(12) United States Patent
 de la Fuente et al.

(10) Patent No.: \quad US 7,214,784 B2
(45) Date of Patent:
*May 8, 2007
(54)

PROTECTIVE ANTIGENS FOR THE
CONTROL OF IXODES SPECIES INFESTATIONS

Inventors: Jose de Jesús de la Fuente, Stillwater, OK (US); Katherine M. Kocan, Perkins, OK (US); Consuelo García-Almazán, Stillwater, OK (US); Jose Carlos García-García, Stillwater, OK (US); Edmour F. Blouin, Perkins, OK (US)

Assignee: The Board of Regents for Oklahoma State University, Stillwater, OK (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 490 days.

This patent is subject to a terminal disclaimer.
(21) Appl. No.: 10/425,563
(22) Filed: Apr. 29, 2003

Prior Publication Data
US 2004/0022795 A1 Feb. 5, 2004
Related U.S. Application Data
(60) Provisional application No. 60/376,251, filed on Apr. 29, 2002.
(51) Int. Cl.

C07H 21/04	
A01N 25/00	(2006.01)

-

Field of Classification Search 536/23.5; 424/405

4,447,537	A	$5 / 1984$	Yunker et al. 435/235
$5,344,645$	A	$9 / 1994$	Wikel $424 / 265.1$
$5,587,311$	A	$12 / 1996$	Cobon et al. $435 / 240.2$
$6,235,283$	B1	$5 / 2001$	Cobon et al. $424 / 185.1$
$6,312,915$	B1	$11 / 2001$	Nelson et al. 435/7.1

FOREIGN PATENT DOCUMENTS

| WO | WO 01/40469 | $6 / 2001$ |
| :--- | :---: | ---: | ---: |
| WO | WO 01/80881 A1 | $11 / 2001$ |
| WO | WO 03/093416 A2 | $11 / 2003$ |

OTHER PUBLICATIONS

Result No. 3 from a search of the EST database on May 12, 2006, alignment of SEQ ID No. 3 with a polynucleotide from the tick Ornithodoros porcinus porcinus, EST database record No. CB722011, contributed by Neilan et al., "Sequence analysis of Ornithodoros porcinus porcinus whole tick cDNA libraries," unpublished, Apr. 10, 2003.*
(Continued)
Primary Examiner—Jon Weber
Assistant Examiner - Rosanne Kosson
(74) Attorney, Agent, or Firm-Fellers, Snider, Blankenship, Bailey \& Tippens

ABSTRACT

Protective antigens against infestations with Ixodes spp ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by Ixodes spp. ticks are presented.

5 Claims, 4 Drawing Sheets
See application file for complete search history.

OTHER PUBLICATIONS

Alberti E, Acosta A, Sarmiento ME, Hidalgo C, Vidal T, Fachado A, Fonte L, Izquierdo L, Infante JF, Finlay CM, Sierra G. Specific cellular and humoral immune response in $\mathrm{Balb} / \mathrm{c}$ mice immunised with an expression genomic library of Trypanosoma cruzi. Vaccine 1998; 16: 608-12.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.
Barry MA, Lai WC, Johnston SA. Protection against mycoplasma infection using expression-library immunization. Nature 1995; 377: 632-5.
Black WC 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16 S rDNA sequences. Proc Natl Acad Sci U S A 1994; 91: 10034-8.
Brayton KA, Vogel SW, Allsopp BA. Expression library immunization to identify protective antigens from Cowdria ruminantium. Ann N Y Acad Sci 1998; 849: 369-71.
Cassataro J, Velikovsky CA, Giambartolomei GH, Estein S, Bruno L, Cloeckaert A, Bowden RA, Spitz M, Fossati CA. Immunogenicity of the Brucella melitensis recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine 2002; 20: 16609.
de la Fuente J, Rodriguez M, Garcia-Garcia JC. Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann N Y Acad Sci 2000; 916: 617-21.
de la Fuente J, Rodriguez M, Montero C, Redondo M, GarciaGarcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal 1999; 15: 143-8.
de la Fuente J, Rodriguez M, Redondo M, Montero C, GarciaGarcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R, de Armas CA, Rey S, Rodriquez JL, Artiles M, Garcia L. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. Vaccine 1998; 16: 366-73.
De Rose R, McKenna RV, Cobon G, Tennent J, Zakrzewski H, Gale K, Wood PR, Scheerlinck JP, Willadsen P. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep. Vet Immunol Immunopathol 1999; 71: 151-60.
de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp Appl Acarol 2001; 25: 245-61.
Drew DR, Lightowlers M, Strugnell RA. Vaccination with plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. Vaccine 1999; 18: 692-702.
Elad D, Segal E. Immunogenicity in calves of a crude ribosomal fraction of Trichophyton verrucosum: a field trial. Vaccine 1995; 13: 83-7.
Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 1999; 23: 685-715.
Garcia-Garcia JC, Gonzalez IL, Gonzalez DM, Valdes M, Mendez L, Lamberti J, D'Agostino B, Citroni D, Fragoso H, Ortiz M, Rodriguez M, de la Fuente J. Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Exp Appl Acarol 1999; 23: 883-95.
Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol 2001; 100: 3-12.
Liyou N, Hamilton S, Elvin C, Willadsen P. Cloning and expression of ecto 5'-nucleotidase from the cattle tick Boophilus microplus. Insect Mol Biol 1999; 8: 257-66.
Liyou N, Hamilton S, Mckenna R, Elvin C, Willadsen P. Localization and functional studies on the 5^{\prime}-nucleotidase of the cattle tick Boophilus microplus. Exp Appl Acarol 2000; 24: 235-46.

Manoutcharian K, Terrazas LI, Gevorkian G, Govezensky T. Protection against murine cysticercosis using cDNA expression library immunization. Immunol Lett 1998; 62; 131-6.
Melby PC, Ogden GB, Flores HA, Zhao W, Geldmacher C, Biediger NM, Ahuja SK, Uranga J, Melendez M. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect Immun 2000; 68: 5595-602.
Moore RJ, Lenghaus C, Sheedy SA, Doran TJ. Improved vectors for expression library immunization-application to Mycoplasma hyopneumoniae infection in pigs. Vaccine 2001; 20: 115-20.
Mulenga A, Sugimoto C, Onuma M. Issues in tick vaccine development: identification and characterization of potential candidate vaccine antigens. Microbes Infect 2000; 2: 1353-61.
Munderloh UG, Wang YLM, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 1994; 80: 533-43.
Nuttall PA. Pathogen-tick-host interactions: Borrelia burgdorferi and TBE virus. Zentralbl Bakteriol 1999; 289: 492-505.
Parola P, Raoult D. Tick-borne bacteriol diseases emerging in Europe. Clin Microbiol Infect 2001; 7: 80-3.
Silva CL. The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes and Infection 1999; 1: 429-35.
Singh RA, Wu L, Barry MA. Generation of genome-wide CD8 T cell responses in HLA-A*0201 transgenic mice by an HIV-1 ubiquitin expression library immunization vaccine. J Immunol 2002; 168: 379-91.
Smooker PM, Setiady YY, Rainczuk A, Spithill TW. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18: 2533-40.
van Drunen Littel-van den Hurk S, Loehr BI, Babiuk LA. Immunization of livestock with DNA vaccines; current studies and future prospects. Vaccine 2001; 19: 2474-9.
Wikel SK, Ramachandra RN, Bergman DK, Burkot TR, Piesman J. Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infect Immun 1997; 65: 335-8. Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol 1997; 71: 209-22.
Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 1999; 15: 258-62.
Alamzán, C., Kocan, K.M., Bergman, D.K., Garcia-Garcia, J.C., Blouin, E.F., de la Fuente, J., "Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization", Vaccine 2003; 21: 1492-1501.
De La Fuente, J., Kocan, K.M., "Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations", Expert Rev. Vaccines 2003; 2(4): 583-593. Alamzán, C., Kocan, K.M., Bergman, D.K., Garcia-Garcia, J.C., Blouin, E.F., de la Fuente, J., "Characterization of genes transcribed in an Ixodes scapularis cell line that were identified by expression library immunization and analysis of expressed sequence tags", Gene Therapy Molecular Biology, 2003, vol. 7: 43-59.
Alamazan, et al.; Characterization of three Ixodes scapularis cDNAs protective against tick infestations; Vaccine, Butterworth Scientific. Guildford, GB, vol. 23, No. 35, Aug. 15, 2005, pp. 4403-4416.
Almazan, et al.; "Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations"; Vaccine, Butterworth Scientific. Guildford, GB, vol. 23, No. 46-47, Nov. 16, 2005, pp. 5294-5298.
Search report issued by the European Patent Office in Application No. 05256580.1; Applicant: The Board of Regents of Oklahoma State University, Mar. 22, 2006.
PCT International Search Report for PCT/US03/13229, Feb. 11, 2005.

Das et al., "Salp25D, an Ixodes scapularis Antioxidant, Is 1 of 14 Immunodominant Antigens in Engorged Tick Salivary Glands," published Sep. 28, 2001, The Journal of Infectious Diseases 2001; 184:1056-64.
Almazan et al., "Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library

US 7,214,784 B2

immunization," Vaccine, Butlerworth Scientific, Guidford, GB, vol. 21, No. 13-14, Mar. 28, 2003, pp. 1492-1501.
Almazan et al., "Characterisation of genes transcribed in a Ixodes scapularis cell line that were identified by expression library immu-
nization and analysis of expressed sequence tags," Gene Therapy and Molecular Biology, vol. 7. Jun. 2003, pp. 43-59.

* cited by examiner

FIG. 1

SELECTION OF PROTECTIVE POOLS

FIG. 2A

FIG. 2B

FIG. 3

PROTECTIVE ANTIGENS FOR THE CONTROL OF IXODES SPECIES INFESTATIONS

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of copending U.S. Provisional Patent Application Ser. No. 60/376,251 filed Apr. 29, 2002.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to the identification of protective antigens against infestations with Ixodes spp. ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by Ixodes spp. ticks.
2. Background

Ticks parasitize wild, domesticated animals and humans and transmit pathogens including fungi, bacteria, viruses and protozoon. Currently, ticks are considered to be second in the world to mosquitoes as vectors of human diseases, but they are considered to be the most important vector of pathogens in North America (Parola and Raoult, 2001). Ixodes spp. are distributed worldwide and act as vectors of human diseases caused by Borrelia burgdorferi (Lyme disease), Anaplasma phagocytophila (human granulocytic ehrlichiosis), Coxiella burnetti (Q fever), Francisella tularensis (tularemia), B. afzelii, B. lusitaniae, B. valaisiana and B. garinii, Rickettsia helvetica, R. japonica and R. australis, Babesia divergens and tick-borne encephalitis (TBE) and Omsk Hemorrhagic fever viruses (Estrada-Peña and Jongejan, 1999; Parola and Raoult, 2001). Throughout eastern and southeastern United States and Canada, I. scapularis (the black legged tick) is the main vector of B. burgdorferi sensu stricto and A. phagocytophila (Estrada-Peña and Jongejan, 1999; Parola and Raoult, 2001).

Control of tick infestations is difficult and often impractical for multi-host ticks such as Ixodes spp. Presently, tick control is effected by integrated pest management in which different control methods are adapted to one area or against one tick species with due consideration to their environmental effects. Recently, development of vaccines against onehost Boophilus spp. has provided new possibilities for the identification of protective antigens for immunization against tick infestations (Willadsen, 1997; Willadsen and Jongejan, 1999; de la Fuente et al., 1999; 2000; de Vos et al., 2001). The recombinant B. microplus BM86 gut antigen included in commercial vaccine formulations TickGARD (Hoechst Animal Health, Australia) and Gavac (Heber Biotec S. A., Havana, Cuba) also confers partial protection against phylogenetically related Hyalomma and Rhipicephalus tick genera (de la Fuente et al., 2000; de Vos et al., 2001). However, immunization with BM86 failed to protect against the more phylogenetically distant Amblyomma spp. (de Vos et al., 2001). These results suggest that using Bm86 or a closely related gene for the production of vaccines against Ixodes spp. or other tick genera phylogenetically distant from Boophilus spp. (Black and Piesman, 1994) could be impractical. Therefore, the screening for novel protective antigens is necessary to identify vaccine candidates against infestations with these tick species of medical and veterinary importance. Control of ticks by vaccination would avoid environmental contamination and selection of
drug resistant ticks that result from repeated acaricide application (de la Fuente et al., 1998; Garcia-Garcia et al., 1999). Anti-tick vaccines also allow for inclusion of multiple antigens in order to target a broad range of tick species and for incorporation of pathogen-blocking antigens.

Vaccination with DNA and cDNA molecules has been used to induce a protective immune response against B. microplus and several pathogens in laboratory animals and livestock (De Rose et al., 1999; Drew et al., 1999; van Drunen Littel-van den Hurk et al., 2001; Kofta and Wedrychowicz, 2001). A new technique, expression library immunization (ELI) in combination with sequence analysis provides an alternative approach for identification of potential vaccine antigens based on rapid screening of the expressed genes without prior knowledge of the antigens encoded by cDNA clones. ELI was first reported for Mycoplasma pulmonis (Barry et al., 1995) and since then has been used for unicellular and multicellular pathogens and viruses (Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002). However, the identification of individual protective clones has not been reported and it is predicted that identification of protective antigens will be more difficult as the complexity of the genome increases.

Although several reports in the literature have demonstrated by ELI that libraries can offer a degree of protection (Barry et al., 1995; Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002), none have applied ELI to arthropods and particularly to ticks. Several vaccines have been developed to protect humans against Ixodes-transmitted pathogens including TBE virus and B. burgdorferi. However, it is not clear whether these vaccines will protect against all pathogen strains and genotypes. The inclusion of tick immunogens in pathogen-specific vaccines could enhance their protective effect and increase efficacy (Nuttall, 1999). This transmission-blocking approach is supported by evidence that host resistance to ticks provides some protection against tick-borne transmission of viruses and B. burgdorferi (Wikel et al., 1997). Furthermore, vaccination against B. microplus has been demonstrated to contribute to the control of tick-borne diseases (de la Fuente et al., 1998; 1999).

SUMMARY OF THE INVENTION

The present invention is based upon our identification by ELI and sequence analysis of protective cDNA clones against experimental infestations with I. scapularis. This is the first example of the application of ELI to arthropods and particularly to ticks. The protective antigens are homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β-adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins. These antigens induce an immune response in vaccinated hosts that either interferes with tick development or results in a pro-feeding activity, which could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity or they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick profeeding activity. These protective antigens, although identified for I. scapularis, may be cross protective between

Ixodes species considering the high degree of conservation of gene sequences and protein function between species of the same genus. A 5^{\prime}-nucleotidase was identified and characterized in B. microplus by Liyou et al. $(1999 ; 2000)$ but they did not assay its protection capacity. Although surprising at first glance, the protection capacity of ribosomal and heat shock protein preparations has been previously documented in other organisms (Elad and Segal, 1995; Silva, 1999; Melby et al., 2000; Cassataro et al., 2002) but never in ticks. The effect of cDNA vaccination on I. scapularis experimental infestations of mice was evidenced by the reduction of the number of engorged larvae, the retardation of larval development, the inhibition of molting to nymphal stages and the appearance of visibly damaged larvae with red coloration. These effects were also recorded in vaccination experiments with recombinant BM86 and BM95 against infestations with B. microplus, including the red coloration in some ticks, attributed to blood leakage to the tick haemolymph (Garcia-Garcia et al., 2000).

Thus, in one embodiment of the present invention there is provided cDNA sequences, protein encoding fragments thereof, and derived protein sequences for protective I. scapularis antigens comprising antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β-adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins.

In another embodiment of the present invention there is provided a vaccine composition comprising the I. scapularis protective recombinant proteins and/or modified cDNAs separately or which may optionally be combined with adjuvant to enhance the protection efficacy of vaccine preparations against Ixodes spp., wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent. The vaccine composition also may optionally be combined with tick-borne pathogen components to provide a means to control tick-borne infections, wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent and adjuvant.

In another embodiment of the present invention there is provided a method for inducing an immune response in a mammal to provide immune protection, which reduces or affects infestations by Ixodes spp. ticks and/or transmission of tick-borne pathogens, the method comprising administering to at-risk human population and mammalian reservoir an effective amount of a vaccine composition comprising the I. scapularis protective recombinant proteins and/or modified cDNAs alone or in combination with an adjuvant or tickborne pathogen components to provide a means to control tick infestations and to reduce transmission to humans of tick-borne infections, wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent.

A better understanding of the present invention and its objects and advantages will become apparent to those skilled in this art from the following detailed description, wherein there is described only the preferred embodiment of the invention, simply by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modifications in various obvious respects, all without departing from the scope and spirit of the invention. Accordingly, the description should be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a summary of the cDNA ELI approach used to identify protective antigens against I. scapularis infestations.

FIG. 2A is a graph depicting the results of a primary screen of cDNA pools (A-H 1-4, A5) by ELI. V, control mice injected with $1 \mu \mathrm{~g}$ vector DNA alone. ${ }^{*} \alpha<0.01$, $* * \alpha<0.05$ (Tukey's post-hoc test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.
FIG. 2B is a graph depicting the results of a primary screen of cDNA pools (A6-A10, B-H 5-8) by ELI. V, control mice injected with $1 \mu \mathrm{~g}$ vector DNA alone. * $\alpha<0.01$, ** $\alpha<0.05$ (Tukey's post-hoc test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.

FIG. $\mathbf{3}$ is a graph depicting the results of a tertiary screen by ELI of cDNA sub-pools formed according to the predicted function of encoded proteins. Only groups with $I \geqq 15 \%$ are shown (white bars). The number of engorged larvae per mouse is expressed as mean \pm SD (black bars). Control mice were injected with mitochondrial (MT) cDNAs. *P $\leqq 0.05$ (Student's t-test).

DETAILED DESCRIPTION OF THE INVENTION

Before explaining the present invention in detail, it is important to understand that the invention is not limited in its application to the details of the construction illustrated and the steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.

The present invention derives from the sequences set forth on the Sequence Listing attached hereto and incorporated herein. In particular, there is provided 25 separate and distinct sequences comprising 14 cloned cDNA molecules and 11 deduced amino acid sequences of encoded polypeptides, said sequences having been isolated and identified as possessing the asserted utility in accordance with the following described experimental methodology.

EXAMPLE 1

Construction of an I. scapularis cDNA Library and Screening for Protective Antigens by ELI

Tick Cells

Monolayers of IDE8 (ATCC CRL 1973) cells, originally derived from embryonic I. scapularis, were maintained at $31^{\circ} \mathrm{C}$. in L-15B medium supplemented with 5% foetal bovine serum, tryptose phosphate broth and bovine lipoprotein concentrate after Munderloh et al. (1994). Cells were subcultured at 1:5-1:10 when monolayers reached a density of approximately 10^{7} cells/T-25 flask. Medium was replaced weekly.

Library Construction

A cDNA expression library was constructed in the vector pEXP1 containing the strong cytomegalovirus $\mathrm{CMV}_{I E}$ promoter (Clontech). Because we planned to target the early larval stages of I. scapularis, we chose to construct our library from cultured embryonic I. scapularis IDE8 cellsderived poly(A)+ RNA. The cDNA library contained $4.4 \times$
10^{6} independent clones and a titer of approximately 10^{10} cfu $/ \mathrm{ml}$ with more than 93% of the clones with cDNA inserts. The average cDNA size was $1.7 \mathrm{~kb}(0.5-4.0 \mathrm{~kb})$.

Primary Screen

The overall schema for identification of protective antigens through ELI, sequential fractionation and sequence analysis is shown in FIG. 1.

Ninety-six LBA (master) plates containing an average of 41 ($30-61$) cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated in Luria-Bertani with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool (Wizard SV 96 plasmid DNA purification system, Promega, Madison, Wis., USA). BALB/c female mice, 5-6 weeks of age at the time of first vaccination, were used. Mice were cared for in accordance with standards set in the Guide for Care and Use of Laboratory Animals. Mice were injected with a 1 ml tuberculin syringe and a 27 gauge needle at days 0 and 14. Three mice per group were each immunized IM in the thigh with $1 \mu \mathrm{~g}$ DNA/dose in $50 \mu \mathrm{l}$ PBS. Two groups of 3 mice each were included as controls. One group was injected with $1 \mu \mathrm{~g}$ vector DNA alone and the second with saline only. Two weeks after the last immunization, mice were infested with 100 I. scapularis larvae per mouse. Ticks were artificially reared at the Oklahoma State University tick rearing facility by feeding larvae on mice, nymphs on rabbits and adults on sheep and using for infestation in our experiments the larvae obtained from the eggs oviposited by a single female. Twelve hours after tick infestation, larvae that did not attach were counted to calculate the number of attached larvae per mouse and mice were transferred to new cages. Replete larvae dropping from each mouse were collected daily and counted during 7 days. The inhibition of tick infestation (I) for each test group was calculated with respect to vector-immunized controls as $[1-(<R L>n /$ $<\mathrm{RL}>\mathrm{c} x<\mathrm{RL}>\mathrm{ic} /<\mathrm{RL}>$ in) $] \times 100$, where $<\mathrm{RL}>\mathrm{n}$ is the average number of replete larvae recovered per mouse for each test group, $<\mathrm{RL}>\mathrm{c}$ is the average number of replete larvae recovered per mouse for control group, $<\mathrm{RL}>\mathrm{ic}$ is the average number of larvae attached per mouse for control group, and $<$ RL>in is the average number of larvae attached per mouse for each test group.

Pools of $41(30-61)$ I. scapularis cDNA clones were screened by ELI. Only 33 cDNA pools and controls were analyzed per experiment. The average tick infestation level was 50 ± 13 and 56 ± 15 and 56 ± 15 and 54 ± 18 larvae/mouse for cDNA immunized and control mice, respectively ($\mathrm{P}>0.05$) (Table 1). The average number of engorged larvae recovered per mouse was 9 ± 3 and 13 ± 4 in the cDNAimmunized mice and 16 ± 4 and 17 ± 3 in the control vectorimmunized group ($\mathrm{P}<0.05$) (Table 1). No reduction was observed in the number of larvae collected from mice that received the vector DNA compared to saline-immunized controls. The maximum number of engorged larvae was collected 3 to 4 days after infestation. However, in mice immunized with cDNA pools B5, A8 and A10 (FIG. 2) a retardation of larval development in 1 to 2 days was recorded. The average inhibition of tick infestation (I) was $49 \pm 28 \%$ and $30 \pm 22 \%$ (Table 1). After two experiments covering the analysis of 66 pools (2705 clones), 9 protective pools (351 clones) were selected producing an inhibition of tick infestation $\mathrm{I} \geqq 60 \%$ (FIGS. 2A and 2B and Table 1). When we started these experiments, we planed to screen over 4000 cDNA clones considering the complexity of the tick genome. However, to our surprise 9 protective cDNA pools were identified after screening 66 pools containing

2705 cDNA clones. This result probably reflects the possibility of interfering with tick infestations at many different levels that involve a Pleiades of gene products. Results from vaccination experiments against ticks employing recombinant antigens support this view (reviewed by Mulenga et al., 2000). Because of the complexity of the screening procedure in mice vaccinated and challenged with tick larvae, it was difficult to work with more than 9 protective cDNA pools. Therefore we did not continue screening new cDNA pools and focused our attention on the 9 pools selected after the primary screen.

Secondary Screen

The secondary screen was done to verify the protective capacity of the cDNA pools selected after the primary screen (FIGS. 2A and 2B). After the primary screen of 66 cDNA pools (2705 clones), 9 pools with $\mathrm{I} \geqq 60 \%$ were selected for the secondary screen (re-screening) employing 5 mice per group as described above. Engorged larvae were kept for molting in a 95% humidity atmosphere. Molting of engorged larvae was evaluated by visual examination of tick nymphs under a stereomicroscope 34 days after last larval collection. The inhibition of molting (M) for each test group was calculated with respect to vector-immunized controls as $[1-(\mathrm{MLn} / \mathrm{MLc} \times \mathrm{RLc} / \mathrm{RLn})] \times 100$, where MLn is the number of nymphs for each test group, MLc is the number of nymphs for the control group, RLc is the number of larvae recovered for the control group, and RLi is the number of larvae recovered for each test group. Control mice were immunized with the negative ($\mathrm{I}=0 \%$) F2 cDNA pool or saline only. A group was included immunized SC with two doses of $100 \mu \mathrm{~g}$ of total IDE8 tick cell proteins per dose in Freund's incomplete adjuvant.

All 9 protective cDNA pools gave positive results in the secondary screen (data not shown). The tick infestation levels were higher in this experiment (average 85 ± 6 and 84 ± 3 larvae/mouse for cDNA-immunized and control mice, respectively; $\mathrm{P}>0.05$). Nevertheless, the average number of engorged larvae recovered per mouse was 39 ± 7 and 26 ± 6 for control and cDNA-immunized mice, respectively ($\mathrm{P}<0.05$). The group immunized with total IDE8 tick cell proteins was protected with I=33\%. Again, no reduction was observed in the number of larvae collected from mice that received the control cDNA (F2 negative pool after the primary screen; FIG. 2A) compared to saline-immunized controls.
In the secondary screen, molting of engorged larvae was evaluated after 34 days. Molting was affected in all but one test cDNA-immunized group. Inhibition of molting in test cDNA-immunized mice compared to the control cDNAimmunized group varied from 0% to $12 \%(6 \pm 4 \%)$. The inhibition of molting was higher than 50% only in the larvae collected from mice immunized with cDNA pools B5 and A10, which showed a retardation of larval development in 1 to 2 days as in the primary screen. No differences were observed between control cDNA and saline-immunized mice. Among the larvae that did not molt to nymph, some were visibly damaged and presented a strong red coloration. The percent of red larvae in cDNA-immunized mice varied between 3% to $18 \%(7 \pm 5 \%)$ while in the saline and control cDNA-immunized groups red larvae represented the 6% and 4%, respectively.

Tertiary Screen

For the tertiary screen, 64 clones were grouped in 16 sub-pools each containing 1 to 17 plasmids according to the predicted function of encoded proteins (e.g., all the plasmids that encoded histone proteins were grouped together) and
used with 4 sub-pools containing 182 clones of unknown function or with sequences without homology to sequence databases to immunize 4 mice per group. Mice were immunized with $0.3 \mu \mathrm{~g} /$ plasmid/dose in $50 \mu \mathrm{PBS}$ and evaluated as described above. Control mice were immunized with a pool of 20 plasmids containing mitochondrial cDNAs.

Tick infestation levels were similar in all test groups (72 ± 2 larvae/mouse) and in control mice (69 ± 2 larvae/ mouse) ($\mathrm{P}>0.05$). The number of engorged larvae recovered per mouse was also similar between test (16 ± 7) and control (14 ± 6) mice $(\mathrm{P}>0.05)$. However, the groups immunized with cDNA sub-pools containing clones with putative endopeptidase, nucleotidase, ribosomal proteins, heat shock proteins, glutamine-alanine-rich proteins and 3 of the sub-pools with unknown function or with sequences without homology to sequence databases had $\mathrm{I} \geqq 15 \%$ (FIG. 3). Furthermore, among them, the groups immunized with sub-pools containing clones with a putative endopeptidase, nucleotidase and two of the cDNA sub-pools with unknown function or with sequences without homology to sequence databases resulted in lower infestation levels compared to control mice ($\mathrm{P} \leqq 0.05$) and $\mathrm{I} \geqq 40 \%$ (FIG. 3). Clones homologous to chorion proteins, vitellogenin receptors, and peptidoglycan recognition proteins were selected for they potential protection capacity in other stages of tick development.

Statistical Analysis

The number of larvae attached per mouse and the number of engorged larvae recovered per mouse 7 days after infestation were compared by Analysis of Variance (ANOVA) followed by a series of Tukey's post-hoc tests for pair comparisons between cDNA-immunized and control vector DNA-immunized mice (primary screen), and by Student's t -test between mice immunized with positive cDNA pools and the control negative F2 cDNA pool (secondary screen) or between test cDNA sub-pools-immunized and control mice immunized with mitochondrial cDNAs (tertiary screen).

EXAMPLE 2

Sequence Analysis of Protective Clones

All the 351 cDNA clones in the 9 pools that resulted positive in the secondary screen were sequenced. DNA from individual clones in these pools was purified (Wizard SV 96 plasmid DNA purification system, Promega) from the master plate and partially sequenced. In most cases a sequence larger than 700 nucleotides was obtained. Nucleotide sequences were analyzed using the program AlignX (Vector NTI Suite V 5.5, InforMax, North Bethesda, Md., USA). BLAST (Altschul et al., 1990) was used to search the NCBI databases to identify previously cloned sequences that may have homology to those that we sequenced. Sequence analysis allowed grouping the clones according to sequence identity to DNA databases and predicted protein function. The protective clones selected after the tertiary screen were fully sequenced.

Comparison to sequence databases permitted to identify sequence identity to previously reported genes with known function in $152(43 \%)$ of the clones (Table 2). Fifty seven percent of the sequences were homologous to genes with unknown function or had no significant identity to previously reported sequences (Table 2). Of the clones with sequence identity to genes with known function, 85% were homologous to arthropod sequences. Ninety-three clones (61%) contained sequences homologous to Drosophila melanogaster, $5(3 \%)$ to other insects and $32(21 \%)$ to Ixodid tick species. Thirty percent of the clones were eliminated from further analysis based on their sequence identity,
including those containing similar sequences (Table 2). The protective clones included antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, and heat-shock proteins.

SUMMARY OF RESULTS

The results obtained with the various protective clones identified in the Sequence Listing, along with certain selected expressed proteins, are summarized in Table 4.
SEQ ID NO: 1 denotes the clone designated 4E6, wherein the relevant protein encoding fragment has been identified as comprising residues $1-117$, which encodes the polypeptide shown in SEQ ID NO: 2.
SEQ ID NO:3 denotes the clone designated 4D8, wherein the relevant protein encoding fragment has been identified as comprising residues $80-575$, which encodes the polypeptide shown in SEQ ID NO: 4.
SEQ ID NO: 5 denotes the clone designated 4F8, wherein the relevant protein encoding fragment has been identified as comprising residues $1-951$, which encodes the polypeptide shown in SEQ ID NO: 6.

SEQ ID NO: 7 denotes the clone designated 4G11, wherein the relevant protein encoding fragment has been identified as comprising residues 1-697, which encodes the polypeptide shown in SEQ ID NO: 8.

SEQ ID NO:9 denotes the clone designated 4D6, wherein the relevant protein encoding fragment has been identified as comprising residues 198-1025, which encodes the polypeptide shown in SEQ ID NO: 10.

SEQ ID NO:11 denotes the clone designated 3E1, wherein the relevant protein encoding fragment has been identified as comprising residues $3-578$, which encodes the polypeptide shown in SEQ ID NO: 12.

SEQ ID NO:13 denotes the clone designated 1C10, wherein the relevant protein encoding fragment has been identified as comprising residues $1-1119$, which encodes the polypeptide shown in SEQ ID NO: 14.

SEQ ID NO:15 denotes the clone designated 3E10, wherein the relevant protein encoding fragment has been identified as comprising residues $51-1544$, which encodes the polypeptide shown in SEQ ID NO: 16.

SEQ ID NO:17 denotes the clone designated 4F11, wherein the relevant protein encoding fragment has been identified as comprising residues 31-2295, which encodes the polypeptide shown in SEQ ID NO: 18 .

SEQ ID NO:19 denotes the clone designated 3C12, wherein the relevant protein encoding fragment has been identified as comprising residues 6-332, which encodes the polypeptide shown in SEQ ID NO: 20.

SEQ ID NO:21 denotes the clone designated 2C12, wherein the relevant protein encoding fragment has been identified as comprising residues 3-137, which encodes the polypeptide shown in SEQ ID NO: 22.

SEQ ID NOS: 22, 23 AND 24, denote, respectively, clones 1A9, 1B2 and 4A4, each comprising a partial sequence with no associated polypeptide.

As noted above, the present invention relates to the sequences identified in the Sequence Listing. More generally, the invention concerns the given cDNA sequences and any nucleotide sequence coding for a protein which is capable of eliciting an antibody or other immune response (e.g., T-cell response of the immune system) which recognizes an epitope(s) of the amino acid sequences depicted in the Sequence Listing, including less than the full cDNA sequences and mutants thereof. Hence the nucleotide
sequence may encode a protein which is the entire antigen encoded by the variously identified bases, or a fragment or derivative of the antigen or a fusion product of the antigen or fragment and another protein, provided that the protein which is produced from such sequence is capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the given amino acid sequences.

As a result, the invention encompasses DNA sequences which encode for and/or express in appropriate transformed cells, proteins which may be the full length antigen, antigen fragment, antigen derivative or a fusion product of such antigen, antigen fragment or antigen derivative with another protein.

Proteins included within the present invention have an amino acid sequence depicted in the Sequence Listing. Other included proteins consist of a fragment of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the amino acid sequences depicted and a mutuant of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of such amino acid sequences.

The nucleotide sequences may be inserted into any of a wide variety of expression vectors by a variety of procedures. Such procedures and others are deemed to be known by those skilled in the art. Suitable vectors include chromosomal, nonchromosomal and synthetic DNA sequences; e.g., derivatives of SV40; bacterial plasmids; phage DNAs; yeast plasmids; vectors derived from combinations of plasmids and phage DNAs, viral DNA such as baculovirus, vaccinia, adenovirus, fowl pox virus, pseudorabies, etc. The appropriate DNA sequence must be operatively linked in the vector to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned LTR or SV40 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic and eukaryotic cells or their viruses. The expression vector also includes a non-coding sequence for a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

The vector containing the appropriate cDNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. Examples of host organisms and cells include bacterial strains (e.g., E. coli, Pseudomonas, Bacillus, Salmonella, etc.), fungi (e.g., yeasts and other fungi), animal or plant hosts (e.g., mouse, swine or animal and human tissue cells). The selection of the host is deemed to be within the scope of those skilled in the art.

It is also understood that the appropriate cDNA sequence present in the vector when introduced into a host may express part or only a portion of the protein which is encoded within the noted terminology, it being sufficient that the expressed protein be capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the listed amino acid sequences.

The isolated cDNAs and/or polypeptide expressed by the host transformed by the vector may be harvested by methods which will occur to those skilled in the art and used in a vaccine for protection of a mammal, such as a bovine, swine, human, etc., against infestations of Ixodes species. Such protective recombinant proteins and/or modified cDNAs are used in an amount effective to induce an immune response against Ixodes species ticks and their associated pathogens and may be used in combination with a suitable physiologically acceptable carrier. The term "inducing an immune response" when used with respect to the vaccine described
herein means that the vaccine prevents disease associated with a particular tick species or reduces the severity of the disease.

The carrier employed in conjunction with vaccine may be any one of a wide variety of carriers. As representative examples of suitable carriers, there may be mentioned mineral oil, synthetic polymers, etc. Carriers for vaccines are well known in the art and the selection of a suitable carrier is deemed to be within the scope of those skilled in the art. The selection of a suitable carrier is also dependent upon the manner in which the vaccine is to be administered.
The present invention provides a method of immunizing a susceptible mammal, against infestations and disease caused by Ixodes species with the vaccine described above. For purposes of this invention, the vaccine is administered in an effective amount. The vaccine may be administered by any of the methods well known to those skilled in the art, for example, by intramuscular, subcutaneous, intraperitoneal or intravenous injection. Alternatively, the vaccine may be administered intranasally or orally. It is also to be understood that the vaccine may include active components, such as tick-borne pathogen components or adjuvants in addition to the antigen(s) or fragments hereinabove described.
The host expressing the antigen may itself be used to deliver antigen to non-human animals, by introducing killed or viable host cells that are capable of propagating in the animal. Direct incorporation of the cDNA sequences into host cells may also be used to introduce the sequences into animal cells for expression of antigen in vivo.

BIBLIOGRAPHY

The following references are incorporated herein by reference:
Alberti E, Acosta A, Sarmiento M E, Hidalgo C, Vidal T, Fachado A, Fonte L, Izquierdo L, Infante J F, Finlay C M, Sierra G. Specific cellular and humoral immune response in Balb/c mice immunised with an expression genomic library of Trypanosoma cruzi. Vaccine 1998; 16: 608-12.
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.
Barry M A, Lai W C, Johnston S A. Protection against mycoplasma infection using expression-library immunization. Nature 1995; 377: 632-5.
Black W C 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 1994; 91: 10034-8.
Brayton K A, Vogel S W, Allsopp B A. Expression library immunization to identify protective antigens from Cowdria ruminantium. Ann N Y Acad Sci 1998; 849: 369-71.
Cassataro J, Velikovsky C A, Giambartolomei G H, Estein S, Bruno L, Cloeckaert A, Bowden R A, Spitz M, Fossati C A. Immunogenicity of the Brucella melitensis recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine 2002; 20: 1660-9.
de la Fuente J, Rodriguez M, Redondo M, Montero C, Garcia-Garcia J C, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R, de Armas C A, Rey S, Rodriguez J L, Artiles M, Garcia L. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. Vaccine 1998; 16: 366-73.
de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia J C, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R. Vaccination against ticks (Boophilus spp.): the experience with the Bm 86 -based vaccine Gavac. Genet Anal 1999; 15: 143-8.
de la Fuente J, Rodriguez M, Garcia-Garcia J C. Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann N Y Acad Sci 2000; 916: 617-21.
De Rose R, McKenna R V, Cobon G, Tennent J, Zakrzewski H, Gale K, Wood P R, Scheerlinck J P, Willadsen P. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep. Vet Immunol Immunopathol 1999; 71: 151-60.
de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp Appl Acarol 2001; 25: 245-61.
Drew D R, Lightowlers M, Strugnell R A. Vaccination with plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. Vaccine 1999; 18: 692-702.
Elad D, Segal E. Immunogenicity in calves of a crude ribosomal fraction of Trichophyton verrucosum: a field trial. Vaccine 1995; 13: 83-7.
Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 1999; 23: 685-715.
Garcia-Garcia J C, Gonzalez I L, Gonzalez D M, Valdes M, Mendez L, Lamberti J, D'Agostino B, Citroni D, Fragoso H, Ortiz M, Rodriguez M, de la Fuente J. Sequence variations in the Boophilus microplus Bm 86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Exp App1 Acarol 1999; 23: 883-95.
Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol 2001; 100: 3-12.
Liyou N, Hamilton S, Elvin C, Willadsen P. Cloning and expression of ecto 5^{\prime}-nucleotidase from the cattle tick Boophilus microplus. Insect Mol Biol 1999; 8: 257-66.
Liyou N, Hamilton S, Mckenna R, Elvin C, Willadsen P. Localization and functional studies on the 5 '-nucleotidase of the cattle tick Boophilus microplus. Exp Appl Acarol 2000; 24: 235-46.
Manoutcharian K, Terrazas L I, Gevorkian G, Govezensky T. Protection against murine cysticercosis using cDNA expression library immunization. Immunol Lett 1998; 62: 131-6.
Melby P C, Ogden G B, Flores H A, Zhao W, Geldmacher C, Biediger N M, Ahuja S K, Uranga J, Melendez M.

Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect Immun 2000; 68: 5595-602.
Moore R J, Lenghaus C, Sheedy S A, Doran T J. Improved vectors for expression library immunization - application to Mycoplasma hyopneumoniae infection in pigs. Vaccine 2001; 20: 115-20.
Mulenga A, Sugimoto C, Onuma M. Issues in tick vaccine development: identification and characterization of potential candidate vaccine antigens. Microbes Infect 2000; 2 : 1353-61.
Munderloh U G, Wang Y L M, Chen C, Kurtti T J. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 1994; 80: 533-43.

Nuttall P A. Pathogen-tick-host interactions: Borrelia burgdorferi and TBE virus. Zentralbl Bakteriol 1999; 289: 492-505.
Parola P, Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect 2001; 7: 80-3.
Silva C L. The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes and Infection 1999; 1: 429-35.
Singh R A, Wu L, Barry M A. Generation of genome-wide CD8 T cell responses in HLA-A*0201 transgenic mice by an HIV-1 ubiquitin expression library immunization vaccine. J Immunol 2002; 168: 379-91.
Smooker P M, Setiady Y Y, Rainczuk A, Spithill T W. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18: 2533-40.
van Drunen Littel-van den Hurk S, Loehr B I, Babiuk L A. Immunization of livestock with DNA vaccines: current studies and future prospects. Vaccine 2001; 19: 2474-9.
Wikel S K, Ramachandra R N, Bergman D K, Burkot T R, Piesman J. Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infect Immun 1997; 65: 335-8. Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol 1997; 71: 209-22.
Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 1999; 15: 258-62.

TABLE 1

Experimental group ${ }^{\text {a }}$	Primary screen of the I. scapularis cDNA library by ELI in mice.				Number of pools selected for the secondary screen
	Number of pools screened (Number of clones)	Average \pm SD number of larvae attached per mouse ${ }^{\text {b }}$	Average $\pm \mathrm{SD}$ number of engorged larvae per mouse ${ }^{\text {c }}$	Average \pm SD inhibition of tick infestation (I) ${ }^{\text {d }}$	
Experiment 1	33 (1383)	$50 \pm 13(33-80)$	$9 \pm 3(2-42)$	$\begin{gathered} 39 \pm 55 \% \\ (-183-87 \%) \end{gathered}$	6 ($\mathrm{P}>75 \%$)
Vector DNAimmunized controls for experiment 1	-	56 ± 13 (45-67)	$16 \pm 4(5-27)$	-	-
Experiment 2	33 (1322)	$56 \pm 15(29-79)$	$13 \pm 4(1-27)$	$\begin{gathered} 27 \pm 28 \% \\ (-53-89 \%) \end{gathered}$	3 ($\mathrm{I}>60 \%$)

TABLE 1-continued

| | | Primary screen of the I. scapularis cDNA library by ELI in mice. |
| :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{a}$ Ninety six LBA plates containing an average of 41 cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool for ELI. Three mice per group were each immunized IM twice with $1 \mu \mathrm{~g}$ DNA/dose in $50 \mu \mathrm{l}$ PBS two weeks apart. Two groups of 3 mice each were included as controls. One group was injected with vector DNA and the second with saline only.
${ }^{5}$ Fifteen days after the last immunization, mice were infested with 100 I. scapularis larvae per mouse. Twelve hrs later, larvae that did not attach were counted to calculate the number of attached larvae per mouse and mice were transferred to new cages.
${ }^{\text {}}$ Engorged larvae dropping from each mouse were collected daily and counted after 7 days.
${ }^{d}$ The inhibition of tick infestation (I) for each test group was calculated with respect to vectorimmunized controls as $[1-(\mathrm{RLn} / \mathrm{RLc} \times \mathrm{RLic} / \mathrm{RLin})] \times 100$, where RLn is the average number of replete larvae recovered per mouse for each test group, RLc is the average number of replete larvae recovered per mouse for control group, RLic is the average number of larvae attached per mouse for control group, and RLin is the average number of larvae attached per mouse for eachtest group

TABLE 2
Classification of the clones in protective pools by putative protein function according to identity to sequence databases.

Putative protein Function	Number of clones

Biosynthetic $^{\mathrm{a}}$	2
Catabolism $^{\text {Cell adhesion }}$	4
Cell cycle $^{\mathrm{a}}$	2
Cytoskeletal $^{\mathrm{a}}$	2
Defense	8

Defense
DNA structure or replication ${ }^{\text {a }}$
Extracellular matrix
Endocytosis
Energy metabolism
Homeostasis
Morphogenetic
Mitochondrial ${ }^{a}$
Protein synthesis or processing ${ }^{\text {a,b }}$
RNA synthesis or processing ${ }^{a}$
Heat-shock proteins
Signal transduction
Transport
Unknown
Total
${ }^{a}$ Eliminated from further screening of protective antigens. Other clones
were eliminated for containing similar sequences
${ }^{b}$ Except for ribosomal proteins.

TABLE 3

TABLE 3		
Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.		
	Clone	Pool $^{\text {a }}$

30

35
35
3

Membrane protein (7) 4D11, 4D12, 4E7, 4F7 F1

40
ATPase (6)

45
Cell channel/Transporter (5)

Early development-specific (4)

50
G protein-coupled receptor (4)

Growth factor receptor (3)

55 Lectin (3)
Vitellogenin (3)

Heat shock (3)
60

EGF-like (2)
Secreted protein (2)
65 Glutamine-Alanine rich (2)
Adaptin (1)

TABLE 3-continued
Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.

Clone	Pool ${ }^{\text {a }}$
3G9, 3G10	E3
4D11, 4D12, 4E7, 4F7	F1
1D8, 1D11, 1E10	D1
2B12	A10
2 H 5	E8
3C9	B4
3G11	E3
$1 \mathrm{~A} 9,1 \mathrm{~B} 2,1 \mathrm{C} 9$	A5
2C9	A10
4A4	C3
4G12	F1
1F4	D1
2H11	E8
4A12	C3
4G10, 4G11	F1
1 C 8	A5
3F4	E3
4 C 7	C3
4G9	F1
2B7, 2C12	A10
2F12	E8
4C9	C3
2E8	B5
3B8, 3C8	B4
3 E 10	E3
4B8, 4C8	C3
1F12	D1
4A6	C3
4G2	F1
1 C 10	A5
1F10	D1
3F6	E3
2 H 4	E8
4 C 10	C3
$2 \mathrm{F9}$	E8
3 C 12	B4
4D6, 4E6	F1
3E1	E3

Clone	Pool ${ }^{\text {a }}$
3G9, 3G10	E3
4D11, 4D12, 4E7, 4F7	F1
1D8, 1D11, 1E10	D1
2B12	A10
2 H 5	E8
3C9	B4
3G11	E3
$1 \mathrm{~A} 9,1 \mathrm{~B} 2,1 \mathrm{C} 9$	A5
2C9	A10
4A4	C3
4G12	F1
1F4	D1
2H11	E8
4A12	C3
4G10, 4G11	F1
1 C 8	A5
3F4	E3
4 C 7	C3
4G9	F1
2B7, 2C12	A10
2F12	E8
4C9	C3
2E8	B5
3B8, 3C8	B4
3 E 10	E3
4B8, 4C8	C3
1F12	D1
4A6	C3
4G2	F1
1 C 10	A5
1F10	D1
3F6	E3
2 H 4	E8
4 C 10	C3
$2 \mathrm{F9}$	E8
3 C 12	B4
4D6, 4E6	F1
3E1	E3

TABLE 3-continued

Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.		
Sub-pool (No. of clones)	Clone	Pool ${ }^{2}$
Endopeptidase (1)	4 D 8	F1
Nucleotidase (1)	4 F 8	F1

${ }^{a}$ cDNA pools refer to positive pools after primary and secondary screens (FIG. 2A and 2B).

TABLE 4

cDNA clone	Summary of results with I. scapularis cDNA clones.			
	Predicted Protein	Inhibition of tick infestation I (\%)	Inhibition of molting M \%	$\begin{aligned} & \text { Efficacy } \\ & \text { E (\%) } \end{aligned}$
4D8	Endopeptidase	40*/54**	7*/8**	44*/58**
4F8	Nucleotidase	50*/64**	17*/-9**	58*/61**
1 C 10	HSP70	17*	ND	ND
4D6	Glu-Ala-rich	$61 *$	11	66*
4E6	Glu-Ala-rich	20*/46**	16**	55**
3E1	β-adaptin (appendage region)	$27 *$	5*	31*
2C12	Beta-anyloid precursor protein (APP)	$-8^{* * *}$	ND	ND
4F11	Block of proliferation Bop1	-39***	ND	ND
3E10	Mannose binding lectin	-48*/-10***	ND	ND
4G11	Chloride channel	38***	30	57

TABLE 4-continued

cDNA clone	Summary of results with I. scapularis cDNA clones.			
	Predicted Protein	Inhibition of tick infestation I (\%)	Inhibition of molting M \%	Efficacy E (\%)
3 C 12	RNA polymerase III	-104***	ND	ND
$\begin{aligned} & 1 \mathrm{~A} 9,1 \mathrm{~B} 2, \\ & 4 \mathrm{~A} 4 \end{aligned}$	ATPase	$-57^{* * *}$	ND	ND

Mice were immunized with cDNA-containing expression plasmid DNA as described above (${ }^{*}$) or with $100 \mu \mathrm{~g} /$ dose of recombinant protein expressed in E. coli (**). I, M and E were calculated as described above. ND, not 5 determined.
***Resulted in a pro-feeding activity. This effect could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity. Alternatively, they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick pro-feeding activity.

In view of the above, it will be seen that the several objectives of the invention are achieved and other advantageous results attained. As various changes could be made in the above DNA molecules, proteins, etc. without departing 5 from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. While the invention has been described with a certain degree of particularity, it is understood that the ${ }^{30}$ invention is not limited to the embodiment(s) set for herein for purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.

<160> NUMBER OF SEQ ID NOS: 25	
$<210\rangle$ SEQ ID NO 1	
<211> LENGTH: 349	
<212> TYPE: DNA	
<213> ORGANISM: Ixodes scapularis	
<400> SEQUENCE: 1	
atggaaatat ctgtgaaacc aaggcecaca aaaaggaaaa gaaaggccat catcatcatg	60
gcaagaatga gaacagcatt ccccaccaga agtgggaaca gcttctcaag gacttgaaca	120
gttaatgatg tgttgtgcaa ttcgaatgtg gctgcaacct cgctagagaa catagtcgac	180
cagctgtagt gctctagtat taaccaagaa gcagtattct gccgtcatat gtacaggcag	240
atttgttacg gcattttcag ctttttttta tacaaaatgt agttcttgtt taaaaaaaac	300
ctaaataaa acaaagccac aaaaaaaaa aaaaaaaaa aaaaaaaa	349
<210> SEQ ID NO 2	
<211> LENGTH: 38	
<212> TYPE: PRT	
<213> ORGANISM: Ixodes scapularis	
<400> SEQUENCE: 2	
Met Glu Ile Ser Val Lys Pro Arg Pro Thr Lys Arg Lys Arg Lys Ala 1 5 10 15	

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 2693
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (685)..(685)
$<223>$ OTHER INFORMATION: n is a, $c, ~ g, ~ o r ~$

ggtttgtgct gettggaaaa tccaccagga gcctgcaacc gcaaaaaagt tcatcatccg	60
gagctaagce tatcgcagga tggcttgcgc aacattaaag cgaacacacg attgggatcc	120

gctgcatagt ccaaacggaa gatcgcccaa acgacggaga tgtatgcctt tgtcggtcac 180
acaagcagcg actcccccaa caagggcaca ccaaatcaac ccttcaccct tcggtgaagt 240
gccaccgaaa ttaacttcag aggagatagc ggccaacatt cgggaggaaa tgcgacgtct 300
gcagcggcge aagcagctct gcttctcgtc tcccctggag tcgggctccc cgtcggcgac 360
tccccetgeg gccgattgeg gaccagcctc ccccacgggc ctgtccccog ggggcetget 420
gtcgccogtg egcagggacc aacccctctt caccttccgc caggtggggc tcatctgega 480
gcgcatgatg aaggagcgcg agagccagat acgcgacgag tacgaccacg ttctgtctgc 540
caagctggca gagcagtacg acacatttgt caagtttacg tacgaccaaa ttcagaagcg 600
gtttgagggt gccactccaa gctatttgtc ataacatgat gggcatctgc aaacaagcaa 660
ggaactttga gggtttgtgc taganggaag aaacccatgg tggggaagga cacaagacca 720
acacttagac tcggcaagca agccagatcc tgtggggtge ggggacgggg ggaatgagtc 780
cagtggtgtc ttcggagttt tttttttcc ttctccottt ccctcgtctt cttttggca 840
caactcttta cggaactggt gtgcatccat tccccgaaag tgcaagagaa ggactcgegg 900
cggatcatct acggaggaag aagtgtgtat gcctttgtgc tttgggtctc cttttttttt 960
tttttaaccg tcttgccatc tcgccataga agacctgtga tctagcaaac aaaggtgtgc 1020
gaatgttatg caaaggttgg aagtcagttt gaaagtggag cgagagaaaa ttttgtatgc 1080
tgagtatggt tagtcaccgt ttacttttca ggagggggat gactgaggaa cggagcogcc 1140
ccaactctcg tttgtctttt atttttagga tactttctct gtggcgagaa tttgtgtgtg 1200
catgcaagtt agcgagggta cgaggaaaag aagggttata aaatattctg ggtgagagct 1260
gtagttcaac tggggggtgg gattgtaaag acctgcgggt accgagagga ccgcatgctc 1320
tggctatatt acttgcattg agggggagga ggaatgctgg acctcgagca gagccagcaa 1380
gtattttgga aaggaataaa aacaaaaatt ggcttagtgt acagatgtat aatatatatg 1440
cactacaggg tgtgtgtgcc tcttgtatct tcccgtgcgt tgtgtccctc ttgcggcttg 1500
cccatctgac aaccgcctgt gtacataggc caacgcaagt cttcagcatg gcaccctctt 1560
cttttcctt tttttttct cataagtaat tttgaaggag agaatatttt gatttctaag 1620
actcccaaaa catcaagtgc tctggtggtc ggaattctac aagtgcgaaa gttcctttct 1680
tttttttgtt tcgagatagg aatggcttca ggttgtgctg cctatgcttt ggccacactt 1740

| tggaacacct gcaacagcga attaactggt gtaggcctgt gacacttgca cagccgtgtt | 1800 |
| :--- | :--- | :--- |
| ttttttttt ttttttgtag ttttgcagta ataaaactt gttatggaaa gagtgcatta | 1860 |
| tgctatggca ttgtctgctg ctatgcttat tggaatgcat gcctgatgtg tgttgtgctt | 1920 |
| gaggatagtg aagtggtatt gcagggttgg aaaggagctt anaatgcctt ctggcttttg | 1980 |
| cataagcgtg gctttgggtg tcgtctgagc ttgtcaatca cagtgcaaca tgcactttgt | 2040 |
| ccaattggtt tattggggac tgcttttggg tgcagagttt gactaatttt tagtaatgct | 2100 |
| tcaaatgcaa cgcttctgtg ttgatcgcag ttcatcaact cgtcgatcat tatgcatgtg | 2160 |
| aaaaactgct cacgtaaact gtatgttgat atcacagttg cactgaggaa gcctggctta | 2220 |
| agatggtgtg tgcaagtgct tggcacactg cgtattttcc agcataaagc tggtagtgta | 2280 |
| caggtgctgc tgttagtagc aaactttctg ccattgctgc cacaattcat gcatgaatga | 2340 |
| gtgttgggga gtatgttagt ttatcttttc aaaactgatt tgaagtacca gtgtcctata | 2400 |
| tttttgccat tgcattaata tggatcctgc attgtttacg gaaaaaagtgataacattaa | 2460 |
| ttatgaaaga tattaagcga gtttattgac ttttccagga gaatttagac caggaggcac | 2520 |
| tacatagcct gtggtctgct ttgttatgtt gacttggttt ttgtggaaat tagttctaaa | 2580 |

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 184
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE $: 4$

atggegtcgt gtggagcatc agcgacgggt cotctcgtcc taagagtaat ttccaacact 60
gttaaaatag ttaacagcgc cggaaagata atcaaggaca tcatgaacag tggaaacctc 120
ggaatcgtcg aaaaggaagg catcaatgac ctgcaaacgg aggcagacag atctgttcag 180
cgctgcattg tgacttcgct ctcgagacag ttcccaaaac tgacaataat tggtgaagag 240
actctggagg agaaaagat cagcgacgac tggatcatca cogagcatga caaggatgtc 300
ctggccactt ctctgccgga caacctgaag aacatcaaag aggaagattt ggtagtctgg 360
gttgatcctc tggatggaac caaggagtac acacagggtt tcctggacca cgtgacgatc 420
ctggtgggga ttgcggttga cggtaaggca gtgggtggag tgatccacca gccgtactac 480
aactaccagg tggagaagga cgtctacaag cagggacgta ccatgtgggg cattgtcggc 540
gtcggtgcct ttgggatctc gegcattgcg cetccggaga acaagaggat catcactacg 600
acgcgctccc attccagccc caccatcaac agctgcattg aagccatgaa tccggacgag 660
gtgctgcgag ttggaggtgc cgggcacaag gtgctgctgt tgattgaggg caaggctcac 720
gcttacgtgt ttcccagcaa agggtgcaag aaatgggaca cttgtgcccc cgaagcgatt 780
cttcatgcca ctggcggcct tcttacagat gttcacggga acagattgga gtaccacaag 840
gacgtggaac acgtcaatgc eggeggcgtt cttgccacct gectgaagga acaacacgaa 900
tggttcaaga accacattcc egaagatgtc cgcaagacgc ttcctctatg agcaacctgc 960
cgttgtccgt tgcgatcaca ctcaagtcgc gtttttcctt taactttgtg gtgatgcggt 1020
tcaaagtctt atactattag tgttttggtg gtccaaatat tattactaaa aaaacccgga 1080
gacatgggac acaaaaaat ggaggggcgg gacaataagg tctcgaacac agctcgtaca 1140
gaatttttta aaataatgtt gatttcaggt ttatttgtgg aaactctgaa attaaccgtt 1200
atgtcattat ttgggttgtg cogtttgaaa ttttatgaaa tacgtaatag ctgcacgcat 1260
tttgcaggcc actcagctcc ttgaatgctc gatgcttgat gcttctgcca acattatttg 1320
tatctcaagt ttttctacca caagaaacag taccctaaca ttttgaaata gtattactag 1380
-continued

cacttacatt gcttgatcgt tgaattaatt ttttagctga tgttaaggac acttataata	1560
attaaggaaa tgagatcgat cttgagcttg tttgngcctc tgtaanaatt gatgctcttt	1620
canacctaat gcttaatgca acaataatta tcaagtaatc cttactcagg tgtcagatat	1680
gcaagcagat gccaatgctt ctgttcattg agtggcaaaa ggcattgctc tttgtcacat	1740
tgcatgcatt tatgacagcc cnccttaata aactataatg cagctaatnt gaaaaaaaaa	1800
aaaaaaaaaa aaaaaaaaaa a	

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 316
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE: 6

Met 1	Ala	er	Cys	$\begin{aligned} & \text { Gly } \\ & 5 \end{aligned}$	Ala	Ser	Ala	Thr	$\begin{aligned} & \text { Gly } \\ & 10 \end{aligned}$	ro I	eu	1	Leu	15	1
Ile		Asn	$\begin{aligned} & \text { Thr } \\ & 20 \end{aligned}$	Val	Lys	le	Val	$\begin{aligned} & \text { Asn } \\ & 25 \end{aligned}$	Ser	Ala	Gly	Lys	$\begin{aligned} & \text { Ile } \\ & 30 \end{aligned}$	Ile	Lys
Asp	Ile	Met 35	Asn	Ser	Gly	$A s n$	$\begin{aligned} & \text { Leu } \\ & 40 \end{aligned}$	Gly	Ile	Val	Glu	$\begin{aligned} & \text { Lys } \\ & 45 \end{aligned}$	Glu	Gly	Ile
Asn	Asp 50	Leu	Gln	r	lu	Ala 55	Asp	$r g$	Ser	al	$\begin{aligned} & \mathrm{G} \ln \\ & 60 \end{aligned}$	Arg	Cys		Val
$\begin{aligned} & \text { Thr } \\ & 65 \end{aligned}$	er	u	er	$r g$	$\begin{aligned} & \mathrm{Gln} \\ & 70 \end{aligned}$	he	ro	ys	eu	$\begin{aligned} & \text { Thr } \\ & 75 \end{aligned}$	Ile	Ile	fly	lu	$\begin{aligned} & \text { Glu } \\ & 80 \end{aligned}$
Thr	eu	Glu	$1 u$	$\begin{aligned} & \text { Lys } \\ & 85 \end{aligned}$	Lys	Ile	er	Asp	Asp 90	Trp	Ile	Ile	Thr	$\begin{aligned} & \text { Glu } \\ & 95 \end{aligned}$	His
Asp	Lys	Asp	$\begin{aligned} & \text { Val } \\ & 100 \end{aligned}$	Leu	Ala	Thr	er	$\begin{aligned} & \text { Leu } \\ & 105 \end{aligned}$	Pro	sp	Asn	Leu	$\begin{aligned} & \text { Lys } \\ & 110 \end{aligned}$	Asn	Ile
Lys	Glu	$\begin{aligned} & \text { Glu } \\ & 115 \end{aligned}$	Asp	Leu	Val	7al	$\begin{aligned} & \text { Trp } \\ & 120 \end{aligned}$	Val	Asp	Pro	Leu	$\begin{aligned} & \text { Asp } \\ & 125 \end{aligned}$	Gly	「hr	Lys
Glu	$\begin{aligned} & \text { Tyr } \\ & 130 \end{aligned}$	Thr	Gln	Gly	he	$\begin{aligned} & \text { Leu } \\ & 135 \end{aligned}$	Asp	His	Val	$h r$	$\begin{aligned} & \text { Ile } \\ & 140 \end{aligned}$	Leu	Val	Gly	Ile
Ala 145	al	Asp	1 y	Lys	$\begin{aligned} & \text { Ala } \\ & 150 \end{aligned}$	Val	fly	$1 y$	al	$\begin{aligned} & \text { Ile } \\ & 155 \end{aligned}$	His	Gln	ro	Tyr	$\begin{aligned} & \text { Tyr } \\ & 160 \end{aligned}$
Asn	Tyr	Gln	Val	$\begin{aligned} & \text { Glu } \\ & 165 \end{aligned}$	Lys	Asp	Val	Tyr	$\begin{aligned} & \text { Lys } \\ & 170 \end{aligned}$	Gln	Gly	Arg	Thr	$\begin{gathered} \text { Met } \\ 175 \end{gathered}$	Trp
Gly	le	Val	$\begin{aligned} & \text { Gly } \\ & 180 \end{aligned}$	Val	ly	Ala	he	$\begin{aligned} & \text { Gly } \\ & 185 \end{aligned}$	Ile	er	Arg	Ile	$\begin{aligned} & \text { Ala } \\ & 190 \end{aligned}$	ro	Pro
Glu	Asn	$\begin{aligned} & \text { Lys } \\ & 195 \end{aligned}$	Arg	Ile	Ile	Thr	$\begin{aligned} & \text { Thr } \\ & 200 \end{aligned}$	Thr	Arg	Ser	His	$\begin{aligned} & \text { Ser } \\ & 205 \end{aligned}$	Ser		Thr
Ile	$\begin{aligned} & \text { Asn } \\ & 210 \end{aligned}$	Ser	Cys	le	lu	$\begin{aligned} & \text { Ala } \\ & 215 \end{aligned}$	Met	n	ro	sp	$\begin{aligned} & \text { Glu } \\ & 220 \end{aligned}$	Val	Leu	Arg	Val
$\begin{aligned} & \text { Gly } \\ & 225 \end{aligned}$	Gly	Ala	Gly	is	$\begin{aligned} & \text { Lys } \\ & 230 \end{aligned}$	al	Leu	eu	Leu	$\begin{aligned} & \text { Ile } \\ & 235 \end{aligned}$	Glu	Gly	Lys	Ala	$\begin{aligned} & \text { His } \\ & 240 \end{aligned}$
Ala	Tyr	Val	Phe	$\begin{aligned} & \text { Pro } \\ & 245 \end{aligned}$	Ser	Lys	Gly	Cys	$\begin{aligned} & \text { Lys } \\ & 250 \end{aligned}$	Lys T	Trp	Asp	Thr	$\begin{aligned} & \text { Cys } \\ & 255 \end{aligned}$	Ala
Pro	lu	Ala	$\begin{aligned} & \text { Ile } \\ & 260 \end{aligned}$	Leu	is	la	Thr	$\begin{aligned} & \text { Gly } \\ & 265 \end{aligned}$	Gly	eu	eu	Thr	$\begin{aligned} & \text { Asp } \\ & 270 \end{aligned}$	Val	His
Gly	Asn	$\begin{aligned} & \text { Arg } \\ & 275 \end{aligned}$	Leu	Glu	Tyr	His	$\begin{aligned} & \text { Lys } \\ & 280 \end{aligned}$	Asp	Val	Glu	His	$\begin{aligned} & \mathrm{Val} \\ & 285 \end{aligned}$	Asn	Ala	Gly
Gly	$\begin{aligned} & \text { Val } \\ & 290 \end{aligned}$	Leu	Ala	Thr	Cys	$\begin{aligned} & \text { Leu I } \\ & 295 \end{aligned}$	Lys	Glu	Gln	His	$\begin{aligned} & \text { Glu } \\ & 300 \end{aligned}$	Trp	Phe	Lys	Asn
His	Ile	Pro	Glu	Asp	Val A	Arg I	Lys	Thr I	Leu P	Pro I	Leu				

gacctcaagg aaggcatctg cccgcaggcc ttctggctca acaaggagca gtgttgctgg	60
gcctccaacg ataccttctt taagggggac gactgcaagc agtggtatcg gtggcccgag	120
atgttcgaca gcggcatgga caaggacggg gcaggctttt acctgctctc ctacctgctg	180
tacgtcatgt ggagtgtgct cttcgccacc ctggccgtca tgctcgttcg caccttcgcg	240
ccctatgcct gtggatctgg aatcccggag atcaagacga ttctgagcgg cttcatcatc	300
cgcggctacc tgggcaagtg gacgctgacc atcaaatcag tgtgtctggt gctggccgtc	360
ggggcgggcc tcagcctggg caaagagggg cccctggtgc acgtggcctg ctgcatcggg	420
aacatcttct cctacctctt ccccaagtac ggcaagaatg aggccaagaa gagggagatc	480
ctgtcggctg ccgccgccgc gggagtttct gtggcctttg gggctcccat cggcggtgtt	540
ctcttcagcc tcgaagaggt gagctactac ttncccttga agacgctgtg gcgttccttc	600
ttctgcgccc tggtggcagc ctcggtgctg cgctccatca acccctttgg caacgaccac	660
ctggtgatgt tctacgtcga gtacgacttt coctggc	

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 232
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (191)..(191)
$<223>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid
$<400>$ SEQUENCE $: 8$

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 1221
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (713)..(713)
$<223>$ OTHER INFORMATION: n is a, $c, ~ g, ~ o r ~$
gtttcttgtt acggtagtgg agtgctgagt ttactcgata atatctgaga aatagtggca 60
atatcaattt ttctgtaaat tagaaatgta accaatggcg tggctatctt ctagtcgaca 120
ctaacgtctc ggatctgctg ttcaaagtcc cgggcgatca agccgtattt gttgtccagc 180
tgccaagtgc gtcgaatatg atgccgaaaa agaaagaatc agtcgcgagc tctaaagaag 240
acgegccgat cgacgtgatc ggcctgccct cccacaaacg acacaagaag cacaagcaca 300
aaagcacaa gcgcaagcga ggcacggacc aagacgaaga ccaatcgcce gccgcgagcc 360
cgcagagcgg tggcgagggt agcagcagca agccegcget caagctcaag atcaagatcg 420
gcggacagac ggtcgagaag aacgtgacca agctgaaaca gcagcggccg ccgccgccgg 480
accctagcga agccgatctc gecgaactcc tgatgaaacc caactcgggc gatacgageg 540
cagacagcga tgacgaagag gaagcetggc tcgaagccot cgagtccggc aggctcgaag 600
aggtcgacga cgagctccgc aaaatgaagg acccgaccot gatgacggcc aggcagcggg 660
ccctgctcga gagcaagtcg cagaaggacg aggtcccggc gacggggatg genggcgtcc 720
gcggagcccg tcaaagagat gtccgaggag atgattcagc ggcggatgct gcgggccaaa 780
aagcggaagc agcaggccga agagaagaaa gagaaggaga agaagcagac gatcgagcgt 840
ctgctcaaga agtccgactc gaggctgagg gccagcaaga agttggccaa gaagagcgat 900
actcceaagg tgtcgetggt caacacgcag gcaggcacge tgctctcgtt tcccgtcggc 960
gttgegttcc cgctgtcggc agcegtggcc caggggtacc cegagaagac gacgtgcggc 1020
attaagggtt gtcgtaaccc gaagaagtac tcgtgctcca agacaggcgt gcccctgtgc 1080
agcctcgagt gctacaagac gaacatgctg cagatgtgcg tctgagcggg cagctaggct 1140
tccgggctac agctgctcct tgtgtatatg tatataaagt cgagaatgct gaaaaaaaaa 1200
aaaaaaaaa aaaaaaaaa a 1221
$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 275
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE $: 10$
-continued

<210> SEQ ID NO 11
<211> LENGTH: 1942
<212> TYPE: DNA
<213> ORGANISM: Ixodes scapularis
<400> SEQUENCE: 11

cgatgcaggc gatgacgggc tttgcggtgc agttcaacaa aaacagtttc gggctgactc	60
cagctcagcc gctgcagttg cagattcccc tgcagcccaa cttcccagct gatgcgagct	120
tgcagctggg aaccaacggt cccgtgcaga agatggacce cctcaccaac cttcaggtgg	180
ccatcaagaa caatgtggac gtgttctact tcagctgcct ggtgcccatg cacgtgctga	240
gcacggagga cggcctgatg gacaagcggg tgttcctggc cacctggaaa gacatccccg	300
cccaaaacga ggtccagtac accctcgaca acgtcaacct cactgcagac caagtttccc	360
agaagctgca gaacaacaac attttcacga tagccaagag gaacgtggac ggccaggaca	420
tgctgtacca gtccctgaag ctcaccaacg gcatttgggt gttggcggag ctcaagatac	480
agcccggcaa tccaaggatc acgttgtctt tgaagacaag agcacctgaa gtggcagcag	540

-continued

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 191
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE : 12

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 1428
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (701)..(701)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE : 13

cgcgccgtgc agaagctgcg tcgggaggtt gagaaggcaa agaggaccct gtccactgct	60
caccaggcca ggatcgagat tgaatcgttc ttcgagggag aggacttcag tgagaccctg	120
actcgtgcta agtttgagga gctgaacatg gaccttttcc gttccaccat gaagcctgtt	180
cagaaggtac tcgaggatgg tgacctcaag aagactgatg tggacgagat tgtgcttgtc	240
ggaggttcca ccaggatccc caaggttcaa cagctggtca aggagttctt caatggcaag	300
gaacccaccc gtggcatcaa ccccgacgaa gcagtcgcct acggtgccgc cgtgcaggct	360
ggagtcctcg gcggagagga agacactggg gacctcgtgc tgttggacgt gaaccctctg	420
accctcggca tcgagacagt gggaggcgtc atgacgaaac tgatcccccg taacacagtc	480
atccccacga agaagtctca gatcttctcc acggcctcgg acgagcagag cactgtcacc	540
atccaggtct ttgaggggga gcgtcccctg acaaaggaca accaccagct gggcaagttc	600
gacctgactg gcatcccacc tgctcctcga ggtgtgcccc aaatcgaggt gaccttcgag	660
tggacctatt taccatgatc attctctgta caaaaacaat tctttctgtg tttttttttt	1320
tttcgttgta gtaacttaag ttatacagat gtcttctact gggtgggctt tctccatgag	1380
attgacgtca acggtatcct gcgggtcagt gcagaggaca ngggtacagg caacaagcag	720
aagatcacca tcaacaatga ccagaacagg ctgacgcctg aggacatcga gaggatggta	780
aaggacgccg aaaagtttgc cgacgaggac aagaaggtca aggagaaggt ggaggcccgc	840

$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 372
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE :
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (234)..(234)
$<223>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid
$<400>$ SEQUENCE : 14

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 1847
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM $:$ Ixodes scapularis
$<220>$ FEATURE
$<221>$ NAME/KEY $:$ misc_feature
$<222>$ LOCATION: (1814)..(1814)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE $: 15$

| cgacgtgttt gtgagtgcag aggtgaactg gacggtgtcg tggccacgcg atggcagcgg | 60 |
| :--- | :--- | :--- |
| cggtgatgaa ctgcctacgg actgcgcttt taggcgctct cgtcgtccaa ctctacgcca | 120 |

cgcagatagg tcaccggaaa ttcgagtaca agtacagttt caagggaccc tacctggcgc 180
agaaggatgg atcggtgcct ttctgggagt acggcggcaa ttgcatcgcc agtgaggaga 240
tggttcggat cacgccctcc ctgaagagca agaaaggatc catctggtcc aagctgccga 300
catcgttccc ttggtgggag gtggagctgg tgttccgcac cacgggtacg ggcaggatag 360
gagctgacgg cetggcettc tggtacacag acaagaagca ggcggagggt cetgtctttg 420
gaagcagcga caagtggact ggcctggcca tcttcttcga ttccttcgac aatgataaca 480
agcacaacaa cccatacatc atgggcatgg tgaacgatgg aacaaaagcc tacgatcatg 540
agagtgacgg tgccaaccaa cagctagcgg gatgccagcg ggacttccgc aacaagcott 600
accetgtcag ggccaagata gaatacttca acaacattct cacggtgctg ttccacaacg 660
gcaacaccaa caacgacggt gactacgaga tgtgcttccg tgcggagaac gtgttcctgc 720
cgaccaacgg ccactttggg gtgtccgccg ccacgggggg cetggcagac gaccacgacg 780
coctcaagtt cotgacgacg agcctgcatg cggagggcac gcagccggcc ctggcccagg 840
gtatggccga ctcagagaag gagaagttct ccaaggagta tgaagtatac aaggacaagc 900
tggaaaagca gaaggaggag taccggaaga cgcacccgga ggaggccgct aagcaggcca 960
tggagcacgg coccgagcag gcetacgaca cgcagcagca gcgcgagctg cgccagatct 1020
aggtgctcgg gigccaggag egcaccctgt cgctggtgtc ggctggcggc gccggcgtgg 1140
ccgtgggcgg tgttccgcca ccgcagatgg gtggagtgcc gtcgctgcag aggcacgaag 1200
cagagtccet gctgagcagc cagcgggagc tgctgcagac ggtggctcag gtcaagagct 1260

| ttgtggccga ggtgcatcaa cgcacggcea ccctgcaaca ccagggggcg ggaggcacce | 1320 |
| :--- | :--- | :--- |
| agggcctcac ggccgagcag ctgcaagtgc tccaccaggt gcgggacagc gtggccagca | 1380 |

| tgcaccggga cgtctccaac aaccagccgc agaggactgg ctgcgcgaca tcctgtctca | 1440 |
| :--- | :--- | :--- |
| gcactaccca cttcttgctg tttgcaacgt tgcagttggc tgtcacgctg ggctacttgg | 1500 |

| tgtacaggag cagcaaagag gcggcggcca agaagttcta ctgagtgcag atctcgagcc | 1560 |
| :--- | :--- | :--- |
| ttgccttgcc ctcccctcc atggagtgga ccttaacccc acagactgcc agaaaccagt | 1620 |

gttgceagag gagcceccct cocttcttat tgggtggggt gccacagcca tcacccattc 1680
ttcgagacaa ggccactgtt tggggggagg ggcaagagat tcatccgggg tgcgcaacaa 1740
aacatggceg tacagaggga ggggtgctcc agaactgggt cecagccaca tcgttgcgtg 1800
ggagcgcctt tctncctcac tctaaaaaaa aaaaaaaaaa aaaaaaa 1847
$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 497
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis

$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 2475
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (1342)..(1342)
$<223>$ OTHER INFORMATION: n is a, $c, ~ g, ~ o r ~$
catcactagt agcgagacac gtgcgtaaa atggggccca aaacgctgtc taagcagccc 60
gctaaagctt cttcatccac ttccaagcgc accgccggce ccacaataag caagcagacg 120
gaggacagcg atgacgaagg gtcaagcagc gcctactccg acttggagga ctccgaagga 180
gccgacagca gcgactcgaa cgatttgtcg gacacggagg cgtcggagga tgactacgat 240
gactcccaag acgaagaaaa cacgaagatt actttgactg gggtggaggg gaaggacctt 300
gagttgaggg ggaaggacca ggaggcaccg gtggagtctg gcaaaaggtc ggcatggcac 360
cggcagcaag aggacgccaa ggaggacaga cgaacgcaag tggtggaaga tgaatatgcc 420
tttgactctt cegacgaaga ggacgttcgc aacacggttg gcaacattcc tctggagtgg 480
tacgagcact atccgcacat cggttatgat ctggaaggca agccaatcct gaagccgcct 540
cgggttagtg acctggacga cttcctgagg aaaatggatg accccaacta ttggaggacg 600
gtgaaggaca agagcacggg acaggacgtt gtcctgaccg acgaagatgt ggacctgatt 660
cagaggctgc agaaaggaca gttccccagc tcgacgactg acccttacga gccatttgag 720
gacatctttt cgcacgagac catgatccac coggtgacca ggcaccctcc ccagaaacgc 780
agcttcgtgc cttcaaggat agaaaaagca atggtgtcaa agatggtgca cgcaatcaag 840
atgggctgga tcaagccccg agtaaagaag catgacccag aaagattcag cctcctgtgg 900
gacaaggatg actcgacagc gggcagcaat gagcgaatgc agcgccacat cccggcaccc 960
aagatgaagc tgccgggtca tgaggagtct tacaacccge cggccgaata cctcttcacc 1020
gaggaagagg aggccaagtg gagagagcag gagcccgaag aacggcgcat aaacttcctg 1080
ccogccaagt acccatgtct gegcgcagtc ccagcctacg aacgcttcat tgaggagagg 1140
tttgagcgct gtctggatct ctacttgtgc ccgaggcagc ggaagatgag ggtgaatgtg 1200
gatgcagagg acctgattcc tcagctgccc aacccaagg acctgcagcc tttcccaagc 1260
attcagtcta ttgtctatga gggtcatacg gactgtgtcc tctgcctgtc tttggagcct 1320
gcgggacagt tctttgcatc anggtccgag gacggcaccg ttcgcatttg ggagctcttg 1380

| acgggcangt gcctcaagaa gttccagttc gaggcgcccg tgaagagcgt ggcctggtgt | 1440 |
| :--- | :--- | :--- |
| ccagttgtcg ttcccatgaa actctgcgtg gacaagactg tttccatgct ggatgccgga | 1500 |
| gttacggaca aactgctgcc gttcaccacg ggacaccgag ttgtctgccc tccccgaaga | 1560 |
| gtcctcgggc caggcggcgg tagtggagtg ggagcagacg tcggcctcct ctccagagtt | 1620 |
| cctctcccgg ggggagcgtc tgcgggtcgt tcaccgccac ggtgtggtgc aggtgacgtg | 1680 |
| gcactcgagg ggagactact ttgccactgt cacggacgag ggacaggcca ccgtgcttgt | 1740 |
| ccatcagttg tccacgcggc ggttcgcagg ctccccttca gcaaggcgaa gggcggggtg | 1800 |
| tcccgggtgc tgttccaccc gctgcgcccc ttcctgctgg tggcgtgcca gcgcacagtg | 1860 |
| cgggtctacc acctgctcaa gcaggagctg gccaagaggc tcacatccaa ttgcaagtgg | 1920 |
| atctcgtgca tgggccgtcc acccccaggt gacaatctgc tgatcggcac gtacgagaag | 1980 |
| cggctgatgt ggttcgatct ggacctctcg accaaaccgt accagcagct gcgcatacac | 2040 |
| aatgccgcca tccgcagtgt ggcgttccat ccgcgctatc cactgtttgc gtccgccggc | 2100 |
| gacgatcgca gcgtgatcgt ttcgcacggt atggtgtaca atgatttact gcaaaaccca | 2160 |
| ctgatcgtgc cactgagacg gctgaagaac catgccatca gcaagggtat gggtgtgttg | 2220 |

$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 754
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (438)..(438)
$<223>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (453)..(453)
$<223>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid
$<400>$ SEQUENCE: 18

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 447
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE : 19

caaagatgct gctgttctgc ccgacgtgcg ccaacatcct cattgtggaa caaggcttgg	60
agtgcttccg tttcgcctgc aacacatgcc cctacgtgca caacatcaag gcgaagatgt	120
cgaatcggaa gtacccgcgg ctcaaggacg tggacgacgt gctcggcggt gcagccgcct	180
gggagaatgt tgactcgacc gaagagaagt gccccaagtg tggccatgag cgggcctatt	240
ttatgcagat ccagactagg tcggccgacg agcccatgac caccttctac aagtgctgca	300
accagctctg tggccaccag tggagggact gacagatggc ggctttgacg aactcatgcc	360
cgtgcaaaat gcgtcggggg gagagagttt tggaataaaa catgcgcctt actttcataa	420
aaaaaaaaa aaaaaaaaa aaaaaa	

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 108
$<212>$ TYPE PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE $: 20$

-continued

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 44
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ixodes scapularis
$<400>$ SEQUENCE: 22

tgagaagaca ctagaggaca agttcttcga gcatgaggtg atgctgaatg tgaatgcgtt	60
catgcagcag ttccattccg gcgtttttta tgcctacgtg aagctgaagg aacaagagtg	120
ccgcaacatt gtctggattg ccgaatgcgt tgctcagcgt catcggtcca agatcgataa	180
ctacattcca atcttctagt cgctcgagga aaagaaatgg gccaattcgg tagtttgtcg	240
gtgtaatata tatatatata tatatctact tcgcaaaatt cttcagctag agtgtctatg	300
tctggttagc tgcgattgtg cgagagggga aaaaatgta gtcagtggca tgatcaagga	360
aggaaaaaaa ttggccaata acttttacct tttgaagtta aagcaagggt taaaataatg	420
tctattttta cttcgcttta ccgtgtgctg gctattgctt tgcaaacgtt ttttaaaatt	480
tttgcagttc gtctttcttc ttttgagcac atatttattc cagagttcca atancctttt	540
atgtgtgaat gaatgactaa tccatgttgg ggttggttaa tggtgcattg ttgaaaanat	600
aaccccaac tccagctggc ctttggaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa	660
aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaa	704


```
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (493)..(493)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (495)..(495)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (499)..(499)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (507)..(507)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (515)..(515)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (518)..(518)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (528)..(528)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (533)..(533)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (547)..(547)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (550)..(550)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (559)..(559)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (565)..(565)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (567)..(567)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (571)..(571)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (586)..(586)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (593)..(593)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (599)..(599)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (603)..(603)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature 
<222> LOCATION: (606)..(606)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (611)..(611)
```


gtcacgggat ttgggaagct gtcgtctgtc gtcctgcagt ttcaaacggt ttcaccaaaa	60
acctttccgt ctcgctgtca gacgccttga accatgactg agttctggct catctcggct	120
ccgggcgaga aaacctgcca acagacttat gacaagctgc tcagcgtcac aagcaacaag	180
cagaacaacc tctcgacctg ctacaagttc caccttccgg acttgaaggt gggtacgctg	240
gatcagttgg ttggcctctc ggatgacttg ggaaagctcg acacctatgt cgaaagcatc	300
actcgaaaag tggccagcta tctgggggac gtgcttgacg accagaggga caaactagcc	360
gacaaccttc cttgccaatg gcttggggct ggaggcctac ctgaccccgg ttttcagtgg	420
gacatggcca antaccccat caagcagttc gcctcaagag catcacntga antcatcagc	480
nagcaagtgt ctnanattng accggtngaa cctcnagnag caagttanct tgnttacaac	540
aaccttnaan aacttaagnt tcaantncat ncgaacccca aatccnccgg ggnaggceng	600
gcnttnttcc ngttagccnt ggncntnacc ttattgcgcc aagggagcca ntttgtcntt	660
gggggntcgg ganntacctt a	

ctctcagcga ctccgacgtc caaagcaga tcaggcacat gatggctttc atcgaccagg	60
aagccaacga aaaggcagaa gaagtagacg ccaaggcagg aagaagagtt caacatcgag	120
aagggccgcc tggtcacgga gcaaaggctc aagatcatcg actactacac ccgtcgagag	180
aagcaagttg aactgcagcg caagatccaa agctccaaca tgctgaacca ggcccggctg	240
aaggtgctga aggcgggcga ggaccacatt gcgacggtgc tggaggaggc caagcgccgc	300
ctgggggaca tcaccaggga ccaggctcgc taccaagccc tcctgcagag catggttctg	360
caggcactgc ttcagctcct cgagcaggag gtggtcgtcc actgccgacc gcaagacgcc	420
gggctgctga acttggacac gctgagtgcc aagttcaagg aggccactgg ccgagaggtc	480
aagctcantg tggagcccag cotggcttcg agcagctgcg gcggagtcga gatgctctcc	540
aggcggggca agattcgcgt ctgcaacacg ctcgagtcgc ggctggacat gattgccctt	600
cagctttctg cogcagatca agacngncct nttcggcagg nacccccaac cgcaagttca	660
tggactaggc gggctattgn coccgccatt cnggccagtn agcttggacc gtgtttacng	720

What is claimed is:

1. An isolated cDNA molecule which encodes an Irodes associated antigenic polypeptide, said molecule having a nucleoxide sequence comprising at least residues $80-575$ of SEQ ID NO: 3.
2. An expression vector comprising the isolated cDNA molecule of claim 1.
3. An isolated cell transformed by the expression vector of claim 2.
4. The isolated cDNA molecule of claim 1, wherein said cDNA molecule encodes a polypeptide represented by SEQ ID NO: 4.
5. The isolated cDNA molecule of claim 1, wherein said cDNA molecule encodes a polypeptide that induces antibodies specific for an amino acid sequence represented by ${ }^{50}$ SEQ ID NO: 4.
