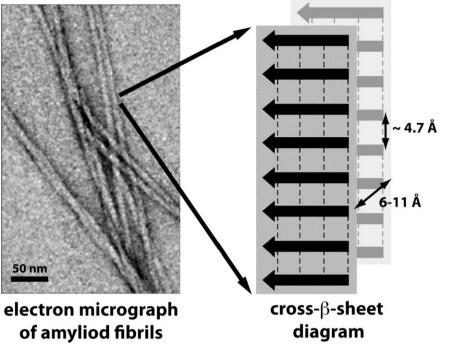
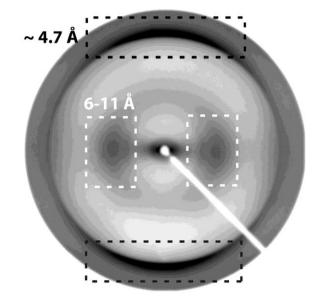
# Inter-Species Cross-Seeding: Stability and Assembly of Rat - Human Amylin Aggregates


# Workalemahu M. Berhanu

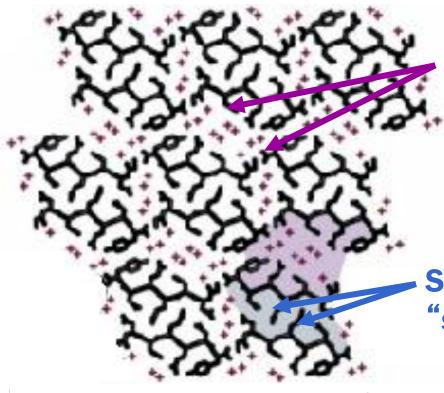

#### University of Oklahoma

**Department of Chemistry and Biochemistry** 

# **STRUCTURE OF AMYLOIDS & ROLE IN AMYLOID DISEASE**



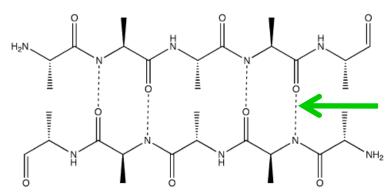


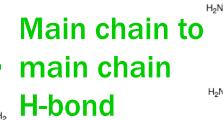


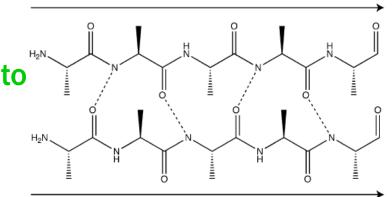

 $cross-\beta$  fiber diffraction

Cross- $\beta$  diffraction pattern

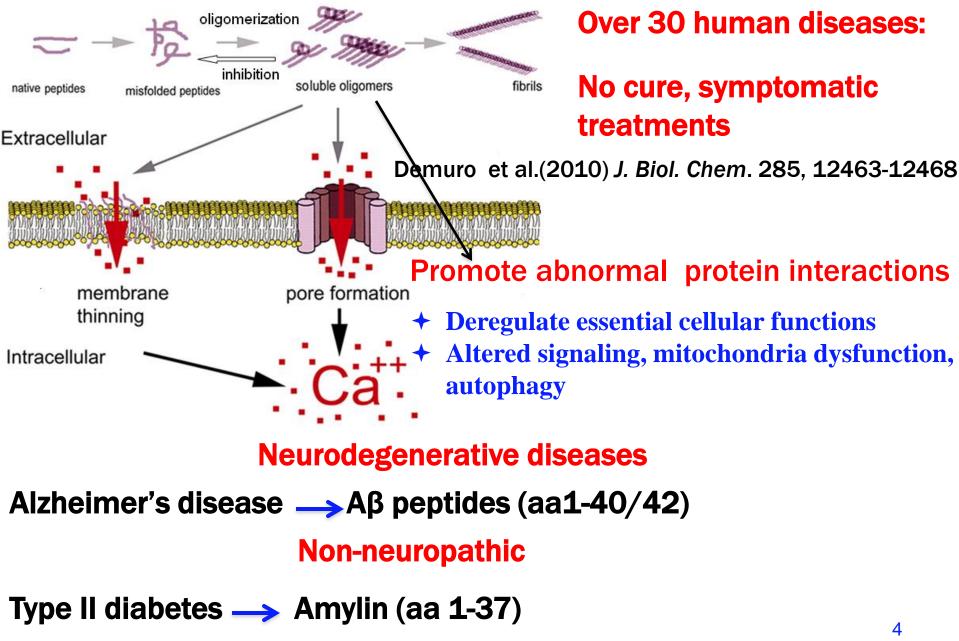
- 4.7 Å spacing between β-sheets strands, β-strands oriented perpendicular to the fibril axis
- ~6-10 Å spacing between two mating β-sheets
- mature fibrils are considered harmless


# ATOMISTIC DETAILS REVEAL THREE TYPES OF INTERACTIONS IMPORTANT FOR AGGREGATION



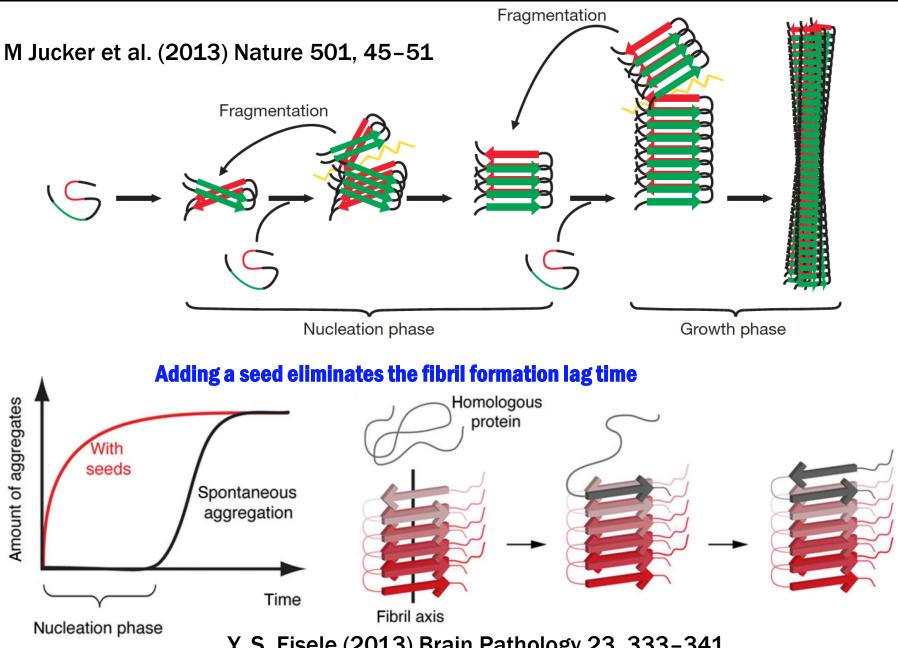


Side chain-side chain (hydrophilic)

Nelson et al. (2005) Nature, 435,773-778


Side chain-side chain (hydrophobic "steric zipper")

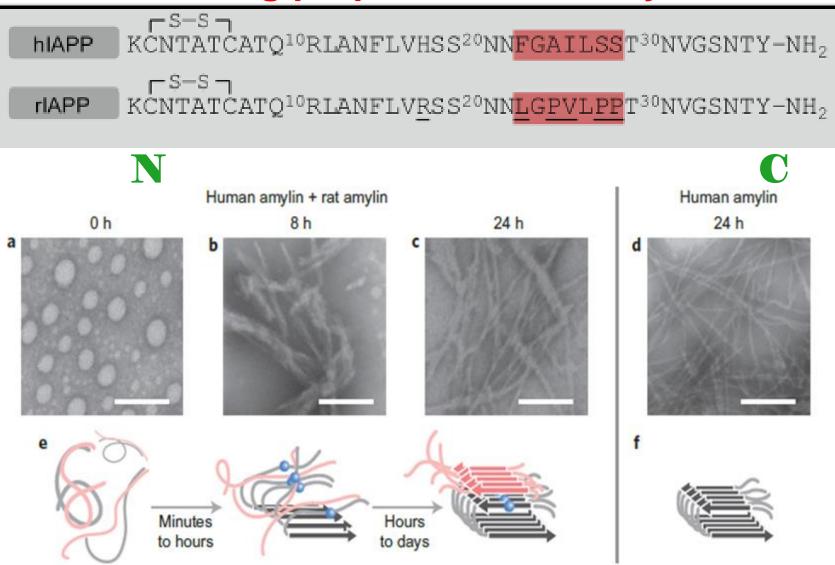






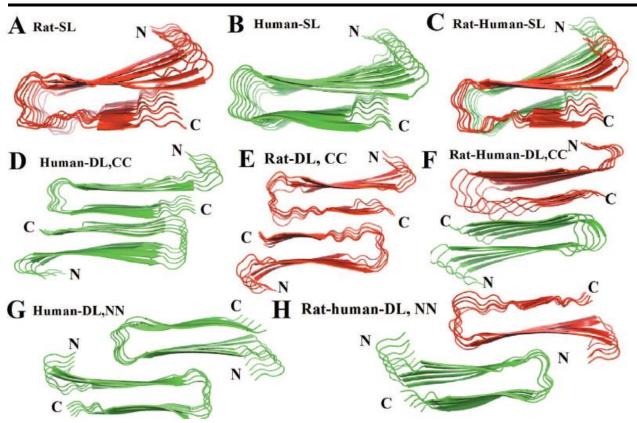

## **AMYLOID TOXICITY AND PROTEIN AGGREGATION DISEASES**




Buxbaum, J. N. et al. (2012) J. Mol. Biol. 421, 142–159

### **GROWTH CURVE AND EFFECT OF SEEDS ON LAG PHASE**




Y. S. Eisele (2013) Brain Pathology 23, 333–341

# All-atom molecular modeling of weak amyloidinhibiting properties of rat amylin



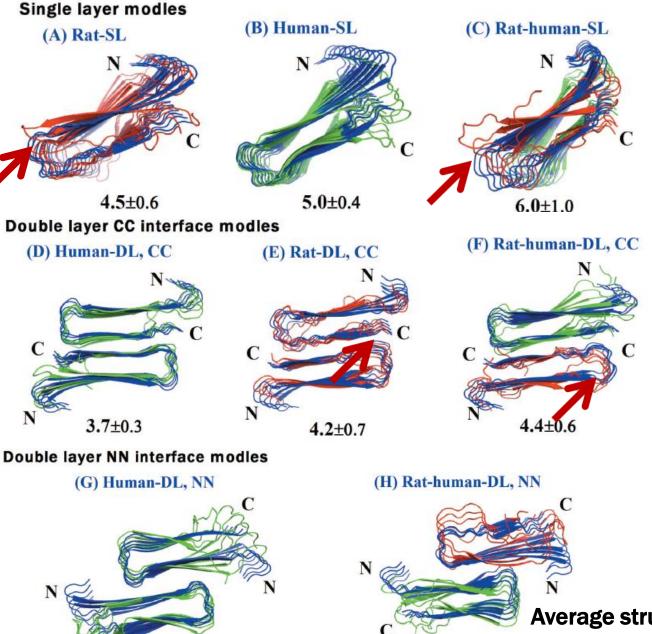
Nature Chemistry (2012), 4, 355–360

## **MOLECUAR DYNAMICS SIMULATION PROTOCOL**



The mixed oligomers can be

- longer proto-filament single layer (elongation)
- merged via either N or Cterminal contacts double layer (thickening),


Simulation parameters: Software: GROMACS/4.5.5 Simulation: 3 runs, 300ns Target pressure: 1bar (NPT)

Force field: ff99SB Temperature: 310K Explicit solvent: 3TIP3P

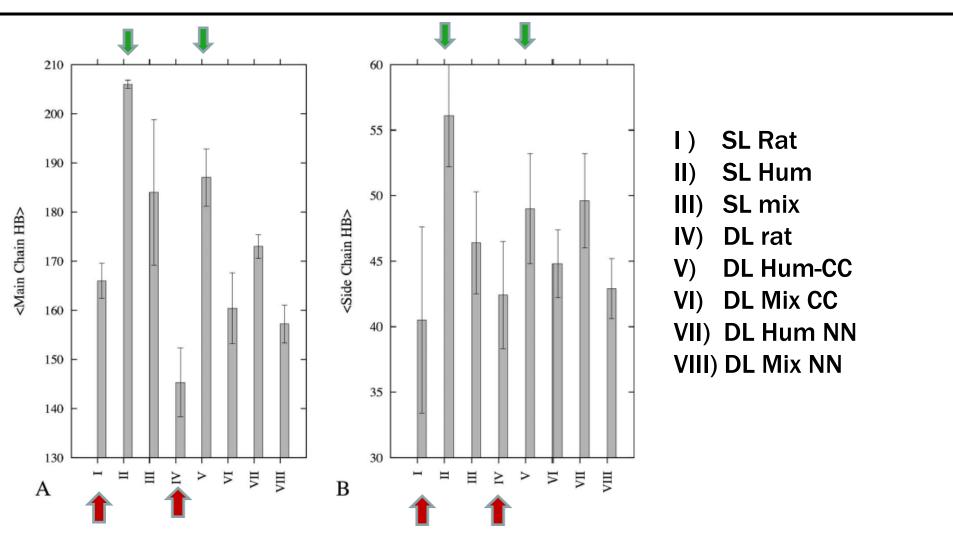
**Analysis of the simulations: tools available in Gromac** Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

#### Proline in C terminus makes N-terminal interface more stable

6.5±0.9



5.8±0.8


Disturbance of U-shaped fibril topology in Cterminal of rat system due to pro

Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

8

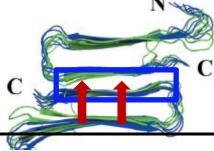
Average structures superimposed on initial structure

#### HYDROGEN BONDING NETWORK STABILIZES THE AGGREGATES



 Both inter- and intra-molecular hydrogen bond are less in rat and mixed aggregate models

Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

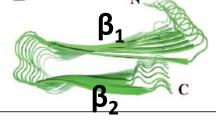

## N Inter-sheet distance in the NN-interface double layer models are comparable Similar hydrophobic contacts and shape complementarity

| <f15 v17=""> Human amylin oligomer</f15> |                                                                      | Human-rat amylin complex                                           |  |  |
|------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
|                                          | $Sh_1 - St_2/Sh_2 - St_2*$                                           | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> -St <sub>2</sub> |  |  |
| Run 1                                    | 8.5 (0.4)                                                            | 10.0 (0.3)                                                         |  |  |
| Run2                                     | 8.5 (0.4)                                                            | 9.2 (0.4)                                                          |  |  |
| Run3                                     | 8.4 (0.5)                                                            | 8.8 (0.4)                                                          |  |  |
| Mean±SD                                  | 8.5±0.1                                                              | 9.3±0.6                                                            |  |  |
| <v<sub>17/F<sub>15</sub>&gt;</v<sub>     | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> -St <sub>2</sub> * | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> -St <sub>2</sub> |  |  |
| Run1                                     | 8.7 (0.5)                                                            | 10.3 (0.3)                                                         |  |  |
| Run2                                     | 10.0 (0.5)                                                           | 10.5 (0.6)                                                         |  |  |
| Run3                                     | 9.2 (0.8)                                                            | 11.6 (0.4)                                                         |  |  |
| Mean±SD                                  | 9.3±0.6                                                              | 10.8±0.7                                                           |  |  |

10

Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

#### C to C interface distances Short distance = strong & favorable interactions larger distance = signal for unfavorable contacts




| <l<sub>27/</l<sub> | Human amylin oligomer   |                                                                    |                                                                    |                    |                                                                    |                   |                           |
|--------------------|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|-------------------|---------------------------|
| G33>               |                         |                                                                    |                                                                    | <n<sub>31/</n<sub> | Sh1-St2/Sh2-St2                                                    | Sh1-St3/Sh2-St3   | $Sh_1 - St_4/Sh_2 - St_4$ |
|                    | $Sh_1-St_2/Sh_2-St_2^*$ | Sh <sub>1</sub> -St <sub>3</sub> /Sh <sub>2</sub> -St <sub>3</sub> | Sh <sub>1</sub> -St <sub>4</sub> /Sh <sub>2</sub> -St <sub>4</sub> | S <sub>29</sub> >  |                                                                    |                   |                           |
| Run1               | 7.3 (0.3)               | 7.3 (0.2)                                                          | 7.4 (0.3)                                                          | Run 1              | 5.8 (0.2)                                                          | 5.7 (0.2)         | 5.9 (0.3)                 |
| Run2               | 7.2 (0.2)               | 7.4 (0.2)                                                          | 7.3 (0.2)                                                          | Run2               | 5.7 (0.2)                                                          | 6.1 (3.1)         | 6.9 (0.4)                 |
| Run3               | 7.1 (0.4)               | 7.2 (0.3)                                                          | 7.3 (0.3)                                                          | Run3               | 5.6 (0.2)                                                          | 5.7 (0.3)         | 6.0 (0.3)                 |
| Mean±SD            | 7.2±0.1                 | 7.3±0.1                                                            | 7.3±0.1                                                            | Mean±SD            | 5.7±0.1                                                            | 5.8±0.6           | 6.3±0.2                   |
|                    |                         |                                                                    |                                                                    |                    |                                                                    |                   |                           |
| $L_{27}/G_{33}$    | Rat amylin oligomer     |                                                                    |                                                                    | ShSta/Sha-         | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> -St <sub>2</sub> | 2 Sh1-St3/Sh2-St3 | Shi-Sta/Sha-Sta           |
|                    | $Sh_1-St_2/Sh_2-St_2$   | $Sh_1 - St_3 / Sh_2 - St_3$                                        | $Sh_1-St_4/Sh_2-St_4$                                              |                    | 5                                                                  | 511 513,5112 513  | 511 54,512 54             |
| Run1               | 9.7 (0.6)               | 10.0 (0.7)                                                         | 10.9 (1.1)                                                         | Run1               | 7.0 (0.4)                                                          | 7.1 (0.4)         | 7.4 (0.3)                 |
| Run2               | 9.6 (0.4)               | 9.4 (0.5)                                                          | 10.3 (0.8)                                                         | Run2               | 7.2 (0.4)                                                          | 7.0 (0.3)         | 7.0 (0.4)                 |
| Run3               | 9.8 (1.5)               | 9.8 (1.7)                                                          | 10.5 (2.1)                                                         | Run3               | 7.6 (0.7)                                                          | 9.0 (0.8)         | 9.3 (0.9)                 |
|                    | 9.7±0.1                 | 9.7±0.3                                                            | 10.6±0.3                                                           |                    | 7.3 <b>±0.5</b>                                                    | 7.7±1.1           | 7.9± <b>1.2</b>           |
|                    |                         |                                                                    |                                                                    |                    |                                                                    |                   |                           |

#### fewer residue contacts, result in poor packing at the interface

| $L_{27}/G_{33}$ | nixed human-rat anym ongomer                        |                                                                      |                                                                    |                  | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> | -Sta Sha-Sta/Sha- | -St <sub>3</sub> Sh <sub>1</sub> -St <sub>4</sub> /Sh <sub>2</sub> -St <sub>4</sub> |
|-----------------|-----------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------|---------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|
|                 | Sh <sub>1</sub> -St <sub>2</sub> /Sh <sub>2</sub> - | -St <sub>2</sub> Sh <sub>1</sub> -St <sub>3</sub> /Sh <sub>2</sub> - | -St <sub>3</sub> Sh <sub>1</sub> -St <sub>4</sub> /Sh <sub>2</sub> | -St <sub>4</sub> |                                                   |                   |                                                                                     |
| Run 1           | 8.7 (1.6)                                           | 8.2 (0.8)                                                            | 7.6 (0.5)                                                          | Run 1            | 6.9 (0.4)                                         | 6.7 (0.4)         | 6.7 (0.4)                                                                           |
| Run 2           | 10.2 (0.9)                                          | 10.1 (0.7)                                                           | 9.7 (0.7)                                                          | Run 2            | 6.6 (0.5)                                         | 6.1 (0.5)         | 6.2 (0.5)                                                                           |
| Run 3           | 10.3 (0.6)                                          | 8.7 (0.5)                                                            | 9.7 (0.4)                                                          | Run 3            | 6.9 (0.4)                                         | 7.0 (0.3)         | 7.1 (0.3)                                                                           |
|                 | 9.8±0.9                                             | 9.0±1.0                                                              | 9.0±1.2                                                            |                  | 6.8±0.5                                           | 6.6±0.5           | 6.7±0.3                                                                             |

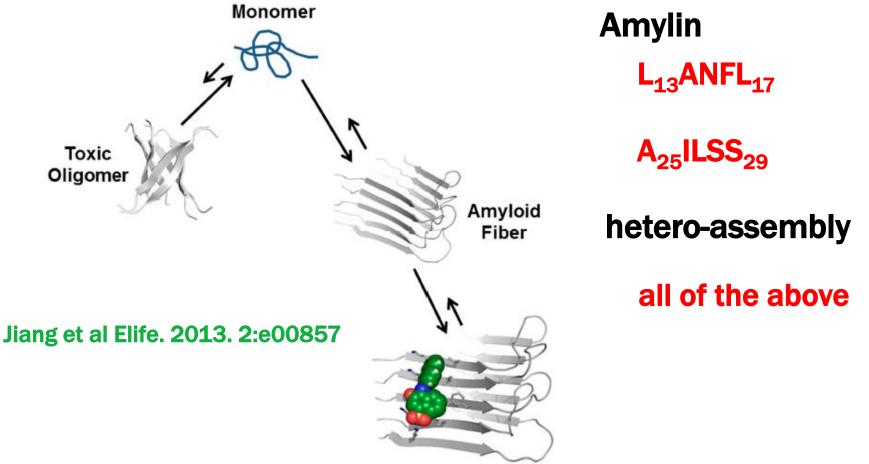
# Rat and mixed SL and DL-CC models have less perfect U-shape and less populated $\beta$ -structure than Mixed DL-NN



| $\beta_1$ segment, N terminal (residue 8–17) | Secondary  | structure, first 100 ns | Secondary structure, last 100 ns |             |
|----------------------------------------------|------------|-------------------------|----------------------------------|-------------|
|                                              | β-sheet*   | Turn*                   | β-sheet*                         | Turn*       |
| Rat-SL                                       | 81.7 (6.0) | 18.3 (6.0)              | 81.9 (4.0)                       | 18.1 (3.0)  |
| Human-SL                                     | 81.4 (5.0) | 18.6 (5.0)              | 79.4 (3.0)                       | 21.6 (3.0)  |
| Rat-human-SL                                 | 84.6 (5.0) | 15.4 (5.0)              | 83.6 (5.0)                       | 16.4 (5.0)  |
| Rat-DL, CC                                   | 78.2 (2.0) | 21.8 (2.0)              | 77.1 (1.0)                       | 22.9 (1.0)  |
| Human-DL, CC                                 | 87.8 (2.0) | 12.2 (2.0)              | 87.7 (1.0)                       | 12.3 (1.0)  |
| Rat-Human-DL, CC                             | 77.0 (6.0) | 23.0 (6.0)              | 77.6 (3.0)                       | 22.4 (3.0)  |
| Human-DL, NN                                 | 85.0 (3.0) | 15.0 (3.0)              | 82.7 (1.0)                       | 17.3 (1.0)  |
| Rat-Human-DL, NN                             | 87.7 (3.0) | 12.3 (3.0)              | 86.0 (8.0)                       | 14.00 (8.0) |

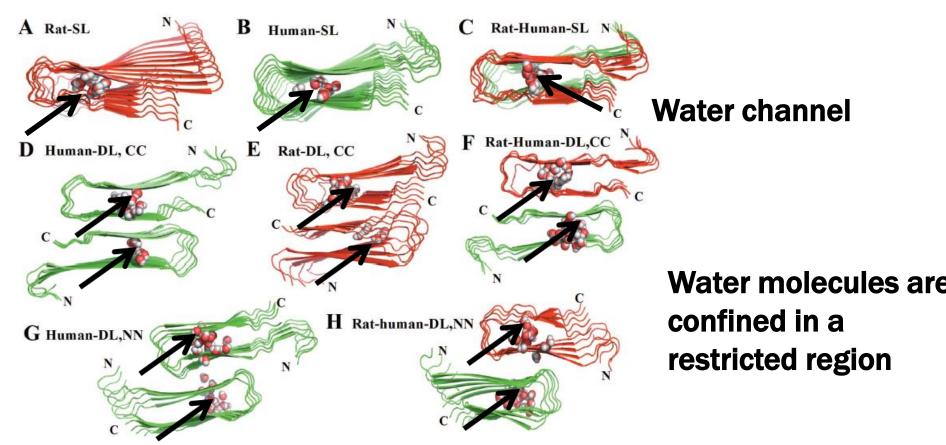
#### **NN hybride higher β-structure**

| $\beta_2$ segment, C terminal (residue 28–37) | β-sheet    | Turn       | β-sheet     | Turn        |
|-----------------------------------------------|------------|------------|-------------|-------------|
| Rat-SL                                        | 45.3 (2.0) | 54.7 (2.0) | 42.6 (1.0)  | 57.4 (2.0)  |
| Human-SL                                      | 66.7 (4.0) | 32.7 (3.0) | 65.2 (5.0)  | 34.8 (5.0)  |
| Rat-human-SL                                  | 56.9 (4.0) | 43.1 (4.0) | 54.7 (4.0)  | 45.3 (3.0)  |
| Rat-DL, CC                                    | 46.0 (8.0) | 54.0 (9.0) | 43.9 (1.1)  | 56.1 (10)   |
| Human-DL, CC                                  | 69.2 (3.0) | 29.8 (3.0) | 66.9 (8.0)  | 33.1 (8.0)  |
| Rat-Human-DL, CC                              | 55.9 (2.0) | 44.1 (1.0) | 54.4 (2.0)  | 46.6 (11.0) |
| Human-DL, NN                                  | 61.0 (6.0) | 39.0 (7.0) | 49.4 (7.0)  | 50.6 (7.0)  |
| Rat-Human-DL, NN                              | 52.7 (1.0) | 47.3 (2.0) | 46.0 (10.0) | 54.0 (10.0) |
|                                               |            |            |             |             |


#### BINDING FREE ENERGY OF SINGLE LAYER AND DOUBLE LAYER : THE MIXED STRUCTURE WITH NN INTERFACE MORE STABLE

| Ligand, A reception $+$ | ptor, B<br>$ \Delta G_{solv}^{gas} \longrightarrow $ $ \Delta G_{bin}$ | $\int \Delta G_{solv}^{c}$ | ∆ <b>G</b> <sub>binding</sub> = | = ∆E <sub>vdw</sub> +∆E <sub>el</sub> | <sub>ec</sub> +∆E <sub>PB</sub> +∆ | E <sub>SA</sub>       |
|-------------------------|------------------------------------------------------------------------|----------------------------|---------------------------------|---------------------------------------|------------------------------------|-----------------------|
| Structures              |                                                                        |                            | ΔE <sub>elec</sub>              | ΔE <sub>PB</sub>                      | ΔE <sub>SA</sub>                   | ∆G <sub>binding</sub> |
| Rat-SL                  |                                                                        | -184.1±1.7                 | 2117.8±45.4                     | -2043.0±33.8                          | -106.7±1.7                         | -2.6±2.8              |
| Human-SL                |                                                                        | $-188.9 \pm 3.0$           | 1042±93.5                       | $-1007.0 \pm 91.6$                    | $-108.0\pm0.4$                     | $-45.7\pm0.9$         |
| Rat-Human-S             | 5L                                                                     | -185.6±3.6                 | 1527.9+35.3                     | -1478.9±44.9                          | $-109.8 \pm 0.5$                   | $-26.8\pm8.7$         |
| Rat-DL, CC              |                                                                        | -326.5±64.5                | 1774.9±39.3                     | $-1665.0\pm54.6$                      | -202.9±33.3                        | $-13.7\pm5.9$         |
| Human-DL, (             | cc                                                                     | -233.6±24.7                | 432.6±34.4                      | -393.6±33.8                           | $-124.3\pm1.3$                     | -70.2±15.9            |
|                         |                                                                        |                            |                                 |                                       |                                    |                       |
| Human-DL, I             | NN                                                                     | $-330.2\pm4.8$             | 395.1 ± 26.5                    | -318.7±30.9                           | -196.2±2.7                         | -57.7±2.3             |
| Rat-Human-I             | DL, NN                                                                 | -420.6±16.2                | 1259.0±49.3                     | -1143.0±51.5                          | $-255.3\pm5.5$                     | -49.2±8.6             |
|                         |                                                                        |                            |                                 |                                       |                                    | 12                    |

**Cross-seeding is possible & likely to through NN interface** 


# **HYDROPHOBIC** ( $\beta_1$ and $\beta_2$ ) CORE ARE IMPORTANT

- β-region are crucial for stability and growth of aggregate
- should be considered as a potential target for design



#### **COMPUTATIONAL SCREENING FOR FIBER-BINDING COMPOUNDS**

### WATER PERMEATION THROUGH FIBRIL-LIKE OLIGOMER COULD ACCOUNT ACCOUNT FOR CYTOTOXICITY



- Experimentally determined fibril does not contain water molecules
- Simulation reveals hydrophilic water channel at different location
- Water flow was observed even in the cross-seeded oligomer Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

- The β-hairpin motif is partially lost in presence of proline in rat with CC interface, → making NN interface in mixed complex
- Binding free energy show aggregate growth is favorable for human amylin and rat-human NN interface crossseeded oligomers
- Hydrophobic cores in β-sheet regions are crucial for stability and elongation
  - Could be target for SBDD of aggregation inhibitors
- Water molecules flowing internally in homo-polymers and hetero-polymers explains the toxicity of human and rat amylin

Berhanu WM, Hansmann UHE (2014) PLoS ONE 9(5): e97051

# ACKNOWLEDGEMENT

- Prof Ulrich H. E. Hansmann
- All group members
- We thank OSCER and NERSC for providing supercomputer time
- NIH (grant GM62838)

# **Thank You !**



