO: 42, and/or the complement thereof. In still another such embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence that has greater than 99.5% identity to that of SEQ ID NO: 42, and/or to the complement thereof.

In still another embodiment, the recombinant and/or isolated nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 45, and/or the nucleic acid complement thereof. In yet another embodiment, the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO: 43, and/or the complement thereof. In still another such embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence that has greater than 95% identity to that of SEQ ID NO: 43, and/or to the complement thereof.

The present invention further provides expression vectors that can comprise any of the isolated nucleic acid molecules of the present invention. In one such embodiment the expression vector comprises the isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 44, and/or the complement thereof. In yet another embodiment, the invention provides an expression vector that comprises an isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 45, or the complement thereof.
The present invention further provides immunogenic compositions and vaccines that can comprise any of the expression vectors of the present invention. In one such embodiment the immunogenic composition or vaccine comprises an expression vector that comprises the isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 44, and/or the complement thereof. In another embodiment the immunogenic composition or vaccine comprises an expression vector that comprises the isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 43, and/or the complement thereof.

The present invention further provides all of the isolated and/or recombinant proteins, polypeptides, peptides, fusion
proteins and chimeric proteins of the present invention. In one such embodiment the polypeptide comprises the amino acid sequence of SEQ ID NO: 44. In another such embodiment that polypeptide is encoded by the nucleotide sequence of SEQ ID NO: 42.
In a further embodiment, the present invention provides immunogenic compositions and vaccines comprising CDV virions that encode a hemagglutinin protein. In related embodiments, the hemagglutinin can be partially encoded by a nucleic acid that comprises a nucleotide sequence as set forth in SEQ ID NOS: 1-33. In still other related embodiments, the present invention provides methods of eliciting an immune response to canine distemper virus in a subject in need thereof by administering to the subject one or more of such immunogenic compositions or vaccines.

The present invention further provides a method of selecting one or more isolates of a pathogen for use in immunogenic compositions, wherein the isolate(s) utilize(s) one or more of a most frequently used codon to encode a selected immunogenic protein, polypeptide or peptide of interest. One such method comprises the steps of 1) determining, for each isolate in a plurality of pathogen isolates, a nucleotide sequence encoding said selected immunogenic protein, polypeptide or peptide of interest; 2) for nucleotide sequences obtained in the determining step, obtaining codon usage data for one or more amino acid residues of interest in said immunogenic protein, polypeptide or peptide of interest, whereby data for frequency of codon usage is obtained; 3) identifying, from said data for frequency of codon usage, a most frequently used codon for each of said amino acid residues of interest in the immunogenic protein, polypeptide or peptide of interest; and 4) selecting, from among the plurality of pathogen isolates, one or more isolates that utilize(s) one or more of the most frequently used codons to encode the protein, polypeptide or peptide of interest. In one embodiment of the invention, the pathogen is a canine distemper virus.
In yet another embodiment, the invention provides a method of selecting one or more nucleotide sequences for a nucleic acid (which may be from an isolate of a pathogen) for use in immunogenic compositions. The nucleic acid utilizes one or more of a most frequently used codon to encode a selected immunogenic protein, polypeptide or peptide of interest. The method comprises the steps of 1) determining (e.g. from a plurality of pathogen isolates) a plurality of nucleotide sequences which encode the selected immunogenic protein, polypeptide or peptide of interest; 2) for nucleotide sequences obtained in the determining step, obtaining codon usage data for one or more amino acid residues of interest in said immunogenic protein, polypeptide or peptide of interest, whereby data for frequency of codon usage is obtained; 3) identifying, from the data for frequency of codon usage, a most frequently used codon for each of the amino acid residues of interest in the immunogenic protein, polypeptide or peptide of interest; and 4) selecting, from among the plurality of nucleotide sequences, the nucleotide sequence(s) that utilize(s) one or more of the most frequently used codons to encode the protein, polypeptide or peptide of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Isolate 07091030 (SEQ ID NO: 1, nucleotides (nt) 438-1302 of H gene of CDV). This isolate is from a dog with a history of seizures and exhibiting neutrophils with multiple, intra-cytoplasmic inclusions. This CDV isolate formed large, multi-nucleated, syncytia in a Vero cell line expressing canine signaling lymphocyte-activation molecule (Vero+SLAM).

Based on the H protein sequence, this is a European wild life lineage isolate. This CDV isolate may be particularly useful, for example, as a challenge virus.

FIG. 2. Isolate 07091031 (SEQ ID NO: 2, nt 440-1494 of H gene).

FIG. 3. Isolate 07091032 (SEQ ID NO: 3, nt 440-1225 of H gene).

FIG. 4. Isolate 07101508 (SEQ ID NO: 4, nt 427-1335 of gene). This isolate has high identity with European wildlife (EW) genetic lineage but is from a dog from Southern California with a history of Ondersteport vaccination. This isolate produces large syncytia in Vero+SLAM cells. The isolate has high identity with CDV from the lesser panda and Danish mink but is not closely related to the Ondersteport vaccine isolate.

FIG. 5. Isolate 07100609 (SEQ ID NO: 5, nt 833-1213 of N gene). The sequence of the nucleocapsid encoding genes of this CDV-like virus from a marine mammal (seal), matches canine isolate 164071 from the US (EU716337).

FIG. 6. Isolate 07110098 (SEQ ID NO: 6, nt 439-1286 of H gene).

FIG. 7. Isolate 07111080 (SEQ ID NO: 7, nt 630-1501 of H gene).

FIG. 8. Isolate 08010939 (SEQ ID NO: 8, nt 443-1343 of H gene).

FIG. 9. Isolate 08011277A (SEQ ID NO: 9, nt 423-1556 of H gene).

FIG. 10. Isolate 08011277B (SEQ ID NO: 10, nt 1530-410 of H gene).

FIG. 11. Isolate 08011277C (SEQ ID NO: 11, nt 433-1230 of H gene).

FIG. 12. Isolate 08011277D (SEQ ID NO: 12, nt 833-1578 of nucleocapsid gene). The H gene of this isolate could not be amplified. Lack of amplification indicates genetic variation (and hence, lack of homology) in the primer binding sequences. The nucleocapsid gene sequence matches that of a CDV isolate.

FIG. 13. Isolate 08011671 (SEQ ID NO: 13, nt 422-1589 of H gene).

FIG. 14. Isolate 08021509 (SEQ ID NO: 14, nt 441-686 of 40 H gene).

FIG. 15. Isolate 08030074 (SEQ ID NO: 15, nt 447-1282 of H gene).

FIG. 16. Isolate 08030776 (SEQ ID NO: 16, nt 422-1541 of H gene).

FIG. 17. Isolate 08030777 (SEQ ID NO: 17, nt 411-1537 of H gene).

FIG. 18. Isolate 08031346 (SEQ ID NO: 18, nt 436-1059 of H gene).

FIG. 19. Isolate 08040383 (SEQ IDNO: 19, nt 1486-620 of 50 H gene).

FIG. 20. Isolate 08050180A (SEQ ID NO: 20, nt 418-1552 of H gene).

FIG. 21. Isolate 08060351 (SEQ ID NO: 21, nt 412-1536 of H gene).

FIG. 22. Isolate 08060352 (SEQ ID NO: 22, nt 408-1553 of H gene).

FIG. 23. Isolate 08080696 (SEQ ID NO: 23, nt 423-726 of H gene).

FIG. 24. Isolate 08080941 (SEQ ID NO: 24, nt 387-1522 of 60 H gene).

FIG. 25. Isolate 08081112 (SEQ IDNO: 25, nt 411-1207 of H gene).

FIG. 26. Isolate 08120827 (SEQ ID NO: 26, nt 413-1535 of H gene). FIG. 27. Isolate 08120857 (SEQ ID NO: 27, nt 724-1522 of H gene).

FIG. 28. Isolate 09011024 (SEQ ID NO: 28, nt 578-1613 of H gene).

FIG. 29. Isolate 09020504-3 (SEQ ID NO: 29, nt 418-1549 of H gene).

FIG. 30. Isolate 09041289 (SEQ ID NO: 30, nt 889-1646 of H gene)

FIG. 31. Isolate 09041303 (SEQ ID NO:31, nt 394-1526 of H gene).

FIG. 32. Isolate 09041474A (SEQ ID NO: 32, nt 410-1539 of H gene). Fully vaccinated dogs (two vaccinations with commercial Ondersteport CDV vaccine) in a large shelter in Tennessee developed upper respiratory tract disease, high fevers, green nasal discharge, cough, and eventually neurological symptoms, e.g. twitching. About 20 out of 55 dogs died, including the 4 month old female from which isolates 09041474 A and 09041474 B (see FIG. 37) were obtained.
FIG. 33. Isolate 09040826 (SEQ ID NO: 33, nt 418-1546 of H gene).

FIGS. 34A-F. Codon table showing canine distemper virus hemagglutinin (H) codon sequences from field isolates aligned with CDV-H vaccine and reference strain codon sequences using BioEdit program. Sequences: Ondersteport=CDV vaccine sequence; AY964110=reference European wildlife (EW) strain); AF112189-reference American-2 (AM-2) strain; AY962112-reference Arctic (Ar) strain. Differences in codons are shaded.
FIG. 35. Phylogenetic tree showing genetic relatedness of the many recent United States CDV isolates in the United States and GenBank reference sequences (underlined). The phylogenetic tree was constructed using MEGA4.1 program (available free of charge at the website located at megasoftware.net; Tamura K, Dudley J, Nei M \& Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599).

FIG. 36. Blood film showing erythrocyte inclusions of CDV from a CDV infected dog (OADDL:07091030). CDV inclusions (arrows) are visible within a neutrophil and a lymphocyte. (Aqueous Romanowsky stain; bar $=10$ microns).

FIG. 37. Complete sequence of H gene from 09041474B (SEQ ID NO: 42), including stop codons.

FIG. 38. Complete sequence of H gene from 08021509 (SEQ ID NO: 43), including stop codons.

FIG. 39. Complete amino acid sequence of H protein from 09041474B (SEQ ID NO: 44).

FIG. 40. Complete amino acid sequence of H protein from 08021509 (SEQ ID NO: 45).

DETAILED DESCRIPTION

The present invention provides compositions that elicit an immunogenic response to CDV , vaccine compositions designed to provide protection against CDV infection, and CDV diagnostics. The compositions contain newly discovered CDV variants. The new variants reflect the evolutionary trends of CDV, and provide an indication of the predominant CDV strains currently circulating in the United States. The variants were, in part, isolated from dogs that had already been vaccinated for CDV, but which nevertheless contracted CDV and became ill, i.e. the dogs were the victims of vaccine failure. In order to stop or curtail the spread of CDV and to prevent vaccine failure, one or more of these new variants should be incorporated into new vaccine protocols. The invention also provides new diagnostic methods for detecting the new CDV isolates, and for differentiating between canine distemper caused by vaccine administration and canine distemper caused by an emerging virus which was not included
in the vaccine, and against which the vaccine did not provide protection. In addition, the invention provides a method of analyzing RNA virus field isolates and emerging pathogens in order to determine which isolates are likely to be useful for inclusion in broad-spectrum immunogenic and vaccine compositions.

Several of the new isolates belong to the European wildlife CDV lineage; others belong to the American-2 (AM-2) and Arctic genetic lineages. 34 CDV viruses have been isolated, propagated in cell culture and the H genes of the viruses have been partially or fully sequenced. These viruses were from various states in the US (e.g. Oklahoma, Florida, Georgia, California, Missouri, Texas, Kansas and Tennessee). FIGS. 1-33 show partial sequences of cDNA complementary to the H gene from the isolates; FIGS. 37 and $\mathbf{3 8}$ show the complete H gene sequence for isolates 09041474 B and 08021509 , respectively, including stop sequences (TGA for both); and FIGS. 39 and 40 show the corresponding amino acid sequences of the H protein from isolates 09041474 B and 08021509 , respectively. In the amino acid sequences, the amino acid as position 5 in the sequence from 09041474 B is glutamine, and amino acid at position 5 in the sequence from 08021509 is arginine.

The present invention also provides recombinant and/or isolated nucleic acids that encode any of the H-proteins of the present invention, but which do not include the signal sequence (the first 12 amino acid residues at the amino terminus of the H protein) and/or the stop codon and/or comprise an alternative signal sequence and/or an alternative stop codon. Expression vectors comprising such nucleic acids are also included in the present invention, as are the expressed recombinant polypeptides (including isolated recombinant polypeptides) that these nucleic acids encode.

FIGS. 34A-F show CDV hemagglutinin (H) sequences from several of the field isolates aligned with CDV-H vaccine sequences and reference strains. An analysis of this data served as the basis for the development of the Relative Preferred Codon Usage (RPCU) method/concept of analysis and selection of broad spectrum pathogen isolates for use in vaccines. The method is based on the newly recognized patterns of RPCU in pathogens, as disclosed herein. While the method is widely applicable to many pathogenic organisms (discussed in detail below), herein, an exemplary use for the analysis of RNA virus isolates is described. As used herein, an "isolate" (e.g. which may be a pathogen, such as, for example an RNA virus) has been substantially isolated and purified from a biological sample, and may have been subjected to passage and/or propagation in a suitable cell culture. Alternatively, the isolate may have been obtained from a pure culture, e.g. from an ATCC deposit.

In order to practice the method of RPCU, a representative number of isolates of interest are isolated from biological samples of animal subjects (including humans) obtained in one or more populations of interest. The isolates can be obtained within a given geographical region or area of interest, and/or from animal subjects suspected of harboring the pathogen. Suitable biological samples are those with the highest concentrations of the virus collected during the acute stage of pathogen infection, and include various tissue samples, bodily fluids or excreted substances (phlegm, saliva, blood, urine, stool, swabs [a generic term for many types of samples], etc.). Examples of suitable pathogens (e.g. emerging pathogens), which can be analyzed by RPCU include but are not limited to: various viruses such as RNA viruses, single-stranded DNA viruses, influenza viruses, HIV virus, etc.: various bacterial pathogens such as Mycobacteria, Yersinia, Rickettsia and Bartonella species; various fungi; and
various protozoan pathogens such as Malaria, Trypanosoma, Toxoplasma, Entamoeba, Giardia, and Cryptosporidia species, etc. Those of skill in the art will recognize that a "representative number" of isolates of a pathogen may vary, but will generally be in the range of at least $20-25$, usually at least $30-35$, and may be any number of isolates (or sequences) without limit, depending on the availability of biological samples, the availability of resources that can be directed to the effort, etc.

A "population of interest" will generally be a population of individuals that are susceptible to a pathogen of interest, and may include individuals that exhibit disease symptoms when infected with the virus, or may be "carriers" who harbor the virus with few or no symptoms, but which are nevertheless infected with the pathogen.
A geographical area or region of interest may be, for example, a region or area bounded by geographical and/or legal boundaries, for example, a country, continent, state, county, etc.; or regions separated by geographical barriers such as bodies of water (rivers, lakes, oceans, etc.), mountain ranges, deserts, etc.; or regions/areas with a common climate or weather pattern, e.g. similar average temperature or rainfall, presence or absence of snow and ice, etc.
At least one protein, polypeptide or peptide of interest common to all isolates is selected for detailed gene sequence analysis. Generally, such a protein, polypeptide or peptide of interest is one that is known to be immunogenic. By immunogenic, it is meant that the protein, polypeptide or peptide elicits an immune response (e.g. the production of antibodies) in a host when the protein, polypeptide or peptide if present in the host (e.g. when a pathogen comprising the protein, polypeptide or peptide infects a host). Major immunogens can be determined by any of several methods known to those of skill in the art, including by Western blot analysis of serum from a convalescent patient that has recovered and is protected from further infection with the pathogen. Those of skill in the art will recognize that one or more than one such proteins, polypeptides or peptides may be analyzed using RPCU, but at least one is selected. Otherwise, more can be systematically selected for analysis but the one that is predominant based on, for example, Western blot analysis can be a good starting point. An unknown immunogenic protein can be sequenced by MALDI-TOFF. This helps to design the primers to amplify the sequences.

After selection of a suitable protein, polypeptide or peptide, the nucleotide sequence encoding the protein, polypeptide or peptide is determined using techniques that are well established, e.g. polymerase chain reaction (PCR) sequencing, etc. Alternatively, the sequences that are compared using this method may be obtained directly from biological samples without isolation of the virus, or they may be known sequences obtained from a database (e.g. GenBank or others).

The nucleotide sequences are then subjected to analysis to identify triplet codons and to align the codons in the correct translation (reading) frame. Sequence analysis may be conducted with any of the many nucleotide analysis programs, including but not limited to CLUSTAL W analysis using BioEdit software, the Multiple Sequence Alignment Program (MAP) provided by the Baylor School of Medicine, etc. Usually, the sequences that are analyzed are cDNA sequences, although the method is not limited to the use of cDNA, e.g. DNA, RNA, etc. may also be analyzed. Optionally, the corresponding sequence from one or more reference sequences (e.g. RNA virus reference strains) is included in the analysis. Generally, a reference strain will represent, for example, a pathogen type (e.g. a virus lineage) which was previously dominant (e.g. present at a high frequency) in the population
and/or region under consideration. Such a reference strain may be, for example, an RNA virus that has been used in a vaccine against infection with the RNA virus. The preferred candidates for reference sequences are those which display the highest levels of homology and identity with both nucleotide and protein sequences of the pathogens (e.g. emerging pathogens), when analyzed using, for example, BLASTn and BLASTp programs. The level of homology and/or identity will be at least about 90% or 95%, or even at least about 99% or greater.

The triplet codons specifying the amino acids from the isolates (and, optionally, of one or more reference sequences) are aligned in frame in a format that may be readily compared, including but not limited to in tabular form, for example, in an Excel table. Those of skill in the art are well aware that the triplet code is redundant, and that more than one codon can encode the same amino acid. For each position corresponding to an amino acid residue in the protein, polypeptide or peptide of interest, the identity of the three nucleotides encoding the residue from each isolate is noted and compared across all isolates. For example, in a hypothetical protein of interest, if position 50 is a leucine, possible codons for this residue include tta and ttg . The actual codon at position 50 of all isolates is noted and compared to the codon present at all other isolates. From this comparison, the Relative Preferred Codon Usage (RPCU) can be determined. For example, if 75% of the isolates use "tta" to encode the Leu residue and 25% of the isolates use "ttg", then the RPCU value of tta is 75% and that of ttg is only 25%. Thus, tta is the preferred (i.e. the most frequently occurring or used) codon at that residue. In this manner, the most frequently used or preferred codon for each residue of interest of the sequence of interest is determined. The analysis may be carried out for all residues of a sequence, or for only a subset of residues, e.g. residues that are known to be involved in crucial pathogen activities or which are known to be part of an epitope or antigenic region, or which associated with virulence, etc.

The goal of the RPCU method is to identify isolates with nucleotide sequences which possess a high percentage of preferred codons for use in broad-spectrum vaccine preparations. This can be accomplished by any of several means. For example, a theoretical "ideal" sequence comprising only the most preferred codons can be determined and the actual sequences of the isolates can be compared to the theoretical sequence. The level of homology between each isolate and the ideal sequence is calculated. The isolate that displays the highest level (e.g. amount, percentage, etc.) of homology to the ideal sequence will be the isolate that utilizes the highest number of preferred codons. This isolate is the best "fit" to the ideal, and is selected as a vaccine component. Alternatively, an ideal sequence may not be determined but codon usage at each position is tabulated or calculated as described above, and a comparison is made among sequences by other methods that will occur to those of skill in the art, e.g. by simple visual inspection, to identify a sequence from an isolate that utilizes a very high level, or the highest level, number of preferred codons.

Without being bound by theory, this selection is consistent with the understanding that when a mutation occurs in the three-nucleotide sequence that encodes a residue, that mutation is likely to be perpetuated or to become widespread only if pathogens (e.g. RNA viruses) containing the mutation have some selective advantage over pathogens which do not contain the mutation. For example, some codons are translated more rapidly or with greater accuracy than others, and pathogens with such mutations may reproduce and infect new hosts more successfully than non-mutant pathogens. Therefore,
these codons are eventually present more frequently in a population of pathogens due to natural selection. An isolate with a high percentage of frequently used codons likely possesses the cumulative advantages associated with the codons, and is likely to display the favorable characteristics of afforded by the codons, and thus, when included in a vaccine preparation, is likely to provide broad-spectrum protection. RPCU takes into consideration the internal protein epitopes of pathogens (such as viruses) that interact with the genomic nucleic acids (Pepin K M, J Domsic, and R McKenna. 2008. Genomic evolution in a virus under specific selection for host recognition. Infection, genetics, and evolution: 825-834).

RPCU impacts biological functions of RNA viruses such as CDV. The codons (triplet of nucleotides) are the most basic biological unit because they encode amino acids, which form the functional units of protein, including epitopes (e.g. about 6-7 amino-acids) and antigenic regions, or sequence motifs, which are directly involved in eliciting a host immune response to antigenic proteins, such as the H protein of CDV. Thus, the selection of CDV isolates based on RPCU reflects a phenotype/function of the virus, such as gene expression, H-protein expression and titers of the virus. Codon usage can also affect the breadth of protein expression and hence influence the tissues in which the virus or a protein is expressed. In a preliminary analysis, a gel-based PCR analysis of H protein expression by CDV showed that most American-2 isolates had uniformly lower (about 8-10 fold lower) H-gene PCR product expression, compared to most EW isolates. This result likely reflects the robust and biologically favorable H -gene codon composition in most EW CDV isolates, which leads to a higher frequency of EW CDV isolates in canine populations. An application of this method to CDV RNA viruses is presented in Example 4 below.

Those of skill in the art will recognize that computer implemented software (a computer program) may be developed to implement the RPCU method. Such software includes or encodes instructions for causing a computer to carry out the RPCU method, and may include, for example, means for entering sequences and other relevant data (e.g. name of isolate, codon alignment features, etc.), means for displaying entered data, means for representing the results of the analysis (e.g. a display on a screen, or a printout ["hard copy"] of the results in a suitable form, e.g. as a sequence, as one or more numerical indicators (such as "sequence \#4" or " $\# 4$ " as the best result), in graphical form, tabular form, etc.). Means for statistical analyses may also be included in the computer program, and the analysis may provide gradations of results, i.e. the program may rank the candidate sequences in terms of those that are likely to be the most suitable to those that are the least likely, and/or may simply provide one or more highest ranking (most suitable) sequences. The computer program may include instructions for carrying out an algorithm that is used to carry out the analysis.

The RPFU method is thus a method of selecting and/or obtaining an isolate of a pathogen for use in immunogenic compositions and vaccines. Such an isolate can be selected or otherwise obtained (e.g., through modification by standard genetic engineering techniques), which has preferred codons that encode a protein, polypeptide or peptide (usually an immunogen) of interest.

The RPFU method may include steps of: obtaining a plurality of isolates of the pathogen (e.g. an RNA virus) from biological samples from a plurality of different animals infected with the pathogen; selecting an immunogenic protein, polypeptide or peptide of interest associated with the RNA virus; determining a nucleotide sequence encoding the immunogenic protein, polypeptide or peptide of interest for
each isolate of the plurality of isolates; identifying, in each of the nucleotide sequences encoding the immunogenic protein, polypeptide or peptide of interest, codons encoding amino acid residues of interest in the immunogenic protein, polypeptide or peptide of interest; determining, by comparing the nucleotide sequences encoding the immunogenic protein, polypeptide or peptide of interest, frequency of codon usage data for each of the amino acid residues of interest in the immunogenic protein, polypeptide or peptide of interest; from said frequency of codon usage data, identifying a most frequently used codon for each of the amino acid residues of interest in the immunogenic protein, polypeptide or peptide of interest; and selecting, from among the plurality of isolates of the pathogen, an isolate that utilizes one or more of the most frequently used codons to encode the protein, polypeptide or peptide of interest. In some RNA viruses, quasi-populations of the immunogen may be analyzed by RPCU software.

FIG. 35 shows a phylogenetic tree of the genetic relatedness of the isolates, based on the sequence of the H gene. In the tree, a very close related population of CDV isolates has emerged, a "predominant CDV population" that belongs to the European wild-life lineage. These European wild-life viruses can be checked by challenge with other minor CDV viruses of two other lineages, Arctic and American, i.e. the "minor CDV population". One or more broadly reactive, predominant isolates that are protective against both the European-Wildlife and one or the other (or both) of Arctic and American-2 lineage viruses can be used to make a CDV immunogenic composition for use as a vaccine that is effective against all CDV lineages currently circulating in the United States, or other suitable locations. In other words, the immunogenic compositions should elicit an immune reaction (e.g. antibody production) against European wild-life lineage viruses and against one or both of Arctic and American-2 lineage viruses. Vaccines of the invention should be protective against European wild-life lineage viruses and against one or both of Arctic and American-2 lineage viruses. The CDV used in such an immunogenic composition or vaccine contains nucleic acid sequences encoding antigens (antigenic regions, antigenic determinants, etc.) previously found only in and believed to be characteristic of European wild-life viruses, together with antigens previously found only in and believed to be characteristic of Arctic or American lineage viruses, or preferably both Arctic and American-2 lineage viruses.

One example of such a virus is isolate 09041474B, the complete hemagglutinin gene sequence of which is set forth in SEQ ID NO: 42. Several criteria were used for selection of this CDV isolate as a vaccine candidate. First, a panel of current CDV isolates was developed. (Historically, only a few isolates have been available based on published reports. Moreover, the reports to investigate the issue of CDV vaccine failure have been few.) Second, hemagglutinin sequencing and CDV genotyping were performed. Global nucleotide analysis using BALSTn, CLUSTAL-W, and phylogenetic analysis allowed clustering and characterization of CDV isolates in lineages, and 09041474 B was determined to be of EW lineage. Then, codon usage tables (shown in FIGS. 34A-F) were used to select CDV vaccine isolate 09041474 B according to the Relative Preferred Codon Usage (RPCU) analysis method described above.

The H gene sequence from isolate 09041474 B (complete sequence, FIG. 37), differs from reference EW sequence (AY964110 in FIGS. 34A-F) in several respects. Firstly, the nucleotide sequence for the H gene of AY964110 was obtained using a tissue sample, i.e. a CDV virus with this
sequence was not isolated. In contrast, the H gene sequence from 09041474B as described herein was obtained from an isolated CDV that had been grown and propagated in cell culture. The two sequences also differ in codon usage. For 09041474B, the codon at position 187 is CGA, the codon at position 201 is CTG, the codon at position 236 is CCT and the codon at position 303 is TCA. In further contrast to AY964110, in the 09041474 B sequence, the codon at position 303 encodes serine rather than leucine (see FIGS. 34A-F). Isolate 09041474 B displays robust growth in cell culture and it is possible that serine at position 303 confers advantages with respect to eliciting an immune response in subjects to whom virions with this sequence are administered. A deposit of the 09041474B CDV isolate, labeled 09041474B CDVEW (whole, live viruses at a low passage of 2-3) was made at the American Type Culture Collection (ATCC) in Manassas, Va., with deposition \#PTA-10596, deposit date Jan. 21, 2010. A second CDV isolate of interest, 08021509 (American-2, labeled 08021509 CDV-AM-2) was also deposited at ATCC with deposition \#PTA-10597, deposit date Jan. 21, 2010. Both deposits were of whole viruses. The invention includes viruses that have the characteristics of the isolates that were deposited, for example: nucleotide sequences as disclosed herein; virulence and propagation attributes; attributes of syncytia (e.g. size, shape, number, appearance ([e.g. clearly demarcated, fuzzy, etc.), number of nuclei in the syncytia, etc.; among others.

In some embodiments of the invention, a multivalent CDV immunogenic composition and/or vaccine (e.g. European wildlife and American-2) will be employed. These two CDV lineages can be combined in a single preparation or administered separately as two separate dosages, for example, if they interfere with induction of CDV immunity.
The present invention provides all of the isolates disclosed herein, as well as vaccines and immunogenic compositions made from the isolates, and/or from antigenic portions of the isolates as described herein, e.g. nucleic acids comprising the nucleotide sequences as set forth in SEQ ID NOS: 1-33 and 42-43 and/or the proteins, polypeptides, or peptides encoded therefrom. The vaccines of the invention may be formulated in any suitable manner, including but not limited to using the whole virus (e.g. killed or attenuated, as described in detail below). In this embodiment, any of the novel CD viruses disclosed herein may be used to prepare a vaccine. Generally, such viruses may be identified by isolating the virus from tissue samples from dogs with symptoms of CDV infection, especially dogs that have been previously vaccinated against CDV, and sequencing and comparing the viral genome to known sequences (i.e. compared to CDVs isolated prior to the present invention, especially to CDV isolates that are currently used in vaccines). In particular, such new virus isolates may have an H gene sequence that contains a region that is identical to or homologous to that of isolate 09041474 B (an exemplary isolate).

Generally, such viruses will have an H gene (or portion thereof) that is at least about 75%, preferably about 80%, more preferably about 85%, most preferably about 90%, or even $95,96,97,98,99$, or 100% homologous (and/or identical) to the nucleic acid sequences disclosed herein, or complements thereof. In one particular embodiment of the present invention, the CDV isolate comprises an H -gene with a nucleotide sequence, comprising greater than 99% homology (and/or identity) with SEQ ID NO: 42 (i.e., that of isolate 09041474B). In a related embodiment, the CDV isolate comprises an H -gene with a nucleotide sequence comprising greater than 99.5% homology (and/or identity) with that of SEQ ID NO: 42 (i.e., that of isolate 09041474B)

In yet another embodiment, the CDV isolate comprises an H -gene comprising a nucleotide sequence with greater than 95% homology (and/or identity) with SEQ ID NO: 43 (i.e., that of isolate 08021509). In a related embodiment, the CDV isolate comprises an H -gene comprising a nucleotide sequence with greater than 99% homology (and/or identity) with that of SEQ ID NO: 43 (i.e., that of isolate 08021509)

Alternatively, such viruses may encode H proteins containing amino acid sequences that are at least about 75%, preferably about 80%, more preferably about 85%, most preferably about 90%, or even $95,96,97,98,99$, or 100% identical to the amino acid sequence encoded by the nucleic acid sequence disclosed herein. Those of skill in the art are familiar with methods to calculate \% homology or \% identity. Such variant viruses may have H gene coding sequences that differ from those disclosed herein because of natural variations among isolates, or due to changes that are introduced deliberately e.g. by genetic engineering techniques. In other words, the viruses may be recombinant.

In other embodiments, only antigenic portions of the viruses described herein are present in the immunogenic or vaccine compositions of the invention. Such compositions may be formulated using, for example, nucleic acids encoding antigenic peptides or proteins as presented in SEQ ID NOS: 1-33 and 42-43, or antigenic epitopes or regions of peptides or proteins, from those sequences. For example, the vaccine preparations of the invention may comprise nucleic acid sequences that include the sequences set forth herein, complements thereof, and/or proteins, polypeptides or peptides encoded by such sequences. In addition, vaccines with certain variations of such sequences are also encompassed. While the sequences represent cDNA, the invention also includes corresponding ssRNA, ssDNA, double-strand (ds) DNA, dsRNA, complementary DNA, and RNA of any form (e.g. mRNA, RNA/DNA hybrids, etc.) that is based on, derived from or that complements these sequences. Such sequences may be either sense or antisense sequences. Further, sequences which display at least about 90% homology, or even about $95,96,97,98$ or 99% or greater homology to nucleic acid sequences of the CDVs disclosed herein, are also contemplated for use in the vaccines. Such sequences may differ, for example, by containing alternate codons that encode the same amino acid at one or more positions in order to maximize expression. In addition, portions of these sequences which encode epitopes or antigenic regions of e.g. the H protein are also contemplated, as are sequences which display 70%, or even more preferably about 80,90 , or 95% or even greater identity (e.g. $96,97,98$ or 99% identity) to such amino acid sequences. Generally, about $6-8$ amino acids constitute an epitope. Such sequences may vary, for example, by containing conservative or non-conservative amino acid substitutions, or deletions (especially amino or carboxy terminal deletions), or various insertions, etc., so long as the resulting protein/peptide is antigenic as described herein. Such antigenic regions are preferably at least about 10 amino acids in length, but may be much longer, e.g. encompassing an entire protein such as the H protein.

Further, nucleic acid sequences which hybridize to sequences disclosed herein (or to portions of those sequences) under stringent conditions (especially conditions of high stringency) are also contemplated. Stringent conditions refer to hybridization conditions which allow a nucleic acid sequence to hybridize to a particular sequence. In general, high stringent conditions refer to the hybridization conditions which allow a nucleic acid sequence of at least 50 nucleotides and preferably about 200 or more nucleotides to hybridize to a particular sequence at about $65^{\circ} \mathrm{C}$. in a solution
comprising about 1 M salt, preferably $6 \times$ SSC or any other solution having a comparable ionic strength, and washing at $65^{\circ} \mathrm{C}$. in a solution comprising about 0.1 M salt, or less, preferably $0.2 \times \mathrm{SSC}$ or any other solution having a comparable ionic strength. These conditions allow the detection of sequences having about 90% or more sequence identity.

Nucleic acids encompassed by the present invention, e.g. those with nucleotide sequences set forth in SEQ ID NOS: 1-33 and 42-43 (and variants thereof as described herein) may be obtained in various ways. For example, they may be obtained from natural sources such as from a viral isolate; alternatively, they may be produced synthetically. Those of skill in the art will understand that the capability exists in the art to synthetically produce very large sequences, e.g. entire viral or bacterial genomes (e.g. Mycoplasma), and the present invention encompasses sequences of any origin or manufacture that comprise the sequences disclosed herein, as well as the proteins, polypeptides and/or peptides expressed from the sequences.

The invention also provides recombinant constructs such as recombinant viruses, vectors, and expression vectors which express the proteins/polypeptides/peptides described herein (i.e. the amino acid sequences encoded by the nucleic acid sequence set forth in SEQ ID NOS: 1-33 and 42-43, or variants thereof). Such constructs include those which have been produced, for example, by cloning one or more of the sequences disclosed herein into a vector or host (e.g. plasmids, cosmids, viral vectors such as adenoviral and poxyiral vectors, or bacterial vectors, etc.).

In one embodiment, the construct is an expression vector that includes the previously noted nucleic acids and/or fragments thereof. Recombinant expression vectors used in this invention are typically self-replicating DNA or RNA constructs comprising nucleic acids encoding a CDV hemaglutimnin of the present invention and/or an antigenic fragment thereof, usually operably linked to suitable genetic control elements that are capable of regulating expression of the nucleic acids in compatible host cells. Genetic control elements may include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and a sequence that terminates transcription and translation. Expression vectors may also contain an origin of replication that allows the vector to replicate independently of the host cell. Recombinant expression vectors may be constructed by any of several means known to those of skill in the art. For example, genetic engineering techniques are known by which sequences of interest are removed e.g. from an isolate of origin such as a virus and ligated into a suitable expression vector. Alternatively, portions of an expression vector or an entire expression vector may be made synthetically; or a combination of ligation and synthesis protocols may be employed.

In addition, other useful elements may be included in the constructs described herein. For example, the constructs may encode various sequences such as histidine tags or other tags that are used to facilitate protein isolation, such as glu-tathione-S transferse (GST), and maltose binding protein; various linker or spacer sequences; various adjuvants and sequences that increase the antigenicity of the protein (e.g. haptens); sequences which introduce a desired/convenient restriction enzyme cleavage site or which encode a desired protease cleavage site; sequences encoding fluorescent or other detectable labels, or tagging or marking sequences (e.g. Green Fluorescent Protein (GFP), or portions thereof); vari-
ous sequences that direct the location, export or processing of the encoded protein (e.g. leader sequences); heterologous signal sequences (i.e. signal sequences not normally associated with CDV H protein in nature); etc. Other possibilities will occur to those of skill in the art and are also intended to be encompassed by the present invention. When such sequences are included in the constructs, if they are contiguous with the viral sequences described herein, the entire coding sequence may be translated as a fusion or chimeric protein/polypeptide/peptide, and may or may not (depending on the sequence) be susceptible to post-translational modification. The expressed recombinant proteins/polypeptides/peptides of the present invention and their corresponding fusion or chimeric proteins/polypeptides/peptides are also provided by the present invention. In particular embodiments such recombinant proteins/polypeptides/peptides and their corresponding fusion or chimeric proteins/polypeptides/peptides are also isolated.

In addition, the present invention provides host cells that comprise such expression vectors. The host cell is optionally a prokaryote or a eukaryote host cell. Expression of nucleic acids encoding a CDV hemaglutinnin of the present invention can be carried out by conventional methods in either prokaryotic or eukaryotic cells.

The vaccines and immunogenic compositions of the invention may comprise any of the sources of the sequences described herein, e.g. a virus isolate, an attenuated virus, a recombinant construct, etc. Several methods of making vaccines suitable for vaccination against CDV are known in the art. See, for example, U.S. Pat. Nos. 4,193,990 and 4,193,991 to Appel et al., U.S. Pat. No. 4,303, 645 to Carmichael et al., U.S. Pat. No. 4,971,793 to Wood et al.; U.S. Pat. No. 5,882, 652 to Valdes et al., and U.S. Pat. Nos. 5,885,585 and 5,814, 510 to Parrish et al., each of which offers variations of suitable vaccine-formulating strategies. The complete contents of each of these patents are hereby incorporated by reference. Generally, to manufacture a vaccine, a viral or other vector containing genetic sequences of the invention (either naturally, or due to genetic engineering) is employed. Examples of such viral vectors include viruses and virions (e.g. CDV) that are "killed", inactivated or otherwise attenuated so as to not cause severe disease symptoms in the animal to which it is administered, together with a suitable physiological carrier. The CDV virus can be inactivated (rendered unable to replicate) using chemicals such as formalin, binary ethylene amine, beta propriolactone, by using gamma irradiation or heat, or by other methods known in the art. Attenuation may be carried out, e.g. by repeated passage of the viral isolate in suitable host cells, and subsequent isolation of the resulting clonal isolate. In some embodiments, the attenuated virus retains the ability to replicate within the host, although this is not strictly necessary. Preferably, no disease symptoms will occur as a result of administration. However, those of skill in the art will recognize that many effective vaccine compositions cause some discomfort or relatively minor distress upon or after administration. However, the benefits of being protected against full-blown disease far outweigh this possibility. The attenuated virus may be a virus that naturally contains the nucleic acid sequence(s) of the invention (e.g. a CDV), or the virus may be recombinant in that the nucleic acid sequence is inserted into the virus by genetic engineering. In the case of recombinant vaccines, the nucleic acid sequences may be incorporated into viruses other than CDV to form heterotypic recombinant vaccines. Examples of such viruses include but are not limited to various herpesviruses, adenoviruses, poxviruses, non-pathogenic "orphan viruses", enteric viruses such as enterovirus, and others well known in the art. In
addition, expression of the H gene could be accomplished in bacterial, yeast or parasite recombinant systems. In a preferred embodiment, the virus is a live, attenuated (modified) high titer CDV, and the nucleic acid is ssRNA. In addition, other forms of the vaccine are also contemplated. For example, "empty" virion particle vaccines (without nucleic acid) are also contemplated, as are vaccines comprising antigenic virion or other CDV proteins that are not assembled into a capsid. In addition, the vaccines of the invention may be multivalent and include multiple viruses. Alternatively, a single virus genetically engineered to contain nucleic acids encoding proteins from two or more of the novel CDVs can be constructed by recombinant technology by exchanging coding regions, as is known by those of skill in the art.

The CDV that is used in the compositions described herein is generally attenuated and safe, i.e. produces no or few symptoms of disease when administered to a suitable host animal. A CDV vaccine should not elicit antibody production in cerebrospinal fluid of a host. However, administration of the attenuated CDV still results in an immune response (e.g. a protective immune response) to CDV immunogens such as the H protein. The most frequently used method for producing an attenuated live-virus vaccine is to serially passage the virus in cell culture. For example, the virus may be passaged in a primary canine cell culture or canine cell line that does not harbor an oncogene, although other cell lines may also be used (e.g. chick embryo or fibroblast, VERO-SLAM cells, baby hamster kidney cell lines, as well as other hamster cell lines (Sultan S, N T Lan, T Ueda, RYamaguchi, K Maeda, and K Kai. 2009. Propagation of Asian isolates of canine distemper virus (CDV) in hamster cell lines. Acta Veterinaria Scandinavica $51: 38$ doi: 10.1186/1751-0147-51-38), etc. Typically, for the first passage, a cell culture is infected with the selected inoculum of CDV. After obtaining clear evidence of virus replication (for example, virus-induced cytopathic effects [CPE] in the infected cells), an aliquot of the cell culture medium, or infected cells, or both, of the first passage are used to infect a second cell culture. The process is repeated until one or more mutations in the viral genome cause sufficient attenuation so that the virus can be safely used as a vaccine. The number of passages may vary somewhat e.g. at least about 20 and usually about 50 passages are used, but as many as e.g. 150 passages may be used. By then, the virus is sufficiently attenuated (i.e., reduced in virulence or diseases-producing ability) to be used in a vaccine formulation. The degree of attenuation is usually determined empirically by exposing the natural host to progressively greater passage levels of the virus.

It is also possible to attenuate the CDV viruses by repeat passages at decreasing incubation temperatures with or without mutagenic chemicals. Normally, CDV viruses are propagated at $37^{\circ} \mathrm{C}$. However, over e.g. 50 passages at successively decreasing incubation temperatures for example, clonal strains of the virus are produced which no longer have the ability to replicate at core body temperature ($37^{\circ} \mathrm{C}$.) or above. Such viruses retain the ability to multiply in areas of the body that typically exhibit lower temperature, e.g. the nasal cavity, but do not replicate at the core body temperature. For example, in one embodiment, a cold-adapted, temperature CDV propagates in tissue culture cells at temperatures from about $26^{\circ} \mathrm{C}$. to about $34^{\circ} \mathrm{C}$., but does not do so at a nonpermissive temperature of about $37^{\circ} \mathrm{C}$. (US patent application 2006121521, Dowling and Younger, the complete contents of which is hereby incorporated by reference). These viruses are therefore completely safe for use in CDV vaccines for animals, including wildlife and highly susceptible species such as large cats, mink and ferrets.

Other suitable vaccine components, e.g. pharmacologically acceptable carriers, are well-known to those of skill in the art, as is the preparation of such compositions for use as vaccines. Typically, such compositions are prepared either as liquid solutions or suspensions, however solid forms such as tablets, pills, powders and the like are also contemplated. Solid forms suitable for solution in, or suspension in, liquids prior to administration may also be prepared. The preparation may also be emulsified. The active ingredients may be mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredients. Suitable excipients are, for example, water, saline, dextrose, glycerol, and the like, or combinations thereof. In addition, the composition may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and the like. If it is desired to administer an oral form of the composition, various thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders and the like may be added. The composition of the present invention may contain any such additional ingredients so as to provide the composition in a form suitable for administration. The final amount of the translatable nucleic acid in the formulations may vary. However, in general, the amount will be from about 1-99\%. The compositions may further comprise an adjuvant, suitable examples of which include but are not limited to Seppic, Quil A, Alhydrogel, oil-in-water emulsions, aluminum phosphate, carbopol, Emulsigen, and the like.

The immunogenic/vaccine preparations of the present invention may be administered by any of many suitable means which are well known to those of skill in the art, including but not limited to by injection, orally, intranasally, intratracheal, by ingestion of a food product containing the antigen, by intramuscular, subcutaneous, intravenous, transdermal, and intradermal routes, by eyedrops, or with a nebulizer or a needle-free instrument, etc. However, in a preferred embodiment, the mode of administration is by injection. In addition, the compositions may be administered alone or in combination with other medicaments or immunogenic compositions, e.g. as part of a multi-component vaccine. In particular, the immunogenic CDV could be combined with rabies virus, Borrelia burgdorferi, Ehrlichia canis, canine parvovirus, canine adenovirus, canine parainfluenza virus, canine coronavirus, Babesia canis, Anaplasma phagocytophilium, Giardia species, Leishmania species, Leptospira species or any combination thereof. etc. Further, administration may be a single event, or multiple booster doses (of the same or a different strain) may be administered at various timed intervals to augment the immune response. In addition, administration may be prophylactic, i.e. before exposure to the virus has occurred, or is suspected to have occurred, or after the fact, i.e. after a known or suspected exposure, or therapeutically, e.g. after the occurrence of disease symptoms associated with viral infection.

The invention also provides various types of recombinant vectors and/or expression vectors that contain and express the nucleic acid sequences disclosed herein (or portions thereof that encode antigenic peptides and/or polypeptides). Examples of such vectors and expression systems include but are not limited to: various bacterial (e.g. Escherichia coli) or probiotic-based (e.g. Lactobacillus) expression vectors; adenoviral vectors, baculovirus, Pichia, and other yeast expression systems; pox vectors such as raccoon pox vectors; etc. Such recombinant vectors and expression systems may also be utilized in vaccine preparations. Alternatively, they may be employed for other purposes such as for laboratory manipulation of the sequences, or for research or diagnostic purposes.

The invention provides methods of immunizing or preventing the symptoms of CDV infection in a subject (e.g. a mammal) in need thereof by administering to the subject a composition of the invention. Generally, the CDV vaccines are administered in an amount sufficient to provide active immunity in puppies and/or adult dogs. Preferably, the immune response is protective against future exposure to CDV, i.e. administration of the composition prevents the symptoms of disease associated with CDV infection, when compared to non-vaccinated controls. However, much benefit may also accrue if the immune response simply lessens or decreases the severity of disease symptoms, even if all symptoms are not eliminated.
In a preferred embodiment of the invention, the animals that are vaccinated using the vaccines of the invention are domestic dogs, including both adult dogs and puppies. However, the vaccination of other potential CDV hosts is also contemplated. Other potential hosts include other canids such as wild canids (e.g. wolves, wild dog species, etc.), larger species of cats (whether domesticated or wild), mink, red panda, foxes, lion and tigers, ferrets, rabbits, goats, etc. as well as other carnivores in general. Ferrets are highly susceptible to CDV. Thus a highly attenuated, modified live virus vaccine or recombinant CDV vaccine can be used. According to the American Ferret Association, MD, three CDV vaccines can be administered to healthy kits at 8,11 , and 14 weeks of age. While the vaccines will of course be used in domestic animals, wild or partially domesticated animals may also benefit from such vaccination, e.g. animals in zoos or protected areas, parks, in research facilities, etc. Wildlife can in particular be vaccinated with killed CDV vaccine because they are more susceptible to modified live virus vaccines, e.g. by use of edible bait which contains vaccine components. Any animal that can host the CDV variants, whether or not the virus causes disease symptoms in the host, may benefit by being vaccinated by the vaccine preparations provided herein. Vaccination of animals that are asymptomatic upon infection by the virus (i.e. silent carriers) would be beneficial in order to curtail the spread of the virus to more susceptible populations.

The invention also provides antibodies that bind specifically or selectively to antigenic determinants or antigenic regions of the CDV disclosed herein. In some embodiments, the antibodies are neutralizing antibodies that can neutralize the virus and thus prevent infection. Such differential antibodies may be polyclonal or monoclonal, although monoclonal antibodies are generally preferred. The antibodies may be of canine origin. Monoclonal antibodies will be prepared by injecting the viruses (e.g. killed viruses, proteins, or nucleic acids encoding the proteins) in mice or another suitable host such as rabbit or canine host. After 3 boosters, the spleens will be harvested and fused with myeloma cells. The monoclonal antibodies producing clones will be screened by ELISA, HA-HI, and indirect fluorescent antibody test. The clones that react with the viruses described herein, or with proteins isolated from the same, will be saved for development of CDV diagnostic assays. Polyclonal antibodies may be prepared by injecting one or more peptides that span amino acid codons that are preferred antigenic targets e.g. the H protein, into rabbits.

The invention also provides diagnostic methods and kits for the detection of the CDV variants described herein. Such kits include, for example, oligonucleotide primers specific for amplifying (e.g. by polymerase chain reaction, PCR) the nucleic acid sequences disclosed herein. Alternatively, such kits may include antibodies (e.g. monoclonal or polyclonal) that bind selectively or specifically to unique antigenic determinants displayed by the novel CDV variants. The kits are
useful in monitoring the CDV status of, for example, any animal that is susceptible to CDV, especially canines. The kits are especially useful to monitor the CDV status of puppies and dogs that are exported or transported from one jurisdiction to another. In one embodiment, the diagnostic tests and methods of the invention are used to detect the presence of CDV in dogs (or other animals) that have been fully vaccinated but have nevertheless developed symptoms of CDV infection. Using the methods of the invention, it is possible to determine the genotype of the etiological agent of disease, and to ascertain whether the disease symptoms are caused by the vaccine strain, or by superinfection with a genetic variant that was not neutralized by vaccination, i.e. the vaccine did not provide protection against the genetic variant

The invention is further illustrated in the following Examples, which should not be construed so as to limit the invention in any way.

EXAMPLES

Example 1

Preliminary Studies of Seven CDV Isolates

Canine distemper virus (CDV) is a highly contagious virus that causes multi-systemic disease in dogs. Seven cases of CDV in dogs from the USA were received. These CDV isolates formed large, multi-nucleated, syncytia in a Vero cell line expressing canine signaling lymphocyte-activation molecule (SLAM) (described below). Based on the hemagglutinin gene sequences, the CDV isolates from 3 states (CA, MO, and OK) formed two CDV genetic groups: Group I (major, 6/7) consisted of CDV isolates closely related to the European wildlife lineage of CDV. The group II (minor, 1/7) was genetically related to the Arctic-like lineage of CDV. However, both the CDV groups were genetically different from the current vaccine strains that belong to American-I lineage of the old (1930-1950) CDV isolates.

In this study, an evolutionary and genetic analysis of 7 CDV isolates from the United States was performed using the H gene sequences. The biological effects of the 1-1 gene sequence variation were investigated using an in vitro cell culture system. Ante-mortem samples included ocular swabs, nasal swabs, and peripheral blood anticoagulated with EDTA. The swabs were received in 1 to 2 ml of cold normal saline sent on ice by overnight delivery within 24 h of collection. Urine samples were not tested. Post-mortem samples were from tonsils, brains, bladders, and lungs (Kubo, T., Y. Kagawa, H. Taniyama, and A. Hasegawa. 2007. Distribution of inclusion bodies in tissues from 100 dogs infected with canine distemper virus. J. Vet. Med. Sci. 69:527-529). Approximately 2 to 5 g of each tissue was received in tubes sent on ice by overnight delivery for virological examination. The specimens were obtained from seven suspected cases of CD from three states in the United States (Oklahoma, four; Missouri, one; and California, two).

For direct fluorescent antibody testing, tissues were sectioned at $8-\mu \mathrm{m}$ thickness and fixed with an acetone (75%)methanol (25%) mixture at room temperature. Veterinary Medical Research and Development (VMRD), Pullman, Wash., USA supplied pretitrated, lot-to-lot certified conjugates for veterinary diagnostic applications. As part of quality control/quality assurance, the conjugates were tested before use on negative and known positive CDV controls. After addition of ready-to-use, prediluted, fluorescein isothicyan-ate-labeled, anti-CDV monoclonal antibody (VMRD, Pullman, Wash.) or polyclonal antibody conjugates (VMRD,

Pullman, Wash.), the sections were incubated for 30 min at $37^{\circ} \mathrm{C}$. After the unbound antibody conjugates were washed, the sections were counterstained with Evans blue for 15 min . After being mounted in buffered glycerol (pH 9.4), the sections were examined by fluorescent microscopy. Positive cells showed apple-green fluorescence in the cytoplasm and negative cells were brick-red.

For isolation, the tissues from CDV-infected samples were finely chopped, freeze-thawed twice to release the virus, and centrifuged at $8,000 \times \mathrm{g}$. The clear supernatant was filtered though a $0.22 \mu \mathrm{~m}$ syringe filter. The Vero cell line was derived from the kidney of a normal, adult African green monkey (Ceropithecus) in Japan. The recombinant cell line was derived by transfection of the Vero cells with canine signaling lymphocyte activation molecule (SLAM, also known as CD150) as described before by Seki et al. (Seki, F., N. Ono, R. Yamaguchi, and Y. Yanagi. 2003. Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD 150) and their adaptability to marmoset B95a cells. J. Virol. 77:9943-9950). The inoculums (about 1 ml per $25-\mathrm{cm}^{2}$ flask) were incubated for 1 h at $37^{\circ} \mathrm{C}$. with rocking every 20 minutes. After inoculation on a recombinant Vero cell line expressing canine SLAM, about 3.5 ml of Dulbecco's modified of Eagle's medium (Cellgro, Hendron, Va.) with 5% fetal calf serum was added. The cells were examined daily for cytopathic effects (multinucleated-syncytium formation) (Seki, supra). Vero cells expressing canine SLAM have been found to be useful for the primary isolation of CDV (Lan, N. T., R. Yamaguchi, K. Uchida, S. Sugano, and S. Tateyama. 2005. Growth profiles of recent canine distemper isolates on Vero cells expressing canine signaling lymphocyte activation molecule (SLAM). J. Comp. Path. 133:7781).

For total RNA extraction (host and viral RNAs) from specimens, QIAmp viral RNA extraction kits were used (Qiagen Inc., CA). The quality and quantity of the RNA were checked by $\mathrm{A}_{260} / \mathrm{A}_{280}$ using a Nonodrop spectrophotometer (Nanodrop Technologies, CA).
For detection of CDV RNA, reverse transcriptase (RT)PCR based on the nucleocapsid (N) gene was targeted (Kim, Y. H., K. W. Cho, H. Y. Youn, H. S. Yoo, and H. R. Han. 2001. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR. J. Vet. Sci. 2:59-63). This protocol provides high sensitivity due to the nested amplification of the target gene, high copy number of the N gene, and the conserved sequence of the N -gene among CDV isolates. Briefly, the first-round product was amplified by the forward primer (Primer 1:5'-ATTTGGGATTGCTTAGGA3', SEQ ID NO: 34) and reverse primer (Primer 2: 5'-GGCGCTCATCTTGGACAT-3', SEQ ID NO: 35). The protocol was reverse transcription at $45^{\circ} \mathrm{C}$. for 1 hour, $95^{\circ} \mathrm{C}$. for $3 \mathrm{~min} ; 30$ cycles of PCR with denaturation at $94^{\circ} \mathrm{C}$. for 30 s, annealing at $54^{\circ} \mathrm{C}$. for 30 s , and an extension at $72^{\circ} \mathrm{C}$. for 1 min ; and a final extension at $72^{\circ} \mathrm{C}$. for 7 min , with the reaction mixture held at $4^{\circ} \mathrm{C}$. The small-portion (1 -microliter) product of the first reaction was subjected to a second round of amplification using primer 3 (5^{\prime}-GT-TAGCTAGTTTCATCCT-3', SEQ ID NO: 36) and primer 4 (5'-GGTCCTCTGTTGTCTTGG-3', SEQ ID NO: 37). The protocol for the second round was denaturation at $95^{\circ} \mathrm{C}$. for $3 \mathrm{~min} ; 30$ cycles of denaturation at $94^{\circ} \mathrm{C}$. for 30 s and annealing at $54^{\circ} \mathrm{C}$. for 30 s ; with an extension at $72^{\circ} \mathrm{C}$. for 1 min . The final extension was performed at $72^{\circ} \mathrm{C}$. for 7 min , and the reaction mixture was held at $4^{\circ} \mathrm{C}$. before electrophoresis. The size of the second-round amplicon was 419 base-pairs, verified by including molecular size standards in agarose gel analysis.

For CDV genotyping, the H gene was used as the target (Martella, V., G. Elia, M. S. Lucente, N. Decaro, E. Lorusso, K. Banyai, M. Blixenkrone-Moller, N. T. Lan, R. Yamaguchi, F. Cirone, L. E. Carmichael, and C. Buonavoglia. 2007. Canine distemper virus (CDV) by hemi-nested multiplex PCR provides a rapid approach for investigation of CDV outbreaks. Vet. Microbiol. 122:32-42). The forward primer (primer 204+, nucleotides 388 to 409, 5^{\prime}-GAATTCGACT-TCCGCGATCTCC-3', SEQ ID NO: 38) and reverse primer (primer 232b-, nucleotides 1543 to 1519, 5'-TAGGCAA-CACCACTAATTTRGACTC-3', SEQ ID NO: 39) yield an amplicon of 1160 base-pairs. The H-gene RT-PCR protocol was RT at $50^{\circ} \mathrm{C}$. for 30 min and $94^{\circ} \mathrm{C}$. for 2 min . The PCR protocol was 35 cycles of $94^{\circ} \mathrm{C}$. for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$. for 1 min , and $72^{\circ} \mathrm{C}$. for 3 min and a final extension at $72^{\circ} \mathrm{C}$. for 10 min , with the reaction mixture held at $4^{\circ} \mathrm{C}$. The positive and negative CDV controls were included in each run of both detection (N gene) and genotyping (H gene) RT-PCR protocols. For phylogenetic analysis of the H gene sequences, the amplicons were sequenced at the Oklahoma Medical Research Foundation, Oklahoma City, Okla. The sequences were subjected to Basic Local Alignment Search Tool for Nucleotides (BLASTN) analysis (Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acid Res. 25:3389-3402) and compared to GenBank H gene sequences for CDV isolates from different species and geographic areas around the world. The percentage identities of the H gene sequences were recorded. Further, the H gene sequences were
phocytes, consistent with CDV inclusions (FIG. 36). The presence of CDV inclusions was confirmed by the direct fluorescent-antibody test in both cases.

Six of the seven CDV positive samples were successfully isolated in the Vero cell line with canine SLAM/CD150. The cytopathic effects of CDV isolates were characterized by multinucleated syncytia that formed 1 to 2 days after inoculation. The presence of CDV was further detected by RT-PCR for the hemagglutinin gene. One CDV sample (OADDL 07061535) was tested only by RT-PCR and sequencing of the H gene; there was insufficient sample for virus isolation.

Based on RT-PCR for the H gene followed by sequencing, the level of identity among the CDV isolates (OK-1, OK-2, OK-3, OK-4, CA-1 and CA-2; major group I) was highest with a canine CDV isolate 19876 from Missouri, that is genetically most related to a Danish mink CDV isolate (Pardo, I. D. R., G. C. Johnson, and S. B. Kleiboeker. 2005. Phylogenetic characterization of canine distemper viruses detected in naturally infected dogs in North America. J. Clin. Microbiol. 43:5009-5017). Thus, it was the predominant CDV variant (six of seven isolates) in this study. These six CDV isolates belonged to the European wildlife lineage of CDV isolates. However, one isolate (MO-1; minor group II) was found that was most genetically similar to the canine CDV isolate 21260 from Missouri (Pardo, supra) that is closely related to a lesser-panda CDV isolate. This CDV isolate belongs to the Arctic-like lineage of CDV isolates. The information on the 2007 OADDL CDV isolates is summarized in Table 1, and partial nucleotide sequences of the H gene of these isolates are provided in FIGS. 1-7

TABLE 1

OADDL Canine Distemper Virus (CDV) Isolates								
					\% H Gene Identity			
$\begin{gathered} \text { OADDL } \\ \text { No./' } \\ \text { Designation } \end{gathered}$	State of Origin	Vaccination Status ${ }^{1}$	$\begin{gathered} \text { Age } \\ \text { (weeks) } \end{gathered}$	Breed	Homology to Current Vaccine Virus ${ }^{2}$	$\begin{aligned} & \text { Homology } \\ & \text { to MO } \\ & 19876^{3} \end{aligned}$	Virus Isolation	$\begin{aligned} & \text { CDV } \\ & \text { Lineage }^{5} \end{aligned}$
07061535	OK-1	I	12	Mixed	89	98	$n d^{6}$	EW
07091030	OK-1	NV	44	Siberian husky	89	98	yes	EW
07091031	OK-1	NV	na	na	89	99	yes	EW
07091032	OK-1	NV	na	na	84	96	yes	EW
07101508	CA-1	V	10	American bulldog	89	98	yes	EW
07110098	MO-1	V	10	Weimaraner	89	90	yes	A
07111080	CA-2	V	136^{4}	Border collie	97	96	yes	EW

${ }^{1}$ I - vaccination incomplete; $\mathrm{NV}=$ not vaccinated; $\mathrm{V}=$ vaccinated
${ }^{2}$ All isolates had less than 90% identity with the current vaccine isolates (Ondersteport, Lederle and Convac)
${ }^{3}$ All isolates had less than 90% identity with the USA MO 19876 CDV isolate except MO-1, which belongs to the Arctic lineage
${ }^{4}$ Animal recovered completely after supportive therapy
${ }^{5}$ EW $=$ European wildlife; A = Arctic
${ }^{6}$ nd $=$ not done.
subjected to phylogenetic analysis and sequence comparison with H gene sequences of the vaccine CDV isolates (Ondersteport, Convac, Lederle, and Snyder Hill CDV isolates) deposited in GenBank. Alignments of the top 100 matches with known sequences were used to perform phylogenetic analysis by neighbor-joining using Jukes-Cantor method (NCBI, MD).

Peripheral blood films from two of the CD case samples (OADDL 07091030 and OADDL 07091031) were stained with an aqueous Romanowsky stain and examined by light microscopy. Both blood films revealed numerous eosinophilic structures within the cytoplasm of neutrophils and lym-

The hemagglutinin glycoprotein varies approximately 10% among the CDV isolates and envelope protein H determines the cytopathology and tropism of the virus (von Messling, V. G. Zimmer, G. Herrler, L. Haas, and R. Cattaneo. 2001. In a preliminary analysis, the OADDL CDV isolates were compared with all the H sequences in the GenBank and it was found that CDV isolates cluster in geographically distinct lineages. For example, all the Argentina CDV isolates formed one distinct cluster. The South American CDV isolates were not included in the recent analysis of CDV isolates based on geography and H gene phylogeny (McCarthy, supra). However, they form a distinct South American cluster.

In recent papers, the terms genotype, cluster, and lineage have been used interchangeably by different investigators, but the results on CDV phylogeny were similar in all the studies (Martella, V., F. Cirone, G. Elia, E. Lorusso, N. Decaro, M. Campolo, C. Desario, M. S. Lucente, A. L. Bellacicco, M. Blixenkrone-Moller, L. E. Carmichael, and C. Buonavoglia. 2006. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains in Italy. Vet. Microbiol. 116:301-309; McCarthy, supra; Mochizuki. M., M. Hashimoto, S. Hagiwara, Y. Yoshida, and S. Ishiguro. 1999. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J Clin. Microbiol. 37:2936-2942), including this analysis, because all the investigators used the GenBank accession sequences. A member of a particular genotype of CDV has been proposed to have a more than 95% identity in the nucleotides of the H gene sequences (Mochizuki, supra) and, thus, the intragenotypic variation is less than 5\% (Martella, supra).

The CDV isolate OK-1 (OADDL 07061535) was obtained from a 3-month-old, female, mixed breed, vaccinated dog from Oklahoma with history of conjunctivitis, nasal discharge and weight loss. The dog had not finished the complete course of vaccination, and had a history of roaming and eating garbage. This CDV isolate had maximum identity (98%) with CDV isolate 19876 (GenBank accession number AY964110.1). Based on the H gene analysis, CDV isolate 19876 belongs to the European wildlife lineage of CDV isolates along with OK-1.

The CDV isolate OK-2 (OADDL 07091030) was obtained from a tissue pool of an 11-month-old unvaccinated Siberian husky from Oklahoma. On necropsy, the conjunctival and tracheal epithelium contained intracytoplasmic, eosinophilic inclusions surrounded by clear halos. In the tonsils, there were marked lymphoid depletion and numerous inclusion bodies in the epithelium. This isolate had maximum identity (98\%) with CDV isolate 19876 (canine origin, Missouri), and 94\% identity with CDV isolates from Hungary (GenBank accession number EF095750.1), a Danish mink (Z47759.1), and a lesser panda (AF178039.1), CDV strain A75/17 (AF164967.1), and morbillivirus from a German ferret isolate (X84999.1). The CDV isolate A75/17 from the United States is regarded as a virulent protype of field CDV isolates (Simon-Martinez, supra). The level of identity of the H gene with the vaccine isolates (Convac, Lederle, and Ondersteport) was 89%.

The CDV isolate OK-3 (OADDL 07091031) was obtained from a dog in a shelter in Oklahoma. A blood tube was obtained but no other history was available on this case. Inclusions consistent with CDV were observed in leukocytes on a peripheral blood film and further confirmed by direct fluorescent-antibody test. The blood sample was positive for CDV by virus isolation. The H gene was sequenced and had 99% identity with CDV canine isolate 19876 (GenBank accession number AY964110.1), and 95% identity with CDV isolates from Hungary (EF095750.1), a Danish mink (Z47759.1), and a lesser panda (AF178039.1), CDV virus strain A75/17; CDV isolate 01-2641 and a German ferret morbillivirus strain (X84999.1).

The CDV isolate OK-4 (OADDL 07091032) was obtained from a tissue pool (bladder and lungs) from a dog adopted from an animal shelter in Oklahoma. This CDV isolate had maximum identity (96%) with CDV isolate 19876 (GenBank accession number AY964110.1). In descending order, it had 93% identity with CDV isolates from Hungary (EF095750.1), a lesser panda (AF178039.1), and a Danish mink (Z47759.1); 84\% identity with the vaccine isolates; and 70% identity with the phocine distemper virus.

The CDV isolate CA-1 (OADDL 07101508) was obtained from a tissue pool from a 10 -week-old male vaccinated American bull dog from California that died of CD. Three out of 4 littermates died of CD with respiratory signs, hyperkeratosis, and seizures. Of the three dead littermates, the necropsy report was available for one littermate. Its lungs were firm and congested on necropsy. The necropsy results of one of the four littermates were completely normal. The H gene sequence was 98% identical to a canine origin CDV isolate 19876 (GenBank accession number AY964110.1). The CDV isolate was 94% identical to the Hungarian CDV isolate, the lesser panda isolate (AF178039.1), and CDV strain A75/17 (AF164967). The CDV H gene sequence was 93% identical to CDV isolate 01-2641 (AY526496.1). The H gene of this CDV isolate lacked the Pst I site present in all vaccine CDV isolates (Demeter, Z., B. Lakatos, E. A. Palade, T. Kozma, P. Forgach, and M. Rusvai. 2007. Genetic diversity of Hungarian canine distemper virus strains. Vet. Microbiol. 122:258269).

The CDV isolate MO-1 (OADDL 07110098) was obtained from nasal and conjunctival swabs of a 10 -week-old, CDV vaccinated Weimaraner dog that had clinical signs compatible with CD. The dog developed 'chewing-gum' seizures, thickened footpads, coughing, nasal discharge, and congested lungs. The swabs were collected before euthanasia, and CDV was isolated in cell culture. The CDV isolate H gene had maximum identity (98%) with CDV isolates 21261 and 18133 from Missouri, and 97% identity with CDV isolates from Italy ($48 / 05$ and 179/94) and Hungary (H06Bp10S, H06 Bp8F, H05 Bp7F, H05 Bp6F, and H05 BpBp5F). The H gene sequence of this CDV isolate had 95% identity with a CDV isolate from a Greenlandic dog and only 90% identity with CDV 19876. It had 89% identity with the vaccine CDV isolates and 70% identity with the phocine distemper virus H gene. Moreover, this CDV isolate lacks the Pst I restriction site present in all vaccine CDV isolates (Demeter, supra). Based on phylogenetic analysis this isolate belongs to the Arctic-like lineage of the CDV isolates.

The CDV isolate CA-2 (OADDL 07111080) was obtained from a combination of nasal, pharyngeal, tonsil, and conjunctival swabs of a 32-month-old neutered male, vaccinated Border collie with a history of vomiting, diarrhea and lymphopenia. The H gene sequence had maximum identity (96%) with CDV isolate 19876. This isolate had 93% identity with the Hungarian CDV isolate, the lesser Panda CDV isolate, and the Danish mink CDV isolate; 92% identity with CDV strain A75/17 (GenBank accession number AF164967.1); and 92\% identity with the German ferret CDV isolate. Based on phylogenetic analysis, this CDV isolate clusters with CDV isolates of the European wildlife lineage. This dog recovered after treatment and has been clinically healthy for the last 3 months. The survival of this dog after a natural exposure to a CDV isolate of European wildlife lineage is probably due to resistance based on age, genetic resistance, and immunity after complete vaccination with a commercial CDV vaccine. This dog had a CDV titer of 1:16 by CDV serum neutralization 3 months after recovery from CDV infection.

Five out of six OADDL 2007 CDV isolates were found to produce multinucleated, syncytia in a Vero cell line expressing the canine SLAM receptor. It has been proposed that syncytial size is a correlate of the degree of virulence of the CDV isolates (Cosby, S. L., C. Lyons, S. P. Fitzgerald, S. J. Martin, S. Pressdee, I. V. Allen. 1981. J. Gen. Virol. 52:345353) because it correlates with the ability of the CDV to spread from cell-to-cell. The aggressive spread in cell culture, the ability to produce large numbers of inclusions in canine lymphocytes that naturally express SLAM/CD150, and the
ability to produce fatal infections in vaccinated dogs indicate that these canine isolates of European wildlife lineage are virulent for dogs.

This Example shows that the EW lineage is emerging as the predominant CDV isolate in the US.

Example 2

Additional CDV Isolates

Using the methods described in Example 1, additional CDV isolates were identified and are listed in Table 2.
sample inoculation 18-24 hours after inoculation (Fast-growing CDV isolates). In some CDV isolates, the margins of the syncytia were well defined with almost circular margins. In other CDV isolates, the margins of the syncytia were not that clearly demarcated. These "fuzzy" CPE CDV isolates tended to spread rapidly with daughter syncytia next to the mother syncytium. In other CDV isolates, daughter syncytia appeared far away indicating another colony (colonies) of virus growth. In short, CDV isolates showed variable cytopathology. CDV isolates from USA differ in the speed (Fast and Slow), spread (Large and Small), size, shape (Round and Irregular) of the syncytia formation and invasiveness of the

TABLE 2

OADDL Canine Distemper Virus (CDV) Isolates							
OADDL No./ Designation	State of Origin ${ }^{1}$	Clinical Sign^{2}	CPE^{3}	Vaccination Status ${ }^{4}$	Age (weeks)	Breed	CDV Lineage ${ }^{5}$
8010939	OK	R, N	na	na	20	Miniature Schnauzer	EW
08011277-A	OK	R	+	na	12	Small breed	EW
08011277-B	OK	R	+	na	12	Small breed	EW
08011277-C	OK	R	+	na	12	Small breed	EW
8011671	GA	R	na	V	10	Mix	EW
8021509	FL	R, N	+	V	12	Mix	AM-2
8030674	CA	R, N	na	V	8	Golden Retriever Mix	EW
8030776	OK	R, N	+	V	16	Mix	EW
8030777	FL	N	+	V	12	Mix	AM-2
8031346	CA	na	na	V	12	Pitbull	EW
8040383	MO	R	+/-	na	6	Weimaraner	AR
8050180 A	OK	R	па	na	14	Pitbull Mix	AM-2
8060351	MO	R, N	na	V	9	Shih Tzu	AM-2
8060352	MO	R	па	V	8	Welsh Terrier	AM-2
8080696	FL	R	+	V	24	Mix	EW
8080941	OK	N	+	na	12	Rat Terrier	EW
8081112	MO	N	+/-	V	11	Irish Terrier	AM-2
8120827	OK	N	+	na	0.3	Dachshund	EW
8120857	OK	N	+	na	5	Yorkshire Terrier	EW
9011024	na	N	+	V	156	Akita Mix	EW
$\begin{aligned} & 09020504-3 \\ & (08-75891) \end{aligned}$	KS	na	+	na	na	na.	AM-2
$\begin{aligned} & 09020504-2 \\ & (56928) \end{aligned}$	KS	na	na	na	na	na	AM-2
$\begin{aligned} & 09020504 \\ & (58829 \mathrm{~B}) \end{aligned}$	KS	na	+	na	na	Leopard	AM-2
9041303	na	R	+/-	V	24	Cattle Dog Mix	EW
09041474 A	TN	R	+	V	16	Border Collie Mix	EW
0904147B	TN	R	+	V	16	Border Collie Mix	EW

${ }^{1}$ State of origin; na $=$ not available
${ }^{2}$ Clinical Signs: $\mathrm{R}=$ Respiratory (coughing, ocular and nasal discharge, sneezing); $\mathrm{N}=$ nervous (tremors, twitching,
${ }^{3}$ urination change, exterior rigidity)
${ }^{3} \mathrm{CPE}=$ Cytopathic Effect: $+=$ positive; $-=$ negative; $+/-=$ suspect; na $=$ not available
${ }^{4}$ Vaccination Status: $V=$ vaccinated; $N V=$ not vaccinated; na $=$ not available
${ }^{5} \mathrm{CDV}$ lineage: $\mathrm{EW}=$ European wildlife; Am-2 $=$ American-2

Example 3

Continuing Investigations of Emerging CDV Isolates: Differences in Cytopathology (CPE)
Among Recent USA Canine Distemper Viruses
The results obtained in Examples 1 and 2 prompted a 60 continued effort to isolate and characterize additional CDV isolates from the USA. Studies were carried out as described for Example 1. CDV samples were inoculated in Vero+ SLAM cell line. Most CDV isolates produced large syncytia with large number of nuclei. A smaller number of CDV isolates produced smaller sized syncytia with few cell nuclei. In several CDV isolates, multiple syncytia appeared after virus
host cells by CDV isolates. These biological properties may 5 have bearing on the protection offered by the current vaccines. For example, codon usage of critical viral genes can affect the replication efficiency of CDV, as discussed in Example 11.

Example 4

Comparative Genetic Analysis of CDV Isolate Sequences: Relative Preferred Codon Usage (RPCU)

Ten hemagglutinin residues ($29,178,180,225,386,412$, $475,530,549$, and 603) are known to be under positive selection among CDV lineages (McCarthy, supra). The
hemagglutinin (H) gene of the isolates were sequenced or partially sequenced and the resulting sequences are shown in FIGS. 1 to 33. The partial H-gene sequenced (about nucleotide 534-1236 hemagglutinin gene fragment) from the wild type CDV isolates were aligned with reference CDV sequences from GenBank using CLUSTAL W provided with Bio-edit program). Of note, a viral isolate containing the reference sequence for the EW strain has never been isolated, propagated in cell lines, or characterized. The reference EW sequence was obtained by sequencing carried out on tissue extracts.

The results of the RPCU analysis, depicted in FIGS. 34AF , showed the following:

At residue 180, the codon is AGT in Ondersteport-like vaccines such as Galaxy, Proguard, Continuum, and Vanguard. However, this codon is GGT in European wildlife (EW), and in all wild type CDV isolates. This codon can be useful in designing a Taqman RT-PCR to distinguish the Ondersteport-like vaccines from wild type CDV isolates circulating in the USA.

At residue 225 , the codon is GAC encoding aspartic acid (D) in all vaccines. However, it is AAC in American-2 CDV and in raccoon distemper virus (RDV) 09050216 it is CAC (encoding histidine, H).

At residue 386, the codon is ACC (threonine, T) in all Ondersteport-like vaccines (all except the Pfizer vaccine). However, it is TAC in EW, AM-2 and AR lineage CDV wild type viruses and in the Pfizer vaccine. This codon is thus useful in developing a differential Taqman RT-PCR for distinguishing most of the commercial CDV vaccines and wild type CDV isolates.

At residue 412, the codon is CCT, which encodes proline (P) in vaccines and wild type CDV viruses. However, in isolate 07110098 it is CAT (encoding histidine, H) as is also the case for the Arctic-lineage of CDV.

Relative Preferred Codon Usage (RPCU) has been developed from analysis of the codon usage comparisons. One goal of an RPCU analysis is to identify RNA viral isolates (e.g. CDV isolates) suitable for making a broad-spectrum vaccine capable of providing protection against most isolates circulating in a particular geographic area (e.g. the United States). RFCU also allows evaluation of the genetic distance of isolates that are outside an area of interest based on codon usage. RPCU is based in part on the observation that, in addition to amino acid residues, codons themselves are under evolutionary selection pressure (Gustavo et al., Lost in Translation: Codon Usage and HIV-1 Evolution, AIDS Reviews 2004; 6:54-60).

To develop and implement RPCU analysis, a codon usage Table depicted in FIGS. 34A-F was created in which each entry presents the three nucleotides of a single triplet codon. The codon usage Table can also be created using a concatamer approach, e.g. using an Excel program with MEGA4.1 software. To create this Table, first all the sequences were subjected to CLUSTAL W analysis using BioEdit software. Then, triplets of nucleotides in frame with the coding sequence were manually entered into an Excel table. In this manner, residue positions $155-428$ of the hemagglutinin protein were analyzed, and the codons for residues of interest were included in the Table. For each residue position, at the bottom of the column, the codons used were retyped in lower case letters and the encoded amino acid was indicated using a single capital letter. The alternative codons that did not lead to change of amino acid (substitutive mutations, $\mathrm{S} /-$) were also noted. For example, residue position 176 uses two codons (tct and tcc, both encoding serine, S). The residues positions for which only the Ondersteport sequence differs from all other
codons in the Table (i.e. is an outlier) were also noted by an "O" at the bottom of the column) e.g. residue positions 180 and 186. Some residue positions were identical in all CDV isolates. These identical residue positions are not shown in the codon usage Table because they did not affect the selection of the CDV vaccine isolate.

To identify the relatively preferred codon at each residue, the entire Table was examined residue by residue, i.e. column by column. For example, in the column representing codons at residue position 185, either CCA or TCA is used to encode the amino acid at this position. However, CCA is the preferred codon compared to TCA, since CCA is present in the majority of isolates. Similarly, preferred codons were determined at each of the residue positions. For some residues, the least preferred codons were also identified. As can be seen, most of the least preferred codons occur in American-2 and Arctic isolates. This pattern of relative preferred codon usage could be one of the major reasons for the biological advantage of EW over AM-2 and AR CDV isolates. Canine distemper virus is labile in the environment but highly contagious, similar to the measles virus. A CDV isolate in a geographical area that has a replication advantage due to more biologically fit codon usage and higher replication titers and shedding (e.g. in nasal secretions and other portals of delivery in a dog population) has the ability to spread to and affect even vaccinated dogs. Thus, codon usage is the minimum functional unit of virulence factors (such as H protein of CDV) with effects on epidemiological, biological and disease outcomes in host populations.

As noted above, a major goal of the present RPCU analysis is to identify one or more CDV isolates for use in a broadspectrum CDV vaccine development. Preferably, a vaccine preparation containing or based on such CDV isolates would provide protection against infection by most CDV isolates currently circulating in the US, or at least lessen deleterious symptoms associated with such infection. EW isolate 09041474B was identified as using a preferred codon at most residue positions (e.g. at positions 185, 192, 193, 203, 205, etc.) and was thus selected for further vaccine development.

The approach of RPCU was developed in part because the residues that are critical for the immunogenicity of the CDV H protein have not been determined. RPCU analysis provides a method to identify robust CDV vaccine candidates in the absence of detailed knowledge of the antigenic characteristics of H protein residues. RPCU can be used to analyze and select vaccine candidates from among isolates of other types of RNA viruses as well, and will be useful in cases where the newly emerged virus has not been well studied but an emergency vaccination is called for to stop a growing outbreak.

Further, the new variant AM-2 isolates described herein have higher isolate specific codon usage (as determined by RPCU) and, while this makes them less suitable for a broadly reactive CDV vaccine, these genetically unique isolates will make excellent challenge viruses to check the efficacy of the improved CDV vaccines. RPCU is consistent with self-optimization for new host adaptation being one of the fundamental reasons for evolution of emerging pathogens of animals and humans.

Example 5

Phylogenetic Analysis of Recent CDV Sequences, Reference CDV Sequences from Gen-Bank for Each
CDV Genetic Lineage, and all Commercial CDV Vaccines

FIG. 35 shows the phylogenetic analysis of several CDV hemagglutinin partial sequences from recent US CDV
samples compared to commercial CDV vaccines strains and GenBank reference sequences for all known CDV genetic lineages, including South American sequences. Observations that can be made are as follows:

American-1 (AM-1) genetic lineage: reference sequence $=$ AF378705, Ondersteport strain from 1950's; none of the currently circulating CDV isolates from the US cases were of this CDV lineage. Most of the current commercial CDV vaccines (Continuum DAP, Intervet ($\mathrm{n}=1 \mathrm{lot}$); Duramune Max 5, Fort Dodge ($\mathrm{n}=1$ lot); Galaxy DA2PPv, Schering Plough ($\mathrm{n}=3$ lots); Merial (recombinant canary pox vectored CDV-H gene vaccine ($\mathrm{n}=1$ lot) are all based on the $\mathrm{AM}-1$ lineage.

American-2 (AM-2) genetic lineage: reference sequences $=\mathrm{AF} 112189$; Z47762; AF259552. Based on the phylogenetic analysis, the 3 reference sequences were dispersed in three locations on the CDV tree shown by the underlined sequences. All but one AM-2 CDV isolate clustered with and around the AF112189 reference sequence. A total of $8 \mathrm{AM}-2$ CDV isolates were isolated in this study. America-2 is the second largest cluster of CDV circulating in the USA now. An isolate from this lineage should be included in the updated CDV vaccine and has thus been deposited with ATCC (Manassas, Va.).

Arctic (AR) genetic lineage: Two reference sequences (AY964112 and AY964108) constituted this cluster. We identified a few USA samples in this cluster. Both (07110098; 08040383) the samples were from Missouri, USA. This is minor CDV genetic cluster. This CDV lineage will be suitable for some parts of the USA.

Asia-1 (AS-1) genetic Lineage: Three reference sequences (AB016776; AB 212963; AY378091) constituted this cluster. None of the USA CDV isolate is related to this lineage. This type of CDV lineage has been reported in Japan, China, and Korea. CDV vaccines for these Asian countries may include this lineage.

Asia-2 (AS-2) Genetic Lineage: Two reference sequences (AB0470767 and AB 252718) constitute this genetic cluster. None of the USA CDV isolate is related to this lineage. This type of CDV lineage has been reported in Japan, China, and Korea. CDV vaccines for these Asian countries should include this lineage.

European-Wildlife (EW) Genetic Lineage: The reference sequence for this lineage was AY964110. Most of the EW CDV isolates ($\mathrm{n}=14$) from the US clustered around the reference strain of CDV. However, two EW were branched separately. This major cluster of CDV isolates should be included in the updated CDV vaccines for use in USA dogs.

European (E) CDV Lineage: This lineage cluster contained only the two reference sequences (AF478550, DQ494318). Pfizer CDV vaccine branched close to this cluster. South American (SA) CDV Lineage: Four reference CDV sequences clustered in this lineage. These isolates separated as a new branch from the tree indicating that they are unique from USA isolates and current vaccines.

Measles virus Edmonton B sequence was used as an outlier sequence for comparison with US vaccines and current isolates for phylogenetic analysis.

A potential new lineage of CDV has been described in South Africa (Woma, supra).

Example 6

Vaccine Development

Many limitations in the current art of CDV vaccine development had to be overcome to select the isolates for improved

CDV vaccine development. One of the current limitations of CDV vaccines is the availability of CDV isolates from cases of vaccine failure. The problem of CDV vaccine failure has not been fully appreciated and there is not much published data to support these observations. Moreover, current veterinary diagnostic techniques have not been extensively applied to the problem of vaccine failure due to a lack of available methods and the cost of diagnostic testing of ante-mortem samples showing neurological symptoms. Thus, prior to the present invention, the data on current CDV isolates with respect to improving the quality of CDV vaccines was very limited, consisting mainly of isolated reports that were largely overlooked and reports of single dogs. This is undoubtedly because most owners of the deceased dogs do not wish to pay for further medical investigations and simply dispose of the animal carcasses. Therefore, no further scientific information is obtained.

The 34 CDV isolates described herein are compared using hyper-immune serum against the American-1 CDV isolate utilized in the commercially available Onderstreport canine distemper vaccine. Hyper-immune serum is a useful reagent because it is prepared by administering multiple vaccines to adult dogs that are immunocompetent. Hyper-immune sera offer the best case scenario. However, in a field situation, most dogs will receive two CDV vaccines as puppies. Thus, although hyper-immune serum is a useful reagent, it has limitations for designing and selecting CDV isolates for vaccine preparation. Here, we propose a novel bio-informatics approach (RPCU, described above) for broad-spectrum CDV vaccine development. All available genotypes of CDV currently circulating in the US are included in the analysis. Several (e.g. at least 3-5 isolates of each CDV genotype) are selected (using phylogenetic analysis) for antigenic comparison based on sequence alignment using Bio-Edit. This allows CDV isolates that have the maximum antigenic distance to be selected and compared to the current CDV vaccines. Any isolate that is at least 4 -fold lower in SN test using either hyper-immune serum or a serum from a dog that has received only two vaccines is selected for further testing in vivo.

Both sero-negative and low sero-positive puppies (at least 5 puppies in each group) are injected with each of the selected (e.g. 3) lineages of CDV isolates either as a single injection multivalent CDV vaccine or in separate, back-to-back injections of each of the 2-3 different genetic variants 3-4 weeks apart. This experiment identifies one or more broadly reacting CDV isolates that will elicit a higher level of titers against all the 34 CDV isolates. For example, isolates identified by RPCU analysis such as 09041474 B are confirmed to be broadly reacting isolates due to shared codons of H protein. This translates into higher vaccine titers, better protection in challenge experiments, no clinical evidence of disease in vaccinated dogs (or alternatively, mild clinical symptoms), and longer duration of immunity. Moreover, CDV isolates selected using the RFCU will provide broad protection against other genetic and antigenic variants that are present in other continents.
Additional criteria are also used to select CDV isolates for use in a modified live virus vaccine, including the following:
A). CDV isolates should grow to high titers (10^{6} or more) on an approved non-recombinant cell line such as Vero and canine kidney cell line. It is expected that CDV isolates will grow to higher titer ($2-3 \log$ higher titers) in the recombinant Vero+SLAM (Signaling Lymphocyte Activation Molecule) cell line. Although recombinant Vero SLAM is suitable for primary isolation of morbilliviruses, it is expensive to propagate $C D V$ isolates therein due to the required addition of the selection antibiotic, gentamycin. CDV isolates that grow in
one or more non-recombinant Vero cell lines that are approved by the USDA for animal vaccine production are selected for further propagation.
B). The speed of growth of CDV isolates is another criterion for evaluation. Most CDV isolates can grow to high titers in 3 days. However, the growth is slightly slower in conventional Vero cell line or dog kidney cells.
C). A few CDV isolates ($\mathrm{n}=5$) from the major EW-branch are selected for further evaluation as vaccine antigens. A few isolates ($\mathrm{n}=5$) from the second largest cluster (AM-2) are also selected as vaccine antigens. A few Arctic CDV isolates are also evaluated.

Example 7

Preparation of a Broad-Spectrum CDV Vaccine

A broadly reactive and predominant CDV isolate (e.g. a candidate identified by RPCU) is selected and confirmed by CDV-serum neutralization (CDV-SN) and/or plaque reduction tests. In some embodiments, this is a wild-type CDV isolate that is obtained from a fully vaccinated adult dog (above 5-6 months of age) that died in spite of complete vaccination (specifically 2 CDV vaccines).

Dogs are vaccinated subcutaneously or intranasally with the vaccine. The antibody titer against the vaccine strain is checked by CDV-SN or plaque reduction assays using serum from the vaccinated dog. The selected CDV strain shows high cross-reactivity with a panel of recent CDV isolates from the US belonging to all the CDV lineages circulating in the USA. All isolates are checked for cross-reactivity with sera from the vaccinated dog or ferrets (a laboratory model animal for CDV). A titer of $\geq 1: 8$, preferably $\geq 1: 16$, more preferably $\geq 1: 32$, and most preferably $\geq 1: 64$ after one vaccination of a naïve puppy $6-8$ weeks of age is sufficient using a CDV-SN assay. In addition, the vaccine will not induce any cerebrospinal fluid (CSF) titers against CDV. Lack of CDV titers in the CSF indicates that the vaccine virus has not crossed the blood-brain barrier and is safe for use in puppies. A vaccine that is safe in puppies is very likely safe in dogs. In summary, all the guidelines of the Code of Federal Regulations (CFR) will be followed to develop an effective broad spectrum and safe CDV vaccine that will be approved by the USDA for use in dogs and other species susceptible to CDV.

Challenge studies are performed in which dogs are vaccinated with the broad spectrum CDV vaccine and then exposed to circulating, wild type CDV (e.g. 08080696 EW; 08081112 AM-2; 09011024 EW). These CDV viruses are genetically distinct and so are suitable as challenge viruses rather than as vaccine components. Dogs vaccinated with the vaccine preparation of the invention develop few or no symptoms of disease. Low-passage CDV isolates from the US as described herein can be used as the challenge virus. Unvaccinated controls will develop symptoms of CDV.

With respect to evaluating the results of challenge studies, diagnostic laboratories typically use relatively insensitive tests that often may not detect weakly CDV positive cases, such as those involving the nervous system. CDV may be detected using immunohistochemistry of brain samples after as animal dies or is sacrificed or euthanized. However, CSF and brain biopsy are expensive and invasive procedures and are not used routinely. In a recent study, urine has been described as a sensitive sample for detection of CDV in live dogs (Amude, A. M., A. A. Alfieri, and A. F. Alfieri. 2006. Antemortem diagnosis of CDV infection by RT-PCR in distemper dogs with neurological deficits without the typical clinical presentation. Vet. Res. Comm. 30:679-687). Thus,
viruria (the presence of CDV virus or RNA in urine) may be an important parameter to include in vaccine-protection evaluation studies, and may be used non-invasively to detect the residual virus in CDV vaccinated dogs. Moreover, after extensive in depth diagnostic investigation, it has been found that CDV can cause residual CDV infections that were not evaluated in past CDV vaccine approval processes. Highly sensitive PCR assays are used and safety data is provided on the improved broad-spectrum CDV vaccines. Viruria is used as one of the parameters of CDV vaccine efficacy.
An ideal candidate CDV vaccine should protect against all genetically diverse CDV isolates. CDV isolates from other continents should be included to check global coverage of a broad-spectrum CDV vaccine. American-1 is not checked because this virus has not been found in the US in nature for the last 20 years, existing only in vaccines that have not been updated for 6 decades.

Example 8

Evaluation of CDV Vaccines in Ferret Models

Prior to testing the vaccines in a large animal model such as dogs, they can be evaluated in a ferret model. Ferrets are known to be suitable models of CDV infection and evaluation of CDV vaccines (Pillet et al., 2009: Ferrets as a model for morbillivirus pathogenesis, complications, and vaccines. Curr. Top. Microbiol. Immunol. 330:73-87). Ferrets are used to screen a large number of CDV vaccine candidates. The ferrets are vaccinated with attenuated modified live CDV, preferably a European-wildlife type (e.g. 09041474B). Euro-pean-wildlife is preferred because a closely related cluster of these CDV viruses is causing vaccine failure in dogs in the US. Ferrets are checked for serum antibody titers against CDV after vaccination. The bleed dates are $0,7,14$ and 21 days after vaccination. Low passage CDV viruses (e.g. European wildlife, or Arctic, or American-2) are then administered to the ferrets as challenge viruses.

Ferrets also have been documented to show CDV vaccine failure based on a recent case report (Zehnder et al., 2008: An unusual presentation of canine distemper virus infection in a domestic ferret (Mustela putorius furo) DOI: 10.1111/j). This domestic ferret, from the US, was repeatedly vaccinated using chick-embryo modified live virus vaccine 18 months prior to the onset of clinical CDV problems and annually thereafter. This vaccinated ferret developed a systemic CDV infection manifesting in skin lesions, with a prolonged course of disease yet with complete absence of respiratory and neurologic signs. Thus, CDV should be suspected in vaccinated ferrets with skin lesions (Zehnder, supra).

Example 9

Critical H-Protein Residues Undergoing Positive Selection Among CDV Lineages: Application to Diagnostics

Depending on the specific needs of diagnostic clients, differential RT-PCR experiments and kits (including primers) are designed around critical H-residues (see Example 3) to differentially detect CDV wild types; to differentiate the Ondersteport-like vaccines from the Pfizer vaccine; and to differentiate CDV viruses down to the level of major CDV lineages using rapid assays with a 1 hour turnaround time. Ongoing monitoring of CDV viruses by complete H -gene
sequencing further refines these fast CDV differential assays by identifying new CDV variants that arise in the future.

Example 10

Comparative Growth Characteristics of Three Selected CDV Isolates in Cell Culture

From a panel of current CDV isolates at OADDL, two CDV isolates (09041474 B and 08021509) were selected for depositing at the American Type Culture Collection (ATCC). The isolate 09041474B has been selected for developing a broad-spectrum CDV vaccine against current CDV isolates.

Three CDV isolates: 09041474B (European-Wildlife); 08021509 (American-2); and 07110098 (Arctic), were propagated in cell culture and observed for their speed of growth based on cytopathology, and the flasks were frozen when most of the monolayer (over 80\%) was exhibiting cytopathology. The results showed that the speed of growth of these selected isolates was as follows: EW>>>AM-2>AR. In other words, the EW 09041474B isolate grew significantly faster than AM-2 and AR. The individual plaques of 09041474 were very large. At 23 hours, the entire flask of cells was covered with very large syncytia that touched each other (were fused) leaving almost no space between syncytia.

Isolate 08021509 (AM-2) displayed medium size plaques and grew as isolated plaques (non-fused plaques) initially. The speed of AM-2 isolate growth was at least half or less that of 09041474 B . This isolate was harvested at about 96 hours after inoculation.

Arctic isolate 07110098 grew very slowly and the plaque size was small. Only a few isolated small plaques were detected. This isolate was not deposited at ATCC. This isolate was harvested at 7 days post infection. Even at one week, the monolayer showed only about 25% cytopathology. Based on these growth characteristics, this isolate is not suitable for vaccine preparation.

The type of active replication displayed by 09041474B is indicative of optimum (robust) growth that is expected from a CDV isolate that exhibits high "Relative Preferred Codon Usage (RPCU)". This isolate has been chosen for vaccine preparation because it will replicate to higher titers after inoculation and express relatively higher amounts of hemagglutinin protein, the major CDV immunogen. The ATCC deposit number for 09041474B is PTA-10596, deposited Jan. 21, 2010. The ATCC deposit number for 08021509 is PTA10597, deposited Jan. 21, 2010.

Example 11
Full-Length Hemagglutinin Sequences of Two Exemplary/Selected CDV Isolates Deposited at ATCC, MD

To derive the full-length sequences of the two CDV selected isolates, new primers were designed:
5'-TCGAAATCCTATGTGAGATCACT-3' (forward primer, CDVff1, SEQ IS NO: 40) and 5^{\prime}-ATGCTGGAGATGGTT-TAATTCAATCG-3' (reverse primer, CDVHS-2, SEQ IS NO: 41). The RNA was extracted from the same batch of CDV isolates that were deposited at ATCC on Jan. 21, 2010. A QIAGEN viral RNA extraction kit was used according to the manufacturer's instructions. The primers for the full-length H-protein have been published (Lan N T, Yamaguchi R, Inomata A, Furuya Y, Uchida K, Sugano S, and S Tateyama. 2006. Comparative analyses of canine distemper viral isolates from clinical cases of canine distemper in vaccinated dogs. Vet. Microbiol. 115:32-42) but the RT-PCR protocol was not described. Thus, a new protocol was developed based on the properties of the primers.

A one step RT-PCR protocol was as follows: reverse transcription at $45^{\circ} \mathrm{C}$. for 1 hour, denature at $95^{\circ} \mathrm{C}$. for 3 minutes, followed by 30 cycles of $94^{\circ} \mathrm{C}$. for 30 seconds, anneal at 50° C. for 30 seconds, extend at $72^{\circ} \mathrm{C}$. for 2 minutes, final extension at $72^{\circ} \mathrm{C}$. for 7 minutes, and hold the reaction at $4^{\circ} \mathrm{C}$.

The reaction set up was as follows for each PCR reaction: 12.5 ul of $2 \times$ reaction buffer (Invitrogen, Cat\#10928-034), both primers 1.7 ul each at (15 uM), $\mathrm{MgSO}_{4}(50 \mathrm{mM})$, dNTPs $(10 \mathrm{mM}) 0.5 \mathrm{ul}$, and RT/platinum-Taq (0.5 ul). The PCR amplicons were purified by electrophoresis on 1.5% agarose gel. Correct full length amplicons about 2100 bp were observed. The amplicons were purified on a Promega Wizard column. Sequencing was performed at Noble Research Center, Stillwater, Okla. The forward and reverse sequences of both CDV isolates were subjected to sequence analysis (FIGS. 37 and 38). The CDV isolate 09041474B had the highest match with European-Wildlife CDV isolates. The CDV isolate 08021509 had the highest match with Ameri-can-2 CDV isolates.
While the invention has been described in terms of its preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Accordingly, the present invention should not be limited to the embodiments as described above, but should further include all modifications and equivalents thereof within the spirit and scope of the description provided herein.

```
<160> NUMBER OF SEQ ID NOS: 45
<210> SEQ ID NO 1
<211> LENGTH: 866
<212> TYPE: DNA
<213> ORGANISM: canine distemper virus
<400> SEQUENCE: 1
```

aaggtgaatt ttactaacta ctgcgataca attgggatca gaaaatctat tgcatcggca 60
gcaaatccca tcctcctgtc agcactctct gggggcagag gtgacatatt cccaccatac 120
agatgcagtg gagctgctac ctcagtaggc agagttttcc ccctatcagt gtcattgtcc 180
atgtctttga tctcaagaaa atcagagata atcaatatgc taaccgctat ctcaaacgga 240

gtgtatggta aaacttattt actagtgcct gattatattg aagaggagtt cgacacacaa	300
aagattcgag tctttgagat agggttcatc aaacggtggc tgaatgacat gccattactc	360
cagacaacca actatatggt cctcccagag aattccaaag ctaaggtatg tactatagca	420
gtgggcgagt tgacactggc ttccttgtgt gtaggtgaga gcaccgtgtt gttatatcat	480
gacagcaatg gttcgcaaga tagtatccta gcagtgacgc tgggaatatt tggggcaaca	540
actatggatc aagttgaaga ggtgatacct gttgctcacc catcagtaga aaaaatacat	600
ataacaaatc accgtgggtt cataaaagat tcaatagcaa cotggatggt gcctgcattg	660
gtctctgaga aacaggaaga gcaaaaaaat tgtctggagt cggcttgtca aagaaaatcc	720
taccetatgt gcaaccaaac gtcatgggaa cocttcggag gaggacagtt gccatcttat	780
gggcggttga cattacctct agatccaagc actgaccttc aacttaacat atcgtttaca	840
tacggtccgg ttatactgaa tggaga	

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 1054
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 2
ggtgaatttt actaactact gcgatacaat tgggatcaga aaatctattg catcggcagc 60
aatcccatc ctcetgtcag cactctctgg gggcagaggt gacatattcc caccatacag 120
atgcagtgga getgctacct cagtaggcag agttttcccc etatcagtgt cattgtccat 180
gtctttgatc tcaagaaaat cagagataat caatatgcta accgctatct caaacggagt 240
gtatggtaaa acttatttac tagtgcctga ttatattgaa gaggagttcg acacacaaaa 300
gattcgagtc tttgagatag ggttcatcaa acggtggctg aatgacatgc cattactcca 360
gacaaccaac tatatggtcc tcccagagaa ttccaaagct aaggtatgta ctataggagt 420
gggcgagttg acactggctt cettgtgtgt aggtgagagc accgtgttgt tatatcatga 480
cagcaatggt tcgcaagata gtatcctagc ggtgacggtg ggaatatttg gggcaacatc 540
tatggatcaa gttgaagagg tgatacctgt tgctcaccca tcagtagaaa aaatacatat 600
aacaaatcac cgtgggttca taaaagattc aatagcaacc tggatggtgc ctgcattggt 660
ctctgagaaa caggaagagc aaaaaaattg tctggagtcg gettgtcaaa gaaaatccta 720
ccctatgtgc aaccaaacgt catgggaacc cttcggagga ggacagttgc catcttatgg 780
gcggttgaca ttacctctag atccaagcac tgaccttcaa cttaacatat cgtttacata 840
cggtccggtt atactgaatg gagacggtat ggattattat gaaagcccac tgtcggactc 900
cggatggctt accattcctc ccaaaacgg aacagtcctt ggattgataa acaaagcaag 960
tagaggagac cagttcattg taatccccca tgtgttgaca tttgcgccca gggaatcaag 1020
tgggaattgt tatttaccta ttcaaacatc ccag 1054
$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 785
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 3
ggtgaatttt actaactact gcgatacaat tgggatcaga aatctattg catcggcagc $\quad 6$

ctagtaagat caggtgaatt ttactaatta etgetataca attgggatca gaaaatctat 60
tgcatcggca gcaaatccca tcetccagtc agcactctct gggggcagag gtgacatatt 120
cccaccatac agatgcagtg gagctgctac ctcagtagge agagttttcc ccctatcagt 180
gtcattgtcc atgtctttga tctcaagaaa atcagagata atcaatatgc taaccgctat 240
ctcaacgga gtgtatggta aaacttattt actagtgcct gattatattg aagaggagtt 300
cgacacacaa aagattcgag tetttgagat agggttcatc aaacggtggc tgaatgacat 360
gccattactc cagacaacca actatatggt cctcccagag aattccaaag ctaaggtatg 420
tactatagca gtgggcgagt tgacactggc ttccttgtgt gtaggtgaga gcaccgtgtt 480
gttatatcat gacagcaatg gttcgcaaga taatatccta gtagtgacgc tgggaatatt 540
tggggcaaca tctatggatc aagttgaaga ggtgatacct gttgctcacc catcagtaga 600
aaaatacat ataacaaatc accgtgggtt cataaaagat tcaatagcaa cctggatggt 660
gcctgcattg gtctctgaga aacaggaaga gcaaaaaatt tgtctggagt cggcttgtca 720
aagaaaatcc taccetatgt gcaaccaaac gtcatgggaa cecttcggag gaggacagtt 780
gccatcttat gggcggttga cattacctct agatncaagc actgaccttc aacttaacat 840
atcgtttaca tacggtccgg ttatactgaa tggagacggn atggattatt atgaaagccc 900

actgtcg	908

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 380
$<212>$ TYPE : DNA
$<213>$ ORGANISM : canine distemper virus
$<400>$ SEQUENCE: 5

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 1133
$<212>$ TYPE : DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 9
gccgggctgc atcaccccet agtaagacag gtgaatttta cttattactg cgatacaatt 60
gggatcagaa aatctattgc atcggcagca aatcccatcc tcctgtcagc actctctggg 120
ggcagaggtg acatattccc accatacaga tgcagtggag ctgctacctc agtaggcaga 180
gttttccccc tatcagtgtc attgtccatg tctttgatct caagaaaatc agagataatc 240
aatatgctaa ccgctatctc aaacggagtg tatggtaaaa cttatttact agtgcetgat 300
tatattgaag aggagttcga cacacaaaag attcgagtct ttgagatagg gttcatcaaa 360
cggtggctga atgacatgcc attactccag acaaccaact atatggtcct cccagagaat 420
tccaaagcta aggtatgtac tatagcagtg ggcgagttga cactggcttc ettgtgtgta 480
ggtgagagca cegtgttgtt atatcatgac agcaatggtt egcaagataa tatcctagta 540

ttcggaggag gacagttgcc atcttatggg cggttgacat tacctctaga tccaagcact	840
gaccettcca acttaacata tcgtttacat accgtccggt tatacttgaa tggagacggt	900
atggataatt atgaaagccc actgtcggac tcggatggct taccatttcc ttccaaaacg	960
gaacagtcct tggattgata aacaaaccag taggggagac cagttcattg tatcccccat	1020
gtgttgacca ttgccccagg gaatcaaggg gaatgtattt acctattcaa cottcccaaa	1080
taatgggata aaggatggcc ctcctgaatc caaattacgg tgttgcccta aac	1133

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 1120
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 10
ttggttaagg ccatcctttt tccetaatct gggctgtttg aataggtaaa taacaattcc 60
ccacttgatt ccctgggcgc aaatgtcaac acatggggga ttacaatgaa ctggtctccc 120
ctacttgctt tgtttatcaa tccaaggact gttccgtttt tgggaggaat ggtaagccat 180
ccggagtccg acagtgggct ttcataataa tccataccgt ctccattcag tataaccgga 240
ccgtatgtaa acgatatgtt aagttgaagg tcagtgcttg gatctagagg taatgtcaac 300
cgcccataag atggcaactg tcetcctccg aagggttccc atgacgtttg gttgcacata 360
gggtaggatt ttctttgaca agccgactcc agacaatttt tttgctcttc ctgtttctca 420
gagaccaatg caggcaccat ccaggttget attgaatctt ttatgaaccc acggtgattt 480
gttatatgta tttttctac tgatgggtga gcaacaggta tcacctcttc aacttgatcc 540
atagatgttg ccccaatat tcccagcgtc actactagga tattatcttg cgaaccattg 600
ctgtcatgat ataacaacac ggtgctctca cctacacaca aggaagccag tgtcaactcg 660
cccactgcta tagtacatac cttagcttg gaattctctg ggaggaccat atagttggtt 720
gtctggagta atggcatgtc attcagccac cgtttgatga accctatctc aaagactcga 780
atcttttgt gtgtcgaact cetcttcaat ataaatcagg cacctagtaa ataaagttta 840
ccatacacct ecgtttgaga tagccggtta gcatattgat tatctctgat cctcttgaga 900
tcaaagacat ggacaatgac actgataggc gggaaaactc tgcctactga ggtagcagct 960
ctactgcttt tgttgggtgg gaaatattta accetttgcc cecgaaagtg cttacaggag 1020
gatgggattt gctgccgatc caataaattt tctgatccca attgtatcga agaactaata 1080
aattacctgg accttacttg ggggggtgat gaaccagcgc 1120

tagcagtggg cgagttgaca ctggcttcct tgtgtgtagg tgagagcacc gtgttgttat	480
atcatgacag caatggttcg caagataata tcctagtagt gacgctggga atatttgggg	540
caacatctat ggatcaagtt gaagaggtga tacctgttgc tcacccatca gtagaaaaaa	600
tacatataac aaatcaccgt gggttcataa aagattcaat agcaacctgg atggtgcctg	660
cattggtctc tgagaaacag gaagagcaaa aaaattgtct ggagtcggct tgtcaaagaa	720
aatcctaccc tatgtgcaac caaacgtcat gggaaccctt tcggaggagg acagttgcca	780
tcttatgggc ggttgac	797

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 745
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 12

ccccaattgg	cattgaacca	tgtatccggc	tcttgggttg	catgagtttt	ccggggagtt	60
aacaaccatt	gaatccctta	tgatgctata	tcaacagatg	ggtgaaacag	caccgtacat	120
ggttattctg	gaaaattctg	tccagaacaa	atttagtgca	ggctcctacc	cattgctctg	180
gagttatgct	atgggagttg	gtgttgaact	tgaaaactcc	atgggagggt	taaatttcgg	240
tagatcetac	tttgacccag	cttatttcag	gctcgggcaa	gaaatggtta	gaagatctgc	300
cggtaaggta	agctctgcac	ttgccgecga	getcggcatc	accaaggaag	aggetcagct	360
agtgtcagaa	atagcatcca	agacaacaga	ggacetccca	tttggcattg	aactatgta	420
tccggctctt	gggttgcatg	agttttccgg	ggagttaaca	accettgaat	cttaatgacc	480
tttttcogca	gggaacaaac	ccacaatcgc	tgaattctgt	gaaatatggc	tcaccacatt	540
gtggcagctc	gacaccgact	ttaacettac	ctatggaatt	tggegttgaa	actgtaaatc	600
cctcttcggg	ttaccacctc	ttttgatcac	tttaaccgtt	atttacgcog	gcagccacgt	660
tagaacatat	cegcettcgc	aagttttcct	gcetcctcct	tccacccaat	tagagggcec	720
ccctcctttg	ttatgaaccc	cetta				745

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 1167
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 13
cctgggcgcc ttacccccc ctagtaagct caggtgaatt ttactaacta ctgcgatacc $\quad 60$
cttgggatca gaaaatctat tgcatcggca gcaaatccca tcctcctgtc agcactctct 120
gggggcagag gtgacatatt cccaccatac cgatgcagtg gagctgctac ctcagtaggc 180
agagttttcc ccetgtcagt gtcattgtcc atgtctttga tctcaagaaa atcagagata 240
atcaatatgc taaccgetat ctcaaacgga gtgtatggta aaacttattt actagtgcct 300
gattatattg aagaggagtt cgacacacaa aagattcgag tctttgagat agggttcatc 360
aaacggtggc tgaatgacat gccattactc cagacaacca actatatggt cctcccagag 420
aattccaaag ctaaggtatg tactatagca gtgggegagt tgacactggc ttccttgtgt 480
gtaggtgaga gcaccgtgtc gttatatcat gacagcaatg gttcgcaaga tagtatccta 540
gcagtgacgc tgggaatatt tggggcaaca tctatggatc aagttgaaga ggcgatacct 600
gttgctcacc catcagtaga aaaatacat ataacaaatc accgtgggtt cataaaagat 660
tcaatagcaa cetggatggt gcetgcattg gtctctgaga aacaggaaga gcaaaacaat 720

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 1119
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 16
tcctgtttgc ctttccccc cetagtaaga tcaggtgaat tttactaaca actgcgatac 60
aattgggatc agaaaatcta ttgcatcggc agcaaatccc atcotcctgt cagcactctc 120
tgggggcaga ggtgacatat tcccaccata cagatgcagt ggagctgcta cctcagtagg 180
cagagttttc cecctatcag tgtcattgtc catgtctttg atctcaagaa aatcagagat 240
aatcaatatg ctaaccgcta tctcaaacgg agtgtatggt aaaacttatt tactagtgcc 300
tgattatatt gaagaggagt tcgacacaca aaagattcga gtctttgaga tagggttcat 360
caaacggtgg ctgaatgaca tgccattact ccagacaacc aactatatgg tcctcccaga 420
gaattccaaa gctaaggtat gtactatagc agtgggcgag ttgacactgg cttccttgtg 480
tgtaggtgag agcaccgtgt tgttatatca tgacagcaat ggttcgcaag atagtatcct 540
agcagtgacg ctgggaatat ttggggcaac aactatggat caagttgaag aggtgatacc 600
tgttgctcac ccatcagtag aaaaaataca tataacaaat caccgtgggt tcataaaaga 660
ttcaatagca acctggatgg tgcctgcatt ggtctctgag aaacaggaag agcaaaaaaa 720
ttgtctggag tcggcttgtc aaagaaaatc ctaccctatg tgcaaccaaa cgttatggga 780
accettcgga ggaggacagt tgccatctta tgggcggttg acattacctc tagatccaag 840
cactgacctt caacttaca tatcgtttac atacggtcog gttatcctga atggagacgg 900
tatggattat tatgaaagcc cactgtcgga ctcccgatgg cttaccattc ctccaaaacg 960
gaacagtcct tggattgata aacaaacaag tagaggagac cagttcattg aatccccatg 1020
tgttgacttt tcgcccaggg aatcaagtgg aattgtattt actatcaact tccagattat 1080
ggataagatg tccttctgat tccaatacgg tgtgcetta 1119
$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 1126
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 17

tcgtggtgct	taaccccccc	tagtaagatc	aggtgaattt tactaattac	tgcgatacta	60
ttgggatcag	aaaatctatt	gcatcggcag	caaatcccat cettttatca	gcactctccg	120
gaggtagagg	tgacatattc	ccaccataca	gatgcaatgg agctactatt	tcagtaggca	180
agattttccc	cctatcagta	tcattatcta	tgtctttgat ctcaagaaca	tcagagataa	240
tcaatatgct	aaccgetatc	tcagacggag	tgtatggtaa aacttattta	ctaatgcctg	300
attatattga	aggggagttc	gacacgcaaa	agattcgagt ctttgagata	gggttcatca	360
aacggtggct	gaatgacatg	ccattactcc	agacaaccaa ctatatggtc	ctcccagaga	420
attccaaagc	caaggtatgt	actatagcag	tgggcgagtt gacactgget	tetttgtgtg	480
tagatgagag	caccgtattg	ttatatcatg	acagcaatgg ttcacaagat	ggtgttctag	540
tagtgacget	gggaatattc	ggggcaacat	ctatggatca agttgaagag	gtgatacctg	600
togetgaccc	attagcagaa	aaaatacata	taacaaatca cogtgggatc	ataaaagact	660
caatagcaac	ctggatggtg	cctgcattag	tttctgagaa acaagaggaa	caaacaaatt	720
gtctggagtc	agcttgtcaa	agaaaatcct	accetatgtg caatcaaacg	tcatgggaac	780
cotttggagg	aggacagttg	ccatcttatg	ggcggetgac attacctcta	catccaagca	840

$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 623
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 18

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 1134
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 20
aatgettcct ttacccaccc tagtaagatc aagtaaattt tacggtaaat aaatagcgat 60
acaattggga tcagaaaatc tattgcatcg gcagcaaatc etatcetttt atcagcactc 120
tccggaggta gaggtgacat attcccacca tacaggtgca gtggagctac tacttcagta 180
ggcagagtct tccccctatc agtatcattg tccatgtctt tggtctcaag aacatctgaa 240
ataatcaata tgctaaccgc tatctcagac ggtgtgtatg gtaaaactta tttgctagtt 300
cctgattatc ttgaagggga gttcgacacg caaaagattc gagtctttga gatagggttc 360
atcaaacggt ggctgaacaa catgccatta ctccagacaa ccaactatat ggtcctcceg 420
gaggattcca aagccaaggt atgtactata gcggtgggcg agttgacact ggcttccttg 480
tgtgtagatg agagcaccgt attgttatat catgacagca gtggttcaca agatggtatt 540
ctagtggtga cgctgggaat atttggggca acacctatgg atcaagttga agaggtgata 600
cctgttgctc acccatcagt agaaaaaata catatagcaa accaccgtgg gttcatcaaa 660
gattcaatag caacctggat ggtgcctgca ttggtctctg agaaacaaga ggaacaaaaa 720
aattgtctgg agtcggcttg tcaaagaaaa tcctacceta tgtgcaacca aacgtcatgg 780
gaaccctttg gaggaggaca gttgccatct tatgggcggt tgacattacc tctagatcaa 840
agcattgacc tccagcttaa catctcattt acatatggtc eggttatact gaatggagac 900
ggtatggatt attatgaaag tccgettttg aactccggat ggcttaccat tcctcccaag 960
aacggaacag tccttggatt gataaacaaa gcaagtagag gagaccagtt cactgtatcc 1020
ccatgtgtga catttgcgcc cagggaatca agtggaattg tatttaccta ttcaaacatc 1080
ccagatatgg ataaagatgt cottactgaa tccaaattag tggtgttgcc taac 1134

```
<210> SEQ ID NO 21
<211> LENGTH: 1124
<212> TYPE: DNA
<213> ORGANISM: canine distemper virus
<400> SEQUENCE: 21
```

accggggtgc ttaccccccc tagtaagatc aagtgaattt tacgaaaaac tgcgatccaa 60
ttgggatcag gaaatctatt gcaacggcag caaatcctat cettttatca gcaccctccg 120
gaggtagagg tgacatattc ccatcataca gatgcagtgg agctactact tcagtaggca 180
gagtcttccc cctatcagta tcattgtcca tgtctttgat ctcaagaaca tctgaaataa 240
tcaatatgct aaccgctatc tcagacggag tgtatggtaa aacttatctg ctagttcctg 300
attatcttga aggggagttc gacacgcaaa agattcgagt etttgagata gggttcatca 360
aacggtggct gaacaacatg ccattactcc agacaaccaa ctatatggtc ctcccagagg 420
attccaaagc caaggtatgt actatagcag tgggegagtt gacactggct tcettgtgtg 480
tagatgagag caccatattg ttatatcatg acagcaatgg ttcacaagat ggtattctag 540
tggtgacget gggaatattt ggggcaacac ctatggatca agttgaagag gtgatacctg 600
ttgctcaccc atcagtagaa aaaatacata tagcaaacca tegtgggttt atcaaagatt 660
caatagcaac ctggatggtg cetgcattgg tctctgagaa acaagaggaa caaaaaatt 720
gtctggagtc ggcttgtcaa agaaaatcct accctatgtg caaccaaacg tcatgggaac 780
cctttggagg aggacagttg ccatcttatg ggcggttgac attacctcta gatccaagca 840

ttgaccttca gcttacatct catttacata cggcccgtta tactgaatgg agacggtatg	900
gatactatga aagcccactt ttagactccg gatggcttac cattcctcca agaacggaac	960
agtcettgga ttgataaaca aagcaagtag aggagaccag ttcactgtat ccccatgtgt	1020
tgacatttgc gccaggaatc agtggaaatt gttatttacc tattcaaact tcccaattat	1080
ggataagagt cotactggat ccaaattatg gtgtttccct aacc	1124

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 1145
$<212>$ TYPE : DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 22

cattggtgca	ttaacccacc	tagtaagaca	agtgaatttt	ctaatatac	tgcgatacaa	60
ttgggatcag	gaaatctatt	gcatcggcag	caaatcctat	cettttatca	gcaccetccg	120
gaggtagagg	tgacatattc	ccatcataca	gatgcagtgg	agctactact	tcagtaggca	180
gagtcttccc	cctatcagta	tcattgtcca	tgtctttgat	ctcaagaaca	tctgaaataa	240
tcaatatgct	aaccgetatc	tcagacggag	tgtatggtaa	aacttatctg	ctagttcctg	300
attatcttga	aggggagttc	gacacgcaaa	agattcgagt	ctttgagata	gggttcatca	360
aacggtggct	gaacaacatg	ccattactcc	agacaaccaa	ctatatggtc	ctcccagagg	420
attccaaagc	caaggtatgt	actatagcag	tgggegagtt	gacactggct	tccttgtgtg	480
tagatgagag	caccatattg	ttatatcatg	acagcaatgg	ttcacaagat	ggtattctag	540
tggtgacgct	gggaatattt	ggggcaacac	ctatggatca	agttgaagag	gtgatacctg	600
ttgctcaccc	atcagtagaa	aaaatacata	tagcaaacca	tegtgggttt	atcaaagatt	660
caatagcaac	ctggatggtg	cctgcattgg	tctctgagaa	acaagaggaa	caaaaaaatt	720
gtctggagtc	ggcttgtcaa	agaaaatcct	accetatgtg	caaccaaacg	tcatgggaac	780
cotttggagg	aggacagttg	ccatcttatg	ggcggttgac	attacctcta	gatccaagca	840
ttgaccttca	gettaacatc	tcatttacat	acggtccggt	tatactgaat	ggagacggta	900
tggattacta	tgaaagceca	cttttagact	ceggatgget	taccattcct	cccaagaacg	960
gaacagtcct	tggattgata	aacaaagcaa	gtagaggaga	ccagttcact	gtaatcccec	1020
atgtgttgac	atttgcgccc	agggaatcaa	gtggaaattg	ttatttacct	attccaaaca	1080
tcccagatta	tggataaagg	atgtccttac	tgaagttcta	aattagtggg	ggtttgccet	1140
aagac						1145

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 321
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 23
gcctcccagg ggcaccttcc cccccagta gctcaggtga atctcactta aaactgcgec 60
cccettggga tcttacaatc tattgcatcg gcagcaaatc coctcctttt atcagcactc 120
tccegaggta gaggtgacat attcccacca taccgatgca atggagctac tatttcacta 180
ggcaagattt ccccctatc agtatcatta tctatgtctt tgatctcacg aacatcagag 240
ataatcaata tgctaaccgc tatctcatac ggagtgtatg gtaaaactta tttactaatg 300
cccgactata ttgaagggga g 321
$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 1135
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 24

$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 796
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 25

$<210>$ SEQ ID NO 27
$<211>$ LENGTH: 798
$<212>$ TYPE : DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 27

agttcgacgc acaaagatt cgagtgttga gatagggttg atcggacgag gaggtgaagg	60
acatgccatt actccagaca gctaactata tggtccgccc agagaattcc aaagctaagg	120
tatgtactat agcagtgggc gaggtggcac tggcttcctt gtgtgtaggg gagagcgccg	180
tgttgttata tcatggcagc aatggttcgc aagatagtat cgtagcagtg acgctgggaa	240
tatttggggc aacatctatg gatcaagttg aagaggtgat acctgttgct cacccatcag	300
tagagaaaat acatatagca aatcaccgtg ggttcataaa agattcaata gcaacctgga	360
tggtgcctgc attggtctct gagaaacagg aagagcaaaa aaattgtctg gagtcggctt	420
gtcaaagaaa atcctaccgt atgtgcagcc aaacggcatg ggaacccttc ggaggaggac	480
agttgccatc ttatgggcgg ttgacattac ctctagatcc aagcgctgcc ttcaacttaa	540
catatcgttt acatacggtc cggttatact gaatggagac ggtatggatt attatgaaag	600
cccactgtcg ggctccggat ggcttgccat tcctcccaaa aacggaacag tccttggatt	660
gataacaaa gcaagtagag gagatcagtt cattgtaatc ccccatgtgt ggacatttgc	720

gagggggggc gggagget		798
$<210>$ SEQ ID NO 28		
<211> LENGTH: 1035		
<212> TYPE: DNA		
$<213>$ ORGANISM: canine distemper	virus	
<400> SEQUENCE: 28		
cagtgagagc aaaaatgtag gaaagggcag	gaattccatg ctcaaggagc ggatgtgggg	60
agaggttgcg agtcocgcca gcagtgcagg	aaggggtact cagtagcggg gtttccccct	120
aggaggggga ttgtccagtc tttgatatca	gaaaagaagg atatcaatat gctaaccget	180
atcgccaaag gagggtatgg taagagctta	ttgggagtgc ctgattagag ggagggaagt	240
tctacaggag agagattgga gtggtgagat	gggggttcgt caagcggtgg atgaatgaca	300
taccattact ccagacaacc aagtataggg	gcctcccaga gaatgccaaa gctaaggtat	360
gtactatagc agtgggcgag ttacgctggc	ttccttgtgt gtaggtgaga gcgccgtgtt	420
gttatatcat gacagcaatg gttcgcaaga	tagtatccta gctgtgacgc tgggaatatt	480
tggggcagca tctatggatc aagttgaaga	ggtgatgcct gttgctcacc catcagtaga	540
aaaaiacat ataacaaatc gccgtgggtt	cataaagat tcaatagcag catggatggt	600
gcetgcattg gtctctgaga agcaggaaga	gcaaaaaat tgtcaggagt cgggttgtca	660
aagaaaatcc taccegatgt gcaaccaaac	gtcatgggaa cccttcggag gaggacaggt	720
gccatcttat gggeggttgg cattacctct	agagccaagc actggcettc aacttgacat	780
atcgtttaca tacgggccgg ttatactgaa	tggagacggt atggattatt atgaaagccc	840
actgtcggac gecggatgge ttaccattcc	tcccaaaaac ggaacagtcc gtggattgat	900
aaacaaagca agtagaggag gccagttcat	tgtaatcccc catgtgttga catttgcgec	960
cagggaatca agtgggaatt getattttcc	tattcagaac accccagatt aggatagaag	1020
gaggggcetg ggceg		1035

$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 1131
$<212>$ TYPE : DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 29
cttgtgggct taaaccacct agtaatacaa agtgaatttt actaattact gcgatacaat 60
tgggatcaaa aaatctattg catcggcagc aatcctatc cttttatcag cactctccgg 120
aggcagaggt gacatattcc caccatacag atgcagtgga gctactactt cagtaggcag 180
agtcttcccc thatcagtat cattgtccat gtctttgatc tcaagaacat ctgaaataat 240
caatatgcta accgctatct cagacggagt gtatggtaaa acttatttgc tagttcctga 300
ttatcttgaa ggggagttcg acacgccgaa gattcgagtc tttgagatag ggttcatcaa 360
acggtggctg aacaacatgc cattaatcca gacaaccaac tatatggtcc tccoggagga 420
ttccaaagct aaggtatgta ctatagcagt gggcgagttg acactggctt ccttatgtgt 480
agatgagagc accgtattgt tatatcatga cagcaatggt tcacaagatg gtattctagt 540

$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 1132
$<212>$ TYPE : DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 31

gtgcaaccaa acgtcatggg aacccttcgg aggaggacag ttgccatctt atgggcggtt	840
gacattacct ctagatccaa gcactgacct tcaacttaac atatcgttta catacggtcc	900
ggttatactg aatggagacg gtatggatta ttatgaaagc ccactgtcgg actccggatg	960
gcttaccatt cctcccaaaa acggaacagt cettggattg ataaacaaag caagtagagg	1020
agaccagttc attgtaatcc cccatgtgtt gacatttgcg cccagggaat caagtgggaa	1080
ttgttattta cctattcaaa catcccagat tatgaaaga tgccttaacc cg	1132

$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 1127
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 32
tctgctgctt aaccacctag taagatcagg tgaatttac taactactgc gatacaattg 60
ggatcagaaa atctattgca tcggcagcaa atcccatcct cctgtcagca ctctctgggg 120
gcagaggtga catattccca ccataccgat gcagtggagc tgctacctca gtaggcagag 180
ttttccccct gtcagtgtca ttgtccatgt ctttgatctc aagaaaatca gagataatca 240
atatgctaac cgctatctca aacggagtgt atggtaaaac ttattacta gtgcctgatt 300
atattgaaga ggagttcgac acacaaaaga ttcgagtctt tgagataggg ttcatcaaac 360
ggtggetgaa tgacatgcca ttactccaga caaccaacta tatggtcctc ccagagaatt 420
ccaaagctaa ggtatgtact atagcagtgg gcgagttgac actggcttcc ttgtgtgtag 480
gtgagagcac cgtgtcatta tatcatgaca gcaatggttc gcaagatagt atcctagcag 540
tgacgctggg aatatttggg gcaacatcta tggatcaagt tgaagaggtg aacctgttgc 600
tcacccatca gtagaaaaaa tacatataac aaatcaccgt gggttcataa aagattcaat 660
agcaactgga tggtgcetgc attggtctct gagaaacagg aagagcaaaa aaattgtctg 720
gagtcggctt gtcaaagaaa atcctaccct atgtgcaacc aaacgtcatg ggaacccttc 780
ggaggaggac agttgccatc ttatgggcgg ttgacattac ctctagatcc aagcactgac 840
cttcaactta acatatcgtt tacatacggt ccggttatac tgaatggaga cggtatggat 900
tattatgaaa gcccactgtc ggactccgga tggcttacca ttcctcccaa aaacggaaca 960
gtccttggat tgataaacaa agcagtagag gagaccagtt cattgtaatc ccccatgtgt 1020
tgacatttgc gcccagggaa tcaagtggga attgttattt acctattcaa acatccagat 1080
tatggataaa gatgtcctta ctgagtccaa attagtgtgt gtgccta 1127

aattccaaag ctaaggtatg tactatagca gtgggcgagt tgacactggc ttccttgtgt	480
gtaggtgaga gcaccgtgtc attatatcat gacagcaatg gttcgcaaga tagtatccta	540
gcagtgacgc tgggaatatt tggggcaaca tctatggatc aagttgaaga ggtgatacct	600
gttgctcacc catcagtaga aaaatacat ataacaaatc accgtgggtt cataaaagat	660
tcaatagcaa cetggatggt gcctgcattg gtctctgaga aacaggaaga gcaaaaaaat	720
tgtctggagt cggcttgtca aagaaaatcc taccctatgt gcaaccaaac gtcatgggaa	780
ccettcggag gaggacagtt gccatcttat gggcggttga cattacctct agatccaagc	840
actgaccttc aacttaacat atcgtttaca tacggtccgg ttatactgaa tggagacggt	900
atggattatt atgaaagccc actgtcggac tccggatggc ttaccattcc tcccaaaaac	960
ggaacagtcc ttgaatgata aacaaagcaa gtagaggaga ccagtttatt gtactccctc	1020
tgtgtttgac atttgcgccc aggatcaagt ggcattgttt ctacctatcc aaacttccga	1080

$<210>$ SEQ ID NO 34
$<211>$ LENGTH: 18
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 34
attgggatt gettagga 18
$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 18
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 35
ggegctcatc ttggacat
$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 18
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 36
$<210>$ SEQ ID NO 37
$<211>$ LENGTH: 18
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 37
ggtcetctgt tgtcttgg
$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE : 38
gaattcgact tccgegatct cc
gaattcgact tcegcgatct cc 22
$<210>$ SEQ ID NO 39
$<211>$ LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 39
taggcaacac cactaatttr gactc 25
$<210>$ SEQ ID NO 40
$<211>$ LENGTH: 23
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 40
tcgaaatcct atgtgagatc act 23
$<210>$ SEQ ID NO 41
$<211>$ LENGTH: 26
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic oligonucleotide primer
$<400>$ SEQUENCE: 41
atgctggaga tggtttaatt caatcg 26
$<210>$ SEQ ID NO 42
$<211>$ LENGTH: 1824
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 42

atgctctcct accaagacaa ggtgggtgcc ttctataagg ataatgcaag agctaattca	60
tccaagctgt ccctagtgac agaagagcaa gggggcagga gaccacccta tttgctgttt	120

gtcettctca tcetactggt tggaatcctg gccttgcttg etatcactgg agttcgattt 180
caccaagtat caactagcaa cgtggaattt agcagattgc taaaagagga tatggagaaa 240
tcagaggctg tacatcacca agtcatagat gttttgacge egctcttcaa aattattgga 300
gatgagattg ggttacggct gccacaaaaa ctaaacgaga tcaaacaatt catccttcaa 360
aagacaaact tcttcaatcc taacagggaa ttcgacttcc gtgatctcca ctggtgcatt 420
aacccaccta gtaagatcaa ggtgaatttt actaactact gcgatacaat tgggatcaga 480
aatctattg catcggcagc aaatcccatc ctcctgtcag cactctctgg gggcagaggt 540
gacatattcc caccataccg atgcagtgga gctgctacct cagtaggcag agttttcccc 600
ctgtcagtgt cattgtccat gtcttgatc tcaagaaaat cagagataat caatatgcta 660
accgctatct caacggagt gtatggtaaa acttatttac tagtgcctga ttatattgaa 720
gaggagttcg acacacaaaa gattcgagtc tttgagatag ggttcatcaa acggtggetg 780
aatgacatgc cattactcca gacaaccaac tatatggtcc tcccagagaa ttccaaagct 840
aaagtatgta ctatagcagt gggegagttg acactggctt cettgtgtgt aggtgagagc 900
accgtgtcat tatatcatga cagcaatggt tcgcaagata gtatcctagc agtgacgetg 960

$<210>$ SEQ ID NO 43
$<211>$ LENGTH: 1824
$<212>$ TYPE: DNA
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 43
atgctctcct accgagacaa ggtgggtgcc ttctataagg acaatgctag agctaattca 60
tccaagctgt cottagtgac agaagagcaa gggggcagga gaccacccta tttgctgttt 120
gtcettctca tcetactggt tggaatcatg gcettgcttg ctatcactgg agttcgattt 180
caccaagtat caactagcaa tatggagttt agcagattgc tgaaagagga tctggagaaa 240
tcagaggceg tacatcacca agtcatagat gtcttgacge cgctcttcaa aattattgga 300
gatgagattg ggttacggtt gccacaaaaa ctaaacgaga tcaaacaatt tatccttcaa 360
aagacaaact tcttcaatcc gaacagggaa ttcgacttcc gegatctcca ctggtgcatt 420
aacccaccta gtaagatcaa ggtgaatttt actaattact gcgatactat ggggatcaga 480
aatctattg catcggcagc aaatcccatc cttttatcag cactctccgg aggtagaggt 540
gacatattcc caccatacag atgcaatgga getactattt cagtaggcaa gattttcccc 600
ctatcagtat cattatctat gtctttgatc tcaagaacat cagagataat caatatgcta 660
accgctatct cagacggagt gtatggtaaa acttatttac taatgcctga ttatattgaa 720
ggggagttcg acacgcaaaa gattcgagtc tttgagatag ggttcatcaa acggtggetg 780
aatgacatgc cattactcca gacaaccaac tatatggtcc tcccagagaa ttccaaagct 840
aaggtatgta ctatagcagt gggegagttg acactggctt ctttgtgtgt aggtgagagc 900
accgtattgt tatatcatga cagcaatggt tcacaagatg gtattctagt agtgacgetg 960
ggaatattcg gggcaacatc tatggatcaa gttgaagagg tgatacctgt cgetgaccca 1020
ttagtagaaa aaatacatat aacaaatcac egcgggatca taaaagattc aatagcaacc 1080
tggatggtgc ctgcattagt ttctgagaaa caagaggaac aaaaaattg tctggagtca 1140
gcttgtcaaa gaaaatccta ccctatgtgc aatcaaacgt catgggaacc ctttggagga 1200
ggacagttgc catcttatgg geggttgaca ttacctctag atccaagcat tgaccttcaa 1260

| cttaacatat catttacata cggtccgatt atactgaatg gggacggtat ggattattat | 1320 |
| :--- | :--- | :--- |
| gagagcccac tgttggactc cggatggctt accattcctc ccaagaacgg aacagtcctt | 1380 |
| ggattgataa acaaggcaag tagaggagac cagttcactg taatccccca tgtgttgaca | 1440 |
| tttgcgccca gggaatcaag tggaaattgt tatttaccta ttcaaacatc ccagattatg | 1500 |
| gataagatg tccttactga gtccaattta gtggtgttgc ctacacagaa ttttagatat | 1560 |
| gtcgtagcaa catatgatat atctcgggac gatcatgcga ttgtttatta tgtttatgac | 1620 |
| ccaatacgga cgatttctta tacgtaccca tttagactaa ctactaaggg tagacctgat | 1680 |
| ttcttaagga ttgagtgttt tgtgtgggat gacgatttgt ggtgtcacca gttttaccga | 1740 |
| ttcgaggccg acatcaccaa ctctacaacc agtgtcgaga atttagtccg tatgagattc | 1800 |
| tcatgtaacc gttccagacc ttga | |

$<210>$ SEQ ID NO 44
$<211>$ LENGTH: 607
$<212>$ TYPE: PRT
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 44

Val	eu	$\begin{aligned} & \text { Pro } \\ & 275 \end{aligned}$	$\text { Glu } F$	Asn	er	$\begin{array}{r} y s A \\ 2 \end{array}$	$\begin{aligned} & \text { Ala } \\ & 280 \end{aligned}$	Lys	Val	Cys	hr	$\begin{aligned} & \text { Ile } \\ & 285 \end{aligned}$			Gly
Glu	$\begin{aligned} & \text { Leu } \\ & 290 \end{aligned}$	Thr	Leu A	Ala	Ser	$\begin{aligned} & \text { Leu } \\ & 295 \end{aligned}$	Cys	Val	Gly	Glu	$\begin{aligned} & \text { Ser } \\ & 300 \end{aligned}$	Thr	Val	Ser	Leu
$\begin{aligned} & \text { Tyr } \\ & 305 \end{aligned}$	His	Asp	Ser	Asn	$\begin{aligned} & \text { Gly } \\ & 310 \end{aligned}$	er	3ln	Asp	Ser	$\begin{aligned} & \text { Ile } \\ & 315 \end{aligned}$	Leu	Ala	Val	Thr	$\begin{aligned} & \text { Leu } \\ & 320 \end{aligned}$
Gly	Ile P	he	Gly	$\begin{aligned} & \text { Ala } \\ & 325 \end{aligned}$	Thr	Ser	Met	Asp	$\begin{aligned} & \text { Gln } \\ & 330 \end{aligned}$	Val	Glu	Glu	Val	$\begin{aligned} & \text { Ile } \\ & 335 \end{aligned}$	Pro
Val	Ala H	His	$\begin{aligned} & \text { Pro } s \\ & 340 \end{aligned}$	Ser	al	lu L	Lys	$\begin{aligned} & \text { Ile } \\ & 345 \end{aligned}$	His	Ile	Thr	Asn	$\begin{aligned} & \mathrm{His} \\ & 350 \end{aligned}$	Arg	Gly
Phe		$\begin{aligned} & \text { Lys } \\ & 355 \end{aligned}$	$\text { Asp }:$	er	le		$\begin{aligned} & \text { Thr } \\ & 360 \end{aligned}$	Trp	Met	Val	Pro	$\begin{aligned} & \text { Ala } \\ & 365 \end{aligned}$	Leu	Val	Ser
Glu	$\begin{aligned} & \text { Lys } \\ & 370 \end{aligned}$	Gln	Glu	Glu	Gln	$\begin{aligned} & \text { Lys } \\ & 375 \end{aligned}$	Asn	Cys	Leu	Glu	$\begin{aligned} & \text { Ser } \\ & 380 \end{aligned}$	Ala	Cys	Gln	Arg
$\begin{aligned} & \text { Lys } \\ & 385 \end{aligned}$	Ser T	TYr	Pro	Met	$\begin{aligned} & \text { Cys } \\ & 390 \end{aligned}$	Asn	Gln	Thr	Ser	$\begin{aligned} & \text { Trp } \\ & 395 \end{aligned}$	Glu	Pro	Phe	Gly	$\begin{aligned} & \text { Gly } \\ & 400 \end{aligned}$
Gly	Gln L	Leu	ro	$\begin{aligned} & \text { Ser } \\ & 405 \end{aligned}$	Tyr	ly	9	u	$\begin{aligned} & \text { Thr } \\ & 410 \end{aligned}$	Leu	Pro	Leu	Asp	$\begin{aligned} & \text { Pro } \\ & 415 \end{aligned}$	Ser
Thr	Asp L	eu	$\begin{aligned} & \text { Gln I } \\ & 420 \end{aligned}$	Leu	sn	Ile	r	$\begin{aligned} & \text { Phe } \\ & 425 \end{aligned}$	Thr	Tyr	Gly	Pro	$\begin{aligned} & \text { Val } \\ & 430 \end{aligned}$	Ile	Leu
Asn	$\begin{array}{r} 1 \\ 4 \end{array}$	$\begin{aligned} & \text { Asp } \\ & 435 \end{aligned}$	Gly	et	Asp	Tyr	$\begin{aligned} & \text { Tyr } \\ & 440 \end{aligned}$	Glu	Ser	Pro	Leu	$\begin{aligned} & \text { Ser } \\ & 445 \end{aligned}$	Asp	Ser	Gly
Trp	$\begin{aligned} & \text { Leu } \\ & 450 \end{aligned}$	Thr	Ile P	Pro	ro	$\begin{aligned} & \text { Lys } \\ & 455 \end{aligned}$	Asn	Gly	Thr	al	$\begin{aligned} & \text { Leu } \\ & 460 \end{aligned}$	Gly	Leu	Ile	Asn
$\begin{aligned} & \text { Lys } \\ & 465 \end{aligned}$	Ala	Ser	Arg	Gly	$\begin{aligned} & \text { Asp } \end{aligned}$	Gln	he	Ile	l	$\begin{aligned} & \text { Ile } \\ & 475 \end{aligned}$	Pro	His	Val	Leu	$\begin{aligned} & \text { Thr } \\ & 480 \end{aligned}$
Phe	Ala P	Pro	Arg	$\begin{aligned} & \text { Glu } \\ & 485 \end{aligned}$	Ser	Ser	Gly	Asn	$\begin{aligned} & \text { Cys } \\ & 490 \end{aligned}$	Tyr	Leu	Pro	Ile	$\begin{aligned} & \mathrm{Gln} \\ & 495 \end{aligned}$	Thr
Ser	$1 n$	e	Met A 500	Asp	Ys	Asp	Val	Leu 505	Thr	Glu	Ser	Asn	Leu 510	Val	Val
Leu		$\begin{aligned} & \text { Thr } \\ & 515 \end{aligned}$	$\mathrm{Gln} A$	sn	he A	Arg	$\begin{aligned} & \text { Tyr } \\ & 520 \end{aligned}$	Val	Ile	la	Thr	$\begin{aligned} & \text { Tyr } \\ & 525 \end{aligned}$	Asp	Ile	Ser
Arg	$\begin{aligned} & \text { Asp } \\ & 530 \end{aligned}$	Asn	His A	Ala		$\begin{aligned} & \text { Val } \\ & 535 \end{aligned}$	TYr	Tyr	Val	Tyr	Asp 540	Pro	Ile	Arg	Thr
Ile 545	Ser	Tyr	Thr T	Tyr	$\begin{aligned} & \text { Pro } \\ & 550 \end{aligned}$	Phe	Arg	Leu	Thr	$\begin{aligned} & \text { Thr } \\ & 555 \end{aligned}$	Lys	Gly	Arg	Pro	Asp 560
Phe	Leu	Arg	Ile	$\begin{aligned} & \text { Glu } \\ & 565 \end{aligned}$	Cys	Phe	Val	Trp	$\begin{aligned} & \text { Asp } \\ & 570 \end{aligned}$	Asp	Asp	Leu	Trp	$\begin{aligned} & \text { Cys } \\ & 575 \end{aligned}$	His
Gln	Phe	TYr	$\begin{aligned} & \text { Arg P } \\ & 580 \end{aligned}$	Phe	Glu	Ala	Asp	Ile 585	Thr	Asn	Ser	Thr	$\begin{aligned} & \text { Thr } \\ & 590 \end{aligned}$	Ser	Val
Glu	Asn	$\begin{aligned} & \text { Leu } \\ & 595 \end{aligned}$	Val	Arg	Ile	Arg	Phe 600	Ser	Cys	Asn	Arg	$\begin{aligned} & \text { Ser } \\ & 605 \end{aligned}$	Arg	Pro	

$<210>$ SEQ ID NO 45
$<211>$ LENGTH: 607
$<212>$ TYPE: PRT
$<213>$ ORGANISM: canine distemper virus
$<400>$ SEQUENCE: 45

The invention claimed is:

1. An isolated canine distemper virus (CDV) of European wildlife (EW) lineage comprising the characteristics of CDV 9041474B CDV-EW (ATCC Deposit No. PTA-10596).
2. An attenuated strain of CDV isolated in cell culture in which the CDV strain of claim $\mathbf{1}$ or a progeny strain thereof has been propagated.
3. An immunogenic composition, comprising
the isolated CDV of claim 1, or progeny thereof.
4. A method of eliciting an immune response to canine distemper virus in a subject in need thereof, comprising the step of
administering to said subject the immunogenic composition of claim 3.
5. An isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 44, or the complement thereof.
6. The isolated nucleic acid molecule of claim 5 that comprises the nucleotide sequence of SEQ ID NO: 42, or the complement thereof.
7. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 44.
8. An isolated canine distemper virus (CDV) of European wildlife (EW) lineage encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 44.
9. An isolated canine distemper virus (CDV) of Ameri-can-2 (AM-2) lineage having the characteristics of CDV 08021509 CDV-AM-2 (ATCC Deposit No. PTA-10597).
10. An attenuated strain of CDV isolated in cell culture in which the CDV strain of claim 9 or a progeny strain thereof has been propagated.
11. An immunogenic composition, comprising the isolated CDV of claim 9 , or progeny thereof.
12. A method of eliciting an immune response to canine distemper virus in a subject in need thereof, comprising the step of
administering to said subject the immunogenic composition of claim 11.
13. An isolated nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 45 , or the complement thereof.
14. The isolated nucleic acid molecule of claim $\mathbf{1 3}$ that comprises the nucleotide sequence of SEQ ID NO: 43 , or the complement thereof.
15. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 45.
16. An isolated canine distemper virus (CDV) of European wildlife (EW) lineage encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 45.
