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Abstract 

Hydraulic fracturing is a major technique in reservoir stimulation to enhance 

production. Better understanding of mechanisms of hydraulic fracturing is essential for 

designing hydraulic fracture treatments. Multiple physical processes are involved in 

hydraulic fracturing propagation and active in determination of the growth of a 

propagating flow induced fracture. The rock deformation, fracture mechanical 

responses, fluid flow and thermal diffusion need to be coupled studied to represent the 

realistic behaviors in the petroleum and geothermal reservoir. In this work, motivated 

by the limitations of the existing fracture simulators and urgent needs for true 3D 

hydraulic fracturing model, three-dimensional numerical approaches implemented in 

finite element method are developed to simulate rock failure and coupled hydraulic and 

thermal fracture propagation problems.  

Due to the complex geological conditions of rock formation such as 

nonlinearity, anisotropy, heterogeneity and existence of large discontinuity, the 

behaviors of realistic rock in the reservoir are extremely difficult to be characterized and 

modeled. Finding a suitable and affordable constitutive model for rocks is a crucial part 

in the rock mechanics and its applications in petroleum industry. Multi-scale virtual 

multidimensional internal bonds (VMIB) model and continuum damage model are 

presented in this work providing solutions from different aspects on solving the 

nonlinear responses of rock. Moreover, the phenomenon and cause of mesh size 

sensitivity due to using local strain softening model are introduced. Verified by the 

simulation results, the mesh size sensitivity is minimized through adopting nonlocal 

damage theory. 



 

xx 

Three dimensional element partition method (3D EPM) is adopted to represent 

the mechanical behaviors of fracture surface such as contact and friction of closed 

fracture surfaces. Taking advantage of efficiency and simplicity of 3D EPM, the 

fracture mechanical response and moving boundary conditions in the hydraulic 

fracturing process are well represented, especially for true 3D simulation. 

Though the fracture process is a fully coupled nonlinear problem, the present 

dissertation studies the hydraulic and thermal effects separately. The 3D thermal 

fracture propagation due to transient cooling in quasi-brittle rock is studied using VMIB 

model combined with 3D EPM. The nonlinearities of mechanical behaviors and thermal 

parameters of the solid material were captured by introducing nonlinear VMIB model 

into thermo-mechanical coupled governing equations. On the aspects of fluid flow, 

poroelastic model and lubrication theory are introduced based on different flow 

mechanisms. Lubrication theory integrally considered the physical behaviors of both 

rock formation and fluid. The unknown variables are solved by trial and iterations. 

Nonlocal damage model and the relative technique are adopted for the first time in 

hydraulic fracturing simulation. To capture the hydraulic fracture propagation in natural 

fractured formation, the modified poroelastic model is developed to simulate the 

hydraulic fracturing especially for the hydraulic fracture problem with complex 

geometry and boundary conditions such as hydraulic and natural fractures interaction. 

Though the model needs improvement on the accuracy and stability, the overall 

tendency of fluid pressure distribution and fracture propagation can be captured 

considering the computational feasibility and efficiency. The new numerical model is a 

promising tool for predicting and understanding the complex processes of hydraulic 
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fracturing and its interaction with natural fractures in unconventional reservoir under 

finite element method framework. 
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Chapter 1. Introduction 

1.1 Problem Descriptions 

Hydraulic fracturing is a stimulation technique that creates fluid induced fracture 

in the rock matrix by fracturing fluid injection to enhance recovery, which has been 

widely used in petroleum reservoirs and enhanced geothermal systems. Moreover, 

nearly all the unconventional gas reservoirs must be hydraulically stimulated to get the 

commercial feasibility [Valko and Economides, 1995]. Hydraulic fracturing was first 

experimented in 1947 and then successfully applied commercially in 1949. However, 

the first hydraulic fracturing was observed and described by [Grebe and Stoesser, 1935; 

Economids and Nolte, 2000] that the formation was being fractured during acid 

treatment application in petroleum reservoirs. Each year, varied from low permeability 

gas and oil reservoirs and naturally fractured reservoirs, thousands of hydraulic 

fracturing treatments are performed in a wide range of geological formations. Hydraulic 

fracturing technique is also widely used for other purposes such as in-situ stress 

measurement [Bredehoeft et al., 1976; Zoback et al., 1992; Hayashi et al., 1997], 

determination of formation permeability with near wellbore hydraulic fracturing 

[Bjerrum et al., 1972] and remediation of shallow fine-grained formation [Murdoch and 

Slack, 2002], etc.. 

The necessary prediction of the development of fracture geometries helps better 

design of hydraulic fracturing treatment [Rahman and Rahman, 2010]. The fracture 

geometries are defined by its length, height, aperture and propagating directions. More 

important for the naturally fractured reservoir, the interaction and interconnection 

between the hydraulic and nature fractures along with the geometries eventually impact 



 

2 

the production. However, the complex geological conditions and formations 

characteristics such as in-situ stress, nonlinearity, anisotropy, heterogeneity and the 

large discontinuity make hydraulic fracturing problems very difficult to be predicted 

exactly at greater depths [Gildey et al., 1989]. Therefore, simplified models are used 

based on the approximated geometries of hydraulic fractures. Although hydraulic 

fracturing has been implemented for more than 60 years, deeper understandings of the 

mechanism of fracture propagation in anisotropic and heterogeneous rocks and its 

interactions with nature fracture or fault are still urgently needed. 

Hydraulic fracturing treatments are also common techniques in high temperature 

petroleum reservoirs and geothermal reservoirs [Sasaki, 1998; Berumen et al, 2000]. 

The influence of thermo-mechanical processes on fracture initiation and propagation are 

important to petroleum and geothermal systems development, which result from both 

the fracturing fluid injection and long term geothermal energy extraction [Wright and 

Tanigawa, 1994; Ghassemi, 2010]. The fluid injection in the reservoir involves the 

thermal-poro-chemo-elastic coupled responses that influence the consequent fracture 

development [Ghassemi et al., 2008]. Cold water injection and heat extraction in the 

reservoir cause dramatic temperature changes, and then volumetric contraction in the 

rock. A volumetric expansion or contraction results in rock stress and properties change. 

The processes of thermal and mechanical coupling occur at various time scales and may 

have different influences upon the problem of interest. Generally, the thermal effects 

should be considered during the long term injection owing to low thermal diffusivity of 

rocks. High tensile stresses are induced by cooling of the rock and fracture surfaces, 

indicating a potential for extension of the secondary thermal fractures [Bazant and 
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Ohtsubo, 1979; Tarasovs and Ghassemi, 2014; Feng and Jin, 2009; Tarasovs and 

Ghassemi, 2011; Huang and Ghassemi, 2012]. There are also experimental 

investigations [Geyer and Nemat-Nasser, 1982] showing thermally induced cracks in 

glass. The influence of thermo-poroelastic process on the near wellbore flow and 

stresses has been addressed analytically [McTigue, 1990] and numerically [Ghassemi 

and Zhang, 2004; Zhou and Ghassemi, 2009]. In a word, thermal stimulation has been 

suggested as a means of dramatic thermal stress, deformation change and its induced 

reservoir conductivity enhancement. 

In cases of a homogenous and isotropic formation, the magnitude and 

orientation of in-situ stress are the dominating factors of hydraulic and thermal fracture 

propagation. The fracture is intended to grow in the direction of minimum in-situ stress 

since less restrains and stress to be overcame in this direction. In most conditions of 

reservoir, the minimum in-situ stress is in horizontal direction because of the high 

overburden stress in the depth of interest. However, in most cases, the propagation 

direction in complex geological formation is not only controlled by the in-situ stress. 

Other impact factors such as heterogeneity and anisotropic rock properties, existing of 

nature fault and weak plane control the fracture geometry. Therefore, the hydraulic 

fracturing problem is restricted by the assumption of propagation in horizontal 

minimum in-situ stress plane. Though two dimensional analyses on horizontal plane 

provide reasonable suggestions and great computational efficiency, the three 

dimensional model is necessary for more accurate and realistic simulation. For example, 

the fracture develops from deviated wellbore needs to consider the near wellbore effects 

that induce the fracture reorientation and development in a non-planar fracture 



 

4 

geometry [Carter et al., 2000]. Particularly in shale gas reservoir consisted by naturally 

fractured rock, the hydraulic fracture propagation involves both intact rock fracturing 

and opening or slip of pre-existing spatially distributed joint that induce tortuous and 

unpredictable fracture growth.  

Therefore, the main objective of this dissertation is to develop a numerical 

simulator modeling the three dimensional hydraulic and thermal fracture initiation and 

propagation. The detailed objectives are listed as follows: 1) to find reasonable 

constitutive models for the rock mass representing the mechanical behavior and failure 

mechanism; 2) to develop fracture models representing the opening and slippage of 

fracture surface using three dimensional element partition method; 3) to model the 

thermally induced rock deformation and fracturing during the cool fluid injection; 4)to 

build a coupling scheme handling the interaction processes between the mechanical 

response of rock formation and fluid flow in fracture surface and hence the leakage into 

formation; and finally 5) to integrate the key points above and develop a reliable 

numerical simulator for real three dimensional hydraulic and thermal fracturing. 

1.2 Modeling Hydraulic and Thermal Fracturing 

Massive volume of stimulating fluid are pumped into low permeability rock 

formation during the hydraulic fracturing treatment in order to create highly conductive 

propped fracture for channeling and interconnecting storage volume of hydrocarbon. 

The behavior of hydraulic fracture is initially captured using linear elastic fracture 

mechanics (LEFM) to calculate the deformations of formation and aperture of fracture. 

The deformation and opening of rock and fracture are simultaneously used to calculate 

the fluid flow in the fracture. More importantly, LEFM also serves to calculate the 
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criterion of propagation and growth direction during the injection. Usually, from the 

vertical well, the fluid induced fracture has two wings in the direction along the 

minimum horizontal in-situ stress. Based on this assumed geometry of hydraulic 

fracture, several fracture propagation models have been proposed. The pioneering 

models such as Khristianovic-Zheltov [Khristianovic and Zheltov, 1955], Perkins-Kern 

(PK) [Perkins and Kern, 1961], and Perkins-Kern-Nordgren (PKN)[Nordgren, 1972] 

adopted the classic elastic solution of plane strain crack by [Sneddon, 1946; Sneddon 

and Elliot,1946] to solve planar horizontal propagation of hydraulic fracture with 

constant height and elliptical shape fracture opening including the leak off effects, 

which are used only when the fracture length is much larger than the fracture height. 

The Kristonovich-Geertsma-Daneshy (KGD) [Geertsma and de Klerk, 1969] model is 

used if the fracture height is much larger than the fracture length. The PKN model does 

not consider the effect of the fracture tips, however, the emphasis is on the fluid flow 

and pressure gradient. On the other hand, KGD model considered more on the fracture 

tip region.  

A significant amount of analytical solutions have been proposed to provide a 

better understanding of different mechanisms of fluid-driven fracturing. However, the 

complexity of hydraulic fractures development due to the uncertainty in subsurface 

conditions, bring challenges to some classic models such as PKN and KGD model that 

are based on the assumption of single fracture and homogeneous matrix. Although 

models such as pseud-3D [Cleary and Wong, 1985] has been developed to simulate a 

single fracture crossed multiple geological layers, still, the assumption of planar fracture 

surface limits its application in reservoir with unconventional rock properties such as 
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mentioned heterogeneity, anisotropy and existing nature joints and faults. These 

influence facts will change the stress and strain field near hydraulic fractures, hence, 

induce the irregularity such as curving growth and consequently forming of fracture 

network.  

Fracture propagation problem is not limited to hydraulic fracturing problems in 

petroleum and geothermal industry. Griffith first explained the failure of brittle 

materials motivated by the contradictory factors that the stress needed to fracture the 

bulk glass and theoretical stress needed to break the atomic bonds of the glass [Griffith, 

1921 and 1924]. A constant C  is expressed in terms of the surface energy of crack by 

solving a finite crack problem in elastic plate. Griffith initiated the development of 

linear elastic fracture mechanics (LEFM). There are three basic fracture modes in 

LEFM classified by the ways of applying loads induce the fracture propagation shown 

in Figure 1.1. Mode I fracture is opening mode indicating that a tensile stress is applied 

on the normal direction of the fracture plane. Mode II fracture is in-plane sliding mode 

under shear load parallel to the fracture plane. Mode III is out-of-plane or tearing mode 

induced by the shear stress parallel to the crack front. Mode I fracture is the dominate 

mode of hydraulic fracturing. However, mode II and mode III are equally important 

since that most fracture are initiated as mixed modes due to that the orientation of initial 

fracture or perforations are inclined to the direction of maximum in-situ stress. The 

material anisotropy and existing of nature faults and fractures can also induce mix mode 

fracture growth. 

In the framework of fracture mechanics, the crack propagation is analyzed 

through the evaluation the mechanical states such as stress intensity factor (SIF) [Irwin, 
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1948] and strain energy release rate as the fracture propagation and development 

orientation criterion. The strain energy release rate is the energy dissipation per unit 

area of newly created fracture. The stress intensity factor is an essential parameter in 

linear elastic fracture mechanics for integrality evaluation of the magnitude or intensity 

of singular stress state around the fracture tip by loading [Anderson, 1994], which is 

usually applied to homogeneous and isotropic material. The strain energy release rate 

and SIF can be calculated by the stress and strain analysis or the measurement of the 

energy released by fracture growth through both the analytical and numerical ways. The 

theoretical concept of J-integral [Rice, 1968, Cherepanov, 1967] represents a solution to 

calculate the strain energy release rate. The J-integral J  presents an energetic contour 

path integral is independent of chosen path around the fracture tip calculating the strain 

energy release rate. Later, J  is defined as a critical value of fracture energy at large-

scale plastic yielding during the fracture extension. 

 

(a)                                          (b)                                           (c) 

Figure 1.1. Fracture modes: (a) Mode I: openning; (b) Mode II: sliding; (c) 

Mode III: tearing [Irwin, 1957]. 

However, analytical calculation is difficult to be used in the complex and 

irregular geometries though it has some advantages. On the other hand, the numerical 
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method requires the mesh refinement to meet the requirement of accuracy of the stress 

and strain evaluation near the fracture tip. Though several literatures and techniques 

have been proposed to extract SIF using analytical [Erdogan and Sih,1963, Sih 1974] 

and numerical analyses by finite element methods or boundary element methods. The 

requirements for the geometric and boundary conditions make both analytical and 

numerical methods of SIF calculations very difficult to be performed.  

Smeared crack model [Rashid, 1968] was proposed to simulate the quasi-brittle 

materials like concrete and rock. Generally, a crack is initiated when the stress state 

satisfies a specified criterion for example the maximum principal stress reaching the 

tensile strength. A fixed crack orientation is initially assumed. The modified smeared 

crack models are proposed later [Cope et al., 1980, Gupta and Akbar, 1984, de Borst et 

al., 2004] using strain soften or strength degrading model instead of the brittle failure. 

However, the strain softening model is subjected to spurious mesh size sensitivity since 

that the energy dissipation during the fracture propagation is instable with various 

chosen element sizes. To solve the element size dependency problem, fictitious crack 

model is proposed by [Hillerborg, 1976] using fracture energy concept to analyze the 

fracture growth in concrete. Two regions were defined, which are true crack region and 

fracture process zone (FPZ). Once the stress of FPZ reached the critical value, the crack 

propagation in FPZ initiates and the stress level does not drop to zero. As the loading 

and crack opening displacement (COD) increased, the stress researches zero and 

cracking process is completed. Blunt crack bond model [Bazant and Oh, 1983] was 

proposed by introducing a parameter of crack band which is an intrinsic property of 

specified material. Hence, [Bazant, 1984] introduced nonlinear strain softening curve 
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into crack band model and found size effect law based on the energy dissipation rate. 

[Tang, 1997; Tang et al., 2000] adopted damage mechanics model to capture the rock 

strength degradation during rock failure processes in Weibull distributed [Weibull, 

1951] heterogonous rock [Tang et al., 2001]. Realistic fractures pattern was well 

represented by these models taking advantage of simple and reasonable assumption of 

strain-stress curve for quasi brittle materials and highly heterogeneity using Weibull 

distribution. Cohesive crack model [Bilby et al., 1963; Willis, 1967; Elices et al., 

2002;], pioneered for concrete named fictitious crack model, has been successfully used 

to the materials other than concrete including steel and wielded joint [Lin and Heng, 

1999] and polymers [Tijssens et al., 2000]. Comparing with other crack model, cohesive 

crack model is able to predict not only the cracked body but also the behaviors of 

uncracked and blunt notched material. [Xu and Needleman, 1993] simulated fracture 

growth using FEM by introducing cohesive surface among the element boundary. The 

fracture is propagating along mesh boundary and the element keeps intact under 

loading. The model is well adopted to simulate dynamic fracturing and crack branching.  

Several different numerical techniques have been proposed in the past 30 years 

to solve more complex hydraulically and thermally induced fracture problems. The 

numerical methods primarily can be classified into several main branches based on the 

spatial field discretization, which are Finite Element Method (FEM), Boundary Element 

Method (BEM), Finite Difference Method (FDM) and Discrete Element Method (DEM) 

etc.. Firstly, BEM is classified into the direct and indirect ones [Kumar, 2013]. The 

displacement discontinuity method (DDM) is an indirect BEM that has been widely 

used in the area of fracture mechanics, wellbore stability, hydraulic fracturing [Olsen 
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and Taleghani, 2009; Weng et al., 2011; McClure, 2012; Sesetty and Ghassemi, 2012, 

2013] and thermal fracturing [H. A. Bahr et.al, 1988; Tarasovs and Ghassemi, 2014]. 

Another popular way is to discretize the whole domain by finite element method 

(FEM), [Min, 2013] developed coupled thermo-hydro-mechanical FEM model to 

simulate hydraulic fracture propagation based on brittle damage theory. Besides the 

mentioned numerical methods, discrete element method (DEM) is also implemented to 

simulate the hydraulic fracture propagation [Damjanac et al., 2010; Deng, Podgorney 

and Huang, 2011]. All these models have both advantages and disadvantages when 

solving different problems of interest. Since that DDM only discretize the fracture, less 

freedoms of problem significantly save computation volume, especially when 

simulating a large domain or infinite space. In addition, taking advantage of nature of 

DDM, hundreds of fractures and their interaction can be simulated in a feasible 

computational volume [Verde and Ghassemi, 2013]. Nevertheless, DDM still has 

limitation since that it generates full matrix that requires large storage volume and 

requires more efficient computational solution for the equation system. Though 

anisotropic and heterogeneity can be captured by the DDM and BEM, most of DDM 

analyses assume the rock to be isotropic, homogeneous and elastic solid. The nature of 

FEM, on the other hand, is to solve the continuum field problem that is easier to capture 

the inhomogeneity and anisotropy. However, the FEM poses restriction in fracture 

application and needs special mathematical treatment when fracture or discontinuity in 

displacement occurred in the field, hence, needs special interpolation and mesh 

refinement when value concentrate or sharply change at fracture tips for example.  
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The extended finite element method (XFEM) [Belytschko and Black, 1999; 

Moes et al., 1999] is a fast growing technique that catches a large amount of attentions. 

Based on the generalized finite element method and partition of unit method, XFEM 

extended the classical finite element method by enriching the solution space with 

discontinuous function for fracture surface and asymptotic function for the fracture tips 

to partial differential equations. A key advantage of XFEM is that remeshing is not 

necessary. Moreover, through fracture tips enrichment, singularity of fracture tips can 

be captured using the original mesh system that increases the accuracy without refining 

the mesh at the tips. It compensates for the inconvenience of traditional FEM while 

representing the mechanical properties of the fractured element and the element near the 

crack tips. However, XFEM has a common disadvantage that its formulations are the 

typically ill-conditioned system matrix by introducing enrichments representing the 

displacement discontinuity and fracture tip. Moreover, the tip enrichment as well as the 

fracture criterion such as calculating J-integral is difficult to implement when fracture 

propagates irregularly in three dimensional analyses. 

On the aspect of material constitutive model, beside the LEFM, many nonlinear 

models are focused on the damaged or process zone around the fracture tips in quasi-

brittle material. Such materials like concrete and rock at the micro scale deform severe 

nonlinearly because of the heterogeneity and nonlinearity of mechanical properties. The 

failures in these kinds of materials are accompanied with localization and softening 

which is manifested by micro-cracking and void formation. Several researchers have 

studied the concepts of strain softening that are discussed in the following.  
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The virtual intern bond (VIB) theory introduced by [Gao and Klein, 1998; Klein 

and Gao, 1998] considering the material softening by multi-scale analysis. VIB 

considers the solid is discretized into numerous randomized material particles at micro 

scale. The virtual intern bonds connect the particles. VIB incorporated the fracture 

criterion directly into the material constitutive formulation that requires no external 

criteria when simulating fracture propagation. In VIB, only stretch energy potential of 

bond is considered. [Zhang and Ge, 2005, 2006] introduced virtual multidimensional 

internal bond (VMIB) extended VIB by considering both stretch and rotation potential 

energy of bond. The VMIB could represent the different Young’s modulus and 

Poisson’s ratio for a wider use of various engineering materials. VMIB model 

considered that the material is composited the randomized mass particles connected by 

virtual bond with both normal and shear stiffness. A macro constitutive relation is 

derived from the cohesive law between material particles that represents the macro 

nonlinear behaviors.  

 

Figure 1.2. Micro-cracking and process zone development identified by acoustic 

emission in the experiment. 
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[Kachanov, 1958] initiated the topic of the continuum damage mechanics 

(CDM) to capture the creeping process of loaded material [Kolari, 2007]. This approach 

has later been used by several researchers for modeling by choosing a so called damage 

evolution function. The idea of CDM has significant physical meaning on 

understanding the inelastic process zone around the crack tip. Contradicting to LEFM, 

the stress of crack tip in real material cannot be unbounded. The material around the 

crack tip will proceed into inelastic stage after the elastic limit is reached. Therefore, a 

process zone always occurs around crack tip where the mechanical response is inelastic 

interpreted by damage or plastic area. The presence of a long process zone at a crack tip 

has been observed in many quasi-brittle materials, for example, using acoustic emission 

[Labuz etc., 1989]. The idea of fracture process zone is shown in Figure 1.2 for 

Charcoal and Rockville granite. Prior to forming new fracture surface, many micro-

cracks gradually develop around crack from status a  to c , As the nucleation of micro-

cracks, an effective crack or macro fracture is eventually generated shown by the status 

d  in Figure 1.2. However, this localization of strain or damage brings new problems to 

the CDM approach since that the CDM represent the mechanical behaviors of the 

damaged and intact parts implicitly in a representative volume that usually controlled by 

the size of element. It is shown in some numerical experiments that when the strain 

softening is localized in an infinite small element resulted infinite strain and zero energy 

dissipation, which contradicts the physics of energy dissipations during fracturing. This 

phenomenon is called mesh size sensitivity that indicates the results are affected by 

using different mesh sizes. In order to remedy the mesh size sensitivity of strain-

softening in FEM, [Bazant, 1986; Pijaudier-Cabot and Bazant, 1987] proposed nonlocal 
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formulations for modeling strain softening behavior. Based on nonlocal theory, the 

stress and strain relation is no longer just considered locally but is assigned to a 

deformation in a finite volume around the point of interest. In Chapter 2, local and 

nonlocal continuum damage mechanics will be briefly introduced along with their 

application in hydraulic fracturing problem in Chapter 7. 

1.3 Outlines of the Dissertation 

Chapter 1 introduces the basic ideas and developments of hydraulic fracturing, 

provides detailed literature review of hydraulic fracturing process on the applications 

and scientific understandings aspects, and discusses the detailed motivations and 

specific objectives of this research. 

Chapter 2 presents the fundamental conceptions and constitutive relationship 

derivations of virtual multidimensional internal bonds (VMIB) model, the phenomenon 

and cause of spurious mesh size dependency induced by adopting the strain softening 

model, and continuum damage mechanics (CDM) for both local and nonlocal 

formulation, in which nonlocal formulation of damage theory is employed to minimize 

the mesh size dependency. These constitutive models serve as the significant parts 

representing the mechanical behaviors of the rock in hydraulic fracturing simulations in 

the following Chapters. 

Chapter 3 introduces the representation of the mechanical response of three 

dimensional fracture surface using three dimensional element partitioning method (3D 

EPM). The detailed mathematical derivations and the functional test are given showing 

that the method effectively represents the behaviors of fracture surface, for example, the 

surface opening, contacting and slippage. 
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Chapter 4 presents the methodologies of fluid flow applied in the hydraulic 

fracturing simulations. Both the mathematical derivations of the fluid flow in the rock 

formation captured by poroelasticity and fracture surface analyzed by lubrication theory 

are given. The interaction between the solid and fluid is illustrated and solved by the 

fully coupled iteration scheme between the deformations of the rock mass and fluid 

pressure. This chapter also gives the method how to apply the nonlocal damage 

mechanics in the hydraulic fracturing simulation. 

Chapter 5 gives the examples of the numerical simulations for mechanical 

behaviors of the quasi-brittle materials using virtual multidimensional internal bonds 

(VMIB) and nonlocal damage mechanics. The results and comparisons with pattern and 

data from experiments verified these models for the following hydraulic fracturing 

analyses. 

Chapter 6 presents the governing functions for thermal-mechanical coupling 

processes, shows the simulation results of single thermal fracture propagation, multiple 

thermal fractures interaction and the fractures emanating from a wellbore by transient 

cooling induced by long term cold water injection in the borehole. 

Chapter 7 presents a series of hydraulic fracturing examples under different in-

situ stress states using both VMIB and continuum damage mechanics. The modified 

poroelastic model is developed to capture both the fracture flow and leak-off during 

hydraulic fracturing processes. The simulation examples are presented to model the 

interactions between hydraulic and nature fractures in 3D formation. The influence of 

anisotropic in-situ stress on propagation direction is also simulated. 
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Chapter 8 is the summaries and conclusions of this dissertation, and 

recommendations of future works. 
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Chapter 2. Constitutive Model of Brittle Rock 

Successful capturing the mechanical behaviors of rock is the first and important 

step for simulating of hydraulic fracturing processes. The basic constitutive law and 

failure mechanism govern the rock deformation around the fracture tips and therefore 

determine the fracture initiation and propagation. Generally, various constitutive models 

such as linear elastic, hyperelatic (nonlinear elastic), elasto-plastic, viscoelastic, 

damage-plastic, poroelatic, poro-thermo-elastic etc. are adopted to capture the different 

types of rocks under different conditions. However, the realistic underground rocks are 

difficult to be characterized since the complex geological conditions and formation such 

as nonlinearity, anisotropy, heterogeneity and existing of large discontinuity. Moreover, 

to capture the realistic behavior of rock, more sophisticated constitutive model and 

failure mechanism are needed, however, lead to insufficient input parameters. In a 

word, a suitable and affordable constitutive model for the rock is a crucial part in the 

rock mechanics and its applications in petroleum industry. 

In this chapter, virtual multidimensional internal bonds (VMIB) and nonlocal 

damage theory are briefly described. VMIB model considered that the material is 

composited by the randomized mass particles connected by virtual bonds with both 

normal and shear stiffness. According to the concept of VMIB, the macro behavior of 

material is determined by the bond evolution in micro structure. In other words, a macro 

constitutive relation derived from the cohesive law between material particles represents 

the macro nonlinear behaviors. However, from other literatures [Bazant, 1986; 

Pijaudier-Cabot and Bazant, 1987] and the results of simulation using strain softening 

model like VMIB, finite element analysis using strain softening model becomes highly 
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affected by the mesh size and alignment causing non-physical predictions of damage or 

softening process zone. This phenomenon is so called mesh size dependency or mesh 

size sensitivity. In this work, the basic conception and mathematical derivation of both 

local and nonlocal formulation damage mechanics are given. The fundamental theory of 

damage mechanics is introduced through the local formulation. However, using local 

formulation, finite element analysis fails to capture energy dissipation due to elemental 

based strain localization. The energy dissipation becomes unstable since that it is highly 

affected by the different size of element used in the simulations. Nonlocal formulation 

abandons the classical assumption that the damage or strength degradation at certain 

point can only results from the state at the point itself, but the strain-stress state 

distribution over the whole domain or at least a certain representative volume defined 

by a characteristic length. The nonlocal damage variable is calculated from a spatial 

averaging of damage driving force over the representative volume. Therefore, the 

energy dissipation is no longer controlled by a single element size, but a material 

constant-the characteristic length. 

2.1 Virtual Multidimensional Internal Bonds 

2.1.1 Hyperelastic Theory 

In the continuum mechanics, a change in the configuration of a continuum body 

results in displacement. The displacement is composed by rigid-body displacement and 

deformation. The material points in the undeformed configuration are described by the 

Lagrangian(Material) coordinates  321 ,, XXXX  . The corresponding material points 

in the deformed configuration is described by Eulerian (spatial) coordinates 

 321 ,, xxxx  . The deformation gradient is given by: 
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From deformation gradient, the Green-Lagrange strain tensor is given by: 
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where 
IJ is the Kronecker delta. 

In the hyperelastic theory [Marsden and Hughes, 1983; Ogden, 1984],   is the 

strain energy density function. The Piola-Kitchhoff stress tensor is: 
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2.1.2 Material Constitution of VMIB 

The constitution of material has different representation at different scales, 

which are continuum based for material at macro scale and the particle based at micro 

scale, shown as Figure 2.1. The macroscopic mechanical behavior is determined by the 

material constitution at micro scale. In the VMIB method, the solid is considered as 

randomized virtual material particles at the micro scale shown in Figure 2.1(b). Virtual 

internal bonds between the material particles have both normal and shear stiffness as 

shown in Figure 2.2. The bond constrains both normal displacement and rotation. The 

interactions of the bonds govern the mechanical response of the material according to 

the relative displacements of paired particles. These particles and bonds are not 

necessary to be realistic physical particles such as atom or molecule. In this simplifying 

of microscopic structure, VMIB avoids the complicated and massive atom simulation.  
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Figure 2.1. Material constitution at (a) macro scale and (b) micro scale 

consisting of randomized material particles 
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Figure 2.2. Material constitution at (a) macro scale and (b) micro scale 

consisting of randomized material particles 

2.1.3 Relative Displacements and Energy Potentials of Particle Pairs 

From micro structure of material, derivation of the macroscopic constitution 

starts with the relative position and displacements of each virtual particle pair. The 

relative displacements can be decomposed into bond stretch l  and bond rotation with 
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angle  . Therefore, the virtual bonds between particles are classified as normal bonds 

and shear bonds due to the different connecting and constraining mechanisms. Normal 

bonds govern the normal relative displacement and interacting effects of a particle pair. 

On the other hand, shear bonds restrict the relative rotations. In the small deformation 

cases, according to Cauchy-Born rule, the stretch of normal bond in ξ  direction is 

jiji ξεξll 0  (2.5) 

where 0l  is the original bond length,   cos,sinsin,cossinξ  is the unit 

orientation vector of bond in sphere coordinate system and ij is the strain tensor. 

The rotation angles of bond towards three coordinate axes are respectively: 
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where 1 , 2  and 3  are the rotation angle towards axis 1x , 2x  and 3x  respectively, η

, η   and η  is the unit vectors perpendicular to the direction indicated by ξ  of normal 

bond. Additionally, η , η   and η   have to be in same planes determined with their 

correspondent coordinate axis vectors and ξ  respectively. Their mathematical 

expressions are 
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According to two decomposed displacement l  and  , the total energy potential 

U  is given as: 

UUU l   (2.10) 

where lU , U  are the stretch energy potential and rotation potential respectively. lU  

and U  can be written as: 
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where k  is normal bond stiffness, r  is the shear bond stiffness coefficient. 

2.1.4 Fourth-order Elastic Tensor 

The mass particles randomly distribute in the infinitesimal of material according 

to the assumption above. Therefore, the bonds between the particles are also have 

randomized distributions and orientations, but following a given spatial distribution 

density  ,D  in the sphere coordinate system. Since the assumption of small 

deformation cases, IJE  and IJS  reduce to the strain ijε  and stress ij  respectively of 

linear elasticity [Gao and Klein, 1998]. By integrating the total energy potential and 

assuming the initial length of normal bond is identical, the energy density is written as 

V

WWl 
  (2.13) 

where V  is volume of infinitesimal, lW  is 
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 (2.15) 

According to Eqs. (2.3) and (2.4), by equaling the energy potential stored in the 

virtual bonds with the strain energy potential stored on the continuum level in the same 

volume due to an imposed deformation, the stress tensor is given as: 
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The fourth-order elastic tensor is written as: 
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For an isotropic material, the bond distribution density in every direction is 

uniform, i.e.   1, D .  

In finite element method (FEM), the strain-stress relationship is expressed as: 
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εΩσ   (2.18) 

where σ  is the stress vector, i.e.  T231312332211 ,,,,, σ , ε  is the strain vector, 

i.e.  T231312332211 ,,,,, ε , and Ω  is the elastic tensor ijmnC  written in the elastic 

matrix form: 
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Integrating Eq. (2.17) and substituting to Eq. (2.19) yields 
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Equaling Eq. (2.20) with elastic matrix expressed by macroscopic material 

constants Young’s modulus E  and Poisson ratio  , the relationship between 

microscopic material constants k , r  and macroscopic constants can be obtained  

  2

0214
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l
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On the contrary, the Young’s modulus and Poisson ratio can also be expressed 

using microscopic material constants k , r , which means the macroscopic mechanical 

behaviors are determined by the micro bond mechanical properties.  

2.1.5 Bond Evolution Mechanism 

In the previous sections, the linear VMIB constitutive relationship is derived. 

For realistic materials such as rocks, normally, the mechanical response can be 

classified as linear elastic phase, strengthening phase and strain-softening phases as the 

deformation increases, shown in Figure 2.3. In VMIB system, the bond is not broken 

when simulating the fracture propagating. The nonlinear macro properties of a material 

such as softening and degradation are expressed by introducing the strength evolution of 

internal virtual bonds. Thus, by introducing an evolution function )(εf , the nonlinear 

elastic tensor is given by: 
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 (2.23) 
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Figure 2.3. Nonlinear mechanical response of material under uniaxial tensile 

load.  
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In this work, the strain based evolution function can be written as following: 
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where b  is a micro coefficient, tb    if 0εξξ
T  whereas cb    if 0εξξ

T . t  

and 
c  indicate the strain at the peak stress in uniaxial tensile and compressive test, 

respectively. c , n  are the shape coefficients which determine the shape of stress-strain 

curve. The term εξξ
T  means the relative normal deformation of bond and the term 

 2εξξεξεξ
TTT   represents the relative shear deformation of bond shown in the Figure 

2.4. 
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Figure 2.4. Geometrical relationship among undeformed bond vector 0lξ  and 

deformed bond vector 0

~
lξ   

2.1.6 Size Effect and Mesh Size Dependency Associated with VMIB Model 

For quasi-brittle materials, the cohesive strength and fracture energy are basic 

parameters to describe the behaviors of fracture propagation [Park et al., 2008]. It is 

observed that there is an intermediate region between uncracked and cracked parts 
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defined as the fracture process zone. The material softening localized in the fracture 

process zone consumes energy. The relationship between the fracture energy and size of 

the localization zone has been verified by the experiments. Especially, due to the micro 

cracks and voids, relatively larger fracture process zone is found in quasi-brittle 

materials, and results in the difference between the strength measured in laboratory-size 

sample and the strength of actual structures. This phenomenon is associated with the 

size effect [Bazant and Planas, 1998]. In addition, in finite element implementation, the 

size of localization zone is related to the VMIB element size. In other words, in VMIB 

model, the fracture energy depends on the size of element. This effect is called mesh 

size dependency or mesh size sensitivity, which is not only found in VMIB model, but 

also in typical strain softening models. To capture the fracture energy, [Klein and Gao, 

1998; Gao and Ji, 2003] introduced the fracture localization zone in virtual internal 

bond (VIB) model to simulate the fracture process zone of materials. The fracture 

localization zone is consistent with fracture band model developed by [Bazant and 

Cedolin, 1979]. As an intrinsic length of materials, the size of fracture localization zone 

is calculated in conjunction with the J integral.  

The bond evolution curve, in this work, is calibrated to match the experiment 

data for all element size. However, the actual softening curve and fracture energy 

should integrally consider both the elemental strain-stress curve and the size of fracture 

process zone (size of element in FEM implements). The quantitative analysis will be 

highly effected since that the model fails to capture the exact energy dissipation during 

the fracture propagation. The goal of simulation using VMIB model in present work is 

to capture the complex mix-mode fracture patterns under shear and compressive 
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loading. The failure mechanisms and energy dissipation are difficult to be simulated due 

to the complex strain-stress states and different cracking patterns at locations on the 

fracture tip in 3D simulation. Nevertheless, the fracture patterns can still be represented 

by VMIB model verified by the comparison with fracture shape found in the 

experiments. The quantitative VMIB analysis will be further studied using the concept 

of fracture localization zone [Klein and Gao, 1998; Gao and Ji, 2003] and the theory of 

J integral. The present work will employ the nonlocal damage model to capture the 

fracture energy with an intrinsic characteristic length, in which the size of element does 

not have to be the size of fracture localization zone that is more convenient for curved 

fracture propagation. 

2.2 Continuum Damage Theory 

2.2.1 Local Formulation 

Kachanov initially proposed Continuum Damage Mechanics (CDM), to describe 

creep behavior. Later, it was well adopted to describe the nonlinear responses of various 

materials due to presence, growth, and nucleation of the micro-cracks and voids. Over 

50 years of development, damage theory has been expanded to capture different 

nonlinear responses in various materials.  

To introduce the basic conception of CDM, a cylinder subjected to uniaxial 

tensile stress is considered and shown in Figure 2.5(a). Initially, in Figure 2.5(b), the 

material responds elastically and the stress is applied on the original cross section A  of 

cylinder. At this stage, the actual cross section AA 1 . As the load is increased, the 

actual cross section starts to decrease due to appearing of micro crack, namely AA 2  

(Figure 2.5(c)). Eventually, at the failure of the cylinder, the actual cross area 0A . 
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The CDM defined the stress applied on the actual cross area A  as effective stress ij , 

and the stress applied on the initial cross area A  as nominal stress ij . The force 

equilibrium yeilds ijij AA   . After rearranging, the relationship between the 

nominal stress and effective stress are obtained: 

ijij
A

A
   (2.25) 

Depending on the material property, a scalar/tensor damage parameter or 

damage density noted as  / ij is used in the CDM to capture the isotropic or 

anisotropic strengthen degradation, which is normally defined as 

A

A
1  (2.26) 

where AA   indicates that an intact material is characterized by 0 . Due to the 

micro fracture initiation and coalescence in the softening process, the effective cross 

area A  decreases which results in the growth of damage parameter  ; 1  indicates 

complete failure of material with effective cross area 0A . 

According to the generalized Hooke’s law, the effective stress is given by 

klijklij E    (2.27) 

where the variables with bar indicate the ones in the effective configuration. 

The strain in the nominal configuration is assumed to be equal to the strain in 

the effective configuration written as ijij   . Thus, combining Eq. (2.25), (2.26) and 

(2.27) we obtain the constitutive relationship for the nominal stress, 

klijklij E  )1(   (2.28) 



 

30 

Then, to characterize the damage evolution, we can consider strain as damage 

driving force when calculating damage variable, 

)(ε   (2.29) 

To capture the material behaviors during unloading and partial reloading, the 

damage variable has to be related to the maximum strain reached in the loading history 

but not to the current strain. Normally, the maximum strain in the history is introduced 

by a variable  , 

)(max)( tt
ctt

c 


  (2.30) 

where ct  is current time. 

A

       

111  AA 
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AA 2

222  AA 

       

03 A

333  AA 

 

(a)                           (b)                           (c)                          (d) 

Figure 2.5. Nominal and effective configuration during damage evolution. 

Then, to calculate the damage density, various methods and conceptions are 

developed. From the uniaxial stress-strain curve, a linear softening damage function 

)(  is given by, 
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and an exponential softening with, 
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where 0 is the strain at the peak stress indicates when does the damage start to occur. 

f  controls the slope of the post-peak curve that determines the ductile or brittle 

response the material will perform. Figure 2.6 shows the diagram of strain-stress with 

linear and exponential softening. 
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(a)                                                                (b) 

Figure 2.6. The diagram of strain-stress with (a) linear and (b) exponential 

softening. 

For more complicated loading path or various confining stresses,   defined 

above is not a sufficient driving force of damage. Followed with the procedure 

analogous to the classic plasticity theory, similar driving forces Y  in Von Mises, 

Drucker-Prager forms [Abu Al-Rub and Voyiadjis, 2003] are employed into damage 
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mechanics. A damage surface function is used to identify damage initiation under 

current stress-strain states. Then, damage density can be determined by damage flow 

analogous to plasticity flow rule. 

2.2.2 Mesh size sensitivity 

In local continuum damage theory, however, the basic assumption is expressed 

by the micro-cracks and voids are homogenized in an implicit way within a 

representative volume that usually is the element size in the finite element implement. 

Since one element size is the minimum representative volume for local damage theory, 

the damage and softening usually localized in a narrow region that is controlled by the 

size of the element. Therefore, finite element analysis became highly affected by the 

mesh size and alignment causing non-physical predictions of damage area.  

This phenomenon is so-called mesh size sensitivity [Bazant and Planas, 1998] or 

mesh size dependency. It has been discussed in numerical results from a spring system 

with total length L  shown in Figure 2.7(a). Figure 2.7(b) shows the softening behavior 

of a single spring by stretching. Figure 2.8 shows the displacement-force curves from 

different number of springs used in the system. The post-peak behaviors therefore 

depend on the number of springs in the system. When n  springs are used, the post-peak 

curve will snap back to 0

3
u

n
. The tendency of post-peak curve is turning back to the 

original point if the number of springs n  goes infinite. Additionally, when n approaches 

zero, the area covered by displacement-force curve and horizontal axial indicating the 

energy dissipation during the whole loading and failure process tends to be zero, which 

is physically unrealistic. 
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(a)                                                                (b) 

Figure 2.7. (a) Softening behavior of a single spring; (b) spring system [Bazant 

and Planas, 1998]. 
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Figure 2.8. Displacement-force diagrams from different number of springs in the 

system [Bazant and Planas, 1998]. 

[Jirasek, 2004] presented another mesh size dependency example by modeling 

three-point-bending test with different element sizes shown in Figure 2.9. The results 

show that different mesh sizes deliver different results following with the tendency that 

the smaller element results in weaker strength and smaller envelop. Figure 2.10 

illustrates the damage localization in different mesh size during fracture propagation in 

notched specimen under tensile loading using local CDM. It provides more 

straightforward expression that the damage or micro crack is implicitly homogenized 
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within an element in the finite element implement and the damage zone is represented 

by damage element in local continuum damage theory.  
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(b) 

Figure 2.9. Three-point-bending test simulations with three different mesh sizes: 

(a) problem geometry and boundary condition; (b) load-displacement curves [Jirasek, 

2004]. 

For quasi-static loading conditions, by including the effect of damage from the 

surrounding region on the point of interest, a physically meaningful solution can be 

obtained by enhancing the local damage models by nonlocal measures or 

homogenizations, which is so called nonlocal average method that will be discussed in 

the following sections.  
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(a)                                      (b)                                      (c) 

Figure 2.10. Illustrations of Damage localization (in blue color) in different size 

meshes: (a) 5mm; (b) 2.5mm; (c) 1mm. 

2.2.3 Nonlocal Formulation 

For heterogonous materials like concrete and rock, the mathematical and 

numerical models of failure must correctly represent the energy dissipated in the 

fracture process zone. Using local formulation, finite element analysis fails to capture 

energy dissipation due to strain localization. Nonlocal model abandons the classical 

assumption that damage or strength degradation at certain point can only result from the 

mechanical state at the point itself, but the strain-stress state distribution over the whole 

domain or at least a certain representative volume defined by a characteristic length. 

The principal idea of nonlocal damage theory is that the nonlocal damage variable is 

calculated from a spatial averaging of damage driving force over the representative 

volume [Bazant 1986, Pijaudier-Cabot and Bazant 1987]. The nonlocal driving force is 

written as,  

 
rV

r

dVxYw
V

Y )()(
1

  (2.33) 
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where Y  is the damage driving force, which could simply be strain or Von Mises stress 

in effective configuration for example, rV  is the representative volume governed by the 

characteristic length collaborated from the experiment, Y  is the nonlocal averaged 

damage driving force, )(w  is the weight function depends only on the distance   to 

the interest point x  within the representative volume. The weight function satisfies the 

normalizing condition [Bazant and Jirasek, 2002]  

1)(
1
 

rV
r

dVw
V

  (2.34) 

)(w  is expressed in Gauss distribution form 
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or the quartic polynomial function 
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where cl  is the characteristic length and R  is a parameter related to cl . R  is 2~3 times 

of cl  [Jirasek, 2004].  

In finite element analysis, since the field equations have already been discretized 

into weak form, the averaging and nonlocalization process can be expressed by 

weighted summing up of values on Gauss points in each region from the following 

formula [De Vree et al., 1995], 


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
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ikiiik YwJY
1

  (2.37) 
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where i , iJ  are the integration weight and Jacobian of isoparametric transformation 

for number i th Gauss point respectively, and kiw  is the weight for nonlocal averaging 

of i th point respect to point k   
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 (2.38) 

Then substitute Eq. (2.33) into the constitutive equation Eq. (2.28) yields  

klijklij EY  ))(1(   (2.39) 

and its tangential form to calculate the incremental stresses, 

klijklklijklij EYEY  )())(1(    (2.40) 

The weighted summing up brings computational difficulties in the simulation 

specially expressed by tangential form since time derivative will induce complicated 

expansion of equation when many time dependent variable involved [De Vree etc., 

1995]. Therefore, researchers also introduced the techniques from plasticity research- 

gradient enhanced theory [de Borst et al., 1993]. )(  x  is expanded into a Taylor 

series around the point 0x  and assuming an isotropic weighting function )(w , 

which results in disappearing of higher-order gradients with odd orders. By neglecting 

higher than second-order terms, the following expression for   can be derived as 

 22 l  (2.41) 

Eq. (2.41) provides a more straightforward expression of nonlocal damage 

model. Although calculating average formulas in Eq. (2.37) and (2.38) is a time 

consuming process associated with the number of element. Fortunately, it can be 
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calculated once at the beginning since the average formulas are static during the loading 

process. 

2.3 Conclusion 

Though the behavior of realistic rock in the reservoir is extremely difficult to be 

characterized and modeled, multi-scale VMIB model and continuum damage model 

presented in this chapter provide solutions from different aspects on solving the 

nonlinear response of rock. The VMIB stem from the discrete microstructure, but 

eventually turns out the continuum constitutive relationship since that the mechanical 

properties of the material particles are assembly obtained through statistical averaging. 

The statistical averaging is very important in reducing the degrees of freedom. On the 

other hand, the deformation and softening of individual bond are considered integrally 

and may be diminished, which is proved to be important during the fracture process 

[Zhang, 2013]. In Chapter 5, the fracture propagation under pure mechanical loading 

are simulated to test the performance of VMIB on mix mode fracture propagation. 

Using VMIB model, a three dimensional thermal fracturing model is developed in 

Chapter 6 and a series of hydraulic fracturing examples are simulated under different in-

situ stress conditions in Chapter 7. 

Continuum damage model considers the strength degradation resulting from the 

micro crack and void growth in a representative volume. The nonlocal formulation of 

damage model for softening materials eliminates spurious mesh size sensitivity and 

insures proper convergence. Essentially, the nonlocal formulation is to average the 

energy release rate during damage process over the representative volume of the 

material. The size of representative volume is governed by the characteristic length cl  
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that is an intrinsic property of the material. Consequently, the dissipated energy due to 

strain-softening damage converges to a finite value. It is physically meaningless and 

unrealistic that local finite element model with strain softening energy converges to zero 

as the mesh size approaches infinity small. The characteristic length 
cl  is a material 

property related to the size of the process zone due to inhomogeneity, which must be 

determined and corroborated by results of experiments. Averaging of damage can be 

introduced in any nonlinear finite element simulation with a strain-softening 

constitutive model. 

However, the determination of material parameters like the characteristic length 

cl  is still challenging. Beside, though the mesh dependency can be eliminated by using 

nonlocal theory, the element size is limited to be several times smaller than the 

characteristic length 
cl . In other words, finer mesh is still needed to match the 

characteristic length 
cl  in the scale of millimeter or centimeter. If the size of element is 

larger than characteristic length, the nonlocal averaging treatment is mathematically 

meaningless. Using nonlocal damage theory in simulating hydraulic fracture, a special 

treatment of boundary condition on the hydraulic fracture surface is needed. 

Considering the computational volume, to simulate larger domain, adaptive mesh 

solution is urgently recommended. In Chapter 4, the detail method of applying nonlocal 

formulation damage theory in hydraulic fracturing simulation is presented. To verify the 

nonlocal damage model on minimizing mesh size sensitivity, mode I and mode II 

fracture examples are presented in Chapter 5. Chapter 7 gives the simulation results of 

hydraulic fracturing using nonlocal damage model. 
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Chapter 3. Three Dimensional Representation of Fracture 

Using Element Partition Method 

One of the challenges for 3D fracture simulation is the mechanical 

representation of pre-existing and newly extended fracture surfaces. Propagating 

fracture geometry associated with the moving boundary conditions through fracture 

growth path makes hydraulic fracturing modeling especially difficult. Additionally, 

besides the opening fracture, the contact and friction of closed fracture surface are also 

significant mechanical behaviors for pre-existed fracture subjected to the compressive 

and shear stresses. Several special treatments for fracture surface have been used in the 

fracture modeling in the framework of finite element method. Remeshing and mesh 

refining for the newly extended fracture surface and tip are common techniques, which 

have great advantages on the computational accuracy and efficiency on the linear 

equation system solving. However, the remeshing and refining scheme implements are 

difficult to be performed since that it is time consuming and mathematically challenging 

especially for 3D problems with complex domain and fracture geometry. Extended 

finite element method (XFEM) [Belytschko and Black, 1999; Moes et al., 1999] based 

on the generalized finite element method and partition of unit method represents the 

fracture by enriching the solution space with discontinuous function for fracture surface 

and asymptotic function for the fracture. The XFEM avoids the remeshing problem and 

captures the stress singularity using the original mesh system, which compensates the 

inconvenience of traditional FEM. However, the XFEM still has disadvantage that the 

added degrees of freedom change the original structure of matrix and sparseness, 
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numerical integration for each divided parts of element is time consuming and difficult 

particularly for the element contains multiple fractures. 

Different from the XFEM, taking advantage of simple geometry character of 

triangle and tetrahedron element, element partitioning method (EPM) [Zhang and Chen, 

2008, 2009; Huang and Zhang, 2010] construct triple-node and quad-node contact 

element that needs no remeshing and mesh refinement during the fracture propagation 

and uses original mesh configuration during the fracture propagation. Therefore, the 

greatest advantage of EPM saves computational time and is easier to encode since that 

EPM introduces no additional degree of freedom and global matrix structure remains 

the same. However, EPM has a limitation that the elastic deformation of partitioned 

element is not considered. The error is arising with increase of element size . 

Comparing the computational cost with the other fracture treatment techniques, EPM is 

still more desirable since that the simulating domain and element size chosen is relative 

small. In the functional test, performance of 3D EPM will be tested on representing 

mechanical behaviors of the closed fracture surface subjected to the compressive and 

shear stress. 

3.1 General Idea of Element Partition Method 

[Zhang and Chen, 2008, 2009] developed the two-dimensional element partition 

method (2D EPM) to represent the mechanical behaviors of fractured element cut 

through by pre-existing and newly extended fracture. Taking advantages of the simple 

geometrical characteristic of three-node triangular element, the stiffness matrix for a 

partitioned element is derived to account for the contact and friction effects between 

fracture faces. Through 2D EPM, the fracture could be represented by transferring intact 
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element to partitioned element. Since the partitioned element shares the same nodes 

with intact element, no mesh modification is needed. Based on similar concept, 3D 

element partition method (3D EPM) is developed by [Huang and Zhang 2010] to 

describe the opening, contact and friction between the fracture surfaces. The 3D EPM 

takes advantage of the geometry features of tetrahedron element to construct a four-

node contact element. When a fracture cuts through a tetrahedron element, two types of 

four-node contact element, i.e., Type I and Type II, are formed shown as Figure 3.1. 

Tetrahedron element is chosen because of its geometric simplicity. Therefore, only type 

I and II of the contact element with triangular and quadrilateral fracture sections, 

respectively, will be generated, which avoids the complexity from more types of 

partition element to be identified and calculated. The geometry aspects will be 

discussed in the follow sections. 

           

(a)                                                               (b) 

Figure 3.1. Partition modes of tetrahedron element: (a) type I: triangular fracture 

plane; (b) type II: quadrilateral fracture plane. 

3.2 Derivation of Stiffness Matrix for 3D EPM 

To derive the stiffness matrix of 3D EPM, taking type I partition element shown 

in Figure 3.2 for example, a local coordinate system needs to be established. The 

original point, x  and y  axis of the coordinate system are on the fracture plane. The z
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axis is perpendicular to the fracture plane. Therefore, the local coordinates x , y and z

are defined as: 
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where  321 ,, nnn  is the unit vector indicating the normal direction of the fracture plane 

calculated by the plane equation 0)()()( 030201  zznyynxxn .  000 ,, zyx  is 

the center point on the fracture plane. 

The following assumptions are made to derive the stiffness matrix of 3D EPM: 

(i) all the strain energy is stored in a contact volume with the thickness h  and the area 

A  shown in Figure 3.3 if the fracture surface is subjected to compression and shear 

stress; (ii) the contact volume is linear elastic; (iii) the displacements of points m , m   

and m  are equal to the displacements of node M , the displacements of point i , j  and 

k  are equal to the displacements of I , J  and K  respectively; (iv) the contact areas

miA  , mjA   and mkA   shown in Fig. 3 are controlled by contact pairs mi  , mj   and 

mk   respectively. The displacements of nodes I , J , K  and M are denoted as 
I

xu , 

I

yu , I

zu , 
J

xu , 
J

yu , J

zu ,
K

xu , 
K

yu , K

zu ,
M

xu , 
M

yu  and M

zu  respectively. 
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Figure 3.2. Local coordinate system and node pairs for type I partition element. 
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Figure 3.3. Contact volume and contact areas for each node pairs (type I). 

Based on a special case that local and global coordinate systems are parallel to 

each other, the strain energy stored in the contact volume is: 
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 (3.2) 

where nK , sK are the shear and the normal stiffness coefficients of the contact element 

respectively.
mi

n


 , 

2mi

s


  are the normal strain and shear strain of the contact area miA  . 

Similarly, the strain energy stored in the contact areas mjA   and mkA   are 
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where AAAA mkmjmi
3

1
  , A  is the area of fracture plane contained in the partition 

element. 

To capture the opening, contact and slippage of the fracture plane in the partition 

element, two different conditions are considered. The first condition is that the fracture 

surface is free to open if it is subjected to tensile stress. The second one is that the 

fracture surface keeps the normal strength and surface friction to support the closure 

and represent the slippage resistance respectively, when the fracture is subjected to 

compressive and shear stresses. Therefore, the total strain energy stored in the contact 

volume is derived as: 
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z
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z
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zmj

I

z

M

zmi uuHWuuHWuuHWW    (3.5) 

where  









00

01

x

x
xH . 0x  indicates the fracture is closed, 0x  indicates the 

fracture is opened.  

Substituting Eqs. (3.2), (3.3) and (3.4) into Eq. (3.5) yields 



 

46 

        

        

        K

z

M

z

K

x

M

xs

K

y

M

ys

K

z

M

zn
mk

J

z

M

z

J

x

M

xs

J

y

M

ys

J

z

M

zn

mj

I

z

M

z

I

x

M

xs

I

y

M

ys

I

z

M

zn
mi

uuHuuKuuKuuK
h

A

uuHuuKuuKuuK
h

A

uuHuuKuuKuuK
h

A
W













222

222

222

2

2

2

 (3.6) 

For sake of simplicity, the displacements of element nodes are written as: 

 121110987654321 ,,,,,,,,,,, uuuuuuuuuuuuui   (3.7) 

 121110987654321 ,,,,,,,,,,, FFFFFFFFFFFFFi   (3.8) 
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Using the new notation, Eq. (3.6) can be written as: 
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where 
ij  is the Kronecker delta. 

The complementary energy   is 

iiFuW   (3.10) 

According to the principle of minimum complementary energy in the elasticity 

theory, the stiffness matrix of type I partition element is derived as: 
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Figure 3.4. Local coordinate system and node pairs for type II partition element. 
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Figure 3.5. Contact volume and contact areas for each node pairs (type II). 

Similarly, Figure 3.4 shows the local coordinate system and node pairs for type 

II partition element. The contact node pairs such as mi  , mj  , ki   and kj   

control their contact areas miA  , mjA  , kiA   and 
kjA   respectively shown in Figure 3.5. The 

stiffness matrix of type II partition is derived as 
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where AAAAA kjkimjmi
4

1
  . 

Based on the stiffness matrixes derived above for special case that the local and 

global coordinate systems are parallel to each other, the general form of stiffness 

matrixes can be derived through the coordinate system transformation as follow: 

QKQK T

ij
  (3.13) 

where Q  is the coordinate transform matrix. 

3.3 Functional Test 

To test the performance of 3D EPM on representing the contact and slippage of 

the fracture surface, the mechanical behavior of a rock block with a cut-through joint is 

tested in the section. The object geometry and boundary conditions are shown in Figure 

3.6. The number of element and node used in the simulation are 8000 and 3362 

respectively. Figure 3.7(a) shows the tetrahedron elements intersected with the joint. 

Figure 3.7(b) gives the geometrical relationship between vertical and horizontal force 

components. Two different shear stiffness coefficients 
1sK  and 

2sK  are used in the 

simulations to test the influence of the coefficients on the slippage response of the joint 

surface. The material parameters are listed in Table 1. The normal stress applied on the 

top of object is 1.0n MPa  . The simulation results are shown in Figure 3.8 indicating 
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the curve of the resultant force and relative displacements on the joint surface and 

Figure 3.9 displays the relative slippage between joint surfaces by the deformed mesh 

configuration. 
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(a)                                                                (b) 

Figure 3.6. (a) Dimension of simulation object and (b) boundary conditions. 

Table 1. Simulation Parameters for 3D EPM Functional 

Test 

Parameters of intact element: 

Young’s modulus, E  10.0 GPa 

Poisson’s ratio,   0.16 

Tensile strain strength, t  30.1 10  

Parameters of 3D EPM: 

Normal stiffness coefficient, hKn /  10.0 GPa/m 

Shear stiffness coefficient, 
1 /sK h  10

-5
 GPa/m 

Shear stiffness coefficient, 
2 /sK h  10

-3
 GPa/m 

Fracture width, h  1.0 mm 

 

According to the geometrical relationship between vertical and horizontal force 

components, the lateral force balanced with the normal stress on the top is calculated to 

be 25F kN . Therefore, the slippage initiation forces for two different shear 
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coefficients are both 25F kN  in Figure 3.8. Due to different shear stiffness 

coefficients, the consequent tendency of curves of lateral force F  and relative slippage 

are different in slope. When the shear stiffness coefficient 
1sK  is relatively small, the 

upper block of simulation object is free to slide on the inclined surface due to the 

existing of cut-through joint. With the increase of relative displacement between upper 

and lower blocks, shown in Figure 3.8, the lateral force F  keeps constant and balanced 

with the normal stress applied on the top indicating that the slipping surface is smooth. 

For larger shear stiffness coefficient 
2sK , the lateral force increases linearly with the 

relative displacement growth shown in Figure 3.8. In Figure 3.9, the deformed mesh 

configuration shows the rigid body displacement of upper and lower blocks. The upper 

block is gradually climbing up along the inclined surface. Therefore, these results 

verified the capability of 3D EPM of representing the mechanical behavior of contact 

and slippage of the fracture surfaces. 

   
1 m

0
.5

 m

 

(a)                                                             (b) 

Figure 3.7. (a) Tetrahedron elements intersected with fracture; (b) illustration of 

the geometrical relationship between vertical and horizontal force components. 
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(a)                                                             (b) 

Figure 3.8. Simulation results: relationship between the applied displacement 

and the resultant force F : (a) shear stiffness coefficient 5

1 10sK MPa ; (b) shear 

stiffness coefficient 3

2 10sK MPa . 

     

(a)                                                             (b) 

Figure 3.9. Simulation results: the rigid body displacement indicating relative 

slippage between joint surfaces. 

3.4 Conclusion 

The 3D EPM introduces no additional degree of freedom and shares the same 

nodes with the intact tetrahedron element so that no remeshing is needed. Moreover, the 

dimension of the elemental stiffness matrix after partition remains the same, which 
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benefits the global stiffness matrix assembling. Although, the error of 3D EPM is 

arising with the increase of element size since that elastic deformation of partitioned 

element is not considered, 3D EPM is still competitive when the simulating domain and 

element size are relatively small comparing the computational cost with the other 

fracture treatment techniques. Through the test of a rock block with a cut-through joint, 

3D EPM successfully represents mechanical behaviors such as contact and friction of 

the closed fracture surfaces. A series of simulations of pressurized subsurface fracture 

and result comparisons presented in Chapter 4 validate that the 3D EPM provides 

reasonable accuracy for pressurized fracture problem. Another drawback of element 

partitioning method is that the fracture surface within an element has to be flat. Since 

the whole fracture surface consists of the fracture segment in each partitioned element, 

the newly extended curved fracture presentation by 3D EPM could be unsmooth and 

composes by discontinued surfaces, which brings difficulty to apply moving boundary 

condition such as fluid pressure during the hydraulic fracturing process.  

The greatest advantages of proposed 3D EPM are its efficiency and simplicity 

that outweigh its disadvantages, especially for its feasibility and applicability on the true 

3D hydraulic fracturing simulation. Based on the theory of 3D EPM, the technique is 

developed with the features of transferring the quasi-static hydraulic loading to the 

equivalent nodal forces and calculating the fracture opening or aperture by knowing the 

geometric information of fracture segment in an element during the fracture 

propagation, which will be detailed introduced in Chapter 4. 
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Chapter 4. Methodologies of Fluid Flow for Hydraulic Fracture 

Sometimes multiple physical processes are involved in hydraulic fracturing 

propagation and are active in determination of the growth of a propagating hydraulic 

fracture [Peirce, 2015]. It is very crucial for an effective hydraulic fracturing model to 

capture all the key physical processes including mechanical behaviors of rock mass and 

the fluid flow through the fracture and porous media. Moreover, the rock deformation, 

fracture creation and fluid flow are coupled physical processes that need to be analyzed 

simultaneously. The injection fluid initially flows from pressurized and perforated 

borehole. The high pressure fluid induces the rock failure around the perforation hole 

and creates initial fracture plane. Usually, the hydraulic fracture analysis is performed 

after the initial fracture plane has been created since that the physical process of the 

crack initiation form perforation is complicate and less important than the consequent 

fracture propagation. In this chapter, the methodologies of fluid flow during the 

hydraulic fracture propagation are discussed based on the different flow mechanisms in 

the porous rock media and the space between the fracture surfaces respectively. So far 

as we know, hydraulic fracturing is not only the complex interaction problem of fluid 

flow and rock mass deformation, but also involves Darcy fluid, non-Newtonian fluid, 

fluid leak off and more sophisticated turbulence fluid due to the complexity of fracture 

network and roughness of fracture surfaces. Though capturing the flow mechanisms is 

very difficult by an integrated method, this chapter focuses on two key aspects of fluid 

flow and attempts to model the porous media flow and fracture flow using poroelastic 

theory and lubrication theory respectively. 
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The detailed theory and mathematical derivation of fully coupled poroelastic 

model are described by the governing equations of equilibrium and fluid diffusion. The 

model is presented in a total form and implemented in finite element formulation to 

analyze the effective stress and deformation of rock mass, pore pressure induced by the 

fluid diffusion and compaction in a fully couple equation system. On the other hand, the 

fracture flow can be simulated by fluid flow in a narrow aperture that is much smaller 

than other dimensions. Additionally, laminar flow exists since the high viscosity of 

fracturing fluid and small injection rate. Therefore, the popular lubrication flow theory 

is used to model the pressure gradient and mass conservation inside pressurized 

fracture. Associated with the fracture description by three dimensional element 

partitioning method (3D EPM), a moving boundary analysis on the propagating fracture 

can be implemented by algorithm of creating new fracture surface and applying 

hydraulic pressure boundary conditions that will be introduced in this chapter. 

However, the present work doesn’t integrate the two fluid flow mechanisms into 

one simulation model. The realistic fracturing fluid flows from the injection well 

through the fracture tip with a pressure degradation since the resistance. Meantime, 

because of pressure difference, the fluid is going to diffuse into the formation that is so 

called leak-off. Thus the whole process should be analyzed simultaneously since that 

the pore and fracture fluid share same pressure boundary condition on the fracture 

surfaces. However, this is very difficult to be implemented mathematically and 

numerically. The present work provides the couple schemes and iteration methods for 

fluid flow in the porous rock mass and fracture separately. More rigorous lubrication 

theory is emphasized only on the pressure profile along the fracture surface and its 
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induced fracture growth. The followings are the basic assumptions for lubrication 

model: the leak-off effects are neglect since inject time are relatively short; the fracture 

propagates advance to the fluid front, which means there is fluid lag at the fracture tip; 

the pressure profile is calculated in stationary parallel fracture geometry. On the other 

hand, the poroelastic model is used to capture the hydraulic fracture propagation with 

complex geometry and boundary conditions such as hydraulic fracture and natural 

fractures interaction. The permeability of fractured element is artificially increased to 

represent the conductivity enhancement by fracture creation. Although this model 

cannot provide precise fluid pressure along the fracture surface, the overall tendency of 

fracture and pore pressure distribution and fracture propagation can still be modeled 

considering the computational feasibility and efficiency. 

4.1 Fully Coupled Analysis Using Poroelastic Model  

The fully coupled diffusion-deformation mechanism of the porous media is 

inspired by understanding the problem of consolidation in soil mechanics. The 

consolidation is the process of soil decrease in volume that results from decrease of 

water content of saturated soil. [Terzaghi, 1923] firstly developed the theory to capture 

the quasi-static deformation of soil under surface compressive loading in one-

dimension. [Boit, 1935, 1941] developed the theory of dynamic poroelasticity or Biot 

theory that represents the interactions between the displacement or the volumetric 

change of the skeleton rock and the pore fluid discharge describes that the motion of the 

fluid with respect to the skeleton.  
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4.1.1 Poroelastic Constitutive Relations 

Based on the assumption of linear relations between stress 
ij  and strain 

ij  , 

pressure p  and fluid content   respectively, the coupled mechanical equilibrium 

equations with pore pressure for isotropic porous material could be described by the 

Biot theory[Biot, 1935, 1941]: 
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where the first equation considers the constitutive response for the solid skeleton, the 

second equation correspond to the behaviors of porous fluid, 
ij  is strain tensor that is 

positive for tension, 
ij  denotes the total stress tensor, p  and   are the pore pressure 

and the variation of the fluid content per unit volume of the porous media respectively. 

G  is the shear modulus and   is the Poisson ratio.   is the Biot’s coefficient, B  is 

the Skempton’s coefficient.   and B  are written as 

sK
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where K  is bulk modulus, sK  is the bulk modulus of solid phase, u  is the undrained 

Poisson ratio.  

Eq. (4.1) can be written in terms of stress strain relation, 
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Eq. (4.5) represents the constitutive equation for the linear system, in which we 

can find the effective stress 
ij   by eliminates the last pore pressure term defined as  

ijkkijij

G
G 




21

2
2


  (4.6) 

Effective stress 
ij   physically means the resultant stress applied on the rock 

skeleton. It is the exact stress that the rock skeleton supports.  

4.1.2 Balance Law 

Two equilibrium considerations compose the conservation law for poroelastic 

material. Firstly, the static equilibrium leads to stress balance equation or equilibrium 

equation written as 

ijij F,  (4.7) 

where iF  is the body force per unit volume. Usually the body force is assumed to be 

ignored if the volume or dimension of objective of interest is small. Second one is the 

continuity equation for the fluid phase considering the mass conservation: 


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
iiq

t
,

 (4.8) 

where   is the density of injection source. 

4.1.3 Field Equations 

The equations in the previous sections explain the physical meaning of porous 

material and fluid. However, only field equations lead to useful solution that is derived 

in this section. Associated with (i) the constitutive equations for the porous rock (Eq. 

(4.5)) and porous fluid (Eq. (4.2)), (ii) the equilibrium equation and continuity equation 

defined as Eqs. (4.7) and (4.8) respectively and (iii) Darcy’s law that governs the single 

phase fluid transport in the porous rock, the linear isotropic poroelastic coupling 
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processes are captured. By ignoring the body force of fluid, the Darcy’s law is written 

as  

ii p
k

q ,


  (4.9) 

where k  is intrinsic permeability and   is the fluid viscosity. 

By combining the strain-displacement relationship under assumption of small 

deformation, 
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with the constitutive equations and the momentum equilibrium. The deformation field 

equations are obtained as 
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The diffusion equation is derived by substituting Darcy’s law (Eq. (4.9)) and 

constitutive equation (Eq. (4.2)) into fluid mass conservation (Eq.(4.8)) in terms of pore 

pressure p : 
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where M  is the Biot modulus defined as the fluid contents increase results from the 

unit increase of pore pressure under constant volumetric strain, written as 
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Based on the constitutive relations of porous rock and fluid, static equilibrium 

and mass conservation and transportation function, the governing equations 
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representing the fully coupled poroelastic behaviors are therefore derived and written in 

terms of the displacement u  and pore pressure p  as 

  0
21
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where  T0,0,0,1,1,1m  for 3D problems and  T0,1,1m  for 2D problems since the 

coupling term pm  is only active in case of volumetric change of porous solid, iQ  is 

injection rate at point source,   is Kronecker delta function. 

By solving the field equation system shown as Eqs. (4.14) and (4.15) for the 

primary unknown variables-displacement u  and pore pressure p , we can then 

calculate other unknowns such as strain ε , total stress σ , effective stress σ  and flux 

q  according the constitutive relations. However, it is very difficult to get a close form 

solution due to the complexity of the partial differential equations, except the special 

cases with simple and symmetric geometries and material properties. Therefore, finding 

the solution of coupled equations generally relies on numerical techniques, for example, 

finite element method, boundary element method and finite different method, etc. The 

problems contain more complicate geometries and various properties of porous solid 

and fluid such as nonlinearity, anisotropy, heterogeneity could be solved. In this work, 

we focus on the numerical solution using finite element method.  

4.1.4 FEM Formulation 

In the following, the finite element solution for the problem of poroelasticity is 

presented. The field equations (4.14) and (4.15) are spatially discrete by approximating 
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the field variables of displacement, u , pore pressure p  through interpolation functions 

written as,  

uNu ~
u  (4.16) 

pN ~
pp   (4.17) 

where 
uN  and 

pN  are the shape functions for the solid displacement and pore pressure 

fields, respectively. u~  and p~  are the displacements and pore pressure on nodes in each 

elements described following an order as 
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The shape functions for displacement and pore pressure are respectively, 
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where n  is the node order number depends on the chose type of element. 

The strain-displacement relationship expressed as Eq. (4.10) can be written in 

discretized form, 

uBε ~  (4.22) 

where 

uLNB   (4.23) 
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According to Eqs. (4.16) through (4.24), using Galerkin’s method, the weak 

form of equation system Eqs. (4.14) and (4.15) can be derived as: 
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In these equations, eV  is the volume of element, f  is external mechanical 

loading, q  is the injection rate from a point source. In the following Eq. (4.26) is 

discretized in time domain since it is first order time dependent. Though incremental 

formulation of matrix is required for strong nonlinear problem, the present work adopts 

the total formulation since that the constitutive models (VMIB, nonlocal damage model 

et al.) for the nonlinear rock behaviors are written in total form. Therefore the temporal 

discretization of field variables performed between 0t  and t  can be expressed as: 
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where 
0ttt   is the time interval,   is a coefficient with the range 10   . 

Eqs. (4.31) and (4.32) are written in the matrix form: 
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For simplification purpose, set 1  corresponding to an implicit schemes. 

Thus, the finite element formulation of field equations through special and temporal 

discretization in terms of displacement and pore pressure is obtained and Eq. (4.33) is 

reduced to 
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Finally, by integrating the constitutive equations for the porous rock and fluid, 

the equilibrium equation, continuity equation and single phase Darcy’s law, the fully 

coupled poroelastic field equations in FEM form are obtained and coded in FORTRAN 

language. Due to the time dependency of poroelastic problem, using an appropriate time 

step is especially important. The stress and strain of porous rock propagates relatively 

faster than fluid diffusion that requires small enough time step for accuracy 

consideration. However, in fluid flow part, small time step will induce instable because 

of the pore pressure is nearly unchanged in this small time interval. Meantime, element 
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size is another influence factor for adopting appropriate time step. Therefore, the time 

step is determined according to reasonable accuracy and stability. 

4.1.5 Validation of Poroelastic Model 

To validate the present model for poroelastic model, the numerical solution is 

compared with the analytical solution of Terzaghi one-dimensional consolidation. 

Terzaghi consolidation theory provided a solution for the fluid solid interaction in soil 

saturate with water, which has successfully inspired the following research in soil 

mechanics and geotechnical engineering. The settlement of a saturated soil column with 

thickness of h  under a constant load from the top surface is analyzed. The column rests 

on a rigid and impermeable boundary. The constant normal loading with magnitude of 

P  squeezes the pore water out from the top that induces a gradual settlement. The 

boundary conditions are written as follows: 
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[Detournay and Cheng 1993; Jaeger, Cook et al. 2009] give the detailed 

solutions for Terzaghi one-dimensional consolidation. The solutions for pressure 

distribution are written as: 
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and the solution for top settlement is 
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where h  is the thickness of soil column, M  is the Biot modulus expressed as Eq. 

(4.13), B  is the Skempton’ coefficient written as Eq. (4.4), S is storativity coefficient 

written as 
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and )(xerfc  is the coerror function (Abramowitz and Stegun, 1970), defined as 
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Figure 4.1. Problem geometry and boundary conditions of soil column. 

The 3D finite element model with specified boundary conditions is used to 

reproduce Terzaghi 1D consolidation. The soil column has mm 11   cross section and 

m10  height shown in Figure 4.1. The lateral surfaces are impermeable and their normal 

displacements are confined to fulfill the same boundary conditions as 1D Terzaghi 

problem. The bottom side is also impermeable with no displacements. The top surface 

is exposed in air representing zero pore pressure boundary and subjected to a 

mechanical pressure load P . Therefore, the water is drained from the top during the 
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loading process. Table 2 lists the input parameters used for analytical and numerical 

solutions. In the simulation, 38028 four nodes tetrahedron elements with 8556 nodes are 

used. 

Table 2. Input Parameters for Terzaghi 1D Consolidation 

Shear modulus, G  12.0 GPa 

Poisson’s ratio,   0.15 

Undrained Poisson’s ratio, 
u  0.29 

Biot’s coefficient,   1.0 

Permeability, k  0.5 md 

Fluid viscosity,   sPa100.3 4  
 

Load, P  MPa0.1  

The comparisons of the transient pore pressure distributions between analytical 

and numerical solutions are shown in Figure 4.2. The pore pressure contours at different 

time are plotted in Figure 4.3. Figure 4.4 shows the transient settlements at various 

depth comparisons between analytical and numerical solutions. The comparisons 

indicate well agreement between the analytical and numerical solutions, which 

enhances the confidence that the model can be adopted to simulate the porous rock and 

fluid during the hydraulic stimulation in the following sections. 
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Figure 4.2. The transient pore pressure distributions comparisons between 

analytical and numerical solution. 

 

Figure 4.3. The transient pore pressure distributions at (a) 1mins; (b) 5 mins; (c) 

20 mins; (d) 60 mins. 
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Figure 4.4. The transient settlements at various depth comparisons between 

analytical and numerical solution. 

4.2 Fluid Flow in Fracture Surfaces 

Besides the fluid diffusion in the porous matrix, the flow in the fracture surface 

governs the transient boundary conditions for fracturing fluid pressure and rock 

deformation, and therefore controls the propagating direction and distance in the 

hydraulic stimulation. In general, even for simple geometry, modeling the fluid flow 

induced fracturing has many difficulties due to the moving boundary and nonlinearity of 

in fracture fluid flow and rock matrix behaviors. The nonlinearity of fluid flow in the 

fracture not only results from that its conductivity followed the cubic low of the fracture 

aperture, and also the fluid mass balance considering fluid storage volume due to  

aperture change. During the simulation, the length of fracture, fracture opening and 

fluid pressure profile are all time-dependent variables, and more importantly, are 

mutually interacted. Several steps are involved in the calculation process to reach an 
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overall convergence. Firstly, next section will introduce the method of applying the 

fluid pressure on the fracture surface. Then, the coupling scheme and iterations between 

mechanical response of rock matrix and the pressure profile in the fracture will be 

briefly illustrated. The last but not the least, newly extended fracture will be located in 

the damaged bond calculated from the nonlocal damage model, which updates the 

fracture geometry for next step of simulation. This procedure based on the following 

assumptions: (i) the fracture propagates advance to the fluid front, which means there is 

fluid lag at the fracture tip; (ii) the pressure profile is calculated in stationary parallel 

fracture geometry; (iii) the leak-off effects are neglect in this section since inject time 

are relatively short. 

4.2.1 Representing the Hydraulic Pressure in Fractured Element 

This section describes the approach to apply the fracturing fluid pressure on the 

crack surface in FEM framework. There are other methods [Belytschko and Black, 

1999; Olsen and Taleghani, 2009; Weng et al., 2011; McClure, 2012; Sesetty and 

Ghassemi, 2012, 2013] simulating the hydraulic fracturing by creating new surfaces 

once the stress or strain states of rock reached the failure criteria. The pressure could be 

applied on this newly extended surface. The present work employed 3D element 

partition method (3D EPM) to represent the pre-exciting and newly extended fracture 

surface within the elements. There is no explicit boundary or extra virtual nodes for 

applying the pressure boundary conditions. Once the element is divided into two 

portions by pre-existing or newly extended fracture, the mechanical behaviors are 

modified by 3D EPM [Huang and Zhang, 2010] algorithm that the opening as well as 

contact and slipping behaviors of fracture surface can be represented. Thus no explicit 
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surface or extra nodes are introduced. The pressure applied on the fracture surface is 

represented by the equivalent nodal force by obtaining the geometry and size of fracture 

segment and the fluid pressure through the flow analysis. The fracture segment in the 

element is calculated by the geometry of fracture surface and how it is intersected with 

the edges of element. Figure 4.5 and Figure 4.6 illustrate the processes to transfer fluid 

pressure into equivalent nodal forces for each element type. 

In the simulation, the forces are applied on the nodes to equivalently represent 

the fluid pressure. The area of the fracture segment and fluid pressure are respectively 

denoted as A  and P . The resultant force of fluid pressure on the fracture segment is 

A PF . For the Type I partition element shown in Figure 4.5, for example, the force 

components xMF  , yMF   and zMF   are balanced with F . The equivalent forces relations 

of the type I partition element are written as: 

],,[ zMyMxM FFF F  (4.43) 

],,[
3

1
zIyIxI FFF  F  (4.44) 

],,[
3

1
zJyJxJ FFF  F  (4.45) 

],,[
3

1
zKyKxK FFF  F  (4.46) 

The equivalent forces relations of the type II partition element are written as: 

],,[
2

1
zMyMxM FFF F  (4.47) 

],,[
2

1
zKyKxK FFF F  (4.48) 

],,[
2

1
zJyJxJ FFF  F  (4.49) 
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],,[
2

1
zIyIxI FFF  F  (4.50) 
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Figure 4.5. Equivalent node force representing the water pressure on the crack 

surface in the Type I element. 
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Figure 4.6. Equivalent node force representing the water pressure on the crack 

surface in the Type II element. 

4.2.2 Validation of 3D EPM on Representing Pressurized Fracture 

Successfully applying the pressure boundary condition is the key step for 

hydraulic fracturing simulations. To validate 3D EPM model for pressurized fracture 

representation, the present model is compared with the numerical [Fu, 2014] and 
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analytical [Pollard and Holzhausen, 1979] solutions of subsurface pressurized fracture. 

Figure 4.7 shows the geometry and mesh scheme of 2D pressurized fracture. The red 

line represents a closed fracture of half-length a  that is located at the depth-to-center 

d  below the horizontal free surface of a semi-infinite domain. The dip of the fracture 

from the free surface is  . Deformations of the free surface with different dip angles 

are given in [Pollard and Holzhausen, 1979]. Another simulation result provided by [Fu, 

2014] using finite element method is compared in this section. This problem is 

simulated using single layered 3D tetrahedron elements. The out-of-plane displacements 

along the thickness direction are confined to simulate the plane-strain condition. The 

size of the domain is 50 50m m . All the normal displacements on the boundary except 

the top one are fixed. The total number of elements used in this simulation is 126,899. 

The resolution of mesh is 1 meter in the coarse area and 0.04 meter in the fine area. 

Table 3 gives the geometrical and material parameters for pressurized fracture problem. 

a

free surface


pressurized 

fracture

d

y

x

 

Figure 4.7. Problem geometry for 2D pressurized subsurface fracture. 

The vertical displacement and stress contours for different dipping angles are 

plotted in Figure 4.8 and Figure 4.9. The displacement has been amplified to be visible. 
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In the figures we observed, the fracture surfaces are not perfect smooth. This is because 

the displacement discontinuity is represented by the whole fractured element and the 

elastic deformation of partitioned blocks in single fractured element is neglect. 

Additionally, the equivalent nodal forces are applied on the adjacent nodes instead of on 

the fracture surface. Therefore, the stress of fractured element has no mechanical 

meaning and is blanked in the figures. The comparisons of the surface normal 

displacement distributions between the present model, the solution by [Fu, 2014] and 

the exact solution are shown in Figure 4.10. Figure 4.11 shows the solutions by [Pollard 

and Holzhausen, 1979] provided the suggestion for the overall curve shapes since that 

an arbitrary constant may be added to these solutions.  

Table 3. Geometrical and Material Parameters for 

Pressurized Surface Fracture 

Half length of fracture, a  1.0 m 

Depth-to-center d  1.25 m  

Half length of fracture in z direction 

(3D), b  

3.0 m 

Dip,   0, 45, 90 

Young’s modulus, E  61.0 10 Pa  

Poisson ratio,   0.25 

Fluid pressure, 
0p  1.0 Pa  

Shear modulus,   54.0 10 Pa  

Max. normal displacement, 

0 (1 ) /p a      

61.875 10  
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(a)                                          (b)                                           (c) 

Figure 4.8. Vertical displacement in 3 different dipping angles of pressurized 

fracture in 2D: (a) 0 degree; (b) 45 degree; (c) 90 degree. 

   

(a)                                          (b)                                           (c) 

Figure 4.9. Stress contours in 3 different dipping angles of pressurized fracture 

in 2D: (a) 
yy for 0 degree ; (b) 

xx  for 45 degree; (c) 
xx  90 degree. 



 

74 

 

Figure 4.10. Normalized surface displacement in 3 different dipping angles of 

pressurized fracture in 2D comparing with the results by [Fu, 2014]. 

 

Figure 4.11. Vertical displacements of the surface are normalized and plotted 

versus position along the surface at different fracture inclinations [Pollard and 

Holzhausen, 1979]. An arbitrary constant may be added to these displacements. 

[Fu, 2014] also presented true 3D simulation examples. Figure 4.12 shows the 

geometry and mesh scheme of 3D pressurized fracture. The geometric aspect of 3D 

problem is similar to 2D example except that the fracture is not cut through in z 
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direction. Parameter b  in Table 3 indicates the half-length of fracture in z direction. 

Half domain is modeled since the symmetry of the problem and its dimensions are 

50m 50m 25m   on x , y  and z  axis respectively. This problem is simulated using 

3D tetrahedron elements. All the normal displacements on the boundary except the top 

one are fixed. The total number of elements used in this simulation is 649,647. The 

resolution of mesh is 3 meter in the coarse area and 0.07 meter in the fine area. 

 

Figure 4.12. Problem geometry for 3D pressurized subsurface fracture. 

The simulation results are displayed similar to 2D ones. The vertical 

displacements and stress contours for different dipping angles are plotted in Figure 4.13 

and Figure 4.14. The comparisons of the surface normal displacement distributions 

between the present model and [Fu, 2014] are shown in Figure 4.15 and Figure 4.16. 

The original problem takes place in a semi-infinite region. However, the present model 

can only simulate finite domain. Therefore, the slight difference is observed between 

two models that are possibly because of different size of simulating domains. The 
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comparisons for both 2D and 3D problem indicate reasonable agreement that enhanced 

the confidence that the model can be adopted to simulate the fluid filled fracture during 

the hydraulic fracturing simulation in the following sections.  

  
(a)                                                           (b) 

 
(c) 

Figure 4.13. Vertical displacement in 3 different dipping angles of pressurized 

fracture in 3D: (a) 0 degree; (b) 45 degree; (c) 90 degree. 
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(a)                                                           (b) 

   
(c) 

Figure 4.14. Stress contours in 3 different dipping angles of pressurized fracture 

in 3D: (a) 
yy for 0 degree; (b) 

xx  for 45 degree; (c) 
xx  90 degree. 

 

Figure 4.15. Normalized surface displacement along x  axis in 3 different 

dipping angles of pressurized fracture in 3D comparing with the results by [Fu, 2014]. 

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

-5 -3 -1 1 3 5

y
/


x

beta = 0

beta = 45

beta = 90

Fu. beta = 0

Fu. beta = 45

Fu. beta = 90



 

78 

 

Figure 4.16. Normalized surface displacement along z  axis in 3 different 

dipping angles of pressurized fracture in 3D comparing with the results by [Fu, 2014]. 

4.2.3 Mechanical and Fluid Flow Coupling Scheme 

The fluid flow in a narrow space between ideal parallel surfaces, in which one 

dimension is significantly smaller than other one or two dimensions, is described as 

lubrication flow in fluid dynamic shown in Figure 4.17. Although the fracture is not 

always flat, the mechanism of the fluid flow in the fracture is similar to the lubrication 

flow since the aperture is much smaller comparing with the length and height of whole 

hydraulic fracture. Using this conception, the fracture fluid flow can be captured by 

lubrication theory. The fracturing fluid is assumed to be incompressible Newtonian 

fluid from a point source injection, and its velocity and pressure gradient are negligible 

in normal direction of  the fracture. The two-dimensional mass conservation equation is 

derived as: 

 
injinji yyxxQq

t

tyxw





,

),,(
2   (4.51) 
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where w  is aperture, q  is the flux per unit height. 
iQ  is the fluid injection rate, 2  is 

2D divergence operator,   is the Dirac delta function,  
injinj yx ,  is the coordinates of  

injection point. Following the cubic law [Witherspoon et al. 1980], the flux for an 

infinitesimal element of fluid can be written as 

),,(
12

),,(
2

3

tyxp
tyxw

q 


 (4.52) 

Substituting Eq. (4.52) into Eq. (4.51), we obtain the lubrication equation 

(Batchelor. 1967), 

 
injinji yyxxQtyxp

tyxw

t

tyxw














,),,(

12

),,(),,(
2

3

2 


 (4.53) 

or simplified form, 

iQp
w

t

w














2

3

2
12

 (4.54) 

During the fluid injection and fracturing processes, part of fracturing fluid may 

diffuse into the formation [Carter, 1957; Wiles, 1986]. Therefore, total volume of 

injection fluid is basically composed by the fluid storage in the fracture and the leak-off 

into the reservoir. Hence, unconventional fracturing applications are usually 

characterized by high leak-off velocity, and significant pore pressure and effective 

stress change in the region around the wellbore and fracture [Cottrel and Baker, 1983; 

Settari and Warren, 1994; Ji et al., 2009]. However, in this section, we assume the 

injection and fracturing time are short enough so the leak-off can be neglected. 

Therefore, in Eq. (4.54), there is no leak-off term indicating the way we consider the 

mass conservation that all the fluid is trapped between the fracture surfaces. The 
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diffusion of fracturing fluid during the period is going to be captured by poroelastic 

model in the following section. 

iQ ),( txw

),( txp

 

Figure 4.17. Lubrication flow between ideal parallel from a point source 

injection. 

If the fracture is fully filled by the injecting fluid and there is no fluid lag, the 

assumption of the no flow boundary condition at the fracture tip is valid and realistic. 

On the other hand, if the fracture propagates faster than fluid [Garagash and Detournay, 

2000], there is empty space between the fluid front and fracture tip. However, 

measuring the length of the fluid lag needs tracking both the locations of fluid front and 

fracture tip, which is difficult to implement. Neither no flow boundary nor introducing 

fluid lag is convenient and practical to be implemented in FEM simulation. Even the 

length of fluid lag is unknown, the pressure in fluid lag is appropriately assumed to be 

zero. It is practical, and meantime however, compromised that zero pressure is assumed 

at the fracture tip and neglects the length of the region of fluid lag in FEM implements. 

The boundary conditions are 0QQi   at injection point, and the net pressure at the 

fracture tip is zero based on the assumption above. And zero flux boundary condition is 

discussed in [A Dahi Taleghani, 2009] which is not used in present work. Hence, the 

opening of fracture tip is zero. 



 

81 

Eq. (4.54) is the local mass conservation condition at each point of fracture 

plane that needs one more constraint function derived from a global mass balance to 

determine the time increament between each propagations. By integrating the fracture 

aperture over the whole fracture plane, and assuming that all fluid injected is rested in 

the fracture (no leak-off), the global mass constrain equation is written as: 

 
b

a

x

x
i wdxtQ  (4.55) 

for 2D hydraulic fracturing problem and  

 
fA

i wdAtQ  (4.56) 

for 3D hydraulic fracturing problem.  

Bring the lubrication equation, constitutive equation of mechanical behavior of 

rock matrix associated with global constrain function together, we obtained the 

governing equations for hydraulic fracturing problem: 

0,  jlikijkl buE  (4.57) 

iQp
w

t

w














2

3

2
12

 (4.58) 

 
fA

i wdAtQ  (4.59) 

During the coupling process and iterations, three variables play importation 

roles, which are aperture w , fluid pressure p  and injection time t . In addition, the 

physical behaviors of the aperture change due to rock deformation, fluid flow in the 

fracture and new boundary created by fracture extension are coupled each other, which 

need to be solved by trial and iterations. The iteration strategy is presented in the next 

section.  
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4.2.4 Iteration Strategy for Coupling Processes 

In this section, as mentioned above, the iteration processes are introduced to 

solve the fully coupled solid and fluid interactions. The porous rock is assumed to have 

very low permeability that the fluid barely diffuses into the rock matrix during the short 

term injection. Though the equation system shown in Eqs. (4.57)~(4.59) is similar with 

the fully coupled poroelastic equations, the variables are not as straightforward as the 

poroelastic problem in frame work of FEM, so that they cannot be solved in one matrix 

or linear equation system in present model. Eq. (4.57) and (4.58) are written in terms of 

displacement u~  and aperture w  respectively. The aperture w  is calculated based on 

the displacement field and location and orientation of fracture surface. Figure 4.18 

shows the relative displacements of the nodes in a type I partition element along the 

normal direction of fracture surface. The displacements of nodes along the normal 

direction of fracture are written as ],,,[~ nnnnn
u MKJIe uuuu . The aperture in this type I 

partition element can be calculated as following: 

 )()()(
3

1 nnnnnn

KMJMIM

typeI

e uuuuuuw   (4.60) 

and similarly, for type II the aperture is calculated as 

 )()()()(
4

1 nnnnnnnn

JKIKJMIM

typeII

e uuuuuuuuw   (4.61) 
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Figure 4.18. Relative displacements of the nodes in a partition element along the 

normal direction of fracture surface. 

The rock deformation and fluid flow are two separate analyses that need 

establishing a coupled algorithm and transfer the results between two analyses. More 

important, the fracture geometry is changing during the fracturing processes. Capturing 

this moving boundary is challenging and crucial. Figure 4.19 helps understanding of 

interaction between fracture, rock deformation and fluid flow for both straight and 

curved hydraulic fracture problem. The mesh for lubrication fluid has been generated 

for the full size of simulation object from the beginning. However, only the nodes (red 

dots) covered by the fracture are activated. During the fracture propagation, more nodes 

are activated instead of generating new mesh, which are relatively easier to be 

implemented. For curved fracture, the length of fluid element will be modified by the 

inclination of fracture at that location. The moving boundary problem can be solved by 

activating new nodes in the fluid mesh during the fracture growth. And another 

challenge is the nonlinear relationship between the aperture and pressure. From Eq. 

(4.58) we know the pressure distribution is governed by the cubic aperture and local 

mass conservation term that is the aperture change rate. This fluid driven fracturing 
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problem has been studied by [Detournay, 2004, Adachi and Detournay, 2008] with 

simple geometry by assuming the planar fracture surface. [Adachi et al., 2007; A Dahi 

Taleghani, 2009] structured an iteration scheme using Picard iteration.  

P

u

2D FEM  

for rock

1D FEM  

for fluid  
(a) 

Smax

Smin Smin

Smax

 
(b) 

Figure 4.19. Interactions between the rock deformation, aperture and fluid flow 

for 2D problem: (a) straight fracture; (b) curved fracture. 

This dissertation adopts nonlocal damage model to capture the fracture 

propagation and simulates the coupled hydraulic fracturing problem inspired by these 
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works. Figure 4.20 shows the flowchart of iteration processes. According to the 

flowchart, firstly, the model geometry for rock, fluid and fracture, realistic boundary 

conditions, as well as the material parameters are estimated in the beginning. The 

iterations and convergence check repeat for each propagating fracture configurations 

during the injection. The iterative procedures initiate from: (i) estimate an initial trial 

fluid pressure profile 0p  in the initial fracture. Then, (ii) an initial fracture aperture 0w  

is calculated by applying 0p  on the fracture surfaces using Eq. (4.57). (iii) update the 

injection time 0t  through the global fluid mass conservation by solving Eq. (4.59). (iv) 

update the pressure profile 1p  by solving Eq. (4.58) with 0t  and 0w . (v) solve Eq. 

(4.57) for new fracture aperture nw  and then updates the new injection time nt  using 

global fluid conservation equation (Eq. (4.59)). (vi) check the convergence by 

comparing the pressure profile in the present iteration with previous one, and examining 

the average error with a given tolerance. The convergence criterion is written as:  

cfNE
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i

NE

i
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i
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i
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pp
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




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
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1
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 (4.62) 

where n

ip  and 1n

ip  are the pressure in i
th

 element at the present and previous step 

respectively, 
f  is the average error, c  is the given tolerance. If Eq. (4.62) is not 

satisfied, solve the fluid flow equation Eq. (4.58) with updated aperture  

111 )1(   nnn www   (4.63) 

where 5.00   and 2.0  is used in this work to stabilize the convergence. The 

new injection time 
1nt  is updated by 

1nw . The iterations repeat until the solutions 
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converged in the given tolerance. (vii) the converged pressure profile is then applied on 

the fracture surfaces to simulate the fracture propagation. (viii) the fracture propagates 

and updates length or configuration of fracture. Therefore, iterations run again with the 

new fracture geometry and repeat the steps mentioned above until the target injection 

time or target length is reached.  
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Figure 4.20. Flowchart illustrating the iterations for the fully coupled procedure. 

4.2.5 Identification of Newly Extended Fracture in the Damage band 

The converged fluid pressure profile is applied as boundary condition to 

simulate the new fracture growth. In nonlocal damage model, a damage band or fracture 

process zone will develop at the crack tip. The width of damage band is governed by the 
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internal radius R , which is composed by several damaged elements. The band shape of 

damage zone brings difficulty to fluid flow solution and rock mechanical part on 

applying pressure boundary conditions. To keep the validation of assumptions in the 

last section, we assume the fluid will choose a most favorable flow path within damage 

band shown in Figure 4.21. Figure 4.21(a) shows a pre-existing fracture. The orange 

dots in Figure 4.21(b) represent the centers of damaged element at both crack tips. The 

most favorable flow path is determined by the polynomial fitting based on these 

scattered damage element centers. Finally, by knowing the polynomial function from 

fitting, the newly extended fractures are determined shown as Figure 4.21(d), which 

serves as new boundary for both rock mechanical and fluid flow solutions in the next 

coupling processes.  

This technique works for 2D hydraulic fracture process and 3D one with a 

fracture that is cut-through in one of three dimensions. Though 3D simulation could 

adopt similar conception, the true 3D fracture is mostly propagating with complicate 

geometric shape due to complex geological conditions. It is very difficult and time 

consuming to find a fitted spatial curved surface in the damage band. The geometric 

problem becomes even tougher when the hydraulic fracture is interacting with nature 

fractures. Meantime, since the element size is required to be smaller than characteristic 

length 
cl  or internal radius R  with the length of several millimeters, the true 3D 

simulation using nonlocal damage theory requires large computational volume even for 

the problem in the domain with length of several meters. 
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Figure 4.21. Identification of newly extended fracture in the damage band. 

4.2 Conclusion 

In this chapter, as another crucial aspect of hydraulic fracturing processes, the 

methodologies of fluid flow for the hydraulic fracture propagation simulation were 

presented. Generally, the flow mechanisms are very difficult to be captured by an 

integrated method. The present work introduced two models for fluid analysis using 

poroelastic model and lubrication theory. For both theories, analysis coupled the fluid 

flow and deformation of rock mass based on different mechanisms.  

Using lubrication theory, the flow in fracture was analyzed to solve the fluid 

pressure profile in the pre-existing and newly extended fracture. And the physical 

behaviors of the aperture change, fracture fluid pressure and new boundary created by 

fracture extension were coupled each other, which need to be solved by trial and 

iterations. Three coupled equations represented the mechanical equilibrium state of rock 

mass, continuity equation of fluid following cubic law and global mass conservation 

respectively. Iteration strategy for coupling processes was also illustrated in this 

chapter. More importantly, capturing the moving boundary of a propagating fracture 

was captured by nonlocal damage theory and 3D EPM. A new technique to identify the 
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most preferable path in the damage band using polynomial fitting is presented so that 

the 3D EPM can be used on this fitted path. The pressure boundary condition is 

successfully applied in the fractured element supported by the simulation examples of 

3D EPM on pressurized subsurface fracture. The leak-off effects are neglect based on 

the assumption that the inject time are relatively short. 

The fully coupled poroelastic model captures the porous solid deformation and 

porous fluid diffusion very well. A well agreement was found by comparison between 

the results from present poroelastic model and the analytical solution of Terzaghi one-

dimensional consolidation. However, poroelastic model cannot be claimed as an ideal 

model to analyze the fluid flow in the fracture. The present work artificially increased 

the permeability of fractured element to simulate the conductivity enhancement by the 

fracture opening. The fluid will automatically find the path to the fracture tip and the 

leak-off phenomenon can be performed by the diffusion equation in poroelastic model. 

Although this model is not rigorous enough to provide precise fluid pressure along the 

fracture surface, the overall tendency of fracture and pore pressure distribution and 

fracture propagation can still be modeled considering the computational feasibility and 

efficiency, especially for the hydraulic fracture problem with complex geometry and 

boundary conditions such as hydraulic fracture and natural fractures interaction. The 

simulation examples of hydraulic fracturing will be presented in Chapter 7. 
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Chapter 5. Numerical Simulation of Fracture Propagation 

under Mechanical Loading 

Propagation of fractures, especially those emanating from wellbores and closed 

natural fractures, often involves Mode I and Mode II, and some times Mode III fracture 

propagation, posing significant challenges to its numerical simulation. When an 

embedded inclined fracture is subjected to compression, the fracture edge is constrained 

by the surrounding materials so that its true propagation pattern cannot be simulated by 

2D models. Additionally, fracture pattern is usually complex due to many factors such 

as initial imperfection, grain size of rock and heterogeneity. However, this work 

generally focuses on the major fracturing pattern of mixed mode fracture adopted the 

assumption of material homogeneity and isotropy. Take advantage of the nature of 

finite element method, the elemental based distributed heterogeneity can be 

conveniently introduced into the model. 

Before being adopted in the hydraulic and thermal fracturing modeling 

especially for 3D problem, the constitutive models must successfully simulate the 

fracture pattern under mechanical loading. In this chapter, a virtual multidimensional 

internal bond (VMIB) model is presented to simulate three-dimensional fracture 

propagation. The model is applied to simulate fracture propagation and coalescence in 

typical laboratory experiments and is used to analyze the propagation of an embedded 

fracture. Simulation results for single and multiple fractures illustrate 3D features of the 

tensile and compressive fracture propagation, especially the propagation of a Mode III 

fracture. VMIB provides well suggestion on the fracture propagation pattern, however, 

also has the common disadvantage of the strain softening model that is called mesh size 
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sensitivity. As introduced in Chapter 2, the phenomenon of mesh size sensitivity is 

discussed by [Bazant and Planas, 1998] that indicates the results are affected by using 

different mesh sizes. Continuum damage theory in nonlocal formulation is adopted in 

this work to remedy the spurious size dependency. Using nonlocal formulation, finite 

element analysis can successfully calculate energy dissipation during strain localization 

through capturing stable damage driving force independent with the size of element. A 

certain representative volume defined nonlocally by a characteristic length 
cl  that is a 

dependent material parameter with the grain size of rock. Mode I and mixed mode 

fracture according the experiments are tested to validate the performance of nonlocal 

damage model on representing the pre-peak and post-peak mechanical behaviors of 

rock during the propagation. 

5.1 Simulating Fracture Propagation in Different Modes Using VMIB 

5.1.1 Mode I fracture 

To examine the performance of VMIB and 3D EPM in simulating tensile (Mode 

I) fractures propagation and their interaction, a cubic specimen with two sawed 

horizontal rectangular fractures is simulated. The geometry is shown in Figure 5.1. The 

uniaxial vertical tensile load is applied on the top of the specimen. Table 4 shows the 

parameters used. The mesh consists of 12, 24 and 34 rows of nodes plotted on the x, y 

and z direction respectively. The total element number is 41745 and the total node 

number is 9792. Displacement controlled loading is employed in this simulation.  
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Table 4. Parameters of Simulations Using VMIB Model  

Parameters of intact element: 

Young’s modulus, E  30.5 GPa 

Poisson’s ratio,   0.20 

Tensile strain strength, 
t  310105.0   

Parameters of 3D EPM: 

Normal stiffness coefficient, hKn /  10.0 GPa/m 

Shear stiffness coefficient, hK s /  10
-8

 GPa/m 

Fracture width, h  1.0 mm 

Parameters of 3D VMIB: 

c  0.15 

n  4.0 

 

 

Figure 5.1. Problem geometry and boundary condition of a specimen with two 

horizontal rectangular fractures, subjected to vertical tension. 

Figure 5.2(a) shows the initial and final fracture patterns. From Figure 5.2(b) to 

(d), the fractures develop from initial crack tips and propagate horizontally as typical 

Mode I fractures. As the fractures interact with each other, the stress field around the 

fracture tips is disturbed. Consequently, the newly extended fracture deviates towards 
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the other one and coalesce. Figure 5.2(e) and (f) show the fracture surface and deformed 

mesh configuration upon specimen failure. 

       

(a)                            (b)                            (c)                            (d) 

   

(e)                            (f) 

Figure 5.2. Fracture propagation: (a) initial fracture; (b-d) fracture propagation; 

(e) fracture surface at failure,and (f) deformed mesh configuration (node displacements 

magnified 300 times). 

5.1.2 Mode II fracture 

The second simulation explores Mode II fracture propagation and interaction. A 

cubic specimen with two sawed inclined rectangular fracture is simulated. The 

dimensions and boundary conditions are shown as Figure 5.3. Material and model 

parameters showed in Table 4. The mesh consists of 26 rows of nodes plotted on the 
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each direction. The total element number is 78125 and the total node number is 17576. 

Displacement controlled load is used in this simulation. Figure 5.4(a) shows the initial 

fracture. From Figure 5.4(b) to (d), the fractures propagate from both wings of the 

initial cracks. The left wing of lower initial fracture and the right wing of upper fracture 

yield newly-extended fracture firstly along the direction perpendicular to the fracture 

surface. 

 

Figure 5.3. Problem geometry and boundary conditions for the cubic specimen 

with two sawed inclined rectangular fractures, subjected to vertical compression. 

Then, the newly extended fractures develop along the vertical direction axis of 

the specimen in the direction of the applied maximum stress. This agrees with 

experimental observation [Bobet and Einstein, 1998]. The fractures extend from near 

side initial fracture tips and converge in the middle of the specimen. Figure 5.4(e), (f) 

shows the fracture surface and deformed mesh configuration at failure. This agrees with 

experimental observations in Figure 5.5. 
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(a)                            (b)                            (c)                            (d) 

   

(e)                         (f) 

Figure 5.4. Fracture propagation: (a) initial fracture; (b-d) fracture propagation; 

(e) fracture surface at failure,and (f) deformed mesh configuration (node displacements 

magnified 300 times). 
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Figure 5.5. Experimental observation of wing crack growth in uniaxial 

compression [Bobet and Einstein, 1998]. 

5.1.3 Embedded fracture (Mix Mode-I, II, III) 

Simulating the propagation of an embedded fracture subjected to shear stresses 

is a challenging problem in geomechanics. In this case, the fracture simultaneously 

involves Modes I, II and III. To model this phenomenon, consider the simulation of 

embedded elliptical fracture. The dimensions and boundary conditions are shown in 

Figure 5.6. Material and model parameters are given in Table 4. In presented meshing 

scheme, there are 45 rows of nodes each plotted on the x, y and z direction. The total 

element number is 425920 and the total node number is 91125. Figure 5.7(a) shows the 

initial fracture. The processes of fracture propagation are shown in Figure 5.7(b)~(f).  

The normal direction of the initial fracture plane is given as 60 . 



 

97 

 

Figure 5.6. Problem geometry and boundary conditions of a cubic specimen 

with an embedded elliptical fracture. 

The appearance of the crack tip after some crack growth has occurred is shown 

in Figure 5.7(b). It is observed that the crack has not grown by extending its own plane 

but by generating multiple tiny fracture surfaces which deviate from its original crack 

front. Similar phenomenon is captured in the experiment for observing the crack 

propagation in anti-plane shear tested by [Knauss, 1970], which is shown in Figure 5.8. 

The newly-extended fractures “straddle” the pre-existing straight crack tip. Then these 

tiny fractures around the original crack tip will form new crack tip which will influence 

the orientation of consequently opened fracture.  Figure 5.7(c)-(f) shows that the 

fracture develops from upper and lower tips of initial fracture in a typical Mode II 

fracture. The fracture propagation is slower on the sides tip as it propagates outwardly 

to the lateral side of specimen. From Figure 5.7, the side fracture that initiated from the 

side tip rotates from the initial crack tip toward the lateral side of specimen, which 

represents the Mode III response. 
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(a)  

(b)  

(c)  

(d)  
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(e)  

(f)  

Figure 5.7. Fracture propagation stages: (a) initial fracture and (b–f) propagated 

fracture. 

Figure 5.9 shows the fracture surface at failure from different viewpoints. For 

the purpose of visualization, the failure specimen is sliced into 6 pieces which is shown 

in Figure 5.10 and Figure 5.11. Figure 5.12 indicates the rotation angle of Mode III 

fracture between the middle slice and lateral surface of specimen. Also, it shows the 

fracture surface tends to propagate along vertical direction, or the maximum stress 

direction. As a result, according to the observed phenomenon, if the specimen is large 
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enough, mode III fracture will gradually turn to be mode I which open in the direction 

of maximum tensile stress. Mode II fracture has the similar tendency that gradually 

propagates into mode I pattern which is shown in mode II fracture simulation above. 

 

Figure 5.8. Close-up view of crack extension from the direction normal to the 

original crack as observed in experiments [Knauss, 1970]. 

This pattern of fracture propagation has been observed in experimental modeling 

of 3-D crack growth from pre-existing circular crack by [Adams and Sines 1978]. Also, 

[Dyskin et al., 2003] tested wing crack model using a brittle material with the presence 

of the contact effect. In their experiments, [Dyskin et al., 2003] observed secondary 

cracks (called “wings") branched towards the axis of compression from the upper and 

lower tips of the initial circular crack due to mixed mode of IIK  and IIIK  related to the  

contact between pre-existing crack surface (Figure 5.13) 
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Figure 5.9. Illustration of fracture surface at failure. 

 

Figure 5.10. Illustration of the location of the slices in the specimen. 
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Figure 5.11. Illustration of fracture geometry (surface orientation) in the 

specimen for different slices from slice 1 to slice 6. 

 

Figure 5.12. The fracture rotates between the middle slice and the side slice of 

the specimen as it propagates in mode III. 
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Figure 5.13. Two-dimensional wing crack growth ( IIK ) and 3D wing crack 

growth (mixed mode of IIK  and IIIK ). 

5.2 Simulating Fracture Propagation Using Nonlocal Damage Model 

5.2.1 Three Point Bending Test 

To verify the nonlocal formulation of damage model in remedying the spurious 

mesh sensitivity, the three-point bonding test of notched concrete beam is simulated. 

The cross section of the beam is 100 mm by 100 mm with the span of 450 mm. To save 

computational volume, the thickness is reduced from 100 mm to 10 mm. The forces on 

the loading points are multiplied by 10 and then compared with the test results. The 

notch is created with 5 mm width and 50 mm height on the lower side of the beam. 

Figure 5.14 shows the dimensions of the simulated specimen. Three mesh schemes are 

simulated to describe the effects of different mesh sizes, which are shown in Figure 

5.15. Finer meshes are generated near the notch sections with approximate sizes of 5 

mm, 2.5 mm and 1 mm respectively. 
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Figure 5.14. The dimensions of the simulated three points bending specimen. 

In present numerical tests, the elements are linear tetrahedron element with 

single integral point, and the Young’s modulus and Poisson’s ratio are set as 

GPaE 20  and 2.0  respectively. The damage evolution is represented by nonlocal 

formulation of exponential softening expressed as Eq. (2.32), in which the parameters 

are set as 5

0 109   and 3107 f . In Eq. (2.32), 0  associated with Young’s 

modulus E  controls the peak value of elemental strain-stress curve and 
f  governs the 

total area under strain-stress curve, in other words, is to control the ductility of material. 

A larger value of 
f  means higher energy consumed during softening and failure 

process. For nonlocal weight function, a quartic form function is employed shown as 

Eqn. (2.36). The nonlocal interaction radius is set to be mmR 5.2 .  

 

(a) 



 

105 

 

(b) 

 

(c) 

Figure 5.15. Mesh schemes with element sizes of: (a) 5 mm; (b) 2.5 mm; (c) 1 

mm. 

Figure 5.16~Figure 5.18 show the numerical results for three-point bending test. 

Figure 5.16 displays the evolving contours of nonlocal formulated damage density for 

each mesh scheme. The damage density ranges from zero to one. Zero value of damage 

density means the intact material shows in white color and zero indicates completely 

damaged represented by blue color. The damage firstly occurs in the notch tip, and then 

develops vertically. The overall size of the damage area are still controlled by nonlocal 

interaction radius R . The highly damage regions, where the damage density is higher 

than 0.95, can be observed with width around 5 mm that is independent with the 

element size used in the simulation. The simulated load-displacement curves compared 

with the experiment envelope are shown in Figure 5.17. All the curves agree with the 
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experiment curves well and close to each other, especially for the curves result from 2.5 

mm and 1 mm element size, which indicate that the nonlocal damage model used has 

minimized the mesh size dependency. It is logical to consider that 5 mm element size is 

greater that the preset 2.5 mm interaction radius that induced in some degrees of 

discordance with the results from other two mesh schemes. Still, 5mm element holds 

considerable accuracy. [Jirasek, 2004] discussed that inaccuracy occurs when element 

size is larger than the interaction radius. Figure 5.18 shows the deformed mesh 

configuration. The largest deformation still concentrates within one element that means 

the major fracture will be located in most preferable path throughout the damage region. 

This conception will be used in the following hydraulic fracturing simulation. 
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(a)                                      (b)                                      (c) 

Figure 5.16. Nonlocal damage density contours of the process zone in 

simulations with element sizes of (a) 5 mm; (b) 2.5 mm; (c) 1 mm. 

 

Figure 5.17. Load vs displacement diagram. 
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Figure 5.18. Deformed mesh configuration at failure. (amplified by 1000 times). 

5.2.2 Mix-mode Test of Double-Edge-Notched Specimen 

Beside the pure tensile Mode I fracture, the rock formation is often subjected to 

a shear and tension or compression combined loading and develops mixed-mode 

fracture propagation. To test the present model in simulating mixed mode fracture, we 

are presenting a simulation of the double-edge-notched (DEN) specimen with load-path 

6a reported in [Nooru-Mohamed, 1992]. The dimension of DEN is 200 mm by 200 mm 

with the thickness of 50 mm, with two cut-through 5 mm by 30 mm notches shown in 

Figure 5.19(a). The displacements on the bottom and lower-right boundary are 

constrained. Displacement control is used in the experiment. An axial tensile and a 

lateral compressive load are applied on the top and upper-left side of specimen 

respectively. The ratio of displacement increment on top and upper-left side is constant 

and equals to 1/ 21  . The Young’s modulus and Poisson’s ratio are GPaE 20  and 

2.0  respectively. For damage evolution function, we use 4

0 102.1  and 

4106 f . The nonlocal interaction radius is set to be mmR 5.2 . 
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(a)                                                         (b) 

Figure 5.19. The simulated double-edge notched specimen: (a) dimensions; (b) 

experimental crack pattern. 

Figure 5.20 shows the numerical results. The fracture pattern is represented by 

the damage density and deformed mesh configuration. The fracture pattern shown in 

Figure 5.19(b) agrees well with experiment result, which indicates the present model 

can predict the propagate direction if material is subjected to tensile and shear combined 

load. 
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Figure 5.20. Numerical results: (a) crack pattern; (b) nonlocal damage density 

contour. 

5.3 Conclusion 

This chapter simulated the mechanical behaviors of rock subjected to 

mechanical loading using virtual multidimensional internal band model and nonlocal 

damage model respectively. Mode I, II and III fractures sometimes are involved 

simultaneously due to various stress status. The failure process of brittle rock was 

captured using the VMIB evolution function at the micro scale. The results show that 

typical features of 3D tensile and compressive fracture propagation can be well 

represented. Especially, simulation results by 3D VMIB and 3D EPM demonstrate the 

propagation of Mode III fracture. Such simulations improve understanding of 3D 

fracture propagation mechanisms and provide a means of designing hydraulic fractures 

for reservoir stimulation, as well as predicting the thermal fracturing in geothermal 

reservoir. In Chapter 6, VMIB model is employed in the partial coupled thermal 

mechanical model to simulate the thermal fracturing during the cold fluid injection. 

The spurious mesh size sensitivity was minimized using continuum damage 

model in nonlocal formulation. The results matched well with the experimental 
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observation, suggesting that the presented method can capture the main features of 

mode I and II fracture propagation. Though the mesh dependency can be minimized by 

using nonlocal theory, the element size should be several times smaller than the 

characteristic length in the scale of mm or cm. The implementation of simulation was 

feasible on the aspect of computational volume since that the simulating domains in the 

examples were less than one meter in this chapter. For larger simulation domain such as 

reservoir scale, however, the simulation using nonlocal damage theory becomes 

extreme difficult. In Chapter 7, though the model is encoded in true 3D, the simulating 

domain is a thin plate with the thickness represented by a single layer of element in 

order to reduce the memory needed for the simulation.  
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Chapter 6. Modeling 3D Thermal Fracturing Using VMIB 

The influences of thermo-mechanical processes on fracture initiation and 

propagation are observed in enhanced geothermal systems. Cold water injection and 

heat extraction in the geothermal reservoir will cause dramatic temperature changes and 

volumetric contraction. A volumetric change results in deformation and stress of rock 

and sometimes rock failure. The coupling thermal- mechanical processes occur on 

various time scales and may have different influence upon the problem of interest. 

Generally, the thermal effects should be considered during long term injection owing to 

low thermal diffusivity of rocks. High tensile stress are induced by cooling of the rock 

fractures surfaces and tips, indicating a potential for extension of the secondary thermal 

fractures. As a result, thermal stimulation has been suggested as a means of enhancing 

reservoir permeability due to thermal fracture and opening and growth. 

Our proposed model is implemented using a FEM and is used to study the 

development and propagation of 3D thermally-induced fractures in solid. Thermal 

fractures can result from the nonlinear deformation of the solid in response to thermal 

stress. Before the rock reaches the final failure stage, material softening and bulk 

modulus degradation can cause changes in the thermo-mechanical properties of the 

solid. In order to capture these aspects of the solid fracture, a VMIB-based thermo-

mechanical model is derived to track elastic, softening, and the final failure stages of the 

rock response with the change of its temperature field. The thermo-mechanical 

properties of rock changes as its bulk modulus evolves are derived from a nonlinear 

constitutive model. On the other hand, to represent the thermo-mechanical behavior of 
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pre-existing fractures, the three dimensional element partition method (3D EPM) 

[Huang and Zhang, 2010] is employed.  

6.1 Thermo-mechanical Model 

6.1.1 Constitutive Model and Field Equations 

Thermally induced strain results from the volumetric change such as expansion 

with heating and contraction with cooling. Thermal stress arises from cooling or heating 

when the solid is confined by the surrounding material and/or boundary conditions 

which will be discussed in the simulation examples. By including an additional thermal 

term into the governing equations, a nonlinear thermo-mechanical constitutive equation 

can be obtained as [Nowacki, 1976], 

ijmnijmnij TC   ˆ  (6.1) 

where 
ij  and 

ij  are the components of stress and strain tensor (tension is considered 

positive), T  is the temperature change equal to )( 0TT  , in which T  and 0T  are the 

current temperature and initial temperature, respectively. 
ij  is the Kronecker’s detla. 

The thermal coefficient ̂  in Eq. (6.1) is defined as: 

mK ˆˆ   (6.2) 

where K̂  is bulk modulus defined as 
klklklklklkl CCCK  332211

3

1

3

1

3

1ˆ   for an 

isotropic material, and m  is the thermal expansion coefficient of solid matrix. The 

above constitutive equations combined with stress equilibrium and energy balance 

equations, yield the following Navier’s and thermal diffusion field equations,  

0ˆ
,,  ijilikijkl TuC   (6.3) 

02  TcT T  (6.4) 
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6.1.2 Discretized Field Equations in FE Form 

In the following, the finite element method for the nonlinear thermo-mechanical 

problems is presented. To approximate the field variables of displacement, u , 

temperature T , and total temperatures change, T , shape functions are used: uNu ~
u , 

TNT
~

T , TNT
~

 T
, where 

uN  and TN  are the shape functions for the solid 

displacement and temperature fields, respectively. u~  and T
~

  are nodal displacements 

and total temperatures change. These approximations are substituted into Eq. (6.3) and 

(6.4) (Galerkin method) yielding the following equations 

fTVuK
~~~   (6.5) 

0
~~
 TUTR


 (6.6) 

where 


eV

T dVDBBK  (6.7) 


eV

T

T dVmNBV ̂  (6.8) 


eV

T

T

T dVNNR  (6.9) 

 

eV

T

TT

T dV)()( NcNU  (6.10) 

Using Crank-Nicolson method for time approximation scheme to discretize the 

heat diffusion equation shown as Eq.(6.6) , the final finite element formula can be 

obtained  

1

~~
)(  nn tt TUTUR   (6.11) 
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Where 
1

~
nT  is the temperature in the previous time step, and 

nT
~

  is the temperature 

change in the present step. 

6.1.3 Representation of Mechanical and Thermal Properties of Fractures 

Since the thermal-mechanical problem is not a fully coupled one, i.e., 

mechanical deformation does not influence the thermal diffusion, the thermal coupling 

term in the elasticity equations can be taken as a mechanical load caused by temperature 

changes during the calculation. Once the temperature field is known, the thermal stress 

load can be obtained. Considering the coupling part, after rearrangement of Eqn. (6.5), 

the field equation becomes 

TVfuK
~~~   (6.12) 

The second term on the right side describes how the temperature changes influences the 

stress-strain field through displacements. 

fracture

      

fracture

 

Figure 6.1. Thermo-mechanical response of a fracture in traditional FEM. The 

arrows show the cooling-induced nodal forces for contraction. 

To achieve the volume change such as expansion by heating and shrinking by 

cooling in the finite element modeling, equivalent node forces (ENFs) caused by the 
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nodal temperature changes are applied on the corresponding nodes and in the 

corresponding directions. The mathematical expression of equivalent node forces 

(ENFs) is shown in Eq. (6.12), which is TV
~

 . For example, we assume that the 

temperature over a domain changes instantaneously and uniformly. The ENFs are 

canceled on the interior nodes because of their same temperature change, and only the 

enforced ENFs on the boundary nodes will cause a volumetric change (shown in 2D in 

Figure 6.1 for cooling process). 

     

fracture

   

fracture

 

Figure 6.2. Thermo-mechanical response with original thermal properties. 

This dissertation uses 3D element partition method (3D EPM) for fracture 

creation so there is no need to mesh for pre-existing fracture. If the i
th

 element is cut 

through by a fracture, the element will be transferred to the partition element based on 

the original structured. The i
th

 element stiffness matrix e

iK  will be replaced by EPM

iK  

before being assembled into global stiffness matrix K . However, the thermal and 

thermo-mechanical coupling part of the partition element also needs to be modified. In 

Figure 6.2, the elements with red boundaries have been changed into partition elements 

after being cut by fracture shown as thick line. Having their original thermal and 

coupling properties, the object in the figure will perform like a non-fractured one, 
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because that the ENFs status in Figure 6.2 is equal to the resultant nodal forces in 

Figure 6.3(a) and (b). If the thermally induced ENFs of the fractured elements are 

removed, shown in Figure 6.3(a), the resultant nodal force shown in Figure 6.3(b) will 

be the same as the one in Figure 6.1. Mathematically, before being assembled into the 

coupling part of global matrix V , the thermo-mechanical coupling term in element 

level e

iV  should be multiplied by   which equals 0 if the i
th

 element is fractured. 

Therefore, the fractured element is now partitioned both with respect to its mechanical 

properties and its volumetric thermal deformation so that deformation behavior of a 

fracture under thermo-mechanical load is numerically represented. The same 

modification will be applied to newly extended fractures. As a result, the fracture will 

be represented in a blunt sharp that related the size and shape of the fractured elements. 

This could influence the precision of calculation if the element size is relative large. 

               

fracture

 

                                     (a)                                              (b) 

Figure 6.3. (a) Thermo-mechanical response of fractured element; (b) thermo-

mechanical response of partition element after modification. 
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6.2 Simulation Examples 

6.2.1 Functional Test I: Single Fracture 

To examine the performance of thermo-mechanical VMIB formulation and 3D 

EPM in simulating thermal fracture propagation, a cubic sample of rock having a 

fracture at its top is simulated. The rock block and fracture dimensions are shown in 

Figure 6.4 Table 5 shows the parameters used in the present simulations. This 

dissertation assumed no friction between shearing fracture surfaces. Therefore, SK  is 

set to be very small. A small sample is used so that we may focus on the ability of the 

new VMIB constitutive model and its numerical implementation to capture softening by 

thermal stress. Since the size of the object is relatively small, the conduction of heat 

through the rock sample occurs in a short period of time. Therefore, a uniform cooling 

is assumed to test the mechanical response due to temperature change without taking 

into account the transience of temperature diffusion (this is consideration in the next 

section). The displacements of all rock surfaces except the top one are confined in the 

direction perpendicular to them. The total number of elements is 156,975 and the total 

number of node number is 35,280. For each simulation step, a temperature drop of 

C15.0  is used with a total number of 120 steps. 

Table 5. Simulation Parameters 

Parameters of intact element: 

Young’s modulus, E  30.5 GPa 

Poisson’s ratio,   0.20 

Tensile strain strength, t  310105.0   

Parameters of 3D EPM: 

Normal stiffness coefficient, hKn /  10.0 GPa/m 

Shear stiffness coefficient, hK s /  10
-8

 GPa/m 

Fracture width, h  1.0 mm 
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Parameters of 3D VMIB: 

c  0.15 

n  4.0 

Thermal properties of rock 

Thermal diffusivity, 
Tc  sm /106.1 26  

Thermal expansion coefficient, 
m  15108.1  K  

 

Figure 6.4. The problem geometry showing size and fracture set. 

Figure 6.5(a)~(f) shows the deformed mesh configuration amplified 1200 times 

for different temperature drops. Figure 6.6(a)~(f) shows the middle slice of the 

maximum principal stress contour in the deformed configuration. Firstly, significant 

thermally induced volumetric displacements takes place near the pre-existing fracture 

surfaces due to the shrinkage of rock as shown in Figure 6.5(a). The fracture is forced to 

open, causing stress concentration at its tip. With increasing cooling, the thermal stress 

and displacement increase, causing stress concentration at the fracture tip to rise 

bringing the tip region rock into softening stage, and finally resulting in the formation 

of a newly extended fracture. Figure 6.7 shows a plot of Km  verses the maximum 

principal strain for the element at the initial fracture tip. Bulk modulus K  retains its 
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original value for a few steps and then, gradually degrades as the tensile strain reaches 

strain level at ultimate strength. This example verifies that the present model is capable 

of simulating the nonlinear process of thermal fracturing. 

 

(a)                                       (b)                                       (c) 

 

(d)                                       (e)                                       (f) 

Figure 6.5. Deformed mesh configuration (amplified 1200 times) when the rock 

was cooled by: (a) C3 ; (b) C6 ; (c) C9 ; (d) C12 ; (e) C15 ; (f) C18 . 
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(a)                                       (b)                                       (c) 

 

(d)                                       (e)                                       (f) 

Figure 6.6. The middle slice of maximum principal stress contour with deformed 

mesh configuration (amplified 1200 times) when the rock was cooled by: (a) C3 ; (b) 

C6 ; (c) C9 ; (d) C12 ; (e) C15 ; (f) C18 . 
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Figure 6.7. Thermal coefficient Km  verse maximum principal strain for the 

element at the initial fracture tip. 

6.2.2 Functional Test II: Randomly Distributed Multiple Fractures 

The second simulation explores thermal fracture propagation and interaction. 

Taking advantage of 3D EPM to represent thermal response of fractures, multi-fractures 

can be simulated with a structured mesh without remeshing in the process of fracture 

propagation. A cubic specimen with 20 randomly distributed small fractures is 

considered. The dimensions are shown in Figure 6.8 and the material and model 

parameters are listed in Table 5. As before, uniform cooling is assumed to test the 

mechanical response of fractures to a temperature change. The total number of element 

is 380,880 and the total number of node number is 83,300. For each step, the 

temperature drop is C0.2  with a total number of 19 steps. 
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Figure 6.8. The problem geometry showing size and fracture set. 

Figure 6.9 shows the propagation of thermal fractures. Initial fractures tend to 

open in the cooling process and then propagate in their initial plane. However, the 

displacement and stress fields are changed due to the existence of neighboring fractures. 

Therefore, fractures tend to converge during the cooling shown red lines in Figure 

6.9(c) and red circle in Figure 6.10(c). Figure 6.10(a)~(c) shows the maximum principal 

stress contour when the rock is cooled by (a) C28 , (b) C34 , and (c) C38 . 

Thermal stress is concentrated at each fracture tip as the fractures open due to material 

shrinkage. For the same reason, fracture opening releases the stress on the both side of 

the fracture surfaces (displayed by green and blue color). Logically, the thermal stress 

of areas surrounded by the fractures is largely released due to gradual loss of 

confinement during the propagation of fractures as shown Figure 6.10(c) highlighted in 

the red dash box. 
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(a) 

 
(b) 

 
(c) 

Figure 6.9. Propagation of thermal fracture when the rock was cooled by: (a) 

C28 ; (b) C34 ; (c) C38 . 
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(a)                                                        (b) 

 
(c) 

Figure 6.10. Maximum principal stress contour when the rock was cooled by: (a) 

C28 ; (b) C34 ; (c) C38 . 

6.2.3 Thermo-mechanical Response of a Wellbore 

In this example, a linear elastic thermo-mechanical response is studied while 

considering transient heat diffusion. The problem geometry and dimensions are shown 

in Figure 6.11. Simulation parameters for this example are listed in Table 5. The initial 

rock temperature is C250 , and is set to be C50  on the surface of wellbore. Figure 

6.12 shows the temperature distribution along the radial direction at different time steps. 

Figure 6.13 shows the thermal stress distribution along the radial direction in different 
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time steps. In the present meshing scheme, the total number of elements is 38400 and 

the total number of nodes is 9225. 

 

Figure 6.11. The problem geometry . 

 

Figure 6.12. Temperature distribution along the radial direction of wellbore. 
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Figure 6.13. Tangential stress distribution along the radial direction of wellbore. 

6.2.4 Multiple Fractures Emanating from a Wellbore 

Next, a wellbore is simulated with multiple pre-existing cracks emanating from 

it. A number of 16 initial cracks (3.33 to 4 cm in length) are equally spaced around the 

wellbore shown in Figure 6.14. Simulation parameters for this example are listed in 

Table 5.  The initial temperature in the matrix is C220  and C40  on the surface of 

wellbore. Because it is assumed that all fractures cut through the rock in z direction and 

propagate in the x-y plane, a single layer of elements in z-direction is used, and all 

displacements in the z-direction are constrained to be zero. In the present meshing 

scheme, the total element number is 100,800 and the total node number is 40,800. Since 

the diffusion rate of temperature tends to become slower as time goes on, a gradually 

increasing time step scheme is utilized. The initial time step is 2 minutes, and then it is 

increased to 20 minutes after 20th step, 40 minutes after 50th step, 80 minutes after 

100th step, 160 minutes after 150th step, 320 minutes after 200th step, 640 minutes 

after 250th step, respectively. 
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To simulate the impact of the in-situ stress, 2 different in-situ stress schemes are 

used in the examples, which are (a) MPaSH 6 , MPaSh 6 ; (b) MPaSH 6 , 

MPaSh 4 . The results are summarized in Figure 6.15 and Figure 6.16. Figure 6.15 

shows the temperature field at 52.4 days after cooling process started. Figure 6.16 

displays the maximum principal stress (tensile stress considered positive). The 

magnitude of thermal stress are indicated by the legends. The lighter shade shows 

higher thermal stress values (around the wellbore) where the cooling zone is located. 

Figure 6.16 also shows fracture propagation. Since the fracture creation relieves the 

stress of a fractured element to zero, the fractures are shown in dark color as they 

propagate near the wellbore.  Moreover, lighter zones are found at the fracture tips 

where stress concentration occurs due to opening of fractures. 

For the isotropic in-situ stress field, in Figure 6.16(a), thermal fractures tend to 

propagate in radially. In this case, the in-situ stresses have no impact on the main 

direction of fracture opening. On the other hand, in Figure 6.16(b), for anisotropic stress 

field, the dominant cracks grow in the direction of SH. It should be noted that the 

fractures do not propagate symmetrically although the domain is symmetric. This is 

caused by use of an asymmetric mesh scheme and the EPM in which newly extended 

fractures are combined with the discontinuous fracture surface of the cracked elements. 

Moreover, the thermal fracture propagation is very sensitive to the length of the 

fractures and the space between them, especially when multiple fractures are competing 

to grow. A higher thermal-induced stress arises at the tips of the longer fractures or the 

fractures with larger area in between [Tarasovs and Ghassemi, 2014, Geyer and Nemat-

Nasser, 1982]. The fractures length and spacing could be slightly different during the 
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transient cooling so that the thermal fractures propagate in an asymmetric pattern. The 

contrast in magnitudes of the maximum and minimum in-situ stress still plays the major 

role on the propagation orientations. 

 

Figure 6.14. (a)The problem geometry and (b)fractures distribution. 

 

Figure 6.15. Temperature contour at 52.4 days after cooling process started 
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(a)                                                    (b) 

Figure 6.16. Maximum principal thermal stress contour: (a) MPaSH 6 , 

MPaSh 6 ; (b) MPaSH 6 , MPaSh 4 . 
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6.3 Conclusion 

Numerical simulation of 3D thermal fracture propagation in brittle rock was 

studied using VMIB model combined with 3D EPM method. Nonlinearities of 

mechanical behaviors and thermal parameters of the solid material were captured by 

introducing a nonlinear VMIB constitutive model. The 3D EPM associated with thermal 

parameters modification for fractured elements provided a simple way to represent the 

pre-existing fracture in structured mesh. The examples of functional test provided 

evidences for the validation of presented method. Test I showed the reasonable results 

of nonlinear thermal response and fracture development of rock when it is under 

uniform cooling. Test II was designed to perform the ability of the model to treat the 

random distributed fractures with structured mesh. The simulations in wellbore 

condition studied the thermal fracturing emanating from wellbore surface and the 

impact on the propagation patterns from the in-situ stress. The present model provided a 

new way to predict 3D thermal fracturing. 
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Chapter 7. Modeling 3D Hydraulic Fracture Propagation 

Based on the theoretical and mathematical descriptions in the previous chapters 

on mechanisms of hydraulic facture processes such as constitutive model of rock, the 

mechanical representation of fracture surface and the methodologies of the fluid flow in 

both fracture surface and porous rock formation, in this chapter, a series of numerical 

simulations are presented based on different assumptions and points of interests. Plus, in 

this dissertation, more realistic physical phenomena are captured by introducing more 

physical components into the model from section 7.1 to 7.3.  

First series of examples are simulated by virtual multidimensional internal bond 

(VMIB) model under different in-situ stress conditions. The fracture fluid flow is 

simplified by applying the gradual increasing uniform hydraulic pressure on the fracture 

surface. The main targets are testing the performance of VMIB as the constitutive 

relationship modeling the rock failure during hydraulic stimulation, as well as the 

influence of in-situ stress on the propagation direction. Secondly, nonlocal damage 

theory is adopted as rock constitutive model. The fracture flow is captured by 

lubrication theory. The examples adopt the technique described in Chapter 4 to identify 

the most preferable path in the damage band using polynomial fitting. The pressure 

boundary condition is successfully applied in the fractured element supported by the 

simulation examples of 3D EPM on pressurized subsurface fracture shown in Chapter 4. 

The leak-off and fluid diffusion in the formation are neglected. Last but not the least, 

the modified poroelastic model is introduced based on classic poroelastic model and 3D 

element partition method (3D EPM). Take advantage of modified poroelastic model, the 

fracture fluid is flowing through the high permeability fractured element without 
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specified flow meshing. The real-time hydraulic pressure is applied on the fracture 

surface using the matrix implanted in the global matrix. In this way, true 3D simulation 

of hydraulic fracture propagation and interaction with natural fracture under FEM 

framework are carried out. The examples of natural and hydraulic fracture interaction 

show the excellent performance of the model on predicting the propagating fracture 

with complex geometry. 

7.1 Modeling 3D Hydraulic Fracture Propagation Using VMIB 

7.1.1 Problem Descriptions 

The hydraulic fractures in geothermal reservoirs and unconventional petroleum 

resources are subjected to high in-situ stresses that highly influence the fracture 

propagation. To examine this, consider an embedded elliptical fracture of finite area that 

is driven by a uniform hydraulic pressure in an infinite underground space. The problem 

geometry is shown in Figure 7.1, and the material and the corresponding model 

parameters are listed in Table 4. To increase the efficiency of the simulation, half of the 

embedded fracture is simulated using the problem symmetry. In the presented meshing 

scheme, there are 26 rows of nodes plotted on x direction, and both 42 rows of nodes on 

y and z direction. The total element number is 210125 and the total node number is 

45864. Initially, a hydraulic pressure 
0p  is applied to the fracture. Then the fracture is 

increasingly pressurized by an increment of 0.07MPap  . A series of fracture 

propagation case are studied using the following four in-situ stresses: 

Case I: 0.8V  , 0.8h  , 0.8H  , 
0 1.6MPap  ; 

Case II: 1.6V  , 0.8h  , 0.8H  , 0 2.4MPap  ; 

Case III: 2.0V  , 0.8h  , 0.8H  , 
0 2.8MPap  ; 
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Case IV: 2.4V  , 0.8h  , 0.8H  , 
0 3.2MPap  . 

In Case I the angle of inclination  , is set to be 45 degree to decrease the 

boundary effect.   in other cases is set to be 30 degree. The simulation results for these 

cases are shown in Figure 7.2 to Figure 7.4. 

 

Figure 7.1. Problem geometry and in-situ stress directions. 

7.1.2 Simulation Results 

When the fracture is pressurized, both the strain and the stress are concentrated 

near its tip. However, in case of the 3D embedded elliptical fracture, the fracture tip is 

an ellipse, and the stress strain state is different along the tip contour depending on the 

certain geometry and in situ stress. Thus, different fracture propagation modes might 

occur at different locations of the fracture tip contour. Figure 7.2a shows the fracture 

propagation in the isotropic stress field (Case I). As the applied stress state is symmetric 

for the 45-degree crack, the fracture propagates on its original plane under the action of 

the applied stress field. The fracture advances straightforward when the applied uniform 



 

136 

hydraulic pressure exceeds the normal stress on the plane of the fracture. Figure 7.2b 

shows the fracture propagation for the Case II. The upper and lower fracture tips 

develop slightly inclined to the vertical direction, that is, the maximum stress direction. 

This can be observed more clearly in Case III, shown in Figure 7.2c. The final path is 

steeper than that of Case II, tending to the maximum in situ stress direction. As 
V  

increases, the pattern of fracture propagation at the upper and lower wings of original 

fracture changes from Mode I to combined Modes I and II. To illustrate this, the middle 

slice of the rock block, which contains only the upper and lower end tips, is considered, 

and the resulting fracture path is shown for each stress state in Figure 7.3. Figure 7.4 

shows the final propagation of the half elliptical fracture. In Case I, shown in Figure 

7.4a, the fracture propagates as Mode I despite the location of the fracture tip. From 

Figure 7.4b–c, mixed mode propagation (Modes I and II) occurs at both upper and 

lower edges of the original fracture. On the side tips, the fracture develops outward and 

connects with the fractures on the upper and lower ends to form a curved surface, a 

typical behavior of Mode III fracture. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 7.2. Simulated hydraulic fracture propagation paths: (a) Case I, (b) Case 

II, (c) Case III, and (d) Case IV 
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Case IV, when V  is three times h  and H , is particularly interesting. As 

shown in Figure 7.3d and Figure 7.4d, the tips of the upper and lower wings develop 

parallel to the vertical in situ stress. However, the fracture propagation is different on 

the side tip. Two separate fractures are formed at the side tip shown in Figure 7.4d. The 

reason for this is the strong tendency of the fracture propagation at the upper and lower 

tips to develop vertically. Moreover, hydraulic pressure in the newly extended fracture 

tends to force the fracture open in the direction normal to the hydraulic pressure. 

Consequently, the new fracture on the side tip cannot connect the upper and lower parts 

of fracture. In other words, the upper and lower parts are more favorable to propagate in 

their own direction, resulting in segmentation on the fracture front. This is an important 

aspect of Mode III fracture propagation that is very challenging to numerically simulate. 

   

(a) 

   

(b) 
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(c) 

   

(d) 

Figure 7.3. . Illustration of fracture propagation path for the middle slice: (a) 

Case I, (b) Case II, (c) Case III, and (d) Case IV. 

   

(a)                                          (b)                                         (c) 
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(b) 

Figure 7.4. . Final shape of propagated hydraulic fracture: (a) Case I, (b) Case II, 

(c) Case III, and (d) Case IV. 

7.2 Modeling 3D Hydraulic Fracture Propagation Using Nonlocal Damage Model 

7.2.1 Problem Descriptions 

A series of hydraulic fracturing examples under different in-situ stress states are 

simulated using nonlocal damage model in this section. It is well known that the in-situ 

stress state is one of the dominate factors that controls the propagation direction. 

Hydraulic fracture is going to propagate along the direction of maximum in-situ stress 

HS  regardless of the angle of initial perforations. However, the ratio of in-situ stress 

anisotropy still controls how fast the fracture growth will turn parallel to the direction of 

HS . The sharpness of turning will influence the transportation of proppant and 

production. The problem geometry is shown in Figure 7.5. The red dot indicates the 

injection point and the blue line is initial fracture with 30 degree inclination to the 

horizontal direction. The present model is built in three-dimension, but the following 

examples are only use single layer of volumetric element considering the computational 
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volume. All the degrees of freedom on thickness direction are fixed. Moreover, these 

examples are not simulating any specific rock type that only uses common reasonable 

material parameters. To capture the behavior of a real rock, a careful calibration for all 

parameters in nonlocal damage model is needed through the results of laboratory test. 

The Young’s modulus and Poisson’s ratio are set as GPaE 20  and 2.0  

respectively. And 4

0 102.1  , 4106 f  for damage evolution function. Since in 

three-point-bending test the 5 mm element is providing a reasonable accuracy, the 

present simulations use 5 mm element in the mesh-refined area. The nonlocal 

interaction radius is set to be mmR 5.2 . For fluid parameters, the viscosity is 

spa  01.0 , the injection rate is constantly smQi /01.0 2 . A series of hydraulic 

fracturing scenarios are carried out using the following four in-situ stress cases: 

Case I: MPaSH 0.1 , MPaSh 0.1  Case II: MPaSH 0.2 , MPaSh 0.1  

Case III: MPaSH 0.3 , MPaSh 0.1  Case IV: MPaSH 0.4 , MPaSh 0.1  

 



 

142 
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Figure 7.5. Problem geometry and in-situ stress directions. 

7.2.2 Simulation Results 

Figure 7.6~Figure 7.9 show the numerical results for hydraulic fracturing 

simulation. In Figure 7.6, the contours of nonlocal formulated damage density for each 

case are displayed, which indicate the directions of propagation gradually change with 

different in-situ stress from maintaining its original direction in case I to a sharp turning 

directly forwards the direction of minimum in-situ stress. The assumption that final 

direction of hydraulic fracture growth is parallel to HS  is proved by the results. 

Moreover, the turning angles vary with different ratio of stress anisotropy. This is 

indeed important if there are natural fractures existing near wellbore. The hydraulic 

fracture growth path will affect the interaction between hydraulic and natural fractures. 

The principal stress contours during the fracture propagation for each in-situ stress are 

shown in Figure 7.7. Figure 7.8 and Figure 7.9 display the aperture and pressure profiles 

for each in-situ stress case. The horizontal axials of these diagrams in Figure 7.8 and 
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Figure 7.9 mean the locations along the fractures, in which the ranges marked by red 

lines indicate initial fracture and blue lines indicate the newly extended fracture. Each 

colored curve represents the profile in real time fracture length during the propagation. 

From Figure 7.8 we get the aperture profiles. When hH SS  , the fracture is 

growth in pure tensile load (mode I) and the aperture profile of the fracture is 

continuous shown in Figure 7.8(a). As 
HS  increased, tensile and shear combined load at 

the tip forces the fracture propagates in mode II pattern. The gradual severe aperture 

jumps between initial and newly extended fracture observed in Figure 7.8(b-d). From 

problem geometry, the initial fracture inclined faces to HS . On the other hand, the 

newly extended fractures are gradually turning to direction of HS . According to the 

elementary mechanics, fewer angles between the direction of surface and compressive 

pressure leads to less compressive pressure that will be applied on the normal direction 

of surface. As HS  increased, the compressive pressure applied on initial fracture is 

increased as well that forces fracture to close. Therefore, most obvious aperture 

bounding happens in case IV Figure 7.8(d), in which the newly extended fracture 

propagated almost parallel to direction of HS  subjected least compressive pressure from 

HS . 
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(a) 

   
(b) 

   
(c) 
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(d) 

Figure 7.6. Nonlocal damage density contours of the process zone for (a) case I; 

(b) case II; (c) case III; (d) case IV. 

Figure 7.9 are the pressure profiles. Since the pressure follows the cubic law of 

aperture, the pressure gradient from the injection point to fracture tip is steeper at the 

beginning and gradually becomes flatter as the aperture increasing. Therefore, the 

pressure at injection point is decreasing as the fracture propagating, which is also 

observed in the field hydraulic fracturing treatment. In addition, the pressure at injection 

point is higher if larger amount of HS  applied under the same injection rate. In other 

words, a higher inject pressure is needed in higher in-situ stress field in order to inject 

same rate inject. 
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(a) 
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(b) 
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(c) 
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(d) 

Figure 7.7. The principal stress contour during the fracture propagation for each 

in-situ stress: (a) case I;(b)case II; (c)case III; (d)case IV. 
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(d) 

Figure 7.8. Aperture profiles for each in-situ stress case: (a)Case I; (b)Case II; 

(c)Case III; (d)Case IV. 
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(d)  

Figure 7.9. Pressure profiles for each in-situ stress case: (a)Case I; (b)Case II; 

(c)Case III; (d)Case IV. 

7.3 Interaction between Hydraulic Fracture and Nature Fracture in 3D Formation 

7.3.1 Modified Poroelastic Model 

In Chapter 4, the theoretical aspects and mathematical derivation of classic 

poroelastic model are presented. The model is continuum-based and well explains the 

coupled process of the porous fluid flow and rock mass deformation for intact rock 

formation. However, to simulate the hydraulic fracturing process, a modification is 

necessarily needed because of the different flow mechanisms and boundary condition 
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due to discontinuity of fracture surface. The fundamentals of fully coupled poroelastic 

model is not valid in the element that contains a fracture. On the aspect of fluid flow 

only, according to the assumption in Chapter 4, the permeability of fractured element is 

artificially increased to represent the conductivity enhancement by fracture creation. 

The pressure distribution along the fracture and diffusion in the rock formation can be 

calculated using an equation system. The challenge problem is applying the calculated 

pressure profile as pressure boundary on the fracture surface during the propagation 

process. As mentioned, the coupling parts of poroelastic model is not valid for the 

fractured element though the fluid diffusion part is still used to calculate the fluid 

pressure. Therefore, the modification is made on the coupling part of poroelastic model. 

The original coupled part A  in Eq. (4.34) is replaced with a new matrix derived 

based on the way of applying hydraulic pressure on the fracture surface using 3D EPM. 

The original poroelastic equations system is written as: 

0

0

0 0t t tt

T T

t t tH tt

         
                      

u u fK A

p p qA H S A S
 (7.1) 

In Eq. (7.1), A  is the fully coupled term representing the porous fluid and solid 

mutual interaction. Eq. (7.1) is used for the intact element. For the fractured element, 

the following equation system is used: 

0

0

0 0

00

EPM EPM
t t tt

t t tH
tt

        
                   

u u fK A

p p qSH S
 (7.2) 

In Eq. (7.2), the stiffness matrix of solid 
EPM

tK  has been changed to the one 

calculated by 3D EPM and is no longer fully coupled with the porous fluid. The fluid 

flow in the fracture element will only follows the Darcy’s law. In other words, the solid 
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deformation will not influence the fluid pressure. The fluid pressure will affect the solid 

deformation in a one-way manner. Next, Eq. (7.2) is rearranged as 

0

0

0 00

00 0

EPM EPM
t t tt t

t t tH
tt

         
                       

u u fK A p

p p qSH S
 (7.3) 

After rearranging of Eq. (7.3), EPM

tA p  term can be considered as nodal forces 

applied on the right hand side of equation system. Meantime, the pressure boundary 

condition on the fracture surface can be successfully applied if 
EPM

A  is well 

constructed. Another advantage is that the pressure boundary will be possibly applied 

real-timely since that displacement and pressure are calculated simultaneously. Let’s 

recall the method of representing the hydraulic pressure in fractured element presented 

in Chapter 4, which is helpful for understanding the mathematical and mechanical 

meaning of EPM

tA p . The hydraulic pressure P  in an element is represented by the 

equivalent nodal forces A PF , where A  is the area of fracture in one element. Take 

type I partition element for example, the pressure in the fracture surface uses the 

averaged value of the pressure on these 4 nodes written as  

1
( )

4

I J K M

t t t tp p p p    P n  (7.4) 

where , ,x y zn n n   n  is the direction vector indicating the normal direction of fracture 

surface. 

As shown in Figure 4.5, similar with Eq.(4.43)~(4.46), the equivalent nodal 

forces are rewritten as 

[ , , ]
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(a)                                                                (b) 

Figure 7.10. Equivalent nodal forces representing hydraulic pressure for (a) type 

I partition element; (b) type II partition element. 

Write Eq. (7.5)~(7.8) in matrix form shown as following 
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The nodal force vector on the right hand of elemental matrix system is written 

as: 

[ , , , , , , , , , , , ]Ix Iy Iz Jx Jy Jz Kx Ky Kz Mx My MzF F F F F F F F F F F F           f  (7.13) 

Combining and rearranging Eq. (7.9)~(7.13) yield 

EPM e

typeI tf A p  (7.14) 

where 
T
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   A A A A A  for type I partition element. 

Similarly, for type II partition element,  
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Combining and rearranging Eq. (7.13) and Eq. (7.15)~(7.18) yield 

EPM e

typeII tf A p  (7.19) 

where 
T

EPM I J K M

typeII typeII typeII typeII typeII
   A A A A A  for type II partition element. 
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Figure 7.11. Illustration of modified poroelastic model  
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Finally, the modified poroelastic model is derived and illustrated in Figure 7.11. 

In Figure 7.11, the red line indicates a fracture. The blue rectangular with the red dot 

corner displays the permeability enhanced element cut by the fracture. The arrows show 

the equivalent nodal forces normal to the fracture surface. The fully coupled poroelastic 

model shown in Eq. (7.1) is adopted to simulate the fluid diffusion and deformation in 

the intact rock formation. The modified poroelastic model shown in Eq. (7.2) changed 

the matrix component based on 3D EPM that is capable to apply real-time hydraulic 

pressure calculated simultaneously in the same equation system. For newly extended 

fracture, the elemental matrix will be changed to 3D EPM formulation if the element is 

cut by the new fracture surfaces. 

In traditional poroelastic modeling, the time step t  is predetermined to fit the 

problem of interests. However, for hydraulic fracture simulation, the time step between 

each propagation step has specific physical meaning that governs the fracture pressure 

distribution and leak-off volume into the formation. Therefore, a reasonable value of 

t  is required. In present model, the injection time increment t  in Eq. (7.1) and 

(7.2) is calculated using the similar way as the one used in lubrication theory written as 

/
f

i
A

t wdA Q   . The equation means that the t  only takes account in the fluid 

volume that stays in the fracture surface. The volume of diffuse fluid is neglect in t  

calculation since that the leak-off volume is difficult to get especially for complex 

fracture surface and moving boundary during the fracture propagation. Therefore, t  is 

underestimated and needs more work in the future. 

In section 7.2, a series of examples under different in-situ stress are presented. 

Using lubrication flow theory, the fluid flow in the fracture can be well captured with 
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rigorous physical foundation. However, smooth fracture surface and specific meshing 

are required that are extremely difficult for real 3D hydraulic fracture problem with 

complex geometry. Besides, the nonlocal damage model adopted in section 7.2 requires 

that the element size is smaller than characteristic length in the scale of millimeters. 

This limitation makes the computational volume really large for real 3D problem even 

with domain of several cubic meters. In the following simulations, the modified 

poroelastic model and damage model in local formulation are employed. The damage 

evolution follows Eq. (2.32). Taking advantage of modified poroelastic model, the 

fracture fluid is flowing through the high permeability fractured element without 

specified flow meshing. The real-time hydraulic pressure is applied on the fracture 

surface using the matrix implanted in the global matrix. The simulations will subject to 

the mesh size dependency because of using local damage theory. The computational 

volume can be reduced to be acceptable without the limitation of element size. 

Nevertheless, due to the complication of true 3D hydraulic fracture problem, the present 

model provides a novel and feasible way to predict the fracture propagation and fluid 

diffusion pattern of true 3D hydraulic fracture propagation and its interaction with 

natural fractures. 

7.3.2 One Natural Fracture 

In section 7.2, the simulated fracture propagation was primarily influenced by 

the magnitude and orientation of the in-situ stress. In the following two sections, the 

examples of 3D hydraulic fracture propagation and its interaction with natural fracture 

are presented. The existing of natural fractures is another crucial factor that controls the 

propagating direction. After connecting between hydraulic and natural fracture, natural 
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fracture becomes part of newly extended hydraulic fracture with complex curved 

surface that makes the assumption of planar fracture surface in classic hydraulic fracture 

model invalid. This example designs a natural fracture located near the initial hydraulic 

fracture in a 10 10 10m m m   cubic domain. The problem geometry is shown in Figure 

7.12. The red dot indicates the injection point and the circular plane with red outline is 

initial fracture. A natural fracture is located nearby initial hydraulic fracture shown by 

the circular plane with blue outline. Figure 7.13 gives detailed geometry from the top 

and lateral views. The diameters for hydraulic and natural fractures are both 3 meters. 

Natural fracture is 45 degree inclined to the horizontal plane. The initial pore pressure 

of whole domain is 1.0 MPa. The Young’s modulus E  and Poisson’s ratio   are set as 

GPa6.27  and 0.15 respectively. And 
3

0 103.0  , 00.4  f  for damage evolution 

function. The permeability of intact and fractured element are 
intact 0.5mdk  , 

3

fractured intact1.0ek k . For fluid parameters, the viscosity is 30.3 10 Pa s    ,the 

injection rate is constantly 3 32.0 10 m /sinjQ   . The total element number is 1916782 

and the total node number is 304045. 
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Figure 7.12. Problem geometry and initial fractures. 
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(a)                                                        (b) 

Figure 7.13. Detailed spatial geometry of two fractures from (a) Top view and 

(b) lateral view. 

Figure 7.14~Figure 7.17 show the numerical results for hydraulic fracturing test. 

In Figure 7.14, the pattern of fracture propagation is represented by the damaged 

elements shown in blue color. Lateral views of middle slice of domain are also 

displayed in the figure that help the understanding of geometry of propagating fracture. 

Two red circles indicate the initial fractures. The pore pressure distributions in the 
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fracture surface and formation during the propagation process are shown in Figure 7.15. 

The displacement discontinuity represented by 3D EPM is shown by the contour of 

displacement in z direction. The fracture apertures are shown in Figure 7.16. It takes 

26.71 seconds injection time to create final fracture shown in Figure 7.14(g). 

Figure 7.14~Figure 7.17 are integrally described for better understanding of the 

whole process of hydraulic fracturing and the interaction with natural fracture. The 

injection point is located in the center of horizontal fracture. The arising of pore 

pressure along initial fracture surface is induced by the fluid injection shown in Figure 

7.15(a). So far we observe, the natural fracture is not connected with the hydraulic 

fracture and is still closed. The pressure in fracture surface is applied as the pressure 

boundary condition. Figure 7.16(a) and Figure 7.17(a) indicate the opening of the 

fracture subjected to the pressure shown in Figure 7.15(a). Therefore, shown in Figure 

7.14(a), fracture propagates radially induced by the hydraulic pressure. Then, the 

fracture continually propagates and consequently connects with the natural fracture in 

Figure 7.14(c). The newly extended fracture between hydraulic and natural fracture is 

slightly inclined due to the stress disturbed by the discontinuity of natural fracture. At 

that time, the pore pressure contour shown in Figure 7.15(f), in which pressure drop at 

injection point and fracture surface is found. The pressure drop is reasonable and 

expected due to new channel created by the connection with natural fracture and 

constant injection rate. During the hydraulic fracture propagation, the pressure drop is 

also found in the examples using lubrication theory in section 7.2 since that the aperture 

is larger during growth of fracture provide more storage room and less resistance for 

flow. 
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In further propagation, in Figure 7.14(d)~(g), we found the major and faster 

region of fracture growth is still located around initial hydraulic fracture because its 

higher pressure distribution. The connection line between hydraulic and natural fracture 

cuts in the middle of the natural fracture. In Figure 7.14(g), the natural fracture is only 

propagating on its upper end. The aperture contours show the opening occurs in the 

upper part of natural fracture from the connection line shown in Figure 7.17(h). The 

reason for this phenomenon is that the lower part of natural fracture is covered in the 

compressive zone of the major hydraulic fracture. The compression from the major 

fracture neutralizes the pressurizing of lower part and forces the fracture at that area to 

close. As mentioned above, the major propagation after interconnecting occurs around 

the initial hydraulic fracture. The fracture growth on the further end of natural fracture 

is much slower. Moreover, observed from Figure 7.17(a)~(h), we found the fracture 

tends to growth in circular shape since that the fracture is propagating from a circular 

initial fracture and the in-situ stress is isotropic. The fracture is primarily propagating on 

the narrow side of the fracture until the fracture shape becomes circular again, even that 

the fracture shape becomes irregular after connected with the natural fracture,. 

   

(a)                                                                (b) 
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(c)                                                                (d) 

   

(e)                                                                (f) 

 

(g) 

Figure 7.14. The pattern of fracture propagation displayed by damaged element. 
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(a)                                         (b)                                          (c) 

       

(d)                                         (e)                                          (f) 

       

(g)                                         (h)                                          (i) 

       

(j)                                         (k)                                          (l) 
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(m)                                         (n) 

Figure 7.15. Pore pressure contour slice in the middle of domain during the 

fracture propagation. 

     

(a)                                         (b)                                          (c) 

     

(d)                                         (e)                                          (f) 
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(g)                                         (h)                                          (i) 

     

(j)                                         (k)                                          (l) 

     

(m)                                         (n) 

Figure 7.16. The contour of displacement in z direction on the middle slice of 

domain during the fracture propagation. 
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(a)                                                               (b) 

   

(c)                                                               (d) 

   

(e)                                                               (f) 
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(g)                                                               (h) 

Figure 7.17. Fracture aperture distribution from the top and lateral views. 

7.3.3 Multiple Natural Fractures 

Previous section presents the example of single natural and hydraulic fracture 

interaction. The results display the potential of the modified poroelastic model and 3D 

EPM on prediction of fracture propagation pattern with complex geometry. More 

complex realistic geological conditions in natural fractured unconventional reservoir 

make 3D numerical simulation extremely difficult due to existing of multiple natural 

fractures. Most results of hydraulic and natural fracture interaction are presented in 2D 

[Dahi-Taleghani, 2009; McClure, 2012; Verde and Ghassemi, 2013]. This example 

designs 10 natural fractures located near the initial hydraulic fracture in a 

10 10 10m m m   cubic domain. The problem geometry is shown in Figure 7.18. The 

red dot indicates the injection point and the circular plane with red outline is initial 

fracture. Ten natural fractures are located nearby initial hydraulic fracture shown by the 

circular plane with blue outline. The geometric details of these natural fractures are not 

given here. In Figure 7.19, the relative locations of the natural fractures are given by 

their intersecting lines with slice a and b indicated in Figure 7.18. The diameter for 

hydraulic and natural fractures range from 0.9 to 1.0 meter. The initial pore pressure of 
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whole domain is 1.0 MPa. All the flow and mechanical properties and mesh scheme are 

the same as the ones in section 7.3.1. 

1.0 MPa

10 m

10 m

10 m

Slice a

Slice b

 

Figure 7.18. Problem geometry and initial fractures. 

10 m

1
0

 m

Initial 

hydraulic 

fracture

Natural 

fracture

    10 m

1
0

 m

Initial 

hydraulic 

fracture

Natural 

fracture

 

(a)                                                        (b) 

Figure 7.19. Detailed spatial geometry of multiple fractures from (a) slice a and 

(b) slice b. 
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The numerical results are shown in Figure 7.20~Figure 7.22. In Figure 7.20, the 

pattern of fracture propagation is represented by the damaged element shown in blue 

color. The middle slices a and b are also displayed in the figure that help the 

understanding of and geometry of propagating fracture and their interactions. Red 

circles indicate the initial fractures. The specific spatial locations of 10 natural fractures 

are difficult to be described. Therefore, we gradually introduced the red circles into 

Figure 7.20 when the growing fracture is approaching and interconnecting with initial 

natural fractures. The middle slice of pore pressure contour during the propagation 

process is shown in Figure 7.21. The contours of displacement in z direction are shown 

in Figure 7.22. Total injection time is 26.51 seconds to create final fracture shown in 

Figure 7.14(j). 

The fracture is propagating radially from the initial fracture with injection point 

(Figure 7.20(a)). The newly extended fracture is gradually approaching the neighbor 

natural fractures and finally connects with them (Figure 7.20(c)). The consequent 

propagation form natural fractures is not from the both end. The snap-back parts of 

natural fractures are forced to close by the compression from the major fracture and will 

not propagate anymore. After the major fracture connected 4 neighbor fractures and 

filled the space between them, it starts to grow from the further end of natural fractures 

until it hit the peripheral natural fractures (Figure 7.20(h)). In the previous section we 

found that the fracture tends to grow in circular shape. This phenomenon is also found 

in this example. Although the shape of major fracture becomes irregular and curved 

during the interconnection with natural fracture, the further end of connected natural 

fracture is not propagating until the major fracture forms an approximate circular shape. 
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In Figure 7.20(j) we found, there are two natural fractures remain inactivated during the 

stimulation since that the major propagation direction is along the horizontal direction, 

shown as circles with black outline. In the middle slices a and b shown in Figure 7.20, 

the fracture propagation results are similar to the ones presented by 2D simulations. 

Spatial fracture propagation is not always generate the fracture cut-through the 

formation that induces failure of plane strain assumption and error on the length of 

fracture growth, and more important, the energy needed to create the target length of 

hydraulic fracture. Therefore, true 3D simulation is urgently needed. 

The pore pressure evolution is shown in Figure 7.21. The pressure located on the 

fracture surface can be considered as the hydraulic pressure induced by injection 

pressurizing the fracture surface. The pressure of the intact formation is the pore 

pressure increase due to the fracturing fluid diffusion and leak-off. Figure 7.21(a) and 

(b) show the pressure contour before major fracture connects with the neighbor natural 

fractures. Server pressure drops are found when the growing fracture contacts the 

natural fractures shown from Figure 7.21(c) to (i). The pressure at injection point finally 

drops to half of initial pressure when the injection and propagation just started. The 

pressure in two natural fractures located above and below respectively the major 

fracture remains initial pore pressure. The fluid is not flow in these fractures since that 

they are not activated and interconnected with the major fracture. 

Due to the complex geometry of fracture shape, the aperture contour of 

propagating fracture may be confusing by its spatial location and is decided to be not 

shown in this work. Instead, the contours of displacement in z direction are shown in 

Figure 7.22, which also represent the approximate fracture opening. In the figure, the 
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displacement discontinuity is well represented in the model by 3D EPM not only for the 

opening major fracture, but also the isolated natural fractures. The different color on the 

both sides of fracture indicates the separation and slippage of fracture surface. In Figure 

7.22, displacement jump is found on the both sides of isolated fracture above the major 

fracture because of that fracture surface represented by 3D EPM will be able to contact 

and slip under compressive and shear stress. 

   

(a)                                                             (b) 

   

(c)                                                             (d) 
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(e)                                                             (f) 

   

(g)                                                             (h) 

   

(i)                                                             (j) 

Figure 7.20. The pattern of fracture propagation displayed by damaged element. 
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(a)                                                                (b) 

     

(c)                                                                (d) 

   

(e)                                                                (f) 
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(g)                                                                (h) 

   

(i) 

Figure 7.21. Pore pressure evolution on the middle slice of domain during the 

fracture propagation. 
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(a)                                                                (b) 

   

(c)                                                                (d) 

   

(e)                                                                (f) 
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(g)                                                                (h) 

   

(i) 

Figure 7.22. The contour of displacement in z direction on the middle slice of 

domain during the fracture propagation. 

7.3.4 Hydraulic Fracturing under Anisotropic In-situ Stress 

In-situ stress anisotropy is a key factor determining the propagation direction of 

hydraulic fracture. In this section, the influence of anisotropic in-situ stress and its 

induced tortuousness of newly extended fracture will be primary studied. The example 

designs two natural fractures located on the upper and lower side of initial hydraulic 

fracture in a 10 10 10m m m   cubic domain. The problem geometry is shown in Figure 
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7.23. The maximum in-situ stress is the overburden stress with the magnitude of 6.0 

MPa. The horizontal in-situ stresses in two directions are both 2.0 MPa. The red dot 

indicates the injection point and the circular plane with red outline is initial hydraulic 

fracture. Two natural fractures are shown by the circular plane with blue outline. In 

Figure 7.24, the relative locations of the natural fractures are given by their intersecting 

lines with slice indicated by dash outline in Figure 7.23. The diameters for hydraulic 

and natural fractures are 2.4 meters. The initial pore pressure of whole domain is 1.0 

MPa. The injection rate is All the flow and mechanical properties and mesh scheme are 

the same as the ones used in the simulations of section 7.3.1.  

10 m

10 m

10 m

1.0 MPa

Injection 

point

6.0 MPa

2.0 MPa
2.0 MPa

 

Figure 7.23. Problem geometry and initial fractures. 
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(a)                                                        (b) 

Figure 7.24. Detailed spatial geometry of multiple fractures on the slice in the 

middle of object. 

The numerical results are shown in Figure 7.25~Figure 7.29. In Figure 7.25, the 

pattern of fracture propagation is represented by the damaged elements shown in blue 

color. The red dash line indicates initial hydraulic fracture and the gray solid lines show 

the initial natural fractures. The detail spatial configuration of 3D fracture surface is 

difficult to be clearly illustrated. Figure 7.26 shows the final shape of hydraulic fracture 

that helps the understanding of and geometry of propagating fracture. The middle slices 

of pore pressure contour during the propagation process are shown in Figure 7.27. The 

contours of displacement in z direction are shown in Figure 7.28. Total injection time is 

5.29 seconds to create final fracture shown in Figure 7.25 (f). 
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(a)                               (b)                                  (c) 

     

(d)                               (e)                                  (f) 

Figure 7.25. The pattern of fracture propagation displayed by damaged 

elements. 
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(a)                           (b)                        (c) 

Figure 7.26. Detailed spatial geometry of final fracture: (a) lateral view of whole 

fracture; (b) intersecting line between fracture surface and middle slice shown as red 

dash line; (c) fracture lateral edge by gray dash line. 

Subjected to isotropic in-situ stress, the fracture is propagating radially along the 

original direction of initial fracture before approaching neighbor fracture according to 

the results in previous sections. In that case, only cause of fracture tortuousness is the 

exciting of natural fractures. In Figure 7.25, under anisotropic in-situ stress, the newly 

extended fracture is propagating upwardly on the upper edge and downwardly on the 

lower edge. In other words, the fracture is growing and turning to the direction of 

maximum in-situ stress. The phenomenon has been observed and explained in section 

7.2. The resistance for the fracture opening on the vertical plane is less since less in-situ 

stress on the horizontal direction compressing the fracture surface. Therefore, on any 

vertical plane, the fracture is easier to open and propagate. Consequent opened fracture 

is gradually approaching the neighbor natural fractures and finally connects with them. 

Comparing the fracture patterns in Figure 5.7 and Figure 7.25, the final shape of 

hydraulic fracture is similar to the simulation results in the pure mechanical loading test 
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of embedded fracture subjecting to compressive loading in section 5.1.3. Since the 

similar stress states, mode II and mode III fractures occur at similar places on the edge 

of fracture illustrated in Figure 5.13. Using the same conception of Figure 5.12, Figure 

7.26 is plotted to describe the geometry of curved fracture surface. The red dash line is 

the intersecting line between fracture surface and middle slice. The grey dash line 

represents the lateral edge of fracture. These two lines indicate a gradual rotation of 

fracture surface. 

It is difficult to plot a straightforward contour of pore pressure evolution in 3D 

space. We plot the pore pressure evolution contour on the middle slice of domain during 

the fracture propagation in Figure 7.27. The pressure result on the fracture surface is 

applied as the hydraulic pressure pressurizing the fracture surface. Beside the pressure 

change along the fracture surface, the pore pressure of the intact formation near the 

fracture is increased due to fracturing fluid diffusion. Figure 7.27(a)~(d) show the 

pressure contour prior to major fracture connected with the neighbor natural fractures. 

A curved propagating path with high fluid pressure indicates the location of fracture 

surface and permeability enhancement of the fractured elements. Server pressure drop is 

found when the growing fracture contacted the lower natural fracture shown in Figure 

7.27(e). In Figure 7.27(f), the pressure drops again to lower level after the fracture 

contacted the upper natural fracture. After fully connected with natural fractures, the 

pore pressure along the fracture surface builds up again shown in Figure 7.27(g) and 

(h). The contours of displacement in z direction are shown in Figure 7.28, which 

represent the relative displacement around the fractures. The jump of contour color 

represents the discontinuity of fracture surface that provides another clue of the location 
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and relative displacement like opening and slippage of fracture surface. Figure 7.29 

plots the contour on 9 planes from x=5.0 to x=6.6 that supports the information given in 

Figure 7.26 about the fracture surface rotation. 

In Figure 7.25(f) we observe that the damage occurs on the further ends of both 

natural fractures indicating further propagation direction and pattern of hydraulic 

fracture. However, meantime, damage also happens in the rock formation between 

initial hydraulic and natural fractures that induces numerical instability of present 

model. Specifically, some of the elements in that region are subjected to the applied 

nodal force from the fracture pressure. If those elements are fully damaged, the 

numerical model will not converge and deliver unrealistic large displacements on the 

nodes since that the damaged elements are too weak to support the hydraulic loads. 

Therefore, the present model fails to simulate the consequent fracture propagation 

beyond the stage shown in Figure 7.25(f). Future work is emphasized on the stability of 

the model under similar conditions like highly anisotropic in-situ stress and complex 

fracture geometry. 

   

(a)                                                                (b) 
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(c)                                                                (d) 

   

(e)                                                                (f) 
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(g)                                                                (h) 

Figure 7.27. Pore pressure evolution on the middle slice of domain during the 

fracture propagation. 

   

(a)                                                                (b) 
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(c)                                                                (d) 

   

(e)                                                                (f) 

     

(g) 
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Figure 7.28. The contour of displacement in z direction on the middle slice of 

domain during the fracture propagation. 

       

(a)                                   (b)                                  (c) 

     

(d)                                   (e)                                  (f) 

     

(g)                                   (h)                                  (i) 

Figure 7.29. Final fracture shape represented by the displacement discontinuity 

on the plane of:.(a) x=5.0; (b) x=5.2; (c) x=5.4; (d) x=5.6; (e) x=5.8; (f) x=6.0; (g) 

x=6.2; (h) x=6.4; (i) x=6.6.. 
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7.4 Conclusions 

As the first stage of hydraulic fracturing simulation, the fluid pressure was 

assumed to be uniform and was increasing linearly each load step on the pre-existing 

and newly extended fracture surface. Plus, the simulation domain was one cubic meter 

that was not realistic to represent the real problem in hydraulic fracturing treatment. 

However, the examples provided suggestions on the fracture patterns and modes under 

various in-situ stresses. Under isotropic in-situ stress, mode I fracture was propagating 

along the direction of original fracture surface. As the vertical in-situ stress increased, 

mode II and mode III were gradually involved in growth of fracture. Took advantage of 

VMIB model on representing the mechanical nonlinearity, no extra fracture criteria 

were needed in the simulation especially when the mixed mode fracture propagation 

involved. Such simulations improved understanding of 3D fracture propagation 

mechanisms and provided a means of designing hydraulic fractures for reservoir 

stimulation. In addition, an interesting manner of hydraulic fracture propagation in 

Mode III was observed showing the formation of multiple fractures from the original 

crack. The fluid flow analysis was introduced into the model in the following sections 

to represent more rigorous multiple physics phenomena including the fracture flow and 

diffusion in the porous rock media. 

However, the strain softening model like VMIB will subject to the spurious 

mesh size sensitivity. It is physically meaningless and unrealistic that strain energy 

dissipation converges to zero as the mesh size approaches infinity small using local 

model. The nonlocal damage model for softening materials minimized spurious mesh 

sensitivity and insured proper convergence validated by the simulation results in 
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Chapter 5. The results of section 7.2 showed the examples of applying nonlocal damage 

theory in hydraulic fracturing simulation for the first time. Associated with lubrication 

theory, the fluid flow was well captured.  

The technique worked for 2D hydraulic fracturing and 3D one with cut-through 

fracture. However, true 3D fracture is propagating with complicate geometric shape due 

to complex geological conditions. Finding a fitted spatial curved surface in the damage 

band becomes very difficult and time consuming. The geometric problem becomes even 

tougher when the hydraulic fracture is interacting with nature fractures. Meantime, 

since that the element size is required to be smaller than characteristic length, the true 

3D simulation using nonlocal damage theory requires large computational volume even 

for the problem in the domain with length of several meters. If one plans to use nonlocal 

damage theory in simulating hydraulic fracture, the special treatment of boundary 

condition on the hydraulic fracture surface is needed. Considering the computational 

volume, to simulate larger domain, adaptive mesh solution is suggested. A real three-

dimensional model is still a challenging problem. Firstly, dramatic increment of finite 

element number is great obstacle for executing of the code on normal workstation, 

especially for nonlocal damage theory. Moreover, the fracture propagates in curved 

shape in 2D simulation that can be captured by curved line to calculate the fluid flow, 

while in 3D space the fracture subjected to anisotropic in-situ stress could develop in a 

complex spatial curved surface. This complex sharp of fracture brings difficulties to 

both mechanical and flow behavior representation. 

Therefore, in section 7.3, the modified poroelastic model and damage model in 

local formulation were employed to reasonably avoid the mentioned difficulties. 
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Though the simulations were subjected to the mesh size dependency because of using 

local damage theory, the computational volume was reduced to be acceptable without 

the limitation of element size in nonlocal damage theory. According to the assumption 

in modified poroelastic model, the fracture fluid is flowing through the high 

permeability fractured element without specified flow meshing. Also, the real-time 

hydraulic pressure is applied on the fracture surface using the matrix implanted in the 

global matrix. The simulation examples presented the results of hydraulic fracture 

interacting with single and multiple natural fractures in true 3D domain. The existing 

natural fractures were the primary influential factors in the propagation processes under 

isotropic in-situ stress. The results of interaction between hydraulic and 11 natural 

fracture showed the potential and stability of the present model dealing with 

complicated geological conditions. Although this model cannot provide precise fluid 

pressure along the fracture surface, the overall tendency of fracture and pore pressure 

distribution and fracture propagation can still be modeled considering the computational 

feasibility and efficiency. Last example studied hydraulic fracturing in rock domain 

subjected to anisotropic in-situ stress using modified poroelastic model and damage 

theory. Though fracture is eventually propagating primarily in mode I pattern after 

turned to the direction of maximum in-situ stress, mixed mode fracture still plays a key 

role in the region near the wellbore and when the propagating fracture is approaching 

the natural fractures. Due to the convergence issue of present model, further 

propagation after the mix mode hydraulic fracture connected with the natural fractures 

was not presented. Future work focuses on the stability of the model under highly 

anisotropic in-situ stress with complex fracture geometry. Nevertheless, the new model 
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is a promising tool for predicting and understanding the complex processes of hydraulic 

fracturing and its interaction with natural fractures in the stimulated unconventional 

reservoir. 
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Chapter 8. Conclusions and Recommendations 

8.1 Conclusions 

In this work, the hydraulic and thermal fracture mechanisms associated with 

fluid flow and thermal diffusion were studied. This work motivated by the limitations of 

the existing fracture simulators and urgent needs for true 3D hydraulic fracturing model 

from petroleum and geothermal industry. Multiple physical processes are involved in 

hydraulic fracturing propagation and are active in determination of the growth of a 

propagating hydraulic fracture. The whole process was modeled using solid, thermal 

and fluid flow interaction analysis that includes fluid flow, thermal response and 

mechanical behavior of rock and fracture.  

The real underground rocks are difficult to be characterized due to the complex 

geological conditions of formation such as nonlinearity, anisotropy, heterogeneity and 

existing of large discontinuity. Though the behavior of real rock in the reservoir is 

extremely difficult to be characterized and modeled, multi-scale VMIB model and 

continuum damage model presented in this work provided solutions from different 

aspects on solving the nonlinear responses of rock. The VMIB stems from the discrete 

microstructure, however, eventually turns out the continuum constitutive relationship 

since that the mechanical properties of the material particles are assembly obtained 

through statistical averaging. The performance of VMIB on simulating the mix mode 

fracture propagation under pure mechanical loading was tested. Using VMIB model, a 

three dimensional thermal fracturing model was developed and a series of hydraulic 

fracturing examples were simulated under different in-situ stress conditions.  
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However, using strain softening model like VMIB, the simulation was subjected 

to the spurious mesh size sensitivity. In other words, finite element analysis became 

highly affected by the mesh size and alignment causing non-physical predictions of 

softening area. Through the theoretical details and simulation validation, the nonlocal 

formulation of damage model for softening materials effectively eliminated spurious 

mesh size sensitivity and ensured proper convergence. Essentially, the so-called 

nonlocal formulation uses an averaged value of damage driving force over the 

representative volume of the material during damage process. The characteristic length 

is an intrinsic material property that governs size of representative volume, which must 

be determined and corroborated by results of experiments. Consequently, the dissipated 

energy due to strain-softening damage converges to a stable value. The nonlocal 

damage theory was used for the first time in the hydraulic fracturing simulation. 

Three dimensional element partition method (3D EPM) was adopted to represent 

the mechanical behaviors of fracture surface. The 3D EPM successfully represented the 

mechanical behaviors such as contact and friction of closed fracture surfaces. Plus, no 

additional degrees of freedom were introduced. The partitioned element shares the same 

nodes with the intact tetrahedron element so that no remeshing is needed. Therefore, the 

dimension and structure of the elemental stiffness matrix after partition remains the 

same that needs no extra sorting during the simulation. Taking advantage of efficiency 

and simplicity of 3D EPM, especially for its feasibility and applicability on the true 3D 

hydraulic fracturing simulation, the technique was developed with the features of 

transferring the quasi-static hydraulic loading to the equivalent nodal forces and 
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calculating the fracture aperture by knowing the geometric information of fracture 

during the fracture propagation. 

Numerical simulation of 3D thermal fracture propagation due to transient 

cooling in quasi-brittle rock was studied using VMIB model combined with 3D EPM 

method. By introducing nonlinear VMIB model into thermo-mechanical coupled 

governing equations, the nonlinearities of mechanical behaviors and thermal parameters 

of the solid material were captured. The 3D EPM associated with thermal parameters 

modification for fractured elements provides a simple way to represent the pre-existing 

and newly extended fracture in structured mesh. The examples for functional test 

provide evidences for the validation of presented method. The examples of multiple 

thermal fractures emanate from wellbore were simulated that were aimed on the impact 

on the propagation patterns from the in-situ stress. The present model provides a way to 

predict 3D thermal fracturing. 

On the aspects of fluid flow, the present work introduced two models for fluid 

analysis using poroelastic model and lubrication theory. For both theories, analysis 

coupled the fluid flow and rock mass deformation based on different mechanisms. 

The lubrication theory integrally considered the physical behaviors of the 

aperture change, fracture fluid pressure and new boundary created by fracture extension. 

The governing equations represented the mechanical equilibrium state of rock mass, 

continuity equation of fluid following cubic law and global mass conservation 

respectively that need to be solved by trial and iterations. The iteration strategy for 

coupling processes was also illustrated. The technique was introduced to identify the 

flow path in the damage band using polynomial fitting is presented. The pressure 
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boundary condition was equivalent to nodal forces that was successfully applied on 

propagating fracture surfaces under 3D EPM framework.  

The poroelastic model is an ideal tool to analyze the coupled behaviors of 

porous flow and rock deformation in intact rock, but not for the fracture flow. This 

work presented the modified poroelastic model to simulate the hydraulic fracturing 

especially for the hydraulic fracture problem with complex geometry and boundary 

conditions such as hydraulic fracture and natural fractures interaction. Taking advantage 

of modified poroelastic model, the fracture fluid is flowing through the high 

permeability fractured element without specified flow meshing. The real-time hydraulic 

pressure is applied on the fracture surface using the matrix implanted in the global 

matrix. Though this model is not rigorous enough to provide precise fluid pressure 

along the fracture surface, the overall tendency of fracture and pore pressure 

distribution and fracture propagation can still be captured considering the computational 

feasibility and efficiency. The new numerical model is a promising tool for predicting 

and understanding the complex processes of hydraulic fracturing and its interaction with 

natural fractures in the stimulated unconventional reservoir under FEM framework. 

8.2 Future Recommendations 

Due to the complexities and difficulties involved in the hydraulic fracturing 

simulation, the simplifications and assumptions were made based on the feasibility and 

efficiency of the aspects of theories, programming and computational volume in this 

work. The future work will emphasize on improvement of the basic assumption and 

cracking the limitation of present model. In the followings are the main topics that are 

recommended for the future work. 
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1. The formation is not homogenous because of the components of rock 

such as grains, mineral crystals, voids and natural crack. The failure mechanism and 

constitutive model are recommended to include the reservoir heterogeneity of 

mechanical and fluid flow properties. Especially, in shale reservoirs, the rock typically 

exhibits strong anisotropic mechanical behaviors since their thin parallel layered 

structure. Therefore, the anisotropy is another crucial aspect of capturing shale 

deformation and failure, as well as their fluid flow mechanism. 

2. The fracture process is a fully coupled nonlinear problem. The present 

work studied the hydraulic and thermal effects separately. A fully coupled hydro-

thermo-mechanical model is desired. 

3. The error of 3D element partition method arises with the increment of 

element size since that elastic deformation of partitioned element is not considered. 

Since the whole fracture surface consists of the fracture segments in each partitioned 

elements, the newly extended curved fracture presentation by 3D EPM is unsmooth and 

composed by discontinued surfaces, which brings difficulty in applying moving 

boundary condition such as fluid pressure. [Zhang et al. 2013; Zhang et al. 2013] 

presented the novel partition element methods considered the elastic deformation of 

partitioned element and fracture tip in 2D that provided the guideline of future work to 

solve the mentioned problem. 

4. In this work, the single phase Newtonian fluid was assumed in the fluid 

flow analysis, which is not realistic in the deep, high temperature and high pressure 

reservoir. Multi-Phase flow occurs with the change of temperature and pressure. Plus, 

the fracturing fluid usually mixes with proppants providing fracture wall support and 
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remaining the fracture conductivity. Therefore, multiphase flow behaviors should be 

considered in the simulations. 

5. Though the mesh dependency can be eliminated by using nonlocal 

damage theory, the element size is limited to be several times smaller than the 

characteristic length that is usually in the scale of several millimeters for most rocks. 

The element size is too small compared with the hydraulic stimulation domain that is 

normally several hundred cubic meters. Considering the computational volume, to 

simulate larger domain, adaptive mesh solution is urgently recommended. 

6. The present work didn’t integrate the fluid flow mechanisms of fracture 

and porous flow into one simulation model. The simulation examples using lubrication 

theory neglected the leak-off effect and pore pressure change in the formation near the 

hydraulic fracture. The modified poroelastic model considered the fracture conductivity 

enhancement by increasing the permeability of fracture element to a constant value 

independent with the fracture aperture that is reasonable but is only an approximation. 

An integrated fluid flow model is needed to provide the precise solution for pressure 

boundary condition on the fracture surface that is crucial for fracture propagation 

simulation. 
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