United States Patent

 7-DIAZABICYCLO-[3.3.1]NONANES AND SELECTED SALTS THEREOF AS MULTICLASS ANTIARRHYTHMIC AGENTS
[73] Assignee: The Board of Regents, Oklahoma

 State University. Stillwater. Okla.[21] Appl. No.: 545,341
[22] Filed: Oct. 19, 1995

	Related U.S. Application Data
[62]	Division of Ser. No. 144,639, Oct. 28, 1993, Pat. No. 5,468,858.
[51]	Int. Cl. ${ }^{6}$.................... C07D 495/08; C07D 495/10
[52]	U.S. Cl. 546/114; 546/112; 546/18
[58]	Field of Search 546/18, 114; 514/278.

References Cited

U.S. PATENT DOCUMENTS

4,581,361 4/1986 Berlin et al. \qquad 514/301

R. Jeyaraman and S. Avila pp. 149-174 1981 Chemistry of 3-Azabicyclo[3.3.1]nonanes/Chemical Reviews, vol. 81. No. 2.
N.S. Zeifrov and V.a. Palyulin pp. 171-230 1991 Conformational Analysis of Bicyclo[3.3.1]nonanes and Their Hetero Analogs. Topics in Stereochemistry, vol. 20, edited by Ernest L. Eliel and Samuel H. Wilen. Interscience-Wiley. Publishers, New York.

Primary Examiner-Mukund H. Shah
Assistant Examiner-Pavanaram K. Sripada
Attorney, Agent, or Firm-Fellers. Snider, Blankenship. Bailey \& Tippens, P.C.

[57]
 ABSTRACT

3.7-Diazabicyclo[3.3]nonanes and selected derivatives thereof of the general formula:

wherein $\mathrm{Q}=\mathrm{S} ; \mathrm{Z}=\mathrm{CH}_{2}$; and Y equals an N -acyl or N -alkyl group are disclosed as multiclass antiarrhythmic agents.

1 Claim, No Drawings

N-ALKYL AND N-ACYL DERIVATIVES OF 3, 7-DIAZABICYCLO-[3.3.1]NONANES AND SELECTED SALTS THEREOF AS MULTICLASS ANTIARRHYTHMIC AGENTS

This is a divisional application of prior co-pending application, Ser. No. 08/144,639, filed Oct. 28. 1993, U.S. Pat. No. 5,468,858 entitled "Novel N-Alkyl and N-Acyl Derivatives of 3.7-diazabicyclo-[3.3.1]nonanes and Selected Salts Thereof as Multi-Class Antiarrhythmic Agents".

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to antiarrhythmic compositions. Specifically. this invention relates to certain members of the family of 3.7-diazabicyclo[3.3.1]nonanes and highly selected derivatives thereof.

2. Description of the prior Art

3-Azabicyclo[3.3.1]nonanes (3-ABN), 3.7-diazabicyclo [3.3.1]nonanes (3.7-DBCN), and certain derivatives thereof are known and have been documented in the literature in two reviews. These reviews are: (a) Chemical Reviews. Volume 81, No. 2, pages 149-174 (1981), entitled "Chemistry of 3-Azabicyclo [3.3.11]nonanes" by R. Jeyaraman and S. Avila and (b) Topics in Stereochemistry, Volume 20, E. L. Eliel and S. H. Wilen, Eds., Interscience-Wiley, Publishers. New York, Chapter entitled "Conformational Analysis of Bicyclo [3.3.1]nonanes and Their Hetero Analogs" by N. S. Zefirov and V. A. Palyulin, 1990. These reviews cover synthesis, reactions and certain aspects of the stereochemistry of such systems. These reviews also acknowledge that there is resemblance of the title compounds to aza and diazaadamantanes in conformation and stereochemistry and that such systems have been obtained by Mannich reactions involving the condensations of certain ketones with a primary amine.

According to the chemical literature, some derivatives of 3-ABN and 3,7-DBCN have exhibited useful biological
properties including analgesic. antiangina. antitussive. antipyretic, and antiarrhythmic agent (AAA) activity. In U.S. Pat. Nos. 4.581.361; 4.778.892; 4.910.311; 4.980.468; $5,043.445 ; 5.084 .572$; and 5.110 .933 , for example. such
5 materials are disclosed and claimed as antiarrhythmic agents.
The potential use of multi-class action antiarrhythmic agents [classification of action of antiarriythmic agents has been made; see E. M. Vaughn Williams, "A Classification of
10 Antiarrhythmic Drugs Reassessed After a Decade of New Drugs", Journal of Clinical Pharmacology, Volume 24. pages $129-147$ (1984)] is now recognized. The few agents with some multi-class action have also been reviewed in "Cardiovascular Drugs", James A. Bristol. Ed., Wiley15 Interscience Publishers. New York. 1986; chapter 2 entitled "Screening Methods and Test Models for Evaluation of Cardioactive Drugs", by Robert J. Lee. Richard J. Gorczynski, and Robert D. E. Reynolds. See also chapter 7 in this reference entitled "Antiarrhythmic Agents" which is authored by Johannes Hartenstein and Bernd Wagner.

Specifically, this invention is related to the above derivatives of 3.7-DBCN [1-46] and precursors [47-100.108-112] thereof for controlling life-threatening arrhythmias associated with the "sudden death syndrome" with individuals who experience heart attacks caused by coronary heart disease. The objective of the present invention is to provide useful compositions that display multi-class antiarrhythmic agent (AAA) activity. Fulfillment of this object and the presence and fulfillment of other objects will be apparent upon complete reading of the specifications and claims herein. The novelty of the invention lies in the the nonpredictable, multi-class AAA activity induced by very special substituents in the compositions.

SUMMARY OF INVENTION

The present invention involves novel derivatives (salts) of 3.7-diazabicyclo[3.3.1]nonanes having the basic formula:

-continued

-continued

$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$	27
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	4-NC(O)C6 $\mathrm{C}_{4}-\mathrm{NH}_{2}$	28
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	29
$\mathrm{n}_{-} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$	30
$\mathrm{n}^{-} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}		31
		$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}$	
		1	

$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$	32
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$	33
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	34
S	CH_{2}	$\left.4-\mathrm{NC}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$	35
S			36

S	CH_{2}		37
		V^{N}	
s	CH_{2}		38
		V^{N}	
s	CH_{2}	4-NC(O)C64 ${ }_{6}-\mathrm{NO}_{4}$	39
s	CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$	40
S	CH_{2}	4-NC(O) $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	41
S	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$	42
s	CH_{2}	今	43
		$4-\mathrm{NCH}_{2} \mathrm{C}\left(\mathrm{O}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}\right.$	
		V^{N}	
s	CH_{2}	4 - $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$	44
s	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$	45
s	CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	46

The present invention also provides for novel intermediates of the class of 3,7-diazabicyclo[3.3.1]-nonan-9-ones having the formula:

\mathbf{R}	\mathbf{Y}	NUMBER
$\left(\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{CHN}\right.$	$\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}$	47

The invention further provides additional 3.7-diazabicyclo [3.3.1]nonanes of the formula:

0	Z	Y	NUM- BER
$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CHNN}$	CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	50
$\left(\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{CHN}\right.$	CH_{2}	$4 \mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	51
$\left(\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{CHNN}\right.$	CH_{2}	$4 \mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHSO}_{2} \mathrm{CH}_{3}$	52
$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CHN}$	CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$	53
$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CHN}$	CH_{2}		

$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CHN}$	CH_{2}	$\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}$
	CH_{2}	$\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}$

$\int_{-\mathrm{CH}_{2} \mathrm{~N}}$| CH_{2} | $\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ |
| :--- | :--- |

$\overbrace{-\mathrm{CH}_{2} \mathrm{~N}}{ }_{4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}}^{\left(\mathrm{CH}_{2}\right.}$
$\underbrace{}_{-\mathrm{CH}_{2} \mathrm{~N}}$
$\underbrace{-\mathrm{CH}_{2} \mathrm{~N}}$55

40

6245

$$
25
$$

60

66
S
S
65
6
$\mathrm{n}_{2} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
$15 \underbrace{\mathrm{CH}_{2}} \quad 4 \mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$

CH_{2}

$4 \mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$	74
$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$	75
$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$	76
$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$	77
	78

$$
\begin{aligned}
& \text { 4- } \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2} \\
& 4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{4}-\mathrm{NH}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4- } \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2} \\
& \text { 4- } \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}
\end{aligned}
$$

$$
4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}
$$

84

CH_{2}

NUMBER .

69

CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$
CH_{2}	$4-\mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$
CH_{2}	$4-\mathrm{NC}_{2}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHSO}_{2} \mathrm{CH}_{3}$
CH_{2}	$4-\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}$

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The chemical compositions according to the preferred embodiments of this invention are heteronuclear ring organic compounds based on 3.7-diheterabicyclo [3.3.1]nonanes with the general structures as follows:

Most structures contain nitrogen at the 3.7-positions (1-34 and 47-81), but structures 35-46 and 82-93 contain sulfur (S) at the 7 -position. Substituents at the 3-position (Y) vary with N -acyl groups $[1-5,12.14,16,17,20-24,27-29$. 35, 36. 39-41, 50-54, 60, 62-64, 67-71, 74.76, 82, 83. 86-88, 94-100,108,109] and N-alkyl groups [6-11, 13, 15, 18. 19. 25, 26, 30-34. 37. 38, 42-49. 55-59, 61, 65, 66. 72. 73, 77-81, 84, 85, 89-93, 110-112). Substituents (Q) at the paraformaldehyde in the presence of acetic acid/ hydrochloric acid/methanol to yield 47 and 48 . respectively.

The conditions are critical for good results. In addition. ketone 101 was allowed to react with benzylamine under similar conditions to give bicyclic system 103 (3-isopropyl-7-benzyl-3.7-diazabicyclo[3.3.1]no-nan-9-one). Reduction of bicyclic ketone 47 was effected with hydrazine in triethylene glycol/KOH media to generate 59 which was converted to its hydroperchlorate 10 . In similar fashion, removal of the carbonyl oxygen atom in 103 was accomplished to give 104 \{3-isopropyl-7-benzyl-3,7-diazabicyclo-[3.3.1] nonane $\}$ as illustrated. Generation of an intermediate thioketal from 47 followed standard
$\mathrm{TiCl}_{3} / \mathrm{AcOH}$ to yield 51 which, in turn, was N -sulfonated with mesyl chloride to give 52 . Addition of perchloric acid to this amide gave salt 3 . Treatment of 53 with imidazole in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3} / 18$-crown- 6 ether proceeded 5 smoothly, and the intermediate 54 was converted directly to salt 5.

In Reaction Scheme C, bicyclic ketone 48 was reduced under the same conditions as described above to yield diamine 61. Formation of the salt 13 followed easily from 61. Conversion of ketone 48 to the intermediate thioketal was facile, and the latter was then converted to salt 15.

REACTION SCHEME A

procedures. but only salt 11 was isolated. The same procedure used to obtain 47,48 and 103 can be used to obtain 49.

Diamine 104 is a key intermediate for the preparation of $1-9$ and intermediates 50-58. Debenzylation of 104 is initiated as shown in Reaction Scheme B utilizing ammonium formate in the presence of palladium-on-carbon to yield 105. Aroylation of 105 with $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ or $4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ as

shown led to amides 50 and 53 . respectively. Conversion of the nitro group in 50 to an amino group was done with
H_{4} $50 \mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$
$53 \mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$

Debenzylation of 61 was achieved as shown to yield key intermediate 106 which was used at once. Aroylation of 106 with benzoyl chloride or $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ led to 60 and 62 , respectively. Conversion of 60 and 62 to salts 12 and 14 . respectively, followed in standard fashion.

50

55

60
Alkylation of intermediate 105 with 4-fluorophenacyl chloride (107) gave 55 which was converted to salt 6 in the usual manner or with imidazole/ $\mathrm{K}_{2} \mathrm{CO}_{3}$ to 56 as shown in
65 Reaction Scheme D. Treatment of 56 with HClO_{4} led to salt 7. Reduction of 56 with sodium borohydride gave diamine 57 which was converted to salt 8.

REACTION SCHEME D

The following are representative examples of the compounds cited previosuly in this invention.

EXAMPLE I

3-Isopropyl-7-benzyl-3.7-diazabicyclo[3.3. 1]nonan9 -one (103)
Ketone (103) was prepared by the method in U.S. Pat. No. 5.084.572

EXAMPLE II

3-Isopropyl-7-benzyl-3.7-diazabicyclo[3.3.1]nonane (104).

Diamine (104) was prepared by the method in U.S. Pat. No. 5.084.572

EXAMPLE III

3-Isopropyl-3.7diazabicyclo[3.3. 1]nonane (105)

This diamine (105) was prepared by the method in U.S. 40 Pat. No. 5,084.572

EXAMPLE IV

3-(4-Nitrobenzoyl)-7-isopropyl-3,7-diazabicyclo [3.3.1]nonane Hydrochloride (1) and 3-(4-
Nitrobenzoyl)-7-isopropyl-3,7-diazabicyclo[3.3.1] nonane (50)
A flask was equipped with a magnetic stirrer, a condensor with $\mathrm{N}_{\mathbf{2}}$ inlet, an addition funnel and two glass stoppers. To a mixture of amine $105(3.82 \mathrm{~g}, 22.70 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{CCl}_{2}(25$ ml) and $10 \% \mathrm{NaOH}(22.76 \mathrm{~g}, 56.80 \mathrm{mmol})$ was added dropwise a solution of 4 nitrobenzoyl chloride $(4.63 \mathrm{~g} .24 .90$ mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(15 \mathrm{ml})$ over a period of 15 min . Stirring of the mixture was continued for an additional 3 h under N_{2}. To the heterogenous mixture was added $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, and two layers were separated. Further extracts $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}, 3 \times 50\right.$ ml) of the aqueous layer were combined. and the solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to give a viscous yellow oil which solidified upon standing. This yellow solid was dissolved in ether, and the solution was filtered. The filtrate was concentrated and then dried by vacuum to give 6.79 g (94.3%) of a light yellow solid $50 ; \mathrm{mp}$ $119^{\circ}-120^{\circ} \mathrm{C} . \operatorname{IR}$ (KBr) 3090. 3005 (Ar-H), 2920, 2880. $2770(\mathrm{C}-\mathrm{H}) .1635(\mathrm{NC}=\mathrm{O}) .760(\mathrm{C}-\mathrm{H}$ out of plane. para) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 0.56$ (d. $3 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 0.69 (d. $3 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl). 1.34 [m. $2 \mathrm{H}, \mathrm{H}(9)_{a x} \cdot \mathbf{H (5)] , 1 . 6 1}$
[bs. $1 \mathrm{H}, \mathrm{H}(1)$], 2.04-2.32 [m. 3 H , ring protons]. 2.67 (dd. 2 H , ring protons). 2.94 (dd, 1 H , ring proton), 3.20 (d. I H. ring proton), 3.39 (d. 1 H. ring proton). 7.13 (d. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). 7.85 (d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 15.89. 19.46 (CH_{3} isopropyl). $28.8129 .57 \mathrm{C}(1.5) .32 .04 \mathrm{C}(9) .46 .55$ (C-H isopropyl), 51.79. 52.31. 54.26, 54.85 C(2.4.6.8). 123.52.
25 127.60. 143.91, 147.62 (Ar-C). 167.58 ($\mathrm{NC}=\mathrm{O}$). Mass spectral (EI) data calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$: 317.1739. Found: 317.1750. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C. 64.33; H. 7.30; N, 13.24. Found: C. 64.06; H. 7.36; N, 12.97.

30 Gaseous HCl was generated in a flask containing solid NaCl which was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{ml})$ in a dropwise manner, and the gas generated was passed through a CaCl_{2} drying tube. To a flask equipped with a magnetic stirrer and an ice bath was added $\mathrm{HCl}_{(g)}$ to a chilled ($5^{\circ} \mathrm{C}$.) solution of period. The mixture was allowed to stir an additional 15 min at $0^{\circ}-5^{\circ} \mathrm{C}$. A white precipitate was filtered and washed with cold ether. The solid was recrystallized (methanol:ether, 1:1), and the white needles collected were washed (cold ether) and dried to give 2.09 g (74.9%) of salt $1 ; \mathrm{mp}$ $258^{\circ}-259^{\circ} \mathrm{C} . \mathbb{R}(\mathrm{KBr}) 3410(\mathrm{~N}-\mathrm{H}), 3100.3040(\mathrm{Ar}-\mathrm{H})$, $2950.2860(\mathrm{C}-\mathrm{H}), 1655(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) 83$ 1.43 [d. $6 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl], 2.01 [bs, $2 \mathrm{H} . \mathrm{H}(9)$]. 2.53 [bs. $2 \mathrm{H}, \mathrm{H}(1.5)$], 3.39-3.67 [m, $9 \mathrm{H}, \mathrm{H}(2.4 .6,8)$] and $\mathrm{C}-\mathrm{H}$
45 isopropyl], 7.71 [d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.33$ [d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$]; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) ppm 19.43 [CH_{3} isopropyl], 29.56 [$\left.\mathrm{C}(1.5 .9)\right]$. 49.11, 53.32 [s, ring carbons], 63.67 [C-H isopropyl], 126.89, 130.73, 143.84, 151.10 [$\mathrm{Ar}-\mathrm{C}$]. 175.77 [$\mathrm{NC}=\mathrm{O}$]. Mass spectral (EI) data calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$: 50317.1739 (-HC 1). Found: 317.1761. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$: C. $57.70 ; \mathrm{H}, 6.84$; N, 11.58. Found: C. 57.86; H, 6.72; N, 11.65.

EXAMPLE V

> 3-(4-Aminobenzoyl)-7-isopropyl-3.7-diazabicyclo [3.3.1]nonane Hydrochloride (2) and 3-(4Amninobenzoyl)-7-isopropyl-3.7diazabicyclo[3.3.1. nonane (51)

To a llask equipped with a magnetic sturrer was added amide $50(9.17 \mathrm{~g} .28 .90 \mathrm{mmol})$ in $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,100 \mathrm{ml})$. To this solution was added $\mathrm{TiCl}_{3}(16 \%, 195.0 \mathrm{~g} .202 .3$ mmol) in one portion. and the mixture was stirred at RT for 7 min . The deep purple solution was made basic ($\mathrm{pH} \sim 12$) 65 with $20 \% \mathrm{NaOH}$ until a blue color persisted. Extraction $\left(\mathrm{H}_{2} \mathrm{CC}_{2} .4 \times 90 \mathrm{ml}\right)$ was followed by washing with $\mathrm{H}_{2} \mathrm{O}(2 \times$ 100 ml) and brine (100 ml). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the
solution was filtered and concentrated to give $7.34 \mathrm{~g}(86.2 \%)$ of an off-white solid $51 ; \mathrm{mp} 149^{\circ}-150^{\circ} \mathrm{C}$. $\mathbb{R}(\mathrm{KBr}) 3340$. 3220 (N-H). 3060. 3020 (A-H) . 2980, 2800 (C-H). 1640 $(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 0.98$ (bs, $6 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl). 1.67 [m, $3 \mathrm{H}, \mathrm{H}(5), \mathrm{H}(9)], 1.91$ [s. $1 \mathrm{H}, \mathrm{H}(1)$]. 2.41 (bs, 2 H , ring proton), 2.72 (s, 1 H , ring proton). 3.02 (bs, 2 H , ring protons), 3.31 (d, 1 H , ring proton). 3.83 (bs. $3 \mathrm{H}, \mathrm{NH}_{2}$, ring proton). 4.70 (d. 1 H . ring proton). 6.62 (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}) .7 .19$ (d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.81. $18.79\left(\mathrm{CH}_{3}\right.$ isopropyl), 29.15, $29.79 \mathrm{C}(1.5) .32 .25$ $\mathrm{C}(9), 46.61$ (C-H isopropyl), $52.59,54.22 \mathrm{C}(2.4 .6 .8)$, 114.10, 127.21, 128.68, 147.18 (Ar-C), $170.47(\mathrm{NC}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 71.05 ; \mathrm{H}, 8.77$; $\mathrm{N}, 14.62$. Found: C. 70.67; H. 8.82; N. 14.28. The N-acetyl derivatve (108) was made from 51 and acetyl chloride in $\mathrm{H}_{2} \mathrm{CCl}_{2}$ in the standard fashion. This derivative (108) was converted to the hydroperchlorate (109) derivative (hygroscopic) in the usual manner. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{gClN}_{3} \mathrm{O}_{6} 0.8$: C. 51.036 H, 6.71. Found: 51.27 ; H, 6.63 .

A flask was charged with amide $51(2.0 \mathrm{~g} .6 .96 \mathrm{mniol})$ in ether and chilled to $5^{\circ} \mathrm{C} . \mathrm{HCl}$ gas was added over a period of 10 minutes. The resulting white precipitate was filtered and washed with cold ether. Recrystallization ($\mathrm{H}_{3} \mathrm{COH}$:ether) of the solid followed by filtering and drying afforded ($1.58 \mathrm{~g} .70 .2 \%$) of salt $2 ; \mathrm{mp} 209^{\circ}-210^{\circ} \mathrm{C}$. IR (KBr) 3400.3160 (N-H). 3010. 2940. 2860 (C-H). 1630 $(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.45\left[\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl], 2.03 [bs, $2 \mathrm{H}, \mathrm{H}, \mathrm{H}(9)$], 2.49 [bs. $2 \mathrm{H}, \mathrm{H}(1.5)$]. $3.40-3.67$ [$\mathrm{m}, 9 \mathrm{H}, \mathrm{H}(2,4,6.8)$ and $\mathrm{C}-\mathrm{H}$ isopropyl], 4.63 [s. $2 \mathrm{H}, \mathrm{N}-\mathrm{H}] .7 .62[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}]^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \mathrm{ppm} 18.83$ [CH_{3} isopropyl], 29.84, [C(1.5)], 30.14 [C(9)], 52.19. 55.26 [bs $\mathrm{C}(2,4.6 .8)], 63.65$ [$\mathrm{C}-\mathrm{H}$ isopropyl], 124.20, 131.59. 135.29. 139.39 [Ar-C]. 177.42 [$\mathrm{NC}=\mathrm{O}$]. Compound 2 was hygroscopic. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{OCl}-0.9 \mathrm{H}_{2} \mathrm{O}$: C. 54.23; H. 7.71;. Found: C. 54.56 ; H. 7.62

EXAMPLE VI

3-(4-Methanesulfonamidebenzoyl)-7-isopropyl-3,7diazabicyclo[3.3.1]nonane Hydroperchlorate (3) and 3-(4-Methanesulfonamidebenzoyl)-7-isopropyl-3,7-diazabicyclo[3.3.1]nonane (52)

A flask was equipped with an addition funnel, magnetic stirrer, condensor with N_{2} inlet, and an ice bath. To a chilled ($5^{\circ} \mathrm{C}$.) solution of amide $51(3.0 \mathrm{~g}, 10.44 \mathrm{mmol})$ and pyridine ($0.87 \mathrm{~g}, 10.96 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(20 \mathrm{ml})$ was added dropwise methanesulfonyl chloride (1.18 g .10 .34 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(10 \mathrm{ml})$ over a 15 min period. After the addition was complete, the mixture was allowed to stir at RT overnight. Filtration of the solution removed traces of pyridine hydrochloride, and the filtrate was transferred to a separatory funnel. Extraction ($1 \mathrm{~N} \mathrm{NaOH}, 4 \times 40 \mathrm{ml}$) was followed by neutralization ($\mathrm{pH} \sim 7$) of the aqueous phase, and the remaining organic layer was discarded. This neutral solution was extracted ($\left.\mathrm{H}_{2} \mathrm{CCl}_{2}, 4 \times 40 \mathrm{ml}\right)$. and the resulting solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. After concentration, there was obtained $3.46 \mathrm{~g}(90.6 \%)$ of an off-white solid $52 ; \mathrm{mp}$ $89^{\circ}-91^{\circ} \mathrm{C}$. IR (KBr) $3140(\mathrm{~N}-\mathrm{H}), 3040$ (Ar-H), 2980, 2930, 2870. $2810(\mathrm{C}-\mathrm{H}) .1610(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ $\delta 0.97$ (d. $3 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl), 1.08 (d. $3 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl). 1.69 [bs, $1 \mathrm{H} . \mathrm{H}(5)$], 1.79 [bd, $2 \mathrm{H}, \mathrm{H}(9)$], 1.98 [bs, 1 H. $\mathrm{H}(1)$]. 2.42 (d. 1 H , ring proton). 2.51 (d. 1 H , ring proton). 2.60 ($\mathrm{m} .1 \mathrm{H}, \mathrm{CH}$ isopropyl). 2.74 (d. 1 H . ring proton). 3.03 ($\mathrm{m}, 5 \mathrm{H}$. ring protons. $\mathrm{SO}_{2} \mathrm{CH}_{3}$), 3.32 (d. 1 H , ring proton), 3.78 (d, 1 H . ring proton), 4.76 (d, 1 H , ring proton). 7.21-7.30 (q. $4 \mathrm{H} . \mathrm{Ar}-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.26. $19.16\left(\mathrm{CH}_{3}\right.$ isopropyl), 28.89, 29.55 [C(1.5)], 32.05 [C(9)].
$39.18\left[\mathrm{SO}_{2} \mathrm{CH}_{3}\right], 46.76$ [C-H isopropyl], 52.11. 52.52. 54.19 [C(2.4.6.8)]. 119.80, 128.05, 128.16. 133.22, 138.21 [Ar-C]. $169.63[\mathrm{NC}=\mathrm{O}$. The compound 52 was used directly to make 3.
Solid 52 ($3.1 \mathrm{~g}, 8.48 \mathrm{mmol}$) was dissolved in ethanol ($95 \%, 50 \mathrm{ml}$), and the resulting solution was chilled ($5^{\circ} \mathrm{C}$.). With stirring. $\mathrm{HClO}_{4}(60 \%, 1.77 \mathrm{~g} .10 .60 \mathrm{mmol})$ was added dropwise to the chilled solution over a period of 15 min . Stirring was continued an additional 10 niin at this temperature. A white precipitate was filtered and recrystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to give $1.97 \mathrm{~g}(49.9 \%)$ of white platelettes of 3 ; mp $267^{\circ}-268^{\circ} \mathrm{C} . \mathrm{IR}$ (KBr) 3260. 3120 ($\mathrm{N}-\mathrm{H}$). 3010 ($\mathrm{Ar}-\mathrm{H}$). 2940. $2880(\mathrm{C}-\mathrm{H}), 1630(\mathrm{NC}=\mathrm{O}) .1100(\mathrm{Cl}-\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 1.32$ (dd, $2 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 1.69-1.87 [dd. 2 H. H(9)], 2.24 [m, $2 \mathrm{H}, \mathrm{H}(1,5)$], 3.06 (s, 3 H. $\mathrm{SO}_{2} \mathrm{CH}_{3}$) $3.18-3.55(\mathrm{~m} .9 \mathrm{H}$. ring protons. $\mathrm{C}-\mathrm{H}$ isopropyl). 7.24 (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$). 7.37 (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$). 7.93 (bs. I H. N-H). 10.05 (s. $1 \mathrm{H} . \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{~N}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSOd_{6}) ppm $26.48\left(\mathrm{CH}_{3}\right.$ isopropyl). $27.59 \mathrm{C}(1.5 .9) .39 .52$ (C-H isopropyl), $39.57 \mathrm{C}(2.4 .6 .8), 59.53\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 118.12$. 128.81, 130.60, 139.53 (Ar-C), 172.62 ($\mathrm{NC}=\mathrm{O}$). Mass spectral (ED) data calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{SO}_{7} \mathrm{Cl} \mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$: $365.1773\left(-\mathrm{HClO}_{4}\right)$. Found: 365.1775. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{SO}_{7}$: C. $46.40 ; \mathrm{H}, 6.06 ; \mathrm{N}, 9.02 ; \mathrm{S}, 6.88$. Found: C. 46.40; H 6.01; N. 8.94; S, 7.07.

EXAMPLE VII

3-(4-Fluorobenzoyl)-7-isopropyl-3.7 diazabicyclo [3.3.1lnonane Hydroperchlorate (4) and 3-(4-
 Fluorobenzoyl)-7-isopropyl-3.7-diazabicyclo[3.3.1] nonane (53)

In flask equipped with a magnetic stirrer, an addition funnel. a condensor with N_{2} inlet and a glass stopper were placed the amine $105(2.53 \mathrm{~g} .15 .03 \mathrm{mmol})$ and $\mathrm{NaOH}(10 \%$, $15.07 \mathrm{~g} .37 .58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{CCl}_{2}(25 \mathrm{ml})$. A solution of 4-fluorobenzoyl chloride ($2.62 \mathrm{~g}, 16.54 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{CCl}_{2}$ (15 ml) was added dropwise over a period of 0.5 h under N_{2}. The mixture was allowed to stir an additional 3 h . Addition of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was followed by extraction with $\mathrm{H}_{2} \mathrm{CCl}_{2}$ ($3 \times 50 \mathrm{ml}$). Combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give a light yellow solid. Flash chromatography of. the oil was performed on neutral aluniina (50 g) with hexane:ethyl acetate ($60: 40$) as the eluent The filtrate was concentrated and placed under vacuum to give 3.88 g (89.0%) of amide 53 as a white solid; $\mathrm{mp} 87^{\circ}-88^{\circ} \mathrm{C}$. IR (KBr) 3090, 3005, 2975, 2930, 2860, 1630 ($\mathrm{NC}=\mathrm{O}$), 750 $\mathrm{cm}^{-1} .^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 0.96\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), 1.07 (d. $3 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 1.71 [m, $\left.3 \mathrm{H}, \mathbf{H}(9) . \mathrm{H}(5)\right], 1.95$ [s, $1 \mathrm{H}, \mathrm{H}(1) \mathrm{]}, 2.41-272(\mathrm{~m}, 3 \mathrm{H}$, ring protons), 3.03 (d, 2 H . ring protons). 3.31 (d, 1 H , ring proton), 3.72 (d, 1 H , ring proton), 4.74 (d. 1 H . ring proton), 7.08 (m. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.36 (m. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.26, $19.18\left(\mathrm{CH}_{3}\right.$ isopropyl), 28.97, 29.69 C(1.5), 32.16 C(9), 46.59 (C-H isopropyl), $52.12,52.49,54.65 \mathrm{C}(2.4,6.8), 114.96 .115 .25$. 128.77, 128.88, 133.60, 133.64 (Ar-C), 161.04, 164.33 ($\mathrm{J}=248.2 \mathrm{~Hz}$, ArC-F). 169.07 ($\mathrm{NC}=\mathrm{O}$). Mass spectral (El) data calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OF} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right): 290.1794$. Found: 290.1790. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OF}: \mathrm{C}, 70.32$; H .7 .98 ; N, 9.65. Found: C, 70.39; H 8.03; N, 9.71.

To a chilled ($5^{\circ} \mathrm{C}$.) solution of amide $53(1.0 \mathrm{~g}, 3.44$ mmol) in ether contained in a flask was added dropwise $\mathrm{HClO}_{4}(60 \%, 0.72 \mathrm{~g}, 4.30 \mathrm{mmol})$ over a period of 5 minutes. This precipitate was filtered and washed with cold ether. Recrystallization (methanol) of the precipitate was followed by filtration and drying to give $\mathrm{g}(1.03 \mathrm{~g}, 76.3 \%$) of salt 4 as white platelettes; mp $246^{\circ}-247^{\circ} \mathrm{C}$. \mathbf{R} (KBr) $3120(\mathrm{~N}-\mathrm{H})$.
$3010(\mathrm{Ar}-\mathrm{H}), 2940,2880(\mathrm{C}-\mathrm{H}), 1625(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$) $\delta 1.38$ (d. $6 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl), 1.81 [d. $1 \mathrm{H}, \mathrm{H}(5)], 2.29$ [d. $3 \mathrm{H}, \mathrm{H}(5,9)$] 3.34 [m. 5 H . ring protons. C-H isopropyl], 3.52 [bd, 4 H . ring protons]. 7.17 [t. 2 H , $\mathrm{Ar}-\mathrm{H}], 7.38[\mathrm{~m} .2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{CC} \equiv \mathrm{N}$) ppm $16.72\left[\mathrm{CH}_{3}\right.$ isopropyl]. 27.89 [C(1.5)], $28.99[\mathrm{C}(9)] .50 .34$. 53.52 [bs, $\mathrm{C}(2,4.6 .8)] .60 .96$ [C-H isopropyl]. 116.29. 116.59. 118.01, 118.36. 130.65, 130.77, 132.78. 132.82 [Ar-C]. 162.59, 165.88 [$\mathrm{J}=247.6 \mathrm{~Hz}$, ArC-F], 174.13 $[\mathrm{NC}=\mathrm{O}]$. Mass specttral (EI) data calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{CLN}_{2} \mathrm{O}_{5} \mathrm{~F} \mathrm{~m} / \mathrm{z}\left(\mathrm{M}^{+}\right): 290.1855\left(-\mathrm{HClO}_{4}\right)$. Found: 290.1853. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{CLN}_{2} \mathrm{O}_{5} \mathrm{~F}: \mathrm{C}, 52.24 ; \mathrm{H}$, 6.19. Found: C. 52.46 ; H. 6.24.

EXAMPLE VIII

3- (-(1H-Imidazol- 1 -yl)benzoyl]-7-isopropyl-3.7diazabicyclo[3.3.1nonane Dihydroperchlorate (5) and

3-[4-(1H-Imidazol-1 -yl)benzoyl]-7-isopropyl-3.7diazabicyclo[3.3.1]nonane (54)

A jacketed flask was equipped in the standard manner. To a solution of amide $53(3.35 \mathrm{~g} .11 .54 \mathrm{mmol})$ in DMSO (50 ml) was added imidazole (1.18 g .17 .30 mmol). potassium carbonate (anhydrous. $1.67 \mathrm{~g}, 12.12 \mathrm{mmol}$), and 18 -crown-6 (500 mg). The stirred mixture was heated at $10^{\circ} \mathrm{C}$. for 40 h under N_{2} with the use of boiling toluene in the jacket. Cooling the solution to RT was followed by addition of chilled $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{ml})$. Combined extracts $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}, 4 \times 40 \mathrm{ml}\right)$ of the suspension were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{ml})$ and saturated $\mathrm{NaCl}(80 \mathrm{ml}$); the solution was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and concentration gave a light yellow solid 54 which was dried on a vacuum pump overnight Flash chromatography (neutral alumina) of the crude solid in solution using ethyl acetate:hexane (2:3) caused the starting material to be eluted first. With a more polar solvent system [ethyl acetate:methanol (30:1)] product 54 could be isolated ($1.35 \mathrm{~g} .35 .1 \%$) as an off white. gummy solid for which a melting point could not be determined since the material appeared to be hygroscopic. IR (KBr) 3400 (N-H), 3110 (Ar-H), 2975, 2910, 2800 (C-H), 1620 ($\mathrm{NC}=\mathrm{O}$), 735 (para) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 0.96-1.14$ [dd. 6 H , proton), 2.57 [d, 1 H , ring proton), 2.63 [$\mathrm{m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ isopropyl]. 2.77 [d. 1 H , ring proton], 3.09 [d. 2 H , ring protons], 3.38 [d. 1 H , ring proton]. 3.76 [d, 1 H , ring proton], 4.79 [d, 1 H , ring proton], 7.22 [s, $1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ imidazole], 7.41-7.54 [dd, 4 H , $\mathrm{Ar}-\mathrm{H}], 7.89$ [$\mathrm{s}, 1 \mathrm{H}$, imidazole]; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.33.19.41 $\left[\mathrm{CH}_{3}\right.$ isopropyl], 29.03.29.78 [C(1.5)], 32.26[C (9)], 46.72 [C-H isopropyl], $52.15,52.61,54.38,54.82$ [C(2.4.6,8)], 118.07 [C-H imidazole], 121.15, 128.54 [ArC]. 130.60, 135.44 [C-H imidazole]. 136.91, 137.43 [Ar-C], $168.80[\mathrm{NC}=\mathrm{O}]$. This material was converted directly to a salt.

Treatment of $54\left(1.44 \mathrm{~g}, 4.25\right.$ nunol) with $\mathrm{HClO}_{4}(60 \%$, 1.6 mmol) at $5^{\circ} \mathrm{C}$. (ice bath) produced a white precipitate. Filtration, followed by recrystallization (methanol) of the solid. gave white needles ($1.14 \mathrm{~g}, 60.9 \%$) of $5 ; \mathrm{mp}$ $262^{\circ}-263^{\circ} \mathrm{C}$. \mathbb{R} (KBr) 3200 (N-H), 3005 (Ar-C). 2940, 2880 (C-H). 1645380 ($\mathrm{NC=}=\mathrm{O}$). $1100(\mathrm{Cl}-\mathrm{O})(\mathrm{cm}-1) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.33$ [bs. $\left.6 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{C}\right], 2.34,2.41[\mathrm{~d}$. $2 \mathrm{H}, \mathrm{H}(9)], 2.79$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 3.03 (s, $2 \mathrm{H}, \mathrm{H}(1,5)$], 3.23, 3.97 [bs. $9 \mathrm{H}, \mathrm{H}(2.4,6,8$). C-H isopropyl], 7.66 (d, 2 H , ArH). 7.94 (s. $1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ imidazole). 7.96 (d. $2 \mathrm{H}, \mathrm{ArH}$), 8.32 (s. $1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ imidazole 9.20 (s, 1 H, C-H imidazole); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) ppm 26.42, 27.36, 59.64 (ring carbons). 120.63, 121.35. 122.01, 128.74, 135.27, 137.49(Ar-C), tion (ether, $3 \times 75 \mathrm{ml}$) of the aqueous layer was followed by another extraction $\left(\mathrm{H}_{2} \mathrm{CCl}_{2.3 \times 75} \mathrm{ml}\right)$ and the ether extracts were discarded. The organic layer $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}\right)$ was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{~h}$), filtered. and concentrated (rotary evaporator) to give $2.9 \mathrm{~g}(86.1 \%)$ of amine 55 as a light yellow solid; mp $193^{\circ}-194^{\circ} \mathrm{C}$. IR (KBr) 3060.3040 (Ar-H). 2940. 2805 $(\mathrm{C}-\mathrm{H}), 1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{d} 1.45(\mathrm{~d} .6 \mathrm{H}$. CH_{3} isopropyl). 1.81 [d. $1 \mathrm{H} . \mathrm{H}(9)_{a x} 2.11$ [d. $1 \mathrm{H} . \mathrm{H}(9)_{\text {eq }}$]. 302.32 [bs, $2 \mathrm{H}, \mathrm{H}(1.5)$]. 2.85 (d. 2 H . ring protons). 3.37 (d. 2 H , ring protons). 3.49 (d. 2 H . ring protons). 3.86 ($\mathrm{m}, 3 \mathrm{H}$. ring protons. $\mathrm{C}-\mathrm{H}$ isopropyl), $4.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArC}(\mathrm{O}) \mathrm{CH}_{2}\right.$), 7.15 (t. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). 8.02 (m. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $17.01\left(\mathrm{CH}_{3}\right.$ isopropyl), $28.04[\mathrm{C}(1,5)], 30.05[\mathrm{C}(9)]$. 53.74, 57.2257 .34 (ring carbons, C-H isopropyl). 62.22 $\left[\mathrm{ArC}(\mathrm{O}) \mathrm{CH}_{2}\right], 115.58,115.88,130.57 .130 .70 .131 .22$. 131.26 ($\mathrm{Ar}-\mathrm{C}$), $164.10 .167 .49(\mathrm{~J}=265.8 \mathrm{~Hz}, \mathrm{ArC}-\mathrm{F}) .194 .99$ $(\mathrm{C}=\mathrm{O})$. Ketone 55 was slightly unstable. and thus was reduced to the corresponding alcohol 110.

EXAMPLE X

(\pm)-3-[(4'-Fluoro)-1-hydroxy-1-phenylethyl]-7-isopropyl-3.7-diazabicyclo[3.3.1]nonane (110).
To a standard setup was added solid LiAlH_{4} (95%. 0.787 $\mathrm{g}, 19.7 \mathrm{mmol}$) in one portion. After purging the flask with N_{2} for 10 min , tetrahydrofuran (10 ml) was poured slowly over the LiAlH_{4} which resulted in a gray slurry. Ketone 55 (2.0 g. 6.57 mmol) was added portionwise over a period of 15 50 min . followed by heating the reaction mixture ($40^{\circ} \mathrm{C} . .3 \mathrm{~h}$) and then stirring at room temperature overnight. Excess LiAlH_{4} was destroyed using EtOAc (10 ml) added dropwise to the chilled ($5^{\circ} \mathrm{C}$.) reaction mixture. Addition of $5 \% \mathrm{HCl}$ ($\sim 15 \mathrm{ml}$) adjusted the aqueous solution to $\mathrm{pH}-2$ which was then extracted (ether, $2 \times 30 \mathrm{ml}$) to remove small impurities and these ether extracts were discarded. After making the aqueous phase slightly basic ($\mathbf{p H} \sim 8$) using $10 \% \mathrm{NaOH}(-10$ ml), extraction ($\mathrm{H}_{2} \mathrm{CCl}_{2}, 3 \times 50 \mathrm{ml}$) was followed by washing the organic layer with $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{ml})$, satd $\mathrm{NaCl}(75 \mathrm{ml})$. and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 2 \mathrm{~h}\right)$. Filtration and concentration (rotary evaporator) resulted in $1.33 \mathrm{~g}(66.2 \%)$ of racemic alcohol 110 as a white solid; $\mathrm{mp} 53^{\circ}-54^{\circ} \mathrm{C}$. \mathbb{R} (film) $3225(\mathrm{OH})$. 2930. $2800(\mathrm{C}-\mathrm{H}), 1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta$ 1.08 (d. $6 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 1.57 [bs. $2 \mathrm{H} . \mathrm{H}(9)$]. 1.87 [bs. $652 \mathrm{H} . \mathrm{H}(9)$], 2.26 (m. 2 H . ring protons), 2.45 (d. 2 H . ring protons). 2.55 [dd. $\mathrm{J}=4.09 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}(\mathrm{OH}) \mathrm{CH}_{2}$]. 2.83 (bs, 2 H . ring protons), 3.07 ($\mathrm{m}, 3 \mathrm{H}$, ring protons, $\mathrm{C}-\mathrm{H}$
isopropyl), 4.67 [dd. $\mathrm{J}=4.09 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}(\mathrm{OH})], 6.23$ (bs, $1 \mathrm{H}, \mathrm{O}-\mathrm{H}$), 7.01 (t, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.35$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 18.39. $18.69\left(\mathrm{CH}_{3}\right.$ isopropyl), 30.17. $30.90[\mathrm{C}(1.5)] .32 .54[\mathrm{C}(9)], 54.07 .54 .38 .54 .61,55.24$ $[\mathrm{C}(2.4 .6 .8)] .59 .55$ (C-H isopropyl), $64.47[\mathrm{ArCH}(\mathrm{OH})$ CH_{2}]. $68.54[\mathrm{ArC}-\mathrm{H}(\mathrm{OH})] .114 .71,114.99$. 127.39. 127.49. 138.97, 139.00 (Ar-C), 160.28. 163.51 (J=243.9 Hz, ArC-F); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}$: C. 70.56 ; $\mathrm{H}, 8.88$. Found: C. 70.28; H. 9.00 .

EXAMPLE XI

3.7-Diisopropyl-3.7-diazabicyclo[3.3.1]nonane Hydroperchlorate (10) 3.7-Diisopropyl-3.7diazabicyclo[3.3.1]nonane (59)

A jacketed flask was equipped with a magnetic stirrer. a heating mantle, a condensor, a lower takeoff condensor with N_{2} inlet and two glass stoppers. To a solution of ketone 47 ($5.9 \mathrm{~g}, 20.3 \mathrm{mmol}$) in triethylene glycol (50 ml) was added KOH pellets ($85 \%, 13.89 \mathrm{~g}, 210.9 \mathrm{mmol}$) and hydrazine $(95 \%, 3.55 \mathrm{~g}, 105.19 \mathrm{mmol})$. The stirred mixture was heated at $200^{\circ}-210^{\circ} \mathrm{C}$. for 4 h under N_{2} with the use of boiling tetralin in the jacket. Cooling the solution to RT was followed by addition of chilled $\mathrm{H}_{2} \mathrm{O}$. Combined extracts (ether, $4 \times 80 \mathrm{ml}$) of the suspension were washed with 10% NaOH and saturated NaCl , was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and concentration gave an oil which was placed under vacuum. A new yellow oil 59 resulted ($4.48 \mathrm{~g}, 81.1 \%$). IR (KBr) 2975. 2900. 2820 (C-H), cm^{-1}. IR analysis of compound showed no carbonyl stretch spectrum, and thus 59 was used directly to prepare salt 10 .

A flask was equipped with a magnetic stirrer and an ice bath. To a chilled ($5^{\circ} \mathrm{C}$.) solution of amine $59(3.4 \mathrm{~g} .16 .16$ mmol) in dry ether (150 ml) was added $\mathrm{HClO}_{4}(60 \% .3 .4 \mathrm{~g}$. 20.2 mmol) dropwise over a period of 15 min . The mixture was allowed to stir an additional 15 min at $0^{\circ}-5^{\circ} \mathrm{C}$. A white precipitate formed and was filtered and washed (cold ether, 30 ml). The solid was recrystallized (methanol), and white needles were collected and washed (cold methanol) and dried to give 3.63 g (72.3%) of salt 10 (hygroscopic); mp $211^{\circ}-212^{\circ}$ C. IR (KBr) 2985, 2940, 2850, 1090 (Cl-O) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{C}-\mathrm{C}-\mathrm{N}\right) \delta 1.14$ [. d. $12 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl], 1.80 [bs. $2 \mathrm{H} . \mathrm{H}(1.5$)], 2.21 [bs. $2 \mathrm{H}, \mathrm{H}(9)$], 2.97 [d. 4 H , ring protons]. 3.19 [$\mathrm{m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{H}$ isopropyl], 3.28 [d. 4 H , ring protons]; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$) ppm 17.11 $\left[\mathrm{CH}_{3}\right.$ isopropyl], $28.56[\mathrm{C}(1,5)], 31.41[\mathrm{C}(9)], 54.26[\mathrm{C}(2$, 4.6.8)]. 56.13 [C-H isopropyl]. Mass spectral (EI) data calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right): 210.2096$. Found: 210.2096 . Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl} 0.2 \mathrm{H}_{2} \mathrm{O}$ C. $49.66 ; \mathrm{H}, 8.78$; N. 8.91. Found: C. 49.33; H, 8.52; N.9.31.

EXAMPLE XII

3.7-Diisopropyl-9.9-(1,3-dithiolan-2-yl)-3,7diazabicyclo[3.3.1]nonane Hydroperchlorate (11) and 3.7-Diisopropyl-9.9-(1.3-dithiolan-2-yl)-3.7diazabicyclo[3.3.1]nonane (111)

A flask was equipped with a magnetic stirrer, condensor with a N_{2} inlet. a Dean-Stark trap, and a heating mantle. After addition of the ketone $47(8.0 \mathrm{~g}, 35.66 \mathrm{mmol}), 1.2-$ ethanedithiol (33.59 g .356 .6 inmol), p-toluenesulfonic acid $(16.28 \mathrm{~g} .85 .58 \mathrm{mmol})$ and benzene (200 ml) were added. and the resulting mixture was heated at reflux for 40 h . The solvent was then removed through a Dean-Stark trap, and the resulting oil was dissolved in $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted (ether, $2 \times 100 \mathrm{ml}$), the extracts being dis-
carded. Basification ($\mathrm{pH}-12$) of the aqueous solution was achieved using $10 \% \mathrm{NaOH}$, followed by extraction (ether, $4 \times 75 \mathrm{ml}$). The organic layer was washed with NaOH (1N) and then brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the solution, evaporation afforded $8.06 \mathrm{~g}(75.2 \%)$ of a light yellow oil which was 3.7-diisopropyl-9,9-(1.3-dithiolan-2-yl)-3.7diazabicyclo[3.3.1]nonane (111). IR (film) 2905, 2800 (C-H) $\mathrm{cm}^{-1} 2905.2800(\mathrm{C}-\mathrm{H})$. Since \mathbb{R} analysis showed no carbonyl band, the oil 111 was used directly to prepare 11 without further purification. ${ }^{1} \mathrm{H}$ NMR of this oil showed: (DCCl_{3}) $\delta 1.03$ [d, $12 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl]. 2.26 [d. 4 H , ring protons]. 2.77 [$\mathrm{m} .2 \mathrm{H} . \mathrm{C}-\mathrm{H}$ isopropyl], 2.89 [dd. 4 H . ring protons], 3.08 [s, $4 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}$]; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $17.97\left[\mathrm{CH}_{3}\right.$ isopropyl], $37.39[\mathrm{C}(1,5)], 43.11\left[\mathrm{~S}_{\left.-\mathrm{CH}_{2}\right], 51.20}\right.$ [C(2.4.6.8)], 53.21 [C-H isopropyl], 70.89 [C(9)].

Into a flask equipped with a magnetic stirrer and an ice bath was placed thioketal 111 (8.06 g .26 .82 mmol) in dry ether (100 ml), and the solution was cooled to $0^{\circ}-5^{\circ} \mathrm{C}$. To the stirred mixture was added dropwise $\mathrm{HClO}_{4}(60 \%, 5.61$ g. 33.52 mmol) over a period of 15 min . After stirrng an additional 15 min at $5^{\circ} \mathrm{C}$., a white precipitate was filtered and washed (cold ether). Recrystallization (methanol) afforded, after drying, hydroperchlorate 11 as white needles ($6.72 \mathrm{~g}, 62.5 \%$); $\mathrm{mp} 222.0^{\circ}-223.0^{\circ} \mathrm{C}$. IR (KBr) 2990,2940, 2860. 1080 ($\mathrm{Cl}-\mathrm{O}$) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.18(\mathrm{~d} .12 \mathrm{H}$, CH_{3} isopropyl). 2.31 [bs, $\left.2 \mathrm{H} . \mathrm{H}(1.5)\right] .3 .32-3.57[\mathrm{~m}, 15 \mathrm{H}$, $\mathrm{N}-\mathrm{H}, \mathrm{H}\left(2,4,6.8\right.$)ax-eq. $\mathrm{C}-\mathrm{H}$ isopropyl $\left.\mathrm{S}-\mathrm{CH}_{2}\right] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $16.78\left(\mathrm{CH}_{3}\right.$ isopropyl), $39.29 \mathrm{C}(1.5), 41.23$ $\left(\mathrm{S}-\mathrm{CH}_{2}\right) .52 .29 \mathrm{C}(2.4,6,8), 54.64$ (C-H isopropyl), 70.22 $\mathrm{C}(9)$. Mass spectral (EI) data calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{Cl}$ $\mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}\right): 300.1694\left(-\mathrm{HClO}_{4}\right)$. Found: 300.1695. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$: C. $44.93 ; \mathrm{H}, 7.29 ; \mathrm{N} .6 .99 ; \mathrm{S}$. 15.99. Found: C. $45.10 ;$ H, 7.33 ; N, 6.91; S. 15.80.

EXAMPLE XIII

3-Benzoyl-7-cyclopropylmethyl-3,7-diazabicyclo [3.3.1]nonane Hydroperchlorate (12) and 3-Benzoyl-7-cyclopropylmethyl-3.7-diazabicyclo [3.3.1]nonane (60)
Into a flask equipped with a magnetic stirrer, an addition funnel, a condensor with N_{2} inlet. and a glass stopper were placed the amine $106(5.50 \mathrm{~g} .30 .51 \mathrm{mmol})$ and $\mathrm{NaOH}(10 \%$. 30.60 g .76 .28 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}$ (25 ml). A solution of benzoyl chloride (4.72 g .33 .56 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(15 \mathrm{ml})$ was added dropwise over a period of 0.5 h under N_{2}. The mixture was allowed to stir an additional 3 h . Addition of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was followed by extraction with $\mathrm{H}_{2} \mathrm{CCl}_{2}(3 \times 50$ $\mathrm{ml})$. Combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered. and concentrated to give a yellow oil. Flash chromatography of the oil was performed on neutral alumina ($50 \mathrm{~g}, 60-\mathrm{ml}$ fritted funnel, suction) with ethyl acetate as the eluent. The filtrate was concentrated and placed under vacuum to give 7.15 g (82.4%) of amide 60 as an oil which was used directly to prepare 12. IR (film) 3090, 3005 (Ar-H), 2920, 2860, 2775 (C-H), $1630(\mathrm{NC}=\mathrm{O}), 715$ aromatic mono-substitution) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 0.11$ [d. 2 H. cyclopropyl CH_{2} (ax)], 0.49 [t. 2 H . cyclopropyl $\mathrm{CH}_{2(e q)}$]. $0.92[\mathrm{~m}, 2 \mathrm{H}$, cyclopropyl C-H], 1.74 [m. $3 \mathrm{H}, \mathrm{H}(5.9)] .1 .98$ [bs, $2 \mathrm{H} . \mathrm{H}(1)$, CH_{2} cyclopropyl], 2.23 [bs. $3 \mathrm{H}, \mathrm{H}(4,6)_{(a x)}, \mathrm{CH}_{2}$ cyclopropyl], 2.94 [d. $\left.1 \mathrm{H}, \mathrm{H}(6)_{(e q)}\right], 7.38\left[\mathrm{~m}, 5 \mathrm{H}(2)_{(a x)}\right]$, 3.28 [m. $2 \mathrm{H} . \mathrm{H}(8)(\mathrm{ax}) . \mathrm{H}(4)(\mathrm{eq})] .3 .78$ [d. $\left.1 \mathrm{H}, \mathrm{H}(8)_{(\text {eqq }}\right]$, $4.79\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}(2)_{(e q)}\right], 7.38[\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 2.85, 4.11 [cyclopropyl CH_{2}], 7.95 [cyclopropyl C-H]. 28.64, 29.01 [(C(1.5)]. 31.72 [C(9)]. $46.02[\mathrm{C}(2)], 51.74[\mathrm{C}(8)], 57.71,57.98(\mathrm{C}(4,6)], 63.68$ [CH_{2} cyclopropyl], 126.13, 127.64, 128.07, 137.20 [Ar-C], $169.68[\mathrm{NC}=\mathrm{O}]$.

A flask was equipped with a magnetic stirrer and an ice bath. To a chilled ($5^{\circ} \mathrm{C}$.) solution of the amide $60(7.15 \mathrm{~g}$. 25.14 mmol) in dry ether (120 ml) was added dropwise $\mathrm{HClO}_{4}(60 \%, 5.26 \mathrm{~g} .31 .43 \mathrm{mmol})$ over a $10-\mathrm{min}$ period followed by stirring for an additional $10-\mathrm{min}$. Filtered salt 12 (a white solid) was washed with dry, cold ether. The white solid was recrystallized (methanol). Filtration and drying afforded $6.30 \mathrm{~g}(65.1 \%)$ of pure salt $12 ; \mathrm{mp} 236.0^{\circ}-237.0^{\circ}$ C. \mathbb{R} (KBr) 3150 (N-H). 3020 (Ar-H), 2880 (C-H). 2840, $1630(\mathrm{NC}=\mathrm{O}), 1095(\mathrm{Cl}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ 0.47 (bd, $2 \mathrm{H}, \mathrm{CH}_{2 a x}$ cyclopropyl), 0.71 (d, $2 \mathrm{H}, \mathrm{CH}_{2 e q}$ cyclopropyl), 1.16 (m. $1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ cyclopropyl), 1.81 [dd, 2 H . H(9)]. 2.28 [bs, $2 \mathrm{H}, \mathrm{H}(1,5)]$, 3.32-2.97 (m, 8 H . ring protons, NCH_{2} cyclopropyl), 3.66 (bd, 2 H , ring protons). 7.95 (m. $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d. ${ }_{6} \mathrm{ppm} 5.27$ (C-H cyclopropyl), 26.45. 27.66, 62.56 (ring carbons). 126.95. 128.22, 129.33, 136.08 (Ar-C), $172.69(\mathrm{NC}=\mathrm{O})$. Mass spectral (EI) data for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{CIN}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{e}$ (M^{+}): 284.1888 ($-\mathrm{HClO}_{4}$). Found: 284.1888. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}$: C. 56.18; H. 6.55. Found: C, 55.92; H. 6.57.

EXAMPLE XIV

7-Benzyl-3-cyclopropylmethyl-3.7-diazabicyclo [3.3.1]nonane Hydroperchlorate (13) and 7-Benzyl-3-cyclopropylmethyl-3.7-diazabicyclo[3.3.1]nonane (61)

A jacketed flask was equipped with a magnetic stirrer, a heating mantle, a condensor, a lower takeoff condensor with N_{2} inlet, and two glass stoppers. To a solution of ketone 48 ($9.53 \mathrm{~g}, 33.51 \mathrm{mmol}$) in triethylene glycol (100 ml) was added KOH pellets ($85 \%, 17.7 \mathrm{~g} .268 .08 \mathrm{mmol}$) and hydrazine ($95 \%, 4.52 \mathrm{~g} .134 .04 \mathrm{mmol}$). The stirred mixture was heated at $160^{\circ}-170^{\circ} \mathrm{C}$. for 4 h under N_{2} via the use of boiling tetralin in the jacket. Cooling the solution to RT was followed by addition of chilled $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. Combined extracts (ether, $4 \times 80 \mathrm{ml}$) of the suspension were first washed with $10 \% \mathrm{NaOH}(80 \mathrm{ml})$ and saturated $\mathrm{NaCl}(80 \mathrm{ml})$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flitration and concentration gave a light yellow oil $61(8.99 \mathrm{~g}, 98.2 \%)$ which was placed under vacuum. The oil 61 gave the following spectral data. IR (film) 3090, 3010. 3005 (ArH). 2920, 2780 (C-H), 735.700 (C-H out of plane. mono) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 0.14$ [m. $2 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{a x}$ cyclopropyl ringl, $0.51\left[\mathrm{~m}, 2 \mathrm{H} .\left(\mathrm{CH}_{2}\right)_{\text {eq }}\right.$. cyclopropyl ring], 0.94 [m, $1 \mathrm{H},(\mathrm{CH})$, cyclopropyl ring], 1.52 [dd. J=19.8 Hz, $2 \mathrm{H}, \mathrm{H}(9)$], 1.91 (m. $2 \mathrm{H}, \mathrm{H}(1,5)$], 2.20 (d. J=6.6 Hz, $2 \mathrm{H}, \mathrm{CH}_{2}$-cyclopropyl), 2.33 [dd, J=10.7 Hz. $\mathrm{J}=3.6 \mathrm{~Hz}, 2 \mathrm{H} . \mathrm{H}(6,8)_{a x}$]. 2.41 [dd, J=10.8 Hz. J=4.8 Hz, 2 H, H(2.4) ax $] .2 .76$ [d, J=10.5 Hz, $2 \mathrm{H} . \mathrm{H}(6,8)_{\text {eq }}$], 2.85 [d. $\mathrm{J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2.4)_{\text {eq }}$], 3.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$). $7.21-7.45$ (m. $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ ppm $3.90\left(\mathrm{CH}_{2}\right.$. cyclopropyl ring), 8.72 (CH , cyclopropyl ring), $29.43[\mathrm{C}(9)]$. 30.22 [C(1,5)], 57.68 [C(2,4)], $57.90[\mathrm{C}(6,8)], 62.75$ (ArCH_{2}), $64.04\left(\mathrm{CH}_{2}\right.$-cyclopropyl), $126.38,127.92,128.62$, 139.74 (Ar-C). Spectral analysis showed no carbonyl group in the IR or C-13 NMR spectrum. and thus this oil 61 was used without further purification to prepare salt 13.

A flask was equipped with a magnetic stirrer and an ice bath. To a chilled ($5^{\circ} \mathrm{C}$) solution of amine $61(4.41 \mathrm{~g}, 16.31$ mmol) in dry ether (150 nl) was added $\mathrm{HClO}_{4}(60 \% .3 .41 \mathrm{~g}$. 20.39 mmol) dropwise over a period of 15 min . The mixture was allowed to stir an additional 15 min at $0^{\circ}-50^{\circ} \mathrm{C}$. A white precipitate formed and was filteed and washed with cold ether. The solid was recrystallized (methanol), and white needles were collected and washed (cold methanol, 25 ml) and dried (Abderhalden. $80^{\circ} \mathrm{C} . / 0.2 \mathrm{~mm} \mathrm{Hg}, 12 \mathrm{~h}$) to give 4.3 $\mathrm{g}\left(71.1 \%\right.$) of salt $13 ; \mathrm{mp} 190^{\circ}-191^{\circ} \mathrm{C} . \mathbb{R}(\mathrm{KBr}) 3060,3005$, cyclopropyl ring). 27.46 [C(6)], 29.58 [C(1.5)]. 57.01, 56.84 [$\mathrm{C}(2.4 .6 .8)], 60.56\left(\mathrm{CH}_{2}-\mathrm{Ar}\right), 61.49\left(\mathrm{CH}_{2}-\right.$ cyclopropyl). 127.57, 128.39, 129.32, 136.49 (Ar-C). Mass spectral (EI) data calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$: $270.2096\left(-\mathrm{HClO}_{4}\right)$. Found: 270.2093 Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4}: \mathrm{C}, 58.29 ; \mathrm{H}, 7.34$. Found: C. $58.39 ; \mathrm{H}, 7.30$.

EXAMPLE XV

3- (4-Chlorobenzoyl)-7-cyclopropylmethyl-3.7diazabicyclo[3.3.1]nonane Hydroperchlorate (14) and 3-(4-Chlorobenzoyl)-7-cyclopropylmethyl-3.7diazabicyclo[3.3.1]nonane (62)
A flask was equipped with a magnetic stirrer, a condensor with N_{2} inlet. an addition funnel. and two glass stoppers. To a mixture of amine $106(4.03 \mathrm{~g} .22 .35 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{CCl}_{2}$ (25 $\mathrm{ml})$ and $10 \% \mathrm{NaOH}(22.41 \mathrm{~g}, 55.88 \mathrm{mmol})$ was added dropwise a solution of 4-chlorobenzoyl chloride $(4.30 \mathrm{~g}$. 24.59 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(15 \mathrm{ml})$ over a period of 30 min . Stirring of the mixture was continued for an additional 3 h under N_{2}. To the heterogenous mixture was added $\mathrm{H}_{2} \mathrm{O}$ (100 $\mathrm{ml})$ and two layers separated. Further extracts $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}\right.$, $3 \times 50 \mathrm{ml}$) of the aqueous layer were combined. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to give a viscous yellow oil. Flash chromatography of the oil was performed on neutral alumina (50 g) using hexane:ethyl acetate ($60: 40$) as the eluent. The filtrate was concentrated and then placed under vacuum to give $4.18 \mathrm{~g}(83.1 \%)$ of off-white solid 62 ; $\mathrm{mp} 67^{\circ}-68^{\circ} \mathrm{C} . \mathbb{R}(\mathrm{KBr}) 3090.3005$ (ArH). 2920. 2880, $2770(\mathrm{C}-\mathrm{H}), 1635(\mathrm{NC}=\mathrm{O}), 760$ ($\mathrm{C}-\mathrm{H}$ out fo plane, para) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) 80.12$ [m, $2 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{\mathrm{ax}}$. cyclopropyl ring], $0.54\left[\mathrm{~m} .2 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{\text {eq }}\right.$. cyclopropyl ring], $0.91[\mathrm{~m}$, $1 \mathrm{H},(\mathrm{CH})$, cyclopropyl ring], 1.73 [m, $3 \mathrm{H}, \mathrm{H}(5) . \mathrm{H}(9)$]. 2.02 [m, $2 \mathrm{H}, \mathrm{H}(1), \mathrm{CH}_{2}$-cyclopropyl], 2.24 [m. $3 \mathrm{H}, \mathrm{H}(4)_{a x}$. $\mathrm{H}(6)_{a x} \mathrm{CH}_{2}$-cyclopropyl]. 2.96 [d. J=10.5 Hz. $1 \mathrm{H} . \mathrm{H}(6)_{\text {eq }}$]. 3.03 (d, J=13.2 Hz, $\left.1 \mathrm{H} . \mathrm{H}(2)_{a x}\right], 3.28\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(8)_{a r}\right.$ $\left.\mathrm{H}(4)_{\text {eq }}\right], 3.75\left[\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(8)_{\text {eq }}\right], 4.83[\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}$ $1 \mathrm{H}, \mathrm{H}(2)_{\text {eq }} \mathrm{l}, 7.39$ ($\mathrm{s}, 4 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 3.21, 4.43 (CH_{2} cyclopropyl), 8.29 (CH.cyclopropyl). 29.01 [C(1)]. 29.41 [C(5)]. 32.10 (C(9)]. 46.59 [C(2)], 52.16 [C(8)]. $58.10[\mathrm{C}(4)] .58 .38[\mathrm{C}(6)] .64 .25\left(\mathrm{CH}_{2}\right.$-cyclopropyl). 128.15, 128.28, 134.40. 135.90 ($\mathrm{Ar}-\mathrm{C}$). $169.06(\mathrm{NC=O})$. Mass spectra (EI) data calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O} \mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+)}\right.$: 318.1499. Found. 318.1498. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}$: C, 67.81; H, 7.27; N, 8.79. Found: C, 67.53; H, 7.25; N, 8.72 .

To a flask $\mathrm{HClO}_{4}(60 \%, 0.66 \mathrm{~g}, 3.92 \mathrm{mmol})$ was added dropwise to a chilled ($5^{\circ} \mathrm{C}$.) solution of amide $62(1.0 \mathrm{~g}$. 3.14 mmol) in ether over a 5 minute period. The resulting precipitate was filtered and washed with cold ether. Recrystallization (methanol) followed by filtration and drying afforded $1.02 \mathrm{~g}(77.1 \%)$ of salt 14 as white needles; mp $231^{\circ}-232^{\circ}$ C. IR (KBr) 3180 (N-H). 3095, 3020 (Ar-H), 2950, $2880(\mathrm{C}-\mathrm{H}), 1620(\mathrm{NC}=\mathrm{O}), 1090(\mathrm{Cl}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$) $\delta 80.51$ [d. 2 H , cyclopropyl $\left.\mathrm{CH}_{2(a x)}\right]$, 0.82 [d. 2 H. cyclopropyl $\mathrm{CH}_{2(e a)}$], 1.18 [m. 1 H . cyclopropyl C-H]. 1.85 [d. 1 H. H(9)], 2.33 [bs, 3 H. H(1.5.9)]. 3.03 [d, $2 \mathrm{H}, \mathrm{CH}_{2}$ cyclopropyl], 3.29 [m, 4 H . ring protons]. 3.74

24

EXAMPLE XVII

7-Benzyl-3-cyclopropylmethyl-3.7-diazabicyclo3.3.nonan-9-one (48)

 mantle, an addition funnel, a condensor with \mathbf{N}_{2} inlet. and a glass stopper. A mixture of cyclopropylmethylamine (4.44 g , $62.4 \mathrm{mmol}), \mathrm{HCl}(37 \%, 3.07 \mathrm{~g} .31 .2 \mathrm{mmol})$, glacial acetic acid ($3.75 \mathrm{~g}, 62.4 \mathrm{mmol}$) and parformaldehyde (3.94 g ,10131.04 mmol) in deoxygenated (N_{2} bubbled in for 2 h) methanol (125 ml) was stirred at reflux for 15 min under N_{2}. A solution of N -benzyl-4-piperidinone (102. 11.8 g .62 .4 mmol) and glacial acetic acid (3.75 g .62 .4 mmol) was added dropwise over a period of 1.5 h . After 10 h at reflux, the mixture was treated with additional paraformaldehyde (3.94 g, 131.04 mmol) in one portion. Heating at reflux was continued for another 19 h . Upon cooling to RT, concentration of the solution gave an orange oil which was redissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. Extracts (ether, $2 \times 75 \mathrm{ml}$) of the aqueous solution were discarded. The aqueous layer was chilled (5° C.) and then made basic ($\mathrm{pH} \sim 12$) with NaOH pellets. Extraction $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}, 3 \times 75 \mathrm{ml}\right)$ gave a solution which was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to a viscous, reddish-orange oil. Distillation of the oil under reduced pressure ($175-190 \mathrm{C} . / 10^{-5} \mathrm{~mm} \mathrm{Hg}$) gave $13.54 \mathrm{~g}(76.3 \%)$ of a light yellow oil which solidified upon standing at $-10^{\circ} \mathrm{C}$.; $\mathrm{mp} 56.0^{\circ}-57.5^{\circ} \mathrm{C}$. This solid was recrystallized (pentane) to give an analytical sample of 48 ; mp $58.5^{\circ}-59.5^{\circ} \mathrm{C}$. IR (KBr) 3090. 3070. 3030 (Ar-H). 3005 (C-H. cyclopropyl). 2975. 2910. $2830(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}), 1600,1495(\mathrm{ArC}=\mathrm{C})$. 740.710 (C-H out of plane, mono) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right)$ $\delta 0.12$ [dq, $2 \mathrm{H},(\mathrm{C}-\mathrm{H})_{a x}$, cyclopropyl ring], 0.51 [dq, 2 H (C-H) eq, cyclopropyl ring], $0.89[\mathrm{~m}, 1 \mathrm{H},(\mathrm{C}-\mathrm{H})$, cyclopropyl ring], 2.32 (d, $2 \mathrm{H}, \mathrm{CH}_{2}$-cyclopropyl), 2.59 [m. $\left.2 \mathrm{H}, \mathrm{H}(1,5)\right]$, $\mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2.4), 3,3.04$ [dd, $\mathrm{J}=10.8 \mathrm{~Hz}$ $\left.J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6.8)_{e q}\right], 3.12[\mathrm{dd}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2$ H. $\mathrm{H}(2.4)_{\text {eq }}$], 3.57 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$). $7.38-7.22$ (m. 5 H , Ar-H); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $3.76\left(\mathrm{CH}_{2}\right.$, cyclopropyl ring), 8.53 (CH, cyclopropyl ring), $46.76[\mathrm{C}(1,5)], 58.19$ $[\mathrm{C}(2,4)], 58.36[\mathrm{C}(6,8)], 61.11\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 61.85\left(\mathrm{CH}_{2}-\right.$ cyclopropyl), $127.08,128.22,128.66,138.54$ (Ar-C), $214.85[\mathrm{C}=\mathrm{O}],{ }^{15} \mathrm{~N} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 36.17[\mathrm{~N}(7)], 37.74$ $[\mathrm{N}(3)]$; Mass spectral (EI) data calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} \mathrm{m} / \mathrm{e}$ $\left(\mathrm{M}^{+}\right)$: 284.1188; Found: 284.1190. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C} .76 .02 ; \mathrm{H} .8 .51$; N. 9.85. Found: C. 76.19 ; H, 8.46; N, 9.99 .

EXAMPLE XVIII

3.7-Diisopropyl-3.7-diazabicyclo[3.3.1]nonan-9-one (47)

A flask was equipped with a magnetic stirrer, a heating mantle, an addition funnel a condensor with N_{2} inlet and a glass stopper. A mixture of isopropylarnine ($8.87 \mathrm{~g}, 150.0$ mmol) $\mathrm{HCl}(37 \%, 7.39 \mathrm{~g}, 75.0 \mathrm{mmol})$, glacial acetic acid ($9.01 \mathrm{~g}, 150.0 \mathrm{mmol}$) and parformaldehyde ($9.46 \mathrm{~g}, 315.0$ mmol) in deoxygenated (N_{2} bubbled in for 2 h) methanol (125 ml) was stirred at reflux for 15 min under N_{2}. A solution of N-isopropyl-4-piperidinone ($101,21.18 \mathrm{~g}, 150.0 \mathrm{mmol}$) and glacial acetic acid ($9.01 \mathrm{~g}, 150.0 \mathrm{mmol}$) was added dropwise over a period of 1.5 h , which was followed by a period of boiling for an additional 23 h . After the initial 10 h of heating, paraformaldehyde (9.46 g .315 .0 mmol) was added in one portion to the mixture. Concentration of the solution (after 23 h) gave an orange oil which was redissolved in $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$, and extracts (ether, $2 \times 100 \mathrm{ml}$)
thereof were discarded. The aqueous layer was chilled (5° C.) in an ice bath and made basic ($\mathbf{~} \mathrm{HH} \sim 12$) with NaOH pellets. Extraction ($\mathrm{H}_{2} \mathrm{CCl}_{2}, 3 \times 75 \mathrm{ml}$) gave a solution which was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered, and concentrated to give a viscous. reddish-orange oil. Distillation of the oil under reduced pressure ($110^{\circ}-120^{\circ} \mathrm{C} . / 10^{-5} \mathrm{~mm} \mathrm{Hg}$) gave 22.53 g (67.3\%) of a light yellow oil 47. IR (film) 2975, 2910. 2830 (C-H). $1735(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.02(\mathrm{~d} .12$ H. CH_{3} isopropyl), 2.58 [m. $2 \mathrm{H} . \mathrm{H}(1.5)$], 2.87 [m. 6 H. $\mathrm{H}(2.4 .6 .8)_{a x}$ C-H isopropyl]. 3.04 [dd. $4 \mathrm{H} . \mathrm{H}(2,4.6 .8)_{e q}$]; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 17.9, 18.2 (CH_{3}, isopropyl). 46.82 $\mathrm{C}(1.5), 53.17$ (C-H isopropyl). $53.27,53.36 \mathrm{C}(2,4,6.8), 215$ $\mathrm{C}(9)$. Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$: C. 69.59; H. 10.78; N . 12.49. Found: C, 69.39 ; H. 10.61; N, 12.21.

EXAMPLE XIX

3-Cyclopropylmethyl-3.7-diazabicyclo[3.3.1]nonane (106)

A flask was equipped with a magnetic stirrer, a heating mantle. a condensor with N_{2} inlet. and two glass stoppers. The flask was initially flushed with $\mathrm{N}_{\mathbf{2}}$ for a period of 15 min . Palladium-on-carbon $(10 \%, 0.997 \mathrm{~g}, 30 \mathrm{mg}$ of catalyst/ mmol of the amine) was added in one portion, and the system was flushed with N_{2}. Dry and deoxygenated $\mathrm{CH}_{3} \mathrm{OH}$ was slowly poured over the catalyst (CAUTION: catalyst can ignite in presence of air). To the stirred solution were added amine $61(8.99 \mathrm{~g} .33 .24 \mathrm{mmol})$ and anhydrous $\mathrm{HCO}_{2} \mathrm{NH}_{4}(5.24 \mathrm{~g} .83 .1 \mathrm{mmol})$. and the resulting mixture was boiled under N_{2} for 30 min . Cooling the mixture to RT, and filtering through a celite pad, was followed by concentration of the resulting solution to give an off-white, viscous oil. The oil was then dissolved in $\mathrm{H}_{2} \mathrm{O}$ and made basic ($\mathrm{pH} \sim 12$) using $10 \% \mathrm{NaOH}$. Combined extracts $\left(\mathrm{CCl}_{4}, 4 \times 60\right.$ ml) of the aqueous solution were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to give a yellow oil $106(5.50 \mathrm{~g}, 91.8 \%)$; IR (film) 3300 (N-H), $3090.3010\left(\mathrm{CH}_{2}\right.$ cyclopropyl), 2900. $2860.2780(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DCCl}_{3}\right) \delta 0.13(\mathrm{~m} .2 \mathrm{H}$, $\left(\mathrm{CH}_{2}\right)_{a r}$ cyclopropyl ring], $0.52\left[\mathrm{~m} .2 \mathrm{H} .\left(\mathrm{CH}_{2}\right)_{\text {eq }}\right.$ cyclopropyl ring]. 0.87 [m. $1 \mathrm{H} .(\mathrm{CH})$. cyclopropyl ring], 1.64 [m. $2 \mathrm{H} . \mathrm{H}(1.5)]$] 1.82 [md, $2 \mathrm{H} . \mathrm{H}(9)$], 2.07 (d, J=6.6 Hz. 2 H , CH_{2}-cyclopropyl). 2.31 [td. J=11.1 Hz, 2 H, H(6,8) axy $] .2 .94$ $\left[\mathrm{td}, \mathrm{J}=13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4)_{a x}\right], 3.09$ [d, J=13.2 Hz, 2 H , $\mathrm{H}(6.8)_{e q}, 3.17\left[\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4)_{\text {eq }}\right], 4.09[\mathrm{bs}, 1 \mathrm{H}$, ($\mathrm{N}-\mathrm{H}$)]; ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm $3.76\left(\mathrm{CH}_{2}\right.$, cyclopropyl ring). 8.76 (CH, cyclopropyl ring). 29.87 [C(9)], 33.23 [C(1.5)], 52.45 [C(6.8)], $59.51 \quad[\mathrm{C}(2.4)], 64.32{\left(\mathrm{CH}_{2}\right.}^{-}$ cyclopropyl). NMR data showed the absence of the benzyllic group, and thus 106 was used without further purification to prepare amides 60 and 62 and their hydroperchlorates 12 and 14 , respectively.

EXAMPLE XX

7-Benzyl-3-thia-7-azabicyclo[3.3.1]nonane Hydrochloride (113)

This amine salt was prepared by the general method outlined in U.S. Pat. No. 4.581.361.

EXAMPLE XXI

3-[4-(Nitro)phenylacetyl]-7-isopropyl-3.7diazabicyclo[3.3.1]nonane (94)

A standard setup was used with a N_{2} inlet. Initially, the amine $105(2.42 \mathrm{~g}, 14.38 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{CCl}_{2}(35 \mathrm{ml})$ was added followed by $\mathrm{NaOH}(10 \%, 14.42 \mathrm{~g}, 35.95 \mathrm{mmol})$ $2800(\mathrm{C}-\mathrm{H}), 1630(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{d} 0.93$ (dd. $6 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl), 1.61 [q. $\left.2 \mathrm{H} . \mathrm{H}(9)\right] .1 .82$ [d. 2 H .
$\mathrm{H}(1.5)$]. 2.32-2.49 (m. 3 H , ring protons. $\mathrm{C}-\mathrm{H}$ isopropyl), 2.71 (d. 1 H , ring proton). 2.86 (d. 1 H . ring proton). 2.92 (d. 1 H . ring proton). 3.25 (d. 1 H . ring proton), 3.58 (q .2 H . Ar- CH_{2}), 3.69 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$). 3.83 (d. 1 H. ring proton). 4.51 (d. 1 H . ring proton). 6.58 (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$). 7.01 (d. 2 H. $\mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.48, $18.06\left(\mathrm{CH}_{3}\right.$ isopropyl), 28.46. 29.01 [C(1.5)], 31.15 [C(9)], 40.20 (ArCH_{2}), 46.14 (C-H isopropyl), 50.13, 52.52, 53.51, 53.89 [C(2.4.6.8)], 114.75, 125.58, 129.04, 144.71 (Ar-C), 169.80 $(\mathrm{NC}=\mathrm{O})$. Amine 96 was used directly without further 10 purification to prepare sulfonamide 97.

EXAMPLE XXIV

3-[4-(Methylsulfonyl)an-ino]phenylacetyl-7-isopropyl-3.7-diazabicyclo[3.3.1]nonane (97)

A standard setup was equipped with a N_{2} inlet. To a chilled ($5^{\circ} \mathrm{C}$.) solution of amide $96(2.1 \mathrm{~g}, 6.97 \mathrm{mmol})$ and pyridine (0.58 g .7 .32 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(20 \mathrm{ml})$ was added dropwise methanesulfonyl chloride ($0.79 \mathrm{~g}, 6.90 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(10 \mathrm{ml})$ over a 15 min period. After the addition was complete, the mixture stirred at RT overnight. Filtration of the mixture removed traces of pyridine hydrochloride, and the filtrate was transferred to a separatory funnel. Extraction ($1 \mathrm{~N} \mathrm{NaOH}, 4 \times 40 \mathrm{ml}$) was followed by neutralization ($\mathrm{pH} \sim 7$) of the aqueous phase using acetic acid. and the remaining organic layer was discarded. This neutral solution was extracted $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}, 4 \times 40 \mathrm{ml}\right)$. dried $\left.\mathrm{Na}_{2} \mathrm{SO}_{4}, 2 \mathrm{~h}\right)$ and filtered. After concentration, sulfonamide 97 was obtained $2.32 \mathrm{~g}(87.4 \%)$ as an off-white solid; $\mathrm{mp} 73^{\circ}-74^{\circ} \mathrm{C}$. IR (KBr) $3140(\mathrm{~N}-\mathrm{H}), 3050(\mathrm{Ar}-\mathrm{H}), 2980,2920,2880,2800$ (C-H). $1630(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) d 0.94 (dd. $6 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl), 1.69 [dd, $2 \mathrm{H}, \mathrm{H}(9)$], 1.93 [bs, 2 H. $\mathrm{H}(1.5)$]. 2.41 (d. 1 H . ring proton), 2.52 (m .2 H. ring proton, $\mathrm{C}-\mathrm{H}$ isopropyl). 2.84 (d. 1 H , ring proton), 2.93 (m .6 H , ring protons, $\mathrm{SO}_{2} \mathrm{CH}_{3}$), 3.38 (d. 1 H , ring proton), 3.66 (s, 2 H , $\mathrm{Ar}-\mathrm{CH}_{2}$), 3.90 (d. 1 H , ring proton), 4.59 (d. 1 H , ring proton), 7.11 (dd, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{~N}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 17.17, $18.31\left(\mathrm{CH}_{3}\right.$ isopropyl), 28.84. $29.47[\mathrm{C}(1,5)] .31 .62[\mathrm{C}(9)], 38.76\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 40.05(\mathrm{Ar}-$ CH_{2}), 46.89 (C-H isopropyl), 50.58, 53.04, 54.07, 54.30 [C(2.4.6.8)], 121.66. 130.13. 132.44, 135.68 (Ar-C), 169.77 ($\mathrm{NC}=\mathrm{O}$). Amide 97 was used without further purification to prepare hydroperchlorate 98.

EXAMPLE XXV

3-[4-(Methylsulfonyl)amino]phenylacetyl-7-isopropyl-3.7-diazabicyclo[3.3.1]nonane Hydroperchlorate (98)

To a flask equipped with a magnetic stirrer and an ice bath was added sulfonamide 97 ($1.73 \mathrm{~g}, 4.56 \mathrm{mmol}$) dissolved in $\mathrm{H}_{3} \mathrm{COH} /$ ether 1: $1,40 \mathrm{ml}$), and the resulting solution was chilled (5° C.). With stirring. $\mathrm{HClO}_{4}(60 \%, 0.95 \mathrm{~g} .5 .70$ mmol) was added dropwise over a period of 15 min and stirring was continued an additional 10 min at this temperature. The white precipitate was filtered and recrystallized (hot $\mathrm{H}_{3} \mathrm{COH}-25 \mathrm{ml}$) to give $1.54 \mathrm{~g}(70.7 \%)$ of 98 as white platelettes; mp $177.5^{\circ}-178.5^{\circ} \mathrm{C}$. IR (KBr) 3250 (N-H) , 3160 (N-H), 3020 (Ar-H), 2940, 2920, 2860 (C-H), 1665 ($\mathrm{NC}=\mathrm{O}$). 1100 (Cl-O) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{CCN}$) d 1.28 (d , $6 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 1.79 [d, $\left.1 \mathrm{H}, \mathrm{H}(9)_{a x}\right], 1.92[\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}(9)_{\text {eq }}$]. 2.33 [bs, $2 \mathrm{H} . \mathrm{H}(1.5)$]. 2.96 (s. $3 \mathrm{H} . \mathrm{SO}_{2} \mathrm{CH}_{3}$), $3.11-3.28$ ($\mathrm{m}, 4 \mathrm{H}$, ring protons). 3.44 ($\mathrm{m}, 3 \mathrm{H}$, ring protons, C-H isopropyl), 3.78 (bs, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$), 4.19 (d. 2 H. ring protons). -6.58 (bs, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$). 7.23 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.60 (s. I H, SO ${ }_{2} \mathrm{~N}-\mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{CCN}$) ppm 16.67 (bs, CH_{3} isopropyl). 27.79 [C(1.5)]. 28.55 [C(9)], $39.56\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$, $40.86\left(\mathrm{Ar}-\mathrm{CH}_{2}\right), 48.30,53.80$ [bs, $\mathrm{C}(2,4,6,8)$], 60.88 (C-H
isopropyl), 121.93. 131.56, 132.88. 137.38 (Ar-C), 174.94 $(\mathrm{NC}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 47.55 ; \mathrm{H}$. 6.30. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{7} \mathrm{~S} 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .46 .84 ; \mathrm{H}$. 6.37. Found: C. 46.55 ; H, 6.26.

EXAMPLE XXVI

```
3-[4-(N-acetyl)phenylacetyl]-7-isopropyl-3,7-
        diazabicyclo[3.3.1]nonane (99)
```

To a standard setup equipped with a with N_{2} inlet.was added a mixture of amide $96(2.0 \mathrm{~g} .6 .63 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{CCl}_{2}$ $(25 \mathrm{ml})$ and $10 \% \mathrm{NaOH}(6.65 \mathrm{~g} .16 .58 \mathrm{mmol})$. To this mixture was added dropwise a solution of acetyl chloride (0.57 g .7 .30 mmol) in $\mathrm{H}_{2} \mathrm{CCl}_{2}(5 \mathrm{ml})$ over a period of 15 min . Stirring (magnetic) of the mixture was continued for an additional 3 h under N_{2}. To the heterogenous mixture was added $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and the two layers were separated. Further extracts $\left(\mathrm{H}_{2} \mathrm{CCl}_{2}, 3 \times 30 \mathrm{ml}\right)$ of the aqueous layers were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 1 \mathrm{~h}\right)$. filtered, and concentrated. The resulting oil was placed on a vacuum pump overnight (RT/0.2 mm Hg) to give $2.03 \mathrm{~g}(89.1 \%$) of 99 as an light yellow solid; $\mathrm{mp} 71^{\circ}-72^{\circ} \mathrm{C}$. $\mathbf{I R}$ (KBr) 3300 (N-H). 3080.3050 (Ar-H). 2980. 2930. 2870. 2800 (C-H). $1680\left[\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{3}\right], 1620(\mathrm{NC}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right)$ d 0.94 (dd, $6 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), 1.68 [dd, $2 \mathrm{H}, \mathrm{H}(9)$]. 2.11 [s. $3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$]. 2.40 (d. 1 H . ring proton), 2.49 (m. 2 H . ring proton, $\mathrm{C}-\mathrm{H}$ isopropyl), 2.78 (d. 1 H , ring proton). 2.87 (d. 1 H ring proton), 2.96 (d. 1 H , ring proton), 3.32 (d. 1 H , ring proton), 3.64 (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{CH}_{2}$). 3.87 (d. 1 H. ring proton), $4.55(\mathrm{~d}, 1 \mathrm{H}$, ring proton), 7.08 (d. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36$ (d. $2 \mathrm{H} . \mathrm{Ar}-\mathrm{H}$), 8.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$) $;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 16.99. $18.33\left(\mathrm{CH}_{3}\right.$ isopropyl) $24.13\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right], 28.83$, $29.39[\mathrm{C}(1.5)], 31.55[\mathrm{C}(9)], 40.49\left(\mathrm{Ar}-\mathrm{CH}_{2}\right), 46.75(\mathrm{C}-\mathrm{H}$ isopropyl), 50.62, 53.02, 53.99. 54.28 (Ar-C), 168.89 [NHC $\left.(\mathrm{O}) \mathrm{CH}_{3}\right] .169 .94(\mathrm{NC}=\mathrm{O})$. Amide 99 was used directly to prepare hydroperchlorate 100 without further purification.

EXAMPLE XXVII

3-[4-(N-acetyl)phenylacetyl]-7-isopropyl-3.7diazabicyclo[3.3.1]nonane Hydroperchlorate (100)
A chilled ($5^{\circ} \mathrm{C}$. . via ice bath) solution of amide 99 (2.03 g. 5.91 mmol) in $\mathrm{H}_{3} \mathrm{COH} /$ ether ($50: 50.25 \mathrm{ml}$) was contained in a flask equipped with a magnetic stirrer. Addition of $\mathrm{HClO}_{4}(60 \%, 0.72 \mathrm{~g}, 4.30 \mathrm{mmol})$ dropwise over a period of 5 min was followed by continual stirring at this temperature for an additional 15 min . This precipitate was filtered and washed with cold ether. Recrystallization ($\mathrm{H}_{3} \mathrm{COH} .35 \mathrm{ml}$) of the precipitate gave a new solid which was filtered and dried ($80^{\circ} \mathrm{C} . / 0.2 \mathrm{~mm} \mathrm{Hg}, 12 \mathrm{~h}$) to give $1.98 \mathrm{~g}(75.4 \%)$ of salt 100 as white platelettes; mp $197^{\circ}-198^{\circ} \mathrm{C} . \mathbb{R}(\mathrm{KBr}) 3360$ (N-H), 3100 (N-H), 3040 (Ar-H). 2940. 2860 (C-H), 1675 [$\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}$], $1645(\mathrm{NC}=\mathrm{O}), 1100(\mathrm{Cl}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{HNMR}$ ($\mathrm{D}_{3} \mathrm{CCN}$) d 1.24 (d. $6 \mathrm{H} . \mathrm{CH}_{3}$ isopropyl), 1.78 [d, 1 H . $\mathrm{H}(9)_{\text {ax }} 1,1.91\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}(9)_{\text {eq }}\right], 2.06\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{NC}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.29$ [bs. $3 \mathrm{H}, \mathrm{H}(1.5)$, ring proton]. 3.02-3.26 (m, 3 H . ring proton, C-H isopropyl), 3.43 (m .3 H . ring proton), 3.72 (s, $2 \mathrm{H} . \mathrm{Ar}-\mathrm{CH}_{2}$), 4.19 (d. 2 H , ring protons). 7.18 (d. 2 H. $\mathrm{Ar}-\mathrm{H}$). 7.51 (d. $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.36 (bs. $1 \mathrm{H} . \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{N}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{CCN}$) ppm 16.75 (CH_{3} isopropyl), 24.29 $\left[\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{3}\right]$. $27.81[\mathrm{C}(1.5)], 28.60[\mathrm{C}(9)], 41.11\left(\mathrm{Ar}-\mathrm{CH}_{2}\right)$, 48.31, 53.95 [bs, C(2.4.6.8)]. 60.86 (C-H ispropyl). 120.54 , 130.72, 131.16. 138.77 (Ar-C), 169.56 [$\left.\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right]$, 175.01 ($\mathrm{NC}=\mathrm{O}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{6}$: C. 54.11; H. 6.81. Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{6} 0.8 \mathrm{H}_{2} \mathrm{O}$: C. 52.41 ; H, 6.95. Found: C. 52.52; H, 6.92.

BIOLOGICAL RESULTS

To illustrate the useful biological properties of the compounds described in this invention, selected derivatives were
screened for antiarrhythmic agent (AAA) activity using dog models. A a standard for comparison purposes, we tested the DHBN members described herein against a commonly used antiarrhythmic agent, lidocaine, as well as against 7-benzyl-3-thia-7-azabicyclo[3.3.1]nonane hydroperchlorate (114) [U.S. Pat. No, 4.581,361], and 7-benzyl-3-thia-7-azabicyclo [3.3.1]nonane hydrochloride (113). The results summarized in the Table below show the range of antiarrhythmic activites observed. It should be emphasized that the members of the DBCN have a minimal of proarrhythmic activity which enhances their potential utility. The substituents attached to the DBCN skeleton and described in this document could not be predicted to elicit the remarkable multi-class antiarrhythmic activity observed and with such a low incidence of proarrhythmic activity.

Antiarrhythmic Properties of Selected

Representative 3,7-Diheterabicylo[3.3.1]nonanes and Derivatives In Dogs with Myocardial
Infarctions And Induced Ventricular Tachycardia

Compd ${ }^{\text {a }}$	Results Observed with SVT $3 \mathrm{mg} / \mathrm{kg}$ or $6 \mathrm{mg} / \mathrm{kg}$ of Body Weight of the Dog
1	Increased VERP; ${ }^{\text {b }}$ QT prolonged; Lowered HR $^{\boldsymbol{c}}$ by $10-30$ beats $/ \mathrm{min}$; no proarrhythmic action ${ }^{\text {d }}$ (Class I and III AAA ${ }^{*}$ activity)
2	Increased VERP; ${ }^{\text {b }}$ QT prolonged; Lowered $\mathbf{H R}^{\text {c }}$ by $5-15$ beats/min (Class III AAA ${ }^{\circ}$ activity)
3	NSVT ${ }^{\text {f }}$ (SVI ${ }^{\text { }}$ was abolished); (Class I and III AAA ${ }^{\text {a activity }}$)
5	Increased VERP ${ }^{\text {b }}$; QT prolonged 30%, Lowered HR ${ }^{\text {c }}$ by by $20-40$ beats $/ \mathrm{min}$; prevented SVT 8 from being induced in dogs with SVT in a controlled state; no hemodynamic depression; prevented gernation of SVTs; (Class I and III AAA ${ }^{\circ}$ activity)
11	Increased VERP ${ }^{\text {b }}$; QT prolonged; NSVT ${ }^{f}$ (SVT ${ }^{\mathbf{8}}$ was abolished); slight depression of intraventricular conduction; prevented induction of induced SVT ${ }^{\text {² }}$, (Class I and III AAA ${ }^{*}$ activity)
12	Increased RVERP ${ }^{\text {h. }}$; QT not prolonged; Lowered HRe by 10 beats $/ \mathrm{min}$; prevented induction of induced SVTs; (Class I and III AAA ${ }^{\circ}$ activity)
13	Lowered HR ${ }^{\text {c }}$; Lowered MBP ${ }^{\text {i }}$; Class II AAA ${ }^{\text {e }}$ activity possible
53	No influence or $\mathrm{QT}_{\text {simas }}{ }^{\text {j }}$; No influence on $\mathrm{HR}^{\mathbf{c}}$
62	Increased RVERP畐; QT prolonged; NSVT ${ }^{i}$ (prevented generation of SVT ${ }^{8}$); (Class I and III AAA ${ }^{*}$ activity)
108	Increased HV方; Increased MBPi; Prevented SVT in some dogs but not in others; (Class I AAAA activity)
109	Increased RVERPb; Increased MBPi, Markedly slowed SVT or abolished SVT; highly selective action on ischemically damaged tissue; lack of a negative inotropic action in vitro and in vivo (Class I and Class III AAA ${ }^{\circ}$ activity and with very low proarrhythmic action ${ }^{\text {d }}$)
Lidocaine	Lowered MBP; showed marked proarrhythmic action in all of the dog models
${ }^{4} \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{Cl}, \mathrm{Br}, \mathrm{HSO}_{4}$, citrate, fumarate, maleate ${ }^{\text {b/V }}$ VERP $=$ Ventricular effective refractory period	
${ }^{4}$ Proarrhythmic action means agent increased rate of existing SVT or a new and faster SVT was inducible -AAA = Antiarrhythmic activity	
'NVST = Nonsustained ventricular tachycardia (or abolished ventricular tachycardia)	
${ }^{\text {ES }}$ SVT $=$ Sustained ventricular tachycardia induced by progammed electrical pacing of infarcted dog heart	
${ }^{\text {i }}$ MBP $=$ Mean blood pressure	
$\mathrm{QT}_{\text {simas }}=\mathrm{QT}$ interval during spontaneous rhythm ${ }^{\mathrm{k}} \mathrm{HV}=$ HIS Purkinj or intraventricular conduction time	

The claims and specifications delineated herein describe the invention, and the terms employed draw their meaning from the specifications presented. It is felt that the compositions of the present invention can be utilized individually
or in combinations. It is clear from the Table that multi-class action (as defined by the Vaughn-Williams classification method) is present in the compositions in varying degrees. Administration of such compositions can be administered to by way of example, but not limited thereto, intraveneously. orally, by suppository, inhalation, and the like. Moreover, it is also felt that the compositions claimed possess useful antiarrhythmic agent (AAA) activity or generally are broadly biologically active or the respective composition are intermediates to useful anatiarrhythmic or biologically active species that are released or generated in situ as a result of administration of the composition. Descriptions of the dog models employed can be found in U.S. Pat. Nos. 4.581.361; 4.778.892; 4.910.311; 4.980.468; 5.043.445; 5.084.572; and 5.110.933. Technology for determining class activity can be found in "Electrophysiological Actions of BRB-I-28 in Canine Myocardial Tissues", by E. Patterson. B. J. Scherlag, K. D. Berlin, and R. Lazzara in The Journal of Pharmacology and Experimental Therapeutics, volume 259. pages 558-656 (1991) and in "Comparative Electrophysiological and Hemodynamic Actions of BRB-1-28 and Lidocaine in the Normal and Infarcted Dog Heart:, by B. J. Scherlag, E. Patterson, R. Lazzara. B. R. Bailey, Jr., M. D. Thompson. and K. D. Berlin in the Journal of Electrophysiology, volume 2, pages 461-477 (1988).

Having thus described and examplified the preferred embodiments with a degree of particularity, it is understood that the invention is not limited to the embodiments set forth herein for the purposes of exemplification, but it limited to the scope of the attached claims. including the full range of equivalency to which each element thereof is entitled.

We claim:

1. 7-Alkyl-3-thia-7-azabicyclo[3.3.1]nonanes characterized by the formula:

wherein
$\mathrm{X}=\mathrm{ClO}_{4}, \mathrm{Cl}, \mathrm{Br}, \mathrm{HSO}_{4}$, citrate, fumarate, or maleate; $\mathrm{Q}=\mathrm{S}$;
$\mathrm{Z}=\mathrm{CH}_{2}$; and
$\mathrm{Y}=4-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{N}$.
$4-\mathrm{H}_{3} \mathrm{CSO}_{2} \mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O}) \mathrm{N} .4-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})$
N, $4-\mathrm{H}_{3} \mathrm{CSO}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}$.

