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Abstract:  

Scope and methods of the study.  

The purpose of this study was to provide further evidence to support the concept that 

dorsal root ganglion (DRG) glutaminase, the synthetic enzyme for the neurotransmitter 

glutamate, is a potential target for analgesic therapeutics. Behavioral study, fluorescent 

microscopy and quantitative image analysis were used to investigate the temporal 

expression of DRG glutaminase after peripheral inflammation. The role of tonic 

glutaminase and glutamate in initiating acute and chronic inflammatory pain was also 

explored. 

Findings and Conclusions.  

Significant elevation of glutaminase was observed in subpopulations of DRG neurons 

that were labeled with nociception-related neuropeptide markers in small- to medium-

sized neuronal cell bodies. Elevated glutaminase was also found in peripheral nerve 

during acute phase of inflammation. These results indicated that after inflammation, 

elevated glutaminase was synthesized in the neuronal cell bodies and then transported to 

the peripheral nerve terminals around the inflamed site, where glutamate was produced 

and released contributing to peripheral sensitization. Inhibition of glutaminase at the 

peripheral nerve terminal prior to inflammation 1) achieved robust long-term anti-edema 

and anti-nociceptive effects; 2) inhibited the inflammation-induced elevation of 

glutaminase in the peptidergic DRG neuronal cell bodies. These results supported the 

notion that after the onset of inflammation, tonic or early glutamate production at 

peripheral nerve terminal had a “feed-forward” mechanism by up-regulating glutaminase 

synthesis in DRG neurons. It suggested that early treatment that targeted the acute 

glutamate production at the peripheral terminal might prevent the development of chronic 

pain and/or provide more effective alleviation if the pain continues into the chronic phase 

with the pathology. With further understanding of the role of dorsal root ganglion 

glutaminase in acute and chronic inflammatory pain, it was rational to propose that 

glutaminase and glutamate metabolism can be novel potential targets for analgesic 

therapeutics. 
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CHAPTER I 
 

 

INTRODUCTION 

 

I. Cytology of primary sensory neurons 

Size, myelination, and conduction velocity 

The sensation of pain is detected and mediated by a specialized neural pathway. Primary afferent 

neurons are the first order neurons in transducing thermal, mechanical and chemical stimuli and 

relaying the somatosensory information to the thalamus and primary somatosensory cortex in the 

brain via the dorsal horn of the spinal cord or brainstem. Primary afferents that innervate the face and 

body arise from neuronal cell bodies in trigeminal and dorsal root ganglion (DRG), respectively. 

Primary afferent neurons are pseudounipolar neurons, and the axon of each neuron splits into two 

branches. One branch projects peripherally to innervate the target tissues, such as skin, joint and 

muscle; the other branch projects centrally to the spinal cord or brainstem. Studies have demonstrated 

there is a general correlation between DRG neuronal cell body size, axon size and conduction 

velocity. This means that large sized neurons have large diameter axons and fast conduction velocity, 

and small neurons have small axons and slow conduction velocity (Yoshida and Matsuda, 1979, Lee 

et al., 1986). The cell bodies of the rat primary sensory neurons are broadly classified by size (cross-

sectional area or diameter): large (>800 µm2, 32 µm), medium (400-800 µm2, 23-32 µm) and small 

(<400 µm2, 23 µm) (Fang et al., 2005, Hoffman et al., 2010). These neurons can be further classified
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as Aα/β-, Aδ-, or C- fibers on the basis of conduction velocity and myelination. Large DRG neurons 

have heavily myelinated Aα/β-fibers with fast conduction velocity (Aα: 80-120 m/s; Aβ: 35-75 m/s) 

and carry sensory information such as vibration, fine touch and proprioception to the central nervous 

system. Medium DRG neurons have lightly myelinated Aδ-fibers and slow conduction velocity at 5-

35 m/s. Small DRG neurons have unmyelinated C- fibers and conduction velocity at 0.5-2.0 m/s. 

Medium- and small-sized neurons carry the sensations of temperature and pain. The primary sensory 

neurons that are capable of transducing and encoding noxious stimuli are termed nociceptors (IASP, 

1986, Vervest and Schimmel, 1988, Loeser and Treede, 2008). In normal physiological conditions, C- 

and Aδ- nociceptors have a high threshold for activation and respond only to stimuli that have 

sufficient energy to potentially or actually cause tissue damage. With the presence of ongoing tissue 

damage or nerve injury, nociceptive neurons alter their response patterns and become sensitized. 

Section II will focus on the two major types of sensitization: peripheral and central sensitization.  

Neurochemical classification of DRG neurons 

Dorsal root ganglion neurons develop from neural crest cells that migrate from the dorsal area of the 

neural tube, but not all neurons are born at the same time. Several studies show that large neurons are 

born early and mostly become proprioceptors or low-threshold mechanoreceptors, while small 

neurons are generated later than the large neurons, and become mainly nociceptors (Snider and 

McMahon, 1998). The heterogeneity of DRG neurons, i.e., their ability to detect and transduce 

different sensory stimuli, may be related to differential patterns in their neurochemical coding, e.g., 

the combination of transducers, neurotransmitters, neuromodulators, receptors, and ion channels that 

are expressed in the neurons. Efforts have been made to identify cytochemical and 

electrophysiological markers that characterize the phenotype and function of nociceptive neurons in 

their physiological and pathological stages (Lawson, 2002). Like other neurons in the nervous system, 

primary sensory neurons require signaling neurotrophins released by their target tissue for survival 

during development and for the maintenance of neuronal subpopulations. Using trophic factor 

dependence and neurochemical expression, nociceptors in adult rat DRGs can be put into two 
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populations: peptidergic vs. non-peptidergic neurons. The peptidergic neurons express tyrosine kinase 

receptor A (TrkA), a high-affinity receptor for nerve growth factor (NGF), and these neurons are 

dependent on NGF from embryonic stage (Otten et al., 1980) to adulthood to maintain their 

nociceptive phenotype (Priestley et al., 2002). Calcitonin gene-related peptide (CGRP) and substance 

P (SP) are two neuropeptides found in the peptidergic DRG neurons that have been extensively 

studied. The non-peptidergic neurons can be labeled with isolectin B4, a lectin that binds to the α-D-

galactose carbohydrate residues on cell membranes (Fullmer et al., 2004). The adult non-peptidergic 

neurons are low in TrkA expression, but express high levels of Ret, the corresponding receptor for 

glial cell line-derived neurotrophic factor (GDNF) from early postnatal development (Molliver et al., 

1997). The peptidergic and non-peptidergic nociceptors also express distinct sets of transducers and 

ion channels and have distinct peripheral and central targets (Snider and McMahon, 1998, Woolf and 

Ma, 2007). Various neurochemical markers, therefore, can be identified with 

immunohistochemisty/immunocytochemical and fluorescent microscopy techniques.  

Section summary: 1) DRG neurons are heterogeneous and can be divided into different 

subpopulations by size, conduction velocity of the axon, sensory modality, and neurochemical 

characteristics; 2) Most nociceptive neurons have small to medium size cell bodies, while large DRG 

neurons carry mainly vibration, fine touch and proprioception; 3) Though neuronal cell body size 

does not strictly reflect the absolute function of each neuron, dividing DRG neurons into different 

populations by sizes allows us evaluate the alteration in general functional groups rather than 

evaluating the total alteration of a heterogeneous population; 4) Studies correlating neurochemical 

characteristics with their sensory properties provide valuable information for identifying different 

subpopulations of DRG neurons. 

II. Nociception and sensitization: plasticity of nociceptors 

Pain can be simultaneously protective and debilitating (Woolf, 2010). Patients with analgesia who are 

not able to respond to painful stimuli often incur severe physical damage by unperceived noxious 
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stimuli. On the other side, acute and chronic pain can be the result from many sources and causes may 

beyond tissue damage or greater than the observed tissue damage, leading to decreased the patient’s 

socioeconomic status and the quality of life. 

Pain and nociception 

Detecting painful stimuli is one of the most important functions carried out by the nervous system. 

The nervous system processes the warning signs detected by the defense systems when physical 

integrity is threatened by potential or actual damage. Researchers studying pain often use the word 

“pain” interchangeably with another word “nociception”. The definition and scope of the two words, 

however, are not identical. According to the International Association for the Study of Pain (IASP) 

taxonomy, pain is defined as “an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage, or described in terms of such damage” (IASP, 1986). This definition 

emphasizes the psychological aspect of pain, which is an individual, subjective experience rather than 

proportional to severity of actual tissue damage or injury. The word “nociception” was introduced to 

the field to provide a neutral description that directly reflects the neural activity related to a damaging 

stimulus (IASP, 1986, Vervest and Schimmel, 1988, Loeser and Treede, 2008). When studies involve 

higher cortical functions or a psychological issue is emphasized, it is recommended to keep these two 

concepts separate. “Pain” and “nociception” are used interchangeably by most researchers on a more 

general level and in the current dissertation unless emphasized.  

Transducers and the initiation of nociception (brief review of (Woolf and Ma, 2007)) 

Thermal, mechanical and chemical stimuli are three general categories of somatosensation conveyed 

by the primary afferents and these stimuli are painful when “sufficiently” intense. How are these 

stimuli converted to signals that are understandable to the brain? In 1999, David Julius and colleague 

identified the transient receptor potential vanilloid 1 (TRPV1) protein as the transducer for noxious 

heat and chemical stimuli and, to date, TRPV1 has been the most thoroughly studied transducer 

protein expressed by nociceptors. Transducer proteins are high-threshold ion channels by nature, 

which means that under physiological condition they are activated only when the stimulus is intense 
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enough. The activation of transducers allows a transient cation influx (sodium and calcium ions), 

termed as the “transducer potential” by Woolf et al., and causes local depolarization of the 

nociceptive nerve terminal. The transducer potential leads to activation of voltage-gated sodium 

channels (Nav1.7, 1.8 and 1.9) and produces the “generator potential”, which sums as an action 

potential propagating along the nociceptive axon via Nav1.6, 1.7 and 1.8 sodium channels. At the 

central terminal of primary sensory neuron axon, depolarization of the presynaptic membrane by the 

action potential causes calcium influx and the release of glutamate into the synaptic cleft. By binding 

to the postsynaptic receptors on spinal dorsal horn neurons, glutamate activates the ligand-gated ion 

channels, resulting in cation (sodium and calcium ions) influx and depolarization of the postsynaptic 

membrane. Nociceptive information is converted to action potentials and transmitted to the higher 

order neurons in the nociceptive pathways located in the thalamus and ultimately to somatosensory 

cortex (Martin, 2012).  

The transducer protein for mechanosensation is less clear. Several molecules have been proposed as 

potential mechanotransduction ion channels, including acid-sensing ion channel (ASIC) 1-3, transient 

receptor potential ankyrin 1 (TRPA1), and P2X receptors (Dai et al., 2004, Lumpkin et al., 2010). 

Again, the transducer potential produced by transducers is essential for activation of nociceptors. In 

summary, under normal condition, these transducer proteins, localized to the nociceptive nerve 

terminal, are activated during the presence of high-intensity thermal, mechanical and/or chemical 

stimuli. This type of pain is termed as “nociceptive pain” and serves as a crucial protective 

mechanism (Woolf, 2010). 

Sensitization: not all pains are the same 

Pain has three different manifestations: nociceptive pain, inflammatory pain, and pathological pain 

(Woolf, 2010). In normal conditions, only an intense noxious stimulus is detected and conducted by 

nociceptors, a specialized subpopulation of primary afferent terminals. This neural response is 

transient and occurs only with the presence of the actual stimulus. More importantly, there is no 

alteration in the threshold of nociceptors. This type of pain is termed as “nociceptive pain” (Woolf, 
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2010). Nociceptive pain serves as an alarm system and is important in maintaining the physical 

integrity of tissue by preventing inducing tissue damage. 

Inflammatory pain and pathological pain occur when there is actual tissue damage or nerve injury. In 

these conditions, nociceptive neurons decrease their threshold and increase their responsiveness to 

suprathreshold (painful) stimuli, clinically termed as “hyperalgesia”. Sometimes spontaneous 

discharge occurs and the recruitment of non-nociceptive (or silent nociceptive) neurons responding to 

subthreshold (non-painful) stimuli, which is referred as allodynia. Hyperalgesia and allodynia are 

usually observed at the same time. These increased responses are called “sensitization” and they are 

the result of the plasticity in response properties of the nociceptors or CNS sensory neurons along the 

pain transmission pathway. Sensitization can be further classified into peripheral sensitization and 

central sensitization, based on their different locations and mechanisms. 

Peripheral sensitization 

Other than detecting and conveying sensory information to the central nervous system, primary 

afferents also have an efferent function to regulate homeostasis at the peripheral target. For example, 

tissue damage and inflammation cause immediate local depolarization of the nociceptive nerve 

terminals. Activated peptide-releasing nerve terminals release vasoactive substances such as CGRP 

and SP and lead to increased arteriole dilation and venular permeability (Holzer, 1998). The increased 

blood flow and vascular permeability at the site of inflammation activate the innate immune system 

and recruit innate immune cells, such as neutrophils, mast cells, and macrophages, as well as T 

lymphocytes from the adaptive immune system (Chiu et al., 2012). These immune cells secrete pro-

inflammatory molecules, including serotonin, bradykinin, prostaglandin, histamine, and NGF (Julius 

and Basbaum, 2001). These pro-inflammatory mediators interact with their cogent receptors on 

nociceptive peripheral terminals and increase the transducing and/or firing properties of the 

nociceptors, which is a phenomenon known as “neurogenic inflammation” (Richardson and Vasko, 

2002). 
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Neurogenic inflammation is a double-edged sword that on one side causes sensitization to trigger the 

guarding behaviors that will facilitate wound healing and immune defense and, on the other side, it is 

one of the initial mechanisms that lead to chronic peripheral sensitization. The total effects of 

peripheral sensitization include increased responsiveness and reduced threshold of nociceptive 

neurons to the stimulation of their receptive field. Some inflammatory mediators, such as protons, 

ATP and glutamate, can directly depolarize the peripheral nerve terminal. Other inflammatory 

mediators, such as NGF (Lewin et al., 1993), bind to their tyrosine kinase receptors (Trks) and are 

retrogradely transported to the neuronal cell body to influence the transcription, translation and 

trafficking of key proteins, such as CGRP and SP (Lindsay and Harmar, 1989, Woolf et al., 1994).  

Central sensitization 

The synapses between primary afferents and second order neurons in the spinal cord dorsal horn also 

are modified in response to sustained noxious signals from the periphery. Central sensitization is 

defined as “an increase in the excitability of the neurons within the central nervous system,” which is 

characterized by noxious responses to non-noxious stimuli, allodynia (IASP, 1986). Central 

sensitization can be divided into two phases: early and late. Repeated stimuli within a shorter period 

of time (early phase) will produce activity-related central sensitization, which is mainly characterized 

by spontaneous firing of spinal cord neurons. It also can induce the insertion of new AMPA receptors 

at the postsynaptic membranes of spinal cord neurons, sharing a similar mechanism as long-term 

potentiation (LTP) (Ji et al., 2003, Latremoliere and Woolf, 2009). If noxious stimuli occur in a long 

period of time (late phase), transcription and translation signals in spinal cord neurons will be 

activated by the prolonged stimuli (Ji et al., 2003, Woolf and Ma, 2007, Latremoliere and Woolf, 

2009). Both phases of central sensitization are activated by sustained noxious stimuli from primary 

afferents. Central sensitization, however, can continue in the absence of a peripheral stimulus or after 

recovery from actual tissue damage, resulting in spontaneous central pain. Central sensitization, 

therefore, is considered as a molecular basis for chronic pain (Ji et al., 2003, Latremoliere and Woolf, 

2009). 
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Driving forces of phenotypic switch in nociceptors: neuronal activity and neurotrophic factors 

The neurochemical phenotype of primary afferents is malleable and can be modified by their own 

neuronal activity and/or retrograde transport of signaling molecules. The molecular alteration often 

involves functional neuropeptides, receptors, or ion channels at the levels of transcription, translation, 

posttranslational modification, and trafficking. These alterations in neurochemical characteristics will 

lead to the modification of responsiveness of primary afferent neurons to sensory stimuli. Similar 

phenomena also can occur in “non-nociceptive” neurons and contribute to inflammatory 

hypersensitivity by altering their phenotype to one resembling pain fibers via modified neurochemical 

expression. For example, after inflammation some of the low-threshold mechanoreceptors or some 

silent nociceptors start to express SP and gain the capacity to activate the spinal cord neurons in the 

nociceptive pathway. This means that the dorsal horn neurons now can be activated by these 

innocuous stimuli, which will be interpreted as pain by the brain (Woolf and Doubell, 1994, 

Neumann et al., 1996, Xu et al., 2000, Djouhri and Lawson, 2004). This phenomenon found in the 

primary sensory neurons has been termed the “phenotypic switch” of nociceptors (Woolf and Ma, 

2007). 

The peripheral terminals of primary afferents keep constant communication with their neuronal cell 

bodies in the DRG via electrical signals in the form of action potentials or via retrograde transport of 

specific signaling molecules, such as the NGF-TrkA complex (Harrington and Ginty, 2013). Altered 

electrical activity and retrograde transport signaling molecules are also two major activities that 

“notify” the neuronal cell bodies about inflammatory/pathological conditions to initiate and maintain 

the phenotypic switch. For example, increased electrical activity within 15 min of complete Freund’s 

adjuvant (CFA) injection causes a rapid transcription of SP and CGRP mRNA in DRG neuronal cell 

bodies innervating the target tissue. Blockade of this electrical activity with local anesthetic in the 

sciatic nerve prevents the rapid induction of neuropeptide mRNA expression in DRG neurons 

(Donaldson et al., 1994, Bulling et al., 2001). These studies show that neuronal discharge may be the 

early signal to cause the up-regulated transcription of neuropeptide mRNA. The rapid up-regulation 
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of mRNAs in the neuronal cell body is unlikely due to the retrograde transport of trophic factors 

because of the relative slow rate of transport. Inflammatory mediators released at the nerve terminal 

cause peripheral sensitization that includes increased neuronal discharge in nociceptors. Increase in 

neuronal depolarization in turn may trigger a serial downstream signaling cascade in the neuronal cell 

bodies and lead to the rapid transcription of mRNA (Donaldson et al., 1994, Bulling et al., 2001, 

Puehler et al., 2004).  

In another study, nerve blockage with local anesthetic diminishes the upregulation of µ-opioid 

receptor (MOR) mRNA within 8 h, but does not block a delayed elevation present at 96 h after CFA-

injection (Puehler et al., 2004). Studies using electrophysiology also show that some of the 

electrophysiological alterations are completed 2 – 4 d after CFA (Djouhri and Lawson, 1999, Djouhri 

et al., 2001). These studies indicate that there is a delayed signal(s) that modifies the expression of 

neuropeptides. This signal travels slower than the neuronal discharge, and arrives later in the neuronal 

cell bodies. Moreover, studies show decreased neuropeptide expression in the DRG neuronal cell 

bodies two weeks after peripheral nerve transection (Zhang et al., 1993, Verge et al., 1995), which 

indicates that this signal is dependent on the integrity of the peripheral axon. This supports the 

assumption that the delayed elevation of neuropeptides and other neurochemical components is 

driven by the retrograde transport of a neurotrophic factor. NGF is one of the neurotrophic factors 

essential for maintaining the physiological functions of primary sensory neurons in development, 

survival, and normal neuronal function (Snider and McMahon, 1998, Woolf and Ma, 2007). NGF is 

expressed by target tissues and binds to the TrkA receptors located at the peripheral terminals of 

primary afferents. At early stages of development, NGF is required for the survival and differentiation 

of all nociceptive neurons. Rats that are exposed in utero to maternal antibodies to nerve growth 

factor (NGF) show a 70% decrease in the number of DRG neurons (McDougal et al., 1981). Later in 

the postnatal stage, some nociceptors decrease their expression of TrkA receptors and start to express 

Ret, the corresponding receptor for glial cell line-derived neurotrophic factor (GDNF) and 

differentiated into the so-called “non-peptidergic” nociceptors (Molliver et al., 1997, Snider and 
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McMahon, 1998). NGF remains to be the key neurotrophic factor for peptide-expressing nociceptors. 

Application of anti-NGF antibody causes a decrease in the expression level of neuropeptides in adult 

rat DRG neurons, as well as in the number of intradermal fibers at the peripheral target (Lindsay and 

Harmar, 1989, Hoffman et al., 2011). During inflammation, additional NGF is released from 

keratinocytes, neutrophils, mast cells and macrophages (Donnerer et al., 1992, Bennett et al., 1998, 

Albers and Davis, 2007). NGF binds to the high-affinity TrkA receptor, is internalized by endocytosis, 

and transported back to the neuronal cell body (Stoeckel et al., 1975, Ehlers et al., 1995, Campenot 

and MacInnis, 2004), where it is considered as the key contributor to the phenotypic switch in 

peptide-containing nociceptors. 

Section summary: 1) The perception of nociception is not static. Neurons that function in the 

nociceptive pathway undergo plastic alteration during inflammation or nerve injury; 2) Peripheral and 

central sensitization are two forms of neuronal plasticity in primary afferents and spinal cord dorsal 

horn; 3) Neuronal activity and neurotrophic factors are two important modulatory signals from the 

peripheral terminals that keep the cell bodies “notified” of peripheral events. They also direct primary 

sensory neurons to undergo long-term plastic adaptations when peripheral terminals are challenged by 

tissue damage or nerve injury. 

III. Two neuropeptides as immunohistochemical markers of nociceptive neurons 

CGRP and SP are expressed in subpopulations of DRG neurons 

The neuropeptides CGRP and SP are considered as major initiators of neurogenic inflammation and 

as neurochemical markers for nociceptive neurons (Holzer, 1998). They are expressed in the 

subpopulations of DRG neurons that are highly dependent on NGF during development and 

adulthood to maintain their phenotype as nociceptive neurons (Otten et al., 1980, Amann et al., 1996). 

In rodent DRG, CGRP is found in 22% to 45% (Hanesch et al., 1993a, Price and Flores, 2007) and SP 

is expressed in 15% to 25% of the neuronal cell bodies (Lawson et al., 1997, Price and Flores, 2007). 

The unequal percentages of the two neuropeptides indicate that CGRP has a larger proportion of total 
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DRG neurons and suggests a wider peripheral projection compared to SP neurons (Lawson, 1995). 

Electrophysiological studies in guinea pig DRG neurons show that SP immunoreactivity is limited to 

nociceptive neurons with cross sectional area < 400 µm2, while CGRP is mainly expressed small- (< 

400 µm2) and medium- (400-800 µm2) sized neurons, including a few Aβ-fiber nociceptors (Lawson 

et al., 1997, Carlton and Hargett, 2002, Lawson, 2002). Both CGRP and SP are extensively co-

localized in the rat lumbar DRG and dorsal horn of spinal cord. Over 90%, if not all, SP positive 

DRG neurons also contain CGRP (Wiesenfeld-Hallin et al., 1984, Lawson, 1995).  

CGRP and SP contribute to inflammation 

CGRP and SP are synthesized in the cell body of the DRG neurons and transported to both peripheral 

and central terminals (Takahashi and Otsuka, 1975, Zochodne et al., 2001). Peripheral release of 

CGRP and SP contributes to neurogenic inflammation. Studies show that peripheral release of SP 

from the sensory nerve terminal increases plasma exudation and that CGRP acts on arterioles causing 

vasodilation and increased local blood flow (Holzer, 1998). After peripheral inflammation, there is a 

rapid increase in CGRP and SP mRNA level (Bulling et al., 2001) and CGRP and SP protein 

expression in DRG cell bodies. This is followed by increased CGRP and SP levels in peripheral and 

central nerve root/axons and peripheral terminals in the inflamed tissue during both acute and chronic 

phases of inflammation (Donnerer et al., 1992, Hanesch et al., 1993a, Hanesch et al., 1993b). At the 

central terminal, CGRP and SP coexist in large dense-core vesicles and, upon stimulation, are co-

released with glutamate. CGRP and SP modulate basal glutamate efflux in rat spinal cord slices 

(Kangrga et al., 1990, Kangrga and Randic, 1990) and are involved in the production of inflammatory 

hyperalgesia by enhancing the responsiveness of glutamate receptors (Otsuka and Konishi, 1976, 

Okano et al., 1998, Keast and Stephensen, 2000, Sun et al., 2003).  

Section summary: CGRP and SP are two neuropeptides/neuromodulators that are neuronal markers 

for nociceptive DRG neurons. 1) CGRP and SP are mainly expressed in small to medium sized DRG 

neurons that give rise to nociceptive neurons; 2) CGRP and SP are co-released with glutamate at 

central and peripheral terminals, contributing to inflammatory hyperalgesia.  
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IV. Glutamate release in peripheral inflammation 

Glutamate-glutamine cycle in peripheral nervous system 

Glutamate is the major excitatory neurotransmitter released in both central and peripheral sensory 

neurons (Hammerschlag and Weinreich, 1972, Johnson, 1972, Miller et al., 2011). The production 

and degradation of the neurotransmitter glutamate occurs in a “glutamate-glutamine cycle” that exists 

between the neurons and glial cells. Simply stated for the CNS, neurons produce glutamate from 

glutamine via glutaminase (GLS) and package it for release via vesicular glutamate transporters 

(VGLUT). Once released, astrocytes take up glutamate from the extracellular space via excitatory 

amino acid transporters (EAAT), thereby terminating the extracellular action of glutamate. Astrocytes 

convert glutamate to glutamine by glutamine synthetase (GS) and shuttle glutamine to neurons by 

Na+-coupled neutral amino acid transporters (SNAT) (Mackenzie and Erickson, 2004, Albrecht et al., 

2007).  

In the peripheral nervous system, satellite cells and Schwann cells are the counterparts of astrocytes 

in the CNS. Satellite cells surrounding DRG neuronal cell bodies contain GS for conversion of 

glutamate to glutamine and SNAT 3,4 for transport out of the cell (Miller et al., 2002). All DRG 

neurons are glutamatergic, taking up glutamine via SNAT 1,2 and using GLS as the enzyme for the 

conversion of glutamine to glutamate (Miller et al., 1993, Miller et al., 2002). In DRG neurons, 

glutamate is packaged into synaptic vesicles by VGLUT’s 1-3 (Brumovsky et al., 2007, Brumovsky 

et al., 2011, Malet et al., 2013). In the DRG and sciatic nerve, neurons, satellite cells and Schwann 

cells contain EAATs for extracellular glutamate uptake.  DRG neurons express excitatory amino acid 

transporter 3 (EAAC1/EAAT3), while satellite cells and Schwann cells express glutamate-aspartate 

transporter (GLAST/EAAT1) and glutamate transporter 1 (GLT-1/EAAT2) (Tao et al., 2004, Carozzi 

et al., 2008). The presence of glutamate-glutamine cycle helps to 1) maintain the glutamate content in 

metabolic and neurotransmitter pools; and 2) remove the excessive glutamate in the extracellular 
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space, thus protecting the neurons from glutamate-mediated excitotoxicity of glutamate (McKenna, 

2007).  

Besides functioning as the major excitatory neurotransmitter, glutamate is also a non-essential amino 

acid that is important for cellular metabolism and biosynthesis of proteins and purines (Miller et al., 

2002). The presence of cytoplasmic glutamate and GLS in non-neuronal tissue suggests that 

localization of glutamate or GLS is not sufficient to separate the neurotransmitter pool from the 

metabolic pool, and taht VGLUTs are responsible for this separation. Similar to the release of other 

neurotransmitters, the release of glutamate from synaptic vesicles is a cellular process using fast 

exocytosis mediated by Ca2+ influx. Ca2+ influx triggers docking and fusion of the synaptic vesicles 

with the presynaptic membrane in response to depolarization. VGLUTs are the key proteins that 

transport glutamate into the synaptic vesicle for synaptic release (Shigeri et al., 2004), so the presence 

of VGLUTs is considered as a specific marker of glutamatergic neurons. VGLUT1-3 proteins are 

present in spinal cord, primary afferent cell bodies, central processes and terminals in glabrous and 

hairy skin (Li et al., 2003, Brumovsky et al., 2007). 

At peripheral and central terminals, studies at cellular and ultrastructural levels demonstrate the 

presence of ionotropic (AMPA, NMDA, kainate) and metabotropic glutamate receptors (mGluR) in 

DRG neurons, myelinated and unmyelinated sensory nerve fibers and free nerve terminals in the skin 

(Sato et al., 1993, Carlton et al., 1995, Juranek and Lembeck, 1996, Willcockson and Valtschanoff, 

2008) and central terminals in the spinal cord (Furuyama et al., 1993, Carlton et al., 1998). Ionotropic 

glutamate receptors are liganded cation channels on the nociceptive nerve terminal. They mediate 

sodium and calcium ion influx, and facilitate the depolarization of the nerve terminal (Carlton et al., 

2001).  

The presence of glutaminase, VGLUTs and glutamate receptors in nociceptive nerve terminal 

indicates that glutamate can be: 1) synthesized by glutaminase, 2) packed into synaptic vesicles via 

VGLUTs locally at the nerve terminal, and 3) activates the nerve terminal by binding to glutamate 

receptors. 



 

 

14 

Glutamate is implicated in nociceptive transmission in normal and inflamed states 

As mentioned earlier, glutamatergic primary afferents also carry an “efferent” function. Glutamate is 

packaged in synaptic vesicles via VGLUTs and released at peripheral and/or central terminals in 

response to natural or electrical stimuli, chemical activation, pro-inflammatory mediators and nerve 

injury (Wheeler et al., 1966, Kangrga et al., 1990, Kangrga and Randic, 1990, al-Ghoul et al., 1993, 

deGroot et al., 2000, Zahn et al., 2002, Miller et al., 2011, Inquimbert et al., 2012).  

Subcutaneous injection of glutamate and other glutamatergic agonists for glutamate receptors 

produces local inflammatory responses including mechanical allodynia, thermal hyperalgesia, and 

edema (Zhou et al., 1996, Du et al., 2001). Exogenous glutamate binds to the EAARs at the 

nociceptive nerve terminal, triggers sodium and calcium influx, and activates the nociceptive nerve 

terminal. The activated nociceptive nerve terminal releases the vasoactive neuropeptides CGRP and 

SP, which increase vasodilation and vascular permeability, cause neurogenic inflammation, and 

produce peripheral sensitization (Juranek and Lembeck, 1996, Willcockson and Valtschanoff, 2008, 

Nakayama et al., 2010). The sensitization and edema produced by glutamate or other glutamatergic 

agonists can be attenuated by glutamate receptor antagonists in a dose-dependent manner (Du et al., 

2006).  

During inflammation, there are elevated glutamate levels and release at peripheral nerve terminals in 

the epidermis, synovial fluid in the knee joint, extracellular space and muscle (Lawand et al., 2000, 

Cairns et al., 2002, McNearney et al., 2004). The elevated release may lead to increased activation of 

glutamate receptors in peripheral tissue, especially at nociceptive nerve terminals (Carlton et al., 1995, 

Zhou et al., 1996, Lawand et al., 1997, Coggeshall and Carlton, 1998). At central terminals, elevated 

glutamate release in the spinal cord has been observed in response to peripheral tissue or nerve injury 

in studies using paw incision and nerve injury models (al-Ghoul et al., 1993, Zahn et al., 2002). 

Glutamate also co-localizes and co-releases with CGRP and SP at central terminals in the spinal cord 

(Merighi et al., 1991). These neuropeptides can augment glutamate release and contribute to the 
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strengthening of glutamatergic synapses, which is a potential mechanism for central sensitization 

(Kangrga et al., 1990, Kangrga and Randic, 1990, Okano et al., 1998).  

Section summary: 1) Glutamate is the major neurotransmitter in peripheral and central sensory 

neurons; 2) Glutamate can function as a sensitizer by binding to glutamate receptors at peripheral 

nerve terminals. 3) Peripheral glutamate release, together with neuropeptides, contributes to 

neurogenic inflammation. 

V. Glutaminase as a novel pharmacologic target for potential analgesic drugs  

Phosphate-activated glutaminase (GLS, PAG) is an important enzyme in the glutamate-glutamine 

cycle. It has been generally accepted that there exist two isoforms of GLS. GLS utilizes glutamine as 

precursor and catalyzes glutamine and H2O to glutamate and ammonia (Curthoys and Watford, 1995). 

Under normal conditions, GLS is synthesized in the neuronal cytoplasm and transported to the outer 

face of mitochondrial inner membrane where the major glutamate synthesis occurs.  

The kidney and brain share the same GLS isoforms (kidney/brain GLS), and these isoforms have a 

wider distribution found in lung, small intestine and spinal cord.  Liver GLS is found in the liver 

hepatocytes around the portal region and is different from the kidney/brain GLS (Curthoys and 

Watford, 1995, Kvamme et al., 2001). 

Glutamatergic neurons also support de novo synthesis of glutamate from α-ketoglutarate from the 

TCA cycle via transamination using aspartate aminotransferase. However, at least 70% of glutamate 

in the neurotransmitter pool is recycled via the glutamate-glutamine cycle, involving brain/kidney 

GLS (Hamberger et al., 1979a, Hamberger et al., 1979b, Peng et al., 1993, Hertz et al., 1999, Hertz, 

2004, Waagepetersen et al., 2005). 

A brief review of GLS function and regulation in the central nervous system 

The concentration of glutamate in synaptic vesicles is in millimolar concentrations (Nedergaard et al., 

2002) while extracellular concentrations of glutamate in the synaptic cleft are in nanomolar ranges. 
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The low concentration in synaptic cleft is maintained by glial cell and presynaptic neuron uptake. 

Excess glutamate from the synaptic cleft must be removed after the completion of a signaling event to 

maintain its homeostatic levels. Excess glutamate is detrimental to neurons due to overstimulation 

causing excitotoxicity, which is implicated in several CNS neurodegenerative diseases (Lipton and 

Rosenberg, 1994). Existing strategies for disease treatment are aimed at suppressing glutamate 

neurotoxicity by enhancement of glial glutamate transportation or blockade of the postsynaptic 

glutamate receptors. The effectiveness of these strategies in clinical trials is limited by the disrupted 

physiological glutamate signaling in non-targeted areas of the central nervous system. In recent years 

glutaminase dysregulation has gained increased attention in CNS neurodegenerative diseases related 

to glutamate excitotoxicity, such as experimental cerebral ischemia, Alzheimer’s disease (AD) and 

HIV-associated neurocognitive disease (HAND) (Burbaeva et al., 2005, Takeuchi et al., 2008, Potter 

et al., 2013, Ye et al., 2013).  

Damaged cultured cortical neurons have an elevated mitochondrial glutaminase activity that 

contributes to the prolonged hydrolysis of extracellular glutamine to glutamate (Newcomb et al., 

1997). Using an in vivo permanent focal ischemia model, it has been shown that activation of 

mitochondrial GLS occurs at the periphery of the ischemic site and accounts for the continued total 

elevation of extracellular glutamate in the ischemic tissue (Newcomb et al., 1998). One study, 

comparing the glutamate metabolizing enzymes in prefrontal cortex between controls and 

Alzheimer’s disease patients, demonstrates that glutaminase is elevated in AD patients and the 

elevation of glutaminase may contribute to the elevated production of glutamate leading to 

excitotoxicity and neuronal death in the brain with AD (Burbaeva et al., 2005). Elevated glutaminase 

is also found in the neurons around the site of inflammation in a murine model of HIV-1 encephalitis 

(Ye et al., 2013). These studies provide evidence that, under pathological conditions, up-regulated 

neuronal GLS leads to increased production of glutamate leading to neuronal cell death and apoptosis, 

which may be the direct cause of neurotoxicity in neurodegenerative disease. It also suggests an 
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alternative therapeutic strategy in neurodegenerative disease for inhibition of glutaminase to suppress 

glutamate release and achieve neuroprotection (Hinoi et al., 2005, Potter et al., 2013).  

Expression and elevation of GLS in DRG neurons during peripheral inflammation 

In the peripheral nervous system, studies using immunohistochemistry and Western blots show that 

DRG neurons express the kidney isoform of GLS in neurons of all sizes, but no GLS expression 

occurs in satellite cells or Schwann cells (Miller et al., 1993, Miller et al., 2012). The percentage of 

GLS-expressing neurons in rodent DRG has varied between different laboratories, depending on the 

types of fixation and staining techniques used (Cangro et al., 1985, Battaglia and Rustioni, 1988). In 

our laboratory, an optimized fixative is used that has a low paraformaldehyde and high picric acid 

concentration. This better preserves the epitopes of the target protein and significantly increase the 

percentage of GLS positive neurons in DRGs. Using this fixative and other techniques for optimal 

immunohistochemistry, GLS is detected in all DRG neurons (Hoffman et al., 2010). This better 

matches the presence of other glutamatergic components in mechanoreceptor DRG neurons 

(Coggeshall and Carlton, 1998, Fagan and Cahusac, 2001). It also is in keeping with glutamate 

serving as the excitatory amino acid neurotransmitter for fast synaptic transmission.  

As mentioned previously, there is excess production and release of glutamate during peripheral 

inflammation (Lawand et al., 2000, Du et al., 2006) and the inflammation-induced nociceptive 

behaviors can be suppressed by antagonizing glutamate receptors (Ren and Dubner, 1993). Current 

studies show that elevated glutamate is mainly released by peripheral nerve terminals, but what 

contribution GLS has to the elevated amount of glutamate has not been identified. In the glutamate-

glutamine cycle, GLS is the key enzyme for establishing the neurotransmitter pool via converting 

glutamine to glutamate (Hertz, 2004), so it is reasonable to evaluate whether GLS alters during the 

course of inflammation.  

Previous studies from our lab evaluated the alteration of GLS in rat DRG during peripheral 

inflammation. At 7 days of inflammation using rat adjuvant-induced arthritis (AIA) model, there is 

elevated GLS expression levels and enzymatic activity in DRG neurons, and increased levels of GLS 
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and glutamate also are observed in the skin in the peripheral terminals at the site of inflammation 

(Miller et al., 2012). An elevation of mitochondrial GLS, as well as cytosolic GLS is observed after 7 

days of AIA (Miller et al., 2012) A temporal study evaluated the alteration of GLS at one, two, four 

and eight days during AIA and revealed a peak elevation of GLS at day four of AIA in all sizes of 

DRG neurons that persists in small neurons at eight days of inflammation (Hoffman, 2009).  

DRG neurons are heterogeneous in cell body size and neurochemical markers. If the evaluation of the 

alteration is based on the total population, the presence of large DRG neurons will skew the data and 

mask the contribution of each potential subpopulation. By separating the data by DRG neuronal size, 

the major GLS alteration occurs in small DRG neurons that give rise to mainly C-fibers, most of 

which are nociceptors.  

Potential axoplasmic transport of glutaminase after inflammation 

Elevated GLS is found in DRG neuron soma and peripheral terminals after inflammation (Hoffman, 

2009, Miller et al., 2012). Elevation of GLS levels in peripheral terminals suggests that it is 

transported from the cell body in the peripheral axons.  

Many studies show that disrupted axonal transport results in accumulation of enzymes and organelles 

that can be observed at sides proximal and distal to the site of ligature/crush/chemical blockage 

(Zelena et al., 1968, McDougal et al., 1981). This simple method confirms the existence of axoplamic 

transport and provides a convenient method to study the machineries and mechanisms that are 

required for axonal transport, a crucial cellular process for development and function of neurons. 

Mitochondria are one of the organelles in motion in axoplasm and GLS activity is found accumulated 

at the proximal side of sciatic nerve ligature (McDougal et al., 1981). Studies on brain/kidney GLS 

show that there are two major sub-cellular locations of GLS, a cytoplasmic GLS and mitochondrial 

GLS. The mitochondrial GLS is considered active and the cytoplasmic GLS is inactive due to the 

high matrix concentration of the inhibitor glutamate (Kvamme et al., 2001, Miller et al., 2012). 

Studies using an in vitro culture system showed that mitochondria accumulate at the site of NGF 

stimulation by stimulating the axons with NGF-coated beads at points distant from their cell bodies or 



 

 

19 

growth cones (Chada and Hollenbeck, 2003, 2004). Although the transport machinery of glutaminase 

in the peripheral axons has not been identified, these studies support the hypothesis that elevated 

glutaminase can be mobilized and transported from DRG neuronal cell body to the peripheral nerve 

terminal for peripheral glutamate production. 

GLS can be a novel target for analgesia 

Drugs targeting glutamate receptors and glutamate transporters as treatment for excitotoxicity have 

side effects such as disrupting normal glutamate signaling in the central nervous system. All 

glutamate receptors participate in initiation, sensitization, modulation or maintenance of pain in 

different animal or human models, but with different temporal profiles and on different scales. Each 

receptor type differs in cellular distribution, affinity for glutamate and activation of downstream 

signaling pathways. Thus far, relatively limited studies have tried to decrease access to their common 

endogenous ligand, glutamate. The downstream signals produced by glutamate are a net effect of 

activation of different glutamate receptors and it is difficult to separate the attribution of each 

glutamate receptor. Increased glutamate production in central and peripheral terminals of primary 

afferents may come from excessive synthesis by elevated GLS at both terminals. As the 

neurotransmitter and sensitizer of the peripheral nerve terminal, suppressing glutamate synthesis by 

inhibition of glutaminase at the peripheral terminal may have an analgesic effect. 

6-diazo-5-oxo-L-norleucine (DON) is a glutamine analog and shares similar uptake mechanisms as 

glutamine in neurons by the sodium-coupled neutral amino acid (System N/A) transporters (SNAT1, 

2). DON irreversibly binds to the glutamine acceptor site in phosphate-activated glutaminase and 

interferes with glutamate synthesis. It previously has been used as a chemotherapeutic drug and 

evaluated in cancer research. DON also has been used as an effective GLS inhibitor to block 

glutamate production and release in the central nervous system. It has been shown that DON reduces 

the calcium-specific release of glutamate from synaptosomes in a concentration-dependent manner 

without affecting the calcium-specific release of aminobutyric acid (GABA), glycine or serotonin 

(Sherman and Mott, 1986). DON effectively abolishes glutamate immunoreactivity in cat 
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sensorimotor cortex via inhibition of GLS, providing further evidence that GLS is the major synthetic 

enzyme contributing to neurotransmitter pool (Conti and Minelli, 1994). GLS inhibition with DON 

also decreases glutamate release from activated microglia, rescues neuronal death in a dose-dependent 

manner in vitro, and attenuates clinical scores in ischemic brain injury and experimental autoimmune 

encephalomyelitis in mice (Takeuchi et al., 2008, Shijie et al., 2009). 

DON has been administrated in animal models in our laboratory to study the effect of peripheral 

inhibition of GLS and glutamate release during inflammation. DON suppresses carrageenan-evoked 

c-fos immunoreactivity in the rat spinal cord 3 h after carrageenan-induced hindpaw inflammation 

(Hoffman and Miller, 2010). In the rat AIA model, DON attenuates thermal hyperalgesia and 

mechanical allodynia within 6 h after application at 4-7 d AIA (Miller, 2007). These results support 

the idea that peripheral inhibition of GLS may be a novel therapeutic target for analgesia. 

Section summary: 1) Elevated GLS contributes to excess glutamate synthesis and release and the 

neurotoxicity of glutamate leads to neuronal death in the central nervous system; 2) GLS inhibition 

shows promising therapeutic effects on glutamate excitotoxicity via suppressing glutamate release in 

alleviating neurodegenerative diseases; 3) Elevated GLS also is found in primary sensory neurons and 

is related to increased nociceptive behavior after peripheral inflammation; 4) Peripheral inhibition of 

GLS can be an alternative strategy for pain relief. 

VI. Adjuvant induced arthritis as an animal model for the study of pain. 

In the current project, adjuvant induced arthritis (AIA) will be used as the animal model that mimics 

rheumatoid arthritis for the majority of the studies. This model is produced by a single unilateral 

subcutaneous injection of 150 µl of 1:1 of saline/CFA emulsion (complete Freund’s adjuvant, 75 

µg/150 µl) in the hindpaw plantar surface of adult Sprague-Dawley (SD) rats with mixed sexes. 

Complete Freund’s adjuvant is a solution of inactive and dried Mycobacterium tuberculosis 

suspended in mineral oil (1mg/ml) (Wollweber, 1990). For subcutaneous injection, CFA is emulsified 

in a 1:1 solution with saline or phosphate buffered saline (PBS). Local injection of CFA in the 
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hindpaw produces a severe inflammation that characterized by erythema (redness), edema (swelling), 

hyperthermia (heat), hypersensitivity (pain) and loss of function (Stein et al., 1988, Fehrenbacher et 

al., 2012). Other than the above five hallmark signs of inflammation, animals with adjuvant-induced 

inflammation exhibit normal grooming and normal levels of activity but tend to limp and guard the 

inflamed paw (Stein et al., 1988, Fehrenbacher et al., 2012). The mechanisms of CFA-induced 

inflammation have not been not fully understood. Histological studies report that by 24 h, infiltration 

of neutrophils and macrophages are observed at the site of injection, and the accumulation is 

correlated with dose of the CFA (Harper et al., 2001). The hallmarks of inflammation in the CFA 

model are associated with neurogenic inflammation, which will be introduced in detail in next 

section. It is an established model that simulates various clinical phases of inflammation.  

The dose of CFA, rat strain and sex were taken into consideration in the current project. Different 

doses of CFA have been found across the literature. The common dose is a single injection of 75-150 

µl in rats (Galeazza et al., 1995, Nicholas et al., 1999, Miller et al., 2012) and 5-10 µl in mice 

(Gauldie et al., 2004, Scherrer et al., 2010). One study reports that a higher dose (250 µg 

Mycobacterium tuberculosis suspended in 50 µl paraffin oil) of adjuvant in the hindpaw produces 

contralateral inflammation and arthritis after 14 days, but without the complicating effects seen in 

adjuvant induced chronic polyarthritis induced by CFA injection at the base of the tail (Donaldson et 

al., 1993). Similar dose-dependent increase of tissue IL-1β levels and immune cell infiltration is 

observed when applied to the temporomandibular joint (Harper et al., 2001). The dose of CFA for the 

current study has been used extensively in our laboratory and produces a robust and reproducible 

inflammation. Rat strain/stock and sex differences also are taken into consideration. The major 

advantage of Sprague-Dawley rats is their relative calmness compared to other rat strains and their 

relative ease to handle. SD rats have more consistent immune and behavior responses compared to 

other laboratory rat strains (Zhang et al., 2003, Cai et al., 2006, Vukojevic et al., 2007). Gender 

difference is suggested in morphine potency and opioid receptor subtype expression level between 
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male and female rats (Cook and Nickerson, 2005, Wang et al., 2006). The SD rat shows the minimum 

susceptibility between genders on behavioral level in the AIA model (Bradshaw et al., 2000, DeLeo 

and Rutkowski, 2000, Faraday, 2002).  

Naïve SD rats with no injection will be used as controls in the studies. Sterile saline is the most 

popular choice of vehicle control when using the AIA model. However, it has observed that sterile 

saline injection plus the needle wound produces a slight local, inflammation hypersensitivity in the 

behavior tests and alteration in protein production in the DRG (see Chapter II and IV) (Hoffman, 

2009). These changes resolve within 2 d without other noticeable long-term behavioral alteration. It 

has been suggested that always including a non-treated animal group as naïve controls better reflects 

the progress of inflammation and effect of analgesic or anti-inflammatory drugs in experimental 

animals (Fehrenbacher et al., 2012). CFA is a suspension with killed bacteria and the emulsion of 

sterile saline and mineral oil without the bacteria is called “incomplete Freund’s adjuvant.” It also 

produces an acute inflammatory response, so it cannot be used as an appropriate control. In the 

current study, the major aim is to measure the alteration of comparisons between a naïve/normal 

animals and inflamed animals, instead of a minor inflammation versus a major inflammation. Thus, in 

current project, naïve/normal controls are used in all experiments, and vehicle control is only included 

in the experiments with pharmacological treatment (Chapter IV). 

The single injection of CFA into the hindpaw producing a monoarthritis model is a preferred animal 

model in this study for the following reasons. First, the monoarthritis that develops in the rat inflamed 

hindpaw and the biochemical changes are localized to the ipsilateral lumbar dorsal root ganglion and 

lumbar dorsal horn. The rats do not develop the chronic polyarthritis of all limbs as observed 

following systemic injection of adjuvant. The unilateral, increased nociceptive sensitivity allows us to 

compare between the normal and sensitized region. Secondly, the local injection of Freund’s adjuvant 

likely results in inflammation in both cutaneous tissue and deeper tissue to produce a more robust 

local inflammation affecting the functions of more (or additional or maximal number of) primary 
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afferent nerve terminals. Third, unilateral AIA produces a persistent inflammation that reaches a peak 

response within 6 h and lasts for several weeks, while other reagents e.g., formalin, carregeenan, 

capsaicin, nerve growth factor, produce a less robust and relatively short inflammation that resolves 

on its own within 24 h - 4 d (Ren and Dubner, 1999). The AIA model allows us to evaluate the 

alteration of several pro-inflammatory mediators during the chronic phase of the inflammation.  

Section summary: The unilateral AIA model is an useful animal model for studying inflammation. It 

allows us: 1) observe nocifensive behavior for comparison with normal responses; 2) evaluate cellular 

and molecular alterations of target proteins or substances; 3) compare and evaluate the effects of 

pharmacologic treatment on pain and inflammation. 

VII. Summary 

Pain and temperature are sensed by a subset of DRG neurons. Calcitonin gene-related peptide 

(CGRP) and substance P (SP) are neuropeptides expressed in small- and medium-sized, nociceptive 

DRG neurons. A phenotypic switch occurs in DRG neurons when peripheral tissue is challenged by 

inflammation, leading to elevated expression of both sensory neuropeptides that is correlated with 

elevated nociceptive behavior under peripheral inflammation. The two neuropeptides are “classic” 

neurochemical markers of nociceptive neurons. It is known that during peripheral inflammation, GLS 

protein expression is elevated in DRG neurons, particularly small- and medium-sized, presumably 

nociceptive, neurons during the chronic phase of inflammation (Hoffman, 2009).  It is of importance 

to evaluate the temporal response of glutaminase (GLS) expression level in the peptidergic 

subpopulation of DRG neurons after adjuvant-induced arthritis (Chapter II). 

It has been demonstrated that elevated GLS expression level in AIA is correlated with increased 

nocifensive behavior. Glutamate release increases at the peripheral terminal of the primary afferents 

during inflammation, and it is reasonable to assume that this is due to the amount of GLS in the 

peripheral terminals. The only source of GLS protein in the peripheral terminals is from the neuronal 



 

 

24 

cell bodies located in the DRG. It is reasonable to anticipate that if there is elevation of GLS in the 

DRG neuronal cell bodies, then elevated GLS can be observed in the peripheral nerve during the 

acute phase of AIA in accordance with the temporal alteration pattern found in neuronal cell bodies 

(Chapter III).  

During inflammation, several inflammatory mediators will be co-released by sensory nerve terminals 

causing neurogenic inflammation. Those molecules act as sensitizers in augmenting nociception. 

Elevated glutamate is released from peripheral sensory terminals during inflammation. By binding to 

glutamate receptors on peripheral terminals of primary afferents, glutamate functions as a sensitizer 

contributing to peripheral sensitization in addition to its role as a major neurotransmitter. This has 

been demonstrated by pharmacological studies using exogenous glutamate receptor ligands and 

antagonists or evaluating glutamate concentration at the target tissue during inflammation. Limited 

studies have been performed to evaluate the effect of reducing glutamate release by inhibiting GLS, 

its synthetic enzyme, in the study of pain. DON is an effective glutamine antagonist that inhibits GLS 

activity and glutamate synthesis. In the AIA model, the administration of DON has effectively 

reversed hyperalgesia and allodynia at 4-7 d AIA. The administration of DON occurred at 3 d post-

inflammation when glutamate has elevated due to increased GLS concentrations in the peripheral 

terminals. In another study using the carrageenan-induced inflammation model, depletion of 

peripheral glutamate by pre- and concurrent administration of DON before the initiation of 

inflammation suppresses paw edema in the inflamed paw and c-fos immunoreactivity in the spinal 

cord dorsal horn during the acute phase of inflammation. It will be necessary to evaluate the effect of 

pre-depletion of glutamate on alteration of nociceptive behavior in both acute and chronic phases of 

AIA. It is also necessary to find out if pre-depletion of glutamate can modify the phenotypic switch in 

the DRG neuronal cell body during the chronic inflammation (Chapter IV).  
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VIII. List of hypotheses/aims 

Aim#1 To determine and characterize the temporal response of glutaminase levels in peptidergic 

DRG neuronal cell bodies during acute and chronic phases in rat adjuvant-induced arthritis model. 

Aim#2 If elevated glutaminase production occurs in DRG neuronal cell bodies in response to 

inflammation and if there is elevated glutaminase found in the hindpaw, we hypothesize that altered 

glutaminase levels could be detected in the sciatic nerve at specific time points during AIA. 

Aim#3 Considering the role of glutamate as a sensitizer to the peripheral nerve terminal on the 

generation, modulation, and maintenance of peripheral sensitization at different time points during 

inflammation, we propose that blocking the production of glutamate in the peripheral target tissues 

prior to inflammation may 1) alleviate the nociceptive behaviors; 2) inhibit the alteration of 

neurochemical characteristics during peripheral inflammation in the peptidergic DRG neuronal cell 

bodies. 
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CHAPTER II 
 

 

TEMPORAL RESPONSE OF GLUTAMINASE IN CALCITONIN GENE-RELATED 

PEPTIDE- AND SUBSTANCE P- CONTAINING NEURONS IN THE RAT DORSAL ROOT 

GANGLION DURING ADJUVANT INDUCED ARTHRITIS 

Abstract 

Glutamate is the neurotransmitter utilized in primary sensory neurons of rat dorsal root ganglia 

(DRG). Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. It has 

been reported in the previous study that the elevation of GLS-immunoreactivity (-ir) in DRG 

neuronal cell bodies during chronic peripheral inflammation. In the present study, we co-labeled 

GLS with two neurochemical markers for subpopulations of nociceptive DRG neurons, calcitonin 

gene-related peptide (CGRP) and substance P (SP). The temporal alteration of GLS-ir was 

assessed in the peptide-containing populations of neurons in response to unilateral adjuvant-

induced arthritis (AIA). Ipsilateral 4th lumbar DRGs were collected and processed for 

immunohistochemistry at 1, 2, 4 and 8 days after AIA. By using fluorescence microscopy and 

image analysis techniques, the mean gray intensity (MGI) was obtained to evaluate CGRP-, SP- 

and GLS-ir in each traced neuronal profile (NP). The cross-sectional area of the NPs also was 

measured and neurons were further classified into small-, medium- and large-sized groups. It was 

found that 1) there was an increase in the proportion and MGI of CGRP- and SP-containing 

neurons after inflammation; 2) the peak elevation of GLS-MGI was at 1 day after initiating AIA, 

and a significant elevation of GLS-ir was observed in small-sized CGRP- and SP-containing 
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DRG neurons; 3) as AIA progressed, some medium and large neurons became CGRP- and SP- 

positive. These results help further characterize the temporal alteration of glutamate metabolism 

regarding subpopulations of DRG neurons as they respond to peripheral inflammation. 

Introduction 

Dorsal root ganglia (DRG) neurons are primary sensory neurons that detect and convey 

somatosensory information from peripheral tissue to the central nervous system (CNS). Most if 

not all DRG neurons use glutamate as the neurotransmitter (Miller et al., 1993, Bulling et al., 

2001, Miller et al., 2011), and glutamate receives accumulative attention for its role in 

nociception transmission and sensitization. During peripheral tissue injury or inflammation, 

elevated glutamate is found at peripheral terminals in the target tissues, such as knee joint, skin 

and muscle (Omote et al., 1998, Lawand et al., 2000), where glutamate contributes to excitation 

and sensitization of nociceptors (Du et al., 2001). During peripheral inflammation, elevated 

glutamate release occurs at the central terminals in the spinal dorsal horn (al-Ghoul et al., 1993, 

Zahn et al., 2002), where the central release of glutamate activates excitatory glutamate receptors 

on post-synaptic neurons for nociceptive neurotransmission, leading to sensitization of central 

post-synaptic neurons (Zahn et al., 2002, Inquimbert et al., 2012). Prolonged exposure to 

repetitive or continuous noxious stimulation from the peripheral terminal of primary afferents 

leads to adaptation in the neurochemical components of the DRG neurons, a cellular process 

termed a “phenotypic switch” (Woolf and Ma, 2007).  

The direct source of excessive glutamate released from primary afferents during peripheral 

inflammation, however, has not been fully identified. At the synapses of glutamatergic neurons, 

the homeostasis of glutamate is maintained by the “glutamate-glutamine cycle”. In the glutamate-

glutamine cycle, glutaminase is the most crucial synthetic enzyme that converts glutamine to 

glutamate and is the major source replenishing the glutamate neurotransmitter pool in presynaptic 
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terminals (Waagepetersen et al., 2005, Miller et al., 2011). Several studies in CNS 

neurodegenerative diseases indicate that dysregulated glutaminase is related to excessive 

glutamate production and contributes to neuronal excitotoxicity found in cerebral ischemia, 

Alzheimer’s disease and HIV-associated neurocognitive disease (HAND) (Newcomb et al., 1998, 

Burbaeva et al., 2005, Potter et al., 2013). In the peripheral nervous system, glutaminase 

expression and enzyme activity are elevated in DRG neuronal cell bodies and at peripheral 

terminals during chronic adjuvant-induced arthritis (Miller et al., 2012), and peripheral inhibition 

of glutaminase produces long-term suppression of edema and nociceptive behaviors in both 

adjuvant- and carrageenan- induced inflammation (Hoffman and Miller, 2010, Miller 2007). 

These studies support the idea that elevated glutaminase in the primary afferents may lead to 

excessive production of glutamate at central and peripheral terminals, and thus contribute to 

inflammatory pain. To date, numerous studies have evaluated glutamate release and the response 

of glutamate receptors during inflammation (Miller et al., 2011), however, limited studies have 

been performed to assess the response of glutamate metabolism, e.g., glutaminase levels, in 

primary afferents. Thus, the goal of the present studies is to determine the temporal response of 

glutaminase in subpopulations of cell bodies of DRG neurons. By using fluorescence microscopy 

and image analysis techniques, we categorize each neuronal profile (NP) by cross-sectional area 

and evaluate the alteration of glutaminase immunoreactivity in those populations of neurons 

containing calcitonin gene-related peptide (CGRP) and substance P (SP), two neurochemical 

markers for peptide-containing nociceptive neurons (Hanesch et al., 1993, Moussaoui et al., 1993, 

Snider and McMahon, 1998). 

Materials and methods 

Animals and adjuvant induced arthritis 

Adult Sprague-Dawley rats (200 - 350g) of mixed sex (n=four/group, two male and two female) 

were housed on a 12:12 light/dark cycle, and given access to food and water ad libitum. Rats 



 

 

36 

were anesthetized with isoflurane (5% induction, 2% maintenance) before any injection. 

Adjuvant-induced arthritis (AIA) was induced by a single unilateral subcutaneous injection of 

150 µl of 1:1 saline/CFA emulsion (complete Freund’s adjuvant, 75 µg/150 µl) in the rat hindpaw 

plantar surface. AIA was allowed to developed for eight, four, two, and one days prior to tissue 

collection so that DRGs from all time points were collected on the same day. Naïve SD rats with 

no injection were used as control and processed on the same day with the experimental groups. 

Procedures were carried out in accordance with the National Institut of Health Guide for the care 

and use of laboratory animals and approved by the committee of animal care and use for research 

at Oklahoma State University Center for Health Sciences. All efforts were made to minimize the 

number of animals used and their suffering. 

Immunohistochemistry 

In the present study, all tissue collections were performed on the same day of experiment and 

processed for immunohistochemistry under the same conditions to minimize batch-to-batch 

variations introduced during tissue handling and processing. Rats were anesthetized with 3 ml of 

Avertin (2.5% of 2, 2, 2-Tribromoethanol, Sigma-Aldrich) and 0.8 ml of xylazine (1 mg/ml, 

AnaSed, LLOYD). Transcardial perfusion was performed by the following procedures. The 

abdomen and thoracic cavities were opened surgically and a perfusion cannula was inserted 

through a cut in the left ventricle into the ascending aorta. The cannula was fixed in place by 

clamping a straight hemostat across the superior part of the ventricles and then the right atrium 

was cut open. Calcium free Tyrode's solution, 80 ml, was pumped through the cannula followed 

by 300 ml optimized fixative for GLS immunolabeling described in previous papers (Hoffman et 

al., 2010). Briefly, it contains 0.2% (w/v) paraformaldehyde, 70% (v/v) picric acid, 0.1M sodium 

phosphate buffer at pH 7.3 at room temperature. Ipsilateral L4 DRGs were removed and post-

fixed in the same fixative for 4 h at 4°C. Tissues were transferred to 10% sucrose in PBS, pH 7.3 

overnight at 4°C. Frozen sections were cut at 10 µm in a cryostat (HM550, Thermo Scientific, 
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USA). Every fifth section was used to reduce the possibility of double-counting the same neuron. 

Dried sections were rinsed three times with PBS and blocked in 0.5% (w/v) polyvinlypyrolideone 

and 0.5% bovine serum albumin in PBS with 0.3% (v/v) Triton X-100 (PBS-T, Sigma). 

Colocalization of glutaminase with CGRP or SP was performed using fluorescence 

immunohistochemistry. The polyclonal rabbit anti-glutaminase antiserum was a generous gift 

from Dr. Norman Curthoys (Colorado State University). Sections were incubated in the antisera 

containing rabbit-anti glutaminase (1:20,000) with mouse anti-CGRP (1:8,000; Santa Cruz) or 

mouse anti-SP (1:2,000; R&D Systems) for four days at 4°C as described by Hoffman et al., 

2010. After incubation in primary antisera, sections were rinsed three times in PBS and incubated 

in secondary antisera containing biotinylated goat anti-rabbit IgG (1.0 µg/ml; Vector 

Laboratories; Burlingame, CA, USA) and Alexa Flour 555 conjugated goat anti-mouse IgG (1.67 

µg/ml; Invitrogen; Carlsbad, CA, USA) diluted in PBS-T for 1 h at room temperature. Sections 

were rinsed twice in PBS and once in sodium carbonate buffered saline (SCBS, pH 9.6) before 

incubating for 1 h in 1.0 µg/ml avidin-fluorescein isothiocyanate (FITC; Vector Laboratories) 

diluted in SCBS. After three rinses, sections were incubated in 300 nM 4',6-diamidino-2-

phenylindole (DAPI) diluted in PBS for 10 min. After three PBS rinses, coverslips were apposed 

to slides with ProLong Gold Mounting Media (Invitrogen). 

Image Analysis  

Images were captured with a 40X objective on a BX51 epifluorescence microscope (Olympus; 

Center Valley, PA, USA) using a SPOT RT740 camera (Diagnostic Instruments; Sterling Heights, 

MI, USA). The micrographs were stored as 8-bit grayscale tiff format with the pixel intensity 

value ranging from 0-255. The exposure time and gain combination was determined empirically 

for each antigen in which the dimmest regions of tissue could be discerned visually for tracing, 

but the pixel values in brightest regions were not oversaturated. This approach allowed images to 

be evaluated along the linear aspect of immunofluorescence intensity. The exposure time and gain 
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combination for a single antigen was kept the same for all tissue sections from all animals. Five 

non-overlapping random fields of view were captured from at least three sections of each DRG 

separated by 50 µm. For each field of view, three filters were used for detection of each 

fluorophore: FITC (green), TRITC (Alexa Fluor 555, red), and DAPI (blue). The quantitative 

method to measure the immunoreactivity of each antigen has been described previously (Fang et 

al., 2005, Hoffman et al., 2010, Hoffman et al., 2011). Neuronal profiles (NP) were counted with 

the following criteria: 1) the NP was through the center of the cell with a visible nucleus that was 

detected in the DAPI filter; and 2) the NP had an intact cytoplasm that did not touch the edge of 

the image. NPs were traced with a Cintiq 21UX interactive pen display (Wacom; Kita Saitama-

Gun, Saitama, Japan), using the freehand selection tool in ImageJ (National Institutes of Health; 

Bethesda, MD, USA). The cross-sectional area (µm2) and mean gray intensity (MGI) of pixels in 

the cytoplasm (excluding the nucleus) was then recorded and measured as the region of interest 

(ROI). For CGRP- and SP-ir, the raw value of MGI was obtained with ImageJ software and 

analyzed, while a relative MGI was applied to assess the change of GLS-ir in all following 

analyses. 

Our laboratory previously reported that all DRG neurons were immunoreactive for GLS 

immunolabeling using optimized fixation (Miller et al., 1993, Miller et al., 2002, Hoffman et al., 

2011), so determining a GLS-MGI threshold was unnecessary for the current study.  In order to 

combine GLS-MGI from both sets of tissue sections, double-labeled for GLS/CGRP and GLS/SP, 

the GLS-MGI (absolute MGI, designated as C) acquired for each NP was normalized on a 1 to 

100 scale and combined to evaluate the immunoreactivity of GLS. To accomplish this, the GLS 

mean gray value of the most weakly labeled neuron in the CGRP- or SP-colabeled set (A) was 

determined as was the GLS mean gray value of the most intensely labeled neuron in each data set 

(B); each neuron was given a relative mean gray value=(100 × (C-A)/(B-A)). The relative MGI of 

GLS (GLS-rMGI) was used to quantitate the immunoreativity and estimate GLS expression 

(Hoffman, 2009, Hoffman et al., 2010). 
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Threshold MGI of CGRP- and SP-containing DRG neurons 

A threshold SP and CGRP MGI was established to determine if a NP was to be considered 

immuno-positive (+ve) or –negative (-ve) for CGRP and SP, respectively (Fig. 1). The threshold 

MGI value of each antigen was determined from the naïve control group, since several studies 

reported that the proportion of neuropeptide-containing neurons could increase after peripheral 

inflammation (Hanesch and Schaible, 1995, Neumann et al., 1996, Woolf, 1996). 

To determine the CGRP-MGI threshold, the CGRP-MGI of each NP was ranked from the 

smallest to the largest (Figure 1A). The rank and MGI were plotted in x- and y-axis respectively. 

A gap and change in shape and slope of the curve were observed around an MGI of 10 from the 

graph (Fig. 1A). Neuronal ranking of MGI<10 produced a line with gradual slope and these 

neurons mainly represented the background or non-specific immunolabeling in the DRG tissue 

sections, whereas neuronal ranking with MGI≥10, was represented by a curve indicating a rapid 

increase in MGI of each NP. This threshold (MGI≥10) was re-evaluated in a scatter plot with 

CGRP-MGI plotted against the cross-sectional area (Fig. 1B). The scatter plot showed that 

CGRP+ve NPs have cross-sectional area in small- (<400 µm2; diameter, 23 µm) and medium- 

(400-800 µm2; diameter, 23-32 µm) sized ranges, with a few falling in large-sized (>800 µm2; 

diameter, 32µm) range (Fang et al., 2005, Hoffman et al., 2010). The proportion of CGRP+ve 

NPs among total NPs was 39.8%, which is in agreement with previous studies (Lawson, 1995, 

Lawson et al., 2002). A similar method was applied to determine the threshold MGI of SP (Figure 

1C, 1D), and SP MGI threshold was set at 20. The proportion of SP+ve DRG neurons in naïve 

animals was 27.5 %, which is in accordance with the reported ratio 18-25% (Lawson, 1995, 

Lawson et al., 1997). The scatterplot of SP has a clearer distribution pattern than that of CGRP 

(Fig. 1B, 1D), demonstrating an inverse relationship between cell area and MGI of each NP. Most 

of the intensely labeled SP NPs have cross-sectional area between 0-400 µm2 with smaller 

numbers of NPs in the medium-sized category. NPs with an area above 800 µm2 were not labeled. 

This distribution pattern is in accordance with the notion that SP is mainly expressed in small 
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nociceptive neurons. The threshold MGI value of CGRP (MGI≥10) and SP (≥20) then was 

applied to determine if a NP was to be considered as CGRP+ve or SP+ve in the inflamed groups. 

Statistics 

Data of MGI from the image analyses were reported in following orders in the Results section 

unless other indicated: as mean ± standard error of the mean (SEM), median and percentage 

change in median compared to naïve control animals. A total of 3489 neuronal profiles (NPs; 

2107 co-labeled with CGRP and 1382 co-labeled with SP) were traced and analyzed in the 

present study. All data were subjected to the Kolmogorov-Smirnov test to determine the 

normality of the distribution and homoscedasticity of the population. MGI values were not 

normally distributed and variances were heterogenous for nearly all comparisons. Nonparametric 

statistical analyses, therefore, were applied and the median is shown in the vertical scatter plots. 

Significant differences in MGI among different experimental conditions were determined by the 

non-parametric one-way ANOVA (Kruskal-Wallis test) by ranks followed by Dunn post hoc test 

(Prism version 5.03, GraphPad Software Inc., La Jolla, CA). In all analyses, p-value less than 

0.05 were considered significant. * p< 0.05, **p< 0.01, ***p< 0.001.   

Results 

Double-label immunohistochemistry was performed to visualize the colocalization of GLS with 

CGRP or SP in adult rat DRG sections from naïve control and inflamed animals. Representative 

images from ipsilateral L4 DRG after 1, 2, 4, and 8 days of inflammation are shown compared to 

naïve animals (Fig. 2). In naïve animals, CGRP-ir was observed in small, medium and some large 

neurons (Fig. 2A’-2E’), and SP-ir (Fig. 2F’-2J’) was almost exclusively found in small to 

medium-sized neurons. By setting an MGI threshold for CGRP- and SP-ir, it was found that in 

the naïve control group, 39.8% of the NPs were considered CGRP positive (Fig. 1A, 1B, 3A) and 

SP labeled 27.5% of the NPs (Fig. 1C, 1D, 3B). These proportions are in the range mentioned in 
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previous reports (Lawson, 1995, Lawson et al., 1997, Lawson et al., 2002). GLS-ir was detected 

in all DRG NPs (Fig. 2A-2J), and thus all CGRP- and SP-containing neurons were also 

immunoreative for GLS (Fig. 2A”-2J”). No detectable GLS-ir was observed in satellite cells or 

Schwann cells in DRG sections after AIA, which confirmed previous studies that glutaminase 

was confined to the DRG neuronal compartment (Miller et al., 1993, Miller et al., 2002). 

Temporal alteration of proportion and MGI of CGRP and SP neurons during adjuvant-

induced arthritis (AIA)  

To determine if AIA resulted in altered immunoreactivity in CGRP-labeled neurons, the 

proportion of CGRP+ve NPs and CGRP-MGI in CGRP+ve NPs were evaluated. At 1 day AIA, 

the proportion of small-sized CGRP+ve neurons increase (~10%) while that of medium-sized 

CGRP+ve neurons decrease (~5%; Fig. 3A). There was a 16% increase in the overall proportion 

of CGRP-containing NPs at 4 days AIA, and no significant alteration was observed in the overall 

proportion of CGRP+ neurons at other time points during AIA. When further evaluating the NPs 

by cross-sectional area groups at 4 AIA, small-, medium- and large-sized NPs all contributed to 

the increased proportion of CGRP-labeled neurons at this time point (Fig. 3A).  

AIA produced a robust and persistent elevation of the proportion of SP-containing NPs during the 

acute phase, which reached maximum at 2 days after CFA-injection and remained elevated 

through 8 days of AIA (Fig. 3B). When further dividing the NPs by cross-sectional area, it was 

found that during the acute phase of AIA (1-2 d), the small neurons are the major contributors to 

the increased proportion of SP+ve NPs (~10%). During the chronic phase of AIA (4-8 d), the 

proportion of medium SP+ve NPs increased (~10%) compared to naïve control group, and more 

large neurons had above-threshold SP-ir following AIA (Fig. 3B). 

When evaluating CGRP- and SP-MGI, CGRP- (Fig. 4A) and SP- (Fig. 4E) MGI at 4 days AIA 

were significantly elevated compared to that at 1 and 8 days AIA. No statistical difference was 

found at any day following AIA compared to the naïve animals in CGRP- or SP-labeled NPs. 
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When the NPs were further divided into small, medium and large sizes, the elevated CGRP- and 

SP-MGI occurred in small CGRP- (Fig. 4B) and SP- (Fig. 4F) containing NPs at 4 days AIA.  

Temporal alteration of relative GLS-MGI in all DRG NPsand CGRP-, and SP-containing NPs 

during AIA 

NPs double-labeled for GLS/CGRP and GLS/SP were combined to quantitatively assess the 

temporal alteration of GLS immunoreactivity (-ir) in DRG neuronal profiles (NPs). A total of 

3489 neuronal profiles (NPs; 2107 co-labeled with CGRP and 1382 co-labeled with SP) were 

traced and analyzed (Fig. 5A-5D). 

An increase of relative GLS-MGI (GLS-rMGI) occurred at 1 day AIA (mean = 49.4 ± 0.6; 

median = 47.4; 18.6%; P<0.001) compared to naïve animals (mean = 40.5 ± 0.5; median = 40.0), 

and remained elevated at 2 days AIA (mean = 45.9 ± 0.5; median = 45.0; 12.7%; P<0.001). At 4 

days AIA (mean = 35.2 ± 0.5; median = 34.2; 14.5%; P< 0.001), GLS-ir was significantly below 

basal level but returned to basal level at 8 days (Fig. 5A). To quantify the alteration of relative 

GLS-MGI regarding DRG cell sizes, GLS-MGI NPs were separated by cross-sectional area. It 

was found that the GLS-rMGI of small- (<400 µm2, Fig. 5B) and medium-sized (400-800 µm2, 

Fig. 5C) NPs followed similar temporal alteration pattern and magnitude found in total NPs. In 

large (>800 µm2; Fig. 5D) NPs, a significant increase occurred only at 1 day AIA (mean = 44.1 ± 

1.2; median = 44.5; 20.6%, P< 0.001) compared to large NPs from control group (mean = 36.8 ± 

1.2; median = 36.9).  

To further explore temporal alteration of GLS in nociceptive neurons, we evaluated GLS-rMGI in 

CGRP- and SP-labeled DRG NPs (Fig. 5E-5H, 5I-5L). GLS-rMGI in total traced CGRP-

containing NPs (Fig. 5E) showed the similar temporal alteration pattern found in all traced NPs 

(Fig. 5A). An elevation occurred at 1 day (mean = 52.7 ± 1.0; median = 50.7; 20.4%, P< 0.001) 

after AIA compared to control (mean = 41.9 ± 1.0; median = 42.1). A 4 &8 days, GLS-rMGI was 

below basal level. When the neuronal profiles were further divided by size, GLS-ir in small, 
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medium and large CGRP+ve neurons followed the general alteration pattern that was observed in 

GLS-ir in total traced CGRP+ve neurons. The peak GLS-ir was observed at 1 day AIA in small- 

(mean = 51.5 ± 1.2; median = 49.6; 39.3%, P< 0.001; Fig. 5F) and medium-sized (mean = 56.4 ± 

2.3; median = 55.1; 19.0%, P< 0.001) CGRP+ve neurons, followed by a decrease during the 

chronic phase of AIA (Fig. 5G). Significant decrease in the GLS-ir in large CGRP+ve neurons 

was observed at 4 and 8 days compared to 1 day following inflammation (~33%). The overall 

response pattern followed that observed in small- and medium-sized neurons (Fig. 5H). 

The peak elevation of GLS-ir in all traced SP+ve neurons showed a biphasic pattern, different 

from CGRP+ve NPs. An acute increase of GLS-ir was observed 1 day AIA (mean = 48.5 ± 2.1; 

median = 46.4; 28.7%, P< 0.001) and reached a first peak at 2 days AIA (mean = 49.8 ± 1.1; 

median = 49.8; 38.3%, P< 0.001), followed by a significant drop to basal level at four days AIA, 

while a second peak was observed at eight days AIA (mean = 50.1 ± 1.5; median = 48.5; 34.7%, 

P< 0.001) after AIA (Fig. 5I). When the neuronal profiles were further divided by size, GLS-ir in 

small SP+ve neurons followed a similar biphasic elevation observed in GLS-ir in total traced 

SP+ve neurons, with maximum elevations at 1, 2 and 8 days and a drop in MGI to basal 

immunoreactivity at 4 days AIA (Fig. 5J).  In large SP+ve neurons, GLS-ir was significantly 

increased compared to those of 1 day (~30%) and 4 day (~26%) following AIA respectively (Fig. 

L). 

Discussion 

In the present study, by co-labeling GLS with neuropeptides and separating neurons by cross-

sectional area, we further evaluated the temporal alteration of GLS in small, medium and large 

sized CGRP- and SP-containing DRG neurons as they respond to peripheral inflammation. It was 

found that: 1) The proportion, but rarely the MGI of CGRP- and SP-containing DRG neurons 

were up-regulated during peripheral inflammation and some large neurons express detectable 

CGRP- and SP-ir during AIA; 2) GLS was significantly elevated at 1 and 2 days after AIA; 3) 
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GLS was elevated in small-sized CGRP+ve and SP+ve DRG neurons during the acute phase (1-2 

d) of AIA and in SP+ve DRG neurons during the chronic phase (8 d) of AIA. These data further 

support the notion that GLS levels increase in response to peripheral inflammation and increased 

GLS may be involved in the development and maintenance of inflammatory pain via enhancing 

glutamate metabolism in primary afferents (Miller et al., 2011, 2012). 

The proportion and MGI of SP- and CGRP-containing DRG neurons are altered during AIA 

CGRP and SP are neuropeptides that are synthesized in and released by subpopulations of DRG 

neurons and have received extensive study for their roles in experimental and clinical 

inflammation and pain. Upon peripheral release, CGRP and SP cause increased arteriole 

vasodilation and capillary venular permeability in inflamed tissue, and are generally accepted as 

the initiators of neurogenic inflammation (Moussaoui et al., 1993, Holzer, 1998). Numerous 

quantitative studies have reported the temporal response of CGRP and SP in DRG neuronal cell 

body at different phases of peripheral inflammation for messenger RNA and protein levels. 

During inflammation, a rapid transcription  occurs of α-CGRP and β-preprotachykinin-A (β-PPT-

A)genes, major genes encoding isoforms of CGRP and SP protein respectively, in DRG neurons 

as early as 30 min post CFA inoculation and these levels stay up-regulated over weeks (Noguchi 

et al., 1988, Donaldson et al., 1992, Bulling et al., 2001). CGRP and SP protein expression also is 

up-regulated in DRG cell bodies during both acute and chronic phases of inflammation (Donnerer 

et al., 1992, Hanesch et al., 1993, Galeazza et al., 1995). Though the time point of the maximum 

gene induction and protein synthesis varies from study to study due to different experimental 

designs and conditions, all these data indicate that peripheral inflammation causes the up-

regulation of neuropeptide production in the DRG neuronal cell body. In the present study, it was 

found that an increase in proportion of CGRP-containing NPs occurred at 4 days after AIA, while 

SP had an early-onset increased proportion at 1 and 2 days after CFA injection, remaining 

elevated through 8 days. When further dividing the NPs by their cross-sectional area, it was found 

that during the acute phase of AIA (1 to 2 days), small-sized CGRP+ve and SP+ve neurons are 
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the major contributors to the increase in proportion, while during the chronic phase of AIA, 

medium- and large-sized neurons started to express detectable CGRP-/SP-ir and contribute to the 

increased proportion during the chronic phase. The increased proportion of CGRP and SP are in 

accordance with previous studies showing that a subpopulation of DRG neurons, especially in the 

medium- to large-sized neurons, undergo a phenotypic switch by expressing detectable CGRP 

and SP (Donaldson et al., 1992, Woolf and Doubell, 1994, Neumann et al., 1996, Bulling et al., 

2001). Neither CGRP- nor SP-MGI showed statistical differences at any day during AIA 

compared to the naïve animals, but a trend of increased accumulation of CGRP- and SP-MGI was 

observed at 4 days AIA. These results confirmed the observation from previous studies that 

peripheral inflammation activates the synthesis of CGRP and SP in a subpopulation of neurons in 

the ipsilateral ganglia, which under normal conditions either do not synthesize these 

neuropeptides or only synthesize them at a level that is below the threshold or sensitivity of the 

detection methods. 

Results from radioimmunoassay (RIA) methods in previous studies using DRG homogenates 

established the general notion that peripheral inflammation stimulates an increases in the total 

amount of neuropeptides in the DRG neuronal cell bodies. These techniques, however, are unable 

to detect changes in individual neurons to determine if the increased amount comes from change 

in number of neurons expreing neuropeptides or change in protein expression per neuron 

(Donnerer et al., 1992, Smith et al., 1992, Nicholas et al., 1999). Immunohistochemistry and 

image analysis are techniques that permits assessment of the relative concentration of protein 

expression in individual neuronal cell bodies rather than the average concentration in a tissue 

homogenate. Furthermore, peptide content of peripheral or central axons within the DRG is 

excluded in image analysis compared to the RIA methodologies. Synthesis of CGRP and SP 

appears to be confined to the neuronal cell bodies, which makes axonal transport the exclusive 

source for delivery of neuropeptides to the peripheral and central nerve terminals (Harmar et al., 

1980, Harmar and Keen, 1982). Because protein concentration detected of the cell body with 
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image analysis is a net outcome of protein synthesis and axonal transport, the temporal changes of 

CGRP- and SP-MGI reflect both processes. Previous studies found that up-regulation of CGRP 

and SP mRNA occurs as early as 30 min after CFA inoculation (Donaldson et al., 1992, Hanesch 

et al., 1993, Bulling et al., 2001). This potentially leads to elevated protein concentration at an 

earlier time than the first time point we chose to evaluate in the current study (24 h). Presumably, 

peripheral inflammation may increase anterograde transport of newly synthesized neuropeptides. 

The mechanism that drives the neuropeptide axonal transport to the nerve terminal is not fully 

elucidated, nor there is any solid correlation between neuronal discharge and axonal transport 

(Hammerschlag and Bobinski, 1992). Increased axonal transport, however, must be considered to 

affect from the temporal events occurring in the neuronal cell body following inflammation. Our 

present data indicate that neurons not producing SP or CGRP peptides under normal conditions 

have significant contribution to the increased levels of CGRP and SP in the DRG throughout 

different phases of inflammation. Hence, MGI of newly induced CGRP- and SP-expressing 

neurons may reach the MGI threshold, and thus dilute the average/median of the MGI in the 

inflamed animals. The possibilities listed above provide explanations for the differences between 

our observation and previous studies. Collectively, changes in DRG neuropeptide level in 

response to inflammation involve increased proportion of neurons, increased synthesis per neuron, 

and/or altered axonal transport. 

AIA induces temporal alteration of GLS-MGI in SP+ve and CGRP+ve DRG neurons 

Previous studies report that neurons have limited ability for glutamate de novo synthesis, so the 

major source that replenishes the glutamate neurotransmitter pool is via converting glutamine to 

glutamate by GLS. In vivo studies show that GLS is a neuronal enzyme and is considered as the 

marker for glutamatergic neurons (Kvamme et al., 2000, Kvamme et al., 2001, Waagepetersen et 

al., 2005). Acute peripheral inflammation leads to activation of transducer proteins and increased 

generation of transducer potentials (Caterina et al., 1997, Woolf and Ma, 2007). The Calcium 

influx via the transducer ion channels may mediate the synaptic release of glutamate in response 
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to increased neuronal activity. The calcium influx at the nerve terminal may also contribute to the 

activation of local glutaminase consistent with studies in rat brain synaptosomes showing that 

calcium activates GLS enzymatic activity (Kvamme et al., 2001). Increased GLS activity will 

lead to further production of glutamate to replenish glutamate that is released by neuronal 

discharge. During chronic pain, prolonged exposure to inflammatory stimulation from the 

peripheral terminal leads to adaptation in protein transcription, translation, and trafficking in the 

neuronal cell bodies (Woolf and Ma, 2007). Similar to the neuropeptides, DRG neuronal cell 

bodies are the sole synthetic site of elevated GLS, and the anterograde transport rate of GLS 

needs to be taken into consideration when considering neuronal cell body alterations. Our lab has 

previously reported the elevation of glutaminase immunoreactivity and enzyme activity in DRG 

neuronal cell bodies and inflamed hind paw skin at 7 days of AIA (Miller et al., 2012), but the 

altered amount of GLS is likely to be present earlier in the neuronal cell bodies in order to be 

transported to the inflamed site prior to 7 days. To better understand the temporal alteration of 

glutaminase in response to peripheral inflammation, the alteration of GLS during acute and 

chronic phases of AIA was evaluated. GLS showed an early increase during the acute phase of 

AIA (1-3 d), followed by a significant drop relative to basal GLS-ir of naïve control animals at 4 

days and a return to basal level during the chronic phase of AIA (4-8 d). When dividing the 

neuronal profiles by cross-sectional area, it was found that the alteration occurred across all three 

sizes of neurons, but most notably in especially in small- to medium-sized neurons. Similar to 

neuropeptides, following translation of GLS in the neuronal cell bodies, GLS is transported to the 

peripheral- and central- terminals for glutamate production. The robust increase of GLS-ir during 

acute AIA suggests a significant fast response to peripheral inflammation by increasing the GLS 

protein synthesis. However, it could also reflect decreased protein degradation or decreased 

anterograde transport, either of which would elevate GLS in the cell body. Because neither of 

these is consistent with the observed increases in peripheral glutamate observed in other studies 
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(Lawand et al., 1997, Omote et al., 1998, Lawand et al., 2000), the increase of GLS-ir during 

acute AIA is from up-regulated protein synthesis. 

Glutamate is co-released with CGRP and SP from central terminals of DRG neurons in the spinal 

cord (Merighi et al., 1991), and neuropeptides augment glutamate release and enhance the 

excitability of post-synaptic glutamatergic neurons in the nociceptive pathway (Kangrga et al., 

1990, Okano et al., 1998). It was found that CGRP- and SP-containing neurons had an up-

regulated GLS immunoreactivity at 1 day of AIA, and that the small- to medium-sized neurons 

are the major contributors to the elevated GLS. Studies using CGRP- and SP- knockout mice 

demonstrate that the two neuropeptides contribute to the development and maintenance of the 

hyperalgesia after peripheral inflammation including the development of nociceptive behaviors. 

However, hypersensitivity is not completely removed in CGRP-/- and SP-/- mices, which indicates 

there are other substances, neuronal cell populations, or mechanisms contributing to the detection 

of inflammatory pain. Both CGRP and SP facilitate the effects of glutamate at central terminal in 

the dorsal horn, and glutamate functions as a neurotransmitter at the central terminal and a 

sensitizer at the peripheral terminal in response to inflammation. Given the elevation in the 

proportion of SP-containing neurons and the prolonged elevation of GLS in this specific 

subpopulation, it is demonstrated that a subset of DRG neurons are specifically affected by 

changes related to peripheral inflammation. Elevated CGRP- and SP-ir are observed at the nerve 

terminals during inflammation (Donnerer et al., 1992, Nahin and Byers, 1994). In these peptide-

containing neurons, elevated GLS was also observed which could lead to excess production of 

glutamate in nerve terminals. CGRP and SP facilitate the release of glutamate from the dorsal 

horn neurons (Otsuka and Konishi, 1976, De Biasi and Rustioni, 1988, Kangrga et al., 1990, 

Kangrga and Randic, 1990). These results show that in the peptide-containing nerve terminals, 

elevated neuropeptide concentration might lead to excess release of glutamate. Excessive 

glutamate release at the periphery could sensitize the nerve ending and lead to peripheral 

sensitization (Woolf and Ma, 2007); while the central glutamatergic synapses could be 
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strengthened by the co-release of the two neuropeptides with glutamate, which is considered as 

significant aspect of central sensitization (Ji et al., 2003, Latremoliere and Woolf, 2009). Elevated 

glutamate synthesis via altered GLS levels in the nerve terminals, therefore, would result in 

excessive nociception transmission leading to increased pain perception during inflammation. 

Interestingly, the temporal alteration patterns of GLS were not identical between CGRP- and SP-

labeled NPs. In CGRP-labeled NPs, the peak of elevated GLS-rMGI occurred at 1 day after 

inflammation, and returned to basal level at 2 to 8 days after inflammation. In SP+ve DRG NPs, 

GLS-rMGI showed a biphasic elevation at the acute phase and 8 days after AIA. The different 

temporal alteration patterns of GLS in CGRP- and SP-containing neurons may come from the 

different subpopulations labeled by SP and CGRP. Though CGRP and SP are generally 

considered having parallel localization and functions in the DRG neurons, CGRP is located in a 

larger proportion in DRG neurons with a wider distribution and projections at both central and 

peripheral terminals than those neurons containing SP. Electrophysiology studies show that in 

guinea-pig lumbar DRGs, SP-ir is limited to a subpopulation of nociceptive neurons, including 

both C- and A-δ fibers (Lawson et al., 1997), and only half of CGRP-containing neurons are 

nociceptive (Carlton and Hargett, 2002, Lawson, 2002). These studies indicate that SP may be a 

more specific neurochemical marker for nociceptors, while CGRP-containing neurons respond to 

more types of sensory stimuli than nociception (Lawson, 1995, Lawson et al., 2002). 

The potential mechanisms underlying the changes in the temporal expression of glutaminase 

Analyzing the temporal alteration patterns of GLS and neuropeptides in the DRG is essential to 

determine the functional and pathogenic role of different neurochemical components of sensory 

neurons in response to peripheral inflammation. These results show that peripheral inflammation 

produces a significant up-regulation in GLS expression. SP labels subsets of lightly myelinated 

Aδ- and unmyelinated C-nociceptors, In SP-containing DRG neurons, GLS elevation was 

observed during both acute and chronic phases in in the AIA model. This phenomenon indicates 
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that multiple regulators contribute to the elevated GLS at early and chronic phases. During the 

rapid onset and prolonged process of inflammation, altered neural electrical activity and 

retrograde transport of signaling molecules are two candidate mechanisms that drive the alteration 

in protein expression in nociceptive neuronal cells. Neural electrical activity and retrograde 

transport signaling molecules generated from the inflammation site are sent to DRG neuronal cell 

bodies and initiate a cascade of events including post-translational modification, transcription, 

translation, and trafficking of proteins, substances, or organelles that contribute to increased 

nociceptive transmission. 

Peripheral sensitization, characterized by a reduced threshold for firing and an increase in the 

excitability of nociceptors, results in increased electrical neuronal activity of the DRG neurons, 

triggering a downstream signaling cascade in the neuronal cell bodies. Previous studies showed 

that adjuvant increases electrical activity in nerves innervating an injected join within 15 min. 

Blockade of the neural conduction with local anesthesia successfully blocks the rapid 

transcription of CGRP, PPT-A and µ-opioid receptors (MOR) mRNA in response to acute 

peripheral inflammation (Donaldson et al., 1994, Bulling et al., 2001, Puehler et al., 2004).These 

studies support the notion that increased neural discharge from the inflamed site contributes to the 

rapid initiation of transcription and protein synthesis in the DRG neuronal cell body. Short-term 

transient application of local anesthetic, however, does not block the late increase (3 days after 

AIA) of MOR mRNA after inflammation (Puehler et al., 2004). Whereas peripheral nerve section 

maintains an initial elevation of CGRP and SP in DRG neuronal cell bodies within 3 days post 

operation, but CGRP- and SP-ir decreases at 7 and 14 day (Zhang et al., 1993, Weissner et al., 

2006). Electrophysiology studies using the AIA model showed that fundamental changes in 

membrane properties of nociceptive neurons occur at 2-4 days after onset of inflammation, and 

that the activity-dependent changes at 1-2 day after inflammation is incomplete (Djouhri and 

Lawson, 1999, Djouhri et al., 2001). These studies indicate that additional signaling events are 
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required to drive and maintain the post-acute alteration of protein synthesis and membrane 

properties after peripheral inflammation especially in the CGRP- and SP-expressing nociceptive 

neurons. Nerve growth factor (NGF) could be a candidate mediating the delayed effect in 

response to inflammation since retrograde transport from the periphery is required for long-term 

changes to occur. NGF not only participates in the development and maturation of nociceptive 

sensory systems, but also acts as an important link between inflammation, pain sensitization and 

axonal transport of proteins following peripheral CFA and other inflammatory agents(Woolf et 

al., 1994, Mendell et al., 1999, Woolf and Ma, 2007). NGF also contributes to the phenotypic 

switch of the DRG neurons during inflammation. During inflammation, both up-regulation in 

CGRP- and SP involves recruiting normally non-peptide expression neurons. In response to 

peripheral inflammation, SP-expression have been found in medium- to large-sized neurons from 

an initial distribution almost exclusively within A-δ and C fibers, and this expanded expression 

has been prevented using anti-NGF strategies (Neumann et al., 1996). Together with increased 

proportion of medium- and large-sized CGRP+ve neurons, these newly recruited CGRP+ve and 

SP+ve neurons increase the probability of augmented neurogenic inflammation (Donnerer et al., 

1992, Maggi, 1995, Juranek and Lembeck, 1996) and increased glutamatergic synaptic strength at 

peripheral and central terminal, respectively (Otsuka and Konishi, 1976, De Biasi and Rustioni, 

1988, Kangrga et al., 1990, Kangrga and Randic, 1990, Galeazza et al., 1995, Woolf, 1996). 

These well-established studies on CGRP and SP have supported both the activity-dependent and 

neurotrophin mechanisms based on the timescale of the acute and chronic phases of AIA, 

respectively. Hence, the alteration of GLS may also be under the regulation of the electrical 

neural activity and the target-derived neurotrophin. 

The regulatory mechanisms for GLS expression in the nervous system are not fully understood. A 

regulatory model of GLS has been proposed using by Curthoys et al. using acute and chronic 

renal metabolic acidosis. An increase in rat renal GLS mRNAs has been characterized in response 
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to acute onset of acidosis following a 6-8 h lag and reaching a plateau within 16-18 h. The onset 

of acidosis leads to a gradual and cell-specific increase in the activity of mitochondrial GLS, and 

the increase in GLS activity during chronic acidosis results from an increase in the levels of total 

and translatable glutaminase mRNAs that results from an increased stability of the GLS mRNA. 

DRG neurons share the same GLS isoform as renal cells (Haser et al., 1985, Kvamme et al., 

2001). The robust up-regulation of GLS-rMGI at 1 day indicates a fast signal in the DRG cell 

body after the onset of inflammation, suggesting that neuronal conduction might play an 

important role for the fast communication between neuronal cell body and peripheral terminal. 

Peripheral inflammation induces rapid increased neuronal activity in DRG neuronal cell bodies, 

which may mimic the sudden decreased pH in the acute renal acidosis model. The increased 

activity in nociceptive neurons may induce post-translational activation of a pre-existing 

transcript factor or a GLS mRNA stabilizing protein that is responsible for increased the GLS 

mRNA transcription and stabilization, leading to increase GLS protein synthesis (Curthoys and 

Watford, 1995, Curthoys and Gstraunthaler, 2001). Additional experiments are required to test 

this model in DRG neurons. 

Retrograde transport of NGF has profound effects on the delayed expression of neuropeptides, 

which may be required for the maintenance of chronic inflammation and hypersensitivity. NGF 

deprivation decreases glutaminase in the embryonic DRG via destroying the small to medium 

sized capsaicin-sensitive DRG neurons (McDougal et al., 1981, McDougal et al., 1983). Though 

NGF is not required for basal glutaminase expression in adult DRG neurons (Hoffman et al., 

2011), additional studies are required to find out the role of NGF on GLS expression in the 

presence of peripheral inflammation. GLS is a mitochondrial enzyme and presumably transported 

to the nerve terminals in mitochondria. It has been reported that NGF increases the movement and 

positioning of mitochondria in the axon (Chada and Hollenbeck, 2003, 2004), which may be a 

signal that promotes the anterograde transport of newly synthesized GLS to the nerve terminal. 
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NGF also mediates the activation of p38, a mitogen-activated protein kinase (MAPK) activated 

by cellular stress and cytokines, which in turn leads to increased TRPV1 protein levels in 

nociceptors (Ji et al., 2002). The p38 pathway also is implicated as an important downstream 

signaling pathway that enhances the stabilization of GLS mRNA in the renal acidosis model 

(Curthoys and Gstraunthaler, 2001). In summary, NGF is a reasonable factor to study in regard to 

their potential regulatory effects on GLS expression during peripheral inflammation and more 

studies are needed to test this mechanism. 

Conclusions 

Increased nociceptive sensitivity during peripheral inflammation involves many molecular, 

cellular and signaling mechanisms in the primary sensory neurons in the DRG. In the present 

study, we confirmed previous studies that the proportion and immunoreactivity of CGRP- and 

SP-containing DRG neurons are up-regulated in the presence of peripheral inflammation, and that 

a phenotypic switch is observed in medium- and large- sized DRG neurons during AIA; 2) GLS 

had a significant elevation during the acute phase (1-2 d) after AIA; 3) elevated GLS was 

observed in small-sized CGRP+ve and SP+ve DRG neurons during acute phase of AIA and in 

SP+ve DRG neurons during the chronic phase of AIA.  

Peripheral inflammation drives peripheral sensitization and modifications in DRG neuronal cell 

by producing retrograde signals in nociceptive neurons. These signals, e.g., action potentials or 

nerve growth factor/TrkA, activate or increase transcription of pro-nociceptive molecules, such as 

CGRP, SP and GLS, to augment both central and peripheral sensitization. Elevated GLS could 

increase glutamate production at the spinal cord synapse and augment synaptic transmission via 

co-release with SP and CGRP. These results help further characterize a subpopulation of DRG 

neurons as they respond to inflammatory conditions. They further support the notion that GLS 

increases in response to peripheral inflammation, and increased GLS and neuropeptides may be 
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involved in the development and maintenance of inflammatory pain via enhancing glutamate 

metabolism in primary afferents. 
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Figure 1. CGRP- (A) and SP- (C) MGI and the rank of individual DRG neuronal profiles (NPs) 

from naïve control animals (n=3) were pooled and plotted to reveal the change of pattern in MGI 

and to determine the MGI threshold for CGRP- and SP-ir. The rank of MGI was plotted on x-axis 

for easier observation. The MGI threshold was set at 10 and 20 for CGRP- and SP-MGI 

respectively based on the change in the shape and slope of the curve. NPs with CGRP-MGI equal 

or above 10 were considered as CGRP+ve, and NPs with SP-MGI equal or above 20 were 

considered as SP+ve. Scatter plot of CGRP- (B) and SP- (D) MGI against the cross-sectional area 

of individual NP. CGRP (B) had a higher proportion in naïve DRG (154 out of 387, 39.8%) 

compared to SP and was found across small (21.4%), medium (14.5%) and large (3.9%) DRG 

neurons. SP (D) has a smaller distribution in DRG (79 out 287, 27.5%) compared to CGRP. SP 

primarily labeled the small-sized neurons (20.9%) and a smaller proportion of medium-sized 

neurons (5.9%). 
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Figure 2

GLS CGRP mergedI

50 μm
control

1 d

2 d

4 d

8 d

A A’ A’’

B B’ B’’

C C’ C’’

D D’ D’’

E E’ E’’

*

*

**

*



 

 

63 

GLS SP merged

50 μm
control

1 d

2 d

4 d

8 d

F F’ F’’

G G’ G’’

H H’ H’’

I I’ I’’

J J’ J’’

* *

**

**

* *
 



 

 

64 

Figure 2. Representative photomicrographs of DRG sections at different days following 

adjuvant-induced arthritis (AIA) and qualitative changes in immunoreactivity (ir) of GLS- 

neurons co-labeled with CGRP and SP. CGRP, SP and GLS have cytoplasmic staining in DRG 

sections. Note that CGRP- (A’-E’) and SP-ir (F’-J’) are found mainly in small- to medium-sized 

DRG neurons. GLS-ir (A-J) is in all DRG neurons, and no satellite cells or fibroblasts are stained 

positive for GLS-ir in naïve (A, F) or inflamed (B-E, G-J) animals. Neurons that express GLS 

with CGRP or SP appear yellow or orange in the merged images (A’’-J’’). GLS-ir appears 

brighter in many DRG neurons at 1day AIA compared to control (A, B, F,G) and many are co-

labeled with CGRP and SP (A”, B”, F”, G”). Neuronal profiles (NPs) were counted with the 

following criteria: 1) the NP was through the center of the cell with a visible nucleus that was 

detected in DAPI filter; 2) the NP had an intact cytoplasm that did not touch the edge of the 

image. The cross-sectional area (µm2) and mean gray intensity (MGI) of pixels in the cytoplasm 

(excluding the nucleus) was the recorded and measured as region of interest (ROI) with ImageJ 

for image analysis. (Arrowhead = small neurons, < 400 µm2; arrow = medium neuron, 400-800 

µm2; * = large neuron, > 800 µm2; open arrow = single-labeled neuron; blue = DAPI).  Scale bar 

= 50 µm and the scale bar was applied to all the photomicrographs. 
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Figure 3 
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Figure 3. Temporal alteration of the proportion of CGRP+ve (A) and SP+ve (B) at different days 

during adjuvant-induced arthritis (AIA). (A) The maximum proportional increase of CGRP+ve 

neurons occurs at 4 days AIA (~16%), and small, medium and large neurons all contribute to the 

increased proportion at this time point. Note that at 1 day AIA, the proportion of small CGRP+ve 

neurons increases while that of medium CGRP+ve neurons decreases. (B) AIA produces an acute 

increase in the proportion of SP+ve neurons at 1 and 2 days and the increase is maintained 

through 8 days after AIA. Note that the proportion of medium (~10%) and large neurons 

significantly increased during the chronic phase of AIA (4-8 d). 
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Figure 4. Temporal alteration of MGI in CGRP+ve (A-D) and SP+ve neurons (E-F) at different 

days during adjuvant-induced arthritis (AIA). When evaluating CGRP- and SP-MGI in all the 

traced neuronal profiles (NPs), CGRP- (A) and SP- (E) MGI at 4 days AIA is significantly 

elevated compared to that of 1 and 8 days AIA. No statistical difference is found at any day 

following AIA compared to the naïve animals in neither CGRP- nor SP-labeled NPs. When the 

NPs were further divided into small, medium and large sizes, the elevated CGRP- and SP-MGI 

occurred in small CGRP- (B) and SP- (F) containing NPs at 4 days after AIA, respectively. 

Kruskal-Wallis nonparametric one-way ANOVA was performed followed by Dunn posthoc test. 

* P < 0.05, **P < 0.01, ***P < 0.001.   
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Figure 5. Temporal alteration of relative GLS-MGI (GLS-rMGI) in all traced neuronal profiles 

(NPs) (A-D), CGRP+ve (E-H) and SP+ve (I-L) NPs at different days during adjuvant-induced 

arthritis (AIA). (A-D) In all the traced NPs (A), an acute increase of GLS-rMGI occurs at 1 and 2 

days AIA. GLS-rMGI drops below control level at 4 days AIA and restores to baseline at 8 days. 

In small- (B) and medium- (C) sized DRG NPs, the temporal alteration pattern is similar to that in 

all traced NPs (A), while in large NPs, significant elevation of GLS-rMGI is only observed at 1 

day following AIA (D). (E-H) In all CGRP-labeled (E) DRG NPs, GLS showed a significant 

elevation at 1 day AIA, returning to baseline level at 2 days. At 4 and 8 days AIA, the GLS-rMGI 

stays below baseline level. A similar temporal pattern was observed in small- (F) and medium- 

(G) CGRP-labeled DRG NPs. In large CGRP-labeled NPs, GLS-rMGI at 4 and 8 days AIA 

significantly decreases compared to that of 1 day AIA (H). (I-L) In all SP-labeled (L) DRG NPs, 

GLS-rMGI shows a biphasic elevation at both acute and chronic phases of AIA. The increase of 

GLS-rMGI starts immediately after AIA is initiated at 1 day and reaches maximum relative 

intensity at 2 days. From 2 to 4 days AIA, GLS-rMGI in all SP-labeled neurons shows a decrease 

that is below baseline and a second elevation occurs at 8 days AIA. When the NPs are further 

divided by size, a similar temporal alteration pattern is present in small SP-containing NPs (J). In 

medium SP-labeled neurons, GLS-rMGI at 4 day AIA was significantly lower than those of 1 and 

8 day AIA (K). Note that in large CGRP+ve (H) and SP+ve (L) NPs, a similar temporal 

alteration pattern of GLS-rMGI appears to occur as in all traced NPs (E) and (Ibut without 

statistical difference (possibly due to the limited number of large NPs labeled by the two 

neuropeptides). This analysis indicates that peripheral inflammation may cause change in 

expression of GLS in all size classes of DRG neurons. Kruskal-Wallis nonparametric one-way 

ANOVA was performed followed by Dunn posthoc test. * P < 0.05, **P < 0.01, ***P < 0.001. 
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CHAPTER III 
 

INCREASED ACCUMULATION OF GLUTAMINASE, CALCITONIN GENE-RELATED 

PEPTIDE, AND SUBSTANCE P IN RAT SCIATIC NERVE FOLLOWING ADJUVANT-

INDUCED ARTHRITIS 

 

Abstract 

Increased nociceptive transmission is one of the major symptoms in both acute and chronic 

inflammation. As a neurotransmitter, glutamate has an important role in nociceptive transmission, 

and elevated glutamate levels have been reported at the peripheral terminal of primary sensory 

neurons following peripheral inflammation. Glutaminase (GLS) is the synthetic enzyme for 

glutamate production in dorsal root ganglion (DRG) neurons. Elevated glutaminase expression 

and enzymatic activity have been described in DRG neuronal cell bodies within 1 day of 

inflammation and lasting up to 8 days. In addition, elevated amounts of glutaminase have been 

described in peripheral nerve terminals at the inflamed site during the chronic phase of adjuvant-

induced arthritis (AIA). In the current study, therefore, glutaminase level was evaluated within 

the sciatic nerve during AIA. It was accomplished by examining the accumulation of 

glutaminase, after the initiation of AIA, in the sciatic nerve proximal to a ligature. Calcitonin 

gene-related peptide (CGRP) and substance P (SP) were also investigated as two putative 

neuropeptides produced by nociceptive neurons. Increased accumulation of GLS, CGRP and SP 

immunoreactivity (-ir) was found at the proximal side of the ligature in response to AIA. The 

increased glutaminase transported in the sciatic nerve may promote increased glutamate  
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production and release at the peripheral terminal, leading to additional activation of peripheral 

glutamate receptors and contribution to the development, modification and maintenance of 

inflammatory pain. 

Introduction 

In primary sensory neurons, glutamate has an important role in the initiation, modulation and 

maintenance of nociceptive transmission. Elevated glutamate levels have been reported at the 

peripheral nerve terminal contributing to the hypersensitivity during acute and chronic 

inflammation (Du et al., 2001, Cairns et al., 2002, Beirith et al., 2003, Aumeerally et al., 2004). 

The increased glutamate release that rapidly occurs in acute tissue inflammation may come from 

depletion of glutamate-containing synaptic vesicles and stimulation of local glutamate production 

via its synthetic enzyme glutaminase at the nerve terminals in response to inflammation (deGroot 

et al., 2000, Medvedeva et al., 2008, Jin et al., 2009). For the elevated glutamate levels in 

peripheral tissue in some chronic pain models, a long-term mechanism that leads to elevated 

glutamate production is expected. In the central and peripheral nervous system, glutaminase is the 

major synthetic enzyme that replenishes the neurotransmitter pool for glutamate release 

(Hamberger et al., 1979, Bradford et al., 1989, Kvamme et al., 2001). Studies using experimental 

cerebral ischemia, Alzheimer’s disease (AD) and HIV-associated neurocognitive disease 

(HAND) and chronic inflammatory pain demonstrate that increased glutaminase concentration 

and enzyme activity contribute to elevated glutamate production (Newcomb et al., 1997, 

Newcomb et al., 1998, Weng et al., 2006, Miller et al., 2010, Miller et al., 2012). In Chapter II, 

the results showed that there is a temporal alteration of glutaminase, the major synthetic enzyme 

of glutamate for replenishing the neurotransmitter pool, in response to adjuvant-induced arthritis 

(AIA) in the neuronal cell bodies located in dorsal root ganglion (DRG). An acute elevation of 

GLS expression was observed in the DRG neuronal cell bodies at 24h and 48h, followed by a 

gradual decrease at 4 days after initiation of AIA. At 7 days following AIA, elevated glutaminase 
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expression is found in the inflamed hindpaw skin (Miller et al., 2012). If elevated glutaminase 

production occurs in DRG neuronal cell bodies in response to inflammation and if there is 

elevated glutaminase found in the hindpaw, we hypothesized that altered glutaminase levels could 

be detected in the sciatic nerve at specific time points during AIA. To address this issue, sciatic 

nerve ligation at different time intervals after initiation of inflammation was used to halt axonal 

transport and study the accumulation of substances transported from the neuronal cell bodies of 

the DRG.  

Materials and methods 

Male Sprague-Dawley rats (200 – 300g) were housed in a 12:12 light/dark cycle and given access 

to food and water ad libitum. Rats were anesthetized with isoflurane (5% induction, 2% 

maintenance) before any injection or surgery. Adjuvant-induced arthritis (AIA) was induced by a 

single unilateral subcutaneous injection of 150 µl of 1:1 of saline/CFA emulsion (complete 

Freund’s adjuvant, 150 µg/150 µl) in the hindpaw plantar surface. AIA was allowed to develop 

for four, three, two, and one days prior to sciatic nerve ligation surgery. On the day of surgery, 

rats were anesthetized and the ispsilateral sciatic nerve was tied at mid-thigh level with 4.0-silk 

suture (Ethicon, Ethicon Inc.). The same surgery was performed on naïve rats with no injection as 

a control. After the surgery, the rats were left in new cages for 24 hours to allow for accumulation 

of protein at the ligature. Procedures were carried out in accordance with the National Institute of 

Health Guide for the care and use of laboratory animals and were approved by the committee of 

animal care and use for research at Oklahoma State University Center for Health Sciences. All 

efforts were made to minimize the number of animals used and their suffering. 

In the present study, all tissue collections were performed on the same day of the experiment and 

processed for immunohistochemistry under the same conditions to minimize the batch-to-batch 

variations introduced during tissue handling and processing. Rats were anesthetized with 3 ml of 

Avertin (2.5% of 2, 2, 2-Tribromoethanol, Sigma-Aldrich) and 0.8 ml of xylazine (1 mg/ml, 
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AnaSed, LLOYD).  The rats were perfused with 80 ml calcium free Tyrode's solution followed 

by 300 ml optimized fixative for GLS immunolabeling described in previous papers (Hoffman et 

al., 2010). Briefly, it contains 0.2% (w/v) paraformaldehyde, 70% (v/v) picric acid, 0.1M sodium 

phosphate buffer at pH 7.3. The ipsilateral sciatic nerve was removed from each rat with unequal 

lengths in relation to the ligature to identify the proximal and distal sides. The nerve segments 

were post-fixed in the same fixative for 4 h at 4°C. Tissues were transferred to 10% sucrose in 

PBS, pH 7.3 overnight at 4°C and frozen sections were cut at 14 µm with a HM550 cryostat 

(Thermo Scientific). Sections were affixed to gelatin-coated glass microscope slides and every 

fifth section was used per antiserum. Dried sections were rinsed three times with PBS and 

blocked in 0.5% (w/v) polyvinlypyrolidone and 0.5% bovine serum albumin in PBS with 0.3% 

(v/v) Triton X-100 (PBS-T, Sigma). The polyclonal rabbit anti-glutaminase antiserum was a 

generous gift from Dr. Norman Curthoys (Colorado State University). Sections were incubated in 

the antisera containing rabbit-anti glutaminase (1:20,000) with mouse anti-CGRP (1:8,000; Santa 

Cruz) for four days at 4°C as described previously (Hoffman et al., 2010). After incubation in 

primary antisera, sections were rinsed three times in PBS and incubated in secondary antisera 

containing biotinylated goat anti-rabbit IgG (1.0 µg/ml; Vector Laboratories; Burlingame, CA, 

USA) and Alexa Flour 555 conjugate goat anti-mouse IgG (1.67 µg/ml; Invitrogen; Carlsbad, 

CA, USA) diluted in PBS-T for 1 h at room temperature. Sections were rinsed twice in PBS and 

once in sodium carbonate buffered saline (SCBS, pH 9.6) before incubating for 1 h in 1.0 µg/ml 

avidin-fluorescein isothiocyanate (FITC; Vector Laboratories) diluted in SCBS. After three PBS 

rinses, coverslips were apposed to slides with ProLong Gold Mouting Media (Invitrogen). 

Additional sections were processed singly in mouse anti-SP (1:2,000; R&D Systems) and 

followed by Alexa Flour 555 conjugate goat anti-mouse IgG using a similar protocol. 

Epifluoresence images were photographed with a 20X objective with an Olympus BX51 

microscope (Olympus; Center Valley, PA, USA) using a SPOT RT740 camera (Diagnostic 

Instruments; Sterling Heights, MI, USA). The micrographs were stored as 8-bit grayscale tiff 
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format with the pixel intensity value ranging from 0-255. Analysis was performed with Image J 

software (National Institutes of Health; Bethesda, MD, USA). For sciatic nerve analysis, image 

analysis was adapted from previous studies (Long et al., 1998, Zhang et al., 2000, Thakor et al., 

2009). Briefly, five 50×50 µm2 squares were drawn within a distance of P0 (0-200 µm) and P1 

(200-400 µm) respectively from the proximal side of the ligature. Images were excluded that 

contained gaps, breaks, or signal artifact. An average accumulation (P) of P0 and P1 was also 

calculated to reveal the total accumulation of substances at the proximal side of the ligature. Only 

the fluorescent staining within nerve tissue was included in the measurements. The data of the 

five sections was averaged to give a mean gray value. This method of analysis permits 

quantification of the relative mean gray value of immunoreactive staining for comparison among 

the different AIA time points. The data was expressed as Mean ± S.E.M. Significant differences 

in MGI among different experimental conditions were determined by the Kruskal-Wallis one-way 

ANOVA by ranks followed by Dunn posthoc test (Prism version 5.03, GraphPad Software Inc., 

La Jolla, CA). In all analyses, P-value less than 0.05 were considered significant. * P< 0.05, 

**P< 0.01, ***P< 0.001.  

Results 

Figure 1 shows the appearance of the proximal side of a ligated peripheral nerve. 

Immunoreactivity (-ir) of glutaminase, calcitonin gene-related peptide (CGRP) and substance P 

(SP) was visualized. The fluorescent intensity was more intense around the region that was 

immediately proximal to the ligature. The proximal side was further divided as P0 (within 200µm 

of the tie, Fig. 2A, 2D and 2G) and P1 (200-400µm from the tie, Fig. 2B, 2E and 2H). An average 

accumulation P (Fig. 2C, 2F and 2I) was defined as the mean of P0 and P1.  

The immunoreactivity (-ir) of glutaminase at the site of ligature of sciatic nerve was compared 

from naïve sham control to 1-4 days of AIA by quantifying the mean gray intensity (MGI) from 
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image analysis. Elevated glutaminase-ir in section P0 was observed at 1 d (~36%), 2 d (~60%, p 

< 0.01), 3 d (~19%) and 4 d (~15%) following AIA compared to naïve sham control (Fig. 2A).  

No significant elevated glutaminase-ir was observed in section P1 (Fig. 2B). The average 

increased accumulation P of glutaminae-ir was observed at 1 d (~29%), 2 d (~58%, p < 0.01), 3 d 

(~12%) and 4 d (~12%) of AIA compared to naïve control (Fig. 2C). The peak glutaminase 

accumulation occurred at 2 d of AIA.  

A similar pattern and peak accumulation at 2 day AIA was observed in CGRP-ir. Elevated 

CGRP-ir in section P0 was observed at 1 d (~48%), 2 d (~82%, p < 0.01), 3 d (~42%) and 4 d 

(~38%) following AIA compared to naïve sham control (Fig. 2D).  Elevated CGRP-ir in section 

P1 was also observed at 1 d (~54%), 2 d (~151%), 3 d (~64%) and 4 d (~24%) following AIA 

compared to naïve sham control (Fig. 2D), but no statistical significance was achieved in section 

P1 (Fig. 2E). The average increased accumulation P of CGRP-ir was observed at 1 d (~50%), 2 d 

(~110%, p < 0.01), 3 d (~51%) and 4 d (~32%) of AIA compared to naïve control (Fig. 2F).  

The temporal accumulation of SP occurred with a different pattern compared to that of 

glutaminase and CGRP. Elevated SP-ir in section P0 was observed at 1 d (~112%, p < 0.001), 2 d 

(~133%, p < 0.001), 3 d (~112%, p < 0.001) and 4 d (~99%, p < 0.001) following AIA compared 

to naïve sham control (Fig. 2G).  Elevated SP-ir in section P1 was also observed at 1 d (~181%, p 

< 0.001), 2 d (~155%, p < 0.001), 3 d (~108%, p < 0.001) and 4 d (~199%, p < 0.001) following 

AIA compared to naïve sham control (Fig. 2H). The average increased accumulation P of SP-ir 

was observed at 1 d (~134%, p < 0.001), 2 d (~140%, p < 0.001), 3 d (~111%, p < 0.001) and 4 d 

(~130%, p < 0.001) of AIA compared to naïve control (Fig. 2I).  

Discussion 

In previous studies, it was found that adjuvant-induced arthritis (AIA) causes elevated 

glutaminase expression in rat DRG neuronal cell bodies during both the acute and chronic phases 
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of inflammation (Miller et al., 2012; Zhang, Chapter 2). The acute elevation occurred from 24 h 

to 48 h, followed by a decrease below basal level at 4 d. At 7 days following AIA, elevated 

glutaminase expression is found in the inflamed hindpaw skin (Miller, 2007, Hoffman, 2009, 

Miller et al., 2010). The temporal elevation in the neuronal cell bodies and their peripheral target 

tissue during different time points of AIA raises the question: Can increased levels of glutaminase 

be detected in the peripheral nerve following inflammation? In order to answer this question, the 

accumulation of glutaminase at proximal side of a ligature of the sciatic nerve was monitored 

during different intervals of peripheral inflammation. Calcitonin gene-related peptide and 

substance P were evaluated, also. These results showed that there is increased accumulation of 

glutaminase, CGRP and SP at the proximal side of the ligature at 2 days following AIA. These 

results show that elevated glutaminase and neuropeptides occur in the peripheral nerve following 

production in the DRG neuronal cell bodies in response to inflammation.  

In the current study, naïve rats with ligatures were included as the control to manifest the 

accumulation at basal levels since the basal transport of glutaminase and neuropeptides have a 

low detection level in nerve without ligation in our pilot studies (unpublished observation). This 

has been a common approach to evaluate organelle and protein transport (Zelena et al., 1968, 

McDougal et al., 1981, Kashihara et al., 1989, Smith et al., 1992), but ligatures constraining the 

nerve are a type of nerve injury (Wall and Devor, 1981, Ma and Bisby, 1998). The possibility 

exists that the accumulation of proteins is due to local nerve inflammation and/or nerve injury.  

An unequal accumulation of proteins, however, was found at different time points post CFA-

injection with the same 24 hour ligature at all time points compared to the sham-naïve control 

group (Fig. 1 and Fig. 2). This provides comparison among the different time intervals from the 

onset of inflammation. These results indicate that the accumulation of increased glutaminase, 

CGRP and SP in peripheral nerve occurs with a temporal pattern consistent with the development 
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of inflammation and the influence of inflammation on protein production in DRG neuronal cell 

bodies. 

In primary afferents, many substances that have important neuronal function are not restricted to 

the neuronal cell bodies. They are delivered to the nerve terminal or their active site outside 

neuronal cell bodies by axonal transport. For example, neuropeptides, such as CGRP and SP, are 

synthesized in neuronal cell bodies. After sorting and packaging into large dense-core vesicles 

(LDCVs), the neuropeptides are transported to the nerve terminal and released in response to 

nerve terminal activation. Increased concentration of CGRP and SP has been observed in the 

neuronal cell bodies (Zhang, Chapter II) and peripheral branches of primary afferents following 

inflammation (Donnerer et al., 1992, Nahin and Byers, 1994). These results are in accordance 

with previous findings indicating that peripheral inflammation up-regulates the contents and 

transport of CGRP and SP in sensory nerves from neuronal cell bodies. 

Studies on brain/kidney GLS show that there are two major sub-cellular locations of GLS, a 

cytoplasmic GLS and mitochondrial GLS (Zhang, Schechter, Miller, unpublished observations). 

Under normal conditions, GLS is synthesized in the neuronal cytoplasm and transported to the 

outer face of the mitochondrial inner membrane (Kvamme et al., 2000, Kvamme et al., 2001). 

The mitochondrial GLS is considered to be the active site of glutamate production and the 

cytoplasmic GLS is inactive due to the high cytosolic concentration of glutamate (Kvamme et al., 

2000, Miller et al., 2012). Mitochondria are one of the organelles that are in motion in the 

axoplasm and GLS enzyme activity is found accumulated at the proximal side of sciatic nerve 

ligature (McDougal et al., 1981, McDougal et al., 1983). Studies using an in vitro culture system 

showed that mitochondria accumulate at the site of NGF stimulation. This was performed by 

stimulating cultured axons with NGF-coated beads at points distant from their cell bodies or 

growth cones (Chada and Hollenbeck, 2003, 2004). Although the transport machinery of GLS in 

the peripheral axons has not been identified, these studies and the present results support the 
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hypothesis that elevated GLS can be mobilized and transported by mitochondria in peripheral 

nerve axons to their nerve terminals where glutamate synthesis occurs for replenishing the 

neurotransmitter pool. The current results indicate that the peripheral transport of altered levels of 

glutaminase occurs temporally in accordance the alteration pattern of glutaminase observed in the 

neuronal cell bodies (Zhang, Chapter II). This peripherally transported glutaminase is likely to 

arrive at peripheral terminal during the chronic phase of inflammation. Elevated glutaminase 

concentration and activity found in the inflamed skin may be newly transported from the neuronal 

cell bodies and this can be one of the mechanisms that contributes to elevated glutamate 

production at the peripheral terminal in chronic inflammatory pain (Miller et al., 2010). 

These results characterize the axoplasmic transport of glutaminase in peripheral nerve at different 

time points during the rat AIA model. Elevated glutaminase immunoreactivity may indicate an 

anterograde transport of GLS from the DRG neuronal cell body to the inflamed tissue. This 

would be the most direct evidence that the elevated glutaminase in DRG after AIA is transported 

to peripheral tissue. The elevated levels shipped by peripheral transport increase likelihood of 

increased glutamate synthesis and peripheral release. Augmented glutamate release would 

increase activation of excitatory amino acid receptors on peripheral nerve terminals enhancing the 

generation, modification and maintenance of nociceptive transmission. 
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Figure 1. Photomicrographs showing substance accumulation near the proximal side of the 

ligature at different days following adjuvant-induced arthritis (AIA). The dorsal root ganglion is 

to the left and the peripheral target (hindpaw) located to the right side of the nerve segment. 

Glutaminase (GLS, green) are colocalized with calcitonin gene-related peptide (CGRP, red) and 

visualized via different filters. Single-labled substance P (SP, red) is also shown. A gradual 

narrowed region is formed by the ligature. Intensely stained nerve bundles located immediate to 

the tip region of the tie, which indicated the accumulation of substances by disrupting the axonal 

transport.  A qualitative increase in substance accumulation was observed at 2 days following 

AIA for GLS, CGRP and SP. Scale bar is set at 100 µm and is applied to all photomicrographs
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Figure 2. Quantitative results of the temporal accumulation of GLS, CGRP and SP at the 

proximal side to the ligature in sciatic nerve following adjuvant-induced arthritis (AIA). A-C, the 

accumulation of immunoreactivity (-ir) of GLS was more prominent at P0 region compared to P1. 

In P0 region, elevated GLS-ir at 2 day of AIA was significantly higher compared to naïve-sham 

control (~ 60%, p < 0.01), and the average accumulation P increased by 58% (p < 0.01). D-F, the 

accumulation of CGRP was observed at region P0 (~ 82%, p < 0.01) at 2 days of AIA compared 

to sham control. G-I, a rapid two-fold accumulation is observed in SP-ir from 1 day of AIA and 

maintained till 4 day of AIA at both P0 and P1 region. Kruskal-Wallis nonparametric one-way 

ANOVA was performed followed by Dunn posthoc test. * P < 0.05, **P < 0.01, ***P < 0.001. 
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CHAPTER IV 
 

 

PERIPHERAL INHIBITION OF GLUTAMATE PRODUCTION AT THE ONSET OF 

ADJUVANT-INDUCED ARTHRITIS HAS ANTI-INFLAMMATORY EFFECTS AND 

REDUCES ELEVATION OF GLUTAMINASE IN THE RAT PEPTIDE-CONTAINING 

DORSAL ROOT GANGLION NEURONS 

Abstract 

Glutamate, released from peripheral afferents, is implicated as a sensitizer of peripheral 

nociceptive terminals during inflammation.  Glutamate is synthesized from glutamine in 

peripheral terminals via the enzyme, phosphate-activated glutaminase (GLS).  Long-term 

inflammation causes increased GLS production, along with other neuropeptides, in dorsal root 

ganglion (DRG) neuronal cell bodies.  Elevated GLS is shipped to peripheral terminals causing 

increased glutamate synthesis and release, contributing to peripheral sensitization in the rat 

adjuvant induced arthritis (AIA) model. 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog, 

irreversibly binds to GLS and interferes with glutamate synthesis. Peripheral inhibition of GLS 

with DON at the onset of inflammation decreases paw edema and suppresses c-fos 

immunoreactivity in the rat spinal cord and application of DON three days after CFA injection 

has a long term analgesic effect on thermal hyperalgesia and mechanical allodynia. In the current 

study, we applied DON at the peripheral terminal at the onset of AIA and evaluated the paw 

edema and nociceptive behaviors as indicators of the severity of inflammation. The GLS 

expression level in rat peptide-containing DRG neurons also was evaluated at 48 h of AIA. We  
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hypothesized that diminished glutamate release would reduce the initial peripheral sensitization 

of inflammation and attenuate the increase in GLS in DRG neurons during the development of 

inflammation. In this study, unilateral AIA was induced with a single subcutaneous injection of 

complete Freud's adjuvant (CFA) into the rat hindpaw. DON was injected twice intraplantar at 12 

h and 30 min prior to the CFA-injection. Control rats received intraplantar vehicle injection 

before CFA. The sensitivity to thermal and mechanical stimuli was evaluated by paw thermal 

withdrawal latency (TWL) and paw pressure sensitivity test. Paw size was also evaluated as an 

index of the severity of inflammation. At 48 h of AIA, ipsilateral L4 DRGs were collected and 

colocalization of GLS with calcitonin-gene peptide (CGRP) or substance P (SP) was performed 

using immunofluorescence microscopy. Mean grey intensity of GLS, CGRP and SP were 

evaluated with image analysis. It was found that administration of DON at the site of 

inflammation alleviated the thermal hyperalgesia and edema and suppressed the elevation of 

GLS-ir in DRG neuronal cell bodies at 48 h AIA, especially in small diameter, peptide-containing 

neurons. Our result supports the notion that glutamate production and release at the onset of 

inflammation activates nociceptors and contributes to the generation of nociceptive 

hypersensitivity. Glutamate release also drives the alteration of neurochemical components in the 

DRG neuronal cell bodies that are related to nociceptive neurotransmission that leads to the 

development of chronic pain.  

Introduction 

Glutamate is the major excitatory neurotransmitter in primary sensory neurons and has received 

attention recently as a sensitizer for nociceptive transmission and hypersensitivity 

(Hammerschlag and Weinreich, 1972, Johnson, 1972, al-Ghoul et al., 1993, Miller et al., 2011). 

At the peripheral branch of primary afferents, endogenous glutamate is released from nerve 

terminals in response to natural or electrical stimuli, tissue or nerve injury, and chemical 

activation (Wheeler et al., 1966, Omote et al., 1998, deGroot et al., 2000, Zahn et al., 2002, Jin et 
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al., 2009). In various animal nociceptive models, rapid excessive glutamate production is found 

during the acute and chronic phases in the targeted tissue including skin, knee joint and muscle 

(Omote et al., 1998, Lawand et al., 2000, McNearney et al., 2000). Injection of exogenous 

glutamate and specific glutamate receptor agonists causes a quick-onset inflammatory pain by 

activation of excitatory amino acid receptors (EAAR) located on the nociceptive nerve terminal 

in an auto-/para-stimulation fashion (Carlton, 2001). These studies demonstrate that glutamate 

contributes to the generation of inflammation pain and peripheral sensitization. 

Thus far, almost all ionotropic and metabotropic EAARs have been detected at the peripheral 

nerve terminal and it is likely that endogenous glutamate activates nociceptors via biding to 

glutamate receptors in an auto-/para-stimulation manner (Sato et al., 1993, Carlton et al., 1995, 

Coggeshall and Carlton, 1998). Glutamate acts to activate primary afferent neurons during 

inflammation and the use of specific or non-specific EAAR antagonists provides analgesic effects 

in different models of pain, including CFA-/carrageenan-/formalin/capsaicin-induced 

inflammation, postoperation, and nerve injury (Ren and Dubner, 1993, Lawand et al., 1997, 

Beirith et al., 2002, Zahn et al., 2002, Nakayama et al., 2010). The multiplicity of glutamate 

receptor expression levels at the peripheral nerve terminals, however, makes it hard to achieve 

effective pain relief with a single EAAR antagonist (Zhou et al., 1996). Moreover, among the 

studies on glutamate’s role in nociceptive transmission, few investigations have been performed 

on evaluating or modifying the production of glutamate in regard to the glutamate-glutamine 

cycle. Comparable to the glutamatergic neurons in the CNS, the glutamate-releasing primary 

sensory neurons in peripheral nervous system have limited ability to de novo synthesis of 

glutamate from α-ketoglutarate from the TCA cycle (Hamberger et al., 1979a, Hamberger et al., 

1979b, Peng et al., 1993, Hertz et al., 1999, Hertz, 2004, Waagepetersen et al., 2005). Primary 

sensory neurons use glutaminase (GLS) as the major synthetic enzyme to replenish the 

neurotransmitter pool for glutamate synaptic release (Kvamme et al., 2001, Waagepetersen et al., 
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2005). 6-diazo-5-oxo-L-norleucine (DON) is a glutamine analog that irreversibly binds to the 

glutamine-binding site of glutaminase and thus blocks the conversion from glutamine to 

glutamate (Miller et al., 2011). Previous studies from our laboratory have shown that peripheral 

inhibition of GLS with DON at the onset of carrageenan-induced inflammation inhibits thermal 

hyperalgesia and suppresses c-fos immunoreactivity in the rat spinal cord (Hoffman and Miller, 

2010), which supports the notion that peripheral glutamate release contributes to the generation of 

pain.  

Acute release of glutamate at the site of tissue injury may mainly depend on rapid exocytosis of 

synaptic vesicles mediated by Ca2+ influx into nerve terminals in response to increased neuronal 

activity. Glutaminase activity can also be up-regulated by calcium entry into the nerve terminal 

for replenishment of synaptic vesicles.  A long-term mechanism, however, that leads to increased 

glutamate production is expected for elevated glutamate levels in peripheral nerve fibers during 

chronic pain.  Over-activation of primary afferents at the initial phase of inflammation drives 

alterations in DRG neuronal cell bodies for maintenance of pain, a cellular process referred to as 

a “phenotypic switch” (Woolf and Ma, 2007). Additional studies from our laboratory show that 

glutaminase expression and enzyme activity are elevated at DRG neuronal cell bodies and 

peripheral terminals during chronic adjuvant-induced arthritis (AIA) (Miller et al., 2012). GLS 

inhibition by peripheral application of DON, three days after CFA injection, has a long term 

analgesic effect on thermal hyperalgesia and mechanical allodynia (Miller et al., 2010). These 

studies indicate a positive regulatory mechanism between glutamate and its synthetic enzyme 

glutaminase contributing to the modulation and maintenance of pain during the chronic phase of 

inflammation. Considering the effects of glutamate on the generation, modulation and 

maintenance of peripheral sensitization at different time scales during inflammatory events, we 

propose that blocking the production of glutamate in the peripheral tissue prior to inflammation 
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may 1) alleviate the nociceptive hypersensitivity; 2) inhibit the inflammation-induced GLS 

elevation in the peptide-containing DRG neuronal cell bodies. 

 

 

Materials and methods 

Animals and induction of adjuvant-induced arthritis (AIA) 

Male Sprague-Dawley rats (350 - 450 g) were housed in a 12:12 light/dark cycle and given free 

access to food and water ad libitum. The behavioral testing facility was maintained at room 

temperature of 21-22°C with humidity at 40%. All experiments were performed in a darkened 

room during in the light phase on independent groups of animals and a desk lamp was used to 

illuminate the testing area to avoid agitation from the direct light. Rats were acclimatized at least 

for 3 days in the behavioral testing facility and habituated to handling and the testing equipment 

before the experiment. Procedures were carried out in accordance with the National Institutes of 

Health Guide for the care and use of laboratory animals and approved by the committee of animal 

care and use for research at Oklahoma State University Center for Health Sciences. All efforts 

were made to minimize the number of animals used and their suffering. 

Drugs and adjuvant-induced arthritis (AIA) 

6-diazo-5-oxo-l-norleucine (DON, Sigma-Aldrich, U.S.) was dissolved in sterile 0.01 M sodium 

phosphate buffered saline (PBS) and injected as 20µmol/25µl or 10µmol/25µl using a 25-µl 

Hamilton syringe with the 32-gauge needle (Hamilton, USA). Doses of DON were chosen based 

on previous behavioral experiments (Miller, 2007). DON was injected twice prior to CFA-

injection: 12 hours and 30 minutes prior to the CFA-injection (Hoffman and Miller, 2010). 

Solutions were prepared fresh before the 1st injection and kept from light at 4 °C for the 2nd 

injection. The same amount of sterile 0.01 M PBS was injected in rats as a vehicle control group.  
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Rats were anesthetized with isoflurane (initially 5%, then reduced to 2.5% following induction of 

anaesthesia, in 3l/min O2) prior to all injections. All injections were given subcutaneously into the 

plantar hindpaw. Adjuvant-induced arthritis (AIA) was induced by a single unilateral 

subcutaneous injection of 75 µL of complete Freund's adjuvant (CFA; Mycobacterium butyricum, 

Sigma) emulsified in saline (1:1) in the hindpaw plantar surface of the rats. Naïve rats were 

anaesthetized with isoflurane, but not injected. A 2×3 design giving six groups (n=6 per group) 

was formed and listed in the table below (N=6 per group): 1) naïve, 2) naïve + vehicle, 3) naïve + 

DON, 4) CFA-only, 5) CFA + vehicle, and 6) CFA + DON. Rats were tested for the effect of pre- 

and concurrent application of 20 µmol/25µl or 10 µmol/25µl solutions to measure nociceptive 

behaviors at various time points after the initiation of AIA: thermal withdrawal latency, 

mechanical threshold and paw thickness.  Rats receiving 20 µmol/25µl DON were evaluated for 8 

days of AIA, whereas rats receiving 10 µmol/25µl DON were evaluated for 2 days of AIA.  

Behavioral studies 

The rats were tested for 3 days prior to the CFA-injection. Tests started after cessation of 

exploratory behavior. In both thermal and mechanical tests, the average of three measurements 

was considered as a mean measurement at a specific time point. A 5-minute resting period 

occurred between measurements.  

Ipsilateral hind paw metatarsal thickness was measured using a dial caliper (Mitutoyo, Japan) as 

an index of the severity of inflammation. Nociceptive threshold to thermal stimuli was 

determined by measuring thermal withdrawal latency (TWL) using Plantar Thermal apparatus 

(Ugo Basile, Italy) at an intensity of 55 mW/cm2. The TWL was recorded automatically by the 

instrument from the onset time of the radiant heat to the time of withdrawal of the rat hindpaw. 

The maximum exposure time was set at 32 seconds to prevent tissue damage. Nociceptive 

threshold to mechanical stimuli was determined by measuring the mechanical response using the 

Dynamic Plantar Aesthesiometer (Ugo Basile, Italy). The force of the metal filament increased 
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from 0 to 50 grams within 20 seconds. The force was recorded by the instrument when the animal 

moved its paw or if the maximum force (50 g) was met. 

Immunohistochemistry (IHC) 

An additional 12 male rats (n=3 per group) were included for the IHC study. Since no significant 

changes in paw thickness and behavior tests in vehicle- and DON-treated naïve rats (Fig. 1), The 

IHC study only focused on 1) naïve, 2) CFA-only, 3) CFA + vehicle, and 4) CFA + DON. The 

dose of DON used in IHC studies was 10 µmol/25µl. At 48 h after injection of CFA, rats were 

processed for IHC study following previously described methods (Hoffman et al., 2010). All 

tissue collections were performed on the same day of experiment and processed for the IHC study 

under the same conditions to minimize the batch-to-batch variations introduced during 

experiment. Rats were anesthetized with 3 ml of Avertin (2.5% of 2, 2, 2-Tribromoethanol, 

Sigma-Aldrich) and 0.8 ml of xylazine (1 mg/ml, AnaSed, LLOYD).  The rats were perfused with 

80 ml calcium free Tyrode's solution followed by 300 ml optimized fixative for GLS 

immunolabeling described in previous papers (Hoffman et al., 2010). Briefly, it contains 0.2% 

(w/v) paraformaldehyde, 70% (v/v) picric acid, 0.1M sodium phosphate buffer at pH 7.3.  

Ipsilateral L4 DRGs were removed and post-fixed in the same fixative for 4 h at 4°C. Tissues 

were transferred to 10% sucrose in PBS, pH 7.3 overnight at 4°C. Frozen sections were cut at 10 

µm. Every fifth section was used to reduce the possibility of double-counting the same neuron. 

Dried sections were rinsed three times with PBS. Slides were blocked in 0.5% (w/v) 

polyvinlypyrolideone and 0.5% bovine serum albumin in PBS with 0.3% (v/v) Triton X-100 

(PBS-T, Sigma). Colocalizaition of glutaminase with CGRP or SP was performed using 

fluorescence immunohistochemistry. The polyclonal rabbit anti-glutaminase antiserum was a 

generous gift from Dr. Norman Curthoys (Colorado State University). Sections were incubated in 

the antisera containing rabbit-anti glutaminase (1:20,000) with mouse anti-CGRP (1:8,000; Santa 

Cruz) or mouse anti-SP (1:2,000; R&D Systems) for four days at 4°C. After incubation in 

primary antisera, sections were rinsed three times in PBS and incubated in secondary antisera 
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containing biotinylated goat anti-rabbit IgG (1.0 µg/ml; Vector Laboratories; Burlingame, CA, 

USA) and Alexa Flour 555 conjugated goat anti-mouse IgG (1.67 µg/ml; Invitrogen; Carlsbad, 

CA, USA) diluted in PBS-T for 1 h at room temperature. Sections were rinsed twice in PBS and 

once in sodium carbonate buffered saline (SCBS, pH 9.6) before incubating for 1 h in 1.0 µg/ml 

avidin-fluorescein isothiocyanate (FITC; Vector Laboratories) diluted in SCBS. After three 

rinses, sections were incubated in 300 nM 4',6-diamidino-2-phenylindole (DAPI) diluted in PBS 

for 10  min for nuclear staining. Slides were cover-slipped with ProLong Gold Mouting Media 

(Invitrogen) after three more PBS rinses. 

Image Analysis  

Images were captured with a 40X objective on a BX51 epifluorescence microscope (Olympus; 

USA) using a SPOT RT740 camera (Diagnostic Instruments; USA). The micrographs were stored 

as 8-bit grayscale tiff format with the pixel intensity value ranging from 0-255. The exposure time 

and gain combination was determined empirically for each antigen in which the dimmest regions 

of tissue could be discerned visually for tracing, but the pixel values in brightest regions were not 

oversaturated. This approach allowed images to be evaluated along the linear aspect of 

immunofluorescence intensity. The exposure time and gain combination for a single antigen was 

kept the same for all tissue sections from all animals. Five non-overlapping random fields of view 

were captured from at least three sections of each DRG separated by 50 µm. For each field of 

view, three filters were used for detection of each fluorophore: FITC (green), TRITC (Alexa 

Fluor 555 and 568, red), and DAPI (blue). The quantitative method to measure the 

immunoreactivity of each antigen has been described previously (Fang et al., 2005, Hoffman et 

al., 2010, Hoffman et al., 2011). Neuronal profiles (NP) were counted with the following criteria: 

1) the NP was through the center of the cell with a visible nucleus that was detected in the DAPI 

filter; 2) the NP had an intact cytoplasm that did not touch the edge of the image or the 

neighboring neuron. NPs were traced with a Cintiq 21UX interactive pen display (Wacom, Japan), 



 

 

94 

using the freehand selection tool in ImageJ (National Institutes of Health, USA). The cross-

sectional area (µm2) and mean gray intensity (MGI) of pixels in the cytoplasm (excluding the 

nucleus) was the recorded and measured as region of interest (ROI).  

Threshold MGI of CGRP- and SP-labeled DRG neuronal profiles 

Our laboratory has reported previously that all DRG neurons are immunoreactive for GLS using 

optimized fixation (Miller et al., 1993, Hoffman et al., 2011), therefore no GLS-MGI threshold 

was determined in the current study.  

A threshold MGI for CGRP and SP was established to determine if a single NP was considered 

immune-positive (+ve) or –negative (-ve). The threshold MGI value of each antigen was 

determined from the naïve control group, since several studies reported that the proportion of 

neuropeptide-containing neurons can alter after peripheral inflammation (Hanesch and Schaible, 

1995, Neumann et al., 1996). The detailed method was described in Chapter II. Briefly, to 

determine CGRP-/SP-MGI threshold, the MGI of each NP was ranked from the smallest to the 

largest (Chapter II, Figure 1A). The rank and MGI were plotted in x- and y-axis respectively. 

Based on the ranking, a CGRP-MGI threshold was set at 10 and SP-MGI threshold was set at 25. 

Using this method, the proportion of CGRP+ve and SP+ve NPs was 36.1% and 26.3% 

respectively, which is in agreement with previous studies (Lawson, 1995, Lawson et al., 1997, 

Lawson et al., 2002). In the following analyses, the NPs were divided by their cross-sectional 

area: small- (<400 µm2; diameter, <23 µm) and medium- (400-800 µm2; diameter, 23-32 µm) and 

large-sized (>800 µm2; diameter, >32µm) (Fang et al., 2005, Hoffman et al., 2010). 

Statistical Analysis 

Data from the image analyses were reported as mean ± standard error of the mean. All data were 

subjected to the Kolmogorov-Smirnov test to determine the normality of the distribution. All data 

from behavioral tests passed the normality test and were analyzed with two-way ANOVA by 

ranks followed by Bonferroni post-tests. The MGI values from the IHC study were not normally 

distributed and the variances were heterogenous for nearly all comparison. Nonparametric 
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statistical analyses, therefore, were applied and the median is shown in the dot plots. Significant 

differences in MGI among different experimental conditions were determined by the Kruskal-

Wallis one-way ANOVA by ranks followed by Dunn posthoc test (Prism version 5.03, GraphPad 

Software Inc., USA). In all analyses, P < 0.05 were considered significant. 

Results 

Behavioral studies 

To study the effect of glutamate synthesis inhibition on nociceptive behaviors in response to 

inflammation, behavioral studies were performed to measure the paw thickness, thermal 

withdrawal latency to noxious heat stimulus, and mechanical threshold to paw pressure stimulus. 

Studies presented in Fig. 1 used a dose of DON at 20 µmol/25µl. Metatarsal paw thickness was 

measured as an indicator of the severity of the inflammation. The baseline thickness of the paw 

ranged from 5.1 to 5.5 mm and no statistical difference was detected among the baseline 

measurements of each experimental group (Fig. 1A). Within 6 hours following intraplantar CFA-

injection, swelling of the hindpaw was observed in all three CFA-treated groups (CFA-only, 

CFA+vehicle, and CFA+DON). The hindpaw thickness of CFA-only and CFA+vehicle groups 

was significantly higher than the baseline measurement and those of the non-inflamed groups 

(Fig. 1A). It reached a maximal thickness at 24 h post-inoculation and remained elevated during 

the 8-days of the current study. Injection of vehicle or DON did not change the paw thickness of 

the non-inflamed groups. Pretreatment with DON, but not saline vehicle, significantly attenuated 

the swelling in inflamed rat hindpaw compared to CFA-only group at 6 h (19.0%, p < 0.001), 12 

h (15.5%, p < 0.001), 24 h (10.0%, p < 0.05) and 48 h (17.8%, p < 0.05), but not at day 4 or day 8 

AIA (Fig. 1A).  

Injection of CFA produced a significant decrease in TWL to radiant thermal stimulus within 3 h 

post-CFA injection. The decrease in TWL was interpreted as the presence of thermal hyperalgesia. 

Injection of saline vehicle or DON in naïve rats did not produce thermal hyperalgesia. 
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Pretreatment with DON, but not the saline vehicle significantly attenuated thermal hyperalgesia 

compared to CFA-only group at 48 h (19.0%, p < 0.05), 4 d (19.0%, p < 0.05), and 8 d (19.0%, p 

< 0.05) AIA (Fig. 1B). The TWL approached the naïve control level at these time points, 

indicating a long-term analgesic effect of DON on thermal hyperalgesia.  

Injection of CFA produced a significant decrease in paw pressure threshold to mechanical 

stimulus within 3 h post-CFA injection. The decrease in paw pressure threshold to mechanical 

stimulus was interpreted as mechanical allodynia. Injection of saline vehicle or DON in naïve rats 

did not produce mechanical allodynia. No statistical difference was detected at any time point in 

mechanical allodynia, but a trend toward alleviation in mechanical allodynia was observed in the 

CFA+DON group when compared to CFA-only group (Fig. 1B). 

Based on the studies from 0 to 8 days AIA, 48 h of AIA was chosen to study the effect of DON 

on protein expression in the DRG neuronal cell bodies. A lower dose of DON was used in this 

study (10 µmol/25µl, Fig. 2). Pre-treatment with 10 µmol/25µl of DON achieved inhibitory 

effects on paw edema from 6 h to 48 h AIA (Fig. 2A) and thermal hyperalgesia (Fig. 2B) was 

significantly reversed at 48 h similar to the higher dose of DON (20 µmol/25µl, Fig. 1B and 2B).  

No differences were observed in mechanical allodynia with CFA + DON treatment at 10 

µmol/25µl. 

Qualitative results of temporal alteration of SP-, CGRP-, and GLS-ir during AIA 

To study the effect of peripheral inhibition on glutamate on neuropeptide and glutaminase 

expression in the DRG neuronal cell bodies, IHC was performed to evaluate the 

immunoreactivity of those proteins in subpopulations of DRG somata. Figure 3 shows 

representative photomicrographs from the IHC studies. In the naïve control group, all DRG 

neurons expressed GLS (Fig. 3A-3H). CGRP (Fig. 3A’-3D’) and SP (Fig. 3E’-3H’) were mainly 

expressed in neurons with small to medium sized neuronal cell bodies and these neurons were co-

labeled with GLS (indicated with arrowheads in Fig. 3A”-3H”).  
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Neuropeptides are expressed in subpopulations of DRG neurons, so a MGI threshold was set to 

determine the positive (+ve) and negative (-ve) as described in the Methods. In naïve control rats, 

the basal proportion of CGRP- and SP-expressing neurons is 36.1% and 26.3% respectively (Fig. 

4). An increased proportion of CGRP-labeled NPs was observed at 48 h after the onset of AIA (p 

< 0.01), while peripheral DON injection completely inhibited the proportional increase produced 

by AIA (Fig. 4). Alteration of CGRP-MGI was not detected at 48 h of AIA, however, CGRP-

MGI in CFA + DON group was significantly decreased (13.8%, p<0.01) compare to basal CGRP-

MGI in the naïve group (Fig. 5). Further dividing the NPs by their cross-sectional area, It was 

found that a decrease in the proportion of medium-sized neurons and MGI of small-sized CGRP-

labeled NPs from rats with AIA treated with DON compared to AIA rats (Fig. 5). No change in 

proportion or MGI was detected in SP-labeled DRG NPs at 48 h of AIA (Fig. 4,5).  

AIA significantly elevated the GLS-MGI in all DRG NPs compared to naïve animals (29.2%, 

P<0.001) and the increased GLS-MGI was significantly suppressed by peripheral DON injection 

(Fig. 6). When further dividing the NPs by their cross-sectional area, It was found that that the 

inhibitory effect of DON was observed in all three-sized groups (Fig. 6). 

Discussion 

By measuring the plantar thickness and nociceptive behavioral parameters, the present study 

confirmed that unilateral intraplantar CFA-injection produced rapid and persistent local 

inflammatory responses, including paw edema, thermal hyperalgesia, and mechanical allodynia. 

The peripheral inhibition of glutamate production at the onset of inflammation indicates that: 1) it 

attenuates the edema formation and has an anti-edemic effect lasting at least 48 h after CFA 

injection; 2) it reverses the thermal hyperalgesia to baseline level from 48 h to 8 days AIA; 3) it 

shows a trend toward alleviation of mechanical allodynia. Additional studies using 

immunofluorescent microscopy and image analysis demonstrated the effect of peripheral 

glutamate release during inflammation on the phenotypic plasticity in the DRG neuronal cell 

bodies. For example, these results showed that elevated immunoreactivity of glutaminase, 
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calcitonin gene-related peptide (CGRP), and substance P (SP) were decreased during 

inflammation with peripheral application of DON. These results indicate that peripheral release of 

glutamate contributes to the modulation and maintenance of pain and serves as one of the 

mechanisms underlying the “phenotypic switch” for the development of chronic pain. 

Source of peripheral glutamate during the initial phase of inflammation 

Besides the role as the major excitatory neurotransmitter in the nervous system, glutamate is a 

non-essential amino acid serving as a key component in cellular biosynthesis and energy 

metabolism, which suggests that glutamate exists in both neuronal and non-neuronal tissues 

(Skerry and Genever, 2001). It raises the possibility that the non-neuronal cell types around the 

inflammation site may contribute to the elevated glutamate concentration. Glutamate is produced 

in many non-neuronal cell types carrying metabolic or signaling functions, e.g. bone, 

keratinocyte, neutrophils, macrophages, and mast cells (Lawand et al., 2000, Skerry and Genever, 

2001). Whether these cells produce glutamate via glutaminase or de novo synthesis of glutamate 

from α-ketoglutarate from the TCA cycle has not been examined thoroughly and thus our studies 

cannot exclude these local or infiltrating cells as the sources of peripheral glutamate (Hamberger 

et al., 1979a, Hamberger et al., 1979b, Peng et al., 1993, Hertz et al., 1999, Hertz, 2004, 

Waagepetersen et al., 2005). One of the major goals in our studies is the pharmacological 

intervention targeting the glutamate production and the effect on edema and hyperalgesia 

therefore the source of glutamate in the peripheral tissue is not examined in the current study. 

Several studies, however, support the idea that the major source of peripheral glutamate is from 

peripheral nerve terminals. In the current study, unilateral intraplantar CFA-injection produces a 

localized inflammation that develops over minutes and lasts for more than a week (Ren and 

Dubner, 1999). Several lines of studies support that, during the initial phase of AIA, the source of 

glutamate in the inflamed tissue is the primary afferents. Firstly, pre-administration of lidocaine, 

blocking all neuronal activity via fast voltage-gated sodium channels, completely prevents the 
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increase in extracellular glutamate concentration in a kaolin/carrageenan-induced inflammation 

model for at least 4 hours (Lawand et al., 2000). This indicates that the increased glutamate 

concentration is dependent on peripheral neuronal discharge produced by inflammation. 

Secondly, in the nerve terminal, vesicular glutamate transporter (VGLUT) is the crucial protein 

that packages glutamate into synaptic vesicles. Glutamate release occurs from synaptic vesicles 

via a Ca2+-mediated exocytotic mechanism, but not from the cytoplasmic pool. Pre-administration 

of Chicago sky blue B6, a VGLUT blocker, attenuates the glutamate-evoked paw edema (Beirith 

et al., 2002). This indicates that exogenous glutamate released during glutamate-evoked 

inflammation is mediated via VGLUT’s and that glutamate contributes to the edema in 

neurogenic inflammation. Thirdly, 6-diazo-5-oxo-L-norleucine (DON) specifically targets 

glutaminase (phosphate-activated glutaminase, PAG). The inhibitory effects of DON on edema 

(Fig. 1A and 2A) and nociceptive behaviors (Fig. 1B, 1C, 2B, and 2C) in carrageenan-and CFA-

induced inflammation have been achieved by the reducing glutamate production via inactivation 

of glutaminase (Hoffman and Miller, 2010, Miller et al., 2010). It is reasonable, therefore, to 

assume that the primary sensory nerve terminal is a major source of elevated glutamate during the 

initial phase of acute inflammation. 

AIA is produced by injection of an inactive Mycobacterium tuberculosis suspension into healthy 

tissue to mimic an arthritic-like inflammation. The heat-killed bacteria may activate the innate 

immune system and exacerbate the inflammation via a non-neurogenic mechanism (Billiau and 

Matthys, 2001, Chiu et al., 2012). While proceeding to the chronic phase, infiltrating leukocytes 

and other necrotic cells may release free glutamate around primary nerve terminals, making the 

extracellular neurochemical environment more complex.  Chronic inflammation also produces 

elevation of glutaminase and glutamate in sensory nerve fibers of the skin. Peripheral injection of 

DON at 3 day AIA has a robust inhibitory effect on thermal hyperalgesia and mechanical 

allodynia (Miller et al., 2010) and significantly reduces glutamate immunoreactivity in peripheral 
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nerve terminals. These results support that the elevated glutaminase at the peripheral nerve 

terminal is a major source of glutamate during the chronic phase of inflammation. 

 

Possible role of glutamate on edema during acute inflammation 

Primary afferent nociceptors carry “efferent” functions during inflammation. At the peripheral 

branch of primary afferents, inflammatory mediators including glutamate, CGRP and SP are 

released from nerve terminals via synaptic vesicles in response to natural or electrical stimuli, 

tissue or nerve injury, and chemical activation (Donnerer et al., 1992, Maggi, 1995, Juranek and 

Lembeck, 1997). CGRP and SP are two neuropeptide markers for “peptide-containing” 

nociceptive neurons (Woolf and Ma, 2007). The peripheral effects of the neuropeptides include 

SP’s effect on plasma exudation and CGRP action on arterioles causing vasodilation and 

increased local blood flow (Holzer, 1998). At the peripheral terminal, these peptides are 

considered as the major initiators and contributors to neurogenic inflammation (Moussaoui et al., 

1993, Holzer, 1998). At peripheral terminals, there also is interaction of these ligands with their 

receptors. Unmyelinated C-fiber nerve terminals express SP receptors and ionotropic glutamate 

receptors (NMDAR, AMPAR and KAR) (Beirith et al., 2002, Ferreira et al., 2005). Co-injection 

of SP with glutamate in the hind paw significantly potentiates the duration of nociceptive 

behavioral responses compared to that seen following injection of either substance alone (Carlton 

et al., 1998). This suggests that SP can enhance glutamate-induced nociceptive behaviors. CGRP 

is not directly involved in the paw edema or nociception by glutamate injection, but, instead, 

CGRP contributes to neurogenic inflammation by causing vasodilation and facilitating SP 

produced vascular permeability (Beirith et al., 2002). In the current study, the anti-edemic effect 

of glutamate synthesis inhibition suggests a rapid release of glutamate occurring at the time of the 

CFA-injection (Fig 1A and 2A). At the central terminal in the spinal cord dorsal horn, SP and 
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CGRP are co-released with glutamate, augment glutamate efflux, enhance glutamatergic synaptic 

strength and, as a result, increase glutamate signaling in the nociceptive transmission pathway 

(Otsuka and Konishi, 1976, De Biasi and Rustioni, 1988, Kangrga et al., 1990, Kangrga and 

Randic, 1990, Okano et al., 1998). The assumption that SP and CGRP are co-packaged with 

glutamate in the large dense-core vesicle (LDCV) is yet to be confirmed at the peripheral 

terminal. Alternatively, glutamate may be synaptically released alone via small, clear vesicles 

causing activation of the nerve terminal by binding to EAA-Rs, and triggering the exocytosis of 

peptide-containing LDCVs.  

From 48 h to 8 days AIA, the anti-edemic effect of DON became less obvious (Fig. 1A and 2A). 

A first explanation is that the initial tissue insult promotes the protein synthesis of the 

neuropeptides in the DRG neuronal cell bodies and the newly synthesized proteins arrive at 

peripheral nerve terminal after anterograde transport to contribute to the maintenance of edema 

during the chronic phase of AIA. A second explanation is that after 48 h, the inflammatory 

mediators released during the initial neurogenic phase cause leukocyte infiltration, which in turn 

add a non-neurogenic component at the inflamed site by secreting interleukin-1β (IL-1β), tumor 

necrosis factor-α (TNF-α), and nerve growth factor (NGF) (Chiu et al., 2012). Release of pro-

inflammatory mediators around primary nerve terminals may intensify the inflammatory response 

and activate the nerve terminals independent of glutamate signaling pathways.  

Possible role of glutamate on nociceptive behaviors during acute inflammation 

Pain can be classified as acute and chronic pain. Some acute pain is followed by chronic pain and 

chronic pain usually is preceded by acute pain. As in other pathological diseases, the development 

of pain involves generation, modulation, and maintenance. Even though most of these events are 

temporally overlapping, many studies have been devoted to identifying the key factors and 

mechanisms responsible for exacerbating the initial painful stage at different pain phases. With 
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the progressive understanding of the mechanisms in pain, it seems that most of the factors and 

their contributions are highly integrated and overlapping. The following section identifies some 

of the most prevalent perspectives in the field to stress the role of glutamate in the generation, 

modulation and maintenance of pain.  

Various biological and pharmacological studies demonstrate that all EAARs including ionotropic 

(iGluR) and metabotropic (mGluR) EAARS are expressed at peripheral nerve terminals (Sato et 

al., 1993, Miller et al., 2011). EAARs co-localize with Aδ- and C-fiber nerve terminals 

containing transient receptor potential cation channels, subfamily vanilloid member1 (TRPV1) 

(Medvedeva et al., 2008, Jin et al., 2009). TRPV1 is the key transducer protein that responds to 

noxious thermal stimuli, the exogenous ligand capsaicin, protons, and other endogenous ligands 

(Basbaum et al., 2009). TRPV1 channel function in peripheral terminals is dependent on the 

glutamatergic signaling pathways. For example, deletion of VGLUT2, the key protein for 

glutamate synaptic release on capsaicin-sensitive nerve terminals, leads to impaired capsaicin-

induced thermal hyperalgesia (Lagerstrom et al., 2010). Moreover, peripheral administration of 

NMDA and non-NMDA iGluR antagonists significantly attenuate thermal hyperalgesia in 

capsaicin-/carrageenan-/formalin-/CFA-induced inflammation (Ren and Dubner, 1993, Leem et 

al., 2001, Jin et al., 2009). One mechanism underlying thermal hyperalgesia is that the initial 

activation of TRPV1 by noxious heat/endogenous ligands allows for calcium [Ca2+] influx to 

initiate the transducer potential. The transducer potential summates and produces a generator 

potential via the voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9). The generator 

potential depolarizes the nerve terminal and triggers the release of glutamate. Glutamate then 

activates the iGluRs and Group II/III mGluRs at the nociceptive nerve terminals in an 

autocrine/paracrine manner (Medvedeva et al., 2008, Carlton et al., 2009, Shoudai et al., 2010, 

Carlton et al., 2011). Activated iGluRs result in strengthening the effects of noxious signals by 

decreasing the neuronal discharge threshold and increasing responsiveness to noxious stimuli, one 
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form of sensitization described as primary “thermal hyperalgesia.” In the current study, the effect 

of DON most likely diminishes available glutamate at the peripheral terminals and un-couples the 

increase in neuronal activity exerted by glutamate receptors on primary afferents (Fig. 1B and 

2B). One noticeable item is that the inhibitory effect of DON, regardless of high or lose dose, on 

thermal hyperalgesia occurs at 48 h after the onset of AIA (Fig. 1B and 2B). This is a delayed 

effect compared to the anti-edema effect that occurs as early as 6 h AIA (Fig. 1A and 2A). The 

exact mechanism of the delayed inhibitory effect on thermal hyperalgesia is not clear, but several 

assumptions are proposed for future studies. First, the pharmacological properties of DON has not 

been fully characterized and the 48 h delay may indicate the time for uptake by the nerve 

terminal, the exchange into the mitochondria membrane, and eventual inhibition on mitochondrial 

glutaminase. Second, the thermal TWL in CFA + DON group using both concentrations appeared 

longer than the CFA-only and CFA + vehicle groups (Fig. 1B and 2B, 6 h – 48 h), but reached 

statistical significance only at 48 h. It is possible an increase in sample size might reveal 

inhibitory effects at earlier time points.  

The transducer protein for noxious mechanosensation has not been identified definitively. The 

peripheral mechanism of mechanical allodynia observed in inflammation might involve a 

'mechanochemical' process whereby stretch evokes the release of adenosine 5'-triphosphate 

(ATP) binding to P2X receptors from the damaged tissue that then excites nearby primary 

sensory nerve terminals (Tsuda et al., 2000). Peripheral administration of various receptor 

antagonists show minor effects on hypersensitivity to mechanical stimuli compared to that of 

central administration leading to the prevalent view in the field that mechanical allodynia is 

primarily a central mechanism, termed “central sensitization” (Fagan and Cahusac, 2001, Leem et 

al., 2001, Hama et al., 2003, Puttfarcken et al., 2010, Inquimbert et al., 2012). Studies 

demonstrate that central spinal glutamate receptors contribute to the increased sensitivity to 

mechanical stimuli. Peripheral inflammation causes increased neuronal discharge of nociceptors 
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and triggers the release of glutamate from presynaptic nociceptive nerve terminals in the spinal 

cord dorsal horn (Puttfarcken et al., 2010, Shoudai et al., 2010, Inquimbert et al., 2012). Studies 

using the formalin-induced inflammation model show that peripheral inflammation causes a rapid 

onset of amino acid release in the spinal cord dorsal horn within 10 min following injection and a 

late onset of glutamate release from 8-10 h following injection (Sluka and Westlund, 1993, 

Crown et al., 2006). Peripheral inflammation also activates expression of c-fos, an immediate 

early gene product and marker of activated neurons, in spinal cord dorsal horn neurons involved 

in nociceptive pathways. Peripheral DON administration inhibits the c-fos activation in the spinal 

cord indicating that peripheral glutamate release activates second order neurons (Hoffman and 

Miller, 2010). Activation of postsynaptic dorsal horn neurons triggers NMDARs- and PKA-

dependent increase in NMDAR subunit synaptic expression on the postsynaptic membrane 

leading to hyperfunction of spinal NMDARs and increased glutamatergic transmission in the 

nociceptive pathways following peripheral inflammation (Yang et al., 2009). Increased activity in 

nociceptors also co-releases neuropeptides with glutamate at central terminals and CGRP and SP 

strengthen glutamatergic synaptic plasticity in spinal cord dorsal horn neurons (Biella et al., 1991, 

Sluka et al., 1992). These events occurring in the central nervous system are termed “central 

sensitization.” In the current study, we failed to detect the inhibitory effect of DON pre-treatment 

on mechanical allodynia, but a trend toward alleviation was observed (Fig. 1C and 2C). These 

results support the notion that mechanical allodynia involves more alterations at the central 

terminal than that of the periphery (Hama et al., 2003, Woolf and Ma, 2007). Alternatively, it is 

possible that the sample size of the current studies (n=6 for 20 µmol/25µl in Fig. 1C, and n=3 for 

10 µmol/25µl in Fig. 2C) is not sufficient to achieve the statistic significance for detecting 

changes in mechanical sensitivity. 

In summary, pre-inhibition of glutamate production achieved a moderate anti-edemic effect and 

inhibitory effect on thermal hyperalgesia during AIA. These results indicate that glutamate 
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release occurs from peripheral nerve terminals after induction of inflammation prior to the 

exhibition of the cardinal inflammatory symptoms. It suggests that glutamate has an important 

role in facilitating the generation and development of neurogenic inflammation and nociceptive 

responses. 

Possible role of peripheral glutamate on phenotypic switch and persistent pain during chronic 

inflammation 

As mentioned in the previous section, injection of CFA initiates a rapid-onset neurogenic 

inflammatory response characterized by release of glutamate, neuropeptides, and other 

inflammatory mediators from the primary afferent nerve terminals. As a result, inflammatory 

mediators sensitize peripheral nerve ending to decrease the threshold and increase responsiveness 

to sensory stimulation. These events generate noxious retrograde signals in peripheral nerve 

axons including increased and altered action potentials and retrograde transport of neurotrophic 

factors to “notify” the neuronal cell bodies in the DRG of inflammatory events in the periphery 

(Woolf and Ma, 2007). Retrograde signals drive the alteration of neurochemical components in 

the soma of nociceptive neurons by changing the transcription, translation, trafficking of proteins. 

In DRG neurons, the major protein synthesis occurs in the neuronal cell bodies and the newly 

synthesized proteins are delivered to the nerve terminal via anterograde transport. Our previous 

studies have demonstrated that glutaminase expression in the neuronal cell bodies is significantly 

elevated at 1 and 2 days of AIA followed by a gradual decrease from 4 day to 8 day of AIA (See 

Chapter II) suggesting an anterograde transport to the periphery (See Chapter III) and/or spinal 

cord. Increased GLS in the peripheral terminals during the chronic phase of AIA indicates that a 

prolonged increase in glutamate production occurs in the terminals. This “positive feedback” 

mechanism may be one of the mechanisms that explain the chronic painful sensations and 

elevated glutamate concentrations found in the knee joint in several chronic arthritic pain models 

(Lawand et al., 2000, McNearney et al., 2000, McNearney et al., 2004). Studies on EAARs at 48 
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h AIA showed an increase in EAAR immunolabeling in lightly myelinated Aδ- and unmyelinated 

C-fiber nerve fibers, suggesting an increased capability in glutamate signaling pathways in 

peripheral nociceptors (Carlton and Coggeshall, 1999). When pre-depleting glutamate at 

peripheral nerve terminals with DON, decreased glutaminase expression was observed in DRG 

neurons across small-, medium-, and large-sized categories at 48 h AIA (Fig. 5A-5H). The 

attenuation of increased GLS in the neuronal cell body during AIA would result in decreased 

GLS axonal transport with decreased glutamate synthesis and release at the peripheral terminal. 

By attenuating increases in availability of the GLS, glutamate’s synthetic enzyme, the 

endogenous ligand of EAARs is significantly reduced at the chronic phase of AIA. This may be 

one of the mechanisms underlying the long-term analgesic effect of DON. 

Conclusions 

By peripheral inhibition of glutamate production and release with DON at the onset of 

inflammation, these results confirm other studies indicating that glutamate contributes to the 

generation of local neurogenic inflammation and peripheral sensitization. Peripheral application 

of DON also inhibits the elevated glutaminase in DRG neuronal cell bodies induced by peripheral 

inflammation. This indicates that, during inflammation, glutaminase is axonally transported to the 

peripheral nerve terminal to enhance glutamate production and release for the maintenance of 

nociceptor sensitivity. This is may be one mechanism underlying the long-lasting analgesia effect 

of DON on the nociceptive behaviors during the chronic phase of pain in the AIA model (Miller, 

2007). These observations indicate that peripheral glutamate production and release could be 

altered by pharmacological intervention of glutaminase enzyme activity in the nerve terminal, a 

new strategy for manipulation for glutamate-mediated nociceptive transmission. 
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Figure 1 Effects of DON (20µmol/25µl) application at the onset of unilateral adjuvant-induced 

arthritis (AIA) on edema (A), thermal hyperalgesia (B), mechanical allodynia (C). Thickness of 

the paw (mm, A), thermal withdrawal latency (s, B) and paw pressure force (mN, C) were plotted 

against the time course in hours (h) and days (d).  The baseline was evaluated prior to any 

injection, and 20µmol/25µl DON was administered subcutaneously twice at 12 h and 30 min 

before the CFA injection. Note that DON application significantly attenuated the paw swelling as 

early as 6 hour after inflammation, and it also reversed thermal hyperalgesia at 48 hour and lasts 

at least till 8 days after the onset of AIA. Decreased threshold in paw pressure test was observed 

following injection of CFA in CFA-only, CFA+vehicle and CFA+DON groups from 3 h to 8 

days of AIA. No statistic difference was detected in paw pressure force between CFA-only and 

CFA+DON. The results were mean expressed as the mean ± S.E.M. with six rats per treatment. 

*P < 0.05, **p < 0.01, ***p < 0.001 CFA+DON group significantly different from CFA-only 

group. Two-way ANOVA followed by Dunnett’s post-hoc test was performed at each time point. 

 



 

 

1
1

5
 

F
ig
u
re
 2
 

A
. 

 

-1
2
 h

0
6
 h
1
2
 h

2
4
 h

4
8
 h

68

1
0

1
2

C
F

A
-

C
F

A
 +

 v
e
h
ic

le

C
F

A
 +

 D
O

N
 (

1
0
 µ

m
o
l/
2
5
µ
l)

p
a

w
 t

h
ic

k
n

e
ss

 

(m
m

) 
*

*
*

 *
*

*
 

*
*

*
 

*
*

*
 



 

 

1
1

6
 

 B
. 

 

      

0
6
 h

1
2
 h

2
4
 h

4
8
 h

05

1
0

1
5

n
a
iv

e

C
F

A
-o

C
F

A
 +

 v
e
h
ic

le

C
F

A
 +

 D
O

N
 (

1
0
 µ

m
o
l/2

5
µ

l)

th
e

rm
a

l 
w

it
h

d
ra

w
a

l 

la
te

n
cy

 (
s)

 
*

*
*

 



 

 

1
1

7
 

C
. 

 

0
6
 h

1
2
 h

2
4
 h

4
8
 h

0

1
0

2
0

3
0

4
0

n
a
iv

e

C
F

A
-o

n
ly

C
F

A
 +

 v
e
h
ic

le

C
F

A
 +

 D
O

N
 (

1
0
 µ

m
o
l/2

5
µ

l)

p
a

w
 p

re
ss

u
re

 

fo
rc

e
 

(m
N

) 



 

 

118 

Figure 2 Effects of DON (10µmol/25µl) application at the onset of unilateral adjuvant-induced 

arthritis (AIA) on and edema (A), thermal hyperalgesia (B) and mechanical allodynia (C). 

Thickness of the paw (A), thermal withdrawal latency (B) and paw pressure forces (C) were 

plotted against the time course in hours (h) and days (d).  The baseline was evaluated prior to any 

injection, and 10µmol/25µl DON was administered subcutaneously twice at 12 h and 30 min 

before the CFA injection. Pre-treatment with 10µmol/25µl of DON achieved inhibitory effects on 

paw edema from 6 h to 48 h AIA (A) and thermal hyperalgesia were significantly reversed at 48 h 

(B). Decreased threshold in paw pressure test was observed following injection of CFA in CFA-

only, CFA+vehicle and CFA+DON groups from 6 h to 48 h of AIA. No differences were 

observed in mechanical allodynia with CFA + DON treatment at 10µmol/25µl. The results were 

mean expressed as the mean ± S.E.M. with three rats per treatment. *P < 0.05, **p < 0.01, ***p < 

0.001 significantly different from vehicle-treated in AIA rats. One-way ANOVA followed by 

Dunnett’s post-hoc test was performed at each time point between the four experimental groups. 
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Figure 3 
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Figure 3. Representative photomicrographs of DRG sections at 48 hour of adjuvant-induced 

arthritis (AIA) with vehicle or DON (10µmol/25µl) to demonstrate the qualitative effect of DON 

on immunoreactivity of GLS-ir co-labeled with CGRP (A-D”) and SP (E-H”). Arrowheads 

indicate DRG neurons that co-express GLS and CGRP or SP in the merged images (A’’-H’). The 

quantitative results are obtained and compared by image analysis. Blue = DAPI. Scale bar (A) = 

50 µm. The scale bar was applied to all the photomicrographs. 
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Figure 4 
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Figure 4. The effect of DON (10µmol/25µl) administration on the proportion of CGRP+ve (A) 

and SP+ve (B) at 48 hours following the initiation of adjuvant-induced arthritis (AIA). AIA 

produces an acute increase in the proportion of CGRP+ve neurons at 48 hours (~5%). DON 

application, not the vehicle, significantly inhibited the increased proportion of CGRP+ve NPs, 

especially in small- to medium-sized DRG NPs. (B) No change occurred in the proportion of 

SP+ve NPs was observed. 
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Figure 5. MGI of CGRP+ve (A-D) and SP+ve (E-F) at 48h following adjuvant-induced arthritis 

(AIA). No significant alteration is observed in CGRP- and SP-MGI in DRG NPs after CFA-

injection, and DON application does not affect the neuropeptide-ir in the DRG neuronal cell 

bodies. Kruskal-Wallis nonparametric one-way ANOVA was performed followed by Dunn 

posthoc test.
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Figure 6. Effects of DON application on GLS-MGI (GLS-MGI) in all traced neuronal profiles 

(NPs) (A-D), CGRP+ve (E-H) and SP+ve (I-L) NPs at 48h following adjuvant-induced arthritis 

(AIA). (A-D) AIA causes an acute increase of GLS-MGI in all the traced NPs (A) across 

different sizes (B-D). Application of DON, but not the saline vehicle, reverses the elevated GLS-

MGI induced by CFA-induced inflammation (A-D). In CGRP- (E-H) and SP- (I-L) labeled NPs, 

and the increase of GLS-MGI is observed in small- (F, J), and some of medium-sized (G, K) NPs. 

This increase in GLS-MGI was reversed by application of DON. Kruskal-Wallis nonparametric 

one-way ANOVA was performed followed by Dunn posthoc test. * P < 0.05, **P < 0.01, ***P < 

0.001. 
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CHAPTER V 
 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Discussion 

Glutamate is the major neurotransmitter utilized by primary sensory neurons at both central and 

peripheral nerve terminals (Miller et al., 2011). Peripherally released glutamate also serves as a 

sensitizer that causes increased nociceptive transmission by overstimulation of the glutamate 

receptor located on the nociceptive nerve terminals (Zhou et al., 1996, Coggeshall and Carlton, 

1998, Carlton and Coggeshall, 1999, Carlton, 2001, Du et al., 2006). This increased nociceptive 

transmission is further conveyed to the central nervous system and interpreted as increased 

sensation of pain. Use of various glutamate receptor antagonists at central and peripheral 

terminals successfully alleviates nociception in various acute and chronic inflammatory pain 

models (Omote et al., 1998, Carlton and Coggeshall, 1999, Carlton, 2001, Du et al., 2006). 

Limited studies, however, have been done on the role of glutamate metabolism on nociception 

and sensitization regarding primary afferent neurons. The regulation of glutamate metabolism in 

response to peripheral inflammation has been the major interest of this laboratory, with the 

special interest in glutaminase, the neuronal synthetic enzyme that converts glutamine to 

glutamate. The principal goal of the current studies is to further explore the role of dorsal root 

ganglion glutaminase in acute and chronic inflammatory pain. This goal is further divided into 

three aims to stress the contribution of glutaminase to inflammatory pain.  

Previous studies from our laboratory have shown that glutaminase expression and enzyme 
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activity elevate in the neuronal cell bodies and nerve terminals in the inflamed skin during the 

chronic phase of rat adjuvant-induced arthritis (AIA) model. The elevated glutaminase at the site 

of inflammation indicates that the altered amount of glutaminase is likely to be present earlier in 

the neuronal cell bodies in order to be transported to the inflamed site prior to the chronic phase 

of AIA. Less is known, however, about the response of glutaminase during the acute phase of 

inflammation and its role in acute inflammatory pain. To better understand the temporal alteration 

of glutaminase in response to peripheral inflammation, in Chapter II we extended our study by 

evaluating the alterations of glutaminase levels during both the acute (0-4 days) and chronic (4-8 

days) phases of AIA. It was found that glutaminase in DRG neuronal cell bodies was significantly 

elevated at 1 and 2 days of AIA, followed by a gradual decrease below baseline level at 4 day 

AIA with another trend of elevation from 4 to 8 days of AIA. These results provide further 

evidence that the glutaminase expression in the DRG is temporally regulated during the acute and 

chronic phases of peripheral inflammation. It indicates that glutaminase expression in the DRG is 

affected by various cellular and molecular mechanisms and contributes to different stages of 

inflammatory pain. 

DRG neurons can be further classified by their morphology, functions and neurochemical 

characteristics (Lawson, 2002, Woolf and Ma, 2007), and these properties are generally 

correlated. It is accepted that large sized neurons have large diameter axons and fast conduction 

velocity, and they mainly transduce sensations including vibration, fine touch, and 

proprioception; small sized neurons have small diameter axons and slow conduction velocity, and 

they convey sensations such as pain and temperature. With the knowledge that DRG neurons are 

heterogenous, it is necessary to study the function of DRG neurons by dividing them into 

subpopulations. Most of the current techniques measure the relative total protein expression level 

using tissue homogenates, such as radioimmuoassays, Western blots, and enzyme-linked 

immunosorbent assays. These techniques have limitations when trying to study the alteration of 
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protein expression in subpopulations of cells. In Chapter II, we combined double-labeling 

immunohistochemistry (IHC) and image analysis techniques in order to further evaluate the 

alteration of glutaminase in nociceptive neurons. By co-labeling with putative markers for 

peptide-containing nociceptive neurons and dividing the traced neuronal profiles by their cross-

sectional area, it was observed that elevated glutaminase is found in small- and medium-sized 

peptide-containing DRG neurons, which potentially are nociceptors. These results provide further 

understanding of glutaminase by putting it in context with the peptide-containing DRG neurons 

and characterizing the neurochemical alteration of this subpopulation of DRG neurons. 

In order to study the properties of DRG in subgroups of neurons, great efforts have been made to 

correlate the sensory modalities with the neurochemical components. In these types of studies, it 

is crucial to determine the immunoreactivity (IR) of the marker as IR-positive or - negative. There 

are two general methods to do so. The first method is to use a trained scientist that is blind to the 

study to determine whether a neuron is considered IR-positive. This method is not able to 

measure the accurate level of fluorescence of the marker, nor is it suitable for processing large 

quantities of data. The second method is using normalized immunofluorescent intensity of each 

neuronal profile and the threshold for the marker is arbitrarily determined by the percentage of 

relative intensity (Fang et al., 2005, Fang et al., 2006, Hoffman et al., 2010). The later method is 

more objective than the former one and is employed in many studies of DRG neurons using 

image analysis technique. In our studies, we proposed a modified approach to determine IR-

threshold based on the second method. It is described in details in the section of Chapter II – 

Method. We believe that our approach provides a more objective way to determine the IR-

threshold for any fluorophore-conjugated molecular probe. It will benefit those researchers who 

are concerned with both cyto-/histo-chemical contents and cell/tissue morphology in various cell 

types. 
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In Chapter II, an acute elevation of glutaminase in the DRG neuronal cell bodies was observed 

and the increased glutaminase also has been observed in the inflamed skin at the chronic phase of 

AIA. It is reasonable to assume that elevated glutaminase is transported from the neuronal cell 

bodies to the nerve terminal. No studies, however, have been done to evaluate glutaminase levels 

in the peripheral nerve in response to peripheral inflammation. In order to test our assumption, in 

Chapter III the accumulation of glutaminase was studied in response to peripheral inflammation 

in the sciatic nerve, which contains the peripheral branches of DRG neurons that innervate the 

hindpaw skin. The alteration of DRG glutaminase was initiated using the same animal modal and 

protocol in Chapter II and a ligature placed at the sciatic nerve by surgery at different time points 

after the initiation of AIA. The accumulation of IR then was evaluated qualitatively and 

quantitatively using fluorescent microscopy and image analysis techniques. It was observed that a 

significant accumulation of elevated glutaminase in the sciatic nerve at 2 days following AIA, 

which is in accordance with the peak glutaminase elevation in the neuronal cell bodies at day 1. 

These results provide support for our assumption that the elevated glutaminase in the neuronal 

cell bodies is transported in the peripheral nerve and delivered to the nerve terminals around the 

site of inflammation, where it contributes to excess glutamate production. Results of Chapter III 

also indicate that when studying the cellular change of a molecule, it is necessary to consider and 

integrate temporal and spatial alterations to build a four-dimensional view and better target the 

molecule of interest in vivo. 

Thus far, Chapter II and III have demonstrated the elevation of glutaminase in response to 

inflammation. This newly synthesized glutaminase is “elicited” from the neuronal cell body as the 

result of inflammation. It has been shown that peripheral inhibition of glutaminase at 3 days of 

AIA with a glutaminase inhibitor produces a powerful inhibitory effect on chronic inflammatory 

pain (Miller et al., 2010). These results indicate that elevated glutaminase produced in the cell 

body and transported in the peripheral target will contribute to acute and inflammatory pain by 
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producing more glutamate in nerve terminals for sensitizing the inflammatory site. In Chapter IV, 

we wanted to evaluate the role of endogenous or tonic glutaminase and glutamate that pre-exist at 

the nerve terminal in contributing to acute and chronic inflammatory pain behavior, as well as 

their contribution to the “elicited” alteration of glutaminase in the DRG neuronal cell bodies. By 

pre-blocking glutamate production with the glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine 

(DON), it was observed that an acute inhibitory effect on paw edema from immediately after the 

AIA initiation to 48 hours AIA and a long-term suppression on thermal hyperalgesia from 48 

hours of AIA at least to 8 days of AIA. Furthermore, the elevation of glutaminase-IR in DRG 

neuronal cell bodies was attenuated. These results indicate that pre-depletion of glutamate can 

produce inhibitory effects on 1) the generation of edema and 2) the development and maintenance 

of acute and chronic inflammatory pain. It indicates that the tonic or elevated glutamate during 

the acute phase of inflammation has an important role in the development of chronic 

inflammatory pain. If left untreated, some acute pains can develop into chronic pain with 

prolonged suffering. Our studies suggest that treatment targeting early glutamate elevation after 

acute inflammation/trauma/injury may be beneficial for effective alleviation of pain that often 

progresses to chronic stages. Our approach is one of the few studies that demonstrate the role of 

glutamate as a sensitizer in nociception at the peripheral nerve terminal by inhibiting peripheral 

glutamate production. Compared to the studies using glutamate antagonists, inhibition of 

glutaminase provides more powerful and long-term analgesic effects, which makes peripheral 

glutaminase a promising target for development of novel analgesic drugs. 

Summary 

In Chapter II and III, we characterized the temporal and spatial responses of dorsal root ganglion 

glutaminase to peripheral inflammation. Significant elevation of glutaminase was observed in 

subpopulations of DRG neurons that were labeled with nociception-related neurochemical 

markers in small- to medium-sized neuronal cell bodies. These results indicate that after 
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inflammation, elevated glutaminase is synthesized in the neuronal cell bodies and then 

transported to the peripheral nerve terminals around the inflamed site, where glutamate is 

produced and released contributing to peripheral sensitization. In Chapter IV, we further explored 

the role of basal glutaminase and glutamate in contributing to acute and chronic inflammatory 

pain. These studies help us to understand the role of glutamate as a sensitizer at the peripheral 

nerve terminal from the perspective of the glutamate metabolism. It also supports the notion that 

early treatment that targets the acute glutamate elevation at the peripheral terminal may prevent 

the development of chronic pain and/or provide more effective alleviation if the pain continues 

into the chronic phase with the pathology. This can be extremely beneficial to patients who suffer 

from sport-related injury or trauma, where immediate medical attention and care is usually more 

available compared to chronic diseases. 

With further understanding of the role of dorsal root ganglion glutaminase in acute and chronic 

inflammatory pain, it is likely to predict that glutaminase and glutamate metabolism can be new 

potential targets for novel analgesic drugs. 

Future directions 

It was mentioned previously that correlating neurochemical components with their sensory 

modalities is crucial for studying the primary sensory neurons. No perfect neurochemical 

markers, however, have been identified to classify the sensory modalities of the labeled neurons. 

This means there always are overlaps in the expression of neurochemical markers and the 

functions among DRG neurons. Possibly there are new neurochemical markers to be discovered 

for specific identification of DRG neurons or possibly the neurochemical components of the DRG 

neurons are like a coding system. It is not defined by a simple “positive-negative” or “true-false” 

style. Instead, DRG neurons may use the combined expression pattern of numerous 

neurochemical markers to code their function and response when challenged. More efficient and 



 

 

133 

powerful analyzing methods, therefore, may be needed to fully understand the expression pattern 

in DRG neuronal subpopulations and as a total population. Thus far, flow cytometry has been a 

powerful technique applied in clinical and in basic research. In most cases, flow cytometry allows 

the detection and separation of cells with multiple fluorophore-conjugated probes on various 

molecular levels, such as protein, mRNA, mitochondria membrane potential and etc, while 

preserving the cell morphology. The advantages of flow cytometry meet the requirements for our 

studies and will be a powerful technique to fulfill the purposes of quantification and preparation 

for further analysis, such as cell culture, electrophysiology, microarray and etc. Over the past 

year, I have been working on dissociation of DRG neurons and separation using flow cytometry 

with Dr. Kent Teague, University of Oklahoma Tulsa.  We will continue this project in the near 

future to verify the results from the present dissertation.  

In the current studies, the major focus was characterization of the alteration of glutaminase after 

inflammation in the DRG neurons. More studies, however, need to be done to reveal the cellular 

and molecular mechanisms that contribute to glutaminase alterations in DRG neurons. 

Neurotrophin trafficking and cell signaling will be studies that should be explored in the future. 

Besides the changes that occur in peripheral nerve terminals, alteration of glutamate metabolism 

and signaling events at central terminals of primary afferents have significant contribution to 

chronic and persistent pain. This area, too, will need to be examined to obtain better 

understanding of acute and chronic pain. Lastly, a concept that is gaining acceptance is that pain 

is not only a symptom that comes with the disease, but also a disease itself that requires more 

attention for management. These results indicate that glutaminase may be a potential therapeutic 

target for novel analgesic drugs to address pain ‘disease’ regardless of the disease source. 
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