

US007214784B2

(12) United States Patent

de la Fuente et al.

(54) PROTECTIVE ANTIGENS FOR THE CONTROL OF *IXODES* SPECIES INFESTATIONS

- (75) Inventors: Jose de Jesús de la Fuente, Stillwater, OK (US); Katherine M. Kocan, Perkins, OK (US); Consuelo García-Almazán, Stillwater, OK (US); Jose Carlos García-García, Stillwater, OK (US); Edmour F. Blouin, Perkins, OK (US)
- (73) Assignee: The Board of Regents for Oklahoma State University, Stillwater, OK (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 490 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 10/425,563
- (22) Filed: Apr. 29, 2003
- (65) Prior Publication Data

US 2004/0022795 A1 Feb. 5, 2004

Related U.S. Application Data

- (60) Provisional application No. 60/376,251, filed on Apr. 29, 2002.
- (51) Int. Cl. *C07H 21/04* (2006.01) *A01N 25/00* (2006.01)
- (52) U.S. Cl. 536/23.5; 424/405
- (58) Field of Classification Search 536/23.5; 424/405

See application file for complete search history.

(10) Patent No.: US 7,214,784 B2

(45) **Date of Patent:** *May 8, 2007

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,447,537	Α	5/1984	Yunker et al 435/235
5,344,645	Α	9/1994	Wikel 424/265.1
5,587,311	Α	12/1996	Cobon et al 435/240.2
6,235,283	B1	5/2001	Cobon et al 424/185.1
6,312,915	B1	11/2001	Nelson et al 435/7.1

FOREIGN PATENT DOCUMENTS

WO	WO 01/40469	6/2001
WO	WO 01/80881 A1	11/2001
WO	WO 03/093416 A2	11/2003

OTHER PUBLICATIONS

Result No. 3 from a search of the EST database on May 12, 2006, alignment of SEQ ID No. 3 with a polynucleotide from the tick Ornithodoros porcinus porcinus, EST database record No. CB722011, contributed by Neilan et al., "Sequence analysis of *Ornithodoros porcinus* porcinus whole tick cDNA libraries," unpublished, Apr. 10, 2003.*

(Continued)

Primary Examiner—Jon Weber

Assistant Examiner-Rosanne Kosson

(74) Attorney, Agent, or Firm—Fellers, Snider, Blankenship, Bailey & Tippens

(57) **ABSTRACT**

Protective antigens against infestations with *Ixodes* spp. ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by *Ixodes* spp. ticks are presented.

5 Claims, 4 Drawing Sheets

OTHER PUBLICATIONS

Alberti E, Acosta A, Sarmiento ME, Hidalgo C, Vidal T, Fachado A, Fonte L, Izquierdo L, Infante JF, Finlay CM, Sierra G. Specific cellular and humoral immune response in Balb/c mice immunised with an expression genomic library of *Trypanosoma cruzi*. Vaccine 1998; 16: 608-12.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.

Barry MA, Lai WC, Johnston SA. Protection against mycoplasma infection using expression-library immunization. Nature 1995; 377: 632-5.

Black WC 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A 1994; 91: 10034-8.

Brayton KA, Vogel SW, Allsopp BA. Expression library immunization to identify protective antigens from *Cowdria ruminantium*. Ann N Y Acad Sci 1998; 849: 369-71.

Cassataro J, Velikovsky CA, Giambartolomei GH, Estein S, Bruno L, Cloeckaert A, Bowden RA, Spitz M, Fossati CA. Immunogenicity of the *Brucella melitensis* recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine 2002; 20: 1660-9.

de la Fuente J, Rodriguez M, Garcia-Garcia JC. Immunological control of ticks through vaccination with *Boophilus microplus* gut antigens. Ann N Y Acad Sci 2000; 916: 617-21.

de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R. Vaccination against ticks (*Boophilus* spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal 1999; 15: 143-8.

de la Fuente J, Rodriguez M, Redondo M, Montero C, Garcia-Garcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R, de Armas CA, Rey S, Rodriquez JL, Artiles M, Garcia L. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick *Boophilus microplus*. Vaccine 1998; 16: 366-73.

De Rose R, McKenna RV, Cobon G, Tennent J, Zakrzewski H, Gale K, Wood PR, Scheerlinck JP, Willadsen P. Bm86 antigen induces a protective immune response against *Boophilus microplus* following DNA and protein vaccination in sheep. Vet Immunol Immunopathol 1999; 71: 151-60.

de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from *Boophilus microplus* in vaccination against other tick species. Exp Appl Acarol 2001; 25: 245-61.

Drew DR, Lightowlers M, Strugnell RA. Vaccination with plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. Vaccine 1999; 18: 692-702.

Elad D, Segal E. Immunogenicity in calves of a crude ribosomal fraction of *Trichophyton verrucosum:* a field trial. Vaccine 1995; 13: 83-7.

Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 1999; 23: 685-715.

Garcia-Garcia JC, Gonzalez IL, Gonzalez DM, Valdes M, Mendez L, Lamberti J, D'Agostino B, Citroni D, Fragoso H, Ortiz M, Rodriguez M, de la Fuente J. Sequence variations in the *Boophilus microplus* Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Exp Appl Acarol 1999; 23: 883-95.

Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol 2001; 100: 3-12.

Liyou N, Hamilton S, Elvin C, Willadsen P. Cloning and expression of ecto 5'-nucleotidase from the cattle tick *Boophilus microplus*. Insect Mol Biol 1999; 8: 257-66.

Liyou N, Hamilton S, Mckenna R, Elvin C, Willadsen P. Localization and functional studies on the 5'-nucleotidase of the cattle tick *Boophilus microplus*. Exp Appl Acarol 2000; 24: 235-46. Manoutcharian K, Terrazas LI, Gevorkian G, Govezensky T. Protection against murine cysticercosis using cDNA expression library immunization. Immunol Lett 1998; 62; 131-6.

Melby PC, Ogden GB, Flores HA, Zhao W, Geldmacher C, Biediger NM, Ahuja SK, Uranga J, Melendez M. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect Immun 2000; 68: 5595-602.

Moore RJ, Lenghaus C, Sheedy SA, Doran TJ. Improved vectors for expression library immunization—application to *Mycoplasma hyopneumoniae* infection in pigs. Vaccine 2001; 20: 115-20.

Mulenga A, Sugimoto C, Onuma M. Issues in tick vaccine development: identification and characterization of potential candidate vaccine antigens. Microbes Infect 2000; 2: 1353-61.

Munderloh UG, Wang YLM, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick *Ixodes scapularis*. J Parasitol 1994; 80: 533-43.

Nuttall PA. Pathogen-tick-host interactions: *Borrelia burgdorferi* and TBE virus. Zentralbl Bakteriol 1999; 289: 492-505.

Parola P, Raoult D. Tick-borne bacteriol diseases emerging in Europe. Clin Microbiol Infect 2001; 7: 80-3.

Silva CL. The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes and Infection 1999; 1: 429-35.

Singh RA, Wu L, Barry MA. Generation of genome-wide CD8 T cell responses in HLA-A*0201 transgenic mice by an HIV-1 ubiquitin expression library immunization vaccine. J Immunol 2002; 168: 379-91.

Smooker PM, Setiady YY, Rainczuk A, Spithill TW. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18: 2533-40.

van Drunen Littel-van den Hurk S, Loehr BI, Babiuk LA. Immunization of livestock with DNA vaccines; current studies and future prospects. Vaccine 2001; 19: 2474-9.

Wikel SK, Ramachandra RN, Bergman DK, Burkot TR, Piesman J. Infestation with pathogen-free nymphs of the tick *Ixodes scapularis* induces host resistance to transmission of *Borrelia burgdorferi* by ticks. Infect Immun 1997; 65: 335-8. Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol 1997; 71: 209-22.

Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 1999; 15: 258-62.

Alamzán, C., Kocan, K.M., Bergman, D.K., Garcia-Garcia, J.C., Blouin, E.F., de la Fuente, J., "Identification of protective antigens for the control of *Ixodes scapularis* infestations using cDNA expression library immunization", *Vaccine* 2003; 21: 1492-1501.

De La Fuente, J., Kocan, K.M., "Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations", *Expert Rev. Vaccines* 2003; 2(4): 583-593. Alamzán, C., Kocan, K.M., Bergman, D.K., Garcia-Garcia, J.C., Blouin, E.F., de la Fuente, J., "Characterization of genes transcribed in an *Ixodes scapularis* cell line that were identified by expression library immunization and analysis of expressed sequence tags", *Gene Therapy Molecular Biology*, 2003, vol. 7: 43-59.

Alamazan, et al.; Characterization of three Ixodes scapularis cDNAs protective against tick infestations; Vaccine, Butterworth Scientific. Guildford, GB, vol. 23, No. 35, Aug. 15, 2005, pp. 4403-4416.

Almazan, et al.; "Vaccination with recombinant tick antigens for the control of *Ixodes scapularis* adult infestations"; Vaccine, Butterworth Scientific. Guildford, GB, vol. 23, No. 46-47; Nov. 16, 2005, pp. 5294-5298.

Search report issued by the European Patent Office in Application No. 05256580.1; Applicant: The Board of Regents of Oklahoma State University, Mar. 22, 2006.

PCT International Search Report for PCT/US03/13229, Feb. 11, 2005.

Das et al., "Salp25D, an Ixodes scapularis Antioxidant, Is 1 of 14 Immunodominant Antigens in Engorged Tick Salivary Glands," published Sep. 28, 2001, *The Journal of Infectious Diseases 2001*; 184:1056-64.

Almazan et al., "Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library

immunization," *Vaccine*, Butlerworth Scientific, Guidford, GB, vol. 21, No. 13-14, Mar. 28, 2003, pp. 1492-1501. Almazan et al., "Characterisation of genes transcribed in a Ixodes scapularis cell line that were identified by expression library immu-

nization and analysis of expressed sequence tags," Gene Therapy and Molecular Biology, vol. 7. Jun. 2003, pp. 43-59.

* cited by examiner

CDNA POOLS

Inhibition of tick infestation (%)

FIG. 2A

Inhibition of tick infestation (%)

FIG. 2B

FIG. 3

PROTECTIVE ANTIGENS FOR THE CONTROL OF *IXODES* SPECIES INFESTATIONS

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of copending U.S. Provisional Patent Application Ser. No. 60/376,251 filed Apr. 29, 2002.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to the identification of 15 protective antigens against infestations with *Ixodes* spp. ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by *Ixodes* spp. ticks. 20

2. Background

Ticks parasitize wild, domesticated animals and humans and transmit pathogens including fungi, bacteria, viruses and protozoon. Currently, ticks are considered to be second in the world to mosquitoes as vectors of human diseases, but 25 they are considered to be the most important vector of pathogens in North America (Parola and Raoult, 2001). *Ixodes* spp. are distributed worldwide and act as vectors of human diseases caused by Borrelia burgdorferi (Lyme disease), Anaplasma phagocytophila (human granulocytic ehr- 30 lichiosis), Coxiella burnetti (Q fever), Francisella tularensis (tularemia), B. afzelii, B. lusitaniae, B. valaisiana and B. garinii, Rickettsia helvetica, R. japonica and R. australis, Babesia divergens and tick-borne encephalitis (TBE) and Omsk Hemorrhagic fever viruses (Estrada-Peña and Jonge- 35 jan, 1999; Parola and Raoult, 2001). Throughout eastern and southeastern United States and Canada, I. scapularis (the black legged tick) is the main vector of B. burgdorferi sensu stricto and A. phagocytophila (Estrada-Peña and Jongejan, 1999; Parola and Raoult, 2001). 40

Control of tick infestations is difficult and often impractical for multi-host ticks such as Ixodes spp. Presently, tick control is effected by integrated pest management in which different control methods are adapted to one area or against one tick species with due consideration to their environmen- 45 tal effects. Recently, development of vaccines against onehost Boophilus spp. has provided new possibilities for the identification of protective antigens for immunization against tick infestations (Willadsen, 1997; Willadsen and Jongejan, 1999; de la Fuente et al., 1999; 2000; de Vos et al., 50 2001). The recombinant B. microplus BM86 gut antigen included in commercial vaccine formulations TickGARD (Hoechst Animal Health, Australia) and Gavac (Heber Biotec S. A., Havana, Cuba) also confers partial protection against phylogenetically related Hyalomma and Rhipiceph- 55 alus tick genera (de la Fuente et al., 2000; de Vos et al., 2001). However, immunization with BM86 failed to protect against the more phylogenetically distant Amblyomma spp. (de Vos et al., 2001). These results suggest that using Bm86 or a closely related gene for the production of vaccines 60 against Ixodes spp. or other tick genera phylogenetically distant from Boophilus spp. (Black and Piesman, 1994) could be impractical. Therefore, the screening for novel protective antigens is necessary to identify vaccine candidates against infestations with these tick species of medical 65 and veterinary importance. Control of ticks by vaccination would avoid environmental contamination and selection of

2

drug resistant ticks that result from repeated acaricide application (de la Fuente et al., 1998; Garcia-Garcia et al., 1999). Anti-tick vaccines also allow for inclusion of multiple antigens in order to target a broad range of tick species and for incorporation of pathogen-blocking antigens.

Vaccination with DNA and cDNA molecules has been used to induce a protective immune response against B. microplus and several pathogens in laboratory animals and livestock (De Rose et al., 1999; Drew et al., 1999; van Drunen Littel-van den Hurk et al., 2001; Kofta and Wedrychowicz, 2001). A new technique, expression library immunization (ELI) in combination with sequence analysis provides an alternative approach for identification of potential vaccine antigens based on rapid screening of the expressed genes without prior knowledge of the antigens encoded by cDNA clones. ELI was first reported for Mycoplasma pulmonis (Barry et al., 1995) and since then has been used for unicellular and multicellular pathogens and viruses (Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002). However, the identification of individual protective clones has not been reported and it is predicted that identification of protective antigens will be more difficult as the complexity of the genome increases.

Although several reports in the literature have demonstrated by ELI that libraries can offer a degree of protection (Barry et al., 1995; Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002), none have applied ELI to arthropods and particularly to ticks. Several vaccines have been developed to protect humans against Ixodes-transmitted pathogens including TBE virus and B. burgdorferi. However, it is not clear whether these vaccines will protect against all pathogen strains and genotypes. The inclusion of tick immunogens in pathogen-specific vaccines could enhance their protective effect and increase efficacy (Nuttall, 1999). This transmission-blocking approach is supported by evidence that host resistance to ticks provides some protection against tick-borne transmission of viruses and B. burgdorferi (Wikel et al., 1997). Furthermore, vaccination against B. microplus has been demonstrated to contribute to the control of tick-borne diseases (de la Fuente et al., 1998; 1999).

SUMMARY OF THE INVENTION

The present invention is based upon our identification by ELI and sequence analysis of protective cDNA clones against experimental infestations with I. scapularis. This is the first example of the application of ELI to arthropods and particularly to ticks. The protective antigens are homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β -adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins. These antigens induce an immune response in vaccinated hosts that either interferes with tick development or results in a pro-feeding activity, which could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity or they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick profeeding activity. These protective antigens, although identified for I. scapularis, may be cross protective between

Ixodes species considering the high degree of conservation of gene sequences and protein function between species of the same genus. A 5'-nucleotidase was identified and characterized in B. microplus by Liyou et al. (1999; 2000) but they did not assay its protection capacity. Although surprising at first glance, the protection capacity of ribosomal and heat shock protein preparations has been previously documented in other organisms (Elad and Segal, 1995; Silva, 1999; Melby et al., 2000; Cassataro et al., 2002) but never in ticks. The effect of cDNA vaccination on I. scapularis experimental infestations of mice was evidenced by the reduction of the number of engorged larvae, the retardation of larval development, the inhibition of molting to nymphal stages and the appearance of visibly damaged larvae with red coloration. These effects were also recorded in vaccination experiments with recombinant BM86 and BM95 against infestations with B. microplus, including the red coloration in some ticks, attributed to blood leakage to the tick haemolymph (Garcia-Garcia et al., 2000).

Thus, in one embodiment of the present invention there is provided cDNA sequences, protein encoding fragments thereof, and derived protein sequences for protective I. scapularis antigens comprising antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitelloge- 25 nin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β-adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins.

In another embodiment of the present invention there is provided a vaccine composition comprising the I. scapularis protective recombinant proteins and/or modified cDNAs separately or which may optionally be combined with adjuvant to enhance the protection efficacy of vaccine preparations against Ixodes spp., wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent. The vaccine composition also may optionally be combined with tick-borne pathogen components to provide a means to control tick-borne infections, wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent and adjuvant.

In another embodiment of the present invention there is provided a method for inducing an immune response in a 45 mammal to provide immune protection, which reduces or affects infestations by Ixodes spp. ticks and/or transmission of tick-borne pathogens, the method comprising administering to at-risk human population and mammalian reservoir an effective amount of a vaccine composition comprising the I. 50 scapularis protective recombinant proteins and/or modified cDNAs alone or in combination with an adjuvant or tickborne pathogen components to provide a means to control tick infestations and to reduce transmission to humans of tick-borne infections, wherein the vaccine composition fur- 55 ther comprises a pharmaceutically acceptable carrier or diluent.

A better understanding of the present invention and its objects and advantages will become apparent to those skilled in this art from the following detailed description, wherein 60 there is described only the preferred embodiment of the invention, simply by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modifications in various obvious respects, all without departing from the scope and 65 spirit of the invention. Accordingly, the description should be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a summary of the cDNA ELI approach used to identify protective antigens against I. scapularis infestations.

FIG. 2A is a graph depicting the results of a primary screen of cDNA pools (A-H 1-4, A5) by ELI. V, control mice injected with 1 μ g vector DNA alone. * α <0.01, ** α <0.05 (Tukey's post-hoc test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.

FIG. 2B is a graph depicting the results of a primary screen of cDNA pools (A6-A10, B-H 5-8) by ELI. V, control mice injected with 1 µg vector DNA alone. $\alpha < 0.01$, ** α <0.05 (Tukey's post-hoc test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.

FIG. 3 is a graph depicting the results of a tertiary screen by ELI of cDNA sub-pools formed according to the pre-20 dicted function of encoded proteins. Only groups with $I \ge 15\%$ are shown (white bars). The number of engorged larvae per mouse is expressed as mean±SD (black bars). Control mice were injected with mitochondrial (MT) cDNAs. *P≦0.05 (Student's t-test).

DETAILED DESCRIPTION OF THE INVENTION

Before explaining the present invention in detail, it is 30 important to understand that the invention is not limited in its application to the details of the construction illustrated and the steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.

The present invention derives from the sequences set forth on the Sequence Listing attached hereto and incorporated herein. In particular, there is provided 25 separate and distinct sequences comprising 14 cloned cDNA molecules and 11 deduced amino acid sequences of encoded polypeptides, said sequences having been isolated and identified as possessing the asserted utility in accordance with the following described experimental methodology.

EXAMPLE 1

Construction of an I. scapularis cDNA Library and Screening for Protective Antigens by ELI

Tick Cells

35

Monolayers of IDE8 (ATCC CRL 1973) cells, originally derived from embryonic I. scapularis, were maintained at 31° C. in L-15B medium supplemented with 5% foetal bovine serum, tryptose phosphate broth and bovine lipoprotein concentrate after Munderloh et al. (1994). Cells were subcultured at 1:5-1:10 when monolayers reached a density of approximately 107 cells/T-25 flask. Medium was replaced weekly.

Library Construction

A cDNA expression library was constructed in the vector pEXP1 containing the strong cytomegalovirus CMV_{IF} promoter (Clontech). Because we planned to target the early larval stages of I. scapularis, we chose to construct our library from cultured embryonic I. scapularis IDE8 cellsderived poly(A)+ RNA. The cDNA library contained 4.4×

 10^6 independent clones and a titer of approximately 10^{10} cfu/ml with more than 93% of the clones with cDNA inserts. The average cDNA size was 1.7 kb (0.5–4.0 kb).

Primary Screen

The overall schema for identification of protective antigens through ELI, sequential fractionation and sequence analysis is shown in FIG. 1.

Ninety-six LBA (master) plates containing an average of 41 (30–61) cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated in Luria-Bertani with 50 µg/ml ampicillin, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool (Wizard SV 96 plasmid DNA purification system, Promega, Madison, Wis., USA). BALB/c female mice, 5-6 weeks of age at the time of first vaccination, were used. Mice were cared for in accordance with standards set in the Guide for Care and Use of Laboratory Animals. Mice were injected with a 1 ml tuberculin syringe and a 27 gauge needle at days 0 and 14. Three mice per group were each immunized IM in 20 the thigh with 1 µg DNA/dose in 50 µl PBS. Two groups of 3 mice each were included as controls. One group was injected with 1 µg vector DNA alone and the second with saline only. Two weeks after the last immunization, mice were infested with 100 I. scapularis larvae per mouse. Ticks 25 were artificially reared at the Oklahoma State University tick rearing facility by feeding larvae on mice, nymphs on rabbits and adults on sheep and using for infestation in our experiments the larvae obtained from the eggs oviposited by a single female. Twelve hours after tick infestation, larvae that 30 did not attach were counted to calculate the number of attached larvae per mouse and mice were transferred to new cages. Replete larvae dropping from each mouse were collected daily and counted during 7 days. The inhibition of tick infestation (I) for each test group was calculated with 35 respect to vector-immunized controls as [1-(<RL>n/ <RL>c×<RL>ic/<RL>in)]×100, where <RL>n is the average number of replete larvae recovered per mouse for each test group, <RL>c is the average number of replete larvae recovered per mouse for control group, <RL>ic is the 40 average number of larvae attached per mouse for control group, and <RL>in is the average number of larvae attached per mouse for each test group.

Pools of 41 (30-61) I. scapularis cDNA clones were screened by ELI. Only 33 cDNA pools and controls were 45 analyzed per experiment. The average tick infestation level was 50 ± 13 and 56 ± 15 and 56 ± 15 and 54 ± 18 larvae/mouse for cDNA immunized and control mice, respectively (P>0.05) (Table 1). The average number of engorged larvae recovered per mouse was 9±3 and 13±4 in the cDNA- 50 immunized mice and 16±4 and 17±3 in the control vectorimmunized group (P<0.05) (Table 1). No reduction was observed in the number of larvae collected from mice that received the vector DNA compared to saline-immunized controls. The maximum number of engorged larvae was 55 collected 3 to 4 days after infestation. However, in mice immunized with cDNA pools B5, A8 and A10 (FIG. 2) a retardation of larval development in 1 to 2 days was recorded. The average inhibition of tick infestation (I) was 49±28% and 30±22% (Table 1). After two experiments 60 covering the analysis of 66 pools (2705 clones), 9 protective pools (351 clones) were selected producing an inhibition of tick infestation $I \ge 60\%$ (FIGS. 2A and 2B and Table 1). When we started these experiments, we planed to screen over 4000 cDNA clones considering the complexity of the 65 tick genome. However, to our surprise 9 protective cDNA pools were identified after screening 66 pools containing

2705 cDNA clones. This result probably reflects the possibility of interfering with tick infestations at many different levels that involve a Pleiades of gene products. Results from vaccination experiments against ticks employing recombinant antigens support this view (reviewed by Mulenga et al., 2000). Because of the complexity of the screening procedure in mice vaccinated and challenged with tick larvae, it was difficult to work with more than 9 protective cDNA pools. Therefore we did not continue screening new cDNA pools and focused our attention on the 9 pools selected after the primary screen.

Secondary Screen

The secondary screen was done to verify the protective capacity of the cDNA pools selected after the primary screen (FIGS. 2A and 2B). After the primary screen of 66 cDNA pools (2705 clones), 9 pools with I≥60% were selected for the secondary screen (re-screening) employing 5 mice per group as described above. Engorged larvae were kept for molting in a 95% humidity atmosphere. Molting of engorged larvae was evaluated by visual examination of tick nymphs under a stereomicroscope 34 days after last larval collection. The inhibition of molting (M) for each test group was calculated with respect to vector-immunized controls as [1-(MLn/MLc×RLc/RLn)]×100, where MLn is the number of nymphs for each test group, MLc is the number of nymphs for the control group, RLc is the number of larvae recovered for the control group, and RLi is the number of larvae recovered for each test group. Control mice were immunized with the negative (I=0%) F2 cDNA pool or saline only. A group was included immunized SC with two doses of 100 µg of total IDE8 tick cell proteins per dose in Freund's incomplete adjuvant.

All 9 protective cDNA pools gave positive results in the secondary screen (data not shown). The tick infestation levels were higher in this experiment (average 85 ± 6 and 84 ± 3 larvae/mouse for cDNA-immunized and control mice, respectively; P>0.05). Nevertheless, the average number of engorged larvae recovered per mouse was 39 ± 7 and 26 ± 6 for control and cDNA-immunized mice, respectively (P<0.05). The group immunized with total IDE8 tick cell proteins was protected with I=33%. Again, no reduction was observed in the number of larvae collected from mice that received the control cDNA (F2 negative pool after the primary screen; FIG. **2**A) compared to saline-immunized controls.

In the secondary screen, molting of engorged larvae was evaluated after 34 days. Molting was affected in all but one test cDNA-immunized group. Inhibition of molting in test cDNA-immunized mice compared to the control cDNAimmunized group varied from 0% to 12% (6±4%). The inhibition of molting was higher than 50% only in the larvae collected from mice immunized with cDNA pools B5 and A10, which showed a retardation of larval development in 1 to 2 days as in the primary screen. No differences were observed between control cDNA and saline-immunized mice. Among the larvae that did not molt to nymph, some were visibly damaged and presented a strong red coloration. The percent of red larvae in cDNA-immunized mice varied between 3% to 18% (7±5%) while in the saline and control cDNA-immunized groups red larvae represented the 6% and 4%, respectively.

Tertiary Screen

For the tertiary screen, 64 clones were grouped in 16 sub-pools each containing 1 to 17 plasmids according to the predicted function of encoded proteins (e.g., all the plasmids that encoded histone proteins were grouped together) and

4∩

used with 4 sub-pools containing 182 clones of unknown function or with sequences without homology to sequence databases to immunize 4 mice per group. Mice were immunized with 0.3 μ g/plasmid/dose in 50 μ l PBS and evaluated as described above. Control mice were immunized with a 5 pool of 20 plasmids containing mitochondrial cDNAs.

Tick infestation levels were similar in all test groups (72±2 larvae/mouse) and in control mice (69±2 larvae/ mouse) (P>0.05). The number of engorged larvae recovered per mouse was also similar between test (16 ± 7) and control 10 (14±6) mice (P>0.05). However, the groups immunized with cDNA sub-pools containing clones with putative endopeptidase, nucleotidase, ribosomal proteins, heat shock proteins, glutamine-alanine-rich proteins and 3 of the sub-pools with unknown function or with sequences without homology to sequence databases had $I \ge 15\%$ (FIG. 3). Furthermore, among them, the groups immunized with sub-pools containing clones with a putative endopeptidase, nucleotidase and two of the cDNA sub-pools with unknown function or with sequences without homology to sequence databases resulted 20 in lower infestation levels compared to control mice $(P \le 0.05)$ and $I \ge 40\%$ (FIG. 3). Clones homologous to chorion proteins, vitellogenin receptors, and peptidoglycan recognition proteins were selected for they potential protection capacity in other stages of tick development.

Statistical Analysis

The number of larvae attached per mouse and the number of engorged larvae recovered per mouse 7 days after infestation were compared by Analysis of Variance (ANOVA) followed by a series of Tukey's post-hoc tests for pair comparisons between cDNA-immunized and control vector DNA-immunized mice (primary screen), and by Student's t-test between mice immunized with positive cDNA pools and the control negative F2 cDNA pool (secondary screen) or between test cDNA sub-pools-immunized and control mice immunized with mitochondrial cDNAs (tertiary ³⁵ screen).

EXAMPLE 2

Sequence Analysis of Protective Clones

All the 351 cDNA clones in the 9 pools that resulted positive in the secondary screen were sequenced. DNA from individual clones in these pools was purified (Wizard SV 96 plasmid DNA purification system, Promega) from the mas-45 ter plate and partially sequenced. In most cases a sequence larger than 700 nucleotides was obtained. Nucleotide sequences were analyzed using the program AlignX (Vector NTI Suite V 5.5, InforMax, North Bethesda, Md., USA). BLAST (Altschul et al., 1990) was used to search the NCBI 50 databases to identify previously cloned sequences that may have homology to those that we sequenced. Sequence analysis allowed grouping the clones according to sequence identity to DNA databases and predicted protein function. The protective clones selected after the tertiary screen were 55 fully sequenced.

Comparison to sequence databases permitted to identify sequence identity to previously reported genes with known function in 152 (43%) of the clones (Table 2). Fifty seven percent of the sequences were homologous to genes with unknown function or had no significant identity to previously reported sequences (Table 2). Of the clones with sequence identity to genes with known function, 85% were homologous to arthropod sequences. Ninety-three clones (61%) contained sequences homologous to *Drosophila melanogaster*, 5 (3%) to other insects and 32 (21%) to Ixodid 65 tick species. Thirty percent of the clones were eliminated from further analysis based on their sequence identity,

including those containing similar sequences (Table 2). The protective clones included antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, and heat-shock proteins.

SUMMARY OF RESULTS

The results obtained with the various protective clones identified in the Sequence Listing, along with certain selected expressed proteins, are summarized in Table 4.

SEQ ID NO:1 denotes the clone designated 4E6, wherein the relevant protein encoding fragment has been identified as comprising residues 1-117, which encodes the polypeptide shown in SEQ ID NO: 2.

SEQ ID NO:3 denotes the clone designated 4D8, wherein the relevant protein encoding fragment has been identified as comprising residues 80–575, which encodes the polypeptide shown in SEQ ID NO: 4.

SEQ ID NO:5 denotes the clone designated 4F8, wherein the relevant protein encoding fragment has been identified as comprising residues 1–951, which encodes the polypeptide shown in SEQ ID NO: 6.

SEQ ID NO:7 denotes the clone designated 4G11, wherein the relevant protein encoding fragment has been identified as comprising residues 1–697, which encodes the polypeptide shown in SEQ ID NO: 8.

SEQ ID NO:9 denotes the clone designated 4D6, wherein the relevant protein encoding fragment has been identified as comprising residues 198–1025, which encodes the polypeptide shown in SEQ ID NO: 10.

SEQ ID NO:11 denotes the clone designated 3E1, wherein the relevant protein encoding fragment has been identified as comprising residues 3–578, which encodes the polypeptide shown in SEQ ID NO: 12.

SEQ ID NO:13 denotes the clone designated 1C10, wherein the relevant protein encoding fragment has been identified as comprising residues 1–1119, which encodes the polypeptide shown in SEQ ID NO: 14.

SEQ ID NO:15 denotes the clone designated 3E10, wherein the relevant protein encoding fragment has been identified as comprising residues 51-1544, which encodes the polypeptide shown in SEQ ID NO: 16.

SEQ ID NO:17 denotes the clone designated 4F11, wherein the relevant protein encoding fragment has been identified as comprising residues 31–2295, which encodes the polypeptide shown in SEQ ID NO: 18.

SEQ ID NO:19 denotes the clone designated 3C12, wherein the relevant protein encoding fragment has been identified as comprising residues 6–332, which encodes the polypeptide shown in SEQ ID NO: 20.

SEQ ID NO:21 denotes the clone designated 2C12, wherein the relevant protein encoding fragment has been identified as comprising residues 3–137, which encodes the polypeptide shown in SEQ ID NO: 22.

SEQ ID NOS: 22, 23 AND 24, denote, respectively, clones 1A9, 1B2 and 4A4, each comprising a partial sequence with no associated polypeptide.

* * * * *

As noted above, the present invention relates to the sequences identified in the Sequence Listing. More generally, the invention concerns the given cDNA sequences and any nucleotide sequence coding for a protein which is capable of eliciting an antibody or other immune response (e.g., T-cell response of the immune system) which recognizes an epitope(s) of the amino acid sequences depicted in the Sequence Listing, including less than the full cDNA sequences and mutants thereof. Hence the nucleotide

sequence may encode a protein which is the entire antigen encoded by the variously identified bases, or a fragment or derivative of the antigen or a fusion product of the antigen or fragment and another protein, provided that the protein which is produced from such sequence is capable of eliciting 5 an antibody or other immune response which recognizes an epitope(s) of the given amino acid sequences.

As a result, the invention encompasses DNA sequences which encode for and/or express in appropriate transformed cells, proteins which may be the full length antigen, antigen 10 fragment, antigen derivative or a fusion product of such antigen, antigen fragment or antigen derivative with another protein.

Proteins included within the present invention have an amino acid sequence depicted in the Sequence Listing. ¹⁵ Other included proteins consist of a fragment of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the amino acid sequences depicted and a mutuant of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of such amino acid sequences.²⁰

The nucleotide sequences may be inserted into any of a wide variety of expression vectors by a variety of procedures. Such procedures and others are deemed to be known by those skilled in the art. Suitable vectors include chromo-25 somal, nonchromosomal and synthetic DNA sequences; e.g., derivatives of SV40; bacterial plasmids; phage DNAs; yeast plasmids; vectors derived from combinations of plasmids and phage DNAs, viral DNA such as baculovirus, vaccinia, adenovirus, fowl pox virus, pseudorabies, etc. The appropriate DNA sequence must be operatively linked in the 30 vector to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned LTR or SV40 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expres- 35 sion of genes in prokaryotic and eukaryotic cells or their viruses. The expression vector also includes a non-coding sequence for a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. 40

The vector containing the appropriate cDNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. Examples of host organisms and cells include bacterial 45 strains (e.g., *E. coli, Pseudomonas, Bacillus, Salmonella*, etc.), fungi (e.g., yeasts and other fungi), animal or plant hosts (e.g., mouse, swine or animal and human tissue cells). The selection of the host is deemed to be within the scope of those skilled in the art.

It is also understood that the appropriate cDNA sequence present in the vector when introduced into a host may express part or only a portion of the protein which is encoded within the noted terminology, it being sufficient that the expressed protein be capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the listed amino acid sequences.

The isolated cDNAs and/or polypeptide expressed by the host transformed by the vector may be harvested by methods which will occur to those skilled in the art and used in a vaccine for protection of a mammal, such as a bovine, swine, ⁶⁰ human, etc., against infestations of *Lxodes* species. Such protective recombinant proteins and/or modified cDNAs are used in an amount effective to induce an immune response against *Lxodes* species ticks and their associated pathogens and may be used in combination with a suitable physiologi- ⁶⁵ cally acceptable carrier. The term "inducing an immune response" when used with respect to the vaccine described

herein means that the vaccine prevents disease associated with a particular tick species or reduces the severity of the disease.

The carrier employed in conjunction with vaccine may be any one of a wide variety of carriers. As representative examples of suitable carriers, there may be mentioned mineral oil, synthetic polymers, etc. Carriers for vaccines are well known in the art and the selection of a suitable carrier is deemed to be within the scope of those skilled in the art. The selection of a suitable carrier is also dependent upon the manner in which the vaccine is to be administered.

The present invention provides a method of immunizing a susceptible mammal, against infestations and disease caused by *Ixodes* species with the vaccine described above. For purposes of this invention, the vaccine is administered in an effective amount. The vaccine may be administered by any of the methods well known to those skilled in the art, for example, by intramuscular, subcutaneous, intraperitoneal or intravenous injection. Alternatively, the vaccine may be administered intranasally or orally. It is also to be understood that the vaccine may include active components, such as tick-borne pathogen components or adjuvants in addition to the antigen(s) or fragments hereinabove described.

The host expressing the antigen may itself be used to deliver antigen to non-human animals, by introducing killed or viable host cells that are capable of propagating in the animal. Direct incorporation of the cDNA sequences into host cells may also be used to introduce the sequences into animal cells for expression of antigen in vivo.

BIBLIOGRAPHY

The following references are incorporated herein by reference:

- Alberti E, Acosta A, Sarmiento M E, Hidalgo C, Vidal T, Fachado A, Fonte L, Izquierdo L, Infante J F, Finlay C M, Sierra G. Specific cellular and humoral immune response in Balb/c mice immunised with an expression genomic library of *Trypanosoma cruzi*. Vaccine 1998; 16: 608–12.
- Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol 1990; 215: 403–10.
- Barry M A, Lai W C, Johnston S A. Protection against mycoplasma infection using expression-library immunization. Nature 1995; 377: 632–5.
- Black W C 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 1994; 91: 10034–8.
- Brayton K A, Vogel S W, Allsopp B A. Expression library immunization to identify protective antigens from *Cowdria ruminantium*. Ann N Y Acad Sci 1998; 849: 369–71.
- 50 Cassataro J, Velikovsky C A, Giambartolomei G H, Estein S, Bruno L, Cloeckaert A, Bowden R A, Spitz M, Fossati C A. Immunogenicity of the *Brucella melitensis* recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine 2002; 20: 1660–9.
- ⁵⁵ de la Fuente J, Rodriguez M, Redondo M, Montero C, Garcia-Garcia J C, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R, de Armas C A, Rey S, Rodriguez J L, Artiles M, Garcia L. Field studies and cost-effectiveness analysis
 ⁶⁰ of vaccination with Gavac against the cattle tick *Boophilus microplus*. Vaccine 1998; 16: 366–73.
 - de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia J C, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R. Vaccination against ticks (*Boophilus* spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal 1999; 15: 143–8.

- de la Fuente J, Rodriguez M, Garcia-Garcia J C. Immunological control of ticks through vaccination with *Boophilus microplus* gut antigens. Ann N Y Acad Sci 2000; 916: 617–21.
- De Rose R, McKenna R V, Cobon G, Tennent J, Zakrzewski 5 H, Gale K, Wood P R, Scheerlinck J P, Willadsen P. Bm86 antigen induces a protective immune response against *Boophilus microplus* following DNA and protein vaccination in sheep. Vet Immunol Immunopathol 1999; 71: 151–60.
- de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from *Boo-philus microplus* in vaccination against other tick species. Exp Appl Acarol 2001; 25: 245–61.
- Drew D R, Lightowlers M, Strugnell R A. Vaccination with 15 plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. Vaccine 1999; 18: 692–702.
- Elad D, Segal E. Immunogenicity in calves of a crude ribosomal fraction of *Trichophyton verrucosum:* a field 20 trial. Vaccine 1995; 13: 83–7.
- Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 1999; 23: 685–715.
- Garcia-Garcia J C, Gonzalez I L, Gonzalez D M, Valdes M, Mendez L, Lamberti J, D'Agostino B, Citroni D, Fragoso H, Ortiz M, Rodriguez M, de la Fuente J. Sequence variations in the *Boophilus microplus* Bm86 locus and implications for immunoprotection in cattle vaccinated 30 with this antigen. Exp Appl Acarol 1999; 23: 883–95.
- Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol 2001; 100: 3–12.
- Liyou N, Hamilton S, Elvin C, Willadsen P. Cloning and ³⁵ expression of ecto 5'-nucleotidase from the cattle tick *Boophilus microplus*. Insect Mol Biol 1999; 8: 257–66.
- Liyou N, Hamilton S, Mckenna R, Elvin C, Willadsen P. Localization and functional studies on the 5'-nucleotidase of the cattle tick *Boophilus microplus*. Exp Appl Acarol 40 2000; 24: 235–46.
- Manoutcharian K, Terrazas L I, Gevorkian G, Govezensky T. Protection against murine cysticercosis using cDNA expression library immunization. Immunol Lett 1998; 62: 131–6.
- Melby P C, Ogden G B, Flores H A, Zhao W, Geldmacher C, Biediger N M, Ahuja S K, Uranga J, Melendez M.

Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect Immun 2000; 68: 5595–602.

- Moore R J, Lenghaus C, Sheedy S A, Doran T J. Improved vectors for expression library immunization—application to *Mycoplasma hyopneumoniae* infection in pigs. Vaccine 2001; 20: 115–20.
- ¹⁰ Mulenga A, Sugimoto C, Onuma M. Issues in tick vaccine development: identification and characterization of potential candidate vaccine antigens. Microbes Infect 2000; 2: 1353–61.
 - Munderloh U G, Wang Y L M, Chen C, Kurtti T J. Establishment, maintenance and description of cell lines from the tick *Ixodes scapularis*. J Parasitol 1994; 80: 533–43.
 - Nuttall P A. Pathogen-tick-host interactions: *Borrelia burg-dorferi* and TBE virus. Zentralbl Bakteriol 1999; 289: 492–505.
 - Parola P, Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect 2001; 7: 80–3.
 - Silva C L. The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes and Infection 1999; 1: 429–35.
 - Singh R A, Wu L, Barry M A. Generation of genome-wide CD8 T cell responses in HLA-A*0201 transgenic mice by an HIV-1 ubiquitin expression library immunization vaccine. J Immunol 2002; 168: 379–91.
 - Smooker P M, Setiady Y Y, Rainczuk A, Spithill T W. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18: 2533–40.
 - van Drunen Littel-van den Hurk S, Loehr B I, Babiuk L A. Immunization of livestock with DNA vaccines: current studies and future prospects. Vaccine 2001; 19: 2474–9.
 - Wikel S K, Ramachandra R N, Bergman D K, Burkot T R, Piesman J. Infestation with pathogen-free nymphs of the tick *Ixodes scapularis* induces host resistance to transmission of *Borrelia burgdorferi* by ticks. Infect Immun 1997; 65: 335–8.Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol 1997; 71: 209–22.
- 45 Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 1999; 15: 258–62.

TABLE 1

	Primary scree	en of the I. scapular	is cDNA library	by ELI in mice.	
Experimental group ^a	Number of pools screened (Number of clones)	Average ± SD number of larvae attached per mouse ^b	Average ± SD number of engorged larvae per mouse ^c	Average ± SD inhibition of tick infestation (I) ^d	Number of pools selected for the secondary screen
Experiment 1	33 (1383)	50 ± 13 (33–80)	9 ± 3 (2–42)	$39 \pm 55\%$ (-183-87%)	6 (I > 75%)
Vector DNA- immunized controls for experiment 1	—	56 ± 13 (45–67)	16 ± 4 (5–27)	_	_
Experiment 2	33 (1322)	56 ± 15 (29–79)	13 ± 4 (1–27)	27 ± 28% (-53- 89%)	3 (I > 60%)

TABLE 1-continued

Experimental group ^a	Primary scree Number of pools screened (Number of clones)	n of the <i>I. scapular</i> Average ± SD number of larvae attached per mouse ^b	ris cDNA library Average ± SD number of engorged larvae per mouse ^c	by ELI in mice. Average \pm SD inhibition of tick infestation (I) ^d	Number of pools selected for the secondary screen
Vector DNA- immunized controls for experiment 2	—	54 ± 18 (36–73)	17 ± 3 (6–28)		

^aNinety six LBA plates containing an average of 41 cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool for ELI. Three mice per group were each immunized IM twice with 1 µg DNA/dose in 50 µl PBS two weeks apart. Two groups of 3 mice each were included as controls. One group was injected with vector DNA and the second with saline only. ^bFifteen days after the last immunization, mice were infested with 100 *I. scapularis* larvae per

mouse. Twelve hrs later, larvae that did not attach were counted to calculate the number of "Engorged larvae per mouse and mice were transferred to new cages. "Engorged larvae dropping from each mouse were collected daily and counted after 7 days.

^dThe inhibition of tick infestation (I) for each test group was calculated with respect to vectorimmunized controls as [1-(RLn/RLc × RLic/RLin)] × 100, where RLn is the average number of replete larvae recovered per mouse for each test group, RLc is the average number of replete larvae recovered per mouse for control group, RLic is the average number of larvae attached per mouse for control group, and RLin is the average number of larvae attached per mouse for eachtest group.

TABLE 2

	Putative protein Function	Number of clones		Sub-pool (No. of clones)	Clone	Pool
_	Dicounthatica	2	35	* * /	3G0_3G10	E3
	Catabolism	2			4D11 4D12 4E7 4E7	EJ E1
	Cell adhesion	2		Membrane protein (7)	1D8 1D11 1E10	D1
	Cell cycle ^a	2		Wiembrane protein (7)	2B12	A10
	Cytoskeletala	28			2812	E8
	Defense	2			309	B4
	DNA structure or replication ^a	3	40		3G11	E3
	Extracellular matrix	3		ATPase (6)	1A9, 1B2, 1C9	A5
	Endocvtosis	2		(-)	2C9	A10
	Energy metabolism	10			4A4	C3
	Homeostasis	2			4G12	F1
	Morphogenetic	9		Cell channel/Transporter (5)	1F4	D1
	Mitochondriala	34	45	1 ()	2H11	E8
	Protein synthesis or processing ^{a,b}	34			4A12	C3
	RNA synthesis or processing ^a	7			4G10, 4G11	F1
	Heat-shock proteins	4		Early development-specific (4)	1C8	A5
	Signal transduction	16			3F4	E3
	Transport	8			4C7	C3
	Unknown	199	50		4G9	F1
				G protein-coupled receptor (4)	2B7, 2C12	A10
	Total	351			2F12	E8
			-		4C9	C3
^a El	iminated from further screening of protect	tive antigens. Other clones		Growth factor receptor (3)	2E8	B5
we	re eliminated for containing similar seque	nces.		1 ()	3B8, 3C8	B4
°Ez	scept for ribosomal proteins.		55	Lectin (3)	3E10	E3
				<>		

60

EGF-like (2)

Adaptin (1)

Secreted protein (2)

65 Glutamine-Alanine rich (2)

30

TA	RI	E.	3
- X X X	பா	~	~

Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.				
Sub-pool (No. of clones)	Clone	Pool ^a		
Ribosomal (17)	1A2,1A10,1C11	A5		
	1F6	D1		
	2B8	A10		
	2F8, 2F10	E8		
	3A10, 2C3, 3D2, 3D10	B4		

	(D11, (D12, (D7, 11)	
Membrane protein (7)	1D8, 1D11, 1E10	D1
	2B12	A1
	2H5	E8
	3C9	B4
	3G11	E3
ATPase (6)	1A9, 1B2, 1C9	A5
	2C9	A1
	4A4	C3
	4G12	F1
Cell channel/Transporter (5)	1F4	D1
	2H11	E8
	4A12	C3
	4G10, 4G11	F1
Early development-specific (4)	1C8	A5
	3F4	E3
	4C7	C3
	4G9	F1
G protein-coupled receptor (4)	2B7, 2C12	A1
	2F12	E8
	4C9	C3
Growth factor receptor (3)	2E8	B5
	3B8, 3C8	B4
Lectin (3)	3E10	E3
	4B8, 4C8	C3
Vitellogenin (3)	1F12	D1
5 ()	4A6	C3
	462	F1
Heat shock (3)	1C10	A5
	1F10	D1
	11 10	

3F6

2H4

4C10

2F9

3C12

3E1

4D6, 4E6

E3

E8

C3

E8

Β4

F1

E3

20

25

30

TABLE 3-continued

Grouping of the clones encoded proteins in	Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.		
Sub-pool (No. of clones)	Clone	Poolª	
Endopeptidase (1)	4D8	F1	
Nucleotidase (1)	4F8	F1	

^acDNA pools refer to positive pools after primary and secondary screens (FIG. 2Å and 2B).

TABLE	4
	/ T

cDNA clone	Predicted Protein	Inhibition of tick infestation I (%)	Inhibition of molting M %	Efficacy E (%)
4D8	Endopeptidase	40*/54**	7*/8**	44*/58**
4F8	Nucleotidase	50*/64**	17*/-9**	58*/61**
1C10	HSP70	17*	ND	ND
4D6	Glu-Ala-rich	61*	11	66*
4E6	Glu-Ala-rich	20*/46**	16**	55**
3E1	β-adaptin (appendage region)	27*	5*	31*
2C12	Beta-amyloid precursor protein (APP)	-8***	ND	ND
4F11	Block of proliferation Bop1	-39***	ND	ND
3E10	Mannose binding lectin	-48*/-10***	ND	ND
4G11	Chloride channel	38***	30	57

16

TABLE 4-continued

	_	Summary of results with	h I. scapularis	cDNA clone	<u>s.</u>
5	cDNA clone	Predicted Protein	Inhibition of tick infestation I (%)	Inhibition of molting M %	Efficacy E (%)
10	3C12 1A9, 1B2, 4A4	RNA polymerase III ATPase	-104*** -57***	ND ND	ND ND

Mice were immunized with cDNA-containing expression plasmid DNA as described above (*) or with 100 µg/dose of recombinant protein expressed in E. coli (**). I, M and E were calculated as described above. ND, not

15 determined. ***Resulted in a pro-feeding activity. This effect could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity. Alternatively, they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick pro-feeding activity.

In view of the above, it will be seen that the several objectives of the invention are achieved and other advantageous results attained. As various changes could be made in the above DNA molecules, proteins, etc. without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. While the invention has been described with a certain degree of particularity, it is understood that the invention is not limited to the embodiment(s) set for herein for purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.

<160> NUMBER OF SEQ ID NOS: 25 <210> SEQ ID NO 1 <211> LENGTH: 349 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <400> SEQUENCE: 1 atggaaatat ctgtgaaacc aaggcccaca aaaaggaaaa gaaaggccat catcatcatg 60 gcaagaatga gaacagcatt ccccaccaga agtgggaaca gcttctcaag gacttgaaca 120 gttaatgatg tgttgtgcaa ttcgaatgtg gctgcaacct cgctagagaa catagtcgac 180 cagctgtagt gctctagtat taaccaagaa gcagtattct gccgtcatat gtacaggcag 240 atttgttacg gcattttcag cttttttta tacaaaatgt agttcttgtt taaaaaaaac 300 349 <210> SEQ ID NO 2 <211> LENGTH: 38

SEQUENCE LISTING

<212> TYPE: PRT <213> ORGANISM: Ixodes scapularis

<400> SEQUENCE: 2

Met Glu Ile Ser Val Lys Pro Arg Pro Thr Lys Arg Lys Ala 5 10 15

-continued

Ile	Ile	Ile	Met 20	Ala	Arg	Met .	Arg	Thr 25	Ala F	he	Pro Thr	Arc 30	g Ser Gly	
Asn	Ser	Phe 35	Ser	Arg	Thr									
<210 <211 <212 <213 <220 <221 <222 <223 <220 <221 <222 <223 <222 <223	 > SE > LE > TY > OF > NA > CI > FE > NA > LC > OT > FE > NA > SE 	Q II NGTH PE: GANJ ATUF ME/H CATJ HER ATUF ME/H CATJ HER	O NO H: 26 DNA ISM: (EY: : INFO RE: (EY: : INFO INFO	3 93 Ixod (685 RMAT misc (196 RMAT 3	les a fea ion: fea ion: _ion:	scapu (685) : n i: ture .(196) : n i:	lari s a, 2) s a,	c,	g, or g, or	t				
aatt	tato	ict o	actta	aaaa	na to	ccacc	aaaa	acc	tocaa	ICC	acaaaaa	agt	tcatcatccg	60
qaqq	taad	rcc f	tatco	cago	na to	aactt	acac	aac	attaa	iaq	cgaacac	acq	attgggatcc	120
qctq	cata	igt d	ccaaa	.cqqa	ia qa	atcqc	ccaa	aco	acqqa	ıqa	tgtatgc	ctt	tgtcggtcac	180
acaa	gcac	icd 9	actcc	ccca	ia ca	aaqqq	caca	cca	aatca	lac	ccttcac	cct	tcqqtqaaqt	240
gcca	looga	iaa 1	ttaac	ttca	ig a	ggaga	tagc	ggc	caaca	itt	cgggagg	aaa	tgcgacgtct	300
gcag	cggo	:gc a	aagca	gcto	t go	cttct	cgtc	tcc	cctgg	ıag	tcgggct	ccc	cgtcggcgac	360
tccc	ccto	lcd d	gccga	ttgc	:g ga	accag	cctc	cac	cacgg	ldc	ctgtccc	ccg	ggggcctgct	420
gtcg	acco	gtg (cgcag	ggac	c a	acccc	tctt	cac	cttcc	gc	caggtgg	ggc	tcatctgcga	480
gcgc	atga	atg a	aagga	.gcgc	g ag	gagcc	agat	acg	rcgacg	ıag	tacgacc	acg	ttctgtctgc	540
caag	ctgg	jca 🤉	gagca	gtac	g a	cacat	ttgt	caa	ıgttta	ıcg	tacgacc	aaa	ttcagaagcg	600
gttt	gago	ıgt o	gccac	tcca	a go	ctatt	tgtc	ata	acatg	ſat	gggcatc	tgc	aaacaagcaa	660
ggaa	cttt	ga g	gggtt	tgtg	jc ta	agang	gaag	aaa	acccat	gg	tggggaa	gga	cacaagacca	720
acac	ttag	jac H	tcggc	aago	a ag	gccag	atcc	tgt	ggggt	gc	ggggacg	ddd	ggaatgagtc	780
cagt	ggto	ftc 1	ttcgg	agtt	t t	tttt	ttcc	tto	tccct	tt	ccctcgt	ctt	ctttttggca	840
caac	tctt	ta d	cggaa	ctgg	gt g†	tgcat	ccat	tcc	ccgaa	ag	tgcaaga	gaa	ggactcgcgg	900
cgga	tcat	ct a	acgga	ggaa	ig aa	agtgt	gtat	geo	tttgt	gc	tttgggt	ctc	cttttttt	960
tttt	taac	cg f	tcttg	ccat	c to	cgcca	taga	aga	acctgt	ga	tctagca	aac	aaaggtgtgc	1020
gaat	gtta	atg d	caaag	gttg	jg a	agtca	gttt	gaa	agtgg	Iag	cgagaga	aaa	ttttgtatgc	1080
tgag	tato	∣gt †	tagtc	acco	jt t†	tactt	ttca	gga	ıddddd	jat	gactgag	gaa	cggagccgcc	1140
ccaa	ctct	cg f	tttgt	cttt	t af	tttt	agga	tac	tttct	ct	gtggcga	gaa	tttgtgtgtg	1200
catg	caag	gtt a	agcga	gggt	a co	gagga	aaag	aag	ggtta	ita	aaatatt	ctg	ggtgagagct	1260
gtag	ttca	ac f	tgggg	ggtg	ld da	attgt	aaag	acc	tgcgg	Igt	accgaga	gga	ccgcatgctc	1320
tggc	tata	itt a	acttg	catt	g ag	aaaaa	agga	gga	atgct	gg	acctcga	gca	gagccagcaa	1380
gtat	tttg	ga a	aagga	ataa	ia a	acaaa	aatt	ggc	ttagt	gt	acagatg	tat	aatatatatg	1440
cact	acag	ldd 4	tgtgt	gtgc	c to	cttgt	atct	tcc	cgtgc	gt	tgtgtcc	ctc	ttgcggcttg	1500
ccca	tctg	jac a	aaccg	ccto	gt g⁺	tacat	aggc	саа	icgcaa	ıgt	cttcagc	atg	gcaccctctt	1560
cttt	ttcc	tt 1	tttt	ttto	et ca	ataag	taat	ttt	gaagg	lag	agaatat	ttt	gatttctaag	1620
actc	ccaa	aa (catca	agto	jc to	ctggt	ggtc	gga	attct	ac	aagtgcg	aaa	gttcctttct	1680
tttt	tttg	ftt 1	togag	atag	gg aa	atggc	ttca	ggt	tgtgc	tg	cctatgc	ttt	ggccacactt	1740

-continued

tgga	acac	ct o	gcaad	ageo	ja at	taac	tggt	gta	aggeo	tgt	gaca	actto	jca d	cageo	gtgt	t	1800)
tttt	tttt	tt t	tttt	tgta	ıg ti	ttgc	agta	ata	aaaa	actt	gtta	atgga	aa g	gagto	gcatta	a	1860)
tgct	atgo	gca t	ttgto	etget	g ct	atgo	ttat	tgg	gaato	gcat	gcct	gato	gtg t	gtto	gtgcti	t	1920)
gago	gatag	gtg a	aagto	ggtat	t go	caggo	gttgg	aaa	aggag	gctt	anaa	atgco	tt o	ctggo	tttt	9	1980)
cata	aagee	gtg o	gcttt	gggt	g to	cgtct	gage	ttg	gtcaa	atca	cagt	gcaa	aca t	cgcad	tttg	t	2040)
ccaa	attgg	gtt t	tatto	lddde	ac to	gcttt	tggg	tgo	agag	gttt	gact	aatt	tt t	agta	aatgci	t	2100)
tcaa	aatgo	caa d	cgctt	ctgt	g tt	gato	cgcag	tto	catca	aact	cgto	gato	at t	atgo	atgt	9	2160)
aaaa	acto	get d	cacgt	aaad	t gt	atgt	tgat	ato	acag	gttg	cact	gago	jaa o	geete	gctta	a	2220)
agat	ggto	gtg t	tgcaa	igtgo	t to	ggcac	cactg	cgt	attt	tcc	agca	ataaa	igc t	cggta	agtgta	a	2280)
cago	gtgct	:gc t	tgtta	gtag	jc aa	aactt	tctg	cca	attgo	ctgc	caca	aatto	at o	gcato	gaatga	a	2340)
gtgt	tggg	gga g	gtato	gttag	gt tt	atct	tttc	aaa	acto	gatt	tgaa	agtac	ca g	gtgto	ctata	a	2400)
tttt	tgeo	at t	tgcat	taat	a to	ggato	ctgo	att	gttt	acg	gaaa	aaaq	gtg a	ataad	catta	a	2460)
ttat	gaaa	iga t	tatta	ageo	ja gt	ttat	tgac	ttt	tcca	agga	gaat	ttag	jac o	cagga	aggca	2	2520)
taca	atago	ct o	gtggt	ctgo	t tt	gtta	atgtt	gac	ttg	gttt	ttgt	ggaa	at t	agtt	ctaa	a	2580)
agtt	taca	aat o	etttt	tggo	a to	gactt	gttt	gca	attgo	ccat	tgta	aattt	gg d	ccatt	atta	9	2640)
aata	aagg	jca d	ctctc	tcag	gt ac	cctaa	aaaa	aaa	aaaa	aaaa	aaaa	aaaaa	aa a	aaa			2693	3
<210 <211 <212 <213)> SE l> LE 2> TY 3> OR	Q II NGTH PE: GANI) NO H: 18 PRT [SM:	4 4 Ixod	les s	capu	ılari	s										
						up u		-										
<400)> SE	QUEN	ICE :	4				-										
<400 Met 1)> SE Ala	QUEN Cys	NCE: Ala	4 Thr 5	Leu	Lys	Arg	Thr	His 10	Asp	Trp	Asp	Pro	Leu 15	His			
<400 Met 1 Ser)> SE Ala Pro	QUEN Cys Asn	NCE: Ala Gly 20	4 Thr 5 Arg	Leu Ser	L y s Pro	Arg Lys	Thr Arg 25	His 10 Arg	Asp Arg	Trp Cys	Asp Met	Pro Pro 30	Leu 15 Leu	His Ser			
<400 Met 1 Ser Val)> SE Ala Pro Thr	Cys Cys Asn Gln 35	Ala Gly 20 Ala	4 Thr 5 Arg Ala	Leu Ser Thr	Lys Pro Pro	Arg Lys Pro 40	Thr Arg 25 Thr	His 10 Arg Arg	Asp Arg Ala	Trp Cys His	Asp Met Gln 45	Pro Pro 30 Ile	Leu 15 Leu Asn	His Ser Pro			
<400 Met 1 Ser Val Ser)> SE Ala Pro Thr Pro 50	QUEN Cys Asn Gln 35 Phe	Ala Gly 20 Ala Gly	4 Thr 5 Arg Ala Glu	Leu Ser Thr Val	Lys Pro Pro Pro 55	Arg Lys Pro 40 Pro	Thr Arg 25 Thr Lys	His 10 Arg Arg Leu	Asp Arg Ala Thr	Trp Cys His Ser 60	Asp Met Gln 45 Glu	Pro Pro 30 Ile Glu	Leu 15 Leu Asn Ile	His Ser Pro Ala			
<400 Met Ser Val Ser Ala 65)> SE Ala Pro Thr Pro 50 Asn	QUEN Cys Asn Gln 35 Phe Ile	Ala Gly 20 Ala Gly Arg	4 Thr 5 Arg Ala Glu Glu	Leu Ser Thr Val Glu 70	Lys Pro Pro 55 Met	Arg Lys Pro 40 Pro Arg	Thr Arg 25 Thr Lys Arg	His 10 Arg Arg Leu Leu	Asp Arg Ala Thr Gln 75	Trp Cys His Ser 60 Arg	Asp Met Gln 45 Glu Arg	Pro 30 Ile Glu Lys	Leu 15 Leu Asn Ile Gln	His Ser Pro Ala Leu 80			
<400 Met 1 Ser Val Ser Ala 65 Cys)> SE Ala Pro Thr Pro 50 Asn Phe	CQUEN Cys Asn Gln 35 Phe Ile Ser	Ala Gly 20 Ala Gly Arg Ser	4 Thr 5 Arg Ala Glu Glu Pro 85	Leu Ser Thr Val Glu 70 Leu	Lys Pro Pro 55 Met Glu	Arg Lys Pro 40 Pro Arg Ser	Thr Arg 25 Thr Lys Arg Gly	His 10 Arg Arg Leu Leu Ser 90	Asp Arg Ala Thr Gln 75 Pro	Trp Cys His Ser 60 Arg Ser	Asp Met Gln 45 Glu Arg Ala	Pro 30 Ile Glu Lys Thr	Leu 15 Leu Asn Ile Gln Pro 95	His Ser Pro Ala Leu 80 Pro			
<400 Met 1 Ser Val Ser Ala 65 Cys Ala)> SE Ala Pro Thr Pro 50 Asn Phe Ala	CQUEN Cys Asn Gln 35 Phe Ile Ser Asp	Ala Gly 20 Ala Gly Arg Ser Cys 100	4 Thr 5 Arg Ala Glu Glu 85 Gly	Leu Ser Thr Val Glu 70 Leu Pro	Lys Pro Pro 55 Met Glu Ala	Arg Lys Pro 40 Pro Arg Ser Ser	Thr Arg 25 Thr Lys Arg Gly Pro 105	His 10 Arg Arg Leu Leu Ser 90 Thr	Asp Arg Ala Thr Gln 75 Pro Gly	Trp Cys His Ser Ser Leu	Asp Met Gln 45 Glu Arg Ala Ser	Pro 30 Ile Glu Lys Thr Pro 110	Leu 15 Leu Asn Ile Gln Pro 95 Gly	His Ser Pro Ala Leu 80 Pro Gly			
<400 Met 1 Ser Val Ser Ala Cys Ala Leu)> SE Ala Pro Thr Pro 50 Asn Phe Ala Leu	CQUEN Cys Asn Gln 35 Phe Ile Ser Asp Ser 115	Ala Gly 20 Ala Gly Arg Ser Cys 100 Pro	4 Thr 5 Arg Ala Glu Glu Bro 85 Gly Val	Leu Ser Thr Val Glu 70 Leu Pro Arg	Lys Pro Pro 55 Met Glu Ala Arg	Arg Lys Pro 40 Pro Arg Ser Ser Ser Asp 120	Thr Arg 25 Thr Lys Arg Gly Pro 105 Gln	His 10 Arg Leu Leu Ser 90 Thr Pro	Asp Arg Ala Thr Gln 75 Pro Gly Leu	Trp Cys His Ser 60 Arg Ser Leu Phe	Asp Met Gln 45 Glu Arg Ala Ser Thr 125	Pro 30 Ile Glu Lys Thr Pro 110 Phe	Leu 15 Leu Asn Ile Gln Pro 95 Gly Arg	His Ser Pro Ala Leu 80 Pro Gly Gln			
<400 Met 1 Ser Val Ser Ala 65 Cys Ala Leu Val	> SE Ala Pro Thr Pro 50 Asn Phe Ala Leu Gly 130	QUEN Cys Asn Gln 35 Phe Ile Ser Asp Ser 115 Leu	ALA Ala Gly 20 Ala Gly Arg Ser Cys 100 Pro Ile	4 Thr 5 Arg Ala Glu Glu Glu Bro 85 Gly Val Cys	Leu Ser Thr Val Glu Fro Arg Glu	Lys Pro Pro S5 Met Glu Ala Arg Arg 135	Arg Lys Pro 40 Pro Arg Ser Ser Ser Asp 120 Met	Thr Arg 25 Thr Lys Arg Gly Pro 105 Gln Met	His 10 Arg Leu Leu Ser 90 Thr Pro Lys	Asp Arg Ala Thr Gln 75 Pro Gly Leu Glu	Trp Cys His Ser 60 Arg Leu Phe Arg 140	Asp Met Gln 45 Glu Arg Ala Ser Thr 125 Glu	Pro 30 Ile Glu Lys Thr Pro 110 Phe Ser	Leu 15 Leu Asn Ile Gln Pro 95 Gly Arg Gln	His Ser Pro Ala Leu 80 Pro Gly Gln Ile			
<400 Met 1 Ser Val Ser Ala Cys Ala Leu Val Arg 145	<pre>>> SE Ala Pro Thr Pro 50 Asn Phe Ala Leu Gly 130 Asp</pre>	QUEN Cys Asn Gln 35 Phe Ile Ser 115 Leu Glu	Ala Gly 20 Ala Gly Arg Ser Cys 100 Pro Ile Tyr	4 Thr 5 Arg Ala Glu Glu Bro 85 Gly Val Cys Asp	Leu Ser Thr Val Glu Pro Arg Glu His 150	Lys Pro Pro 55 Met Glu Ala Arg 135 Val	Arg Lys Pro 40 Pro Arg Ser Ser Ser Asp 120 Met Leu	Thr Arg 25 Thr Lys Arg Gly Pro 105 Gln Met Ser	His 10 Arg Leu Leu Ser 90 Thr Pro Lys Ala	Asp Arg Ala Thr Gln 75 Pro Gly Leu Glu Lys 155	Trp Cys His Ser 60 Arg Leu Phe Arg 140 Leu	Asp Met Gln 45 Glu Arg Ala Ser Thr 125 Glu Ala	Pro 30 Ile Glu Lys Thr Pro 110 Phe Ser Glu	Leu 15 Leu Asn Ile Gln Pro 95 Gly Arg Gln Gln	His Ser Pro Ala Leu 80 Pro Gly Gln Ile Tyr 160			
<400 Met 1 Ser Val Ser Ala 65 Cys Ala Leu Val Leu Val Arg 145 Asp	> SE Ala Pro Thr Pro 50 Asn Ala Leu Gly 130 Asp Thr	QUEN Cys Asn Gln 35 Phe Ile Ser Asp Ser 115 Leu Glu Phe	Ala Gly 20 Ala Gly Arg Ser Cys 100 Pro Ile Tyr Val	4 Thr 5 Arg Ala Glu Glu Glu Val Cys Asp Lys 165	Leu Ser Thr Val Glu Pro Arg Glu His 150 Phe	Lys Pro Pro 55 Met Glu Ala Arg 135 Val Thr	Arg Lys Pro 40 Pro Arg Ser Ser Ser 120 Met Leu Tyr	Thr Arg 25 Thr Lys Arg Gly Pro 105 Gln Met Ser Asp	His 10 Arg Leu Leu Leu Ser 90 Thr Pro Lys Ala Gln 170	Asp Arg Ala Thr Gln 75 Pro Gly Leu Glu Lys 155 Ile	Trp Cys His Ser Cys Cys Cys Cys Cys Cys Cys Cys Cys Cys	Asp Met Gln 45 Glu Arg Ala Ser Thr 125 Glu Ala Lys	Pro 30 Ile Glu Lys Thr Pro 110 Phe Ser Glu Arg	Leu 15 Leu Asn Ile Gln Pro 95 Gly Arg Gln Gln Gln Phe 175	His Ser Pro Ala Leu 80 Pro Gly Gln Ile Tyr 160 Glu			

-continued

<211> LENG <212> TYPE	CH: 1821 : DNA					
<213> ORGAN	NISM: Ixodes	s scapularis	5			
<220> FEATU	JRE: /KEV: miga f	oaturo				
<222> LOCA	CION: (1487))(1487)				
<223> OTHER	R INFORMATIC	DN: n is a,	c, g, or t			
<220> FEATU	JRE: /KEV: migg f	ooturo				
<222> LOCA	CION: (1595))(1595)				
<223> OTHER	R INFORMATIC	DN: n is a,	c, g, or t			
<220> FEATU	JRE: /KEV: misc f	eature				
<222> LOCA	TION: (1606))(1606)				
<223> OTHER	R INFORMATIC	ON: n is a,	c, g, or t			
<220> FEATU <221> NAME	JRE: /KEY: misc f	eature				
<222> LOCA	CION: (1623))(1623)				
<223> OTHEN	R INFORMATIC	DN: n is a,	c, g, or t			
<221> NAME,	/KEY: misc_f	eature				
<222> LOCA	TION: (1762))(1762)				
<223> OTHEN <220> FEATI	R INFORMATIC	ON: n is a,	c, g, or t			
<221> NAME,	KEY: misc_f	eature				
<222> LOCA	CION: (1789))(1789)	+			
<223> OTHER	R INFORMATIC	JN: n is a,	c, g, or t			
<400> SEQUI	ENCE: 5					
atggcgtcgt	gtggagcatc	aqcqacqqqt	cctctcqtcc	taaqaqtaat	ttccaacact	60
			,			100
gttaaaatag	ttaacagcgc	cggaaagata	atcaaggaca	tcatgaacag	tggaaacctc	120
ggaatcgtcg	aaaaggaagg	catcaatgac	ctgcaaacgg	aggcagacag	atctgttcag	180
cgctgcattg	tgacttcgct	ctcgagacag	ttcccaaaac	tgacaataat	tggtgaagag	240
actctggagg	agaaaaagat	cagcgacgac	tggatcatca	ccgagcatga	caaggatgtc	300
ctggccactt	ctctgccgga	caacctgaag	aacatcaaag	aggaagattt	ggtagtctgg	360
gttgatcctc	tggatggaac	caaggagtac	acacagggtt	tcctggacca	cgtgacgatc	420
ctggtgggga	ttgcggttga	cggtaaggca	gtgggtggag	tgatccacca	gccgtactac	480
aactaccagg	tggagaagga	cgtctacaag	cagggacgta	ccatgtgggg	cattgtcggc	540
gtcggtgcct	ttgggatctc	gcgcattgcg	cctccggaga	acaagaggat	catcactacg	600
acgcgctccc	attccagccc	caccatcaac	agctgcattg	aagccatgaa	tccggacgag	660
gtgctgcgag	ttggaggtgc	cgggcacaag	gtgctgctgt	tgattgaggg	caaggctcac	720
gcttacgtgt	ttcccagcaa	agggtgcaag	aaatgggaca	cttgtgcccc	cgaagcgatt	780
cttcatgcca	ctggcggcct	tcttacagat	gttcacggga	acagattgga	gtaccacaag	840
gacgtggaac	acgtcaatgc	cggcggcgtt	cttgccacct	gcctgaagga	acaacacgaa	900
tggttcaaga	accacattcc	cgaagatgtc	cgcaagacgc	ttcctctatg	agcaacctgc	960
cgttgtccgt	tgcgatcaca	ctcaagtcgc	gtttttcctt	taactttgtg	gtgatgcggt	1020
tcaaagtctt	atactattag	tgttttggtg	gtccaaatat	tattactaaa	aaaacccgga	1080
gacatgggac	acaaaaaaat	ggaggggcgg	gacaataagg	tctcgaacac	agctcgtaca	1140
gaattttta	aaataatgtt	gatttcaggt	ttatttgtgg	aaactctgaa	attaaccgtt	1200
atgtcattat	ttgggttgtg	ccgtttgaaa	ttttatgaaa	tacgtaatag	ctgcacgcat	1260
tttgcaggcc	actcagctcc	ttgaatgctc	gatgcttgat	gcttctgcca	acattatttg	1320
tatctcaagt	ttttctacca	caagaaacag	taccctaaca	ttttgaaata	gtattactag	1380
cttggatttt	atctggtatg	catatataag	atctatggat	gttcctaagg	agggcatgaa	1440
tttgaaacat	accctgtcct	taccaacctt	caaacatttt	ttttgngcc	tgcttaaaag	1500

-continued

cact	taca	att g	gette	gate	gt to	gaati	aatt	tti	tago	tga	tgtt	aago	gac (actta	ataata	1560
atta	aagga	aaa t	gaga	atcga	at ci	tgag	gette	g tt:	gngo	ctc	tgta	aanaa	att i	gatgo	tcttt	1620
cana	accta	aat o	gctta	aatgo	ca ao	caata	aatta	a tca	aagta	atc	ctta	actca	agg ·	tgtca	agatat	1680
gcaa	agcag	gat o	gccaa	atge	t ci	gtto	catto	g agt	ggca	aaaa	ggca	attgo	ctc ·	tttgt	cacat	1740
tgca	atgca	att t	atga	acago	cc ci	nccti	caata	a aad	ctata	aatg	cago	ctaat	nt ·	gaaaa	aaaaa	1800
aaaa	aaaa	aaa a	aaaa	aaaa	aa a											1821
<210 <211 <212 <213)> SE > LE 2> TY 3> OF	Q II NGTH PE: RGANI	NO N: 31 PRT SM:	6 16 Ixoo	les s	scapu	ılari	5								
<400)> SE	QUEN	ICE :	6												
Met 1	Ala	Ser	Cys	Gly 5	Ala	Ser	Ala	Thr	Gly 10	Pro	Leu	Val	Leu	Arg 15	Val	
Ile	Ser	Asn	Thr 20	Val	Lys	Ile	Val	Asn 25	Ser	Ala	Gly	Lys	Ile 30	Ile	Lys	
Asp	Ile	Met 35	Asn	Ser	Gly	Asn	Leu 40	Gly	Ile	Val	Glu	Lys 45	Glu	Gly	Ile	
Asn	Asp 50	Leu	Gln	Thr	Glu	Ala 55	Asp	Arg	Ser	Val	Gln 60	Arg	Cys	Ile	Val	
Thr 65	Ser	Leu	Ser	Arg	Gln 70	Phe	Pro	Lys	Leu	Thr 75	Ile	Ile	Gly	Glu	Glu 80	
Thr	Leu	Glu	Glu	L y s 85	Lys	Ile	Ser	Asp	Asp 90	Trp	Ile	Ile	Thr	Glu 95	His	
Asp	Lys	Asp	Val 100	Leu	Ala	Thr	Ser	Leu 105	Pro	Asp	Asn	Leu	L y s 110	Asn	Ile	
Lys	Glu	Glu 115	Asp	Leu	Val	Val	T rp 120	Val	Asp	Pro	Leu	Asp 125	Gly	Thr	Lys	
Glu	Tyr 130	Thr	Gln	Gly	Phe	Leu 135	Asp	His	Val	Thr	Ile 140	Leu	Val	Gly	Ile	
Ala 145	Val	Asp	Gly	Lys	Ala 150	Val	Gly	Gly	Val	Ile 155	His	Gln	Pro	Tyr	Ty r 160	
Asn	Tyr	Gln	Val	Glu 165	Lys	Asp	Val	Tyr	Lys 170	Gln	Gly	Arg	Thr	Met 175	Trp	
Gly	Ile	Val	Gly 180	Val	Gly	Ala	Phe	Gly 185	Ile	Ser	Arg	Ile	Ala 190	Pro	Pro	
Glu	Asn	Lys 195	Arg	Ile	Ile	Thr	Thr 200	Thr	Arg	Ser	His	Ser 205	Ser	Pro	Thr	
Ile	Asn 210	Ser	Сув	Ile	Glu	Ala 215	Met	Asn	Pro	Asp	Glu 220	Val	Leu	Arg	Val	
Gl y 225	Gly	Ala	Gly	His	Lys 230	Val	Leu	Leu	Leu	Ile 235	Glu	Gly	Lys	Ala	His 240	
Ala	Tyr	Val	Phe	Pro 245	Ser	Lys	Gly	Cys	L y s 250	Lys	Trp	Asp	Thr	C y s 255	Ala	
Pro	Glu	Ala	Ile 260	Leu	His	Ala	Thr	Gly 265	Gly	Leu	Leu	Thr	Asp 270	Val	His	
Gly	Asn	Arg 275	Leu	Glu	Tyr	His	Lys 280	Asp	Val	Glu	His	Val 285	Asn	Ala	Gly	
Gly	Val 290	Leu	Ala	Thr	Cys	Leu 295	Lys	Glu	Gln	His	Glu 300	Trp	Phe	Lys	Asn	

His Ile Pro Glu Asp Val Arg Lys Thr Leu Pro Leu

-continued
305 310 315
<pre><210> SEQ ID NO 7 <211> LENGTH: 697 <212> TYPE: DNA <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (573)(573) <223> OTHER INFORMATION: n is a, c, g, or t</pre>
<400> SEQUENCE: 7
gaceteaagg aaggeatetg eeegeaggee ttetggetea acaaggagea gtgttgetgg 60
gcctccaacg ataccttctt taaggggggac gactgcaagc agtggtatcg gtggcccgag 120
atgttcgaca gcggcatgga caaggacggg gcaggctttt acctgctctc ctacctgctg 180
tacgtcatgt ggagtgtgct cttcgccacc ctggccgtca tgctcgttcg caccttcgcg 240
ccctatgcct gtggatctgg aatcccggag atcaagacga ttctgagcgg cttcatcatc 300
cgcggctacc tgggcaagtg gacgctgacc atcaaatcag tgtgtctggt gctggccgtc 360
ggggcgggcc tcagcctggg caaagagggg cccctggtgc acgtggcctg ctgcatcggg 420
aacatcttct cctacctctt ccccaagtac ggcaagaatg aggccaagaa gagggagatc 480
ctgtcggctg ccgccgccgc gggagtttct gtggcctttg gggctcccat cggcggtgtt 540
ctcttcagcc tcgaagaggt gagctactac ttncccttga agacgctgtg gcgttccttc 600
ttctgcgccc tggtggcagc ctcggtgctg cgctccatca acccctttgg caacgaccac 660
ctggtgatgt tctacgtcga gtacgacttt ccctggc 697
<pre><210> SEQ ID NO 8 <211> LENGTH: 232 <212> TYPE: PRT <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (191)(191) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid</pre>
<400> SEQUENCE: 8
Asp Leu Lys Glu Gly Ile Cys Pro Gln Ala Phe Trp Leu Asn Lys Glu 1 5 10 15
Gln Cys Cys Trp Ala Ser Asn Asp Thr Phe Phe Lys Gly Asp Asp Cys 20 25 30
Lys Gln Trp Tyr Arg Trp Pro Glu Met Phe Asp Ser Gly Met Asp Lys 35 40 45
Asp Gly Ala Gly Phe Tyr Leu Leu Ser Tyr Leu Leu Tyr Val Met Trp 50 55 60
Ser Val Leu Phe Ala Thr Leu Ala Val Met Leu Val Arg Thr Phe Ala 65 70 75 80
Pro Tyr Ala Cys Gly Ser Gly Ile Pro Glu Ile Lys Thr Ile Leu Ser 85 90 95
Gly Phe Ile Ile Arg Gly Tyr Leu Gly Lys Trp Thr Leu Thr Ile Lys 100 105 110
Ser Val Cys Leu Val Leu Ala Val Gly Ala Gly Leu Ser Leu Gly Lys 115 120 125
Glu Gly Pro Leu Val His Val Ala Cys Cys Ile Gly Asn Ile Phe Ser 130 135 140
Tyr Leu Phe Pro Lys Tyr Gly Lys Asn Glu Ala Lys Lys Arg Glu Ile 145 150 155 160

-continued

Leu Ser Ala Ala Ala Ala Gly Val Ser Val Ala Phe Gly Ala Pro 165 170 175 Ile Gly Gly Val Leu Phe Ser Leu Glu Glu Val Ser Tyr Tyr Xaa Pro 180 185 190 Leu Lys Thr Leu Trp Arg Ser Phe Phe Cys Ala Leu Val Ala Ala Ser 195 200 205 Val Leu Arg Ser Ile Asn Pro Phe Gly Asn Asp His Leu Val Met Phe 210 215 220 Tyr Val Glu Tyr Asp Phe Pro Trp 225 230 <210> SEQ ID NO 9 <211> LENGTH: 1221 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (713)..(713) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 9 gtttcttgtt acggtagtgg agtgctgagt ttactcgata atatctgaga aatagtggca atatcaattt ttctgtaaat tagaaatgta accaatggcg tggctatctt ctagtcgaca ctaacgtctc ggatctgctg ttcaaagtcc cgggcgatca agccgtattt gttgtccagc tgccaagtgc gtcgaatatg atgccgaaaa agaaagaatc agtcgcgagc tctaaagaag acgcgccgat cgacgtgatc ggcctgccct cccacaaacg acacaagaag cacaagcaca aaaagcacaa gcgcaagcga ggcacggacc aagacgaaga ccaatcgccc gccgcgagcc cgcagagcgg tggcgagggt agcagcagca agcccgcgct caagctcaag atcaagatcg gcggacagac ggtcgagaag aacgtgacca agctgaaaca gcagcggccg ccgccggg accetagega ageegatete geegaaetee tgatgaaaee caaeteggge gataegageg cagacagega tgaegaagag gaageetgge tegaageeet egagteegge aggetegaag aggtcgacga cgagctccgc aaaatgaagg acccgaccct gatgacggcc aggcagcggg ccctgctcga gagcaagtcg cagaaggacg aggtcccggc gacggggatg gcnggcgtcc gcggagcccg tcaaagagat gtccgaggag atgattcagc ggcggatgct gcgggccaaa aagcggaagc agcaggccga agagaagaaa gagaaggaga agaagcagac gatcgagcgt ctgctcaaga agtccgactc gaggctgagg gccagcaaga agttggccaa gaagagcgat actcccaagg tgtcgctggt caacacgcag gcaggcacgc tgctctcgtt tcccgtcggc gttgcgttcc cgctgtcggc agccgtggcc caggggtacc ccgagaagac gacgtgcggc 1020 attaagggtt gtcgtaaccc gaagaagtac tcgtgctcca agacaggcgt gcccctgtgc 1080 agcetegagt getacaagae gaacatgetg eagatgtgeg tetgageggg eagetagget 1140 tccgggctac agctgctcct tgtgtatatg tatataaagt cgagaatgct gaaaaaaaa 1200 1221 aaaaaaaaaa aaaaaaaaaa a <210> SEQ ID NO 10

<400> SEQUENCE: 10

<213> ORGANISM: Ixodes scapularis

<211> LENGTH: 275 <212> TYPE: PRT

Met Met Pro Lys Lys Glu Ser Val Ala Ser Ser Lys Glu Asp Ala

28

60

120

180 240

300

360

420 480

540

600 660

720 780

840

900

-continued

Pro	Ile	Asp	Val 20	Ile	Gly	Leu	Pro	Ser 25	His	Lys	Arg	His	L y s 30	Lys	His	
Lys	His	Lys 35	Lys	His	Lys	Arg	Lys 40	Arg	Gly	Thr	Asp	Gln 45	Asp	Glu	Asp	
Gln	Ser 50	Pro	Ala	Ala	Ser	Pro 55	Gln	Ser	Gly	Gly	Glu 60	Gly	Ser	Ser	Ser	
L y s 65	Pro	Ala	Leu	Lys	Leu 70	Lys	Ile	Lys	Ile	Gly 75	Gly	Gln	Thr	Val	Glu 80	
Lys	Asn	Val	Thr	L y s 85	Leu	Lys	Gln	Gln	Arg 90	Pro	Pro	Pro	Pro	Asp 95	Pro	
Ser	Glu	Ala	A sp 100	Leu	Ala	Glu	Leu	Leu 105	Met	Lys	Pro	Asn	Ser 110	Gly	Asp	
Thr	Ser	Ala 115	Asp	Ser	Asp	Asp	Glu 120	Glu	Glu	Ala	Trp	Leu 125	Glu	Ala	Leu	
Glu	Ser 130	Gly	Arg	Leu	Glu	Glu 135	Val	Asp	Asp	Glu	Leu 140	Arg	Lys	Met	Lys	
Asp 145	Pro	Thr	Leu	Met	T hr 150	Ala	Arg	Gln	Arg	Ala 155	Leu	Leu	Glu	Ser	L y s 160	
Ser	Gln	Lys	Asp	Glu 165	Val	Pro	Ala	Thr	Gly 170	Met	Ala	Gly	Val	A rg 175	Gly	
Ala	Arg	Gln	A rg 180	Asp	Val	Arg	Gly	Asp 185	Asp	Ser	Ala	Ala	Asp 190	Ala	Ala	
Gly	Gln	Lys 195	Ala	Glu	Ala	Ala	Gly 200	Arg	Arg	Glu	Glu	Arg 205	Glu	Gly	Glu	
Glu	Ala 210	Asp	Asp	Arg	Ala	Ser 215	Ala	Gln	Glu	Val	Arg 220	Leu	Glu	Ala	Glu	
Gl y 225	Gln	Gln	Glu	Val	Gly 230	Gln	Glu	Glu	Arg	Ty r 235	Ser	Gln	Gly	Val	Ala 240	
Gly	Gln	His	Ala	Gly 245	Arg	His	Ala	Ala	Leu 250	Val	Ser	Arg	Arg	A rg 255	Cys	
Val	Pro	Ala	Val 260	Gly	Ser	Arg	Gly	Pro 265	Gly	Val	Pro	Arg	Glu 270	Asp	Asp	
Val	Arg	His 275														
<210 <211 <212 <212)> SE 1> LE 2> TY 3> OF	Q II INGTH PE: RGANI	D NO H: 19 DNA ESM:	11 942 Ixoo	les s	scapı	ılari	5								
<400)> SE	QUEN	ICE :	11												
cga	tgcaq	ldc d	gatga	acgg	gc ti	tgc	ggtgo	c agt	tcaa	acaa	aaa	cagt	ttc o	gggci	tgactc	60
cago	ctcaq	lcc d	gctgo	cagt	tg ca	agat	tacad	c tgo	cageo	ccaa	ctto	ccca	gct o	gatgo	egaget	120
tgca	ageto	ada q	aacca	aacg	gt co	ccgt	gcaga	a aga	atgga	accc	ccto	cacca	aac o	cttca	aggtgg	180
ccat	tcaaq	gaa d	caato	gtgga	ac gi	gtto	ctact	t t ca	ageto	gcct	ggto	gaca	atg o	cacgt	tgctga	240
gca	cggao	gga (cggco	ctga	tg ga	acaa	geggg	g tgi	tcct	ggc	caco	ctgga	aaa	gacat	tccccg	300
ccca	aaaa	cga o	ggtco	cagta	ac ac	ccct	cgaca	a aco	gtcaa	acct	cact	gca	gac d	caagt	tttccc	360
agaa	agcto	gca 🤉	gaaca	aca	ac at	ttt	cacga	a tag	gccaa	agag	gaad	cgtg	gac o	ggcca	aggaca	420
tgc	tgtad	cca 🤉	gtcco	ctga	ag ct	caco	caaco	g gca	atttç	gggt	gtto	ggcg	gag (ctcaa	agatac	480
agco	ccggo	caa f	tccaa	agga	tc ad	gtt	gtcti	t tga	aagad	caag	agca	acct	gaa 🤉	gtggo	cagcag	540

-continued

gtgtacaaca aacttacgaa	ctcattctac acagctgagg	ctgctgtgaa tgaaactctt 600
ctcccacccc cttctttga	tggcagtcaa tgtctcgttt	cattttcttg ttttctttg 660
cggcgtgcta cggaacaagg	tcctacattc ccaagttata	tggtgttgtc gcgtagggggg 720
cagagtgccg ctgagcccgc	gacagccttg tttctgagga	gageegaacg caceaetteg 780
aaaaagaaaa agtgaaaacg	gaaaaatgaa aaattttcca	gttgcttcaa attaacattc 840
ctcgtagtca gtctgtggcc	gttgagtttg gtgtaaagaa	gaaaaaggtg tctcttttag 900
tgaaaatggt tgctttttat	tggtatcccc tatcacaccg	agcacgaaca taagaaatcc 960
tgacaaggat tctcctttag	ttgtattatg gtggctggag	cacacgaggc acctgttgcc 1020
aattcgaccc agcaaatgcc	caattctcaa gatttgagtt	cattgaggtt gttttgctcc 1080
tccccccca cccccaact	ttgtcgttgg attgtctaac	agtgtaaatg ggcgacgact 1140
cgttattctt tttttcttca	ttctttcttt ttgttgtcac	gcgccccggg ggacgcgaca 1200
caacttatgt gcataattga	ttttcacagg ctgcgacgca	gtctgtaaaa gaaggggaag 1260
tgaaactctg ctccgccgct	gctagtgtca tcacgggacg	accatcgcgt tttctctgac 1320
tatttaaaca aaactgcata	gcttaggggg cagtctgtgc	aaagtggaac aaccaaactg 1380
agccctgccc tttcggtgtg	tgtacaagca tctctgtgta	acatgaacta ctttacatga 1440
actacattgc atgaacggga	gaagtttagt tgttttttg	ttttttttt caggtgacta 1500
tgtcaacaga ttagaaccat	tttttggaac ggctggaaag	ataaccgctc attttgtttc 1560
tactaaaaga ctacgaaaag	tgttgacttt ttgcatcggt	ttggcaacgt ttgtttggca 1620
tgcatgtagt tgagcgtaat	ggtatcaccc ctcgtaaaca	ataacagtgc aatggagcag 1680
tactgtagtg tccattaaag	agcgagagtt tggttaaagg	ttgttaattg aggtccgtgt 1740
tatcctttga gtaggagagc	ggcacttttt gcaaatagcg	ctgctggggg cgtcatatct 1800
gccctccaaa acatgcacat	tttaagtgtg aattgttgcg	gcggcttgta caagtatgtg 1860
tgttatgtgt agaaaaagaa	ctcttaatta aaatatttgt	ggccaaaacg tcaaaaaaaa 1920
aaaaaaaaa aaaaaaaaaa	aa	1942
<210> SEQ ID NO 12 <211> LENGTH: 191 <212> TYPE: PRT <213> ORGANISM: Ixodes	s scapularis	
Vet Cla Net Than C	w The Me Wel Cin The	Ach Luc Ach Con Dhe
1 5	10	15
Gly Leu Thr Pro Ala G 20	ln Pro Leu Gln Leu Gln 25	Ile Pro Leu Gln Pro 30
Asn Phe Pro Ala Asp A 35	la Ser Leu Gln Leu Gly 40	Thr Asn Gly Pro Val 45
Gln Lys Met Asp Pro Le 50	eu Thr Asn Leu Gln Val 55	Ala Ile Lys Asn Asn 60
Val Asp Val Phe Tyr P 65 70	he Ser Cys Leu Val Pro 0 75	Met His Val Leu Ser 80
Thr Glu Asp Gly Leu Me 85	et Asp Lys Arg Val Phe	Leu Ala Thr Trp Lys 95
Asp Ile Pro Ala Gln As	90	
100	90 sn Glu Val Gln Tyr Thr 105	Leu Asp Asn Val Asn 110

-continued

Thr Ile Ala Lys Arg Asn Val Asp Gly Gln Asp Met Leu Tyr Gln Ser 130 135 140 Leu Lys Leu Thr Asn Gly Ile Trp Val Leu Ala Glu Leu Lys Ile Gln 145 150 155 160 Pro Gly Asn Pro Arg Ile Thr Leu Ser Leu Lys Thr Arg Ala Pro Glu 165 170 175 Val Ala Ala Gly Val Gln Gln Thr Tyr Glu Leu Ile Leu His Ser 180 185 190 <210> SEQ ID NO 13 <211> LENGTH: 1428 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (701)..(701) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 13 cgcgccgtgc agaagctgcg tcgggaggtt gagaaggcaa agaggaccct gtccactgct caccaggcca ggatcgagat tgaatcgttc ttcgagggag aggacttcag tgagaccctg actcgtgcta agtttgagga gctgaacatg gaccttttcc gttccaccat gaagcctgtt 180 cagaaggtac tcgaggatgg tgacctcaag aagactgatg tggacgagat tgtgcttgtc 240 ggaggttcca ccaggatccc caaggttcaa cagctggtca aggagttctt caatggcaag 300 gaacccaccc gtggcatcaa ccccgacgaa gcagtcgcct acggtgccgc cgtgcaggct 360 420 ggagtcctcg gcggagagga agacactggg gacctcgtgc tgttggacgt gaaccctctg accctcggca tcgagacagt gggaggcgtc atgacgaaac tgatcccccg taacacagtc 480 atccccacga agaagtctca gatcttctcc acggcctcgg acgagcagag cactgtcacc 540 600 atccaggtct ttgagggggga gcgtcccctg acaaaggaca accaccagct gggcaagttc gacctgactg gcatcccacc tgctcctcga ggtgtgcccc aaatcgaggt gaccttcgag 660 attgacgtca acggtatcct gcgggtcagt gcagaggaca ngggtacagg caacaagcag 720 780 aagatcacca tcaacaatga ccagaacagg ctgacgcctg aggacatcga gaggatggta 840 aaggacgccg aaaagtttgc cgacgaggac aagaaggtca aggagaaggt ggaggcccgc aacgaactgg agtcttatgc ctactccctc aagaaccaga ttggagacaa ggagaagatg 900 ggaggcaagc tctccgacga ggacaagaag actattgagc aagctgtgga cgagaaaatc 960 aaatggctgg agcagcacag tgacgctgat gcggaagaac tcaaggaaca gaagaaacag 1020 ctggctgata ctgtgcagcc gattgtagcc aagctgtacc ctgcaggagg caccccaccg 1080 ccgacggaca aagatgactc tacaaaggac gagttgtaaa aacaaggcca gatctcttgg 1140 gtacagcgaa aggcatgggg cagcagcatt atcacaagtc atctgttacg atcatgagct 1200 catcatttca ccacctctac agtgctgctg ctgcctgcct tttggctggt tgagtgttct 1260 tggacctatt taccatgatc attctctgta caaaaacaat tctttctgtg tttttttt 1320 1380 tttcgttgta gtaacttaag ttatacagat gtcttctact gggtgggctt tctccatgag tgggaggggg ctgggtgtca aataaaagtg tttctattaa aaaaaaaa 1428

<210> SEQ ID NO 14 <211> LENGTH: 372 <212> TYPE: PRT <213> ORGANISM: Ixodes scapularis <220> FEATURE:

60

35

-continued

<22: <22: <22:	L> NZ 2> LC 3> OT	AME/H DCATI THER	CEY: CON: INFO	miso (234 ORMA:	c_fea 4) CION:	ture (234) Xaa	a car	ı be	any	natı	ırall	L y oc	curr	ing	amino	acid
<400)> SH	IGUE	ICE :	14												
Arg 1	Ala	Val	Gln	Lys 5	Leu	Arg	Arg	Glu	Val 10	Glu	Lys	Ala	Lys	Arg 15	Thr	
Leu	Ser	Thr	Ala 20	His	Gln	Ala	Arg	Ile 25	Glu	Ile	Glu	Ser	Phe 30	Phe	Glu	
Gly	Glu	Asp 35	Phe	Ser	Glu	Thr	Leu 40	Thr	Arg	Ala	Lys	Phe 45	Glu	Glu	Leu	
Asn	Met 50	Asp	Leu	Phe	Arg	Ser 55	Thr	Met	Lys	Pro	Val 60	Gln	Lys	Val	Leu	
Glu 65	Asp	Gly	Asp	Leu	L y s 70	Lys	Thr	Asp	Val	Asp 75	Glu	Ile	Val	Leu	Val 80	
Gly	Gly	Ser	Thr	Arg 85	Ile	Pro	Lys	Val	Gln 90	Gln	Leu	Val	Lys	Glu 95	Phe	
Phe	Asn	Gly	Lys 100	Glu	Pro	Thr	Arg	Gly 105	Ile	Asn	Pro	Asp	Glu 110	Ala	Val	
Ala	Tyr	Gly 115	Ala	Ala	Val	Gln	Ala 120	Gly	Val	Leu	Gly	Gly 125	Glu	Glu	Asp	
Thr	Gly 130	Asp	Leu	Val	Leu	Leu 135	Asp	Val	Asn	Pro	Leu 140	Thr	Leu	Gly	Ile	
Glu 145	Thr	Val	Gly	Gly	Val 150	Met	Thr	Lys	Leu	Ile 155	Pro	Arg	Asn	Thr	Val 160	
Ile	Pro	Thr	Lys	L y s 165	Ser	Gln	Ile	Phe	Ser 170	Thr	Ala	Ser	Asp	Glu 175	Gln	
Ser	Thr	Val	Thr 180	Ile	Gln	Val	Phe	Glu 185	Gly	Glu	Arg	Pro	Leu 190	Thr	Lys	
Asp	Asn	His 195	Gln	Leu	Gly	Lys	Phe 200	Asp	Leu	Thr	Gly	Ile 205	Pro	Pro	Ala	
Pro	Arg 210	Gly	Val	Pro	Gln	Ile 215	Glu	Val	Thr	Phe	Glu 220	Ile	Asp	Val	Asn	
Gl y 225	Ile	Leu	Arg	Val	Ser 230	Ala	Glu	Asp	Xaa	Gly 235	Thr	Gly	Asn	Lys	Gln 240	
Lys	Ile	Thr	Ile	Asn 245	Asn	Asp	Gln	Asn	Arg 250	Leu	Thr	Pro	Glu	Asp 255	Ile	
Glu	Arg	Met	Val 260	Lys	Asp	Ala	Glu	L y s 265	Phe	Ala	Asp	Glu	Asp 270	Lys	Lys	
Val	Lys	Glu 275	Lys	Val	Glu	Ala	Arg 280	Asn	Glu	Leu	Glu	Ser 285	Tyr	Ala	Tyr	
Ser	Leu 290	Lys	Asn	Gln	Ile	Gly 295	Asp	Lys	Glu	Lys	Met 300	Gly	Gly	Lys	Leu	
Ser 305	Asp	Glu	Asp	Lys	Lys 310	Thr	Ile	Glu	Gln	Ala 315	Val	Asp	Glu	Lys	Ile 320	
Lys	Trp	Leu	Glu	Gln 325	His	Ser	Asp	Ala	Asp 330	Ala	Glu	Glu	Leu	Lys 335	Glu	
Gln	Lys	Lys	Gln 340	Leu	Ala	Asp	Thr	Val 345	Gln	Pro	Ile	Val	Ala 350	Lys	Leu	
Tyr	Pro	Ala 355	Gly	Gly	Thr	Pro	Pro 360	Pro	Thr	Asp	Lys	Asp 365	Asp	Ser	Thr	
Lys	Asp 370	Glu	Leu													

-continued

<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU	ID NO 15 IH: 1847 : DNA NISM: Ixodes JRE:	scapularis	5			
<2221> NAME/ <222> LOCAT <223> OTHER	REY: MISC_I TION: (1814) R INFORMATIC	eature (1814) DN: n is a,	c, g, or t			
<400> SEQUE	ENCE: 15					
cgacgtgttt	gtgagtgcag	cggtgaactg	gacggtgtcg	tggccacgcg	atggcagcgg	60
cggtgatgaa	ctgcctacgg	actgcgcttt	taggcgctct	cgtcgtccaa	ctctacgcca	120
cgcagatagg	tcaccggaaa	ttcgagtaca	agtacagttt	caagggaccc	tacctggcgc	180
agaaggatgg	atcggtgcct	ttctgggagt	acggcggcaa	ttgcatcgcc	agtgaggaga	240
tggttcggat	cacgccctcc	ctgaagagca	agaaaggatc	catctggtcc	aagctgccga	300
catcgttccc	ttggtgggag	gtggagctgg	tgttccgcac	cacgggtacg	ggcaggatag	360
gagctgacgg	cctggccttc	tggtacacag	acaagaagca	ggcggagggt	cctgtctttg	420
gaagcagcga	caagtggact	ggcctggcca	tcttcttcga	ttccttcgac	aatgataaca	480
agcacaacaa	cccatacatc	atgggcatgg	tgaacgatgg	aacaaaagcc	tacgatcatg	540
agagtgacgg	tgccaaccaa	cagctagcgg	gatgccagcg	ggacttccgc	aacaagcctt	600
accctgtcag	ggccaagata	gaatacttca	acaacattct	cacggtgctg	ttccacaacg	660
gcaacaccaa	caacgacggt	gactacgaga	tgtgcttccg	tgcggagaac	gtgttcctgc	720
cgaccaacgg	ccactttggg	gtgtccgccg	ccacgggggg	cctggcagac	gaccacgacg	780
ccctcaagtt	cctgacgacg	agcctgcatg	cggagggcac	gcagccggcc	ctggcccagg	840
gtatggccga	ctcagagaag	gagaagttct	ccaaggagta	tgaagtatac	aaggacaagc	900
tggaaaagca	gaaggaggag	taccggaaga	cgcacccgga	ggaggccgct	aagcaggcca	960
tggagcacgg	ccccgagcag	gcctacgaca	cgcagcagca	gcgcgagctg	cgccagatct	1020
tcgagggcca	gagccacaaa	ttgtttgagg	ggctcaaggc	actgcaccgc	aagctggacg	1080
aggtgctcgg	gcgccaggag	cgcaccctgt	cgctggtgtc	ggctggcggc	gccggcgtgg	1140
ccgtgggcgg	tgttccgcca	ccgcagatgg	gtggagtgcc	gtcgctgcag	aggcacgaag	1200
cagagtccct	gctgagcagc	cagcgggagc	tgctgcagac	ggtggctcag	gtcaagagct	1260
ttgtggccga	ggtgcatcaa	cgcacggcca	ccctgcaaca	ccaggggggcg	ggaggcaccc	1320
agggcctcac	ggccgagcag	ctgcaagtgc	tccaccaggt	gcgggacagc	gtggccagca	1380
tgcaccggga	cgtctccaac	aaccagccgc	agaggactgg	ctgcgcgaca	tcctgtctca	1440
gcactaccca	cttcttgctg	tttgcaacgt	tgcagttggc	tgtcacgctg	ggctacttgg	1500
tgtacaggag	cagcaaagag	gcggcggcca	agaagttcta	ctgagtgcag	atctcgagcc	1560
ttgccttgcc	ctccctccc	atggagtgga	ccttaacccc	acagactgcc	agaaaccagt	1620
gttgccagag	gagcccccct	cccttcttat	tgggtggggt	gccacagcca	tcacccattc	1680
ttcgagacaa	ggccactgtt	tggggggagg	ggcaagagat	tcatccgggg	tgcgcaacaa	1740
aacatggccg	tacagaggga	ggggtgctcc	agaactgggt	cccagccaca	tcgttgcgtg	1800
ggagcgcctt	tctncctcac	tctaaaaaaa	aaaaaaaaa	aaaaaa		1847

<210> SEQ ID NO 16 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Ixodes scapularis

-continued

<400> SEQUENCE: 16 Met Ala Ala Ala Val Met Asn Cys Leu Arg Thr Ala Leu Leu Gly Ala 1 5 10 15 Leu Val Val Gln Leu Tyr Ala Thr Gln Ile Gly His Arg Lys Phe Glu 20 25 30 Tyr Lys Tyr Ser Phe Lys Gly Pro Tyr Leu Ala Gln Lys Asp Gly Ser 35 40 45 Val Pro Phe Trp Glu Tyr Gly Gly Asn Cys Ile Ala Ser Glu Glu Met 50 55 60 Val Arg Ile Thr Pro Ser Leu Lys Ser Lys Lys Gly Ser Ile Trp Ser 65 70 75 80 Lys Leu Pro Thr Ser Phe Pro Trp Trp Glu Val Glu Leu Val Phe Arg 85 90 Thr Thr Gly Thr Gly Arg Ile Gly Ala Asp Gly Leu Ala Phe Trp Tyr 100 105 110 Thr Asp Lys Lys Gln Ala Glu Gly Pro Val Phe Gly Ser Ser Asp Lys 115 120 125 120 Trp Thr Gly Leu Ala Ile Phe Phe Asp Ser Phe Asp Asn Asp Asn Lys 135 His Asn Asn Pro Tyr Ile Met Gly Met Val Asn Asp Gly Thr Lys Ala 150 145 155 Tyr Asp His Glu Ser Asp Gly Ala Asn Gln Gln Leu Ala Gly Cys Gln 165 170 175 Arg Asp Phe Arg Asn Lys Pro Tyr Pro Val Arg Ala Lys Ile Glu Tyr 180 185 190 Phe Asn Asn Ile Leu Thr Val Leu Phe His Asn Gly Asn Thr Asn Asn 195 200 205 Asp Gly Asp Tyr Glu Met Cys Phe Arg Ala Glu Asn Val Phe Leu Pro 210 215 220 Thr Asn Gly His Phe Gly Val Ser Ala Ala Thr Gly Gly Leu Ala Asp225230235240 Asp His Asp Ala Leu Lys Phe Leu Thr Thr Ser Leu His Ala Glu Gly 245 250 255 Thr Gln Pro Ala Leu Ala Gln Gly Met Ala Asp Ser Glu Lys Glu Lys 260 265 270 Phe Ser Lys Glu Tyr Glu Val Tyr Lys Asp Lys Leu Glu Lys Gln Lys 285 275 280 Glu Glu Tyr Arg Lys Thr His Pro Glu Glu Ala Ala Lys Gln Ala Met 290 295 300 Glu His Gly Pro Glu Gln Ala Tyr Asp Thr Gln Gln Gln Arg Glu Leu 310 305 315 Arg Gln Ile Phe Glu Gly Gln Ser His Lys Leu Phe Glu Gly Leu Lys 325 330 335 Ala Leu His Arg Lys Leu Asp Glu Val Leu Gly Arg Gln Glu Arg Thr 340 345 350 Leu Ser Leu Val Ser Ala Gly Gly Ala Gly Val Ala Val Gly Gly Val 355 360 365 Pro Pro Pro Gln Met Gly Gly Val Pro Ser Leu Gln Arg His Glu Ala 375 370 380 Glu Ser Leu Leu Ser Ser Gln Arg Glu Leu Leu Gln Thr Val Ala Gln385390395400 Val Lys Ser Phe Val Ala Glu Val His Gln Arg Thr Ala Thr Leu Gln 405 410 415

-continued

His Gln Gly Ala Gly Gly Thr Gln Gly Leu Thr Ala Glu Gln Leu Gln 420 425 430 Val Leu His Gln Val Arg Asp Ser Val Ala Ser Met His Arg Asp Val 445 435 440 Ser Asn Asn Gln Pro Gln Arg Thr Gly Cys Ala Thr Ser Cys Leu Ser 450 455 460 Thr Thr His Phe Leu Leu Phe Ala Thr Leu Gln Leu Ala Val Thr Leu 465 470 475 480 Gly Tyr Leu Val Tyr Arg Ser Ser Lys Glu Ala Ala Ala Lys Lys Phe 485 490 495 Tyr <210> SEQ ID NO 17 <211> LENGTH: 2475 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1342)..(1342) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1388)..(1388) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 17 catcactagt agcgagacac gtgcgtaaaa atggggccca aaacgctgtc taagcagccc 60 gctaaagctt cttcatccac ttccaagcgc accgccggcc ccacaataag caagcagacg 120 gaggacageg atgacgaagg gtcaagcage gectaeteeg aettggagga eteegaagga 180 gccgacagca gcgactcgaa cgatttgtcg gacacggagg cgtcggagga tgactacgat 240 300 qactcccaaq acqaaqaaaa cacqaaqatt actttqactq qqqtqqaqqq qaaqqacctt qaqttqaqqq qqaaqqacca qqaqqcaccq qtqqaqtctq qcaaaaqqtc qqcatqqcac 360 420 cggcagcaag aggacgccaa ggaggacaga cgaacgcaag tggtggaaga tgaatatgcc tttgactctt ccgacgaaga ggacgttcgc aacacggttg gcaacattcc tctggagtgg 480 540 tacgagcact atccgcacat cggttatgat ctggaaggca agccaatcct gaagccgcct 600 cgggttagtg acctggacga cttcctgagg aaaatggatg accccaacta ttggaggacg gtgaaggaca agagcacggg acaggacgtt gtcctgaccg acgaagatgt ggacctgatt 660 cagaggctgc agaaaggaca gttccccagc tcgacgactg acccttacga gccatttgag 720 gacatetttt egeaegagae eatgateeae eeggtgaeea ggeaecetee eeagaaaege 780 agcttcgtgc cttcaaggat agaaaaagca atggtgtcaa agatggtgca cgcaatcaag 840 atgggctgga tcaagccccg agtaaagaag catgacccag aaagattcag cctcctgtgg 900 gacaaggatg actcgacagc gggcagcaat gagcgaatgc agcgccacat cccggcaccc 960 aagatgaagc tgccgggtca tgaggagtct tacaacccgc cggccgaata cctcttcacc 1020 1080 gaggaagagg aggccaagtg gagagagcag gagcccgaag aacggcgcat aaacttcctg cccgccaagt acccatgtct gcgcgcagtc ccagcctacg aacgcttcat tgaggagagg 1140 tttgagcgct gtctggatct ctacttgtgc ccgaggcagc ggaagatgag ggtgaatgtg 1200 gatgcagagg acctgattcc tcagctgccc aaacccaagg acctgcagcc tttcccaagc 1260 attcagtcta ttgtctatga gggtcatacg gactgtgtcc tctgcctgtc tttggagcct 1320 1380 gcggggacagt totttgcatc anggtccgag gacggcaccg ttcgcatttg ggagctcttg

-continued

acgo	ggcar	ngt g	lacto	caaga	aa gt	tcca	agtto	gaq	ldcdo	ccg	tgaa	agago	gt g	ggcct	ggtgt	1440
ccaç	gttgt	cg t	tccc	catga	a ac	tcto	gagto	g gao	aaga	actg	ttto	cato	get o	ggato	jccgga	1500
gtta	acgga	aca a	acto	gatga	c gt	tcad	caco	l dda	acaco	gag	ttgt	ctgo	ccc 1	taaaa	cgaaga	1560
gtco	ctcgg	ldc o	aggo	adaa	gg ta	agtgo	gagto	a da	agcag	Jacg	tcgo	gaato	cct o	ctcca	agagtt	1620
ccto	eteed	ad d	lddde	agcgt	c tạ	lcddd	gtogt	tca	accgo	cac	ggto	gtggt	ega a	aggto	gacgtg	1680
gcad	ctcga	add d	gaga	actac	t tt	gcca	actgt	cac	ggad	gag	ggad	aggo	cca d	ccgto	gcttgt	1740
ccat	cagt	tg t	ccad	acdo	lc dö	gttco	gcago	g cto	ccct	tca	gcaa	aggeo	jaa g	adaco	ladafa	1800
tcco	cgggt	:gc t	gtto	ccaco	c go	ctgag	Jacad	tto	ctgo	tgg	tggo	gtgo	cca g	gegea	acagtg	1860
cggg	gtcta	acc a	accto	gctca	a go	cagga	ageto	l dco	caaga	ıggc	tcad	catco	caa 1	ttgca	agtgg	1920
atci	cgto	gca t	adda	ccgto	c ac	cccc	caggt	: gao	aato	tgc	tgat	cggo	cac g	gtaco	yagaag	1980
cggo	ctgat	gt g	gtto	gato	st go	gacct	ctc	g acc	caaad	cgt	acca	agcag	get g	gegea	atacac	2040
aato	lccdo	cca t	ccgo	agto	ıt go	gagtt	ccat	c c c c	gagat	atc	cact	gttt	-gc g	gtccc	lccddc	2100
gaco	gate	jca <u>c</u>	gcgt	gates	gt tt	cgca	acggt	: ato	ggtgt	aca	atga	attta	act g	gcaaa	accca	2160
ctga	atcgt	gc d	acto	gagac	a do	ctgaa	agaac	cat	gcca	itca	gcaa	agggt	at o	gggtg	ytgttg	2220
gact	gago	cct t	ccat	cacad	a co	cageo	gtgg	g ata	igtca	cgg	ccgo	gagca	aga d	cagca	acgctg	2280
cggo	ctctt	ca d	ctaa	adaad	ld de	acgto	gtct	: ggt	gtad	ata	gtga	atco	gtc a	aagac	ccgtgc	2340
caat	aaaa	add a	actco	cacac	c ta	aaaa	aaaa	aaa	aaaa	aaa	aaaa	aaaa	aaa a	aaaaa	aaaaa	2400
aaaa	aaaa	aaa a	aaaa	aaaa	a aa	aaaa	aaaa	a aaa	aaaa	aaa	aaaa	aaaa	aaa a	aaaaa	aaaaa	2460
aaaa	aaaa	aaa a	aaaa	1												2475
<210 <211 <212 <221 <220 <221 <222 <222)> SE L L TY 3> OF 1> FE 1> LC 2> LC 3> OT 1> FE 1> NA 2> LC 3> OT 	Q ID NGTH PE: GANI ATUF ME/K CATI HER ME/K CATI HER	NO FRT SM: EY: ON: INFC EY: ON: EY: ON: INFC INFC	18 54 Ixod (438 RMAT misc (453 RMAT	les s _fea 1)(10N: _fea 1)(10N:	ture 438) Xaa ture 453) Xaa	llari can can	be be	any	natu	ırall	.у ос .у ос	curr	ring	amino amino	acid
<400)> SE	QUEN	ICE :	18												
Met 1	Gly	Pro	Lys	Thr 5	Leu	Ser	Lys	Gln	Pro 10	Ala	Lys	Ala	Ser	Ser 15	Ser	
Thr	Ser	Lys	Arg 20	Thr	Ala	Gly	Pro	Thr 25	Ile	Ser	Lys	Gln	Thr 30	Glu	Asp	
Ser	Asp	Asp 35	Glu	Gly	Ser	Ser	Ser 40	Ala	Tyr	Ser	Asp	Leu 45	Glu	Asp	Ser	
Glu	Gly 50	Ala	Asp	Ser	Ser	Asp 55	Ser	Asn	Asp	Leu	Ser 60	Asp	Thr	Glu	Ala	
Ser 65	Glu	Asp	Asp	Tyr	Asp 70	Asp	Ser	Gln	Asp	Glu 75	Glu	Asn	Thr	Lys	Ile 80	
Thr	Leu	Thr	Gly	Val 85	Glu	Gly	Lys	Asp	Leu 90	Glu	Leu	Arg	Gly	Lys 95	Asp	
Gln	Glu	Ala	Pro 100	Val	Glu	Ser	Gly	L y s 105	Arg	Ser	Ala	Trp	His 110	Arg	Gln	
Gln	Glu	Asp	Ala	Lys	Glu	Asp	Arg	Arg	Thr	Gln	Val	Val	Glu	Asp	Glu	

-continued

Tyr	Ala 130	Phe	Asp	Ser	Ser	Asp 135	Glu	Glu	Asp	Val	Arg 140	Asn	Thr	Val	Gly
Asn 145	Ile	Pro	Leu	Glu	T rp 150	Tyr	Glu	His	Tyr	Pro 155	His	Ile	Gly	Tyr	Asp 160
Leu	Glu	Gly	Lys	Pro 165	Ile	Leu	Lys	Pro	Pro 170	Arg	Val	Ser	Asp	Leu 175	Asp
Asp	Phe	Leu	Arg 180	Lys	Met	Asp	Asp	Pro 185	Asn	Tyr	Trp	Arg	Thr 190	Val	Lys
Asp	Lys	Ser 195	Thr	Gly	Gln	Asp	Val 200	Val	Leu	Thr	Asp	Glu 205	Asp	Val	Asp
Leu	Ile 210	Gln	Arg	Leu	Gln	L y s 215	Gly	Gln	Phe	Pro	Ser 220	Ser	Thr	Thr	Asp
Pro 225	Tyr	Glu	Pro	Phe	Glu 230	Asp	Ile	Phe	Ser	His 235	Glu	Thr	Met	Ile	His 240
Pro	Val	Thr	Arg	His 245	Pro	Pro	Gln	Lys	Arg 250	Ser	Phe	Val	Pro	Ser 255	Arg
Ile	Glu	Lys	Ala 260	Met	Val	Ser	Lys	Met 265	Val	His	Ala	Ile	Lys 270	Met	Gly
Trp	Ile	L ys 275	Pro	Arg	Val	Lys	L y s 280	His	Asp	Pro	Glu	Arg 285	Phe	Ser	Leu
Leu	Trp 290	Asp	Lys	Asp	Asp	Ser 295	Thr	Ala	Gly	Ser	Asn 300	Glu	Arg	Met	Gln
Arg 305	His	Ile	Pro	Ala	Pro 310	Lys	Met	Lys	Leu	Pro 315	Gly	His	Glu	Glu	Ser 320
Tyr	Asn	Pro	Pro	Ala 325	Glu	Tyr	Leu	Phe	Thr 330	Glu	Glu	Glu	Glu	Ala 335	Lys
Trp	Arg	Glu	Gln 340	Glu	Pro	Glu	Glu	Arg 345	Arg	Ile	Asn	Phe	Leu 350	Pro	Ala
Lys	Tyr	Pro 355	Cys	Leu	Arg	Ala	Val 360	Pro	Ala	Tyr	Glu	Arg 365	Phe	Ile	Glu
Glu	Arg 370	Phe	Glu	Arg	Cys	Leu 375	Asp	Leu	Tyr	Leu	Cys 380	Pro	Arg	Gln	Arg
L y s 385	Met	Arg	Val	Asn	Val 390	Asp	Ala	Glu	Asp	Leu 395	Ile	Pro	Gln	Leu	Pro 400
Lys	Pro	Lys	Asp	Leu 405	Gln	Pro	Phe	Pro	Ser 410	Ile	Gln	Ser	Ile	Val 415	Tyr
Glu	Gly	His	Thr 420	Asp	Суз	Val	Leu	Сув 425	Leu	Ser	Leu	Glu	Pro 430	Ala	Gly
Gln	Phe	Phe 435	Ala	Ser	Xaa	Ser	Glu 440	Asp	Gly	Thr	Val	Arg 445	Ile	Trp	Glu
Leu	Leu 450	Thr	Gly	Xaa	Cys	Leu 455	Lys	Lys	Phe	Gln	Phe 460	Glu	Ala	Pro	Val
L y s 465	Ser	Val	Ala	Trp	Cys 470	Pro	Val	Val	Val	Pro 475	Met	Lys	Leu	Cys	Val 480
Asp	Lys	Thr	Val	Ser 485	Met	Leu	Asp	Ala	Gly 490	Val	Thr	Asp	Lys	Leu 495	Leu
Pro	Phe	Thr	Thr 500	Gly	His	Arg	Val	Val 505	Cys	Pro	Pro	Arg	Arg 510	Val	Leu
Gly	Pro	Gly 515	Gly	Gly	Ser	Gly	Val 520	Gly	Ala	Asp	Val	Gl y 525	Leu	Leu	Ser
Arg	Val 530	Pro	Leu	Pro	Gly	Gl y 535	Ala	Ser	Ala	Gly	Arg 540	Ser	Pro	Pro	Arg
Cvs	Glv	Ala	Glv	Asp	Val	Ala	Leu	Glu	Glv	Ara	Leu	Leu	Cvs	His	Cvs

-continued

545 550 555 5	60
His Gly Arg Gly Thr Gly His Arg Ala Cys Pro Ser Val Val His A 565 570 575	ala
Ala Val Arg Arg Leu Pro Phe Ser Lys Ala Lys Gly Gly Val Ser A580585590	nrg
Val Leu Phe His Pro Leu Arg Pro Phe Leu Leu Val Ala Cys Gln A 595 600 605	arg
Thr Val Arg Val Tyr His Leu Leu Lys Gln Glu Leu Ala Lys Arg L610615620	eu
Thr Ser Asn Cys Lys Trp Ile Ser Cys Met Gly Arg Pro Pro Pro G625630635635	51y 40
Asp Asn Leu Leu Ile Gly Thr Tyr Glu Lys Arg Leu Met Trp Phe A 645 650 655	ap
Leu Asp Leu Ser Thr Lys Pro Tyr Gln Gln Leu Arg Ile His Asn A 660 665 670	la
Ala Ile Arg Ser Val Ala Phe His Pro Arg Tyr Pro Leu Phe Ala S675680685	er
Ala Gly Asp Asp Arg Ser Val Ile Val Ser His Gly Met Val Tyr A690695700	Asn
Asp Leu Leu Gln Asn Pro Leu Ile Val Pro Leu Arg Arg Leu Lys A7057107157	asn 20
His Ala Ile Ser Lys Gly Met Gly Val Leu Asp Cys Ala Phe His P 725 730 735	Pro
His Gln Pro Trp Ile Val Thr Ala Gly Ala Asp Ser Thr Leu Arg L 740 745 750	eu
Phe Thr	
<210> SEQ ID NO 19 <211> LENGTH: 447 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis	
<400> SEQUENCE: 19	
caaagatgct gctgttctgc ccgacgtgcg ccaacatcct cattgtggaa caaggo	ttgg 60
agtgetteeg tttegeetge aacacatgee estacgtgea caacateaag gegaag	atgt 120
cgaatcggaa gtacccgcgg ctcaaggacg tggacgacgt gctcggcggt gcagcc	gcct 180
gggagaatgt tgactcgacc gaagagaagt gccccaagtg tggccatgag cgggcc	tatt 240
ttatgcagat ccagactagg tcggccgacg agcccatgac caccttctac aagtgc	tgca 300
accagetetg tggecaccag tggagggaet gaeagatgge ggetttgaeg aaetea	itgcc 360
cgtgcaaaat gcgtcggggg gagagagttt tggaataaaa catgcgcctt actttc	ataa 420
aaaaaaaaa aaaaaaaaa aaaaaaa	447
<210> SEQ ID NO 20 <211> LENGTH: 108 <212> TYPE: PRT <213> ORGANISM: Ixodes scapularis	
<400> SEQUENCE: 20	
Met Leu Leu Phe Cys Pro Thr Cys Ala Asn Ile Leu Ile Val Glu G 1 5 10 15	ln
Gly Leu Glu Cys Phe Arg Phe Ala Cys Asn Thr Cys Pro Tyr Val H 20 25 30	lis
Asn Ile Lys Ala Lys Met Ser Asn Arg Lys Tyr Pro Arg Leu Lys A	asp

-continued

35 40 45 Val Asp Asp Val Leu Gly Gly Ala Ala Ala Trp Glu Asn Val Asp Ser 50 55 60 Thr Glu Glu Lys Cys Pro Lys Cys Gly His Glu Arg Ala Tyr Phe Met 65 70 75 80 Gln Ile Gln Thr Arg Ser Ala Asp Glu Pro Met Thr Thr Phe Tyr Lys 85 90 95 Cys Cys Asn Gln Leu Cys Gly His Gln Trp Arg Asp 100 105 <210> SEQ ID NO 21 <211> LENGTH: 1567 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (785)..(785) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 21 ccccccaggc gcagggcttc gttcaggtcg accagggggc cctccccgca agccccgagg 120 agegecaect ggeaageatg caggteaatg gatatgagaa ecceaectae aagtaetteg 180 gtattgtgcc tgctgcgggc tgcgggatta gctcgtcccg cgttgttccg ggagccagtt 240 300 ggtttgcctc gcgtcttagg agtaggcacg gcctcccttc tgcacccggt caaggaccat ggttgttggg gacacgagcg gcgtggggcg cagccagcct gagctttggg tcccggtacc 360 420 acggcaaacc gtttgttccc acccgcggaa tgaaaatttt gtttgcctca gtttctttcg 480 aategagegt eggegeegee teegaeagee eegagtgeae tetgtetgtt gegaaagaee 540 aatqqaqtaq ttqacactcq qqtcqcaqct cqaacaaqct cccqtaaaac qctacttaac cqqqqccqqc qaccqaqcqt aqaqcttqct qtqcqtaqtt qtqqataaaa cttttttt 600 ttgtgtgtgt gcttggtcac agacaatggg cagcttccga cgttagccac gcgccacacg 660 ctcgcctttg ttttcttctt ctcgcggttg tcatacttag tttccattgg cgggttaaca 720 780 ttccagtccg ggcgggcgcc cccgttcagg cgcgtcctga tcaaaattga gcatttggtt 840 gtgcngtgca tttattggcc gcagcagggg gttcccgggt gcacctggtg tcgtgacacg catgtcgtga ctttcccctc agacggttgt ccttgctcat ggctcgttca cacctctagt 900 gctggtagtc tctgttgctt aggtttgtag gagcacacta cagcagaggg tgtcacaaag 960 ttttctaagc tgtatataca tgaggaaaac attgcgttgc acacacgcga gtttcggcct 1020 gtttttagtt gggacagtga acgttttttg tacaggttat tatgtagtgc ctacatttgt 1080 atgtgccagc tgcatgtgtt ttcctgcatg tggggaagcc tccgtgctgc cccgagctgt 1140 1200 gtgcggcccc tcctgagttt ccatgtgcca tgtgcccagc ctagggtgaa ctgggggtgc agatgccctt gcgcacggtg tgccccggcg agcattgtgt gtccgtaggc catcgacgct 1260 1320 attcatgcga aattaatgtg gtcacagctg tcattgtctc agtgaacata tcatatgtcc aaatttgtct cccctgtcag tgtgtgcttc tcttggttct acacttgcct gcatttttgt 1380 tagtttgccg gactgtcctt ttcggtccca ggtcgacagc aggctataac aacaattccg 1440 gtattttcca gtatcgggtc acaccaggtg taacctattg tgcatgtagt gtaacttgag 1500 1560 1567 aaaaaaa

50

<210> SEQ ID NO 22 <211> LENGTH: 44 <212> TYPE: PRT <213> ORGANISM: Ixodes scapularis <400> SEQUENCE: 22 Pro Gln Ala Gln Gly Phe Val Gln Val Asp Gln Gly Ala Leu Pro Ala 1 10 15 Ser Pro Glu Glu Arg His Leu Ala Ser Met Gln Val Asn Gly Tyr Glu 20 25 30 Asn Pro Thr Tyr Lys Tyr Phe Glu Ala Asn Thr Asn 35 40 <210> SEQ ID NO 23 <211> LENGTH: 704 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (534)..(534) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (598)..(598) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 23 tgagaagaca ctagaggaca agttcttcga gcatgaggtg atgctgaatg tgaatgcgtt catgcagcag ttccattccg gcgtttttta tgcctacgtg aagctgaagg aacaagagtg ccgcaacatt gtctggattg ccgaatgcgt tgctcagcgt catcggtcca agatcgataa ctacattcca atcttctagt cgctcgagga aaagaaatgg gccaattcgg tagtttgtcg gtgtaatata tatatatata tatatctact tcgcaaaatt cttcagctag agtgtctatg tctggttagc tgcgattgtg cgagagggga aaaaaatgta gtcagtggca tgatcaagga aggaaaaaaa ttggccaata acttttacct tttgaagtta aagcaagggt taaaataatg tctattttta cttcgcttta ccgtgtgctg gctattgctt tgcaaacgtt ttttaaaatt tttgcagttc gtctttcttc ttttgagcac atatttattc cagagttcca atancctttt atgtgtgaat gaatgactaa tccatgttgg ggttggttaa tggtgcattg ttgaaaanat <210> SEQ ID NO 24 <211> LENGTH: 681 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (432)..(432) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (467)..(467) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (472)..(472) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (481)..(481) <223> OTHER INFORMATION: n is a, c, g, or t

60

120

180

240

300

360

420

480

540

600

660

-continued

<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (493)..(493) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (495)..(495) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (499)..(499) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (507)..(507) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (515)..(515) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (518)..(518) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (528)..(528) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (533)..(533) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (547)..(547) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (550)..(550) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (559)..(559) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (565)..(565) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (567)..(567) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (571)..(571) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (586)..(586) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (593)..(593) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (599)..(599) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (603)..(603) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (606)..(606) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (611)..(611)

-continued

<223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (619)..(619) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (623)..(623) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (625)..(625) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (627)..(627) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (651)..(651) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (658)..(658) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (666)..(666) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (673)..(674) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 24 gtcacgggat ttgggaagct gtcgtctgtc gtcctgcagt ttcaaacggt ttcaccaaaa 60 acctttccgt ctcgctgtca gacgccttga accatgactg agttctggct catctcggct 120 ccgggcgaga aaacctgcca acagacttat gacaagctgc tcagcgtcac aagcaacaag 180 caqaacaacc tctcqacctq ctacaaqttc caccttccqq acttqaaqqt qqqtacqctq 240 gatcagttqg ttggcctctc ggatgacttg ggaaagctcg acacctatgt cgaaagcatc 300 actogaaaag tggccagota totggggggac gtgottgaog accagaggga caaactagoo 360 gacaacette ettgecaatg gettgggget ggaggeetae etgaceeegg tttteagtgg 420 gacatggcca antaccccat caagcagttc gcctcaagag catcacntga antcatcagc 480 nagcaagtgt ctnanattng accggtngaa cctcnagnag caagttanct tgnttacaac 540 aaccttnaan aacttaagnt tcaantncat ncgaacccca aatccnccgg ggnaggccng 600 genttnttee ngttageent ggnentnace ttattgegee aagggageea ntttgtentt 660 gggggntcgg ganntacctt a 681 <210> SEQ ID NO 25 <211> LENGTH: 720 <212> TYPE: DNA <213> ORGANISM: Ixodes scapularis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (488)..(488) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (625)..(625) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (627)..(627) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature

-continued

<222> LOCATION: (631)(631) <223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (641)(641)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (680)(680)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (692)(692)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_reature	
$\langle 222\rangle$ LOCATION: (700) (700)	
<223> OTHER INFORMATION: ILLS a, C, G, OF t	
<220> FLATURE:	
~ 222 NAME/REI. MISC_reactive ~ 222 LOCATION (719) (719)	
<223> OTHER INFORMATION: n is a c. g. or t	
<400> SEQUENCE: 25	
ctctcagcga ctccgacgtc caaaagcaga tcaagcacat gatggctttc atcgaccagg	60
aagccaacga aaaggcagaa gaagtagacg ccaaggcagg aagaagagtt caacatcgag	120
aagggccgcc tggtcacgga gcaaaggctc aagatcatcg actactacac ccgtcgagag	180
aagcaagttg aactgcagcg caagatccaa agctccaaca tgctgaacca ggcccggctg	240
aaggtgctga aggcggggcga ggaccacatt gcgacggtgc tggaggaggc caagcgccgc	300
ctgggggaca tcaccaggga ccaggctcgc taccaagccc tcctgcagag catggttctg	360
caggcactgc ttcagctcct cgagcaggag gtggtcgtcc actgccgacc gcaagacgcc	420
gggctgctga acttggacac gctgagtgcc aagttcaagg aggccactgg ccgagaggtc	480
aageteantg tggageeeag eetggetteg ageagetgeg geggagtega gatgetetee	540
aggeggggea agattegegt etgeaacaeg etegagtege ggetggaeat gattgeeett	600
cagetttetg cegeagatea agaengneet ntteggeagg naceeeaac egeaagttea	660
tggactaggc gggctattgn ccccgccatt cnggccagtn agcttggacc gtgtttacng	720

What is claimed is:

⁴⁵ 1. An isolated cDNA molecule which encodes an *Ixodes* ⁴⁵ associated antigenic polypeptide, said molecule having a nucleoxide sequence comprising at least residues 80-575 of SEQ ID NO: 3.

2. An expression vector comprising the isolated cDNA molecule of claim 1. 50

3. An isolated cell transformed by the expression vector of claim **2**.

4. The isolated cDNA molecule of claim **1**, wherein said cDNA molecule encodes a polypeptide represented by SEQ ID NO: 4.

5. The isolated cDNA molecule of claim **1**, wherein said cDNA molecule encodes a polypeptide that induces antibodies specific for an amino acid sequence represented by SEQ ID NO: 4.

* * * * *