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Abstract

Distributed Source Coding (DSC) is an important topic for both in infor-

mation theory and communication. DSC utilizes the correlations among the

sources to compress data, and it has the advantages of being simple and easy

to carry out. In DSC, Slepian-Wolf (S-W) and Wyner-Ziv (W-Z) are two

important problems, which can be classified as lossless compression and loss

compression, respectively. Although the lower bounds of the S-W and W-Z

problems have been known to researchers for many decades, the code design

to achieve the lower bounds is still an open problem.

This dissertation focuses on three DSC problems: the adaptive Slepian-

Wolf decoding for two binary sources (ASWDTBS) problem, the compres-

sion of correlated temperature data of sensor network (CCTDSN) problem

and the streamlined genome sequence compression using distributed source

coding (SGSCUDSC) problem. For the CCTDSN and SGSCUDSC prob-

lems, sources will be converted into the binary expression as the sources in

ASWDTBS problem for encoding. The Bayesian inference will be applied

to all of these three problems. To efficiently solve these Bayesian inferences,

message passing algorithm will be applied. For a discrete variable that takes

a small number of values, the belief propagation (BP) algorithm is able to im-

plement the message passing algorithm efficiently. However, the complexity

of the BP algorithm increases exponentially with the number of values of the

variable. Therefore, the BP algorithm can only deal with discrete variable

that takes a small number of values and limited continuous variables. For

the more complex variables, deterministic approximation methods are used.

These methods, such as the variational Bayes (VB) method and expecta-

tion propagation (EP) method, can efficiently incorporated into the message

x



passing algorithm.

A virtual binary asymmetric channel (BAC) channel was introduced to

model the correlation between the source data and the side information (SI)

in ASWDTBS problem, in which two parameters are required to be learned.

The two parameters correspond to the crossover probabilities that are 0→ 1

and 1 → 0. Based on this model, a factor graph was established that in-

cludes LDPC code, source data, SI and both of the crossover probabilities.

Since the crossover probabilities are continuous variables, the deterministic

approximate inference methods will be incorporated into the message passing

algorithm. The proposed algorithm was applied to the synthetic data, and

the results showed that the VB-based algorithm achieved much better per-

formance than the performances of the EP-based algorithm and the standard

BP algorithm. The poor performance of the EP-based algorithm was also

analyzed.

For the CCTDSN problem, the temperature data were collected by cross-

bow sensors. Four sensors were established in different locations of the lab-

oratory and their readings were sent to the common destination. The data

from one sensor were used as the SI, and the data from the other 3 sensors

were compressed. The decoding algorithm considers both spatial and tem-

poral correlations, which are in the form of Kalman filter in the factor graph.

To deal with the mixtures of the discrete messages and the continuous mes-

sages (Gaussians) in the Kalman filter region of the factor graph, the EP

algorithm was implemented so that all of the messages were approximated

by the Gaussian distribution. The testing results on the wireless network

have indicated that the proposed algorithm outperforms the prior algorithm.

The SGSCUDSC consists of developing a streamlined genome sequence

xi



compression algorithm to support alternative miniaturized sequencing de-

vices, which have limited communication, storage, and computation power.

Existing techniques that require a heavy-client (encoder side) cannot be ap-

plied. To tackle this challenge, the DSC theory was carefully examined, and

a customized reference-based genome compression protocol was developed

to meet the low-complexity need at the client side. Based on the variation

between the source and the SI, this protocol will adaptively select either

syndrome coding or hash coding to compress variable lengths of code subse-

quences. The experimental results of the proposed method showed promising

performance when compared with the state of the art algorithm (GRS).

xii



CHAPTER 1

INTRODUCTION

In a wireless sensor network, all of the sensors may send their own data to a

common destination. However, due to the limited capacity of the communi-

cation channel and the limited memory, the data must first be compressed so

that it can be sent to the common destination. One major difference between

wireless sensor networks and other mobile networks is that the observations

among sensors are highly correlated. This means that there is a significant

amount of redundancy among the observations. Distributed Source Coding

(DSC) theory is concerned with the separate compressions of these correlated

sources at each sensor and the joint decompression at the destination.

In 1973, Slepian and Wolf published their classical DSC paper [1]. In this

paper, Slepian and Wolf proved a very surprising result, that is, generally

speaking, it is possible to have no performance loss in separate encoding

compared to the case in which joint encoding is allowed. Wyner and Ziv

later considered a lossy version of asymmetric DSC in [2, 3]. Because of

the contributions of Slepian-Wolf and Wyner-Ziv, we usually refer to lossless

DSC as an S-W problem and lossy source coding with side information as a

W-Z problem.

Since most of the problems in this dissertation can be classified as S-W

coding or W-Z problems, these two codings will be briefly introduced first.

Then, the contributions of this dissertation will be summarized. Finally, the

organization of this dissertation will be outlined.

Before continuing, some notations should be classified:

1



• the uppercase letters X,Y, . . . denote the data source or random vari-

ables;

• the lowercase letters x, y, . . . denote one sample from X, Y, . . . ;

• X,Y, . . . denote the alphabets;

• xn denotes one n-length sequence {x1, . . . , xn};

• x̂ denotes the decoded word (estimation) of x.

1.1 S-W Coding

0 H(X|Y)

H(Y|X)

H(Y)

H(X,Y)

lossless coding region

R
x

R
y

Figure 1.1: Lossless Coding Region

Definition 1.1 Given two correlated joint sources (X, Y ), where X ∈ X

and Y ∈ Y, we will encode the n-length i.i.d sequences of (X, Y ) with rate

2



(RX , RY ) with the maps

f1 : X
n → {1, · · · , 2nRx}

f2 : Y
n → {1, · · · , 2nRy}

(1.1)

and decode the codeword with the map

g : {1, · · · , 2nRx} × {1, · · · , 2nRy} → Xn × Yn. (1.2)

If the decoding errors of these sequences are arbitrarily small, i.e.,

lim
n→∞

1

n

n∑
i=1

D(xi, x̂i) = 0,

lim
n→∞

1

n

n∑
i=1

D(yi, ŷi) = 0,

(1.3)

where D(·, ·) is the distortion function, then we designate these lossless cod-

ings as S-W codings.

It turns out that the achievable rate region (see Figure 1.1) of the S-W

coding is given by [4]

RX ≥ H(X|Y )

RY ≥ H(Y |X)

RX +RY ≥ H(X,Y ),

(1.4)

where H(·) is the entropy operation.

Depending on whether the source Y will be compressed or not, the S-

W coding can be classified as two schemes: non-asymmetric S-W coding or

asymmetric S-W coding(see Figure 1.2). For asymmetric S-W coding, the

3



(a) (b)

Figure 1.2: Two types of S-W coding: (a) Non-asymmetric S-W coding; (b)
asymmetric S-W coding.

source Y is uncompressed, which indicates RY = H(Y ). Hence, to satisfy

(1.4), RX should be RX ≥ H(X,Y )−RY = H(X, Y )−H(Y ) = H(X|Y ).

Remark 1.1 The proof of the S-W Theorem [1] is non-constructive, in that

Slepian and Wolf did not indicate how to implement DSC efficiently. The

research on practical algorithms for DSC was stagnant until the publication

of the work by Pradhan and Ramchandran in 1999 [5]. They rediscovered

an early work by Wyner in which he suggested the use of channel codes for

asymmetric S-W coding [6].

Remark 1.2 With few exceptions, such as [7], the majority of S-W code

designs are based on this channel coding formulation. Practical syndrome-

based schemes for S-W coding using channel codes have been studied in [5,8–

26].

1.2 W-Z Coding

The lossy decoding version of Figure 1.2(b) is called the ”W-Z coding” prob-

lem. For a given distortion d, the W-Z coding problem tries to find the coding

method that achieves the distortion requirement with a minimum rate, i.e.,

4



for an n block encoding scheme

{f ∗, g∗} = argmin
f,g
{R(f, g)},

s.t.

f : Xn → {1, . . . , 2nR}

g : Yn × {1, . . . , 2nR − 1} → Xn

lim sup
n→∞

E[D(xn, g(f(xn)))] ≤ d

, (1.5)

where f and g are the encoding and decoding mappings, respectively, E[· ] de-

notes the expectation operation, and D(· , · ) denotes the distortion function.

The minimum rate R is usually written as R∗
Y (d)

In [2, 3], the authors obtained that

R∗
Y (d) = inf

p∈M(d)
[I(X;Z)− I(Y ;Z)], (1.6)

Z ∈ Z, where Z is arbitrary finite set, and M(d) is the set of p(x, y, z) which

satisfies

∑
z∈Z

p(x, y, z) = p(x, y),

Y, Z are conditionally independent given X.

(1.7)

The W-Z problem is usually implemented by quantizing the source data

followed by the S-W coding.

1.3 Contributions

This dissertation will focus on how to apply the Bayesian inference frame-

work to solve parts of the S-W and W-Z problems. The Bayesian model

5



can be conveniently expressed by a factor graph, in which the message pass-

ing algorithm can be implemented to solve the model. Generally, Belief

Propagation (BP) is an efficient message passing algorithm. However, for

complex situations, such as those involving continuous random variables, it

is generally infeasible to apply the BP algorithm. To solve this problem, the

deterministic approximate methods will be incorporated into the message

passing algorithm so that the factor graph can be efficiently decoded.

The contributions of this dissertation can be summarized as follows:

• Research the properties of different deterministic approximate algo-

rithms, such as VB and EP for DSC decoding.

• Proposed an adaptive joint S-W decoding algorithm for binary sources.

The correlation of the binary sources can be viewed as a virtual binary

asymmetrical channel (BAC). Many of prior works can be view as spe-

cial cases of this model.

• Build a temperature network and propose a new factor graph for this

network. The proposed algorithm achieves a much better performance

on the network data.

• First apply the DSC to the genome data compression and decompres-

sion. The proposed algorithms have been applied to two genome se-

quence datasets - the Arabidopsis Information Resource (TAIR) [27]

and the Institute for Genomic Research (TIGR) [28]. The proposed

algorithm achieves a better performance than that of the GRS algo-

rithm.

Among all of above contributions, the DSC for temperature network and

the DSC for genome data have already been published in [29,30].

6



1.4 Organization

This dissertation is organized as follows: The basic concepts of Bayesian

inference, a factor graph, message passing algorithms and deterministic ap-

proximation inference will be reviewed in Chapter 2. The BAC model will

be studied in Chapter 3. Chapter 4 is about DSC for wireless temperature

networks. In Chapter 5, the DSC for the genome data algorithm will be

proposed and tested on two datasets. Chapter 6 provides a conclusion for

this dissertation.

7



CHAPTER 2

BAYESIAN INFERENCE

A Bayesian technique considers all possible modes when inferring an outcome.

In this chapter, the general idea of Bayesian inference will be explained.

Then, the prior selection criteria for the Bayesian inference will be introduced.

Finally, the factor graph and the inference methods in the factor graph will

be introduced.

2.1 Introduction

First, let’s classify some notations.

• p(·) is the probability distribution function.

• The upper case letters X, Y , and Z denote random variables or the

variable nodes of the factor graph, and the lower case letters x, y, and

z denote their corresponding values.

• θ is the parameter of the distribution model.

• x = {x1, x2, . . . , xN} denotes the set of all observation data.

Suppose one wants to estimate the parameter of the model P (x|θ). From

the point of view of classical probability, there exists a ground truth value

of θ. Given an observation set x, one common approach to estimate θ is to

maximize the likelihood (MLE) function p(x|θ), i.e.

θ̂MLE = argmax
θ
p(x|θ). (2.1)

8



Differing from classical probability, the parameter θ, under the Bayesian

framework, is treated as a random variable. According to Bayes’ theorem,

the posterior distribution of θ can be written as

p(θ|x) = p(θ)p(x|θ)
p(x)

, (2.2)

where p(θ) is the prior distribution, and p(x) is the constant and called as

evidence, which can be calculated as

p(x) =

∫
p(θ)p(x|θ)dθ. (2.3)

Therefore, one has the expression

posterior ∝ prior× likelihood. (2.4)

The prior reflects the existing knowledge of θ before the data x are sam-

pled. As a matter of fact, the form of (2.2) is suitable for sequentially updat-

ing: When the new data are obtained, the previous posterior can be treated

as the prior and then multiplied with the likelihood of the new data as (2.2)

to update the posterior.

By maximizing a-posterior (MAP) as equation (2.2), one can obtain an-

other estimate of θ, i.e.,

θ̂MAP = argmax
θ
p(θ|x) = argmax

θ

p(x|θ)p(θ)
p(x)

= argmax
θ
p(x|θ)p(θ)

(2.5)

9



Both p(x|θMLE) and p(x|θMAP ) can be used to make an inference on x.

For a large number of the training set x, θMLE and θMAP tend to converge

to the same value; but for a limited number of the training set, θMLE may

achieve better performance if the prior is appropriate.

As with the MAP method, the Bayesian inference techniques utilize a

”posterior”. However, the watershed between Bayesian and non-Bayesian

inference is not drawn on whether a prior is used. A Bayesian inference does

not first find the optimum parameter. Instead, it integrates all of the model

parameters out, based on the belief (probability) of occurrence of each model.

More precisely, the inference probability of x̃ is

p(x̃|x) =
∫
p(x̃|θ)p(θ|x)dθ. (2.6)

There are two important factors that determine the application scope of

Bayesian inference: One is the prior selection, and another one is the problem

of how to efficiently compute the integral (over the parameter) of Bayesian

inference.

In the following sections, two prior selection methods will be introduced,

and then some of the inference methods will be explained in detail.

2.2 Prior Selection

In this section, two priors will be introduced: the conjugate prior and refer-

ence prior. The conjugate prior has the advantage of reducing the computa-

tional complexity of the posterior. The reference prior is an ”uninformative

prior” that has a maximum distance from the posterior under Kullback-

Leibler divergence.

10



2.2.1 Conjugate Prior

The conjugate prior has the exact form as the posterior. For example, for

the k dimension multinomial distribution

p(x|θθθ) = Γ(
∑

ixi + 1)∏k
i Γ(xi + 1)

k∏
i=1

θxi
i , (2.7)

its conjugate prior Dirichlet distribution has the form

Dir(x|ααα) = 1

B(ααα)

k∏
i=1

xαi−1
i , (2.8)

where B(·) is the Beta function, which can be written in terms of the gamma

function

B(ααα) =

∏k
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
. (2.9)

Since the prior and the posterior have the same form of distribution,

to compute the posterior, one only needs to update the parameters of this

distribution.

2.2.2 Reference Prior

Reference priors were firstly introduced by Jose Bernardo [31]. The idea of

reference priors is that the prior should not strongly influence the posterior

distribution, and such a prior is called the uninformative prior [32]. Diver-

gences, such as the Kullback-Leibler (KL) divergence, can be used to measure

the influence of the priors on the posteriors. Suppose the random variable X

is parameterized by Θ, and T (X) is the sufficient statistic of X.A reference

prior p (θ) should be chosen that has a maximum distance to p (θ|t) under

11



KL divergence ∫
p (θ|t) log p (θ|t)

p (θ)
dθ, (2.10)

whose expectation over the distribution of T can be written as

I (Θ;T ) =

∫
p (t)

∫
p (θ|t) log p (θ|t)

p (θ)
dθ dt

=

∫ ∫
p (θ, t) log

p (θ|t)
p (θ)

dθ dt

, (2.11)

which is the mutual information between θ and t. Under (2.11), one wants

to choose p∗ (θ) such that

p∗ (θ) = argmax
p(θ)

I (Θ, T ) . (2.12)

For one-dimensional parameters, the reference priors are equal to Jeffreys

priors, which have the form

p (θ) ∝ I (θ)
1
2 , (2.13)

where I (θ) is the Fisher information, which can be expressed as

I (θ) = −Eθ

[
d2 log p (x|θ)

dθ2

]
(2.14)

.

2.3 Inference Methods

A factor graph can model the correlation of a large set of variables in an

intuitive manner. The variables in the factor graph can be either hidden

variables or observable variables, and they will be connected with the factors,

12



which take those variables as the arguments. Based on the factor graph, the

message passing algorithm can be implemented, by which the beliefs of all

the hidden variables can be derived. In this section, the factor graph will be

introduced, and then the message passing algorithm in the factor graph will

be derived.

2.3.1 Factor Graph

Figure 2.1: An Example of a Fac-
tor Graph.

A factor graph represents the factoriza-

tion of the joint distribution and is a

bipartite graph composed of two differ-

ent types of nodes: variable nodes and

factor nodes. As one type of graphi-

cal model, the correlations among the

variables can be easily observed. In a

nutshell, variable nodes represent ran-

dom variables in the problem, whereas

factor nodes connecting immediately re-

lated variable nodes explain the corre-

lations among them. Each factor node

is assigned with a factor function that

contains the variables connected to the factor node as arguments. The only

assumption of a factor graph is that the joint probability of all the variables

should be equal to the product of all the factor functions.

Figure 2.1 shows an example of a factor graph. In this factor graph,

there are 4 variables {x1, x2, x4, x4}, and 3 factors {fa, fb, fc}. From the

factor graph, all of the factors are multiplied to obtain the joint distribution

13



Table 2.1: Belief Propagation Algorithm.

Inputs: f1(x1), f2(x2), . . . , fM(xM).
Initialization: initialize each message mi→a(xi) ∀(a, i).
Repeat until all ma→i(xi) converge or reach maximum itera-
tions:

• update all the messages ma→i(xi) via Equation (2.18);

• update all the messages mi→a(xi) via Equation (2.17);

Output: the beliefs b(xi) ∀i via Equation (2.19).

p(x1, x2, x3, x4) as

p(x1, x2, x3, x4) =
fa(x1, x2)fb(x2, x3, x4)fc(x1, x3)

Z
, (2.15)

where Z is the normalization constant, and can be computed as

Z =
∑

x1,x2,x3,x4

fa(x1, x2)fb(x2, x3, x4)fc(x1, x3). (2.16)

2.3.2 Belief Propagation Algorithm

In Bayesian inference, one usually needs to obtain the distributions of some

specific random variables, which requires one to summarize/integrate the

joint distribution over other random variables. However, due to the com-

plex form of joint distribution, direct summations/integrations are usually

infeasible. Belief propagation is an efficient algorithm that can obtain the

beliefs (marginal distribution) of the random variables by implementing a

sum-product algorithm in the factor graph.

In the factor graph, the belief propagation algorithm defines two types

of message flows: One is the message from the factor to the variable, and

14



(a) (b)

(c)

Figure 2.2: (a)message from factor to variable; (b) message from variable to
factor; (c) variable belief.

another is the message from the variable to the factor. Suppose there are N

random variables {X1, . . . , XN} and M factors {f1(x1), . . . , fM(xM)}, where

xa ⊂ {x1, . . . , xN}. For the BP algorithm, each message in the factor graph

will be updated according to the following rules: the message from the vari-

able to the factor

mi→a ∝
∏

b∈N(i)\a

mb→i(xi), (2.17)

and the message from the factor to the variable

ma→i ∝
∑
xa\xi

fa(xa)
∏

j∈N(a)\i

mj→a(xj)

 , (2.18)

where the notation N(i)\a denotes the set of all neighbors of node i excluding

factor node a, and
∑

xa\xi
denotes a sum over all the variables in xa except
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xi. One uses i, j as the index of set {1, . . . , N} and a, b as the index of set

{1, . . . ,M}. Moreover, the belief of xi is

b(xi) ∝
∏

a∈N(i)

ma→i(xi). (2.19)

Details of the BP algorithm are listed in Table 2.1.

2.3.3 Variational Bayes (VB)

The BP algorithm can only compute the discrete variables, or continuous

variables with limited forms such as the Gaussian distribution. Even for dis-

crete random variables, the computation complexity will increase exponen-

tially with the size of variable’s the parameters. To cope with these complex

situations, one can approximate these true distributions.

Generally, there are two types of approximate methods: the random ap-

proximate method and the deterministic approximate method. The random

approximate method usually utilizes sampling methods, such as the Gibbs

sampling method [33] and Metropolis-Hastings [34] algorithms. Although the

sampling method may theoretically approximate the true distribution with

arbitrarily high precision as the number of samples increases, the complexity

is usually much higher than that of the deterministic approximate method.

In addition, the designs of the sampling methods are very tricky. For exam-

ple, the Metropolis-Hastings method samples from a self-constructive Markov

network, which determines the convergence speed and precision. However,

there is no general design method for this Markov network. The determinis-

tic approximate methods commonly have lower complexity. In addition, one

may only concentrate on the main aspect of the inference variable, and the
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deterministic approximate method will meet our demands with high speed.

Based on above reasons, deterministic approximate methods will be adopted

to deal with the complex distribution in the factor graph of this dissertation.

Two of the deterministic approximate methods will be utilized in this disser-

tation: variational Bayes (VB) and expectation propagation (EP).

Suppose one wants to make inferences on the hidden random variable Z

given X, and there are N observations of X, which are x = {x1, . . . , xN}.

Due to the complex form of the posterior p(z|x), one will find a favorable

distribution q(z) to approximate p(z|x) so that make inferences. Generally,

one obtains the following form

KL(q||p) = ln p(x) + L(q(z)), (2.20)

where

KL(q||p) =
∫
q(z) ln

(
q(z)

p(z|x)

)
dz, (2.21)

L(q) =

∫
q(z) ln

(
q(z)

p(x, z)

)
dz. (2.22)

KL(q||p) is the Kullback-Leibler divergence operation, which measures

the similarity of the distribution between q and p. KL(q||p) is always non-

negative, and is equal to 0 when q(x) = p(x). Comparing with the form of

the KL divergence, it is known that L(q) is the KL divergence between q(z)

and p(x, z), which indicates L(q) ≥ 0 and KL(q||p) ≥ ln p(x) = Constant.

Hence, ln p(x) is the lower bound of KL(q||p).

The optimization (minimization) function is (2.20). However, if one

knows the exact posterior p(z|x) in (2.21), then one can make inferences on

Z directly. Instead, one can minimize (2.22). In the following, let’s suppose
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z is a vector, i.e. z, and q(z) can be factorized as

q(z) =
M∏
i=1

qi(zi), (2.23)

where zi ⊂ z and i ∈ {1, . . . ,M}. Substituting (2.23) into (2.22) and mini-

mizing L(q) with respect to each q(zj), one can obtain the optimal solution

q∗(zj) as

q∗(zj) =
exp (Ei̸=j[ln p(x, z)])∫
exp (Ei̸=j[ln p(x, z)]) dzj

, (2.24)

where

Ei̸=j[ln p(x, z)] =

∫
ln p(x, z)

∏
i̸=j

qidzi. (2.25)

One can see from (2.25) that the solutions of all the q∗(zj) are coupled

with the others. To solve this issue, one can iteratively run through each

of the q∗(zj) until they all converge. In fact, this iteration algorithm is

guaranteed to coverage [33].

2.3.4 Expectation Propagation (EP)

The joint distribution of z and N i.i.d. observations x = {x1, . . . ,xN} is

given by

p(x, z) = p(z)
N∏
i=1

p(xi|z). (2.27)

Let t0(z) = p(z) and ti(z) = p(xi|z). Then (2.27) can be written as

p(x, z) =
N∏
i=0

ti(z). (2.28)
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Table 2.2: Expectation Propagation Algorithm.

Inputs: t1(z), t2(z), . . . , tN(z)
Initialization: initialize t̃1(z), t̃2(z), . . . , t̃N(z); initialize q(z) accord-
ing to (2.30).
Repeat until all t̃i converge or reach maximum iterations:

• Choose a t̃i to refine;

• Obtain the distribution q\i(z):

q\i(z) ∝ q(z)

t̃i(z)
; (2.26)

• Approximate q\i(z)t̃i(z) with new q(z);

• Compute normalizer Zi =
∫
ti(z)q

\i(z)dz;

• Update t̃i = Ziq(z)/q
\i(z)

Output: q(z).

The EP algorithm approximates the posterior p(z|D) with q(z) under

KL(p(x|z)||q(z)) = KL

(∏N
i=0 ti(z)

p(x)
||q(z)

)
, (2.29)

which has the reverse form of (2.21). However, the form of (2.29) is in-

tractable. To make (2.21) tractable, the EP algorithm factorizes q (z) as

q (z) =

∏N
i=1 t̃i(z)∫ ∏N
i=1 t̃i(z)

, (2.30)

and let each t̃i(z) approximate each ti(z), and an approximate iteration al-

gorithm will be listed in Table 2.2 [35].

The commonly used distribution t̃i is the exponential family distribution

f(z|θ) = h(z)g(θ) exp
(
θTu(z)

)
. (2.31)
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Once q(z) is obtained, one can make inferences on Z and compute p(x)

as

p(x) ≈
∫
q(z)dz. (2.32)
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CHAPTER 3

ADAPTIVE SLEPIAN-WOLF DECODING FOR TWO BINARY

SOURCES

3.1 Introduction

The DSC with two sources problem can be modeled as a channel coding

problem: The two sources of the DSC can be viewed as the input and output

of a channel; The correlation of the two sources can be viewed as the property

of the channel. In this chapter, the correlation of the two binary sources

will be modeled as the Binary asymmetrical channel (BAC) problem, which

has a wide application scope.

3.1.1 Related Work

Since the DSC problem can be modeled as a channel coding problem, the

algorithms of the channel problem can be directly applied to the DSC prob-

lem. In [36,37], the DSC problem was modeled as a virtual BSC channel. To

estimate the parameter (correlation in the DSC) in the BSC channel, various

methods have been proposed. In [38–40], the crossover probability of the BSC

is assumed to be constant in the context of the source coding. [18,41,42] make

further progress and assume that the crossover probability changes over time.

However, if the correlation of the two sources does not satisfy the symmetrical

condition, the BSC model will lead to a poor result. To be more applicable

in practice, the symmetrical condition is not assumed in this section, and

a model of the correlation of the two sources as the binary asymmetrical

channel (BAC) is used.
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In the rest of this chapter, an adaptive DSC algorithm for two binary

sources modeled as BAC is proposed. First, the BAC model is introduced.

Then, the proposed algorithms are explained in detail; Finally, the experi-

mental results and an analysis of the proposed algorithms are given.

3.2 Problem Formulation

Figure 3.1: Binary asymmetric channel

In Figure 3.1, suppose the BAC channel has a probability σ0 such that

an input 0 will be flipped into a 1 and probability σ1 such that an input 1

will be flipped into a 0.

Unlike with the BSC [4], the conditional probability of the received bit

value, given the send bit P (y|x), can be expressed as the following piecewise

function:

f(x, y, σ0, σ1) = P (y|x, σ0, σ1) =

 σy
0(1− σ0)(1−y) : x = 0

σ1−y
1 (1− σ1)y : x = 1

. (3.1)
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The above piecewise function can be unified as

f(x, y, σ0, σ1) = σx⊕y
x (1− σx)1⊕x⊕y . (3.2)

Suppose

p(x) =

 π0 : x = 0

π1 : x = 1
, (3.3)

then the joint distribution p(x, y) is given as

p(x, y) = p(x)p(y|x)

= πxσ
x⊕y
x (1− σx)1⊕x⊕y

=
(
π0σ

y
0(1− σ0)(1−y)

)(1−x)
(
π1σ

(1−y)
1 (1− σ1)y

)x
.

. (3.4)

In the following, the correlation between the sources X and Y is modeled

as the BAC channel in Equation (3.2), and an adaptive source coding method

will be proposed.

For simplicity, it is assumed that both π0 and π1 in (3.4) are known in

advance, and that both are equal to 0.5. However, the proposed VB-based

method will assume that π0 and π1 are unknown and will estimate them, and

priors will be given for this algorithm for Bayesian inference.

3.3 Proposed Methods

To encode the source data x (vector form), the low-density parity-check code

(LDPC) is utilized. LDPC is one of the linear block codes, which can be

defined by a sparse parity-check matrix. Given an LDPC parity-check matrix

H, the syndrome s (codeword) can be easily obtained by s = H× x.

To decode the syndromes, a factor graph (see section 2.3.1) is first pro-

23



Figure 3.2: Factor graph of binary asymmetric channel (BAC) sources

posed in Figure 3.2. As shown in Figure 3.2, the factor graph can be divided

into three regions: Region I is the low-density parity-check code (LDPC)

area, which encodes the constraints between the sources {x1, . . . , xL} and

the compressed syndromes s1, . . . , sK . Region II is the correlation between

the sources {x1, . . . , xL} and the side information (SI) {y1, . . . , yL}. The

BAC channel parameters σ0 and σ1 are estimated in the Region III. In the

following sections, each of these three regions will be explained one by one.
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Table 3.1: Summary of LDPC decoding using BP

Input: the syndromes s1, . . . , sK .
Initialization:

Lai = 0,∀ check node a (3.7)

.
Repeat until all messages ma→i(xi) and mi→a(xi) are converged
or reach maximum number of iterations:

• update all the messages mi→a(xi) via Equation (3.10);

• update all the messages ma→i(xi) via Equation (3.11);

Output: the log-likelihood ratio for variable node i can be updated
according to Equation (3.12).

3.3.1 Region I - LDPC Codes

In Region I of Figure 3.2, there are L-bit source and M -bit syndrome, which

are connected by the check nodes {h1, . . . , hM}, and the sparse parity-check

matrix H has the size of L×M , i.e., H ∈ FL×M
2 .

To satisfy the LDPC constraint, each factor ha (a ∈ {1, . . . ,M}) is defined

as

ha(xa, sa) =
∑

xa + sa = 0. (3.5)

All of the summations in Equation (3.5) are implemented in F2, and xa

denotes all of the sources that connect with the factor ha. The vectorized

form of (3.5) can be written as

H× x+ s = 0 (3.6)

The BP algorithm (see section 2.3.2) will be applied to solve the LDPC

decoding, and the detailed steps are listed in Table 3.1.

Initially, no information is obtained from the check factor node. Therefore
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the message from those nodes should bear no information, i.e., mai(1) =

mai = 0.5 for any factor node a to variable node i.

After assigning the initial values to the messages from factor to variable,

we can update the messages from variable to factor and the messages from

factor to variable alternatively as described in section 2.3.2. Since the un-

known variables are binary, it is more convenient to represent the messages

using likelihood or log-likelihood ratios. Define

lai ,
mai(0)

mai(1)

Lai , log lai

, (3.8)

and

lia ,
mia(0)

mia(1)

Lia , log lia

(3.9)

for any variable node i and factor node a.

Therefore, the message from variable node i to check node a can be up-

dated as

Lia ←
∑

b∈N(i)\a

Lbi. (3.10)

For the message from the check node a to the variable node i, according

to Equation (3.5), a simplified update rule can be divided as follow

Lai ←

 2 tanh−1
(∏

j∈N(a)\i tanh
(

Lja

2

))
: sa = 0

2 tanh−1
(
−
∏

j∈N(a)\i tanh
(

Lja

2

))
: sa = 1

. (3.11)
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The belief of variable node i can be updated as

βi =
∑

a∈N(i)

Lai. (3.12)

Hard thresholding can be applied to the final belief to estimate the value

of each bit. That is,

x̂i =

 0 : if βi ≥ 0

1 : otherwise
. (3.13)

3.3.2 Region II - Correlation between the sources and the side

information

For the messages between the Region II and Region III, the deterministic

approximate inference methods - the EP and VB algorithms will be applied

to update these messages. The details of the updating rules will be derived

in the next subsection. In this subsection, only the message sent from the

Region II to Region I, i.e. mfi→Xi
(xi), will be derived.

For both of the deterministic algorithms, each message sent from the

Region III to Region II has the form of Beta distribution. For example, the

messages mΣj
0→fi

(σ0) and mΣj
1→fi

(σ1) can be given as

mΣj
0→fi

(σ0) = Beta(σ0|αj
0,i, β

j
0,i) =

1

B(αj
0,i, β

j
0,i)

σ
αj
0,i−1

0 (1− σ0)β
j
0,i−1

mΣj
1→fi

(σ1) = Beta(σ1|αj
1,i, β

j
1,i) =

1

B(αj
1,i, β

j
1,i)

σ
αj
1,i−1

1 (1− σ1)β
j
1,i−1

, (3.14)

where B(·) is defined in (2.9).
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Then according to Equation (2.18), we have

mfi→Xi
(xi) =

∫
mΣj

0→fi
(σ0)mΣj

1→fi
(σ1)f(x, y, σ0, σ1)dσ0dσ1

=

∫
Beta(σ0)Beta(σ1)σ

x⊕y
x (1− σx)1⊕x⊕y dσ0dσ1

. (3.15)

By using the following properties

B(α, β) =

∫
Beta(σ|α, β)dσ

B(α + 1, β) = B(α, β)
α

α + β

B(α, β + 1) = B(α, β)
β

α + β

, (3.16)

The ratio form (see (3.8)) of mfi→xi
(xi) in Equation (3.15) can be simpli-

fied as

mfi→Xi
(xi) =


β0,i

α1,i

α1,i+β1,i

α0,i+β0,i
: y = 0

α0,i

β1,i

α1,i+β1,i

α0,i+β0,i
: y = 1

. (3.17)

3.3.3 Region III

To make the algorithm more adaptive, in Figure 3.2, the channel parameters

σ0 and σ1 are assumed to be unknown, and both of these parameters will

be estimated. In addition, it is assumed that the parameters σ0 and σ1 are

changing over time j, i.e., σj
0 and σj

1. Here, the number of factor nodes in

Region II connecting to each variable node σj
k is called the connection ratio

C, where k ∈ {0, 1}. In Figure 3.2, it is seen that the connection ratio is 3.

The Bayesian inference requires one to estimate the posterior distribution

p(σj
k|yj), where yj = {yi|i ∈ N\gjk(Σj

k)}, and N\gjk(Σj
k) denotes the set of all

neighboring indices for a variable node σj
k excluding gjk. The posterior is

given as
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p(σj
k|yj) =

1

Zj

∏
i∈N\gj

k (Σj
k)

p(σj
k)p(yi|σ

j
k)

=
1

Zj

∏
i∈N\gj

k (Σj
k)

∑
xi

p(σj
k)p(xi)p(yi|xi, σ

j
k)

=
1

Zj

g(σj
k)

∏
i∈N\gj

k (Σj
k)

∑
xi

mXi→fi(xi)p(yi|xi, σ
j
k),

(3.18)

where Zj =
∫ ∏

i∈N\gj
k (Σj

k)
p(σj

k)p(yi|σ
j
k)dσ

j
k is a normalization constant, p(σj

k) =

g(σj
k), and p(xi) is captured by the message mXi→fi(xi) with binary sources

xi taking 0 or 1. The connection ratio C equals to |N\gjk(Σj
k)|.

According to Equation (3.18), the exact form of p(σj
k|yj) contains 2C

terms, which are infeasible to estimate when C is large, say 50. Consider-

ing the trade off between complexity and accuracy, deterministic approxi-

mate methods are introduced. Two deterministic approximate methods are

adopted, and they are Expectation propagation (EP) (see Section 2.3.3) and

Variation Bayesian (VB) (see Section 2.3.4). In the following, I will illustrate

how to apply both of them to estimate the BAC parameters and derive each

of the both updating equations for message passing.

Estimating parameters by EP

Only the estimate method for parameter σj
0 (1 ≤ j ≤ J) will be provided,

and the estimate method for σj
1 (1 ≤ j ≤ J) can follow the same manners. In

addition, all of the following steps are generalized for all j, hence the index

j will be omitted. For example, σj
0 is shorted as σ0.
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For σ0, the Equation (3.18) can be rewritten as the following

p(σ0|y) =
1

Z
mg0→Σ0(σ0)

∏
i∈N\g0 (Σ0)

mfi→Σ0(σ0). (3.19)

The generalized EP algorithm is listed in Table 2.2. For this specific

problem, qi(σ0) will be used to estimate each mfi→Σ0(σ0), and confine all of

qi(σ0) into beta distribution.

The prior g(σ0) is given as the reference prior. Since the beta distribution

is used to estimate the likelihood function (3.2), according to Equation (2.13),

g(σ0) can be calculated as

g(σ0) =
1

B(α0, β0)
σα0−1
0 (1− σ0)β0−1, (3.20)

where α0 = β0 = 0.5. In addition, it can be seen that the reference prior

(3.20) has the same form as conjugate prior of beta distribution, which will

lower the computational complexity.

In the process of estimating σ0, the approximate distribution for σ1 is

fixed, and let’s suppose

q(σ1) =
1

B(α1, β1)
σα1−1
1 (1− σ1)β1−1 . (3.21)

The following is the detail of the proposed EP algorithm for estimating

σ0.

1. Initialize the prior g0(σ0) according to Equation (3.20).

2. Initialize the likelihood messages as

qi(σ0) = z0,iσ
α0,i−1
0 (1− σ0)β0,i−1 (3.22)
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with α0,i = 1, β0,i = 1 and z0,i = 1.

3. Initialize the posterior distribution as

q(σ0) = g0(σ0). (3.23)

4. For 1 to the maximum number of iteration

For i ∈ N\g0 (σ0)

(a) Remove qi(σ0) from the posterior q (σ0)

α
′

0 = α0 − (α0,i − 1) ;

β
′

0 = β0 − (β0,i − 1) .

(3.24)

(b) Update α0 and β0 according to moment matching method, which

are

α0 =
m1 (m1 −m2)

m2 −m2
1

; (3.25)

and

β0 = α0

(
1

m1

− 1

)
, (3.26)

where

m1 =
P1

Q1

, (3.27)

m2 =
P2

Q2

, (3.28)
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P1 =
(
α

′

0 + y
)(

1 +

(
α1

β1

)2y−1
)
Lr (x) +

(
α

′
0

β
′
0

)1−y (
α

′

0 + β
′

0 + 1
)

(3.29)

Q1 =
(
α

′

0 + β
′

0 + 1
)((

1 +

(
α1

β1

)2y−1
)
Lr (x) + 1 +

(
β

′
0

α
′
0

)2y−1
)
,

(3.30)

P2 =
(
α

′

0 + y
)(

α
′

0 + y + 1
)(

1 +

(
α1

β1

)2y−1
)
Lr (x) +

(
α

′
0

β
′
0

)1−y

(
α

′

0 + 1
)(

α
′

0 + β
′

0 + 2
)

,

(3.31)

Q2 =
(
α

′

0 + β
′

0 + 1
)(

α
′

0 + β
′

0 + 2
)

((
1 +

(
α1

β1

)2y−1
)
Lr (x) + 1 +

(
β

′
0

α
′
0

)2y−1
)
,

(3.32)

and Lr(x) =
mXi→fi(0)

mXi→fi(1)

(c) Set approximated message

α0,i = α0 −
(
α

′ − 1
)
,

β0,i = β0 −
(
β

′ − 1
)
.

(3.33)

End For
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End For

5. Output q(σ0)

Then one can follow the similar above procedures to estimate σ1, and all

of the procedures are the same except the formulas of P1, Q1 in (3.27), and

P2, Q2 in (3.28) should be modified as

P1 =

(
α

′
1

β
′
1

)y (
α

′

1 + β
′

1 + 1
)
Lr (x) +

(
α

′

1 + 1− y
)(

1 +

(
β0
α0

)2y−1
)
,

(3.34)

Q1 =
(
α

′

1 + β
′

1 + 1
)((

1 +

(
α

′
1

β
′
1

)2y−1
)
Lr(x) + 1 +

(
β0
α0

)2y−1
)
, (3.35)

P2 =

(
α

′
1

β
′
1

)y (
α

′

1 + 1
)(

α
′

1 + β
′

1 + 2
)
Lr (x) +

(
α

′

1 + 1− y
)

(
α

′

1 + 2− y
)(

1 +

(
β0
α0

)2y−1
) (3.36)

and

Q2 =
(
α

′

1 + β
′

1 + 1
)(

α
′

1 + β
′

1 + 2
)

((
1 +

(
α

′
1

β
′
1

)2y−1
)
Lr(x) + 1 +

(
β0
α0

)2y−1
)
. (3.37)

The σ0 and σ1 can be estimated alternately until both σ0 and σ1 converge

or reach the maximum number of iteration.
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Estimating parameters by VB

The VB algorithm is also utilized to estimate σ0 and σ1. Before continuing,

some notations should be classified:

• N is the number of data (connection ratio in Region III of Figure 3.2);

• Define 1-of-2 random variables x as x = (1− x, x)T , where x is the

values of X in Figure 3.2. It can be seen that only one element of x

equals to 1 and the other one equals to 0. xnk is the k − th element of

x for data n. Note k = {0, 1};

• let σ̃0 = σ0, σ̃1 = 1− σ1, and σ̃ = [σ̃0, σ̃1]
T .

Considering the dependent relations among x, y, π and σ̃, their joint

distribution can be factorized as

p(x, y, π, σ̃) = p(y|x, σ̃)p(x|π)p(π)p(σ̃). (3.38)

Then one has

p(y|x, σ̃) =
N∏

n=1

1∏
k=0

Bern(yn|σ̃k)xnk , (3.39)

where Bern is Bernoulli distribution.

For the distribution p(x|π), p(π) and p(σ), they are assumed as

p(x|π) =
N∏

n=1

1∏
k=0

πxnk
k , (3.40)

p(π) = Dir (π|α0, α1) , (3.41)

p(σ̃) = p(σ̃0)p(σ̃1) = Beta(σ̃0|β00, β01)Beta(σ̃1|β10, β11). (3.42)
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The exact form of joint distribution (3.38) can be obtained by multiplying

(3.39), (3.40), (3.41) and (3.42). However, this multiplication form has much

higher complexity, or it is infeasible.

Under VB framework in Section 2.3.3, much more easier approximate

distributions for q(x), q(π) and q(σ) will be given in order to make inference

on x, π and σ respectively. The detail of the algorithm is listed in the

following

1. Initialize the parameters α0, α1, β00, β01, β10 and β11:

Suppose {x1, . . . , xN} are current decoded words in Region I of Figure

3.2, then the parameters can be initialized as

α0 =
#{xn == 0}

N
Pα

α1 = (1− α0)Pα

β00 =
#{xn == 0&&yn == 1}

#{xn == 0}
Pβ0

β01 = (1− β00)Pβ0

β10 =
#{xn == 1&&yn == 1}

#{xn == 1}
Pβ1

β11 = (1− β10)Pβ1

, (3.43)

where Pα, Pβ0 and Pβ1 are constants to adjust the values of the pa-

rameters of the distributions. The bigger values the constants are, the

more influences the corresponding distributions will take effect on the

final estimations.

2. Repeat the following steps until all q(·) are converged or reach the

maximum number of iterations.
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(a) Update q(x):

q(x) =
N∏

n=1

1∏
k=0

rxnk
nk , (3.44)

where

rnk =
ρnk∑1
j=0 ρnj

,

ln ρnk = ynE[ln σ̃k] + (1− yn)E[ln(1− σ̃k)] + E(ln πk),
(3.45)

where

E[ln σ̃k] = ψ(βk0)− ψ(βk0 + βk1)

E[ln(1− σ̃k)] = ψ(βk1)− ψ(βk0 + βk1)

E(ln πk) = ψ(αk)− ψ(
1∑

k=0

αk)

, (3.46)

where ψ(·) is digamma function.

(b) Update q(π):

q(π) = Dir(π|α′
0, α

′
1), (3.47)

where

αk
′ = αk +Nk

Nk =
N∑

n=1

rnk

, (3.48)

(c) Update σ̃:

q(σ̃) =
1∏

k=0

Beta(σ̃k|βk0′, βk1′). (3.49)
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where

βk0
′ = Sk + βk0

βk1
′ = Tk + βk1

, (3.50)

where

Sk =
N∑

n=1

ynrnk

Tk =
N∑

n=1

(1− yn)rnk

. (3.51)

3. Output σ0 and σ1 as

σ0 = σ̃0

σ1 = 1− σ̃1
. (3.52)

Both of the EP and VB algorithms can be applied to all of the pair nodes

σj
0 and σ

j
1 so that provides the estimates for σj

0 and σ
j
1 to Region II to continue

message passing algorithm.

3.4 Experimental Results

The proposed algorithms will be tested in two experiments, and the details

of setups are listed in Table 3.2. All of the algorithms are implemented by

Java and evaluated on an Intel 3.0 GHz CPU machine.

First, let’s set both σt
0 and σt

1 as Gaussian distribution N(0.15, 0.012).

The length of block N is 10000, and the connection ratio C equals 500. The

crossover probabilities σt
0 and σt

1 for the proposed algorithm are initialized

0.1 away from the mean of the true probabilities. The algorithm will run 60
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Table 3.2: Experimental setups

Exp I Exp II

σt
0 N(0.15, 0.012) N(0.2, 0.012)
σt
1 N(0.15, 0.012) N(0.1, 0.012)
N 10000
C 500
# of iterations per each trial 60
learning period every 40 iterations
# of trials 100
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Figure 3.3: Bit error rates versus code rates curves of Exp I

times for each testing, and the VB/EP only run every 40 iterations. All the

results are averaged over 100 trials. The bit error rate is plotted in Figure

3.3. To make comparison, standard BP algorithm with no parameter esti-
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mation is also implemented. In Figure 3.3, It can be seen that the VB-based

algorithm outperforms the standard BP algorithm and EP-based algorithm.

The BP algorithm and EP-based algorithm achieve the same performance.

The largest gap between the VB and the standard BP is more than 10 dB.
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Figure 3.4: Bit error rates versus code rates curves of Exp II

Second, σ0 and σ1 are set as Gaussian distributions N(0.2, 0.012) and

N(0.1, 0.012), respectively. Other parameters are the same as Exp I. In ad-

dition, standard BP is also implemented for comparison. The bit error rate

versus bit rate is plotted in Figure 3.4. In Figure 3.4, it can be seen that

the VB-based algorithm still achieves the best performance among all of the

three algorithms. The EP algorithms even can not converge.

Contrary to the results of [23], the EP algorithm has the worst perfor-
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mance in above experiments, which can be explained as follow:

1. The algorithm in [23] assumes the channel type as BSC; however, none

of above experiments is BSC channel. As a matter of fact, the EP

algorithm has a better performance in Experiment I than Experiment

II. That’s because the channel type in Experiment I more approaches

to BSC than that of Experimental II.

2. The property of EP algorithm are more suitable to learn the single

mode model problem, however, the estimation of BAC problem is a

multiple-mode estimation problem.
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CHAPTER 4

COMPRESSION OF CORRELATED TEMPERATURE DATA

OF SENSOR NETWORK

4.1 Introduction

In the real world, to monitor the temperatures of different locations in a

neighborhood, we usually install sensors at each location in order to obtain

their readings periodically. However, due to the limited memory of each

sensor, the readings should be sent quickly after they are sampled. As the

frequency of the samplings increases, the channel between each sensor and the

destination may not transmit the data correctly due to its limited capacity.

Since the sensors are installed in the same neighborhood, there may exist

spatial correlations among the sensors. In addition, for each sensor, temporal

correlations may also exist between the consecutive readings. In this section,

both spatial and temporal correlations are utilized to reduce the transmission

data rate between each sensor and the destination. To verify the validity

of the proposed algorithm, a small wireless network is established in the

laboratory for testing.

4.2 Problem Formulation

A Crossbow temperature network [43] is installed in the laboratory. The net-

work contains four sensors (senders) and one common destination (receiver).

The four sensors are located in different locations and will send their readings

to the destination every hour.

In the network, one of the data source is used as the side information (SI),
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and the other three sources are compressed based on their correlations with

the SI. This type of coding is called ”asymmetric coding”. Under this frame-

work, this four-source DSC problem can be viewed as the three individual

two-source DSC problems.

For simplicity, two sources,X = [X1, X2, . . . , XL] and Y = [Y1, Y2, . . . , YL],

are assumed in the problem, where X is the source to be compressed, Y is

the SI, and each of both sources has L-length block data.

Suppose X and Y are jointly Gaussian, i.e.,

Yi = Xi +N(0, σ2
s), (4.1)

where N(0, σ2
s) is a Gaussian distribution with 0 mean and σ2

s variance.

In addition, for each Xi, 1 ≤ i ≤ L− 1, it is assumed that

Xi+1 = Xi +N(0, σ2
t ), (4.2)

where N(0, σ2
t ) is a Gaussian distribution with 0 mean and σ2

t variance.

Data of the source X are first quantized into bits (its binary representa-

tion), and then the bits are encoded by an LDPC matrix (see section 3.3)

in order to obtain the syndromes. These syndromes are then sent to the

destination. Data from source Y (SI) are sent to the destination directly.

Once it receives the syndromes and the SI, the decoder will implement

the message passing algorithm in the proposed factor graph to recover the

data from the source X. In the next section, a detailed explanation of the

proposed factor graph and how to implement the message algorithm in it will

be given.
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4.3 Proposed Method

Figure 4.1: Factor Graph of Our Proposed Method

Figure 4.1 is the factor graph of the proposed algorithm. This factor

graph captures all of the aforementioned correlations and constraints. Based

on the types of correlations and constraints, the factor graph can be divided

into three regions. The rest of this chapter will elaborate on them.

4.3.1 Region I

Region I captures the constraints of the LDPC algorithm. Suppose each

xi (1 ≤ i ≤ L) are quantized into K bits (see Figure 4.1, where K = 3), and

xi,k (1 ≤ i ≤ L, 1 ≤ j ≤ K) denotes the k−th bit of xi. And all of the xi,k are
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encoded together by the LDPC algorithm (see Section 3.3.1). Suppose the

LDPC compression ratio is M/L. Then M syndromes s = {s1, s2, . . . , sM}

are generated for transmission to the decoder. At the joint decoder, with the

constraint imposed by the received syndromes, the factor f I
m can be expressed

as

f I
m(Xm, sm) =

 1 , sm ⊕ (
⊕

Xm)

0 , otherwise
, (4.3)

where Xm denotes the set of neighbors of the factor node f I
m, ⊕ is the bit-xor

operation, and
⊕

is bit-sum of the Xm set.

All of the messages in Region I can be updated according to the algorithm

listed in Table 3.1.

4.3.2 Region II

In Region II, we use f II
l to denote the relation between the source xi and

its quantized bits {xi1, xi2, . . . , xiL}. Noticeably, all the variables on the left

of f II
l are continuous, and due to the assumption of Gaussian distribution

among them, the messages left to f II
l are also Gaussian distributions. Since

Gaussian distributions can be fully specified by their mean and variance, only

two parameters are required to express these messages. Let Q[X] denote one

of the candidates of the quantized source {xi1, xi2, . . . , xiL}. The factor node

f II
l can then be given as

f II
l (Q[X], µl, σ

2
l ) =

∫ P (Q[X])+∆

P (Q[X])−∆

1√
2π σl

exp

(
−(z − µl)

2

2σ2
l

)
dz, (4.4)

where µl,σ
2
l are the parameters of the message mXl→fII

l
(µl, σ

2
l ), P (Q[X])

is the de-quantized value of Q[X], and ∆ is half of the step size of the
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quantization.

For message mfII
l →Xlk

(xlk), k = 1, 2, . . . , K, since xlk is a binary variable,

the BP algorithm in (2.18) can be implemented directly to update this type of

messages. However, for message mfII
l →Xl

(µl, σ
2
l ), there are 2K items, which

make it difficult or even infeasible for further implementation of message

passing in Region III. To cope this difficulties, we can use a deterministic

approximation method-EP algorithm, and the details will be given in the

following section.

4.3.3 Region III

According to (4.1) and (4.2), the functions f III
l and f IV

l in Region III can

be given as

f III
l (xl) =

1√
2π σs

exp

(
−(xl − yl)2

2σ2
s

)
(4.5)

and

f IV
l (xl, xl+1) =

1√
2π σt

exp

(
−(xl+1 − xl)2

2σ2
t

)
(4.6)

respectively.

For each of the variable nodes Xl, there are three types of messages that

flow into this variable, and they are from factors f II
l , f III

l and f IV
l . The mes-

sage from the f II
l contains 2K items. The message from f III

l can be viewed as

the prior, which has a Gaussian form. The exact forms of the messages from

f IV
l are also Gaussian distributions. To continue implementing the message

passing algorithm in region III, the EP algorithm in section 2.3.4 will be

utilized to estimate all of the messages that flow out of the variable node

Xl. The EP estimations of these messages are expressed as m̃Xl→fII
l
(xl),

m̃Xl→fIV
l
(xl), and all of these messages are restricted into Gaussian distri-
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bution. Then, the EP updating rules can be derived by using the following

equations:

N(x;m1, ν1)N(x;m2, ν2) = N(m1;m2, ν1 + ν1)N(x;m, ν), (4.7)

where v =
ν1ν2
ν1 + ν2

, m = v

(
m1

ν1
+
m2

ν2

)
. The details of the algorithm can be

found in [35].

The messages m̃Xl→fII
l
(xl) and m̃Xl→fIV

l
(xl) can then be fed into XL’s

neighbor factors in order to update the messages that flows out of factors f II

(see Region II) and f IV . The messages that flow out of the factor f IV
l can

be updated according to the equation

∫
N(x1;m1, ν1)N(x2; x1, ν2) dx1 ∝ N(x2;m1, ν1 + ν2). (4.8)

Remark 4.1 Actually, region III is mainly composed by a Kalman filter.

The SI Y can be viewed as an observable value, and X is the hidden variable.

In addition, when comparing with the prior work [44], there is no need to

implement the procedure of de-quantization since the beliefs of the source X

in Region III are continuous.

4.4 Results

In this section, the proposed algorithm will be applied to the network. For

all of the 4 sensors, since the data from one sensor will be utilized as the SI,

there are 3 combinations for testing. They can be called Group 1, Group

2, and Group 3. In addition, 50 readings are obtained from each sensor,

i.e., the length of data block L = 50. The numbers of quantized bits are

set as K = 3, 4, 5, 6, 7, and the range of quantization is [0, 60]. Hence, the
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compression rate R can be calculated as R = K ∗M/L.

Table 4.1: The rate/bits of the three data groups given the number of bit
planes (K)

K = 3 K = 4 K = 5 K = 6 K = 7
Group 1(σs = 0.72,σt = 1.1) 0.4 0.6 1.0 2.3 3.4
Group 2(σs = 0.68,σt = 0.9) 0.2 0.3 1.2 2.0 3.2
Group 3(σs = 0.65,σt = 1.0) 0.2 0.4 1.2 2.3 3.5

Since the message passing algorithm is an iterative algorithm, the stop

criterion should be given in advance. In all of these experiments, there are

two stop criteria: The first one is that all of the beliefs of the decoding bits

xi,k successfully satisfy the LDPC syndrome constraints in (4.3). The second

one is when the implementation reaches the maximum number of iterations.

The maximum number of iterations is set to be 60. In addition, the EP

algorithm will be implemented every 20 iterations.

For a given number of bit plane, the minimum rates Rmin of compressed

syndromes that can be successfully decoded for the proposed algorithm are

calculated in Table 4.1. In addition, the spatial and temporal standard de-

viations of each data group are also listed.

Figure 4.2 gives the distortions versus the rates listed in Table 4.1. Here,

the distortion is defined as the mean square error, and it is given in deci-

bels (dB) unit. To make a comparison, the algorithm in [44](by Wang et

al.) is also implemented, and [44] only considers spatial correlations [44].

Unlike [44], the proposed algorithm assumes the correlations are priors and

estimates them offline. For a fair comparison, the same assumption is also

applied to [44]. From the results in Figure 4.2, the proposed algorithm out-

performs the algorithm in [44]. In the Figure 4.2(a) and Figure 4.2(c),it is
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Figure 4.2: Distortion versus the rate listed in Table 4.1: (a) Group 1; (b)
Group 2; (c) Group 3
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seen that the distortions of the algorithm in [44] increase as the rates of data

increase. That’s because, for a given bit plane and LDPC setting, the al-

gorithm in [44] cannot decode successfully. However, since the correlations

among the data have been fully utilized in the proposed algorithm, the prob-

ability of decoding successfully will increase.
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CHAPTER 5

STREAMLINED GENOME SEQUENCE COMPRESSION

USING DISTRIBUTED SOURCE CODING

5.1 Introduction

The vision of miniaturized sequencing devices is turning into reality with the

emergence of MinION by Oxford Nanpore [45]. Such devices are promising in

a variety of potential applications, ranging from studying of wildlife and clin-

ical capture of sequenced genes, to food inspection for identifying pathogens.

However, such portable devices are commonly subject to the constraints in

processing capabilities, power budget, and storage and communication limi-

tations. With these constraints, the traditional view of genome compression

architecture as simple decoder and complex encoder needs to be changed. It is

urgent to develop novel techniques to satisfy the emerging reality challenges.

Data compression methods (for reducing the storage space with significantly

lower computational complexity and memory requirements) become crucial

for the efficient management of genomic data in portable devices.

In both situations (with or without reference sequences), traditional genome

compression is computationally expensive at the encoder. The complexity is

dominated by matching (approximately) repeated patterns of nucleotides—

namely Adenine (A), Cytosine (C), Guanine (G) and Thymine (T)—between

or within the DNA sequences. These patterns are also accompanied by in-

sertions, deletions and substitutions of single nucleotides.

To date, a number of specialized DNA sequence compression algorithms

have been proposed. In the spirit of Ziv and Lempel [46], Grumbach and
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Tachi [47] proposed the first DNA sequence compressor, Biocompress, to

compress the exact repeating patterns with a specially designed Fibonacci

coder. The algorithm was then improved in Biocompress-2 [48] by intro-

ducing a Markov model for encoding the non-repeated regions. Chen et

al. [49, 50] extended the earlier approach to cover approximated repeats by

further exploiting the nature of DNA sequences. Meanwhile, the work in [51]

introduced a combined CTW+LZ algorithm for searching approximate re-

peats and palindrome using hash and dynamic programming. Behzadi and

Fessant [52] proposed a dynamic programming approach for the optimal se-

lection of approximate repeats with promising compression efficiency being

witnessed. However, such methods are heuristic as the underlying statistics

of the sequence patterns are generally ignored. The authors in [53–55] pro-

posed to combine the matching and substitution of approximate repeats and

a specific normalized maximum likelihood model, obtaining a much higher

compression ratio. Subsequently, statistical modeling for predicting the gen-

eration of symbols and arithmetic coding for such symbols in DNA sequences

were proposed for more efficient compression. Cao et al. [56] proposed to es-

timate the probability distribution of symbols with a panel of “expert” to

tackle the approximate repeat problem. Alternatively, finite context models

are proposed to capture different aspects of statistical information along

the sequence [57, 58], such reference free methods are plagued by their low

compression rates (not greater than 6:1) and prohibitive computational con-

sumption for large DNA sets.

Recognizing reference-free architectures do not fully utilizing information,

a series of algorithms are proposed to compress sequences by matching ap-

proximate repeats with a reference sequence. The RLZ algorithm proposed
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by Kuruppu et al. [59] performed relative Lempel-Ziv compression of DNA

sequences with the collection of related sequences. Wang et al. [60] proposed

the GRS compressor, that is able to compress a sequence with using a ref-

erence without any additional information. Applying the copy model into

the matching of exact repeats in reference sequences, GReEn [61] achieved

even larger gains when compared to [59] and [60]. Recently, reference-based

algorithms [62,63] achieved highly efficient compression performance for the

fastq data format, by matching and comparing repeated subsequences in the

reference sequences. Although the reference-based architectures can achieve

hundreds of folds compression, the requirement of reference sequences makes

it impractical for miniaturized devices, which have very limited storage space

and communication bandwidth.

In this section, a novel and pioneering architecture for the genome com-

pression application in miniaturized devices with limited processing capabili-

ties, power budget, storage space and communication bandwidth is proposed.

The contribution of the proposed method is three-fold.

1. To the best of our knowledge, the proposed architecture is the first

practical one to meet the demands of miniaturized devices. Motivated

by the distributed source coding (DSC) for sensor networks [64], the

proposed scheme includes a simplified encoder without having access

to reference sequences or communicating with other encoders, and a

complex decoder that detects repeated subsequences in the stored ref-

erence sequences and decompress the received encoded bits with the

specifically designed graphical model. Hence, the proposed compres-

sion system can successfully meet the constraints and requirements of

the miniaturized sequencing devices.
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2. A flexible encoding and decoding mechanism is proposed. Using feed-

back from the decoder, the encoder transmits either hashes conducting

the detection of variable-size exact repeats in decoder or syndromes ob-

tained with low-complexity Slepian-Wolf coding [65] of the non-repeated

subsequences. The proposed encoder and decoder perform efficiently by

taking consideration of both exact repeats and approximately repeated

subsequences (e.g. insertion, deletion and substitution).

3. With the syndrome and reference sequences at the decoder [65], a novel

factor graph model is constructed to tackle the challenge in detecting

insertion, deletion and substitution between the reference and original

source. Experimental results show that the proposed architecture can

achieve an efficient compression performance with significantly low en-

coding complexity when compared to the benchmark compressor GRS.

The rest of this section is organized as follows. In Section 5.2, the pro-

posed DSC based genome compression system is introduced, and the system

includes the implementation details of the proposed hash based (exactly) re-

peated sequence coding with adaptive length and an overview of syndrome

based non-repeated sequence coding. Then, in Section 5.3, a design of the

syndromes based non-repeated sequence coding is proposed, and this design

can handle the insertion, deletion, and substitution between sources and ref-

erence. The experimental results can be found in Sections 5.4.

5.2 System architecture

The block diagram of the proposed Genome compression framework is de-

picted in Figure 5.1. Suppose that there are two correlated DNA sequences
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Figure 5.1: Workflow of genome compression based on DSC.

(i.e., source and reference sequences) available at the encoder and decoder,

respectively, where the variations between two sequences are modeled by

insertion, deletion and substitution. The alphabet of our studied DNA se-

quence is confined within the set {‘A’, ‘C’, ‘G’, ‘T ’, ‘N ’}, where ‘N ’ denotes

an unknown base due to a low sequencing quality. Figure 5.2 shows the

logical flow of the proposed framework.

At the encoder (see the left hand side of Figure 5.2), a streaming DNA

sequence obtained from the portable sequencer will be first stored in the

incoming data buffer for further processing. Second, a sub-sequence xL
i ,

which starts with the i-th to be compressed base in the source sequence, is

extracted from the incoming data buffer, where its length L and the corre-

sponding coding method are decided by the adaptive code length and types

selection module. The compressed sequence can be either LDPC Accumulate

(LDPCA1) syndromes sxL
i
= HxL

i or hash bits hxL
i
depending on whether

variations are presented between the source and the reference sequence, based

on the decoder feedback, where H is the parity check matrix in LDPC codes

(see section 3.3.1). Third, the encoded sequence will be temporally stored in

1LDPCA is an extension of LDPC in section 3.3.1, which has a feedback with the
decoder so that the encoder can change the LDPC length of syndrome adaptively.
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the forward data buffer and send to the decoder.

At the decoder (see the right hand side of Fig. 5.2), the received streaming

data in the incoming data buffer will be processed by one of the following
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modules based on the corresponding data compression mode (i.e., either hash

bits or syndromes).

1. For the received hash data hxL
i
, it will be compared with the hashes gen-

erated from a bunch of sub-sequence candidates yL
j+U , · · · ,yL

j+V within

the reference sequence for V − U + 1 total candidates, where j is the

current offset compensated start location, and U and V are predefined

lower and upper bounds of the search region for start locations. Then,

the comparison result can be further processed as follows.

(a) If a matched hash hyL
k
for k = j + U, · · · , j + V is detected (i.e.,

hyL
k

= hxL
i
), the next offset compensated start location of the

sliding window can be updated as j = k+L (see Fig. 5.3). More-

over, we claim that yL
k will be identical to xL

i , if hyL
k
and hxL

i
are

matched with each other, which is the fundamental assumption of

our proposed system. Intuitively, the aforementioned assumption

can be enforced by choosing a strong hash code with a small search

region. The experimental results based on sequences [66,67] with

total more than 238 million bases demonstrate that a 16-bit cyclic

redundancy check (CRC) hash code with a search region U = −2

and V = 10 provides a strong assertion of such assumption. In

addition, the decoder will inform the success to the encoder and

request a longer code length based on a predefined protocol as up-

dating Lcurrent = bL0, where L0 is a predefined initial length and

the scaling factor b is updated as b = b + db, db is an incremental

constant, and b is initialized as 0. For example, at the beginning,

Lcurrent = L0, if a matched hash is detected, the adaptive length

Lcurrent will be updated as Lcurrent = dbL0, as the scaling fac-
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tor b = 0 + db. Similarly, if nh number of successively matched

hashes are detected, the adaptive length and its corresponding

scale factor will be Lcurrent = nhdbL0 and b = nhdb, respectively.

(b) If no matched hash can be detected, the following two conditions

will be checked.

i. if Lcurrent = L0, the decoder will inform the hash matching

failure to the encoder and request syndromes from the encoder

for further action.

ii. Otherwise, the decoder also informs the hash matching failure

to the encoder, but requests a shorter code length by setting

Lcurrent = L0.

2. For the received syndromes, the decoder will pass the syndrome to the

proposed factor graph based LDPCA decoder with the capability of

handling deletion, insertion and substitution between the source and

the reference (see the next section for more implementation details).

The following two conditions will be checked.

(a) If the decoded source x̂L
i satisfies both the parity check constraint

(i.e., sxi
= Hx̂L

i ) and the hash constraint (i.e., hxL
i
= hx̂L

i
), the

decoder will send an LDPCA success message back to the encoder

and update the offset compensated start location j through the

Smith-Waterman local alignment between the reference and the

decoded source. Moreover, the encoder will send hash codes to

the decoder for the next sub-sequence.

(b) Otherwise, the decoder will request additional LDPCA syndromes

from the encoder.
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Figure 5.4: Factor graph of genome compression based on DSC.

5.3 Syndrome Based non-repeated sequence coding

As previously mentioned in our system architecture, if an exact repeat cannot

be identified by hash coding, the decoder will request syndromes from the

encoder through a feedback channel. In this section, the codec design of the

proposed syndrome based non-repeated sequence coding is proposed.
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5.3.1 Syndrome based non-repeated sequence encoding

The first step of the proposed syndrome based non-repeat encoder is to con-

vert DNA data into a binary source, such that they can be compressed

under a binary LDPCA encoder. Suppose the following mapping rule for

the letters within the alphabet, i.e., ‘A’ → 000, ‘C’ → 001, ‘G’ → 010,

‘T ’ → 011, ‘N ’ → 100, a DNA subsequence x can be represented by the

corresponding binary vector xb. For instance, given a DNA subsequence

x = [‘A’‘T’‘G’‘C’‘T’‘N’]T with length N = 6, its corresponding binary vec-

tor will be xb = [000 011 010 001 011 100]T with length 3N . Thus, for

LDPC based Slepian-Wolf (SW) coding (i.e., lossless DSC), the compressed

syndromes will be generated through sx = Hxb, where H is a sparse parity

check matrix with size M × 3N and M < 3N . Thus, the resulting code rate

can be expressed as R = M/N bits per base. It is worth mentioning that

the computational complexity of the aforementioned encoder is ultra-low,

since the only operation is the bit-wise multiplication between the sparse

matrix H and the original source. Moreover, LDPCA codes to implement

rate adaptive decoding is employed, where the decoder can incrementally

request additional LDPCA syndromes from the encoder through a feedback

channel, when facing decoding errors.

5.3.2 Syndrome based non-repeated sequence decoding

To perform syndrome based decoding for non-repeat DNA subsequence x

with the reference sequence as side information y, the key factor is to be able

to explore the variations between the source subsequence x and the reference

sequence y, where the variations are modeled by the insertion, deletion, and

substitution between the source and reference. Moreover, a substitution can
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be expressed as an insertion in the source sequence followed by a deletion

in the corresponding location in the reference sequence. In this section,

it is demonstrated that such variations can be effectively estimated through

Bayesian inference on graphical models. The graphical model of the proposed

syndrome based decoding with variation is depicted in Figure 5.4. In Figure

5.4, the variable nodes (usually depicted by a circle) denote variables such as

source symbol, binary source bits, local offset introduced by variation, and

syndromes. The detail of the proposed factor graph will be explained in the

followings.

The parity check constraint imposed by the received syndromes is studied,

where s1, · · · , sM , the realization of variable node Sl, l = 1, · · · ,M , denotes

the received syndromes in Figure 5.4. Similar as the LDPC codes in Section

3.3, the factor nodes cl, l = 1, · · · ,M , take into account the parity check

constraints, where the corresponding factor function can be expressed as

cl(xcl , sl) =

1, if sl ⊕
⊕

xcl = 0

0, otherwise
, (5.1)

where xcl denotes the set of neighbors of the factor node cl, and
⊕

xcl denotes

the binary sum of all elements of the set xcl .

Moreover, x1i , x
2
i , x

3
i , the realization of variable nodeXr

i with i = 1, · · · , N ,

r = 1, 2, 3, are the binary representation for the i-th base xi in the DNA se-

quence according to the mapping rule introduced in Section 5.3.1, where the

mapping rule is captured by the factor node fi, i = 1, · · · , N with corre-

sponding factor function as follows
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fi(xi, x
1
i , x

2
i , x

3
i ) =

1, if map(x1i , x
2
i , x

3
i ) = xi,

0, otherwise.
(5.2)

where map(·) denotes the mapping from the binary bits “· ”to a letter in

the alphabet, e.g. the output of map(0, 1, 1) corresponds to the letter “T”.

Moreover, since the alphabet is not uniformly distributed in an arbitrary

DNA sequence, the prior distribution for the alphabet is captured by the

factor node hxi
, where learning prior through training DNA sequences will

be discussed shortly in the results section.

Now, an additional erasure variable node Mi to capture the variation

between reference yi and source xi is introduced, where the variable mi = 1

indicates the presence of variations, mi = 0 means the existence of matches

yi+ti = xi, where ti = −T, · · · , T are all possible local offsets within the search

region [−T, T ]. Moreover, the corresponding prior distribution of variable mi

is captured by the factor node hmi
with factor function defined as

hmi
(mi) =

1− pe if exist matches yi+ti = xi

pe, otherwise
, (5.3)

where pe can be learnt through training DNA sequence.

For the existence of matches yi+ti = xi, the local offset ti is captured by

the variable node Ti and its corresponding prior is represented by the factor

node hti with hti(ti) = pti , where pti can be learnt through training DNA

sequences. Furthermore, as the local offsets between adjacent DNA bases do

not vary significantly in this work, it is expected that adjacent variables ti will

not differ much in value. Such characteristic is captured by the additional
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factor node qti,ti+1
, where the corresponding factor function is defined as

qti,ti+1
(ti, ti+1, α) =

α

2
e−α|ti−ti+1|, (5.4)

where α is the scale parameter of the Laplace distribution.

The factor node gi and its corresponding factor function gi(mi, yi, xi, ti)

are introduced to combine the impact imposed by the side information yi,

erasuremi and local offset ti. Formi = 0, the factor function can be expressed

as,

gi(mi = 0, yi, xi, ti) =

1 if yi+ti = xi,

0, otherwise.
(5.5)

For mi = 1, the variable nodes Ti and Yi will be disconnected from the factor

node gi . Therefore, the simplified factor function gi(mi = 1, xi) = 1 can be

used to take the impact of erasure into account.

With the factor graph defined above in Figure 5.4, BP algorithm in Sec-

tion 2.3.2 can be implemented so that obtain the posterior distribution (be-

lief) of each variable. The original DNA sequence can be recovered by the

posterior distribution of each source xi.

5.4 Results

Two genome sequence data - The Arabidopsis Information Resrouce (TAIR)

[27] and The Institute for Genomic Research (TIGR) [28] are adopted for

testing in this experiment. These two database are collected by professional

groups or institutes, and have been widely used by research communities.
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The TAIR maintains a database of genetic and molecular biology data for

the model higher plant Arabidopsis thaliana [27]. In this experiment, TAIR8

[66] dataset and TAIR9 [67] dataset are tested, where each dataset contains

five chromosomes with over 238 millions bases in total. Moreover, the genome

of TAIR9 is used for testing the compression performance with TAIR8 as

reference only available at the decoder. For this experiment, all the hyper-

parameters are initialized as follows, the initial code length L0 = 528, the

incremental constant bd = 3, the scale parameter of Laplace distribution α =

1, the maximum local offset search region T = 4 and the erasure probability

pe = 0.01. The proposed codec is implemented in MATLAB and evaluated

on an Intel 3.0GHz CPU machine.
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Figure 5.5: The empirical statistics of (a) the DNA bases {‘A’, ‘T’, ‘G’, ‘C’,
‘N’} and these of (b) the local offsets with the range from −4 to 4.

First, the empirical marginal statistics of the DNA bases {‘A’, ‘T’, ‘G’, ‘C’,

‘N’} and these of the local offsets ti within the range from −4 to 4 are shown

in Figures 5.5(a) and 5.5(b), respectively, which will be used as the priors in

the syndrome based non-repeated sequence decoding. In Figure 5.5(a), it is

verified the assumption that the alphabets of DNA sequences are usually non-

uniformly distributed. Moreover, Figure 5.5(b) depicts that the maximum

local offset with T = 4 is sufficiently large for capturing shifts between the
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reference and the source.
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Figure 5.6: Compression performance of the proposed codec on TAIR
dataset, (a) the average code rates vs. the different maximum local off-
sets in syndrome coding; (b) the overall compression performance (i.e., hash
bits + syndromes) for all 5 chromosomes.

Figure 5.6(a) illustrates the relationship between the average code rates

and the different maximum local offsets in syndrome coding based on all 5

chromosomes. In Figure 5.6(a), it shows that the code rates decrease as the

maximum local offsets increase, due to the fact that a larger maximum local

offset offers a wider search region for exploring the reference. However, a

larger maximum local offset may also result in a higher decoding complexity.

Figure 5.6(b) shows the overall compression performance (i.e., hash bits +

syndromes) for all 5 chromosomes in terms of compressed file size. Moreover,

Figure 5.7 shows a side-by-side comparison of the compression rate and com-

pression time. It shows that both the proposed method and GRS algorithm

achieve significant file size reductions (i.e., up to 8252x file size reduction).

For the TIGR data, the chromosome 4 (35.8MB) of the TIGR5 dataset

is tested using the chromosome 4 of the TIGR6 as the reference by varying

the LDPC code length (i.e., 528, 1056, 1584, 2112 and 2640) as shown in

Table 5.1. Moreover, GRS method is also implemented on this dataset, and

the result was also listed in Table 5.2 as reference. It can be seen that the
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Figure 5.7: Performance comparison between GRS and our proposed codec
on TAIR dataset.

compression performance decreases as the LDPC code length increases. The

proposed algorithm achieved better compression performance comparing with

GRS in this case. It is because that the reference chromosome 4 in TIGR6

includes a significant amount of insertions when comparing with the same

chromosome in TIGR 5, where the insertion information in the reference

chromosome has no contribution to the size of DSC compressed data.

The proposed encoder shows a significantly lower encoding complexity. It

is worth mentioning that the proposed codec is implemented by MATLAB,

where a potential performance boost is highly expected by using more effi-

cient programming languages e.g., C/C++. To the best of my knowledge,

this is the first study of DSC based genome compression. There is no doubt
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Table 5.1: Performances of our proposed method on Chromosome 4 of TIGR5
(35.8 MB)

LDPC Length Compression Size (KB) Enc Time (s) Dec Time (s)

528 3.68 0.04 298
1056 4.58 0.009 596
1584 5.67 0.01 787
2112 6.97 0.01 1102
2640 6.72 0.08 1374

Table 5.2: Performance of GRS on Chromosome 4 of TIGR5 (35.8 MB)

Compression Size (KB) Encoding Time (Seconds) Decoding Time (Seconds)
26.34 12 6

that it opens many possibilities for the portable miniaturized applications in

which energy consumption and bandwidth usage are of paramount impor-

tance.
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CHAPTER 6

CONCLUSIONS

DSC has attracted the interests of many researchers in recent years. The

S-W and W-Z problems are two of the most important topics with regard

to DSC. Although the theoretical compression limits of these two problems

have been known for decades, a systematic method for solving both problems

is still unavailable. Therefore, more and more researchers have focus on

and tried to solve these problems. This dissertation has attempted to solve

three main problems: adaptive Slepian-Wolf decoding for two binary sources

(ASWDTBS) problem, the compression of correlated temperature data of

sensor network (CCTDSN) problem and the streamlined genome sequence

compression using distributed source coding (SGSCUDSC) problem.

ASWDTBS problem is an S-W problem. LDPC code was used to en-

code the source data. For the decoding, a three-region factor graph was

established. The three regions are the LDPC region, the source data and SI

correlation region, and the parameters estimation region. For the LDPC and

correlation regions, the BP algorithm was applied to implement the message

passing algorithm. The channel parameters in Region III were estimated

by EP and VB algorithms. The proposed algorithm was tested with the

synthetic data and compare with the standard BP algorithm with no param-

eter estimation. The experimental results show that the VB-based algorithm

performed the best, but that the EP-based algorithm performed the worse.

CCTDSN can be viewed as an extension of the W-Z problem. A Dis-

tributed Source Coding algorithm, taking both spatial and temporal correla-

tions into account, is proposed. To test this method, a wireless temperature
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networks was established in our laboratory, and each sensor sent its temper-

ature readings every hour. The results showed that the algorithm achieved

much better results than the algorithm of prior work on the temperature

network. In the future, more research will be done on the quantization step

of this W-Z problem, and an optimization between the number of bit planes

and each bit plane’s compression ratio for a given rate will be sought.

Finally, a DSC based genome compression architecture was presented.

This area of research can be classified as a S-W problem. To the best of

our knowledge, the proposed framework is the first study of its kind. It is

especially targeted at the low complexity genome encoding for miniaturized

devices, which have limited processing capabilities, power budgets, storage

space and communication bandwidth. Compared to the traditional reference

based DNA compression algorithm (e.g., GRS), the proposed framework of-

fers ultra-low encoding complexity (non-repeated subsequences are encoded

using low complexity DSC encoding), while (exactly) repeated subsequences

are compressed through adaptive length hash coding based on the decoder

feedback. The customized factor graph based decoder tackles the challenges

of detecting insertion, deletion and substitution between the reference and

the original source, and it recovers the non-repeated subsequences based on

received syndromes. Last but not least, our proposed genome compression

framework incorporates LDPCA codes for rate adaptive decoding. Experi-

mental results show that the proposed architecture could achieve an efficient

compression performance with significantly lower encoding complexity when

compared to the benchmark compressor GRS.
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