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AM mVESTIGATIOir OF THE AEELICATIOM OF THE MEÏEHOD OF 
STEEPEST ASCEMT IM MEDICAL BESEARCH

CHAPTER I 

IMTEOIUCTION

The fundamental objective of many experimental investigations 

is to characterize and measure the relationships between independent 

and dependent variables. In particular, the medical research worker 

may be interested in the optimization of a product, process, or 

response and the investigation of the relationship among these vari­

ables near this optimum. The solution of such a problem is dependent 

upon the identification of those factors which contribute significant­

ly to the product, process, or response in question and on the selec­

tion of the combination of the levels of the independent variables 

which will optimize the response.

Recognizing this fundamental objective and being cognizant of 

the great number of interacting variables inherent in medical data 

and research, it was thought that the optimizing technique known as 

the method of steepest ascent would be of particular value to the 

individual interested in medical research. This method was recently 

developed by Box and Wilson (1951)> in an attempt to solve partially 

the latter aspect of the optimization problem for the chemical industly.
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Statement of the Problem 

The problem is to investigate and determine the feasibility 

of a new application of a known statistical tool, the method of 

steepest ascent in response surface techniques.

In applying this technique, indeed any techniqiie, to a new 

situation, many ccaaplications are bound to arise due to the uniqueness 

of the data and process being investigated, and due to basic assumptions 

necessary for the utilization of the particular statistic being employ­

ed. It may therefore be necessary to make adaptions in the method, 

and statistical assumptions about the processes being investigated.

Also, if the technique is to be of value in solving optimization 

problems in the area of medical research, one should be aware of the 

types of processes that may be optimized and of what usefulness the 

technique mi^t be.

It is proposed to illustrate the efficacy of the method of 

steepest ascent to optimize a response and the adjustments necessary 

to utilize the method by investigating two example problems, one from 

the field of enzymology and the other from the field of clinical 

pathology.



CHAPTER II 

REVIEW OP LITERATURE

To understand better the problems to be encountered in the 

application of the method of steepest ascent, it is necessary that 

one have a clear concept of the optimization problem itself. While 

there are a variety of methods of presenting the problem, a precise 

statement of the optimization problem mi^t be:

Suppose there exists a response y which is dependent on the 

levels of k different quantitative factors, or independent variables, 

which are subject to precise measurement and control. The problem 

then is to optimize the response y by the proper selection of a 

particular combination of the factor levels. The combination of 

factors which produces this optimal response will be called the 

optimal factor combination. Mathematically this relationship could 

be expressed as:

y  = ^ Xsy . .Xjj)
where y is the true or hypothetical response that should be obtained 

in the absence of experimental error, 0 is the response function and 

Xj (j = 1,2,...k) are the independent variables.

In experimental work, the response function 0 is usually un­

known and must be approximated. We assume that the response y may be

3



represented by a general linear regression equation of the form:
2 3

y = ^1*1 t g X e  +  . . .  +  h i  T ^ i  + . . .  +  h i p x i X p  +  . . .  +  h m  + . . . ,

where the preceding equation may he interpreted as the Taylor series 

(Kaplan 1957) expansion of the response function 0 in the neighborhood 

of the origin. It is possible within a given region to obtain a 

satisfactory fit to this expansion by the use of a polynomial equation. 

Generally these polynomials are of second-order or less (Box 1952a,

Box and Hunter 1954, Box and Lucas 1959> Box and Behnken 1959)J how­

ever, some work has been done with third-order designs (Gardiner, 

Grandage, and Bader 1959, Debaun 1959)•

If N experimental observations are made at strategically chosen 

points within the region, estimates of the regression coefficients (b's) 

may be calculated. The conditions for these N observations constitute 

the experimental design and may be presented as a matrix D, called 

the design matrix. Hence, the design matrix provides a program for 

the performance of the N experiments. The elments of the i^^ row of 

the design matrix represent the specific levels of the k factors to 

be used in the i^^ observation. These elements also represent the 

spatial coordinates of the i^^ experimental point in the k-dimensional 

factor space which when augmented by one dimension, namely, that of 

the dependent variable or response, constitute a (k+l)—dimensional 

space in which the response surface lies.

The problem of selecting a ''best'' design has been a difficult 

and arduously studied one. Generally, however ''best'' refers to that 

design for which the variances of the estimated regression coefficients 

are at a minimum.
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Box and. ffiinter (1957) suggest that the ' 'goodness " of an 

experimental design should he judged partly on the precision of the 

estimates of the regression coefficients and partly on the magnitude 

of the hias of those estimates. 13iey list these qualities as desirable 

in the experimental design:

1. Hie design should estimate the assumed model satisfactorily 
within the region of interest.

2. The design should have a huilt-in check on the assumed

model.

3. The design should not have an excessively large number of

experimental points.

k. The design should he ’'hlockahle J '

5. The design should he easily expanded.

6. The design should have the properties of orthogonality and

rotatahility, hoth of which will he discussed later.

Basically there are four different methods generally used for 

solving the optimization problem. They are the factorial method, the 

univariate method, the random method, and the steepest ascent method. 

The reader is referred to Satterthwaite (1959) aod. Budne (1959) for a 

discussion of the random method and to Friedman and Savage (19̂ 7) for 

a discussion of the univariate method. A“review and explanation of 

the remaining two methods, the factorial method and method of steepest 

ascent, follows. The factorial method is reviewed because of its in­

herent role in the method of steepest ascent; the method of steepest 

ascent is reviewed since it is fundamental for this dissertation.



The Factorial Method

The factorial method, generally accredited to Fisher (19̂ 9) 

and Yates (1957) is ideally suited for investigating a surface in 

a preassigned range of values of the independent variables such as 

in the neighborhood of the maximum. Its adaptability to blocking as 

well as the ease with which the original design may be augmented by 

additional observations make it a very useful and frequently employ­

ed design. It is of particular value where the experiment is of a 

non-sequential nature and the factors of the discrete type. However, 

there are several disadvantages which can, and often do, nullify these 

advantages. For example, a factorial design requires experimentation 

to explore regions that may turn out, in view of their results, to 

be of no value or interest due to their lack of proximity to the 

maximum. Also, a factorial design frequently investigates a small 

region comprehensively or a large region superficially. In the former 

event, a maximum mi^t be missed entirely while in the latter the 

experimental combinations might be so chosen as to miss the maximum 

even though one exists within the range being investigated. At least, 

the factorial method can provide an indication of the direction of 

the maximum, a fact that the Box technique exploits.

The general technique is to conduct trials at the points of a 

grid in the factor space. To this end, combinations of factors at 

specified levels are selected and the response determined for each of 

these combinations. Next, a regression model, thought to be of suf­

ficient order, is assumed and the regression coefficients determined, 

generally by the method of least squares (Nielson 1957) • Ihis is
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followed "by the estimation of the conditions for optimal response.

These conditions are determined by taking the partial derivatives of 

the calculated regression equation with respect to the Independent vari­

ables concerned, setting the partial derivatives equal to zero, and 

solving the resulting equations simultaneously.

If all the points of the grid are used, the design Is said to 
be a conqolete factorial. If several determinations at each point are 

made. It Is said to be a replicated factorial. If systematic selec­

tion of only a part of the conglete factorial points Is made, one ob­

tains a fractional factorial or a confounded design (Yates 195?)• Re­

ferences for the fractional factorial designs Include Finney (19̂ 5)> Finney 

(19^6), Plackett and Burnam (19̂ 6), Kempthorne (19̂ 7)> Rao (19̂ 7)> and 

Davies and Bay (1950).

Of particular Interest are the two-level factorial and two-level 

fractional factorial designs. Two-level designs consist of two levels 

of each of the Independent variables and all of their combinations.

If only a part of these combinations Is used, one has again a fraction­

al factorial design. Specific advantages of these designs Include:

1. First-order effects are determined with maximum accuracy.

2. Specific Interaction terms can be Isolated.

3. The design Is readily augmented to Increase precision.

4. The design may be the basis of a "composite design” for 

fitting second-degree surfaces.

5. The adequacy of the model may be checked.

6. These designs have the property of rotatablllty which enables 

the researcher to conduct long sequences of experiments In 

the presence of a trend and yet maintain minimum variance
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estimates that are mutually orthogonal, orthogonal to the 

"block effects and orthogonal to the trend.

Orthogonality refers to the case in which the factors in the de­

sign matrix are functionally independent. This property is of particu­

lar advantage for computational purposes when comparing the effects of 

the various factors.

The concept of rotatahility was first introduced by Box and 

Hunter (1957) vhen they were confronted with the selection of a k- 

dimensional experimental design of order d such that the variance 

function would be ''spherical''^. For the variance function to be 

''spherical'', the variances and co-variances of the estimates of the 

regression coefficients made from the least squares estimate of the 

truncated Taylor series expansion must be constant on circles, spheres 

or hyper-spheres about the center of the design. If a design has this 

property of rotatahility, it can be rotated through any angle about the 

fixed center, and one reasonably expects and obtains a constant quanti­

ty of information regardless of direction of orientation. Box and 

Hunter (1957) prove that a necessary and sufficient condition for a 

design of order d (d=l,2...) to be rotatable is that the moments of 

the independent variables be equal through order 2d.

These rotatable designs have the further advantage that replica­

tion of the center points provides an estimate of the experimental error 

and thus provides a. basis for testing the lack-of-fit of the model.

Rotatable designs are given by Box and Hunter (1957) for k-dimensional
1 A k-dimensional experimental design of order d is a set of experi­
mental points or observations in the k-dimensional factor space selected 
so that all the coefficients in the d^^ degree polynomial can be es­
timated.
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experimental designs of order d (k=2,3*»»99; d=l,2). Several block­
ing arrangements as well as confidence regions for the stationary 

point are also discussed. A more comprehensive discussion of the 

confidence region for a stationary point and an example of the de­

termination of a confidence region is given hy Box and Hunter (195̂ )• 

Gardiner, Grandage and Bader (1959) expand this concept to third-order 

rotatable designs and give several examples.

The Method of Steepest Ascent
This method may be thought of as having, or proceeding in, two 

successive phases. The first is concerned with the location of a near- 
stationary region; and the second, with the investigation of the re­
sponse surface in this region.

No knowledge of the form of the function is assumed. However, 
it is assumed that the function has a unique maximum and that the 
function is ''smooth'' and continuous. The method is also dependent 
upon a number of other assumptions. The most important of these are:

1. All factors or independent variables must be measurable 

quantitative values.

2. The theoretical response is a function of the independent 

variables.

3. The observed response is a function of the independent 
variables plus an arbitrary experimental error.

4. The errors are normally and independently distributed with 

a mean of zero and a variance of one.
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It is generally thought that the technique works hest when the 

errors are small and there is a previous estimate of the error. It is 

possible to utilize the method when these conditions do not exist, how­

ever, hy replicating observations and making use of the estimate of the 

variance obtained by replication of the center point of the central 

composite design. This, of course, partially defeats the purpose of 

the method, namely, the reduction in the overall number of experiments 

necessary to obtain the region desired.

The first phase is a sequential one, much like the univariate 

method and has as its objective the location of the near-stationary 

region. It proceeds as follows:

1. Select all the factors thought to be influencing the response. 

Frequently, the selection of the factors must be modified to 

include only those factors thought to be especially signifi­

cant since the selection of all factors might lead to an

  excessive number of independent variables. It has been

shown that the method loses some of its effectiveness 

under such circumstances (Brooks 1959)•

2. Ifeke an initial linear approximation of the response sur­

face in the vicinity of the estimated optimum.

3. Use the lack-of-fit term in the analysis of variance to test

whether the linear approximation fits within the limits of 

experimental error. If it does, proceed to step k; if not, 

a second-order model is adopted and the experimental points 

augmented by additional observations so that the regression 

coefficients for the second-order model may be estimated.
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k. Calculate the path of steepest ascent (Fig. 1 and 2).

îEhis path is determined by incrementing the coordinates of 
the center of the design in the factor space by amounts 
proportional to the relative size of the regression co­
efficients as determined in step 1.

5. Make observations along this path at regularly spaced inter­
vals until the observed response differs significantly from 
the predicted response using the regression equation deter­
mined in step 1.

6. Make a second linear approximation of the response surface 
using the last agreeing predicted and observed response as
a center for the design and proceed to steps 3; ^ and 5# etc.

7. Continue this process until it is stopped by the adoption of 
a second-order model in step 3«

The selection of the independent variables and the subsequent 
determination of the levels at which the observations are to be made 
represents a crucial stage in the use of the method of steepest ascent.
It has been pointed out, and rightly so, that the entire method is de­
pendent upon this selection and that the size of the regression coeffici­
ents, and hence the path of steepest ascent, will vary according to the 
width of the interval between the factor levels. Two obvious errors 
are possible through the improper selection of the factor levels. First, 
if the interval is too large, a maximum may be missed entirely; second, 
if the interval is too small, the experimental error may ' 'mask* ' any 
true difference in the response at the two different levels and the 
subsequent calculation of the path of steepest ascent will therefore 
be in error. In fact, it may even be in the wrong direction entirely.



12

Figure 1. - Response surface for one Independent 
variable, illustration of the path of steepest 
ascent for observations at x-, nnri x«.
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Figure 2. - Response surface for two independent 
variables, and path of steepest ascent.
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a mistake that will generally he corrected with the determination of 

the next path. In either case, it is possible that the independent 

factors' levels may he so chosen that the responses are exactly equal 

and it will appear as if the procedure has reached a plateau. Further 

experimentation on the axis to complete the central composite design 

will prove this erroneous. One may then adjust the interval between 

the levels of the factors and reinitiate the experimental procedure.

David and Arens (19̂ 9) discuss the question of the spacing of 

independent variables and suggest criteria that might be applicable to 

various situations, Legendre and Tchebysheff spacing being the most 

carefully considered. Specifically their work is concerned with that 

situation in which the dependent variable may be observed for a con­

tinuous range of values of a single independent variable and the func­

tional relationship is unknown. They also investigate empirically the 

situation where the true functional relation is a quadratic and the 

fitted curve linear.

De la Garza (195̂ ) and Kiefer and Wolfowitz (1952) discuss the 

case where the function is known apart from various parameters.

The second phase of the method of steepest ascent is concerned 

with the determination of the exact optimal factor combination and with 

the characterization of the response surface in the vicinity of a near- 

stationary region. It requires the following;

1. The adoption of the second-order model.

2. The estimation of the regression coefficients.

3. The calculation of the optimal factor combination.

4. The determination of the contour lines for the second-order 

model.
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5» Ihe determination of the canonical forms along with the 

transformation necessary to obtain them.

In some cases a confidence region for the predicted optimal 

response (Box and Hunter 195̂ ) and an interpretative study of the 

response surface are also made (Box and Youle 1955)•
Once the regression coefficients of the second-order model 

have been determined, generally by the method of least sgpares (Nielsen 

1957) > standard mathematical techniques may be utilized for finding 
the maximum or minimum values of the dependent variable. These tech­

niques involve the calculation of the partial derivatives (Kaplan 1957®-) » 

setting the partial derivatives equal to zero (Kaplan 1957b) and the 

subsequent simultaneous solution of these equations to give the values 

of the independent variables that provide the maximum or minimum of 

the dependent variable.

Intuitively, this might be expected if one remembers the basic 

concept of the partial derivative. The partial derivative represents 

the rate of change in the dependent variable for a given change in 

the independent variable. By setting the partiels equal to zero, one 

is, in effect, imposing the restriction that the change in the dependent 

variable with respect to a change in the independent variable be zero. 

This is the condition that one ml ght expect to find at maxima or minima 

of the dependent variable.
Next, in the development of a response surface, should be the 

determination of contour lines (Fig. 3) based on the second-order model. 

The contour lines represent all of the combinations of the independent 

variables that will give a fixed level of response of the dependent 

variable.
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Figure 3* - Response surface for thi=8 independent 
variables, illustrating two levels of the dependent 
variable.
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For exançjle, in the three (k=3) dimensional case, the contour 

lines are determined by choosing a constant level for the dependent 

variable and one independent variable, and substituting these values 

into the expierimentally determined second-order equation. One then 

has a second-order equation in the two remaining independent variables. 

By selecting various levels of one of these two independent variables 

and substituting it into the second-order equation, one obtains quad­

ratic equations for the third variable. The solutions of these equations 

may then be plotted to give contour lines of the response surface (Fig.

3). The contour lines represent all of the combinations of two of the 

independent variables that will give a fixed level of response of the 

dependent variable at a given level of the third independent variable. 

Hence, the contour lines represent the intersection of horizontal 

planes and the response surface. That is, the horizontal plane will 

represent a constant level of one of the independent variables and 

the line of intersection will represent a constant magnitude of the 

dependent variab]^ or response.

There are several advantages that might be esqpected from the 

analysis and study of contour lines. By plotting contour lines it is 

possible to comprehend features of the response surface which may be 

exploited in an attempt to further increase or decrease the response 

in question. It may be possible to optimize a primary response with 

secondary constraining or restricting conditions. This demand on the 

optimizing process would obviously lead to a set of conditions which 

are ’ 'best ' ' only in a compr ami sing sense provided there is a con­

flict between the optimal conditions for the primary response and the 

constraint. If no such conflict exists, there is no constraint.
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Careful consideration of the response surface may lead to a 

better understanding of the mechanism being examined and also indicate 

the need for additional investigation. Bax and Youle (1955) have’ 

discussed this latter possibility in some detail and have demonstrated 

how various characteristics of an operating system may affect contour 

lines.

The canonical form plays the same role in the second-degree 

approximations as does the path of steepest ascent in the first-degree 

approximations. An extensive discussion of the value and use of the 

canonical form is given by Box and Hunter (Chew 1958) lii which changes 

in the signs of the general form of the canonical equation are illustrat­

ed and the relative sizes of the coefficients are examined. Also several 

5-dimensional surfaces of second-degree are discussed and the general 

procedure for a k-dimensional second-degree fitted surface is outlined. 

This general outline is as follows;

1. The coordinates of the new center and the value of the re­

sponse at this center are calculated.

2. The canonical form of the equation is determined.

5. The new coordinates are determined in terms of the old

coordinates.

Investigating an unknown response function in several indepen­

dent variables frequently leads an experimenter to a sequence of ex­

periments that falls naturally into blocks. The initial step in such

a sequence will be that of approximating the response function with a 

first-order model.

The first-order model adopting Box’s notation is:

y  = ■‘̂ 0*0  + ------- +  l^ k ^ k
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Based upon the results of such a sequence of experiments, 

decisions may be made concerning the following:
1. Elimination of one or more of the independent variables by 

comparing the magnitudes of the fitted coefficients.
2. Expansion or reduction of the interval between levels.
3. Lack-of-fit of the model.
4. Prediction of paths to optimal.responses.
It is interesting to note that the same class of designs for 

the first-order approximation are obtained if it is required that the 
design be such that:

1. The variance of the predicted response (y) be a minimum.
2. The confidence region for the regression coefficients, b ’s, 

be minimum.
3. The variance of y be equal for all equidistant points from 

the origin.
The first-order designs may be visualized geometrically as the 

k-dimensional space of the vertices of a regular simplex in (k+l) 
dimensions where the (k+l)^^ dimension represents the response. If 
the number of observations is N = k + 1, these designs represent the 
projection of the (N-l) dimensional simplex into k-dimensional space.

Frequently, in the application of Box’s technique, it is desirable 

to adopt a central conq)OSite rotatable design which can be blocked (Box ‘ 

1952b, DeBaun 1956, and Box and Hunter 1957)• Ihe central composite 

design consists of Nq points at the vertices of a cube corresponding 

to a 2^ factorial design or some fraction thereof, with coordinates 

coded (+ 1, + 1,....,+ 1), plus %  = 2k "axial” points with co­
ordinates coded (+0!, 0,...0), (0, + CK, 0,...0), ...(O,...0, + a) plus
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Nq points at the center of the design with coordinates coded (O,...,0). 
These sets of points offer an opportunity for blocking. If we let 
Wco and Nao represent the center points associated with the cube and 
axial points respectively, the requirements for orthogonal blocking 
and rotatablllty are:

Nc (Na + Nao )a
1/2 1/4

and Q! = Ng respectively.
2 (K, + Neo )

To satisfy both requirements we require 
1/2

N ç  ^  (N g  +  N e o  )

2 (Na + Nao).

As an example let us examine the k=4 dimensional design which 

Is to be used In Chapter IV. The (Resign matrix consists of the 2**" = 2^ = 

l6 experimental points at the vertices of the cube, with coordinates 

(+ 1, + 1, + 1, + 1), 2k = 8 axial points with coordinates (+ a , o,o,o), 

(o, + a , o,o),(o,o, +a, o),(o,o,o, j^) where a = = l6^/^= 2, for

rotatablllty and with a yet-to-be-determlned number of points at the 

center. If seven points are observed at the center the variance func­

tion V(p) = V(l) = V(o) (Box and Draper 1959) and hence one attains a 

relatively uniform distribution of precision. If rather than seven, 

we chose Nq = 6 to satisfy the equation below:

+ ^co 2 = = 2 = ^  ^
2 Na + Nao' 8 +  Nao 8 +  2

orthogonal blocking and rotatablllty will be attained. The only effect 

on the variance function will be to decrease slightly the precision 

near the center of the design.

Now, the 2^ factorial part of the design may be further divided 

Into two orthogonal blocks. This division can be accomplished by
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confounding the block effect with the 4 factor interaction, that is, 
placing all points with a positive third-order interaction, 4 factors, 
in one block and all experimental points with a negative third-order 

interaction into a second block. The four center points associated 

with the ’’cubic'’ part of the design are then divided, two points to 

each block.

Now, the original design of 50 experimental points is divided 
into 3 blocks of 10 points each, the 8 axial points plus 2 center 
points, and the two half-replicates plus 2 center points each. The 

design is orthogonally blocked and rotatable and has nearly uniform 

precision.

The analysis of variance when blocking is used breaks the re­

sidual sum of squares into three parts as shown below.

Analysis of variance

Source d.f. Sum of squares

Residual Nr + No - 1 R

Blocks B - 1 SSb = 1̂  , fbft-b - «■
Experimental error Nr R - SSjj - SSg

+ lack-of-fit

Pure error No - B (Pure error)

Where the pure error = the sum of the individual sums of squares for 

repeated observations at the center of each block, 

and B = number of blocks

N|j = number of observations in the b^^ block 
Y-|j = mean of the observations in the b^h block
No = number of observations at the center
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R = residual sum of squares.

SSg = pure error 

Y = grand mean

Np = degrees of freedom for experimental error and lack-of-fit 

lEhe applicability of the Box technique in the field of medical 

research has not been adequately studied and reported in the literature, 

it is the purpose of this research to investigate this area.



C3B A E C E R  H I

APELICA.TION OF TEE METHOD OF STEEPEST ASCEMT TO THE RESPONSE 

SURFACE OF THE NITRATE-NITRITE REDUCTASE 

ACTIVITY nr SALIVARY SEDIMENT

The utilization of the method of steepest ascent and the ap­

plication of the statistical methods for characterizing a response 

surface appeared especially apropos to the investigation of several 

factors simultaneously such as the effects of pH, temperature and 

electron donor concentration on the reduction of nitrate in saliva.

If successful, the study should illustrate the application of this 

experimental methodology to discrete biochemical phenomena.

Experimental Ifethods 

The reduction of nitrate and nitrite in saliva has been de­

scribed in an earlier report (Goaz and Biswell 196I). 3hasrauch as 
nitrate reduction in the oral cavity may play a role in the energy 

metabolism and the assimilation of nitrogen by oral bacteria, an in­

vestigation of the relationship between nitrate reduction and the 

process of decay seemed pertinent to them. Although an initial pilot 

study of forty young adults did show a positive correlation between 

the capacity of an individual's whole saliva to reduce nitrate and 

his caries experience, the correlation was not found to be significant.

25
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To evaluate this relationship critically, in a more extensive clinical 

study, two refinements of the technique of measuring the nitrate-nitrite 

reductase activity of saliva have "been introduced.

In the initial pilot study hy Goaz and. Biswell (l$6l) the capacity 
of whole saliva to reduce nitrate and nitrite was measured. However, 

it has subsequently been determined that the reaction of whole saliva 

on nitrate is not only dependent upon the nitrate-nitrite reductase 

activity that is characteristic of the salivary sediment but also 

upon the level of electron donor compounds in the supernatant, and 

possibly on other undisclosed factors in the supernatant. That fluc­

tuations in the composition of the supernatant can precipitate vari­

ations in the apparent enzymatic activity of whole saliva has been 

demonstrated by reccanbining aliquots of an individual salivary sedi­

ment with the supernatants frcm a number of other salivary specimens 

and noting the variations in the measured activity of the sediment 

when associated with different supernatants (Fig. 4). This finding 

suggested the possibility that the composition of the supernatant and 

its effect on the activity of the sediment may be more variable than 

the potential enzymatic level of the sediment; while the nitrate- 

nitrite reductase activity of the sediment may be more related to the 

magnitude of decay activity prevailing at the time the salivary specimen 

was collected. In order to eliminate this possible source of variation 

on the measured nitrate-reducing activity of a salivary sample, this 

activity was determined on the salivary sediment plus a standard arti­

ficial electron donor, yeast extract (l mg/ml). Also, it seemed 

reasonable that the most accurate assay of a salivary sediment's



25

I ».!
êsi

aUprlIMlUtl MlwDt B Mlamt C
r lw  plus

Suprnat.ftnt dup 'rm tan t

Figure 4. - Effect of>supernatant composition 
on the measurable nitrate-nitrite reductase 
activity of salivary sediment. Demonstrated 
by recombining aliquots of an individual 
salivary sediment with the supernatant from 
other salivary specimens. (Supernatants and 
sediments from salivary specimens, A, B and
c).
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capacity to reduce nitrate, and the most valid for comparative studies, 

would prcibahly he achieved if the determination was conducted under 

the optimal conditions for the reactions that the salivary enzyme 

catalyzes.

Through pilot studies, the effects of three factors, indepen­

dent variables, on this salivary activity were considered to be import­

ant. These were factors that were relatively easily controlled and 

had marked influence on the apparent enzyme activity; these factors 

were pH, temperature, and concentration of electron donor, X]_, xg and 

xj, respectively.

It was on this basis that the present study of the most efficient 

and effective manner of delineating these optimal conditions for this 

salivary reaction was undertaken.

The salivary sediment examined in this study was from saliva 

obtained by paraffin stimulation. It was collected upon arising, 

before breakfast and before brushing the teeth. The sangle was kept 

refrigerated until it was assayed, except for the interval during 

which the saliva donor brou^t the sample to the laboratory.

Upon receipt at the laboratory, the saliva was pooled and de- 

■ pleted of endogenous nitrate and nitrite by incubation at 37° C. It 

was then centrifuged at 10,000 rpm for 30 minutes and the sediment 
washed twice in distilled water.

The sediment was resuspended in distilled water to one-tenth 

the volume of the salivary pool from which it was obtained. This 

slurry of the particulate fraction, containing the nitrate-nitrite 

reductase, was then stored at 4° c.
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Inasmuch as It vas anticipated that the determination of the 

optimal conditions for this enzyme system would require a number of 

days, and in veiw of the necessity of making serial determinations on 

the same stock of enzyme sediment, it was .necessary, initially, to 

make an estimate of the decay or loss of measurable enzyme activity 

that would result from storage.

The experimental design for the estimation of the loss of sali­

vary activity that occurs during storage was that described by Snedecor 

(1956) for the analysis of covariance. The covariate here is the 

duration of storage in days.

Saliva from seven individuals was collected and pooled and the 

sediment removed and stored at 4° C. Three aliquots (Group A, B, and 
C) were drawn from this stock of sediment and their capacity to reduce 
nitrate through nitrite was determined daily for four days (Table l).

The order of measuring the activity of each aliquot was randomized 

each day to eliminate possible bias in the experimental observations.

The nitrate-reducing capacity of the sediment was made by re­

moving a measured amount, 0.5 ml, of the stock sediment, resuspending 

in distilled water and diluting to a volume equivalent to 70 percent,

3.5 ml, of the salivary pool that the sediment originally represented. 

One milliliter of the standard electron donor solution was added and 

the pH of the system adjusted to the desired level by adding solid 

monobasic or dibasic potassium phosphate^. The buffered enzyme system 

was then placed in a constant temperature water bath. After a suf­

ficient period to permit temperature equilibrium, 50 |ig of nitrate,

as KNO3, in 0.5 ml of aqueous solution were added, and the time required 
^ The solid buffer was used to minimize dilution.
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TABEE 1

Effect of Storage on the Capacity of Salivary 
Sediment to Reduce Nitrate

Time required (minutes, Y) to reduce 10 |jg. NOs/ml through HDg
Aliquot
Group

Storage time (days, X)

0 1 2 5
A 15 19 22 25
B 14 17 26 25
C 14 18 25 27

Determination of Intercept and slope for the regression lines 

Equation for the regression line; Y = a + hX
nScY - S £ y

t = regression coefficient = ----------
nZüf - (Sx)̂

a = Y Intercept; Sf = na + hZx

Aliquot A

= i 4 Snr = 158.0 Ey2 = 1659.00
0* = 9 c = 118.0 c = 1560.25

Zsĉ = 5 ~ 19*5 = 78*75
Aliquot B

ZkY = 158 Zy^ = 1690
0 = 9 C = 120 0 = 1600

Zjĉ  - 5 Zày = 18 = 90

Aliquot C

Zk^ = 14 ZkY = 145 ZIŷ  = 17780 = 9 C = 125 C = 1681
Z x ^  =  5 Z x y  =  22 =  97
* C = correction factor for Zk^ or Ziĉ  = valable)no. of observations

correction factor for Scï = o t X) (sum of Y)
no. of observations
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TABLE 1 CCont).

Effect of Storage on the Capacity of Salivary 
Sediment to Reduce Nitrate

Aliquot

Regression Coefficients 

h a

A 5.90 13.90

B 3.60 l4.60
C 4.40 13.90

Mean for the three periods 3.97 14.13
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to reduce the added nitrate, through nitrite, to a yet unidentified end- 

product determined hy the spot plate method. The end-point of the spot 

plate method as described hy Goaz and Biswell (I96I) is hased on the 

disappearance of the nitrite. Ihese measurements of enzyme activity 

were made at 57° C, pH 6.4 and using 1 mg/ml of yeast extract as a 
standard hydrogen donor. Ihose levels of pH and hydrogen donor had 

previously heen shown hy Goaz and Biswell (1961) to he optimal at 37°
C using a univariate method consisting of only one round.

Hie assumptions of this design are that the samples were drawn 

from a normal population with common variances. Due to the manner in 

which the aliquots were obtained, it was thought these assumptions were 

met.

The regression coefficients, h's for Groups A, B and 0 were 
determined hy the method of least sqizares .(Table l) and tested for 

homogeneity. To make this test, the difference between the sum of 

squares for the common regression and the sum of squares within samples 

was calculated. This difference measures the difference among the 

samples' regression coefficients, and its mean square may he conqared 

with the mean square within samples (Table 2). It may he observed 

that the mean square for the regression for one of the samples (ali­

quot B) is relatively large. On inspection, the data shows that the 

determination of nitrate-reducing activity in aliquot B on the second 

day storage varied markedly. It was felt this variation reflected an 

experimental error and hence explained the large mean square for



table 2

Analysis of Covariance Effect of Storage on the Nitrate Reducing Activity of Salivary Sediment
Deviations from Regression

Aliquot d.f. xy Coef. d.f. y2-(xy)2/%2 Mean
Square

A 3 5 19.5 78.75 3.9 2 2.70 1.35
B 3 5 18.0 90.00 3.6 2 25.20 12.60

C 3 . 5 22.0 97.00 4.4 2 0.20 0.10

Within 6 28.10 4.683
Reg. Coef. 2 1.63 0.815

Common 9 15 59.5 265.750 3.97 8 29.73 3.716
Adj. Means 2 1.17 0.585
Total 11 15 59.5 266.917 10 30.90

(variance ratio) = Mean Square of Regression Coefficients = 0^  = o.lT̂ j d.f. = 2, 6
Mean Square Within Samples 4.6o3

H
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aliquot B. In any event, the P value (variance ratio)^ obtained was 

obviously not significant. Thus, there was a failure to reject the mill 

hypothesis at a greater than 25 percent confidence level, and it was 

assumed that there was no difference between the slopes of the re­

gression lines for the three groups (A, B and C) (Pig. 5)* It was next 

necessary to test the hypothesis that the population regression lines 

coincide. This was done by canQaring the difference between the total 

sums of squares and the common sums of squares or the adjusted mean 

squares with the common mean square. This difference corresponds to 

the sample differences in elevation.

P = = 0.1574; d. f. = 2, 8,
which lacks significance at the 25 percent confidence level. Hence, 

the three groups of aliquots may have the same regression lines; at 

least, there is not a great enough difference among the groups to be 

detected by samples of this size. Ctonsequently, the data from all 

three groups was pooled to make the best estimate of the regression 

equation which was found to be,

y = 14.15 + 5.9TX. (5)
To characterize the response surface of the nitrate reducing 

activity of saliva, a stock of sediment was extracted from a salivary 

pool from forty donors, and stored at 4° C. The levels of the pre­

viously selected independent variables, at which the investigation was 

initiated, are shown in Table 5, along with their coded values. Such

^ The variance ratio is a statistic which was developed by Snedecor 
(1956) and named in honor of R. A. Pisher. It is the ratio of two 
variables which follow the chi-square distribution function divided 
by their respective degrees of freedom, and forms itself a distribu­
tion function called the P or Pisher distribution. It can be, and is, 
used as a means of making confidence or significance statements.
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Figure 5. - Regression of enzyme 
activity on storage time.



34

TABLE 3 

Initial Code

Variables Coded Value
Investigated _i.Q o +1.0

pH (xi) 5.0 5.25 5.5
Temp.^ (xg) 31.0 33.00 35.0

Conc.^ H+ donor (xg) 0.4 O.5O 0.6

^ Degrees centigrade 
2

mg/ml of yeast extract
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coding is a linear transformation and simplifies subsequent calculations. 

Since each of the Independent variables was Investigated at only two 

different levels In any expierlment; the upper level of x was coded as 

+1 and the lower level as -1. The relations between the coded and 

experimental units were selected as follows:
pH - 5.25I Temp. - 53̂  ^ Cone. H+ Donor - 0.5̂  ,, .XI . -------- ;    ; %  = -53-----------w

Assuming the general linear model In three Independent variables, 

y = bgXQ + b^xq + bgxg + b^x^ + e, the first linear approximation of 

the response surface was made. As one might well expect, this model 

did not adequately represent a four-dlmenslonal curved surface consist­

ing of the three Independent and one dependent variables, however It 

gave some Indication as to the orientation of the surface. To deter­

mine the regression coefficients for this model a 2̂  factorial experi­

ment^ was necessary. The experimental conditions or combinations, the 

coded values of x̂ , xg and X3, and the observed results, expressed as 

the reaction time In minutes for the reduction of nitrate through 

nitrite under these conditions, are shown In Table 4.
The values of the regression coefficients In the linear model 

were then determined by the method of least squares. The method of

^ These levels of pH, temperature, and electron donor concentration 
were chosen as the level at which to Initiate the Investigation since 
preliminary work with this enzyme system seemed to Indicate that It 
would be less than optimal, and yet provide a reasonable area from which 
to approach the maximum, utilizing the method of steepest ascent.
2 -2 ■A 2̂  factorial experiment Is the study of three factors, or vari­
ables, at two different levels and all the combinations thereof. Hence, 
a total of eight determinations would be made.
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TABLE k-

Initial Attempt to Approximate Response Surface

X y
Observed Re­

Experimental combinations Coded Scale sults (reaction
of independent variables

^o^ XI Xg X5 time in mi mites)

1 1 -1 -1 -1 1052 1 1 -1 -1 62
5 1 -1 1 -1 724 1 1 1 -1 575 1 -1 -1 1 876 1 1 -1 1 36
7 1 -1 1 1 388 1 1 1 1 32

Since Tdq occurs in every equation, the dummy variable Xq, which 
has the value of +1 for every observation in the sample, is 
introduced for computational purposes.
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least squares is to minimize the sum of the squared deviations between 

the observed y values and the predicted values using the assumed model, 

that is, one minimizes the following equation: 

n n
^ Cyi“Yĵ) = ^ (yji^-boXg -  b ] X n  -  bapcai -  baX ai). (5)1=1 1=1

This is accomplished by taking the partial derivatives of these squared

deviations with respect to b^, b^, bg and bg, and equating them to zero.

The resulting system of normal equations had the form:

'■oScI +b^oX2 fbsExoXs = Ex^y

^0̂ 1*0 +b2E%]X2 +b3Ex-ĵX3 = Ix^y

bgExaXQ +b2ZxsX]_ +b2Zx| +b3Zk2X3 = Ix s y

toScsXg +b^JX3X2 fbslxa = Ixsy

The numerical solution of these equations would, in general

be extremely tedious but their solution can be simplified by the use 

of appropriately coded values as in this study or, by the abbreviated 

Doolittle technique (Graybill I96I).

These normal equations may be written in matrix notation as,

X'X p = X'Y,

where X is the data matrix augmented by a dummy variable Xq which re­

presents the mean (Table . X' is the transpose^ of the X matrix, p 

is the coefficient matrix, and Y is the observed matrix (Table 4). The 

general form of the normal equation in matrix notation is as follows:
1 The transpose of an X matrix is a matrix of the same elements but 
with its rows and columns interchanged.
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X'X

5*0̂ 1 IxqX2 ExqXj
SxiXo IjCi2 Lcixg Sxixj

1x ^ 2. ZxgS ZxgX^
SJC3X0 E1C3X1 ExgXj

^  _ 
bo Scoy
bl Sxiy
bg Exgy

C6)

Inspection of the X'X matrix above will reveal that it is 

symmetrical around the diagonal from the upper left to the lower right. 

By a judicious selection of codes for the independent variables, namely 

that given in equation (k) the normal equations for this specific ex­

periment reduce to the simply solved equations:

r ^o" “469
bi -135
b2 -111
_b3_ _;83 _

Solving these equations by matrix algebra one obtains:

= 58.625; b^ = = -16.875; b^ = = -13.875
bj = -83

8 = -10.375. Ct)

By substituting the regression coefficients, obtained above, 

into the linear model, one finds:

y = 58.625 - 16.875%^ - 13.875x2 - 10.375x3 • (8)

îEhe analysis of variance for this initial approximation of the 

response surface is presented in tabular form in Table 5* This analysis 

indicates that the lack-of-fit term, 145.12, is significant^ and follow­
ing the standard Box technique that a new model which includes second-

This significance is based on the fact that the mean square of the 
''lack-of-fit'' term is substantially larger than the estimate of the 
variance that was observed in the study of enzyme activity decay dur­
ing storeige. See Table 5.
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lEABLE 5

Analysis of Variance for Reaction Times 
(first approximation)

Source d.f. s.s. m.s.

1. Mean 1 27,495.125
2. Linear model 3 4,679.375 1,559.79
5. Lack-of-fit 4 580.500 145.12

4. Error^ 3.716

Total 8 52,755.000

^ Estimated by common mean square from the analysis of covariance
of the effect of storage on enzyme activity.
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order terms should be adapted. The adoption of such a model with 

its subsequent augmentation of experimental observations should 

either prove to be satisfactory or unsatisfactory. If satisfactory, 

the method may be pursued as described previously, if unsatisfactory, 

further exploration is indicated. The loss is thus confined to the 

determination of the augmented points.

In this case however, since the original selection of the fac­

tor levels was sufficiently removed from the optimum, the adoption of 

a second-order model at this juncture was not deemed warranted. Al­

so, to demonstrate the usefulness of the technique to be enployed, the 

path of steepest ascent was determined along with three expected values 

along the path. The calculation of these expected values using equation 

(8) and their observed values are summarized in Table 6. These cal­

culations were used as a verification of the experimental conditions 

selected for the second approximation of the surface and were initial­

ly chosen as appropriate on the basis of visual inspection of a three- 

dimensional plot of the response surface constructed with the data 

from the first approximation.

The experimental conditions, results, normal equations, re­

gression coefficients and analysis of variance for the second approxi­

mation of the response surface are summarized in Table 7*
The analysis of variance (Table 7) of the second attempt to 

approximate the response surface indicates that the lack-of-fit term,

0.125, was not significant. Hence, the path of steepest ascent was 

again calculated (Table 8), and some e]q)ected values along the path 

were determined using the equation given in Table 7. The results of 

the experimental observations made at these points are also shown in



TAHLE 6

Calculations of Initial Bath of Steepest Ascent

1. Relative change In design units = h^2. No. of original units = 1 design unit
5. Relative change In original -units4. Change per 0.2$ pH units

Bath of steepest ascent

$. Initial levels6. Observations along the path

Coded

*1 X2 X3
(pH) (Temp.) (H+ don.)

16.8750 -13.8750 -10.3750
0.2500 2.0000 0.1000

' 4.2188 -27.7500 - 1.0375
0.2500 1.61)44 0.0615

5.2500 33.0000 0.5000

(mln.)
y2

(mln.)

1
2

No. ^1 X2 X3
(1) +1 0.8222 0.615 5.5000 34.6444 0.5615
(2) +2 1.6444 1.230 5.7500 36.2888 0.6230
(5) +5 2.4666 1.845 6.0000 57.9552 0.6845

y Is the predicted value, 
y Is the observed corrected value.

+23.961
-10.7025
-45.3665

52
19

^ These calculated expected values being negative confirm the suspicion that the linear model 
was not fitting the response surface. However, further Investigation also confirmed the use of 
the path of steepest ascent. Indicating the direction of the optimum (or minimum).



table 7
Second Attempt to Fit the Linear Equation to a 2̂  Factorial Experiment

Data

Experimental combinations 
of independent variables

Coded Units 
X

Coded Scale 
1̂ ^

Observed Results 
observed

i7
bs (reaction time in min.) 
(y ) corrected (y„)

1 1 . -1 -1 -1 21 172 1 1 -1 -1 19 153 1 -1 1 -1 18 144 1 1 1 -1 15 11
5 1 -1 -1 1 20 16
6 1 1 -1 1 18 l4
7 1 -1 1 1 16 12
8 1 1 1 1 14 10

f-ro

^ The observed times corrected for storage by use of the previously determined decay curve 
(Fig. 5), Yc = Yq ” 5*97x, where x is the number of days the enzyme has been stored.

Relation between coded and experimental units
Coded Value

Variables -1.0 0 +1.0
pH (x̂ ) 5.75
Temperature (xg) 37-00
Cone. H+ donor; mg/ml(xg) O.7O

6.0 6.25
39-0 41.00
0.8 0.90

Solutions; b^= 13.625; b^= -1.125; bg^-1.875; -0.625
Substituting into the linear model: y = I3.625 - 1.125x2 - 
1.875x2 - 0.625Xj.
Analysis of variance (second approximation)

Normal Equations
8 0 0 0] to lof
0 8 0 0! ti -90 0 tg -150 0 0 ^  _ -5

Source d.f. s. s. ID. • S «
1. Mean 1 1,485.1252. Linear model 3 41.375 13.792
3. Lack-of-fit 4 0.500 0.1254. Error! - ------ 3.716
^ Estimated by common mean square from the analysis 
of covariance of the effect of storage on enzyme activity.



I TABLE 8

Calculation of the' Second Bath of Steepest Ascent

1.
2.
5.
k .

=1 %2 *3
(pH) (Ten#.) (H don.) (min.) (min,

Relative change in design units = bĵ -1.125 -1.875 -0.625
No. of original units = 1 design unit 0.250 2.000 0.100
Relative change in original units -0.281 -3.750 -0.062
Change per 0.25 pH unit 0.250 3.333 0.056

Bath of steepest ascent

Initial levels 6.000 39.000 0.800
Observations along the path

Coded

No. Xg xj

(1) +1 1.666 0.560 6.250 42.333 0.856 +9.0262 10
(2) +2 3.332- 1.120 6.500 45.666 0.912 +4.4275 7
(3) +3 4.998 1.680 6.750 48.999 0.968 -0.1712 7

4=-

1  ŷ is the predicted value 

y is the observed corrected value
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Table 8. Since the third, observation (x̂  = +3) along the path of 
steepest ascent was found to be significantly different from the 

e3q>ected value, the need for a new, third, approximation of the sur­
face was indicated. The code, design matrix, results and necessary 

computations are given in Table 9»
Using the data from this third set of experiments, the path of 

steepest ascent was again determined (Table 10), and the predicted 
values (y) along this path calculated. Corresponding observed values 

for the path are also presented in Table 10. Guided by these results 

and following the above procedure, another set of experiments was 

conducted, employing the experimental combinations given in Table 11̂ . 

The results of this fourth approximation are summarized in Table 12.
The analysis of variance indicates the linear model is no 

longer satisfactory and that the second-order model,

y = bo + b^xi + bgxg + baXa + b^x^ + bggxB + bsaxi + b^gx^Xg +

^13^^3 ^23̂ 2̂ 3 ^
should be adopted. The rationale for this decision is as follows:

The lack-of-fit term and the sum of squares for the regression on the 

linear terms are both relatively small. Also, from the previous ex­

periments it seemed obvious that the investigation was descending the 

response surface, and the lack of significance of these terms, as well 

as the magnitude of the regression coefficients, b ’s, indicated that 

either a mlnimum or a plateau had been reached. It was assumed that 

this was a minimum, and the basic design of the fourth attenpt to fit

1 Table 11 also includes the coded levels for the completed central 
composite rotatable design. At this point, however, only the columns 
+1 and -1 are pertinent.
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TABLE 9
Third Attempt to Fit the Linear Equation 

to a 23 Factorial Experiment
Relation between coded and experimental units

Variables
Coded Value 

-1.0 0 +1.0
pH (xi) 6.65
Temperature (xg) 46.00
Cone. H+ donor; mg/ml (xa) 0.94

6.75 6.8548.00 50.00
0.97 1.00

Code of x ’s examined

Xl = pH - 6.75.
0.1 X2 _ Temp. - 48 H+ donor - 0.9

 57% ----

Data

Experimental combinations

Coded Units 
X

Coded Scale
Observed Results 

(reaction time in min.)
of independent variables Xq xi xg X3 observed (y ) corrected (y )

1 1 -1 -1 -1 16 8
2 1 1 -1 -1 15 73 1 -1 1 -1 22 l44 1 1 1 -1 20 12
5 1 -1 -1 1 15 7
6 1 1 -1 1 15 7
7 1 -1 1 1 22 l4
8 1 1 1 1 20 12

Normal Equations
8 0 0 0 bo 81
0 8 0 0 bx -5
0 0 8 0 bg = 23
0 0 0 8 b3 -1

Solutions

- 10.125; bi — —g — -0.625; bg = - 1̂ 3 — — = -0.125
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TABLE 9 (Cont).
Third Attempt to Fit the Linear Equation 

to a 2  ̂Factorial Experiment

Substituting into the linear model:

y = 9 - 0.623%2 + 2.875x2 - 0.125x5

Analysis of variance (third approximation)

Source d.f. s.s. m.s.

1. Mean 1 820.125

2. Linear model 3 69.375 23.125

3. Lack of fit 4 1.500 0.375
4. Eïrror̂ -- --- 3.716

Total 8 891.000
1 Estimated hy common mean square from the analysis of 
covariance of the effect of storage on enzyme activity.



table 10
Calculation for the Third Bath of Steepest Ascent

1. Relative change in design units = hi2. No. of original units = 1 design unit3. Relative change in original units4. Change per 2° C
Bath of steepest ascent

5• Initial levels
6. Observations along the path

%1
-0,6250
0.1000
-0.0625
-0.0217

6.7500

X2
2.875
2.000
5.750
2.000

48.000

-0.1250
0.0300
-0.0037
-0.0013

0.9700

(min.) (min.)

No. *1 i % X3

(1) 0.217 -1 0.0433 6.7717 46.000 0.9713 +7.1089 8
(2) 0.434 -2 0.0866 6.7935 44.000 0.9726 +4.0929 7
(3) 0.651 -3 0.1299 6.8152 42.000 0.9739 -0.0644 11

y is the predicted value

y is the observed corrected value
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TABLE 11

Relation Between Coded and Experimental Units

Coded Value

Variables____________ -1.682 -1______ 0 +1 +1.682
pH (x̂ ) 6.6818 6.76 6.85 6.95 7.0182

Temperature (xg) 42.6360 44.00 46.00 48.00 49.3640
Cone. H+ donor; mg/ml (x̂ ) 0.9195 0.94 0.97 1.00 1.0205
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TABIE 11

Relation Between Coded and Experimental Units

Coded Value

_____ Variables____________ -1.682_____ -1______0 +1 +1.682
pH (x]_) 6.6818 6.76 6.85 6.95 7.0182

Temperature (xg) 42.6360 44.00 46.00 48.00 49.5640
Cone. H+ donorj mg/ml (x̂ ) 0.9195 0.94 0.97 1.00 1.0205
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TABLE 12

Fourth Attempt to Fit the Linear Equation 
to a 25 Factorial Experiment

Relation between coded and experimental imlts

See Table 11 
Code of x ’s examined

x^ = pH -6.85. 
0.1

Xg =  ̂ _ H+ donor-0.97 
5 0.03

Data

Experimental combinations

Coded Units 
X

Coded Scale
of independent variables x^ x^ Xg

Observed Results 
(reaction time in min.) n 

observed(y^) corrected(y^)

1 . 1 -1 -1 -1 16 8
2 1 1 -1 -1 l4 6
3 1 -1 1 -1 16 8
k 1 1 1 -1 17 95 1 -1 -1 1 15 7
6 1 1 -1 1 I k 6
7 1 -1 1 1 16 8
8 1 1 1 1 17 9

1 Corrected as in Table 7*
Normal Equations

8 0 0 0 to 61
0 8 0 0 ti -1
0 0 8 0 bg 7
0 0 0 8 J^3_ -1

Solutions
\  = 7-625; b^ = -0.125; tg = 0.875; b^ = -0.125

Substituting into the linear model: 
y = 7.625 - 0.125x^ + 0.875Xg _ 0.125x^



50

TABLE 12 (Cont.)
Analysis of variance (fourth, approximation)

Source d.f. s.s. m.s.
1. Mean 1 4651.125
2. Linear model 5 6.375 2.125
3. Lack of fit 4 3-500 O.875

4. Error^ —    3-716

Total 8 4750.000

^ Estimated hy common mean square frcm the analysis of 
covariance of the effect of storage on enzyme activity.
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the stirface vas augmented vlth axial and center observations. These 

observations substantiated the Impression that the minimum, and not 

a horizontal Inflection point, had been reached, for the axial ob­

servations all gave equal or longer times than the original 2^ points 

(Table 15).
The design used for this augmentation was that suggested by 

Box and Wilson (l95l), a. central composite rotatable design. This 

design calls for augmenting the original 2^ points at the center and 

on each axis I.6818 experimental units from the origin. This distance 

from the origin Is chosen to preserve rotatablllty. The experimental 

combinations are given In Table 15, and their spatial relationships 
are Illustrated In Figure 6.

The normal equations, the X ’ X  and the X 'Y  matrices for this 

specific experiment are shown In Table l4, along with the ( X 'X )  

matrix^, the solutions for the regression coefficients, b ’s, the 

second-order equation, and the analysis of variance.

To find the coordinates of the minimum. In coded form, the 

partial derivatives of the second-order equation are taken with re­

spect to xi, X2 and xj. If;

y = 6.7061 - 0.5195X2 1-0051x2
-0.0752x3 - 0.1278x5 + 1.9952x1 

-0.4815x1 + 0.625x2X2 + 0.125x2X^ + 0.125x2X3
then:

ÈL = - 0.5195 - 0.2556x2 + 0.625x2 + 0.125x3 (11)
^ _________________________________________________________

^ The ( X ' X ) " ^  matrix Is the Inverse of the X ’ X  matrix.



03ABLE 15
Central Ccjnrposite Rotatable Design for a 2^ Factorial Experiment

Coded Units 
X Observed Results

Experimental Combinations of 
Independent Variables ^o ^1

Coded Scale
Xg 3̂

(reaction time in min.) 
observed(y^) corrected(y^)^

Original 2? points
1 1 -1 -1 -1 16 8
2 1 1 -1 -1 14 6
3 1 -1 1 -1 16 8
k 1 1 1 -1 17 95 1 -1 -1 1 15 7
6 1 1 -1 1 14 6
7 1 -1 1 1 16 8
8 1 1 1 1 17 9

Axial points _
9 1 -1.6818^(6.68) 0 20 8
10 1 +1.6818(7.02)

-1.68182(42.6) 0 18 611 1 0 0 23 11
12 1 0 +1.6818(49.4) 0 27 15
15 1 0 0 -1.68182(0.92) 18 6
14 1 0 0 +1.6818(1.02) IB 6

%

1 Hie observed times corrected for storage by use of the previously determined decay curve (Fig. ^ ) , yc=yo - 
5.97%, where x is the number of days the enzyme has been stored. In the above table x=2 for the original 8 
points and x=5 for the axial and center points.
2 The linear distance of these axial points from the origin is determined such that the design is rotatable.



TABLE 13 (Cont.)
Central Composite Rotatable Design for a 2̂  Factorial Experiment

Coded Units

Experimental Combinations of 
Independent Variables

Coded Scale
Observed Results 

(reaction time in min.) 
observed (yq) corrected (Yj.) ̂

Center points
1516 
IT 
18
1920

1 (6.85) 0":
1 0  01 0  01 0  01 0  01 0  0

(46) (0.97) 18 60 20 8
0 18 60 19 70 19 70 18 6

VJl

^ The observed times corrected for storage bY use of the previouslY determined decaY curve (Fig. 5), 
yc “ y© “ 3«97x> where x is the number of daYS the enzyme has been stored. In the above table x =2 for 
the original 8 points and x =3 for the axial and center points.
2 The duplication of the center point given this particular design a built-in estimate of variance.
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) (̂(0,l.66lS,0l

n.(fii3,o,c)----

[0,0,1.6810

Figure 6. - Spatial arrangement of the 
coded experimental combinations, il­
lustrating a central, composite, rotat­
able design for three factors (independent 
variables).



TABLE l4 
Composite Design

X'X Matrix X'Y
20 G G G 15.656 15.656 15.656 G G G I55.OGGG
G 15.656 G G G G G G G G -4.5656
G G 15.656 G G G G G G G 15.7272
G G G 15.656 G G G G G G -l.GGGG

15.656 G G G 2k 8 8 G G G IGG.592O
15.656 G G G 8 2k 8 G G G 154.528g
15.656 G G G 8 8 2k G G G 94.956g

G G G G G G G 8 G G 5.GGGG
G G G G G G G G 8 G l.GGGG
G G G G G

( X ' X ) " ^

G G G G 8 l.GGGG
VJl
VJl

G.166558 G G G -G.056791 -G.056791 -G.056791 G G G
G G .075224 G G G G G G G G
G G G .075224 G G G G G G G
G G G G .075224 G G G G G G

- G .056791 G G G G.G69589 G.GG6889 G.GG6889 G G G
- G .056791 G G G G.GG6889 G.G69589 G.GG6889 G G G
- G .056791 G G G G.GG6889 G.GG6889 G .069589 G G G

G G G G G G G G .125 G G
G G G G G G G G G .125 G
G G G G G G G G G

1
G .12

Tbe (X'X)"^ Matrix is the inverse of the X'X Matrix.
1
<.1



TABLE l4 (Cont.)
The solutions for the h's from the least squares equations of the (X'X)"^ Matrix

B =

■bl

I?22
b )hl2

L J > 2 3 J

6.7061
-0.3195
1.0051
-0.0732
-0.1278
1.9932
-0.4813
0.6250
0.1250
0.1250

-0.30630.4420 
0.4420 0.4420 
0.4302 
0.4302 
0.4302 
0.3774 
0.5774 
0.5774

.1/2* = (V(b̂ ) ) = (diagonals of the Inverse Matrix times replication error)1/2

Substituting Into the second-order equation; 
y = 6.7061 - 0.3195x1 + 1.0051x2 - 0.0732x5 - 0.127xg + 1.9932x| - 0.4813x^ + 0.6250x1X2 + 0.1250K1X5

+ 0.1250x2X5
Analysis of variance

Source d.f.1. Mean 12. First-order terms 3
3. Second-order terms 64. Lack-of-flt 5
3- Replication error 5

s.s.
1170.450000
14.607129
68.5605766.0483003.334000

m.s.

4.86904
11.42676
1.20966
0.66681

Total 20 1263.000000
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^  = 1.0051 + 0.625x1 + 3.9864x2 + 0.125x30X2
^  = -0 .0732  + 0.125X2 + 0.125x2 + 0.9626x3
àx3

Setting these partial derivatives equal to zero and solving 

using the abbreviated Doolittle technique, it was found that

= 1.3319

X2 =-0.0187  

X3 = 0.2640 
Decoding by use of the following equations,

- 6.85 ,
0.10 
X2 - 46

%2 = ----------- = Temperature
2

X3— 0 .97X3 = ----:------  = Cone, of H+ donor,
0.10

the optimal conditions were found to be,

(pH) = 6.98

X2 (Temp) = 45.96° C

X3(H+ donor) = (O.98 mg/zül), where the primes
are dropped.

Substituting these values in the second-order equation (lo) it 
was found that the minimum predicted value for the reduction time was,

y = 6.0106 m inutes.

To verify or test empirically the accuracy and correctness of 

the conclusion that this set of conditions was optimal, several ob­

servations were made in the surrounding region. The results of these
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tests are shown in Table 15 and. demonstrate an increase in the reaction 
time for any deviation from the optimal conditions as determined by 

the method of steepest ascent.

Using equation (lO) to approximate the response surface, con­

tour lines were determined following the procedure described above.

These contour lines are presented in Figures 7 and 8. Nine levels of 

the dependent variable were calculated, however, for clarity of re­

presentation only six levels of response are illustrated.

The coordinates for the independent variables x^ and xg, were 

computed for these nine levels of the dependent variable at nine select­

ed levels of X3 (the independent variable held constant at each level). 

The levels of X3 were selected such that there would be a constant in­

crement over the range of interest. These coordinates for the three 

dimensional contours of the surface were calculated, using a previously 

written program^ for the IBM 65O conguter, and were printed on the I M  

407 tabulator.
To help visualize the interrelations of the independent variables 

and their response, a model of the surface was constructed. This con­

struction was accomplished by connecting the contour lines of equal 

magnitude of the response from one X3 - level to another. To aid in 

distinguishing one level of response from another, different colors 

were used to represent the various levels of response (Figure 9)• The 

model is a four-dimensional protrayal of a saddle-shaped surface, where 

the fourth dimension, response, is represented by the various colors.
^ Obtained from the University of North Carolina Department of Sta­
tistics: Coordinates and Plotting Cards for Five Variable Second-Degree
Model. 06.1.004, 1, 2 AG/lO-57.



TABLE 15
The Effect on Salivary EO^-NOg Reducing Capacity hy Altering the Experimental

Conditions from the Optimal ,

Saliva
Sample XifeH) Xg(Temp. C) xj(Conc. H’*' donor; mg/ml)

Reaction 
time in min.

1 6.98 46.0 0.980 11

6.73 44.0 0.985 13
7.02 44.2 0.955 12

A
6.72 48.2 0.940 12

6.99 49.6 1.000 13

1
6.98 46.0 0.980 12

6.73 44.0 0.985 14
7.02 44.2 0.955 13

B
6.72 48.2 0.940 13

6.99 49.6 1.000 13

vn
V O

Optimal conditions as determined hy the method of steepest ascent



TABLE 15 (Cont).
The Effect on Salivary ND5-NO2 Reducing Capacity hy Altering the Experimental

Conditions from the Optimal

Saliva Reaction
Sample (pH) X2(Temp.°C) x^(Conc. H*" donor; mg/ml) time in min.

^ 6.98 46.0 0.960 10

6.88 44.4 0.970 11

6.75 44.4 0.955 11
C

6.72 48.0 0.985 12

6.99 49.4 0.985 U

1

&

Optimal conditions as determined hy the method of steepest ascent
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If *1.1

-2.0

Liata far Salivary Nitrate Nitrite ReWactaae
I| •  pH X{ « T M p i r i t u r i  (digrios C.) A î o . O O  * 0.300.9 minutes 
t j s H *  donor concintritlon (mg. yeitt sitract per ml.) 

e I a 0.0106 mi nu tes (minimum) 
a 2 a 6.3110 mi nu tes (109 per cent minimum) 

t ]  a 3 a 6.8117 minu tes (110 per cent minimum)
Î 4 a 4 a 6.0122 m i nu tes (119 per cent minimum)
Î 5 a 9 a 7.2127 m i nu tes (120 per cent minimum)
fg a 6 a 7.8138 mi nu tus (130 per cent minimum)
Î; a 7 a 6.4148 mi nu tes (140 per cent minimum)
7g a 6 a 8.0198 mi nu tes (190 per c e nt minimum)
?g a 8 a 8.8179 minu tes (169 per cent minimum)

if<M >1

1.0 -

♦ 2 .0- 2 .0

-2.0
-2.0

VI

- 2 .0
-2.0

•2.ii

-2.1

.Contour Lines
Figure 7.
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<r-«

-2.0
■2.0

-M; I.O-u

If-1.0 IJ-U
2.01

-10

2.1-1

•2.1 20-2.1

Contour Lines
Figure 8.
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Figure 9. - Model of response surface.
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Examination of this response surface reveals that the three 

independent variables studied did indeed influence the enzyme activity. 

More careful scrutiny shows that temperature contributes the predominat­

ing influence above pH 6.0 and electron donor concentration of O.7 t̂ g/ml. 
Also, by use of this response surface one may estimate the predicted 

response of various combinations of the independent variable levels.



CHAPTER IV

THE APPLICATION OF THE METHOD OF STEEPEST ASCENT TO THE 

DETERMINATION OF TOTAL SERUM PROTEIN

The second application of the method of steepest ascent was 

drawn from the field of clinical pathology and is concerned with the 

refinement of a diagnostic serum test used hy physicians.

The fractionation and determination of the individual serum 

proteins has long been considered of great pragmatic value. It per­

mits studies of the chemical nature and the physiological function of 

each protein in health and disease. Of particular interest in medicine 

are the A/g ratio (albumin-globulin ratio) and total serum protein. 

Hence it is desirable that one not only be able to determine the total 

serum protein (TSP) present but that methods for separating the plasma 

proteins be available. These fractionating processes are generally 

based upon (l) differences in physical properties (solubility in 

salt solutions, etc.)j or (2) rates of sedimentation in an ultra­
centrifuge; or (3) rate of electrophoretic migration. In the study 

of serum protein which is being reported here, the difference in the 

solubility of albumin and of globulin in ehtyl alcohol was used. The 

TSF was determined first, and then the albumin. The amount of globulin 

was obtained by subtraction. It is assumed the globulins and albumin

65
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account for all but a very insignificant part-quantitatively speaking- 

of the total serum protein.

Hoping to reduce the variation in the determination of the total 

serum protein and its subsequent effect on the A/G ratio, it vas 

decided to determine the optimal laboratory procedure for the Biuret 

method, Ferro, Patrick, Ham and Ana Bell (l$6l), and to investigate 

the response surface near the optimum. Such an investigation should 

allow the diagnostic tool to be made more sensitive to small changes. 

Then by use of the contour lines, it might be possible in future studies 

to retain optimal or near optimal conditions for the TSP determination 

and yet optimize the procedure for determining the amount of albumin 

present and hence the A/g ratio.

Experimental Method 

Careful study of the literature and laboratory technique led to 

the selection of the following four independent variables:

= reaction temperature in C°.

Xg = ml of HagSO^

X3 = ml of Biuret Reagent 

X4 = reaction time in minutes.

The concentration of NagSÔ , and the concentration of the Biuret Reagent 

were held constant.

Since the individual conducting the research project was unable 

to make a prediction based on his personal experience as to possible 

interaction effects that might exist among the four variables being 

studied, it was decided to run a complete 2^ factorial design for the 

initial approximation to the surface. If the higher order interactions
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proved to be non-significant ; then a fractional factorial consisting 

of a 1/2 replication of the 2^ design was to be adopted for the future 

approximations of the surface and determinations of the path of steepest 

ascent. Therefore, the assumed initial model was: 

y = bgXg + b^x^ + baxg + bsxs + b^x^ + bsx^xg + bex^xa +

^37*1*4 + 6aXa3C3 + bgXgx* + ^10X3X4 + b ^ x ^ x ^ a  + ̂ 1 2 ^ ^ ^ ^  +
bijXiXaX4 + b^^x^a%4 + b^^x x^a%4 + e, where y was the predicted

amount of total serum protein.

The results of epxerimentation will be presented in tabular 

form whenever possible and the (X'X) and the (X'X) ^ matrices omitted 

in order to conserve space.

Table I6 shows the original selection of the levels of the vari­

ous factors and their respective codes. The design matrix and results 

of the first set of experiments are tabulated in Table I7.

The least squares normal equations, X'X P = X'Y, were solved 

for the regression coefficients. Using these estimates of the re­

gression coefficients and substituting into the assumed model above, 

it was found that

y = 8.4258 -.0104x^ - .3114x2 + .0970xa - .0078x4 + .0330x^x2 +
.0712x^x3 -  .04l 4x^%4 -  .1 3 6 8 x ^ 3  + .1 3 3 2 x ^ 4  -  .0412x3X 4 + . 0095X2X3X3 

- , 0 6 6 0 x j x̂ ^ 4  -  .0 0 7 2 x ^ x 3 X 4  +  .0 5 0 9 x 2 X 3 X 4  -  .0 0 9 6 x 2 ^ x 2 x 3 X 4 .

The (X'Y) and (P) matrices are given in Table I8, and the analysis of 

variance presented in Table I9.

Having approximated the regression coefficients, the first path 

of steepest ascent was determined (Table 20). Proceeding along the 

path, observations were made at those combinations indicated in Table 20.
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TABLE 16

Factors in Coded and Original Units for 
First Linear Approximation

Factors Code

-1 -1

Xx (Reaction temperature °C) 27.0 50.0

Xg (ml of HagSO*) 4.5 5.5
X3 (ml of Biuret) 5.5 4.5
X4 (Reaction time minutes) 10.0 20.0



TABLE 17
First ŷ fproxiiaation to Response Surface

Eicperl- Design Matrix^ Observed Observed Total
■sent for for Serum Aroteln
TMlWlĥ T

% *3 % % % *2\ % W 3 V A
S ta n d a r d lU knonn gm/lOO m l

1 + - - - - + + + + + + - - - - + 1.03 1 .1 9 8 .0 8 7 4

2 + - - - + + + - + - - - + + + - 1.04 1 .1 7 7 .8 7 5 0

3 + - - + - + - + - + - + - + + - 0 .9 0 1.10 8 .5 5 5 5

k + - + - - - + + - - + + + + - - 0 .8 5 1 .0 5 8.6471

5 + - - + + + - - - - + + + - - + 0 .9 5 1.10 8 .1 0 5 3

6 + - + + - - - + + - - - + - + + 0 .8 0 0 .9 5 8.3125

7 + - + + + - - - + + + - - + - - 0 .7 5 0 .9 5 8 .8 6 6 7

8 + - + - + - + - - + - + - - + + 0.83 1 .0 7 9.0241

9 + + - - - - - - + + + + + + - i.o3 1 .1 5 7 .8 1 5 5

10 + + - - + - - + + - - + - + - + 1 .0 6 1 .1 7 7 .7 2 6 4

11 + + - + - - +
1 - + - - + + - + 0 .9 3 1.10 8.5555

12 + + + - - + - - - + - - + + + 0 .8 7 1 .0 6 8 .7 2 9 4

13 + + - + + - + + - - + - - - + - 0 .9 5 1.11 8 .1 7 8 9

14 + + + + - + + - + - - + - - - - 0 .7 8 1.00 8 .7 5 0 0

15 + + + - + + - + - + - - + - - - 0 .8 6 1 .0 7 8 .7 0 9 3

1 6 + + + + + + + + + + + + + + + + 0 .7 6 0 .9 6 8.8421

^ + represents the +1 level of the independent variable, - represents the -1 level of the independent variable.
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TAHLE 18

First Approximation of the Response Surface 
(Total Serum Protein)

(X'Y) (B) (B)

134.7807 8.4238

-.1665 \ -.0104
4.9817 t s .3114 i

1.5523 hs .0970 1
-.1251 h4 -.0078

.5275 Bs .0030

1.1595 Be .0712

-.6623 Bt -.04l4 1
-2.1895 Ba -.1368

2.1315 Bg .1132

-.2359 1̂0 -.0412
.1513 1̂1 .0095

-1.0561 •bi2 -.0660

-.114? ^13 -.0072

.814? \4 .0509

-.0155 -.0096
___ __
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TABLE 19

Analysis of Variance for First Linear Approximation

Source d.f. s.s. m.s.

Total 16 1137.9067
Mean 1 11350648
Main Effects 4 1.7046 .4261

Lack-of-fit 11 .6373 .0761

xaX3 C D .3107 .3107
xaX4 C D .2840 .2840
Remainder (9) .2426 .0270

Error^ 50 .0225

1 Estimated from previous laboratory findings.

vCbi) = Cii = .0014, = 0.75, = 4.05



TABLE 20
Initial Bath of Steepest Ascent

fbiuret) (temp) (NasS04) (time) (Predicted) (Observ
%1 %2 %4 y y

Relative change in design units 0.0907 -0.014 0.3114 -0.0078
No. of orig. units=l design unit 0.5 1.5 0.5 5.0
Relative change in orig. units 0.0485 -0.0156 0.1557 -0.0390
Change per .5 cc change in X , 0.5 -0.1608 1.6052 -0.4020
Rounded 0.5 —0.16 1.60 -o.4o

Initial level 4.0 28.5 g 5.0 15.0 8.4328 8.4651
Observations along path (l) 4.5 28.34g 6.6 14.6 9.5144 8.4858

' ' (2) 5.0 28.182 8.2 14.2 10.6277 8.6471
3) 5.5 28.02g 9.8 13.8 11.7026 8.9250

h ) 6.0 27.86 11.4 13.4 12.7967 8.9688

Coordinates of observations
Along path of S .A. Standard Observed
Initial value 0 0 0 0 .86 1.04
Obs. 1 1 0.3333 3.2 - .08 .66 .80

2 2 0.3333 6.4 — .16 •51 .63
5 3 0.3333 9.6 -.24 .41 .51
h 4 0.3333 12.8 -.32 .32 .41

y = 8A2379 - .OlQifXi + .$114X2 + .0970X3 - .0078X4

Since a water hath was heing used to control reaction temperature and these increments were so small, 
all four observations along the path of steepest ascent were made at a constant temperature: that is, 28°.



TABLE 20 (Cont.)

Initial Path of Steepest Ascent

Gode

=  ( x - 2 8 . 5 )  / 1.5 =  ( x - 4 . 0 )  / 1.5
X g  =  ( X -5 . 0)  / . 5  X^^ =  ( X -15)  / 5
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It was Immediately evident that the observed responses y's and predict­

ed responses y's were substantially different and a new set of factor 

combinations should be determined. However, in view of the progressive 

increase in the observed y's, it was decided to continue making ob­

servations along the path for a way and then to fit another factorial 

to the surface.

It is interesting to note in the calculation of the path of 

steepest ascent (Table 20) that if relative changes are based upon xg, 
then there are unreasonably small steps in x̂ , xg, and X4. In fact, 

the first several points along the path would lie within the previously 

examined ranges of the variables Xĵ , X3, and X4. On the other hand, if 

X]_ were used as the standard and increments were calculated for the 

other variables for, say, a 1 or 2 degree change in x̂ , then the in­

crement in Xg would be exorbitantly large.

In determining the factor combinations and levels for this 

second approximation, two things seemed to be indicated. First, the 

small size of the regression coefficients suggested that a more in­

formative and accurate determination of the regression coefficients 

mi^t be made if the intervals between the factor levels were increased. 

Second, the relatively small size of the ''lack-of-fit'' term in the 

analysis of variance (see Table 19) indicated that the interaction 
terms were rather small and that a fractional factorial design might 

be applicable. A breakdown of the analysis of variance shows that 

even though the "lack-of-fit" term is non-significant, the (xgxs) 

and (x̂ X4) interactions are significant. In the one-half replicate of 

the 2^ design, these interactions were confounded with the (XJX4) and
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(xjXa) terms respectively. Since the latter two are non-significant 
this confounding is justifiable, and it was decided that the l/S 
replicate of such a design should he run for the second approximation 
to the surface and subsequent determination of the path of steepest 
ascent. The two way tables for xg and xg and for xg and X4 appear in 
Table 21.

Adopting the following model;
A*

y = bgXg + b^xi + b^g + bgXa + b4X* + bgXsX* + bgxgxa + byXgXg, 
the second approximation of the surface was made. The terms X3X4, xgx̂ , 
and x ^  are confounded with x̂ xg, xpca and X]_X4, respectively.

The levels of the various factors and their coded form, the 
design matrix, and results appear in Table 22. The solution of the 
normal equations yielded the following regression equation: 
y = 8.7310 - .0768x2̂  - .0l40xg - .0̂ 75x3 - .0066x4 - .0163x3X4 +
.0l60xgX4 - .0361x^3.

Unfortunately, an error was made in the original calculation of 
the regression coefficient for x̂_. The initial levels for x^ were 27° C 
and 30° 0. [Che calculated regression coefficient b^ should have been 
-.0104; however, a positive coefficient was recorded. Consequently, 
in the second approximation to the surface the levels of x^ were 
selected at 30° C and 35° 0. These levels of the x^ variable gave a 
regression coefficient of -.0768, a negative value that was originally 
interpreted as meaning that a maximum had been passed for the regression 
coefficient had changed from positive to negative. The subsequent cal­
culation of the path of steepest ascent corrected for this error, since 
the increased size of the regression coefficient in the negative
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TABLE 21

Biuret-Sulfate Interaction

XaCsoJ'
XaCB) -1 1

-1 31.5045 55.1099 66.6142
1 35.5952 54.7715 68.1665

64.8995 69.8812

Time-Sulfate Interaction 

X2CSO4) ■
X4 (time) -1 1

-1 55.0159 54.4590 67.4529

1 51.8856 55.4422 67.3278

64.8995 69.8812
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lABLE 22

Second Approximation of the Surface

Factor
-1

Code
+1

x^ (temp.) 50 3 5

Xg (S O 4) 9 11
x ^  (B ) 6 8
X|̂ (time) 5 15

Design Matrix^

*0 *1 2̂ *3 ""34 ""24 *23 obs. std. (observed)

1 -1 -1 -1 -1 1 1 1 .495 .392 8.8593
1 -1 1 -1 1 -1 1 -1 .407 .320 8.9031
1 -1 -1 1 1 1 -1 -1 .407 .324 8.7716

1 -1 1 1 -1 -1 -1 1 .330 .265 8.7170

1 1 -1 -1 1 -1 -1 1 .508 .410 8.6732

1 1 1 -1 -1 1 -1 -1 .420 .338 8.6982

1 1 -1 1 -1 -1 1 -1 .400 .322 8.6956

1 1 1 1 1 1 1 1 •331 .271 8.5498

^ Each comparison meausres a pair of effects, the pairs are; (xi,xgX3X4);
(xâ Xĵ xsx̂ ) ; (x3,x̂ X2X4); (x̂ fX̂ xsiXa) ; (x̂ 3,X2X̂ ) ; (x2Xg,X3X4) ;
(xsX^fXjX-^) .
For an analysis of this design see 0. L. Davies (1956).
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direction increased the size of the increments in the calculation of 

the path, thus compensating hy use of a large increment what would 

have been brought about originally. This demonstrated, unintentionally, 

one of the advantages of the method, namely the robustness of the 

technique. It should be noted that when the error was discovered and 

corrected, the regression coefficient had indeed increased negatively 

by the change in coordinates of Xj_, as could and should have been 

expected.

The calculation for the path of steepest ascent and observed 

values are given in Table 23.

Notice that the signs of bg and bs have changed from positive 

to negative, thus indicating that a maximum has been passed. In the 

case of b4, the sign has not changed, but the minute size of b^ (b̂  = 

-.0066) indicates that we are near a maximum. It seemed reasonable, 

therefore, to conclude that we were in the near vicinity of a maxi­

mum and hence a complete factorial should be planned in order that 

the experiment, if found to be satisfactory, could be augmented by 

central and axial observations for the estimation of the regression 

coefficients for a second-order model.

To take into account the above-mentioned change in sign of the 

regression coefficients and the error made in b^, the levels of the 

various factors were adjusted in an attempt to insure that the optimum 

would be included in the design space. The code^, design matrix, X'Y, 

and B matrices follow in Tables 2k , 25 and 26. The analysis of variance 

is also given in Table 26.
^ Notice that the table includes the coded values of the center and 
axial points for the augmented design. Here, however, we are only 
interested in the Columns 1 and -1.



TABLE 25 
Second Bath of Steepest Ascent

Tengp

Relative change in design units -.0768 
No. of orig. unit3=1 design unit 2.5 
Relative change in orig. units -.192 
Change per 1°C change in X
Initial level 
Observations along path

Ohs. (Rounded)

SO4
%2

-.oi4o
1.0
-.01)4

B

-.(*751.0
-.(*75

Time

-.0066 
5.0 
.0550

Predicted/W
y

Observed
y

X 1.0 .0729 .2475 .1718

32.5 10.0 7.0 10
(1) 31.5 9.9271 6.7527 9.8282 +8.77708 9.2920
(2) 30.5 9.8542 6.5054 9.6564
(5) 29.5 9.7813 6.2581 9.4846 8.88602 8.9570
(4) 28.5 9.7084 6.0108 9.3128
(5) 27.5 9.6355 5.7635 9.1410 8.90878 8.8480
(6) 26.5 9.5626 5.5162 8.9692 8.9469
(7) 25.5 9.4897 5.2689 8.7974 8.9898 7.8369
(8) 24.5 9.4168 5.0216 8.6256 9.0205
(9) 23.5 9.3439 4.7743 8.4558 9.0428

(1) + & & Std.
.339

Obs.
.45

(3)+ 29 10 6 10 .372 .476
(5)+ 27 10 6 9 .375 .474
(7)+ 25 9 5 9 .460 .515
(9)+ 23 9 5 8

^2 =(NaS04-10)1 Y = (Biuret-7)3 1.
(time-10)

- 5

These observations are those indicated by arrows above after rounding.
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table 2k

Third Approximation of Response Surface
Coded Values

Factor - 2 - 1 0 1 2

(temp.) 25 27 29 51 5 5

X g  (N a g S O * ) T a 9 1 0 1 1

Xj (Biuret) k 5 6 7 6

X i^ (time) 1 4 7 1 0 15

CODE; = temp: :,29 
2

Xg =

V _ Biuret -6X 3 ----- ----

30,
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TABLE 25

Third Linear Approximation of Response Surface

Experiment
numbers Xi %2 3̂ Observ­

ed
Stand­
ard

7Observed
1 -1 -1 -1 -1 0.670 0.527 8.8994
2 -1 -1 -1 1 0.660 0.532 8.6842
3 -1 -1 1 -1 0.530 0.410 9.04874 -1 1 -1 -1 0.530 0.427 8.6885
5 -1 -1 1 1 0.520 0.415 8.7711
6 -1 1 1 -1 0.419 0.338 8.6775
7 -1 1 1 1 0.423 0.348 8.5086
8 -1 1 -1 1 0.541 0.445 8.5101
9 1 -1 -1 -1 0.720 0.564 8.9362
10 1 -1 -1 1 0.740 0.568 9.119711 1 -1 1 -1 0.565 0.446 8.867712 1 1 -1 -1 0.575 0.453 8.8852
13 1 -1 1 1 0.550 0.440 8.7500
l4 1 1 1 -1 0.450 0.358 8.7989
15 1 1 1 1 0.450 0.351 8.9744
16 1 1 -1 1 0.584 0.470 8.6979
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02ABLE 26

Third Linear Approximation of Response Surface (Cont.)
B X'Y

6.6011 l4o.6l8i~
bi .0776 1.2419
b2 -.0634 -1.5559

-.0015 -.0243
-.0491 -.7661

y = 6.6011 + 0.0776%!- 0.0634x2 - 0.0075x3 - 0.0491x4
Analysis of Variance

Source d.f. s.s. !&• 8 *
Total 16 1239.8169
Mean 1 1239.5585
Single factors 4 .2464 .0616

Lack-of-fit 11 .2120 .01927

Etroî 50 ---- .0225

Estimated from pervious laboratory findings.
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Checking the analysis of variance and the regression coef­

ficient for Xj (Tahle 25) and finding it now to he positive rather 
than negative as it appeared in Tahle 23, and taking into consider­
ation the ahove discussion of the variables xg, X3 and X4, it seemed 
reasonable that the design space did indeed include the desired 
optimum and that the second-order model
y = bgXg + hjX̂  + bgxg + bgXs + h4X4 + huxi + h223̂  + ̂ 33̂ 3 +
1>12>C1X2 +113X1X3

should he adopted.
The code for the augmented design̂  is given in Tahle 2k and 

the design matrix for the entire central composite design is given in 
Tahle 27 followed hy the X'Y and B matrices in Tahle 28.

Due to the number of observations necessary for the composite 
design, it was recognized that blocking over days would he desirable. 
Therefore, following the recommended procedure discussed in the first 
section of this dissertation, only six observations were made at the 
origin, rather than the required seven for uniform information, thus 
allowing for orthogonal blocking. The analysis of variance is given 
in Tahle 29 where the blocking has been done over time.

Contour Lines for Total Serum Protein 
Since the response is dependent upon four variables, to make 

a graphical representation of the response surface, it is necessary to 
hold two of the independent variables fixed and show response levels as 
the remaining two variables are allowed to change. To this end, X4
T -This design has only ''nearly'' uniform information due to the 
number of observations that were made at the origin.
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tahle 27
Central Composite Design Matrix^ and Results

Obser­
vation
number ^5 ^4 1̂1 ^2 ^55 ^44 ^  ^ 5 \ 4  ̂ 5  ̂ 4 X54 Y
1 + - - - - + + + + + + + + + + 8.8994
2 + - - - + + + + + + + - + - - 8.6842
5 + - - + - + + + + + - + - + - 9.0487
k + - + - - + + + + - + + - - + 8.6885
5 + - - + + + + + + + - - - - + 8.7711
6 + - + + - + + + + - - + + - - 8.6775
7 + - + + + ■ + + + + - - - + + + 8.5086
8 + - + - + + + + + - + - - + - 8.5101
9 + + - - - + + + + - - - + + + 8.9562
10 + + - - + + + + + - - + + - - 9.1197
11 + + - + - + + + + - + - - + - 8.8677
12 + + + - - + + + + + - - - - + 8.8852
15 + + - + + + + + + - + + - - + 8.7500
14 + + + + - + + + + + + - + - - 8.7989
15 + + + - + + + + + + - + - + - 8.6979
16 + + + + + + + + + + + + + + + 8.9744
17 + -2 4 7.8569
18 + 2 4 8.7906
19 + -2 4 8-. 5090
20 + 2 4 8.8000
21 + -2 4 7.7777
22 + 2 4 7.7558
25 + -2 4 8.9655
24 + 2 - 4 8.5790
25 + 8.5958
26 + 8.5575
27 + 8.5610
28 + 8.7500
29 + 8.6555
50 + 8.6666
 ̂+ represents the +1 level of the independent variable, - represents the -1 
level of the independent variable, and no entry represents the 0 level.
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TABLE 28

Regression Coefficients and X’Y Matrix for Composite Design

X'Y B B

2595926 8.6280461 -

31493 ^1 .15122083 .00382404

“7539 Tds -.03141250 .00382404
-721 B3 -.00300416 .00382404

-15591 64 = -.06496250 .00382404

2073281 1̂1 -.00787813 .00329824

2100541 ^22 .07730937 .00329824

2029441 633 -.14487813 .00329824

2109961 Id 44 .10674687 .00329824

7015 1>22 .04384375 .00573606

-4717 ^13 -.02948125 .00573606

8941 ' ■bi4 .05588125 .00573606

3797 t>23 .02373125 .00573606

679 1324 .00424375 .00573606

87 I 634 .00054375 1.00573606
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TABLE 29

Analysis of Variance for Central Composite Rotatable 
Design with Orthogonal Blocking

Source d.f. s.s. m.s.

Mean 1 2259.7769
Regression 14 8.3692

Residual 15 1.3768 0.0918

88 blocks C2) 0.6588 0.4294

SSg (3) 0.0192 0.0064
R-8Sb - 88g (10) 0.4988 0.0499

Total 30 2249.5229
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was held at (+1, 0, -1) and then nine levels of X3 were selected, that 
is, X3 = (-2.0, -1.5, -1.0, -.5, 0, +.5, +1.0, +1.5, +2.0). The IBM 

650 program was limited to a maximum of nine levels or values for the 

dependent variable. The values selected and the increment are given 

along with the contour lines in Figures 10, 11, 12, 15, l4 and I5.
3h order to study further the fitted surface it is often con­

venient to reduce it to the canonical form. This reduction is ac­

complished by the shifting of the origin to the optimum, and rotating 

the coordinate axes so that they correspond to the axes of the original 

fitted regression equation. The general regression equation is then 

reduced to the following form:

y - Yo = .... + ^x§ .

Examination of the above equation shows that large values of 

are indicative of rapid changes in the response, and that small values 

of X  are indicative of slow changes in the response. If the X  ’s 

are all negative, the fitted contour surfaces are ellipsoids and the 

response surface has a true maximum.

If one or more of the X  ’s are positive the contour surfaces 

are elliptic hyperboloids and there is a minimum. If one or more of 

the X. *s approach zero the surface is attenuated along these axes 

and the surface is an elliptic or hyperbolic cylinder. In such cases 

the response surface forms a ridge.

To obtain the coordinates of the center or maximum, take ' the 

partial derivative of the regression equation given in Table 29 with 
respect to x^, xg, X3 and X4 respectively. Setting these partial 

derivatives equal to zero one obtains the following system of equations:
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Ctmtmmr Liar* f*r T*t*l Straa Pr*tria

(| R u c t i o n  t M pe rit ur i (diirois C.) 
Xj Nog SO4
X] Biurot roiiint. il.
X4 R u c t i o n  timo (m ln utu )

A f  • 0.2s tat. per cont 
Î, .  1 < 7.90 tat. por cont
^2 ° 2 s 7.79 tat. por cont
Î, .  3 : 9:00 tat. por cont
Î, r 4 r 0:29 Omi. por cont
yj r 9 > 0.90 tat por cont 

- 0 = 0.79 Ont. por cont 
ÿ, : 7 : 0.00 0ms por cent

<*■

Figure 10.
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Figure 11.
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■F LI... f.r T.l.l S . r »  Pr.t.i.

I| Riietlon tiipirituri (diiriit C.) 
>2 Ni; SO4
>2 liurit riigint, il.
>4 Niictlon till (limitit)

A ?  « 0,2! Oit. pir eint 
?l ■ I « 7.S0 Cil. pir cint
î; • 2 .  7.7! Oit. pit tint
?3 « 3 > 0:00 Oil pir tint
? 4  . 4 . 0 :2! Gil. pir tint
Pg • ! • !.!0 Gii pir tint 
îg > ! < 8.7! Oil. pir tint
?) > 7 • 9.00 Oil pir tint

2
ij.

«»■
>»■

Figure 12.
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1,-1.» V 0.0

Figure 13•
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CsMiaiir Llata far Tatal Saras Prataia

>1 R u ct ion tupiriturt (diirioi c.) 
>I No, SO4
>3 B l u n t  r i i i i n t .  ml.

>4 R u c t io n  t i n  ( i l n u to i )

> 0.29 On. pir cent 
tl a I a 7.50 Gas. por cint

7j a 2 a 7.75 O n. por cent
Î3  a 3 a 5:00 On. pir cent

a 4 a 5:25 O n. por cint

3g a 5 a 8.50 O n  por cent 
îg a 6 a 8 75 O n. por cont

a 7 a 0.00 O n  por cont

'!■><•

Figure l4.
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Figure 15.
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0 = .13122083-.01373626%]^+.04384375X2-•02948123x3+.03388123x4 

0 = .03141230+.04384375x1+.1346i874jc2+.02373123x3+.00424375x4
0 = -. 00300416-. 02948123*2+ .02373123%-. 28973626x3+. 00034373x4 
0 = -.06496230+.03588123%]^+.00424373X2+.00034373x3+.21349374x4

The solution of these equations give:

%1 = 4.1426 
X2 =-0.8732 

X3 =-0.3048 
X4 =-0.7614

Substituting these values into the fitted second-order re­

gression equation the predicted value for the maximum is found to be

Yo “ 8.8914.
For a theoretical discussion of the reduction of the above re­

gression equation to this canonical form one is referred to Birkhoff 

and MacLane (1953) • A program now available for the IBM 630 digital 

computer for solving secular equations was used here, however. The 

discriminating quartic is:

H =

2

^l4
2

which has the roots

’11 -

"12

~bi2
2

2̂2

2

2̂4
2

2
^l4
2

2̂4
2

h t
2

>X = . .

334

016718

^44 )
=  0

A  = .080768
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^  = -.147382 
/4 = .114635.

By substituting these values and the predicted value at the center 

into the canonical form above, one obtains

y -8.8914 = -.016t i 8x | + .080768%# - .147382x3 + .1146353̂  .

Following the recommended analysis outlined by Box and Wilson 

(1951) ) except using the IBM program mentioned above, the following 

orthogonal transformation for the old variable to the new was found 

to be

-.0200151948 

.0956904206 

-.0063647127 

.0200555674
Q*=

-.0128069775
.0039994488
.0990949699

-.0004154501

-.0210875010 

-.0243405157 

-.0013460907 
.0946627943

.0948192519

.0153260296 

.0117416065

.0252300792 _

where, = Q* HQ.

From the smallness of ^  2. compared to the other coefficients, 

it can be shown that the surface is attenuated along the x^ axis, that 

is, there is a ridge running in this direction. The fitted response 

surfaces are hyperboloids of one sheet. Thus the sections by the plane 

x s  = 0 and x* = 0 are hyperboloids and those by x^ = 0 and X3 = 0, el­
lipsoids .

This ridge is indicative of a continuing change of the response 

due to variations in the temperature. However", careful examination of 

the response surface reveals that the surface is quite flat and that

^ H® is the diagonalized form of the regression equation; that is, the 
diagonal elements represent the coefficients of the canonical form of 
the second-order regression equation.
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these variations are not large. The remaining independent variables 
(amount of amount of Biuret and time) axe all more influential
on the response.



CHAPTER V 

SUMMARY

The purpose of this dissertation has been to demonstrate the 
applicability of the method of steepest ascent to medical data and 
to illustrate the subsequent characterization of the response surface 
in the optimization problem as it appears in certain fields of medical 
research. To this end, two specific examples were introduced and 
modifications in the method of steepest ascent adopted to illustrate 
empirically the feasibility of the method. These modifications have 
been discussed and the optimal conditions found for the two processes. 
Specifically, a study was undertaken to determine the optimum conditions 
for, and interrelations of, temperature, pH and concentration of elect­
ron donor on the rate of nitrate reduction by the nitrate-nitrite re­
ductase systems in a pooled sample of salivary sediment. By vary­
ing the conditions of pH, temperature and electron donor concentration 
(yeast extract) the TninimiiTn reduction time was established in four 
sequential sets of experiments. The method employed was that of 
steepest ascent which consisted of two phases; first, the establish­
ment of the response surface and the conditions for the optimum, and, 
second, the calculation of the associated contour lines. Three linear 
approximations of the response surface and their subsequent paths of

97
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steepest ascent were utilized in locating the near-optimal region.

A fourth, and final, linear approximation was augmented hy additional 

experimental points such that the property of rotatability was pre­

served and a second-order approximation of the response surface made 

possible. This method permitted the calculation of the response sur­

face from a much smaller number of experiments than would have been 

necessary with a complete factorial experiment (or by the single­

factor method). It also provided the opportunity for the recogni­

tion of possible interactions among the variables. While the three 

variables examined were found to influence the enzyme activity, temp­

erature contributed the predominating influence above pH 6.0 and 
electron donor concentration of 0.7 g/ml. Through the utilization of 

the determined response surface, the estimated optimal conditions 

were found to be ; pH 6.98, temperature, ^5*9° C, and electron donor 
concentration, yeast extract, 0.97 g/ml. The basis for the construc­

tion of the design for the study was discussed and the details of the 

statistical analysis presented.

The second application was concerned with the optimization 

and interrelations of temperature, amount of NagSO*, amount of Biuret 

reagent and reaction time on the determination of total serum protein. 

Following the procedure described above, the estimated optimal condi­

tions were found to be

tenç). (xq_) = 57.2852° C 

(xg) = 8.1268 c.c.

Biuret(xs) = 5*̂ 952 c.c.
time (x4,)= 0.2842 min.
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The second-order approximation of the response surface was determined, 
the subsequent contour lines calculated, and the canonical form of the 
response surface found.

It appears to the writer that the researcher in biological 
phenomena will frequently be unable to control the independent vari­
ables as precisely as might be desired. To further compound this 
problem one often observes large variation in the dependent variable, 
thus making it doubly easy for the ' ’masking’’ effect to occur in the 
application of the technique described. To compensate for these negative 
effects, one may replicate experimental observations and in seme cases 
increase the independent variable spacing intervals. If the latter 
measure is adopted, however, the consequent lack-of-fit term in the 
linear approximation of the response surface might be significant 
even though it mi^t not have been if the independent variable in­
tervals had been smaller. This writer’s experience shows, however, 
that the path can be calculated and used as a guide for progression 
toward the maximum, even though the expected values along the path 
of steepest ascent are unrealistic.

The method of steepest ascent and the subsequent characteriza­
tion of the response surface seem to offer an excellent opportunity for 
solving optimization problems in several areas, in particular, bacteri­
ology, biochemistry, enzymology, physiology, pharmacology, radiology, 
and virology. The restrictions, of course, revolve around the identi­
fication of, the number of, the ability to control, and the continuity 
of the independent variables.
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Since the only time an experiment can he properly designed is 

after the experiment has heen performed, one might suspect that the 

mathematical sophistication for the application of the method of 

steepest ascent, indeed, any experimental technique, depends upon the 

experience and knowledge of the researcher regarding the statistical 

tool itself and the functional phenomena being investigated. If the 

design is unsatisfactory, it may be frequently attributed to one of 

the following:

1. One or more variables have been neglected.

2. A poor (or at least a less favorable) choice of code for 

the variables has been made.

5. Improper ranges for the variables have been selected.

h. A basic error in selection of the design has been made.

The above-mentioned illustrations of the application of the 

technique have not followed Box’s outlined procedure unremittingly 

but have captured the intent and the general concepts which Box and 

his co-workers have proposed. Certainly the method of steepest ascent 

is not a purely mathematical concept; but. Just as certainly, it is a 

methodology for solving a particular type of problem. The method has 

been shown to be reasonably flexible and successful.
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