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AN INVESTIGATION OF THE APPFLICATION OF THE METHOD OF
STEEPEST ASCENT IN MEDICAL RESEARCH

CHAPTER I
INTRODUCTION

The fundamental cbjective of many experimental investigations
is to characterize and measure the relationships between independent
and dependent variables. In particular, the medical research worker
maey be interested in the optimization of a product, pz;ocess sy O
response and the investigation of the relationship among these vari-
ables near this optimum. The solution of such a problem is dependent
upon the identification of those factors which contribute significant-
ly to the product, process, or response in question and on the selec-
tion of the combination of the levels of the independent variables
which will optimize the response.

Recognizing this fundamental objective and being cognizant of
the great number of interacting varisbles inherent in medical data -
and research, it was thought that the optimizing technique known as
the method of steepest ascent would be of particular value to the
individual interested in medical research. This method was recently
developed by Box and Wilson (1951), in an attempt to solve partially
the latter aspect of the optimization problem for the chemical industry.
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Statement of the Problem

The problem is to investigate and determine the feasibility
of & new application of a known statistical tool, the method of
steepest ascent in response surface technigues.

In applying this technigue, indeed any technique, to & new
situation, many complications are bound to arise due to the unigueness
of the date and process being investigated, and due to basic assumptions
necessary for thé utilization of the particular statistic being employ-v
ed. It may therefore be necessary fo meke adaptions in the method,
and statisticel assumptions about the processes being investigated.
Also, if the technique is to be of value in solving optimization
problems in the area of mediéal research, one should be aware of the
types of processes that may be optimized and of what usefulness the
technique might be.

It is proposed to illustrate the efficacy of the method of
steepest ascent to optimize a response and the adjustments necessary
to utilize the method by investigating two example problems, one from

the field of enzymology and the other fraom the field of clinical

pathology. '



CHAPTER II
REVIEW OF LITERATURE

To understand better the problems to be encountered in the
application of the method of steepest ascent, it is necessary that
one have a clear concept of the optimization problem itself. While
there are a variety of methods of presenting the problem, a 'precisé
statement of the optimization problem might be:

Suppose there exists a response y which is dependent on the
levels of k different quantitative factors, or independent varisbles,
which are subject to precise measurement and control. The problem
then is to optimize the response y by the proper selection of a
particular combination of the factor levels. The cambination of

factors which produces this optimal response will be called the

optimal factor combination. Mathematically this relationship could
be expressed as: |
y=20 (%1, Xzpe-X)

where y is the true or hypothetical response that should be obtained
in the absence of experimental error, § is the response function and
X (j = 1,2,...k) are the independent variables.

In experimental work, the response function @ is usually un-
known and must be approximated. .We assume that the response y may be

3
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represented by & general linear regression equation of the form:
¥ =bgy+byxy + baxe + ... + ‘ouxja_ toeo + Dyoxyxp + ...+ bmx]}_ +eeny
where the preceding equation may be interpreted as the Taylor series
(Kaplan 1957) expension of the response ﬁnction ¢ in the neighborhood
of the origin. It is possible within a given region to obtain a
satisfactory fit to this expansion by the use of a polynomial equetion.
Generally these polynomials are of second-order or less (Box 1952a,
Box and Hunter 1954, Box and Lucas 1959, Box and Behnken 1959); how-
ever, some work has been done with third-order designs (Geardiner,
Grandage, and Hader 1959, Debaun 1959).

If N experimentel observations are mede at strategically chosen
points within the region, estimates of the regression coefficients (b's)
may be calculated. The conditions for these N observations constitute
the experimental design and may be presented as a matrix D, called
the design matrix. Hence, the design matrix provides & program for
the performance of the N experiments. The elments of the ith row of
the design matrix represent the specific levels of the k factors to
be used in the iP® observation. These elements also represent the
spatial coordinates of the ith experimental point in the k-dimensional
factor space which when augmented by one dimension, nemely, thet of
the dependent variable or response, constitute a (k+1).-dimensional
space in which the response surface lies.

The problem of selecting a ''best'' design has been a difficult
and arduously studied one. Generally, however ''best'' refers to that
design for which the variances of the estimated regression coefficients

are at & minimm.
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Box and Hunter (1957) suggest that the !'goodness'!' of an
experimentel design should be Judged partly on the precision of the
estimates of the regression coefficients and partly on the magnitude
of the bias of those estimates. They list these qualities as desirable
in the experimental désign:

l. The design should estimate the assumed model satisfactorily
within the region of interest.

2. 'The design should have a built-in check on the assumed
model.

3. Thé design should not have an excessively large number of
experimental points.

L, The design should be !'blockable!

5. The design should be‘easily expanded.

6. The design should have the properties of orthogonality and
rotatability, both of which will be discussed later.

Basically there are four different methods generally used for
solving the optimization problem. They are the factorial method, the
univeriate method, the random method, and the steepest ascent method.
The reader is referred to Satterthwaite (1959) and Budne (1959) for a
discussion of the random method and to Friedman and Savage (1947) for
& discussion of the univariate method. A review and explanation of
the remaining two methods, the factorial method and method of steepest
ascent, follows. The factorial method is reviewed because of its in-
herent role in the method of steepest ascent; the method of steépest

ascent‘is reviewed since it is fundamental for this dissertation.



The Factorial Method

The factoriel method, generally accredited to Fisher (1949)
and Yates (1937) is ideally suited for investigating a surface in
a preassigned range of values of the independent variables such as
in the neighborhood of the maximum. Its adaptability to blocking as
well as the ease with which the original design may be augmented by
additional observations meake it a very useful and frequently employ-
ed design. It is of particular value where the experiment is of a
non-sequential nature and the factors of the discrete type. However,
there are several disadvantages which can, and often do, mullify these
adve.nta.ges. For example, a factorial design requires experimentation
to explore regions that may turn out, in view of their results, to
be of no velue or interest due to their lack of proximity to the
meximum. Also, & factorial design frequently investigates a small
region camprehensively or a large region superficially. 1In the former
event, & meximum might be missed entirely while in the latter the
experimentel combinations might be so chosen as to miss the maximum
even though one exists within the range being investigated. At least,
the factorial method can prov;[de an indication of fhe direction of
the meximum, a fact that the Box technique exploits.

The general technique is to conduct trials at the points of a
grid in the factor space. To this end, combinations of factors at
specified levels are selected and the response determined for each of
these combinations. Nextf, , & regression model, thought to be of suf-
ficient order, is assumed and the regression coefficients determined,

generally by the method of least squares (Nielson 1957). This is
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followed by the estimation of the conditions for optimel response.

These conditions are determined by teking the partial derivatives of
the calculated regression equation wifh respect to the independent veri-
ables concerned, setting the partial derivatives equal to zero, and
solving the resulting equations simultaneously.

If all the points of the grid are used, the design is said to
be & camplete factorial. If several determinations at each point are
mede, it is said to be a replicated factorial. If systematic selec-
tion of only a part of the complete factorial points is made, one ob-
| tains a fractional factorial or a confounded design (Yates 1937). Re;
ferences for the fractional factorial designs include Finney (1945), Finney
(1946), Plackett and Burnem (1946), Kempthorne (1947), Rao (1947), and
Devies and Hay (1950). |

0f particular interest are the two-level factorial and two-level
fractional factorial designs. Two-level designs consist of two levels
of each of the independent variables and all of their cambinations.
If only a part of these combinations 1s used, one has again a fraction-
al factorial design. Specific advantages of these designs include:

l. First-order effects are determined with maximum accuracy.

2. Specific interaction terms can be isolated.

3. ‘I'ﬁe design is readily augmented to increase precision.

4. The design mey be the basis of a '‘composite design'' for

fitting second-degree surfaces.
5. The adequacy of the model may be checked.
6. These designs have the property of rortata'bility which ensbles
the researcher to conduct long sequences of experiments in

the presence of & trend and yet meintain minimm variance



8
estimates that are mutuaslly orthogonsl, orthogonal to the
block effects and orthogonal to the trend.

Orthogonelity refers to the case in which the factors in the de-
sign metrix are functionally independent. This property is of particu-
lar advantage for computationsl purposes when comparing the effects of
the various factors.

The concept of rotatability was first introduced by Box and
Hunter (1957) when they were confronted with the selection of a k-
dimensional experimentael design of order d& such that the varlance
function would be !'spherical’ 11, For the variance function to be
''gpherical'', the variances and co-variances of the estimates of the
regression coefficients mede from the least squares estimate of the
truncated Taylor series expansion must be constant on circles, spheres
or hyper-spheres about the center of the design. If a design has this
property of rotatability, it can be rotated through any angle about the
fixed center, and one reasonably expects and obtains a constant quanti-
ty of informetion regardless of direction of orientation. Box and
Hunter (1957) prove that a necessary and sufficient condition for a
design of order d (d=1,2...) to be rotatable is that the moments of
the independent varisbles be equal through order 24.

These rotatable designs have the further advantage that replica-
tion of the ceﬁter points provides an estimate of the experimental error
and thus provides a basis for testing the lack-of-fit of the model.

Rotatable designs are given by Box and Hunter (1957) for k-dimensional

1 A x-dimensional experimental design of order d is a set of experi-
mental points or observations in the k~dimensional factor space selected
so that all the coefficients in the 4tk degree polynamial can be es-
timated.
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experimental designs of order d (k=2,3...99, d=1,2). Several block-
ing arrangements as well as confidence regions for the stationary
point are elso discussed. A more comprehensive discussion of the
confidence reglon for a& stationary point and an example of the de-
termination of a confidence region is given by Box and Hunter (1954).
Gardiner, Grandsge and Hader (1959) expand this concept to third-order

rotatable designs and give several examples.

The Method of Steepest Ascent

This method may be thought of as having, or proceeding in, two
successive phases. The first is concerned with the location of a near-
stationary region; and the second, with the investigation of the re-
sponse surface in this region.

No knowledge of the form of the function is assumed. However,
it is assumed that the function has a unique maximum and that the
function is '‘smooth'' and contimuous. The method is also dependent
upon a number of other assumptions. The most important of these are:

1. All factors or independent variables must be messurable

quantitative values.

2. The theoretical response is a function of the independent

variables. '

3. The observed response is a function of the independent

variables plus an arbitrary experimental error.
' 4, The errors are normally and independently distributed with

e mean of zero and a variance of one.
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It is generally thought that the technique works best when the
errors are smell and there is a previous estimate of the error. It is
possible to utilize the method when these conditions do not exist, how-
ever, by replicating observations and meking use of the estimate of the
variance obtained by replication of the center point of the central
camposite design. This, of course, partially defeats the purpose of
the method, namely, the reduction in the overall number of experiments
necessary to obtain the region desired.

The first phase is & sequential one, much like the univariate
method and has as its objective the location of the near-stationary
region. It proceeds aé follows:

1. Select all the factors thought to be influencing the response.
Frequently, the selection of the factors must be modified to
include only those factors thought to be especially signifi-
cant since the selection of all factors might lead to an
excessive number of independent varisbles. It has been
shown that the method loses same of its effectiveness
under such circumstances (Brooks 1959).

2. Meke an initial linear approximation of the response sur-
face in the vicinity of the estimated optimum.

3. Use the lack-of-fit term in the an_a.lysis of variance to test
whether the linear approximation fits within the limits of
experimental error. If it does, proceed to step U4; if not,
a second-order model 1s adopted and the experimental points
augmented by additional o'bservé,tions so that the regression

coefficients for the second-order model may be estimated.
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. Calculate the path of steepest ascent (Fig. 1 and 2).

This path is determined by incrementing the coordinates of
the center of the design in the factor space by amounts
proportional to the relative size of the regression co-
efficients as determined in step 1.

5. Make observations along this path at regularly spa?:ed inter-
vals until the observed response differs significantly from
the predicted response using the regression equation deter-
mined in step 1.

6. Make a second linear approximation of the response surface
using the last agreeing predicted and observed response as
a center for the design and proceed to steps 3, 4 and 5, etc.

7. Continue this process until it is stopped by the adoption of
a second-order model in step 3.

The selection of the independent variables and the subsequent
determination of the levels at which the observations are to be made
represents a crucial stage in the use of the method of steepest ascent.
It has been pointed out, and rightJ.y so, that the entire method is de-
pendent upon this selection and that the size of the regression coeffici-
ents, and hence the path of steepest ascent, will vary according to the
width of the interval between the factor levels. Two obvious errors
are possible through the improper selection of the factor levels. First,
if the interval is too large, a maximum may be missed entirely; second,
if the interval is too smell, the experimental error may '‘'mask'' any
true difference in the response at the two different levels and the
subsequent calculation of the path of steepest ascent will therefore

be in error. In fact, it may even be in the wrong direction entirely,
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®asenw Path of steepest ascent for
observations, 3; and xp

XA predicted cbaervations along
path of steepest ascent

Figure 1. - Response surface for one independent
variable, illustration of the path of steepest
ascent for observations at X, and X5
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P, perpendicular to the plans
Titted through ABCD

TZ, path of steepest ascent

Figure 2. - Response surface for two independent
variables, and path of steepest ascent.
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8 mistake that will generelly be corrected with the determination of
the next path. In either case, it is possible that the independent
factors' levels may be so chosen that the responses are exactly equal
and it will appear as if the procedure has reached a plateau. Further
experimentation on the axis to complete the central composite design
will prove this erroneous. One may then adjust the interval between
the levels of the factors and reinitiate the experimental procedure.

David and Arens (1949) discuss the question of the spacing of
independent variables and suggest criterie that might be appliceble to
various situations, Legendre and Tchebysheff spacing being the most
carefully considered. Specifically their work is concerned with that
situation in which the dependent variable may be observed for & con-
tinuous range of values of a single independent variable and the func-
tional relationship is unknown. They also investigate empirically the
situation where the true functional relation is & quadratic and the
fitted curve linear.

De la Garza (1954) and Kiefer and Wolfowitz (1952) discuss the
case {rhere the function is known apart from various parameters.

The second phase of the method of steepest ascent is concerned
with the determination of the exact optimal factor combination and with
the characterization of the response surface in the vicinity of a near-
stationary region. It requires the following;

1. The adoption of ﬁhe second~order model.

2. The estimation of the regression coefficients.

3. The calculation of the optimal factor combination.

4, The determination of the contour lines for the second-order

model.
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5. 'The determination of the canonical forms along with the

transformation necessary to obtain them.

In same cases & confidence region for the predicted optimal
response (Box end Hunter 1954) end an interpretative study of the
response surface are also made (Box and Youle 1955).

Once the regression coefficients of the second-order model
have been determined, generally by the method of least squares (Nielsen
1957), standard mathemstical techniques may be utilized for finding
the maximum or minimum values of the dependent variasble. These tech-
niques involve the calculation of the partial derivatives (Kaplan 1957a),
setting the partial derivatives equal to zero (Kaplan 1957Tb) and the
subsequent simltaneous solution of these equations to give the values
of the independent variables that provide the maximum or minimum of
the dependent variable.

Intuitively, this might be expected if one remembers the basic
concept of the partial derivative. The partial derivative represents
the rate of change in the dependent varisble for & given change in
the independent variable. By setting the partials equal to zero, one
is, in effect, imposing the restriction that the change in the dependent
variable with respect to a change in the independent variable be zero.
This is the condition that one might expect to find at maxima or minims
of the dependent variable.

Next, in the development of & response surface, f;should be the
determination of cdntour lines (Fig. 3) based on the é:cénd-order model. .
The contour lines repreéent all of the combinations of the independent
variables that will give a Pixed level of response of the dependent

variable.
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/

/
yd
Figure 3. - Response surface for th: e independent

variables, illustrating two levels of the dependent
variable.
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For example, in the three (k=3) dimensional case, the contour
lines are determined by choosing a constent level for the dependent
variable and one independent variable, and substituting these values
into the experimentally determined second-order equation. One then
has a second-order equetion in the two remsining independent variables.
By selecting various levels of one of these two independent variables
and substituting it into the second-order equation, one cbtains quad-
ratic equations for the third variable. The solutions of these equations
may then be plotted to give contour lines of the response surface (Fig.
3). The contour lines represent all of the combinations of two of the
independent variebles that will give & fixed level of response of the
dependent variable at a given level of the third independent variable.
Hence, the contour lines represent the intersection of horizontel
planes and the response surface. That is, the horizontal plane will
represent a constant level of one of the independent variables and
the line of intersection will represent a constant megnitude of the
dependent variable or response.

There are several advantages that might be expected from the
analysis and study of contour lines. By plotting contour lines it is
possible to comprehend features of the response surface which may be
exploited in an attempt to Purther increase or decrease the response
in question. It may be possible to optimize a primary response with
secondary constraining or restricting conditions. This demand on the
optimizing process would obviously lead to a set of conditions which
are ''best'! only in & compramising sense provided there is a con-
flict between the optimal conditions for the primary response and the

constraint. If no such conflict exists, there is no constraint.
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Careful consideration of the response surfece msy lead to a
better understanding of the mechanism bei;ng examined and also indicate
the need for additional investigation. Box and Youle (1955 ) have
discussed this latter possibility in some detail and have demonstrated
how various characteristics of an operating system may affect contour
lines.

The canonical form plays the same role in the second-degree
approximations as does the path of steepest ascent in the first-degree
approximations. An extensive discussion of the value and use of the
canonical form is given by Box and Hunter (Chew 1958) in which changes
in the signs of the general form of the canonical equation are illustrat-
ed and the relative sizes of the coefficients are exsmined. Also several
3-dimensional surfaces of second-degree are discussed and the general
procedure for a k-dimensional second-degree fitted surface is outlined.
This general outline is as follows:

1. The coordinates of the new center and the value of the re-

sponse at this center are calculated.

2. The canonical form of the equation is determined.

3. The new coordinates are determined in terms of the old

coordinates.

Investigating an unknown response function in several indepen-
dent variables frequently leads an experimenter to a sequence of ex-
periments that falls naturelly into blocks. The initial step in such
e sequence will be that of approximeting the response function with a
first-order model. |

The first-order model adopting Box's notation is:

y=box° +0..n+bk)Ck+e.
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Based upon the results of such a sequence of experiments,
decisions may be made concerning the following:

l. Elimination of one or more of the independent variables by

comparing the magnitudes of the fitted coefficients.

2. Expansion or reduction of the intervael between levels.

3. Lack-of-fit of the model.

L, Prediction of paths to optimal responses.

It 1s interesting to note that the same class of designs for
the first-order approximation are obtained if it is required thst the
design be such that.:

1. The variance of the predicted response (}) be a minimum.

2. The confidence region for the regression coefficients, b's,

be minimum.

3. The variance of ;r be gqual for all equidistant points from

the origin.

The first-order designs may be visualized geometrically as the
k-dimensional space of the vertices of a regular simplex in (k+1)
dimensions where the (k+l)th dimension represents the response. If
the mumber of observations is N = k + 1, these designs represent the
projection of the (N-1) dimensionsl simplex into k-dimensional space.

. Frequently, in the application of Box's technique, it is desirable
to adopt & central composite rotaetable design which can be blocked (Box -
1952b, DeBaun 1956, and Box and Hunter 1957). The central caomposite
design consists of N, points at the vertices of a cube corresponding
to a 2X factorial design or some fraction thereof, with coordinates
coded (+ 1, + 1,.0000,+ 1), Plus Ng = 2k '‘axial'' points with co-

ordinates coded (+ o, 0,...0), (0, + &, 0,...0), ...(0,...0, + &) plus
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N, points at the center of the design with coordinates coded (0,...,0).
These sets of points offer an opportunity for blocking. If we let
Neoo and Ngg represent the center points associated with the cube and
axial points respectively, the requirements for orthogonal blocking
and rotatebility are:

1/2 L
Ne (N + Nao) 1/
a = e (N 290 and @ = N,  respectively.

2 (N, + Ny )
To satisfy both requirements we require

1/2
Ne _ (Ne + Neo )
2 (N + Nao),

As an example let us examine the k=4t dimensional design which
ol

is to be used in Chapter IV. The d’ésign matrix consists of the 2k =
16 experimental points at the vert:{ices of the cube, with coordinates
(+1, +1, +1, +1), 2k = 8 axial points with coordinates (+ &, 0,0,0),
(o, + @, 0,0), (0,0, +1, 0),(0,0,0, +¥) where ¢ = l\Tcl/lL - 6l/h= 2, for
rotatability and with a yet-to-be-determined number of points at the

center. If seven points are observed at the center the variance func-
tion V(p) = V(1) = V(o) (Box and Draper 1959) and hence one attains a
relatively uniform distribution of precision. If rather than seven,

we chose Ng = 6 to satisfy the equation below:

Ne N + Ngo 5 16 + Neg 16 + L
— = e —————— ’ = = = ———————
2 Ny + Ngo 8 + Ngo 8 + 2

orthogonal blocking and rotatebility will be attained. The only effect
on the variance function will be to decrease slightly the precision
near the center of the design. -

Now, the 2)+ factoriael part of the design may be fux;ther divided

into two orthogonal blocks. This division can be accomplished by
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confounding the block effect with the 4 factor interaction, that is,
placing all points with a positive third-order interaction, 4 factors,
in one block and all experimentel points with & negatlve third-order
interaction into a second block. The four center points associated
with the ''cubic'' part of the design are then divided, two points to
each block.

Now, the original design of 30 experimental points is divided
into 3 blocks of 10 points each, the 8 axisl points plus 2 center
points, and the two half-replicates plus 2 center points each. The
design is orthogonally blocked and rotatable and has nearly uniform
precision.

| .'.I'he analysis of variance when blocking is used breaks the re-
sidual sum of squares into three parts as shown beicw.

Anslysis of variance

Source d.f. | Sum of squares
Residual N.+ No-1 R
B 2
Blocks B-1 55, = G ~-Y
% =7,  fol -V
Experimental error N, R - 85, - 8S¢

+ lack-of-fit

Pure error ‘N, - B (Pure error)

Where the pure error = the sum of the individual sums of squares for

repeated observations at the center of each block,

end B = number of blocks
Nb = number of observetions in the 'bt'h block
Y, = mean of the observations in the btE block

number of observations at the center

No
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R = residuel sum of squares.
SSg = pure error
Y = grand mean
Ni = degrees of freedom for experimental error and lack-of-fit
The applicability of the Box technique in the field of medical
research has not been adequately studied and reported in the literature,

it is the purpose of this research to investigate this area.



CHAPTER IIT

AFPLICATION OF THE METHOD OF STEEFEST ASCENT TO THE RESPONSE
SURFACE OF THE NITRATE-NITRITE REDUCTASE

ACTIVITY IN SALIVARY SEDIMENT

The utilization of the method of steepest ascent and the ap-
plicetion of the statistical methods for characterizing a response
surface appesred especially apropos to the investigetion of several
factors simultaneously such as the effects of pH, temperature and
electron donor concentration on the reduction of nitrate in saliva.
If successful, the study should illustrate the application of this

experimental methodology to discrete biochemical phenomensa.

Experimental Methods

The reduction of nitrate and nitrite in saliva has been de-
scribed in an earlier report (Goaz and Biswell 1961). Inasmuch as
nitrate reduction in the oral cavity may play a role in the energy
metabolism and the assimilation of nitrogen by oral bacteria, an in-
vestigation of the relationship between nitrate reduction and the
process of decay seemed peri:inent to them. Although an initiel pilot
study of forty young adults did show a positive correlation between
the capacity of an individual's whole saliva to reduce nitrate and

his caries experience, the correlation was not found to be significant.

25
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To evaluate this relationship critically, in a more extensive clinical
study, two refinements of the technique of measuring the nitrate-nitrite
reductase activity of saliva have been introduced.

In the initial pilot study by Goaz and Biswell (1961) the capacity
of whole saliva to reduce nitrate and nitrite was measured. However,
it has subsequently been determined that the reaction of whole seliva
on nitrate is not only dependent upon the nitrate-nitrite reductase
activity that is characteristic of the salivary sediment but also
upon the level of electron donor compounds in the supernatant, and
possi’bly on other undisclosed factors in the supernatant. That fluc-
tuations in the composition of the supernatant can precipitate vari-
ations in the apparent enzymatic activity of whole saliva has been
demonstrated by recambining aliquots of an individuel salivary sedi-
ment with the supernatants from & mumber of other salivary specimens
and noting the variations in the measured activity of the sediment
when associasted with different supernatants (Fig. 4). This finding
suggested the possibility that the composition of the supernatant and
its effect on the activity of the sediment may be more variable than
the potential enzymatic level of the sediment; while the nitrate-
nitrite reductase activity of the sediment may be more related to the
megnitude of decay activity prevailing at the time the. salivery specimen
was collected. In order to eliminate this possible source of variation
on the measured nitrate-reducing activity of a salivary sample, this
activity was determined on the salivary sediment plus a stendard arti-
ficial electron donor, yeast extract (L mg/ml). Also, it seemed

reasonable that the most accurate assay of a salivary sediment's
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Figure 4. - Effect of  supernatant compositio
on the measurable nitrate-nitrite reductase
activity of salivary sediment. Demonstrated
by recombining aliquots of an individusl
salivary sediment with the supernatant from
other salivary specimens. (Supernatants and
sc)ediments from salivary specimens, A, B and
c).
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capacity to reduce nitrate, and the most valid for camparative studies,
would probably be achieved if the determination was conducted under
the optimal conditions for the reactions that the salivary enzyme
catalyzes.

Through pilot studles, the effects of three factors, indepen-
dent variables, on this salivery activity were considered to be import-
ant. These were factors that were relatively easily controlled and
had marked influence on the apparent enzyme activity; these factors
were pH, temperature, and concentration of electron donor, xj;, Xo and
x3, respectively.

It was on this basis that the present study of the most efficient
and effective manner of delineating these optimel conditions for this
salivary reaction was underteken.

The sslivary sediment examined in this study was from saliva
obtained by paraffin stimulation. It was collected upon arising,
before breakfast and before brushing the teei:h. The sample was kept
refrigerated until it was assayed, except for the interval during
which the saliva donor brought the sample to the laboratory. -

Upon receipt at the laboratory, the salive was pooled and de-

" pleted of endogenous nitrate and nitrite by incubation at 37° C. It
was then centrifuged at 10,000 rpm for 30 minutes and the sediment
washed twice in distilled water.

The sediment was resuspended in distilled water to one-tenth
the volume of the salivary pool from which it was obtained. This
slurry of the particulate fraction, containing the nitrate-nitfite

 reductase, was then stored at 4° ¢,
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Inasmuch as it wes anticipated that the determination of the

optimel conditions for this enzyme system would require a number of
days, and in veiw of the necessity of making serial determinations on
the same stock of enzyme sediment, 1t was .necessary, initially, to
make an estimate of the decay or loss of measurable enzyme activity
that would result from storage.

The experimental design for the estimetion of the loss of sali-
vary activity that occurs during storage was thet described by Snedecor
(1956) for the anmlysis of covariance. The covariate here is the
duration of storage in deys.

Saliva from seven individuals was collected and pooled and the
sediment removed and stored at 4° C. Three aliquots (Group A, B, and
C) were drawn fram this stock of sediment and their capacity to reduce
nitrate through nitrite was determined daily for four days (Table 1).
The order of measuring the activity of each aliquot was randomized
each day to eliminate possible bias in the experimental cbservations.

The nitrate-reducing capacity of the sediment was maede by re-
moving a measured amount, 0.5 ml, of the stock sediment, resuspending
in distilled water and diluting to a volume equivelent to 7O percent,
3.5 ml, of the salivary pool that thé sediment originally represented.
One milliliter of the standard electron donor solution was added and
the pH of the system adjusted to the desired level by adding solid
monobesic or dibasic potassium phosphatel. The buffered enzyme system
was then placed in & constant temperature water bath. After a suf-
ficient period to permit temperature equiiibrim, 50 ug of nitrate,

as KNOs, in 0.5 ml of aqueous solution were added, and the time required
1 The solid buffer was used to minimize dilution.
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TABLE 1

Effect of Storage on the Capacity of Salivary
Sediment to Reduce Nitrate

Time required (minutes, Y) to reduce 10 ug. Nogr/ml through NO,_—;__

Aliquot Storage time (days, X)

Group o 1 5 3
A 13 19 22 25
B 14 17 26 23
c L 18 23 27

Determination of intercept and slope for the regression lines

Equation for the regression line; Y = a + bX

XY - 2X0Y
b = regression coefficient = ——me—————v0o
7% - (5x)2
a = Y intercept; 2Y = na + biX
Aliguot A
X2 = 14 Xy = 138.0 ¥¥2 = 1639.00
C*¥ = 9 c = 118.0 C = 1560.25
%2 = 5 Iy = 19.5 P = 18.75
Aliquot B
Tx2 = 14 XXy = 138 Ty2 = 1690
C = 2 c = 120 C = 1600
%2 = 5 Yy = 18 2 = 90
Aliquot C
x2 = 1k Xy = 145 T2 = 1778
c =9 C = 123 ¢ = 1681
%2 = 5 Yoy = 22 e = 91

(sum of verisble)?
no. of cobservetions

* (O = correction factor for iX2 or L¥° =

_ (sum of X) (sum of Y)
no, of observations

correction factor for XY



TABLE 1 (Cont).

Effect of Storage on the Capacity of Salivary

Sediment to Reduce Nitrate

Regression Coefficients

Aliquot b a
A 3.90 13.90
B 3.60 k.60
¢ k.ko 13.90
Mean for the three periods 3,97 14,13
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to reduce the added nitrate, through nitrite, to a yet unidentified end-
product determined by the spot plate method. The end-polnt of the spot
plate method as described by Goaz and Biswell (1961) is based on the
disappearance of the nitrite. These measurements of enzyme activity
were made at 37° ¢, pH 6.4 and using 1 mg/ml of yeast extract as a
standard hydrogen donor. Those levels of pH and hydrogen donor had
previously been shown by Goaz and Biswell (1961) to be optimal at 37°
C using & univariate method consisting of only one round.

The assumptions of this design are that the samples were drawn
fram & normal population with common variances. Due to the manner in
which the aliquots were obtained, it was thought these assumptions were
met. |

The regression coefficients, b's for Groups A, B and C were

determined by the method of least squares -(Table 1) and tested for
homogeneity. To make this test, the difference between the sum of
squares for the common regression and the sum of squares within samples
was calculated. This difference measures the difference among the
samples’ regression coefficlents, and its mean square may be compared
with the mean square within samples (Table 2). It may be observed
that the mean square for the regression for one of the samples (ali-
quot B) is relastively large. On inspection, the data shows that the
determination of nitrate-reducing activity in aliguot B on the second
day storege varied merkedly. It was felt this variation reflected an

experimental error and hence explained the large mean square for



TABLE 2

Analysis of Covarié.nce Effect of Storage on the Nitrate Reducing Activity of Salivery Sediment
) Deviations from Regression

> Reg.

Aliquot d.f. x xy ¥e Coef.  d.f.  yo-(xy)2/x2 _ Mean
Square

A 3 5 19.5 78.75 3.9 2 2.70 1.35

B 3 5 18.0 90.00 3.6 2 25.20 12.60

C 3 5 22,0 97.00 L. 2 0.20 | 0.10
Within 6 28.10 4,683
Reg. Coef. 2 1.63 0.815
Common 9 15 59.5 265.750 3.97 8 29.73 3.716
Adj. Means 2 1.17 0.565

Total 11 15 59.5 266. 917 10 30.90
F (variance ratio) = Mean Square of Regression Coefficients _ 0.815 = 0.174; d.£. = 2, 6
Mean Square Within Samples «003

¢
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aliquot B. In any event, the F value (variance ra.tio)l obtalned was
obviously not significant. Thus, there was a failure to reject the mull
hypothesis at a8 greater than 25 percent confidence level, and it was
assumed that there was no difference between the slopes of the re-
gression lines for the three groups (A, B and C) (Fig. 5). It was next
necessary to test the hypothesis that the population regression lines
coincide. This was done by comparing the difference between the total
sums of squares and the common sums of squares or the adjusted mean
squares with the common mean square. This difference corresponds to

the sample differences in elevation.

=058 0.1574; d. £. =2, 8,

3.716
which lacks significance at the 25 percent confidence level. Hence,
the three groups of aliquots mey heve the same regression lines; at
least, there is not a great enough difference among the groups to be
detected by samples of this size. Consequently, the data from all
three groups was pooled. to make the best estimate of the regression
equation which was found to be,

y = k.13 + 3.97x. (3)

~To characterize the response surface of the nitrate reducing

activity of saliva, a stock of sediment was extracted from a salivary
pool from forty donors, and stored at 4° ¢. The levels of the pre-

viously selected independent variables, at which the investigation was

initiated, are shown in Teble 3, along with their coded values. Such

1 The variance ratio is a statistic which was developed by Snedecor
(1956) and named in honor of R. A. Fisher. It is the ratio of two
variables which follow the chi-square distribution function divided
by their respective degrees of freedom, and forms itself a distribu-
tion function called the F or Fisher distribution. It can be, and is,
used as a means of making confidence or significance statements.



Tim rrqaired 1o imites for the ceflmest fro 5 mi.

<f smitve 13 reduse 10 WO3/l. throwh B

33

Regresston Lines for aliquats
AD=D, 1P =0, o=
ot Pogrs calon Eine em—

tays frurage

Figure 5. - Regression of
activity on storage time.

enzyme



3k

TABLE 3
Tnitial Code
Variables Coded Value
Investigated - -1.0 0 +1.0
pH (x1) 5.0 5.25 5.5
Temp.t (x2) 31.0 33.00 35.0
Cone.2 H+ donor (xa) 0.4 0.50 0.6

1 Degrees centigrade

mg/ml of yeast extract
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coding is a linear transformetion and simplifies subsequent calculations.
Since each of the independent variables was investigated at only two
different levels in any experiment; the upper level of x was coded as
+1 and the lower level as -1. The relations between the coded and

experimental units were selected as follows:
H - 5.251 - 33l - 1
P 2+25+ Xz = Temp. - 33~ Xa = Conc. H+ Donor - 0.5 .

- 3

0.25 ’ 2 0.1 ()

Xy

Assuming the genersl linear model in three independent variables,
¥y = boXg + b1xy + boxp + bzxz + e, the first linear approximation of
the response surface was made. As one might well expect, this model
did not adequately represent & four-dimensional curved surface consist-
ing of the three independent and one dependent variables, however it
gave some indication as to the orientation of the surface. To deter-
mine the regression coefficients for this model a o3 factorial experi-
ment® was necessary. The experimental conditions or cam'binationé , the

coded values of x., Xx» and X3, and the observed results, expressed as

1
the reaction time in minutes for the reduction of nitrate through
nitrite under these conditions, are shown in Table L.

The values of the regression coefficients in the linear model

were then determined by the method of least squares. The method of

1 These levels of PH, temperature, and electron donor concentration .
were chosen as the level at which to initiate the investigation since
preliminary work with this enzyme system seemed to indicate that it
would be less than optimal, and yet provide a reasonable area from which
to approach the meximum, utilizing the method of steepest ascent.

2 A 23 factoriel experiment is the study of three factors, E>r vari-
~ables, at two different levels and all the combinations thereof. Hence,
a total of eight determinations would be made.
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TABLE U4

Initial Attempt to Approximete Response Surface

X y
Observed Re-

Experimental cambinations Coded Scale sults (reaction
of independent variables xol X1 X xs time ir minutes)

1 1 -1 -1 -1 105

2 1 1 -1 -1 62

3 1 -1 i -1 T2

L 1 1 1 -1 37

5 1 -1 -1 1 87

6 1 1 -1 1 36

T 1 -1 1 1 38

8 1 1 1 1 32

1 since by occurs in every equation, the dummy veriable x,, which
has the value of +1 for every observation in the sample, is

introduced for computational purposes.
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least squares is to minimize the sum of the squared deviations between
the observed y values and the predicted values using the assumed model,

that is, one minimizes the following equation:

n n
2
§-1 (yg-1,)° = ?_l (¥3-boxg - yxyy - ba¥zy - bexsy).  (5)

This is accamplished by taking the partial derivetives of these squared

deviations with respect to bo, bl: bz and bz, and equating them to zero.

The resulting system of normal equations had the form:

boTx2 +b, 5 %, bl X2 +oalX Xa = LXo¥
boYx) %o +b T2 +b2dXy X2 *balXyxs = Ly
b k%, +bq Doy +bT5 +balxzXs = Xkzy
bo¥xax, +012xaxq +balxaXo +balx3 = Txay

The numerical solution of these equations would, in general,
be extremely tedious but their solution can be simplified by the use
of appropriately coded values as in this study or, by the abbreviated
Doolittle technique (Graybill 1961).

These normal equations may be written in matrix notation as,

X'X B = X'Y,

where X 1s the deta matrix augmented by a dummy varieble x, which re-
presents the mean (Table 4). X' is the transposel of the X matrix, B
is the coefficient matrix, and Y is the observed matrix (Teble 4). The

general form of the normal equation in matrix notation is as follows:

1 The transpose of an X matrix is a matrix of the same elements but
with its rows and columns interchanged.
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T Txxn O 3x T " mn ©
oX X, oX b oY
ngo_xo 214121 inxg lex; b;?_ Yxyy
Zxpx, IxoXy Zx2 Zxpxs b = |Zxoy
ZK}XO nytl ZIC2X3 &32 b 3 Zx3y

Inspection of the X'X matrix above will reveal that it is
symmetrical around the diagonal from the upper left to the lower right.
By a Judicious selection of codes for the independent variables, namely
that glven in equation (hv) the normal equations for this specific ex~

periment reduce to the simply solved equations:

(8 0 o O] [v,] [469™

0080 bpo| ~ (-111

|10 0 O 8_ b3J =83 |
Solving these equations by matrix algebra one obtains:

' -135 -111
b, = hsﬂ- = 58.625; b, = -5 = -16.875; b2 = — = -13.875
-83

'b3 = - = =10.375. (7)

By substituting the regression coefficients, obtained above,
into the linear model, one finds:

y = 58.625 - :L6.875xl - 13.875%x2 - 10.375%3 - (8)

The analysis of variance for this initial approximation of the
response surface is presented in tabular form in Table 5. This analysis
indicates that the lack-of-fit term, 145.12 s 1s significantl and follow=

ing the standard Box technique that & new model which includes second-

1 This significance is based on the fact that the mean square of the
'1lack-of-fit'' term 1s substantially larger than the estimate of the
variance that was observed in the study of enzyme activity decay dur-
ing storage. See Table 5.
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TABLE 5

Analysis of Variance for Reaction Times
(£irst approximation)

Source d.f. BeS. m.s.
1. Mean 1 27,495.125
2. Linear model 3 4,679.375 1,559.79
3. ILack-of-fit 4 580.500 145.12
4. Errort ' - eeeee- 3,716
Total 8 32,755 .000

1 Estimated by common meen squere from the snalysis of covariance

of the effect of storage on enzyme activity.
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order terms should be adopted. The adoption of such & model with
its subsequent augmentation of experimental observations should
elther prove to be satisfactory or unsatisfactory. If satisfactory,
the method may be pursued as described previously, if unsatisfactory,
further exploration is indicated. The loss is thus confined to the
determination of the augmented points.

In this case however, since the original selection of the fac-
tor levels was sufficiently removed from the optimum, the adoption of
e second-order model at this juncture was not deemed warranted. Al-
so, to demonstrate the usefulness of the technique to be employed, the
path of steepest ascent was determined along with three expected values
along the path. The calculation of these expected values using equation
(8) and their observed values are summerized in Teble 6. These cal-
culations were used as a verification of the experimental conditions
selected for the second approximetion of the surface and were initial-
ly chosen as appropriate on the basis of visual inspection of a three-
dimensional plot of the response surface constructed with the date
from the first approximation.

The experimental conditions, results, normal equations, re-
gression coefficients and analysis of variance for the second approxi-
mation of the response surface are summarized in Table 7.

The analysis of variance (Table 7) of the second attempt to
approximete the response surface indicates that the lack-of-fit term,
0.125, was not significant. Hence, the path of steepest ascent was
again calculated (Tablg 8), and some expected values along the path
were detei'mined using the equation given in Teble 7. The results of

the experimental observations made at these points are also shown in



TABLE 6

Calculations of Initial Path of Steepest Ascent

x) X2 Xa v y2
(pH) (Temp.) (B+ don.) (min.) (min.)
1. Relative change in design units = by -16.8750 -13.8750 ~-10.3750
2., No. of original units = 1 design unit 0.2500 2.0000 0.1000
3. Relative change in original units - 4.,2188 -27.7500 - 1.0375
k., Change per 0.25 pH units 0.2500 1.644h 0.0615
Path of steepest ascent
5. Initial levels 5.2500 33.0000 0.5000
6. Observations along the path
Coded
No. Xq X2 X3
L +@ 0.8222  0.615 5.5000 3k, 6Ll 0.5615 +23.,961 32
(2) +2 1.644h 1,230 5.7500 36.2888 0.6230  -10.7022 19
(3) +3 2.4666 1.8L45 6.0000 37.9332 0.6845  -45.3667

A
1 y is the predicted value.
2 y is the observed corrected value.
5 These calculated expected values being negative confirm the suspicion that the linear model

was not fitting the response surface. However, further investigation also confirmed the use of
the path of steepest ascent, indicating the direction of the optimum (or minimm) .

LY



TABLE 7

Second Attempt to Fit the Linear Equation to a 23 Factorial Experiment

Data
Coded Units
£ y
Experimental combinations Coded Scale Observed Results (reaction time in m;mi)
of independent variables x, X; x, X observed (yo) corrected (y,)
1 i .-1 -1 -1 21 17
2 1 1 -1 -1 19 15
3 1 -1 1 -1 18 1
b 1 1 1 -1 15 11
5 1 -1 -1 1 20 16
6 1 1 -1 1 18 14 =
7 1 -1 1 1 16 12 o
8 1 1l 1 1 1k 10

1 fThe observed times corrected for storage by use of the previously determined decay curve
(Fig. 5), Ye = ¥o - 3.97x, where x is the number of days the enzyme has been stored.

Relation between coded and experimental units

Solutions: by= 13.625; by= -1.125; b,=-1.875; bz= -0.625

Coded Value ~
Variables -1.0 0 +1.0 Substituting into the linear model: y = 13.625 - 1.125x; -
PH (xy) 5.75 6.0 6.25 1.875%, - 0.625%,.
Temperature (xz) 37.00 39.0 41.00 3
Conc. H+ donor; mg/ml(xa) 0.70 0.8 0.90 Analysis of variance (second approximation)
Normal Equations Source a.f. hs.s. m.s.
8 0 0O ﬁ)q 1 1. Mean 1 1,485.125
0 8 0o ;] bo ?8 2. Linear model 3 41.375 13.792
00 8 o bé _ s 3. Lack-of-fit I 0.500 0.125
0O 0O _8_‘ |b3 - -5 4. Errorl — cemme- 3.716

- 1 Estimated by common mean square from the analysis
of covariance of the effect of storage on enzyme activity.
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‘TABLES

Calculation of the Second Path of Steepest Ascent

Relative change in design units = by
No. of original units = 1 design unit
Relative change in original units
Change per 0.25 pH unit

Path of steepest ascent

Initial levels
Observations alang the path

No.

(1)
(3)

Coded
xl Xo XB
+1 1.666 0.560
+2 3.332 1.120

+3 4.998 1.680

1 § is the predicted value

X

(pH)
-1.125
0.250
-0.281
0.250

6.000

6.250

6.500
6.750

y is the observed corrected value

*2

(Temp. )

-1.875
2.000
=3.750
34333

39.000

42,333
45.666

48.999

X

CH+ don.)

-0.625
0.100
~0.062
0.056

0.800

(min.)

+9.0262

+4 4275
-0.1712

(min.)

en
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Table 8. Since the third observation (xl = +3) along the path of
steepest ascent was found to be significantly different from the
expected value, the need for a new, third, approximation of the sur-
face was indicated. The code, design matrix, results and nécessary
camputations are given in Table 9.

Using the data fram this third set of experiments, the path of
steepest ascent was again determined (Table 10), and the predicted
values (;) along this path calculated. Corresponding observed values
for the path are also presented in Table 10. Guided by these results
and following the above procedure, another set of experiments was
conducted, employing the experimental combinations given in Table lll.
The results of this fourth epproximation are summarized in Teble 12.

The analysis of variance indicates the linear model is no
longer satisfactory and that the second-order model,

;’ = Dby * byx) + boxo + baxz + b]_']_x_% + bopk8 + baaxs + biox X, +

by3X) X5+ bpzkpXs (9)

should be adopted. The rationale for this decision is as follows:
The lack-of-fit term and the sum of squares for the regression on the
linear terms are both relatively small. Also, from the previous ex-
periments it seemed obvious that the investigation was descending the
response surface, and the lack of significance of these terms, as well
as the magnitude of the regression coefficients , b's, indicated that
either a minimum or a plateau had been reached. It was assumed that

this was a minimum, and the basic design of the fourth attempt to fit

1 mTable 11 also includes the coded levels for the completed central
composite rotatable design. At thils point, however, only the columns
+1 and -1 are pertinent.
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TABLE 9

Third Attempt to Fit the Linear Equetion
to a 25 Factorial Experiment

Relation between coded and experimentel units

' Coded Value
Veriables -1.0 0 +1.0
Temperature (x2) 46.00 L48.00 50.00

Conc. B+ donor; mg/ml (xs) 0.9%  0.97  1.00

Code of x's examined

xy = PE - 6.125 Xo = Temp. - h8$ Xs = H+ donor ~ 0.9
0.1 2 0.03
Data
Coded Units Y
X Observed Results
Experimental combinations Coded Scale (reaction time in min.)
of independent variebles x, X1 Xz Xs Observed (yo) corrected (yc)
1 1 -1 -1 -1 16 8
2 1 1 -1 -1 15 7
3 1 -1 1 -1 22 1k
L 1 1 1 -1 20 12
5 1 -1 -1 1 15 T
6 1 1 -1 1 15 T
7 1 -1 1 1 22 1k
8 1 i1 1 1 20 12
Normal Equations
8 0 00 bo 81
0 8 00 b -5
0 08 o0 ba| = {23
0 0 0 8 ba -1
Solutions
bo =& =1025 b1=F --0.65 b2=% =ba= . o0
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TABLE 9 (Cont).
Third Attempt to Fit the Linear Equation

to a 23 Factorial Experiment

Substituting into the linear model:

¥ =9 -0.625% +2.875xp ~ 0.125x5

Analysis of variance (third approximation)

Source d.f. S.S. m.s.
1. Mean 1 820.125
2. Linear model 3 69.375 23,125
3. lack of fit L 1.500 0.375
k. Errort — —_— 3.716
B Total 8 891..000

Estimated by common mean square from the analysis of
covariance of the effect of storage on enzyme activity.



TABLE 10

Calculation for the Third Path of Steepest Ascent

Relative change in design units = by
No. of original units = 1 design unit
Relative change in original units
Change per 2° C

Path of steepest ascent

Initial levels
Observations along the path

No. Xy Xo X3

(1) o0.217 -1 0.0433

(2) o0.43h -2 0.0866

(3) 0.651 -3 0.1299
1

§ is the predicted value

X1

-0.6250

0.1000
"'0-0625
-0.0217

6.7500

6.7717
6.7935

6.8152

y is the observed corrected value

*2

2.875
2.000

2750
2.000

48.000

46.000
Ll , 000
42,000

*3

-0.1250

0.0300
-0.0037
-0.0013

0.9700

0.9713
0.9726

0.9739

(min.)

+7.1089
+4,0929
-0.064k4

y2

(min.)

Ln
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TABLE 11

Relation Between Coded and Experimental Units

Coded Value

Variables -1.682 -1 0 +1

pH

Temperature

(x;) 6.6818  6.76 6.85 6.95

(x5) 42.6360  Lh.00 U46.00 48.00 49.36L0

Cone. Bt donor; me/ml (x;) 0.9195 0.9%  0.97 1.00
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TABLE 11

Relation Between Coded and Experimental Units

Coded Value
Variables -1.682 -1 0 +1
pH (x) 6.6818 6.76  6.85 6.95
Temperature (x) L42.6360 Lh,00 U46.00 U48.00 L49.3640

Conc. H+ donor; mg/ml (x5) 0.9195 0.94  0.97 1.00




L9

TABLE 12

Fourth Attemgt to Fit the Linear Equation
to a 27 Factorial Experiment

Relation between coded and experimental units

See Table 11
Code of x's examined

)l

X, = pH -6.85, x. - Temp.-46, x o Bt domor-0.97
0.1 2 2 3 0.03
Data
Coded Units oy
X ' Observed Results
Experimental combinations Coded Scale (reaction time in min.)
of independent varisbles x x4 X, X3 observed (yo) corrected (yc
1 1 -1 -1 -1 16 8
2 1 01 -1 -1 1k 6
3 i -1 1 -1 16 8
! 1 1 1 -1 17 9
5 i -1 -1 1 15 7
6 1 1 -1 1 b 6
T i1 -1 1 1 16 8
8 101 1 1 17 9

1 Corrected as in Table 7.
Normel Equations

8 0 0 0| Dby 61
0 8 0 Of [by -1
0 0 80 bof | 7T
0 0 0 8] |b3 -1
Solutions

b, = 7.625; by = -0.125; b, = 0.875; by = -0.125
Substituting into the linear model:
~

y = T.625 - 0.125x, + O.875x2 - 0-125x3
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TABLE 12 (Cont.)

Analysis of varience (fourth approximetion)

Source d.f. S.8. m.s.

1. Mean 1 4651.125

2. ILinear model 3 6.375 2.125

3. Iack of fit 4 3.500 0.875

k. Errort — — 3.716
Total 8 4750.000

1 Estimated by common mean square fram the analysis of
covariance of the effect of storage on enzyme activity.



51
the surface was augmented with axial and center cbservations. These
observations substantiated the impression that the minimum, and not
a horizontal inflection point, had been reached, for the axial ob-
servations all gave equal or longer times than the original 23 points
(Table 13).

The design used for this augmentation was that suggested by
Box and Wilson (1951), a central camposite rotatable design. This
design calls for sugmenting the original 23 points at the center and
on each axis 1.6818 experimental units from the origin. This distance
from the origin is chosen to preserve rotatability. The experimental
cambinations are given in Table 13, and their spatial relationships |
are illustrated in Figure 6.

The normel equations, the X'X and the X'Y matrices for this
specific experiment are shown in Teble 1k, along with the (X'X) -1
matrixl, the solutions for the regression coefficients, b's, the
second~order equation, and the analysis of variance.

To find the coordinates of the minimum, in coded form, the
partial derivatives of the second-order equation are teken with re-
spect to x7, xp and X3. If:

¥ = 6.7061 - 0.3195x) + 1.0051x2
-0.0732x3 - 0.1278x% + 1.9932x3
-0.4813x5 + 0.625xlx2 + 0.l25xlx3 + 0.125x2x3
then:

O = - 0.3195 - 0.2556X; + 0.625x2 + 0.125xs (1)

1 me (x'X)-1 matrix is the inverse of the X'X matrix.



TABLE 13

Central Composite Rotatable Design for a 23 Factorial Experiment

Coded Units
y
: X Observed Results
Experimental Combinations of ' Coded Scale (reaction time in min.)
Independent Variebles Xq Xy Xp Xz observed(y,) corrected (yc)l
original 23 points

1 1 -1 -1 -1 16 8

2 1 1 -1 -1 L1 6

3 1 -1 1 -1 16 8

y 1 1 1l -1 17 9

5 1 -1 -1 1 15 T

6 11 -1 1 1k 6

7 1 -1 1 1 16 8

8 11 1 1 17 9

Axial points o

9 1 -1.6818°(6.68) 0 20 8

10 1 +1.6818(7.02) 0 18 6

11 1 0 -1.68182(L2.6) © 23 1

12 1 0 +1.6818(9.4) © 27 15

13 1 o 0 -1.68182(0.92) 18 6

1k 1 0 0 +1.6818 (1.02) 18 6

1 The observed times corrected for storage by use of the previously determined decay curve (Fig 5), Ye=yo -

3.97x, where x is the number of days the enzyme has been stored. In the above table x=2 for the original 8
points and x=3 for the axial and center points.

The linear distance of these axial points from the origin is determined such that the design is rotatable.

g5



TABLE 13 (Cont.)

Central Composite Rotatable Design for a 23 Factorial Experiment

Coded Units
X y
Observed Results
Experimental Combinations of , Coded Scale (reaction time in min.)
Independent Variables Xq Xy Xp *s observed (y,) corrected(yc)l
.Center points
15 1 02 (6.85) 02 (L6) 02 (0.97) 18 6
16 10 o ¢} 20 8
17 10 0 0 18 6
18 1 0 ] 0 19 T
19 10 0 o} 19 1
20 10 0 0] 18 6

1 fThe observed times corrected for storage by use of the previously determined decay curve (Fig. 5),

Ye = Yo - 3.97x, where x 1s the number of days the enzyme has been stored. In the above table x =2 for
the original 8 points and x =3 for the axial and center points.

2 The duplication of the center point given this particular design & built-in estimate of variance.

4
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Figure 6. - Spatial arrangement of the
coded experimental combinations, il-
lustrating a central, composite, rotat-
able design for three factors (independent
variables).
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TABLE 1k

Composite Design

X'X Matrix
0 13.656
0 0
0 0
1%.656 0
0 ol
o] 8 .
o] 8
0 0
0 0
0 0
(xx)~L ()
0 -0.056791
0 0
0 0
0.073%224 o]
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0 0
0 o)
0 0

The (X'X)™1 Matrix is the inverse of the X'X Matrix.
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The solutions for the b's from the least squares equations of the (X'X) -1 Matrix

TABLE 14 (Cont.)

y = 6.7061 - 0.3195x, + 1.0051x, - 0.0732x3 - 0.127xg + 1.9932::2 - o.h813x§ + 0.6250x1xé + 0.1250%,%

+ 0.1250:{2):3

P23 |

[ 6.7061 ]
-0.3195
1.0051
-0.0732
-0.1278
1.9932
-0.4813
0.6250
0.1250

0.1250

2 *
0-302%
0.4h20
0.4420
0.4420
0.4302 !
0.4302 |
0.4302 |
0.57T4 !
0.57T7h

o

Substituting into the second-order equation:

~ Analysis of variance

Source d.f. S.5. m.s.
1. Mean 1 1170. 450000

2. First-order terms 3 1%.607129 L4 .86904

3. Second-order terms 6 68.560576 11.42676

k. Iack-of-fit 5 6.048300 1.20966

5. Replication error 5 3.334000 0.66681
Total 20 1263%.000000

1/2 1/2
* 8y = (V(by) ) / = (diagonals of the inverse Matrix times replication error) /
i

3

96
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= 1.0051 + 0.625;::L + 3,9864xp + 0.125x3

= -0.0732 + 0.125x; + 0.125xp + 0.9626xs

g g

Setting these partial derivatives equal to zero end solving

using the abbreviated Doolittle technique, it was found that

xX; = 1.3319
Xz =-0.0187
Xg = 0.2640

Decoding by use of the following equations,

1
p.< - 6.8
x = L0 - om
0.10
x> - 46
Xp = e——— = Temperature
2
‘1
- 0.
Xa = _ﬁ__gj__ = Conc. of H+ donor,
0.10

the optimal conditions were found to be,

X, (pH)

xz (Temp)

1]

6.98
45.96° ¢

xa(H+ donor) = (0.98 mg/ml), where the primes
are dropped.
Substituting these values in the second-order equation (10) it
was found that the minimum prve‘dicted value for the reduction time was,
¥ = 6.0106 minutes.
To verify or test empirically the accuracy and correctness of
the iconclusion that this set of conditions was optimal, several ob-

servations were mede in the surrounding region. The results of these
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tests are shown in Teble 15 and demonstrate an increase in the reaction
time for eny deviation from the optimal conditions as determined by
the method of steepest ascent.

Using equation (10) to approximete the response surface, con-
tour lines were determined following the procedure described above.
These contour lines are presented in Figures 7 and 8. Nine levels of
the dependent variable were calculated, however, for clarity of re-
presentation only six levels of response are illustrated.

The coordinates for the independent varisbles Xy and xz, were
computed for these nine levels of the dependent variable at nine select-
ed levels of xa (the independent varisble helfi constant at each level).
The levels of xas were selected such that there would be a constant in-
crement over the range of interest. These coordinates for the three
dimensionsl contours of the surface were calculated, using a previously
written progra.ml for the IBM 650 computer, and were printed on the IBM
Lo7 tabulator.

To helﬁ visualize the interrelations of the independent variebles
end their response, & model of the surface was constructed. This con-
struction was accomplished by connecting the contour lines of equal
megnitude of the response from one xz - level to another. To aid in
distinguishing one level of response from ancther, different colors
were used to represent the various levels of response (Figure 9). The
model is & four-dimensional protrayal of a saddle-shaped surface, where

the fourth dimension, response, is represented by the various colors.

1 oObtained from the University of North Carolina Department of Sta-
tistics: Coordinates and Plotting Cards for Five Variable Second-Degree
Model. 06.1.00%, 1, 2 AG/10-57.



TABLE 15

The Effect on Salivary N03-N02 Reducing Capacity by Altering the Experimental

Conditions from the Optimal |

. Reaction
Sample x; (pH) %o (Temp. C) X3, (Conc. H' donor; mg/ml) time in min.
1
6.98 k6.0 0.980 1n
6.73 44,0 0.985 13
7.02 .2 0.955 12
A
6.72 48,2 0.940 12
6.99 k9.6 1.000 13
1
6.98 L6.0 0.980 12
6.73 4,0 0.985 1k
T7.02 Wy, 2 0.955 13
B
6.72 4L8.2 0.940 13
6.99 4.6 1.000 13

1
Optimal conditions as determined by the method of steepest ascent
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' TABLE 15 (Cont).
The Effect on Salivary NO3-NOp Reducing Capacity by Altering the Experimental

Conditions fram the Optimal

Saliva Reaction
Sample x7 (pH) xp (Temp. °C) x5 (Cone. H" donor; mg/m1) time in min.
1 6.98 46.0 0.960 10
6.88 Wl 0.970 1n
6.75 ﬁu.u 0.955 11
¢ 6.72 48.0 0.985 12
6.99 k9.k 0.985 11

1
Optimal conditions as determined by the method of steepest ascent

09
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* 1 { Centour Lines for Sulivery Nitrete Nitrite Reductase

" Xy = pH Xy = Temperature (degrees C.) AFp gs ¥ 0.300.5 minutes
1.5 Xy = H* donor concentration (mg. ycast extract per ml.)
1.0 i = 1 = 6.0106 minutes (minimum)

s f2 = 2= 8.3110 minutes (105 per cent minimum)

g ¥3 = 3 = 8.6117 minutes (110 per cent minimum)
o ¥4 = 4 = €.8122 minutes (115 per cent minimum)

5 = 5= 7.2127 minutes (120 per cent minimum)

241 s = 6= 7.8138 minutes (130 per cent minimum)
1.04 F7 = 7= 8.4148 minutes (140 per cent minimum)
fy = 8 = 8.0158 minutes (150 per cent minimum)

+ g = 8= 9.8175 minutes (165 per cent minimum)
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Exemination of this response surface reveals that the three
independent variables studied did indeed influence the enzyme activity.
More careful scrutiny shows that temperature contributes the predominat-
ing influence above pH 6.0 and electron donor concentration of 0.7 ug/ml.
Also, by use of this response surface one may estimate the predicted

response of various cambinations of the independent variable levels.



CHAPTER IV

THE AFPLICATION OF THE METHOD OF STEEPEST ASCENT TO THE

DETERMINATION OF TOTAL SERUM FROTEIN

The second application of the method of steepest ascent was
drewn from the field of clinical pathology and is concerned with the
refinement of & dlagnostic serum test used by physicians.

The fractionation and determination of the individual serum
proteins has long been considered of great pragmatic value. It per-
mits studies of the chemical nature and the physiological function of
each protein in health and disease. Of particular interest in medicine
are the A/G ratio (albumin-globulin ratio) and totel serum protein.
Hence it is desirable that one not only be able to determine the total
serum protein (TSP) present but that methods for separating the plasme
proteins be availeble. These fractionating processes are generally
based upon (1) differences in physical properties (solubility in HO0,
salt solutions, etc.); or (2) rates of sedimentation in an ultra-
centrifuge; or (3) rate of electrophoretic migration. In the study
of serum protein which is being reported here, the difference in the
solubiiity of albumin and of globulin in ehtyl alcchol was used. The
TSP was determined first, and then the albumin. The amount of globulin

was obtained by subtraction. It is assumed the globulins and albumin

65
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account for all but e very insignificent part-quantitatively spesking-
of the total serum protein.

Hoping to reduce the variation in the determination of the total
serum protein and its subsequent effect on the A/G ratio, it was
decided to determine the optimal laboratory procedure for the Bluret
method, Ferro, Patrick, Ham and Ana Bell (1961), and to investigate
the response surface near the optimum. Such an investigetion should
allow the dlagnostic tool to be made more sensitive to smell changes.
Then by use of the contour lines, it might be possible in future studies
to retein optimal or near optimal conditions for the TSP determination
and yet optimize the procedure for determining thé ‘amount of albumin

present and hence the A/G ratio.

Experimental Method

Careful study of the literature and laboratory technigue led to
the selection of the following four independent variables:

X1

X = ml of NaoS0,

reaction temperature in C°.

il

ml of Biuret Reagent

X3

]

x4 = reaction time in minutes.
The concentration of NepS0, and the concentration of the Biuret Reagent
were held constant.

Since the individual conducting the research project was unable
t0 make a prediction based on his persoml—exferience as to possible
interaction effects that might exist among the four variesbles being
studied, it was decided to run a complete 24 factoriel design for the

initial approximation to the surface. If the higher order interactions
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proved to be non-significant, then a fractional factorial consisting
of a 1/2 replication of the 21‘L deslgn was to be adopted for the future
approximations of the surface and determinations of the path of steepest
ascent. Therefore, the assumed initial model was:
Y =Dbgxg + byxg + baxo + baxa + bgxg + b5Xle + be,xl;;:3 +
brXixs + baXaXs + Doxaxs + Digxaxy + b, X XaXs + b, X Xake +

151
amount of total serum protein.

b, X XaXe + bluxaﬂcsx.; + ble XoXaX4 + e, where y was the predicted
l N -

The resﬁlts of epxerimentation will be presented in tabular
form whenever possible and the (X'X) and the (X'X) -1 matrices omitted
in order to comserve space. |

Table 16 shows the original selection of the levels of the vari-
ous factors and their respective codes. The design matrix and results
of the first set of experiments are tabulated in Table 17.

The least squares normal equations, X'X B = X'Y, were solved
for the regression coefficients. Using these estimates of the re-
gression coefficients and substituting into the assumed model above,
it was found that
¥ = 8.4238 -.010kx; - .311kxp + .0970ks - -0078xs + -0330x Xz +
(OT12x,xg - .Oklhx xy - .1368xoKa + .1332Xaxs - -O412Xaxs + .0095X,X2Ks
-.0660xlxax4 - .0072x,XaX4 + .0509x2XaXs - .OO96XIX2xax4.

The (X'Y) and (B) matrices are given in Teble 18, and the analysis of
. variance presented in Table 19.

Having approximeted the regression coefficients, the first path
of steepest ascent was determined (Table 20). Proceeding along the
path, observations were made at those combinations indicated in Table 20.

“w
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TABLE 16

Factors in Coded and Original Units for

First Linear Approximation

Factors Code
-1 -1
X1 (Reaction temperature ©°C) 27.0 30.0
X> (ml of NansSO4) k.5 5.5
Xs (ml of Biuret) 3.5 L.5
X4 (Reaction time mimutes) 10.0 20.0




TABLE 17
First Approximation to Response Surface

Experi- Design Matrix® Observed Observed Total
ment for for Serum Protein

mmber X, % % X5 % XX XXy XX, L¥3 K% XX, G%X3 X%, XX, %XsK, X%Xs¥, Standard Usnown gu/100 ml

1 + - - - - + + + + + + - - - - + 1.03 1.19 8.0874
2 + - - = o+ o+ o+ - + - - - + + + - 1.04 1.17 7.8750
3 + - - o+ -+ - + - + - + - + + - 0.90 1.10 8.5555
4 + - + - - - + + - - + + + + - - 0.85 1.05 8.6471
5 + - -+ o+ o+ - - - - + + + - - + 0.95 1.10 8.1053
6 + - 4+ o+ - - - + + - - - + - + + 0.80 0.95 8.3125
7 + - + + + - - - + + + - - + - - 0.75 0.95 8.8667
8 + - + - + - + - - + - + - - + + 0.83 1.07 9.0241
9 + 4+ - - - - - - + + + + + - + - 1.03 1.15 7.8155
10 + + - - + - - + + - - + - + - + 1.06 1.17 7.7264
n + + - o+ = - + 1 - + - - + + - + 0.93 1.10 8.5555
12 + + + - - + - - - - + - - + + + 0.87 1.06 8.7294
13 + O+ - o+ o+ - + + - - + - - - + - 0.95 n 8.1789
1% + o+ o+ o+ -+ + - + - - + - - - - 0.78 1.00 8.7500
15 + + + - o+ o+ - + - + - - + - - - 0.86 1.07 8.7093
16 + + + + + 4 + + + + + + + + + + 0.76 0.96 8.8421
1

+ represents the +1 level of the independent variable, - represents the -1 level of the independent variable.
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1

(x'Y)
34 . 7807
-.1665
4.9817
1.5523
-.1251
5273
1.1395
-.6623
-2.1895
2.1315
-+.2359
1513
-1,0561
- 11k7
L8147
-.0153

T0

TABLE 18

(8)
—bo —

by

b2

ba

bg

First Approximation of the Response Surface
(Totel Serum Protein)

(8)
"8—.h238_‘
-.010k

311y
0970
~-.0078
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TABLE 19

Analysis of Varience for First Linear Approximation

Source d.?. Se8, m.S.

Total 16 1137.9067

Mean 1 1135.3648

Main Effects L 1.7046 ho61

Lack-of-fit 11 8373 0761
X2Xa (1) .3107 .3107
XoX4 (1) .2840 .2840
Remainder (9) .2h26 .0270

Error* 7 J— .0225

1 Estimeted from previous laboratory findings.

2 w0225 |
V(by) = Cyq &2 = - . - -
(by) = Cyy : 0oLk, 28, = 0.T5, Fy ooy = k.03



TABLE 20

Initial Path of Steepest Ascent

(biuret) (temp) (NazS0,)  (time) (Preg.icted) (Observed)
X3 xl X2 Xh y y
Relative change in design units 0.0907 -0.014 0.3114 -0.0078
No. of orig. units=l design unit 0.5 1.5 0.5 5.0
Relative change in orig. units 0.0485 -0.0156 0.1557 -0.0390
Change per .5 cc change in X5 0.5 -0.1608 1.6052 -0.4020
Rounded 0.5 -0.16 1.60 -0.40
Initial level k.o 28.5 o 5.0 15.0 8.4328 8.4651
Observations along path (1) 4,5 28.342 6.6 14.6 9.514h 8.4858
v (2) 5.0 28.182 8.2 k.2 10.6277 8.64T71
53) 5.5 28.022 9.8 13.8 11.7026 8.9250
L) 6.0 27.86 11.% 13.4 12,7967 8.9688
Coordinates of observations
Along path of S.A. Standard Observed
Initial value 0 0 o) 0 .86 1.04
Obs. 1 1 0.3333 3.2 -.08 .66 .80
2 2 0.3333 6.4 - .16 .51 .63
3 3 0.3333 9.6 ~-.24 A1 .51
4 b 0.3333 12.8 -.32 .32 Ja
1 §=8.42379 - .0104%; + .3114Xp + .09T0Ks - .00T8Ks

Since a water bath was being used to control reaction temperature and these increments were so small,
all four observations along the path of steepest ascent were made at a constant temperature: that is, 28°.

2l



TABLE 20 (Cont.)

Initial Path of Steepest Ascent

Code
(x-28.5) /1.5 Xy = (%-4.0) /1.5
(X-5.0) /.5 X, = (x-15) /5

¢l
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It was immediately evident that the obsérved. responses y's and predict-
ed responses ;'s were substantially different and a new set of factor
cambinations should be determined. However, in view of the progressive
increase in the observed y's, it was decided to contimue making ob-
servations along the path for a way and then to fit another factorial
to the surface.

It is interesting to note in the calculation of the path of
steepest ascent (Table 20) that if relative changes are based upon xaz,
then there are unreasonebly smell steps in Xy, X3, a.nd. Xg4. In fact,
the first seve;'al points along the path would lie within the previously
examined ranges of the variables X5 X3, and x4. On the other hand, if
x; were used as the standard and increments were calculated for the
other veriables for, say, a 1 or 2 degree change in Xy, then the in-
crement in xp would be exorbitantly large. .

In determining the factor cambinations and levels for this
second epproximation, two things seemed to be indicated. First, the
small size of the regression coefficients suggested that a more in-
formative and accurate determination of the regression coefficlents
might be made if the intervals between the factor levels were increased.
Second, the relatively small size of the ''lack~of-fit'' term in the
analysis of variance (see Table 19) indicated that the interaction
terms were rather small and that & fractional factorial design might
be applicable. A breakdown of the analysis of veriance shows that
even though the !''lack-of-fit'' term is non-significant, the (xoxs)
and (xax4) interactions are significant. In the one-half replicate of

the ol design, these interactions were confounded with the (xlx4) and
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(x1xa) terms respectively. Since the latter two are non-significent
this confounding is justifiasble, and it was decided that the 1/2
replicate of such a design should be run for the second approximation
to the surface and subsequent determination of the path of steepest
ascent. The two way tables for xz and xg and for xp and x4 appear in
Table 21.

Adopting the following model:
§= boXg * bixy + boxz + baxs + bexe + bsxaxy + bexaxse + brXoXa,
the second approximation of the surface was made. The terms xax4, X2X4,
and Xoxz are confounded with x3x», Xjx5 and XyX4, respectively.

The levels of the various factors and their coded form, the
design matrix, and results appear in Table 22. The solution of the
normal equations yielded the following regression equation:

y = 8.7310 - .0768x) - .OLkOx2 - .O4T5xa - .0066xs - .0163xsxy +
.0160xox,s - .0361lxoX3.

Unfortunately, an error was made in the original calculation of
the regression coefficient for Xy The initial levels for X, were 27° c
end 30° C. The calculated regression coefficient bl should have been
-.0104; however, a positive coefficient was recorded. Consequently,
in the second approximation to the surface the levels of X; were
selected at 30° C and 35° C. These levels of the x, variable gave &
regression coefficient of -.0768, a negative value that was originelly
interpreted as meaning that a maximum had been passed for the regression
coefficient had changed from positive to negative. The subsequent cal-
culation of the path of steepest ascent corrected for this error, since

the increased size of the regression coefficient in the negative
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TABLE 21

Biuret-Sulfete Interaction

X2(S04)"
Xa(B) -1 1
-1 31.5043 35.1099 66.6142
1 33.3952 34,7713 68.1665
64.8995 69.8812
Time-Sulfate Interaction
X2(S504) ~
X4 (time) -1 1
-1 33.0139 3k.4390 67.4529
I 31.8856 35,4422 | 67.3278
6k4.8995 69.8812
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TABLE 22

Second Approximation of the Surface

Factor Code

-1 +1
X, (temp.) 30 35
x, (S04) 9 1
X5 (B) 6 8
x), (time) 5 15

Design Metrixl

y
Xo X X, Xp X oxgm X Xp3 obs. std. (observed)

1 -1 -1 -1 -l 1 1 1 Al95  .392  8.8393
1 -1 1 -1 1 -1 1 -1 L0717 320 8.9031
1 -1 -1 1 1 1 -1 -1 Lot .32k 8.7716
1 -1 1 1 a1 a1 a1 1 330  .265 8.7170
1 1 -1 -1 1 -1 -1 1 .508 .410 8.6732
1 1 1 -1 -l 1 -1 -1 L2200 .338  8.6982
1 B i -1 -1 1 -1 Loo 322 8.6956
1 1 1 1 1 1 1 1 331 .271  8.5498

1 Bach camparison meausres a pair of effects, the pairs are; (xl,Xaxsx4) 3
(xa,l‘flxsx‘;); (Xs,xlxau); (x4,x1x2x3) 3 (x2%3,X1%X4) 5 (X1%0,%x5%4) ;3
(x2x4,%yx3) .
For an analysis of this design see 0. L. Davies (1956).
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direction increased the size of the increments in the calculation of
the path, thus compensating by use of a large increment what would
have been brought sbout originally. This demonstrated, unintentionally,
one of the advantages of the method, namely the robustness of the
technique. It should be noted that when the error was discovered and
corrected, the regression coefficient had indeed increased negatively
by the change in coordinates of x5, as could and should have been
expected.

The calculation for the path of steepest ascent and cbserved
values are given in Table 23.

Notice that the signs of bz and bg have changed from positive
to negative, thus indicating that a maximum has been passed. In the
case of by, the sign hes not chenged, but the mimute size of by (bg = '
-.0066) indicates that we are near a maximum. It seemed reasonsble,
therefore, to conclude that we were in the near vicinity of a maxi-
mm and hence a complete factorial should be planned in order that
the experiment, if found to be satisfactory, could be augmented by
central and axial observations for the estimation of the regression
coefficients for a second-order model.

To take into account the above-mentioned change in sign of the
regression coefficients and the error made in b;, the levels of the
various factors were adjusted in an attempt to insure that the optimum
would be included in the design space. The codel, design matrix, X'Y,
and B matrices follow in Tables 24, 25 and 26. The analysis of variance

is also given in Teble 26.

1 Notice that the table includes the coded values of the center and
axiel points for the augmented design. Here, however, we are only
interested in the Columns 1 and -1.



TABLE 23

Second Path of Steepest Ascent

Temp S04 B Time Pregicted Observed
X %5 Xy X, ¥ y
Relative change in design units -.0768 -.01k0 -.0475 -.0066
No. of orig. units=1l design unit 2.5 1.0 1.0 5.0
Relative change in orig. units -.192 -.014 -. 0475 -.0330
Change per 1°C change in X 1.0 .0729 2473 .1718
Initial level 32.5 10.0 7.0 10
Observations along path (1) 31.5 9.9271 6.7527 9.8282 +8.77708 9.2920
: (2) 30.5 9.8542 6.5054 9.6564
(3) 29.5 9.7813 6.2581 9.4846 8.88602 8.9570
() 28.5 9.708% 6.0108 9.3128
(5) 27.5 9.6355 5.7635 9.1410 8.90878 8.8480
(6) 26.5 9.5626 5.5162 8.9692 8.9469
(1) 25.5 9.4897 5.2689 8.7974 8.9898 7.8369
(8) 2.5 9.4168 5.0216 8.6256 9.0205
(9) 23.5 9.3439 hoTTh3 8.4538 9.0428
Obs. (Rounded) X X X std. Obs.
)+ 3t 102 7 1 339 15
(3)+ 29 10 6 10 372 476
§5)+ a7 10 6 9 375 etk
)+ 25 9 5 9 k60 515
9+ 23 9 5 8
- (temp-32.5 _ (NaS04-10) - (Bluret-7) _ (time-10)
Code X, = X, =(1280s-10 X, ("'_1,'_1 X, :

* These observations are those indicated by arrows above after rounding.

6L
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TABLE 2k

Third Approximation of Response Surface

Coded Values
Factor -2 -1 0 1 2
Xy (temp.) 25 21 2 31 33
Xo (NazS04) 8 9 10 1
X3 (Biuret) 3 5 6 7 8
Xy, (time) 1 b 7 10 13
CODE: % = temp. -29
2

Xp = Na.aggls -9

¢, = Biuret -6

>

X, _ time -7



Third Linear Approximation of Response Surface
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TABLE 25

Experiment X Xp X3 Xy, Observ- Stand- N'g
numbers ed ard Observed
1 -1 -1 -1 -1 0.670 0.527 8.8994
2 -1 -1 -1 1  0.660 0.53%2 8.6842
3 -1 -1 1 -1 0.530 0.410 9.0487
L -1 1 -1 -1 0.530 0.k27 8.6885
5 -1 -1 1 1 0.520 0.415 8.7711
6 21 1 1 -1 0.419 0.338 8.6775
7 -1 1 1 2 0.423 0.348 8.5086
8 -1 1 -1 1 0.541 0.445 8.5101
9 1 -1 -1 -1 0.720 0.56k 8.9362
10 1 -1 -1 1 0.740 0.568 9.1197
11 1 -1 1 -1 0.565 0.446 8.86TT
12 1 1 -1 -1 0.575 0.453 8.8852
13 1 -1 1 1 0.550 0.440 8.7500
1k 1 1 1 -1 0.450 0.358 8.7989
15 1 1 1 1 0.450 0.351 8.97u44
16 1 1 -1 1 0.584 0.470 8.6979
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TABLE 26

Third Linear Approximetion of Response Surface (Cont.)

B X'Y
by | [8.8011 | 140.8181 |
by 0776 1.2k19
bo = . | -.083 -1.3359
b -.0015 -.02k3
| by | _-.ohg_l_ __-.7861_1

¥ = 8.8011 + 0.0776x; - 0.083kxz - 0.0075xs - 0.0491x,

Analysis of Variance

Source d.f. SeS. m.s.
Total 16 1239.8169
Mean 1 1239.3585
Single factors L 246k .0616
Lack-of-fit 1 - .2120 .01927
_ Errorl 50 -—-- . 0225

1 Estimated from pervious leboratory findings.
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Checking the anslysis of variance and the regression coef-
ficient for Xy (Table 25) and finding it now to be positive rather
than negative as it appeared in Table 23, and teking into coﬁsider-
ation the above discussion of the variables x», xz and x4, it seemed
reasonable that the design space did indeed include the desired
optimum and that the second-order model
Y =bX, +yxy + baxo + baxg t* bexg + bllx_% + bzgxg + b33x§ + bmxg +
Piofire *Byzgxs +byxp;, b bpgkaxs Fbyxk +Pyx re.
should be adopted.

The code for the augmented designl is given in Table 24 and
the design metrix for the entire centra_l camposite design is given in
Teble 27 followed by the X'Y and B matrices in Table 28.

Due to the number of observations necessary for the composite
design, it was recognized that blocking over days would be desirable.
Therefore, following the recommended procedure discussed in the first
section of this dissertation, only six observations were made at the
origin, rather than the required seven for uniform information, thus
allowing for orthogonal blocking. The analysis of variance is given

in Table 29 where the blocking has been done over time.

Contour Lines for Total Serum Protein.

Since the response is dependent upon four variables, to make
a graphical representation of the response surface, it is necessary to
hold two of the independent variables fixed and show response levels as

the remaining two variables are allowed to change. To this end, x4

1 This désign has only ''nearly'' uniform information due to the
number of observations that were made at the origin.
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TABLE 27
Central Composite Design Matrix® and Results

Obser-
vation
number X, X X5 Xy Xpy Koo X33 Xy, Xpp X3 Xy, X3 Xy Xz, Y
1 + = = - - + + + + + + + + + + 8.8994
2 + - - -+ + + + = 4+ - - B.684
3 + - - o+ - + + + + + = + = 4+ - 9,0487
L + - o+ - - + 4+ + + = 4+ 4+ - - 4+ 8,688
5 + - = + + 4+ + 4+ + 4+ - - - - 4+ 8,711
6 + - o+ 4+ - + + + 4+ = - + 4+ - - 8.6775
7 + - + 4+ 4+ 4+ + + 4+ = = = 4+ + 4+ 8,5086
8 4 = 4+ = 4+ 4+ 4+ 4+ 4+ = + = - 4+ = 8.5101
9 + o+ = - - + o+ o+ 4+ = - = 4+ + + 8.9%2
10 + o+ = = 4+ + 4+ + + - - 4+ + - - 9,1197
11 + o+ - o+ - + 4+ + + = + - = 4+ - 8,8677
12 + + 4+ = - + 4+ 4+ 4+ 4+ = - = - 4+ 8,885
13 + o+ -+ o+ + + + 4+ - + + = - 4+ 8,7500
1k + + + + = 4+ + + + + + - + - - 8,799
15 e - - 8.6979
16 + o+ o+ o+ + 4+ o+ o+ 4+ o+ o+ 4+ o+ o+ 8974k
17 + -2 N 7.8369
18 + 2 Lo 8.7906
19 + -2 4 8.5090
20 + 2 n 8.8000
21 + -2 L TT777
22 + 2 b 7.7538
23 + -2 L4 8.9655
2k + 2 - L 8.5790
25 + 8.5938
26 + 8.5573
27 + 8.5610
8 o+ 8.7500
29 + 8.6333
e + 8.6666
1

+ represents the +1 level of the independent variable, - represents the -1
level of the independent variable, and no entry represents the 0 level.
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TABLE 28

Regression Coefficients and X'Y Matrix for Composite Design

X'Y
_25959261
31493
~7539

-721
-15591
2073281
2100541
2029kk1
| 2109961
7015
-h17
8941 7
3197
679

87
I

B

'8.6280461
13122083
-.03141250
-. 00300416
- . 06496250
- 00787813
<OTT30937
-.14487813
.10674687
04384375
-.02948125
.05588125
02375125
.00k24375

.00054375

.0038240k4
00382404
0038240k
.00382k40k
.0032982k
.00329824
.00329824
00329824
. 00573606
. 00573606
.00573606
. 00573606
.00573606

<00573606
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TABLE 29

Analysis of Variance for Central Composite Rotatable
Design with Orthogonal Blocking

Source d.f. 5.5. MeSe

Mean 1 . 2239.7769

Regression % 8.3692

Residual 15 1.3768 0.0918
SS blocks (2) 0.8588 0.4294
SSe (3) 0.0192 0.006k4
R-8Sp ~ SS, (10) 0.4988 0.0499

Total 20 2249,5229
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wes held at (+1, O, -1) and then nine levels of x3 were selected, that
is, x3 = (-2.0, -1.5, -1.0, -.5, 0, +.5, +1.0, +1.5, +2.0). The IEM
650 progrem was limited to & maximum of nine levels or values for the
dependent variable. The values selected and the increment are given
along with the contour lines in Figures 10, 11, 12, 13, 14 and 15.

In order to study further the fitted surface it is often con-
venient to reduce it to the canonical form. This reduction is ac-
complished by the shifting of the origin to the optimm, and rotating
the coordinate axes so that they correspond té the axes of the originsl
fitted regression equation. The general regression equation is then
reduced to the following form:

§-yo=>\1€ + )2x§....+ /\kxg.

Examination of the above equation shows that 1argé values of
are indicative of rapid changes in the response, and that small values
of A\ are indicative of slow changes in the response. If the ;X 's
are all negative, the fitted contour surfaces are ellipsoids and the
response surface has a true maximum. )

If one or more of the ;\‘s are positive the contour surféces
are elliptic hyperboloids and there is a minimum. If one or more of
the ,\ 's approach zero the surface is attenusted along these axes
and the surface is an elliptic or hyperbolic cylinder. In such cases
the response surface forms a ridge.

To obteln the coordinates of the center or maximum, take the
partiel derivative of the regression equation given in Table 29 with
respect to xj, X2, X3 and x4 respectively. Setting these partial

derivatives equal to zero one obtains the following system of equations:
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= .13122083- .01575626x1+.oh384375x2- .02948125%4+.05588125x,
= .03141250+.04384375x7 +.154618Thxo+ . 023T3125%a+. 004243 75%,
-+ 00300416~ . 02948125x, +.02373125x2~ . 289756263+ .00054375%4
= ~.06496250+.05588125x, +.00424375%2+. 0005437 5% a+. 213493 THx s

(o] o o o
]

The solution of these equations glve:

X = 4.1426
X2 =-0.8732
xg ==0.5048
x4 ==-0.7614

Substituting these velues into the fitted second-order re-
gression equation the predicted value for the maximum is found to be
Yo = 8.891k.

For a theoretical discussion of the reduction of the above re-
gression equation to this canonical form one is referred to Birkhoff
and Maclane (1953). A program now available for the IBM 650 digj:tal
computer for solving secular equations was used here, however., The

discriminating quartic dis:

- P2 P13 Pa
2 2 2
P12 P2 - N P By
2 2
H= \ =0
P13 P23 P55 77 D3l
2 2 2
o tw b by, 7
2 2 2
which has the roots }
1= -.016718
\

/2 = .080768
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>3 = ~, 147382
>1+ = ,114635.

By substituting these values and the predicted value at the center
into the canonical form above, one obtains

y -8.891k = -.0L6716x2 + .0B0766x3 - 14736263 + .114635x3

Following the recommended anelysis outlined by Box and Wilson
(1951) , except using the IBM program mentioned above, the following

orthogonal transformation for the old variable to the new was found

to be
{-09u8192519 - 0200151948 -.0128069775  -.0210875010)]
0153260296 0956904206 .0039994488  -.0243405137

. . 0117416065 -.006364T7127 . 0990949699 -.0013460907
8- 0252300792 .02005556Tk - . 0004154501 .09k46627943

where, B0 (1) - @' mq.

From the smallness of >~ 1 conipa.red to the other coefficilents,
it can be shown that the surface is attenuated along the x, axis, that
is, there is a ridge running in this direction. The fitted response
surfaces are hyperboloids of one . sheet. Thus the sections by the plane
X = 0 and x4 = 0 are hyperboloids and those by X =0 and xg = 0, el-
lipsoids. |

This ridge is indicative of a contimuing change of the response
due to variations in the temperature. However, careful examination of

the response surface reveals that the surface 1s quite flat and that

1 BP is the diasgonalized form of the regression equation; that is, the
diagonal elements represent the coefficients of the canonical form of

the second-order regression equation.
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these variations are not large. The remsining Independent variables
(emount of NapSO4, smount of Biuret and time) are all more influential

on the response.



CHAPTER V
SUMMARY

The purpose of this dissertation has been to demonstrate the
applicability of the method of steepest ascent to medical data and
to illustrate the subsequent characterization of the response surface
in the optimization problem as it appears in certain fields of medical
research. To this end, two specific examples were introduced and
modifications in the method of steepest ascent adopted to illustrate
empirically the feasibility of the method. ' These modifications have
been discussed and the opfima.l conditions found for the two processes.
Specifically, a study was undertaken to determine the optimum conditions
for, and interrelastions of, temperature, pH and concertration of elect-
ron donor on the rate of nitrate reduction by the nitrate-nitrite re-
ductase systems in a pooled sample of salivary sediment. By vary-
ing the conditions of pH, temperature and electron donor concentration
(yeast extract) the minimum reduction time was esteblished in four
sequential sets of experiments. The method employed was that of
steepest ascent which consisted of two phases; first, the establish-
ment of the response surface and the conditions for the optimum, and,
second, the calculation of the associated ;:ontour lines. Three linear

approximetions of the response surface and their subsequent paths of

97
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steepest ascent were utilized in locating the near-optimel region.
A fourth, and finsl, linear approximation was augmented by additional
experimental points such that the property of rotatability was pre-
served and & second-order approximation of the response surface made
possible. This method permitted the calculation of the response sur-
face from a much smeller number of experiments than would have been
necessary with a camplete factorial experiment (or by the single-
factor method). It also provided the opportunity for the recogni-
tion of possible interactions among the varisbles. While the three
variables examined were found to influence the enzyme activity, temp-
erature contributed the predominating influence sbove pH 6.0 and
electron donor concentration of 0.7 g/ml. Through the utilization of
the determined response surface, the estimated optimal conditions
were found to be ; pH 6.98, temperature, 45.9° C, and electron donor
concentration, yeast extract, 0.97 g/ml.‘ The basis for the construc-
tion of the design for the study was discussed and the detaills of the
statistical analysis presented.

The second application was concerned with the optimization
and interrelations of temperature, amount of NaoS50,, amount of Biuret
reagent and reaction time on the determination of total serum protein.
Following the procedure described above, the estimated optimal condi-

tions were found to be

temp. (x;) = 37.2852° ¢
NansS04(x2) = 8.1268 c.c.
Biuret(xs) = 5.4952 c.c.

time (x4)= 0.2842 min.
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The second-order approximetion of the response surface was determined,

the subsequent contour lines calculated, and the canonical form of the
response surface found.

It appears to the writer that the researcher in biological
phenomens will frequently be unable to control the independent vari-
ables as precisely as might be desired. To further compound this
problem one often observes large varlation in the dependent variable,
thus making it doubly easy for the '‘masking'' effect to occur in the
application of the technique described. To compensate for these negative
effects, one mey replicate experimentel observetions and in some cases
increase the independent variable spacing intervals. If the latter
measure is adopted, however, the consequent lack-of-fit term in the
linear approximation of the response surface might be significant
even though it might not have been if the independent variaeble in-
tervals had been smaller. This writer's experience shows, however,
that the path can be calculated and used as a guide for progression
toward the maximum, even though the expected values along the path
of steepest ascent are unrealistiec.

The method of steepest ascent and the subsequent characteriza-
tion of the response surface seem to offer an excellent opportunity for
solving optimization problems in several areas, in particular, bacteri-
ology, biochemistry, enzymology, physiology, pharmacology, radiology,
and virology. The restrictions, of course, revolve around the identi-
fication of, the number of, the abllity to control, and the continuity

of the independent variables.
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Since the only time an experiment can be properly designed is
after the experiment has been performed, one m:I.ght suspect that the
methematical sophistication for the application of the method of
steepest ascent, indeed, any experimental technique, depends upon the
experience and knowledge of the researcher regarding the statistical
tool itself and the functional phenomens being investigated. If the
design is unsatisfactory, it may be frequently attributed to one of
the following:

l. One or more variables have been neglected.

2. A poor (or at lemst a less favorable) choice of code for

the variables has been made.
- 3. Improper i'anges for the variables have been selected.

4, A basic error in selection of the design has been made.

The above-mentioned illustrations of the application of the
technique have not followed Box's outlined procedure unremittingly
but have captured the intent and the general concepts which Box and
his co-workers have proposed. Certainly the method of steepest ascent
is not & purely mathematical concept; but, just as certainly, it is a
methodology for solving a particular type of problem. The method has

been shown to be reasonably flexible and successful.



REFERENCES CITED

Anderson, R. L. 1953 Recent Advances in Finding Best Operating

Conditions. Journal Americen Statistical Association,
48: 789-798.

Birkoff, G. and Maclane, S. 1953 A Survey of Modern Algebra.

Macmillan Company, N. Y. pp. 248-251.

Bose, R. C. and Draper, N. 1959 Rotatable Designs of Second and

Box, G. E. P.

Third Order in Three or More Dimensions. Institute
of Statistics Mimeo Series, No. 197.

1952a Multi-factor Designs of First Order. Biometriks,
39: L49-5T.

1952b The Exploration and Exploitation of Response
Surfaces: Some General Considerations and Exemples
Biometrics, 10: 16-60.

and Behnken, D. W. 1959 Derivation of Second Order
Rotataeble Designs from those of First Order. Statistical
Techniques Research Group (Princeton University), Tech-
nical Report No. 17.

and Draper, N. L 1959 A Basis for the Selection of a
Response Surface Design. Statistical Techniques Research
Group (Princeton University), Technical Report No. 23.
Journal of the American Statistical Association, 54: 622-65k.

and Hunter, J. S. 1954 A confidence Region for the
Solution of a Set of Stimultaneous Equations With an
Application to Experimental Design. Biometrika, &l: 190-199.

and 1957 Multi-factor Experimental Designs
for Exploring Response Surfaces, Annals of Mathemstical

Statisties. 28: 195-2k1.

and Iucas, H. L. 1959 Design of Experiments in Non-
Linear Situations. Statistical Techniques Research
Group (Princeton University), Technical Report No. 15
Biometrika, 46: Parts 1 and 2.

101



102

and Wilson, K. B. 1951 On the Experimental Atteinment
of Optimum Conditions. Journal Royal Statisticel Society,
Series B, 13: 1-45.

and Youle, P. W. 1955 The Exploration and Exploitation
of Response Surfaces. An Example of the Link Between
the Fitted Surfece and the Basic Mechanism of the System.
Biometries, ll: 287-323.

Brooks, S. H. 1959 A chn;parison of Meximum- Seeking Methods. Operations
Research, T: 430-457.

Budne, T. A. 1959 The Application of Random Balance Designs.
Technometrics, 1l: No. 2, 139-155.

Chew, Victor (ed) 1958 Experimental Designs in Industry. A Symposium
Held at North Carolinas State College, Nov. 1956. Experi-
mental Designs for Exploring Respomse Surfaces, by Box,
G. E. P. and Hunter, J. S. John Wiley and Sons, Inc.,
New York.

Cochran, W. G. and Cox, G. M. 1957 Experimental Designs Second Edition.
Same Methods for the Study of Response Surfaces. John

Wiley and Sons, Inc., New York. Chapter 8A.

Davies, O. L. (ed) 1956 Design and Analysis of Industrial Experiments.
The Determination of Optimum Conditions. Befner Pub-
lishing Co. New York. Chapter 11,

and Hay, W. A, 1950 The Construction and Use of
Fractional Factorial Designs in Industria.l Research
Biometrics, 6: 233-249.

David, H. A. and Arens, B. E. 1949 Optimel Spacing in Regression
Analysis. Annals of Mathematical Statistics., 30: 1072-1081.

DeBaun, R. M. 1956 Block Effects in the Determination of Optimum
Conditions. Biometrics, 12: 20-22.

1959 Response Surface Designs for Three Factors at
Three Levels. Technometires, 1: No. 1 1-8.

de 1a Garza, A. 1954 Spacing of Information in Ploynomial Regression.
: Annals of Mathematical Statistics, 25: 123-130.

Dykstra, O. 1960 Partial Duplication of Responée Surface Designs.
Technometrics, 2: No. 2, 185-195.

Ferro, Patrick, Ham and Ana Bell, 1961 Commerical Report for Improved
Biuret Method for Total Protein and AG Ratio, Dade
Reagent Inc. Miemi, Florida.



103

Finney, D. J. 1945 The Fractional Replication of Factorial Experiments.
Annals of Bugenics, 12: 291-301.

1946 Recent Developments in the Design of Field Experi-
ments. Fractional Replication. Jounal of Agricultural
Science, 36: 184-191.

Flosdorf, E. W. 1949 Freeze-Drying (Drying by Sublimation) Reinhold
Publishing Corporation, New York.

Friedman, M. and Savege, L. J. 1947 Planning Experiments Seeking
Mexima. In Eisephar, Hastay and Wallis. Selected
Techniques of Stetistical Anelysis. McGraw-Hill Book
Co,., New York. pp. 363-372.

Fisher, R. A. 1949 " The Design of Experiments. Oiiver and Boyd London.

Gerdiner, D. A., Grandage, A. H. E. and Hader, R. J. 1959 Some Third
Order Rotatable Designs. Mimeo Series No. 14 (April, 1956).
Institute of Statistics (Raleigh, N. C.) Annals of Mathe-
matical Statistics., 30: 1082-1096.

Goaz, P. W. and Biswell, H. A. 1961 Nitrate Reduction in Whole Saliva.
Journal of Dental Research, L0: 355-365.

Graybill, F. A. 1961 An Introduction to Linear Statistical Models.
McGraw-Hill Book Co., New York. Chapter 6: 149-164.

Heder, R. J., Hayward, M. E., Mason, D. D. and Moore, D. P. 1957
An Investigation of Some of the Relationships Between
Copper, Iron, and Molybdenum in the Growth and Nutri-
tion of Lettuce: Part I. Experimental Design and
Statistical Methods for Characterizing the Response
Surfece. Soll Science Society of America. Proceedings.
21: No. 1, 65-Tk.

Hawk, P. B., Oser, B. L., and Summerson, W. H. 1951 The Practical
FPhysiological Ghemistg Twlfth Edition. The Blakiston
Company, New York.

Keplan, W. 1957 a Advanced Calculus. Addison-Wesley. Readling, Mass.
ppo 79"82.
1957 b Advanced Calculus. Addison-Wesley. Reading, Mass.
pp. 120-132.

Kempthorne, 0. 1947 A Simple Approach to Confounding and Fractional
Replication in Factorial Experiments. Biometrika, 34:

255-72.

Kiefer, J. and Wolfowitz, J. 1952 Stochastic Estimation of A Maximum
of a Regression Function. Annals of Mathematicel Statistics.,
gé: h62-‘)+66-



104

Nielsen, K. L. 1957 Methods in Numerical Amalysis. Macmillan Company.
New York. Chapter VIII.

Piper, W. W. 1959 A Program for the Solution of Secular Equations.
General Electric, Schenectady, New York. P. O. 1088.
(Personal Communicetion). _

Plackett, R. L. and Burnem, J. P. 1946 The Design of Optimum Multi-
factor Experiments. Biametrike, 33: 305-25.

Rao, C. R. 1947 Factoriel Experiments Derivable from Combinatorial
Arrangements of Arrays. Journal of the Royal Statistical
Society Supplement, 9: 288-

Satterthwaite, J. E. 1959 Random Balance Experimentation Technometrics,
l: No. 2, 111-137.

Snedecor, G. W. 1956 Statistical Methods. Fifth Edition. The Iowa
State College Press, Ames, Iowa, Chapter 13. .

Yates, F. 1937 Design and Analysis of Factorial Experiments. Imperial
Bureau of Soil Science Technical Communicetion, No. 35.



