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Abstract: Multiple comparison problems arise when a set of inferences are considered
simultaneously. When a separate inference approach is used to answer multiple re-
lated questions, it can cause many false positives and lead to erroneous conclusions.
Multiple comparison procedures are used to deal with this issue and properly control
for multiplicity through some joint measure of erroneous inference. A plethora of
measures for error rates, as well as many methods addressing them, have been devel-
oped, although in this dissertation, we restrict our attention to familywise error rate
(FWE), the probability of making at least one false positive among all the hypotheses.

Casella and Strawderman (1980) constructed a Scheffe-type confidence band for
multiple regression over a restricted range of the predictor variables, the restricted
Scheffe method. We propose applying this restricted Scheffe method to a discrete
set of multiple comparisons. This proposed method requires minimal assumptions
on the distribution of the estimated parameter vector and gives a less conservative
solution than Scheffe’s method. A rectangle embedding approach was introduced also
by Casella and Strawderman (1980) to find appropriate restricted ranges for practical
problem settings. However, this approach, which was developed for regression-type
problems, encompasses a large excess of comparisons, and consequently causes rather
conservative critical values. A new minimal cone approach is developed to address this
issue by utilizing the discreteness of the comparisons to obtain the optimal restricted
cone-shaped range.

Sequentially rejective methods are another type of multiple comparison methods
in which the current step result depends on the test results of previous steps. We pro-
pose three sequentially rejective methods based on single-step methods, all of which
control the FWE, to achieve improved power in multiple testing. We suggest mod-
ifications to the critical values such that the modified critical values are monotone
at all times. To facilitate computation, two of the three proposed methods are de-
veloped to modify monotone critical values along the rejection path. Moreover, new
sequentially rejective methods are developed from applying these modifications to
the hybrid method proposed by McCann and Edwards (2000), and they are shown
to often outperform Holms procedure and the stepdown Sidaks method.
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1 Introduction

Multiple comparisons arise when we consider a set of inferences simultaneously.

Analogous to the type I error in a single hypothesis test, in multiple comparisons, the

familywise error rate (FWE) measures the probability of making at least one incorrect

assertion among all the hypotheses. There are basically two types of FWE control.

Controlling FWE in the weak sense is to control the probability of making at least one

rejection given that all the hypotheses are true. Controlling the FWE in the strong

sense, which is more stringent, is to control the supremum of FWE over any possible

configuration of the true and false null hypotheses. In practice, we do not know which

null hypotheses are true and which are false. So, we should protect against all the

scenarios where all or some null hypotheses are true to fully control the FWE, i.e. to

control the FWE in the strong sense. Hence, all the multiple comparison methods

that we investigate in this dissertation will provide strong control of the FWE.

Researchers often pursue multiple comparisons that provide inferences related

to their research conclusions. These research conclusions are often made based on

the entirety of results from the comparisons. In most situations, a false positive

could lead to an incorrect conclusion. For example, one may want to conduct all

pairwise comparisons on multiple treatment means to rank the means, if possible.

However, even one falsely significant difference between two means could change the

overall rankings. Thus, an accurate overall conclusion tolerates no false positives and

consequently FWE control is appropriate.

Consider the following example. Blazer et al. (1985) reports results of a survey of

residents in the Piedmont region of North Carolina where the population was nearly

equally distributed between urban and rural counties. There were 3798 subjects cho-

sen from randomly sampled households over 5 counties in the Piedmont region. One

adult participant was randomly selected from each sampled household. Rural/urban
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residence was determined by county. In this survey, each subject went through a

2-hour interview and the interview was utilized to diagnose each subject as positive

or negative for each of nine psychiatric disorders. The main goal of this study was

to explore differences in the prevalence of the 9 psychiatric disorders between urban

and rural residents. Therefore, there were 9 comparisons of interest. The researcher

wanted to reach an overall conclusion on which of the 9 psychiatric disorders varied

in prevalence between urban and rural residents. To control the probability of occur-

rence of any false positive, the researchers would have needed to control the FWE in

the strong sense, which is to control the probability of mistakenly claiming that any

psychiatric disorder differed in rural/urban prevalence when that psychiatric disor-

der actually did not. Since the probability of at least one error is obviously greater

than the probability of an error on a single comparison, making single comparisons

individually at the specified error rate does not control the FWE, and could lead to

a greatly inflated FWE in some cases.

In the above example, the researchers might wish to only determine diagnosis

prevalence equality or inequality. In some situations, researchers go further and con-

struct confidence intervals for the prevalence differences. Depending on these different

inferential objectives, various multiple comparison methods may be appropriate. For

example, a pharmaceutical company faces two issues: passing drugs through the reg-

ulatory agency and marketing drugs. For a combination drug to pass the regulatory

agency, it requires convincing evidence that the combination drug is better than every

one of its subcombinations. The desired task is to detect directional differences, in

the direction that the combination drug must be more effective than all of its subcom-

binations. Thus a declaration of directional differences suffices; confidence intervals

for the differences are not needed. On the other hand, for marketing purposes, when

comparing several drugs with the most effective one on the market, the desired task

is to evaluate practical differences and see if the superiority any drug gains over the

most effective one is useful enough to convince the company that the new drug is

2



worth marketing. Thus, two inferential tasks in multiple comparisons are capturing

significant directional differences and providing interval estimation to assess practical

differences. For instance, we may make 0-1 (yes-no) decisions based on directional

differences, or construct confidence intervals that provide the additional information

needed to assess practical differences.

As mentioned, there are different types of multiple comparison methods to ad-

dress these different inferential tasks. Westfall et al. (1999) referred to single-step

methods as methods that make an equivalent multiplicity adjustment for all the tests

or confidence intervals of interest. As a result, each test or confidence interval is cal-

culated without taking the other test results into account. In stepwise methods, on

the other hand, the current step result depends on the test results of previous steps.

Consequently, simultaneous confidence intervals cannot generally be derived from a

stepwise method. For instance, generally, stepwise methods that test the equality of

all pairwise treatment means fail to provide a set of simultaneous confidence intervals

for mean differences. However, if only hypothesis testing is of concern and simulta-

neous confidence intervals are not needed, then stepwise methods can increase the

power of the testing procedure, while still controlling the familywise error rate.

To pursue increased power, single-step methods can often be adapted into step-

wise methods, for example step-down methods. For simplicity, suppose the rejection

region of a test is based on large values of a test statistic. Step-down methods begin

by testing the joint null hypotheses using a single-step method and continue rejecting

more hypotheses in the subsequent steps. At each step, the single-step test is con-

ducted on the current collection of unrejected hypotheses. If any rejection occurs, in

the next step the testing will be based on an updated collection with the newly re-

jected hypotheses removed. These sequential rejections are realized by decreasing the

critical values, as a result of the previous rejections, for the remaining hypotheses at

each subsequent step. Once a step is reached where no rejections occur, the method

stops. As an example, the Holms’ method is a stepdown extension of the Bonferroni

3



method. Similarly, we propose modifying other single-step methods that have not yet

been utilized to obtain step-down procedures. The Hunter-Worsley method, the tube

method, the hybrid method and the restricted Scheffe method are four single-step

methods that often perform well in terms of simultaneous confidence intervals for

various situations. They all provide strong control of the FWE. However, the hybrid

method incorporates the tube method and the Hunter-Worsley method and conse-

quently always outperform them. Thus, we propose obtaining step-down versions of

the hybrid method and the restricted Scheffe method. These methods will control

the FWE and should provide increased power for various situations.

As mentioned, we consider several powerful FWE-controlling single-step methods

for modification into stepwise procedures. The Hunter-Worsley method is a single-

step method that arises from the Hunter-Worsley inequality (Hunter, 1976; Worsley,

1982). The Hunter-Worsley inequality states that the probability that at least one of

a set of events occurs is no greater than the sum of the probabilities of the individual

events, which gives the Bonferroni inequality, minus the sum of probabilities of the

pairwise events taken over a spanning tree of all pairwise intersection events. (The

definition of a spanning tree will be provided in Chapter 2.) Given that the Hunter-

Worsley inequality sharpens the upper bound in the Bonferroni inequality, it is also

referred to as an improved Bonfferoni inequality. Notice that the Hunter-Worsley

inequality involves the probabilities of the pairwise intersection events and thus in-

corporates information about the pairwise correlations, which is something that the

Bonferroni method fails to consider.

Another single-step method available for procuring a step-down procedure is the

“tube“ method presented in McCann and Edwards (1996). It provides a new confi-

dence bound for the multivariate-t distribution, which utilizes the results in Naiman

(1986) and bounds the joint error probability as the surface of the union of disks with

a capped tube. The tube method also guarantees dominance over the Scheffe (1959)

method.
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A hybrid method that incorporates the Hunter-Worsley method and the tube

method and improves on both of them, is a single-step method proposed by McCann

and Edwards (2000). In the paper of McCann and Edwards (2000), they utilized

the work of Uusipaikka (1984) and Naiman (1986) to express the probability that

simultaneous coverage for confidence intervals fails as an expectation of the surface

area of a union of disks on the unit sphere within a random angular distance of

a vector. Conveniently, many conservative methods, including the Hunter-Worsley

method and the tube method, can be considered using different upper bounds for

the surface area. The hybrid method, in particular, chooses to use the minimum of

the upper bounds of the Hunter-Worsley and the tube methods, which provides a

less conservative critical value. As a result, the hybrid method always outperforms

the Hunter-Worsley and the tube methods, and hence the Bonferroin method and

Scheffe’s method as well.

Finally, we consider the restricted Scheffe method which was developed by Casella

and Strawderman (1980). This is a single-step method that gives a sharper confidence

bound than the Scheffe method. It restricts the range of predictor variables in a re-

gression function into a cone, rather than allowing for any values of the predictor

variables, and therefore provides a narrower confidence band for the regression func-

tion over the restricted region. In order to utilize the restricted Scheffe method for

practical examples, Casella and Strawderman (1980) further introduced a rectangle

embedding approach in their paper. This approach first assumes the range of predictor

variables has a hyper-rectangle shape, then finds a cone such that the hyper-rectangle

can be embedded into the cone, and then the restricted Scheffe method is applied to

this cone.

When we considered modifying the restricted Scheffe method to obtain a stepdown

method, we realized that no previous publication in the literature has investigated

applying the restricted Scheffe method to construct simultaneous confidence intervals

for a finite set of comparisons. Unfortunately in the finite comparisons situation, the
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rectangle embedding approach often fails to find a cone of the form required by the

restricted Scheffe method to enclose the coefficients of all the comparisons. In this

case, even the tightest hyper-rectangle turns out to be an overexpansion of the convex

hull of actual coefficients in the sense that after transformation the hyper-rectangle

set is too large to fit into a cone with the structure specified in the restricted Scheffe

method. In light of this situation, we propose obtaining the exact minimal cone from

the convex hull of the coefficients of all the comparisons, completely avoiding the

troublesome hyper-rectangle. We will refer to this as the minimal cone approach

and refer to the restricted Scheffe method utilizing the minimal cone approach as the

minimal restricted Scheffe method. As this approach has not been considered, we

also focus on obtaining simultaneous confidence intervals via the minimal restricted

Scheffe method and evaluating its performance for a finite set of comparisons with

other appropriate single-step methods.

Now consider stepdown methods in general. Although the mechanism of stepdown

methods provides the possibility of improved power, it is crucial to verify that these

stepdown methods control the FWE. Otherwise the gain in power could actually be

at the cost of increasing the FWE. Goeman and Solari (2010) proposed a general

sequentially rejective multiple testing framework that sheds light on proving strong

FWE control of stepwise methods. Specifically, they show that the sequentially re-

jective framework strongly controls the familywise error if it fulfills the criterion of

monotonicity of the critical values, the monotonicity condition, and a limited form

of weak familywise error control in each single step, the single-step condition. These

two conditions are referred to as the sequential rejection conditions. Since stepdown

methods fit perfectly into the sequentially rejective framework, we are inspired to

justify the strong FWE control of stepdown methods by means of the sequential re-

jection conditions. At each step, our stepdown methods are reduced to single-step

methods which all control the FWE in the strong sense, and consequently the single-

step condition easily follows. However, the true challenge comes from showing that
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the monotonicity condition holds. Although simulations have empirically vindicated

monotonicity of the critical values for the stepdown methods considered, theoreti-

cal proofs of monotonicity, especially for the critical values from single-step methods

that take correlations between the hypotheses into account, has proved considerably

difficult. In view of this difficulty and with the addition of the subset pivotality

assumption, we suggest a modification to the critical values such that the modified

critical values are monotone at all times, while still satisfying the single-step con-

dition. We refer to the stepdown methods based on these modified critical values

as forced stepdown methods, as we are essentially forcing monotonicity. To facilitate

computation, two alternative methods are likewise proposed that force monotone crit-

ical values along the rejection path and hence are referred to as the forced pathwise

methods. All these various modifications are utilized to develop sequential tests from

the hybrid method, all of which control the FWE in the strong sense.

In summary, we propose applying the minimal cone approach to the restricted

Scheffe method for constructing simultaneous confidence intervals for a finite set of

comparisons, and compare its performance with various other single-step methods.

Additionally, forced stepdown methods and forced pathwise methods are proposed to

develop sequential methods utilizing the hybrid procedure and the minimal restricted

Scheffe method. The performance of these sequential methods is compared to that of

the appropriate competitors.

The remaining chapters are organized as follows. In Chapter 2 we review various

single-step methods and the restricted Scheffe method in the context of the general

multiple comparison problem. Then we illustrate the application of the restricted

Scheffe method to practical problems using the rectangle embedding approach and

introduce the minimal cone approach to resolve the issues that occur in applying

the restricted Scheffe method to a finite set of comparisons. After that, we conduct

a simulation study to compare simultaneous confidence intervals constructed by the

minimal restricted Scheffe method with other appropriate single-step methods. In
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Chapter 3 we discuss the concept of the sequentially rejective framework and the

sequential rejection conditions, and propose the forced step-down method and the two

forced pathwise methods. We show that under the subset pivotality assumption these

procedures all control the FWE in the strong sense. Next, we present the results from

investigating the performance of the forced sequential procedures utilizing the hybrid

method and the minimal restricted Scheffe method with other stepwise competitors.

A summary follows in Chapter 4.
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2 Minimal Cone Approach

2.1 Single-step methods

McCann and Edwards (1996) considered a general multiple comparison model

with k parameters β′ = (β1, β2, β3, ..., βk). Suppose it is of interest to estimate Cβ,

namely p linear combinations of β, where C is a p×k known matrix with rank r. An

estimator b of β is available and distributed as multivariate normal N(β, σ2V ) with

σ2 unknown. Without loss of generality, assume that V is a known positive definite

matrix. Let s2 denote the usual unbiased estimator of σ2 with degrees of freedom ν,

where νs2/σ2 ∼ χ2
ν and is independent of b. Denote the correlation matrix of Cb by

R = [rij] which is a p× p matrix and derived from the covariance matrix CV C′.

Suppose we want to construct 100 × (1 − α)% simultaneous confidence intervals

for Cβ of the form

c′jb± ds(c
′
jV cj)

1/2, j = 1, 2, ..., p, (2.1)

where c′j is the jth row of C.

The following section details several single-step methods that give conservative

simultaneous confidence intervals of the form (2.1) with various values for d.

First define Row(A) to be the set of all row vectors of a matrix A. Then many

classic multiple comparisons methods have provided various conservative critical val-

ues d in (2.1), such that

P (Sβ(Row(C)) := {b : |y′b− y′β| 6 ds(y′V y)1/2,∀y ∈ Row(C)}) ≥ 1− α,

(2.2)

where for any set E ⊆ Rk, Sβ(E) denotes the event {b : |y′b− y′β| 6

ds(y′V y)1/2,∀y ∈ E}.
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For example, the Bonferroni method follows from the Bonferroni inequality

1− P (Sβ(Row(C)) = P (|c′j(b− β)| > ds(c′jV cj)
1/2 for at least one j)

6
p∑
j=1

P (|c′j(b− β)| > ds(c′jV cj)
1/2). (2.3)

In fact, the Bonferroni method chooses the critical value dBON as the solution to an

equation setting (2.3) equal to a predetermined level α. Since
c′jb−c

′
jβ

s(c′jV cj)
1/2 , j = 1, 2, ..., p,

are identically distributed as tν , the Bonferroni critical value dBON is equal to t α
2p
,ν ,

the upper 100× (1− α
2p

)th quantile of a t distribution with ν degrees of freedom.

Very closely related to the Bonferroni method is Sidak’s method. The following

Sidak equation is derived by assuming independence of all the p tests of our context.

P (Sβ(Row(C)) = {b : |c′jb− c
′
jβ| 6 ds(c′jV cj)

1/2,∀j = 1, 2, . . . p})

=

p∏
j=1

P (|c′j(b− β)| 6 ds(c′jV cj)
1/2). (2.4)

Without the independent assumption, Sidak (1967) showed that the equality (2.4)

becomes the inequality ”>”, when
c′jb−c

′
jβ

s(c′jV cj)
1/2 , j = 1, 2, ..., p, are multivariate normal

random variables with means 0. Jogdeo (1977) extended Sidak’s inequality to a

larger collection of distributions including multivariate F and t distributions, where

the latter coincides with the distribution of the test statistics in our model. Thus,

Sidak’s critical value results from equating the lower bound (2.4) to (1 − α) and is

given by t 1−(1−α)1/p
2

, ν
.

Naiman (1986) employed the result of Uusipaikka (1984) and expressed the prob-

ability that coverage fails for the intervals (2.1) as the probability that a random

vector uniformly distributed on the unit sphere in Rr space, falls within a random

distance from at least one of the vectors aj , where aj ’s, j = 1, 2, ..., p, are the rows

of a p× r matrix A such that R = AA′. Let z be a random variable distributed as

Nr(0, I). Now the probability that simultaneous coverage of the intervals (2.1) fails,
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can be given in the following form,

P (|c′j(b− β)| > ds(c′jV cj)
1/2 for at least one j)

= P (∪pj=1[|a′jz/Q| > d])

= P (∪pj=1[|a′ju| > dT ])

=

∫ 1
d

0

P (∪pj=1[|a′ju| > td])fT (t) dt, (2.5)

where u = z
‖z‖ , T = Q

‖z‖ , with ‖.‖ being vector length, and Q2 v χ2
ν/ν. Note that

T is independent of u and rT 2 v Fν,r. Geometrically, each set of {u||a′ju| > td}

is a disk involving all points on the unit sphere that are within the angular distance

arccos(td) of ±aj .

In most situations, it is fairly difficult to obtain the exact expression of B(t) ≡

P (∪pj=1[|a′ju| > td]). Thus, appropriate upper bounds may be employed to replace

B(t) in (2.5), leading to various conservative single-step methods (McCann and Ed-

wards, 2000). Precisely, the critical values of various conservative single-step methods

can be expressed as the solutions to an equation that sets (2.5), with an appropriate

upper bound B∗(t) for B(t), equal to a desired error probability, i.e.

∫ 1
d

0

P (B∗(t))fT (t) dt = α, (2.6)

where B∗(t) > B(t), for any t between 0 and 1
d
. As examples, the Bonferroni method

can be expressed as the solution to (2.6), using

B∗Bon(t) =

p∑
j=1

P (|a′ju| > td) = pFr−1,1[
(td)−2 − 1

r − 1
].
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2.1.1 The Tube Method

McCann and Edwards (1996) presented a tube method using the result of Naiman

(1986). Note that its critical value can be expressed as the solution to (2.6) using

B∗(t) =
Λ

π
Fr−2,2[

2((td)−2 − 1)

r − 2
] + Fr−1,1[

(td)−2 − 1

r − 1
], (2.7)

where Λ =
∑p−1

j=1 arccos(|rj,j+1|). From the geometric perspective, (2.7) covers the

surface area of the union of the disks {|a′ju| > td}, j = 1, 2, ..., p, with the surface

area of a single long tube of length Λ and the two half disks that cap the tube. In

fact, the tube method uses a sharper bound B∗tube(t) = min((2.7), 1) so it always

outperforms Scheffe’s method.

2.1.2 The Hunter-Worsley Method

The Hunter-Worsley inequality provides as an upper bound for the probability

of a union event, the sum of the probabilities of individual events minus the sum of

the probabilities of a set of pairwise intersection events, where the pair combinations

come from a spanning tree with each event a node. A spanning tree of p nodes is a

connected graph with (p − 1) branches. That implies that in a spanning tree each

node is connected to every other node through a unique branch and the tree contains

no cycles. It is easy to see that the Hunter-Worsley inequality always provides a

sharper bound than the Bonferroni inequality. In particular, the sharpest bound in

the Hunter-Worsley inequality occurs when the chosen spanning tree maximizes the

sum of probabilities of pairwise intersection events of all the spanning trees. This

sharpest upper bound is utilized in the Hunter-Worsley method for B∗(t) and the

critical value can thus be represented as the solution to (2.6) with

B∗HW(t) =

p∑
j=1

P (∪pj=1[|a′ju| > td])−
∑

(i,j)∈τ

P [(|a′iu| > td) ∩ (|a′ju| > td)], (2.8)
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where τ is the minimal spanning tree of the nodes {1, 2, ..., p} with branch weights

of arccos |rij|. The Hunter-Worsley bound B∗HW(t) can be interpreted as the sum of

the surface area of the disks {|a′ju| > td}, j = 1, 2, ..., p, with the total surface area

of the 2-way intersections subtracted from this sum, where the intersected disks are

the ones whose pair indices appear in the minimal spanning tree.

2.1.3 The Hybrid Method

McCann and Edwards (2000) introduced three different hybrid methods that fur-

ther sharpen the upper bounds of the tube and/or Hunter-Worsley methods. These

three hybrid methods refine the upper bounds by exploring the relationship among

the three covering shapes, tube, disk and ”disk minus intersection”, and selecting

whichever shape provides a sharper surface area.

Specifically, the first hybrid method takes the minimum of the upper bounds in

the tube and Hunter-Worsley methods and has the conservative bound

B∗H(t) = min(B∗tube(t), B
∗
HW(t)).

Hence, this method is referred to as the minAll method. As a result, the minAll

method always outperforms the tube and Hunter-Worsley methods.

The second hybrid method, also known as the Hunter-Worsley capped tubes

method, enables the comparison between the tube and Hunter-Worsley methods on

a smaller scale. It starts with the Bonferroni upper bound which is the sum of the

surface area of p disks. Then the method searches each branch from the shortest to

the longest along the minimal spanning tree and replaces the surface area of a disk

with the surface area of a disk minus the intersection, or a tube between the two

nodes of the branch provided that the tube gives a smaller surface area and neither

node has been attached to more than one of the previously connected tubes. By

this refinement of the upper bound, the Hunter-Worsley capped tubes method always

outperforms the Hunter-Worsley method and also outperforms the tube method in
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all simulations, although an analytical proof of its superiority over the tube method

is not available.

The third hybrid method is referred to as the capped tubes method, as it is similar

to the Hunter-Worsley capped tubes method, except that the surface area of a disk is

only compared to the applied tube for possible replacement, instead of to the minimum

of the surface area of a disk minus the intersection and the tube. Thus the Hunter-

Worsley method is not included in this method. However, since the “disk minus

intersection” expression brings in double integration to the final calculation of critical

values, avoiding it in the capped tubes method greatly facilitates the computation.

As a cost, the capped tubes method is not guaranteed to outperform either the tube

method or the Hunter-Worsley method.

Of all the three hybrid methods, we chose to investigate the minAll method, as it

performs nearly identically to the Hunter-Worsley capped tubes method but requires

slightly less computational time. Hence in our context “the hybrid method” refers to

the minAll method.

2.1.4 Scheffe’s Method

Recall that Scheffe’s method takes into account any possible values for the cj’s in

the entire Rp space, and thus it has the upper bound

B∗SCH(t) = 1.

From the simple form of B∗SCH(t), Scheffe’s critical value in (2.2) and (2.6) can be

readily derived as (rFα,r,ν)
1
2 . Let γ be an arbitrary basis of the vector space generated

by Cβ. There is a unique p× r matrix B of full column rank such that Cβ = Bγ.

We rewrite γ = B+Cβ, where B+ is the generalized inverse matrix of B. Then,

γ̂, defined as B+Cβ̂, has a multivariate normal distribution, N(γ,B+CV C′B′+).
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Now for any set F ⊂ Rr, let Sγ(F ) be the event

{γ̂ : |x′γ̂ − x′γ| 6 ds(x′B+CV C′B′+x)1/2,∀x ∈ F}.

Then the Scheffe confidence intervals can be obtained from the following well-known

equation,

P (Sγ(Rr) = P{γ̂ : |x′γ̂ − x′γ| 6 ds(x′B+CV C′B′+x)1/2,∀x ∈ Rr})

= P (Fr,ν 6 d2/r). (2.9)

Now since Row(B) is a subset of Rr, given d equal to dSCH ≡ (rFα,r,ν)
1
2 we have

P (Sβ(Row(C))) = P (Sγ(Row(B))) ≥ P (Sγ(Rr)) = 1− α. (2.10)

Notice, the conservativeness of the Scheffe critical value dSCH results from relaxing

the coefficient set Row(B) to the entire Rr. Another less conservative critical value

is derived by seeking a similar equation to (2.9) with constraints on Rr .

2.1.5 The Restricted Scheffe Method

The restricted Scheffe confidence intervals were introduced in the paper by Casella

and Strawderman (1980). They replaced Rr with a constrained range, which is actu-

ally defined with respect to transformed variables of the foregoing chosen basis γ, and

found the exact expression for the coverage probability gain over (2.9), as a result of

the constrained range. Specifically, let P denote the matrix of orthonormal eigenvec-

tors of (B+CV C′B′+)−1 , and let D denote the diagonal matrix of its eigenvalues.

So (B+CV C′B′+)−1 is factorized as

(B+CV C′B′+)−1 = PDP
′
. (2.11)
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Then we define

Z = BPD−1/2, (2.12)

η = D1/2P ′γ.

So Zη = Bγ = Cβ. The least squares estimator η̂ of η, has a multivariate normal

distribution N(η, σ2I). Henceforth, Z and η will refer to the transformed problem,

and B and γ will refer to the original problem.

For the transformed problem, given any set G ⊂ Rr, we denote the event

{η̂ : |z′η̂ − z′η| 6 ds(z′z)1/2,∀z ∈ G}

by Sη(G).

The classic result originally given by Casella and Strawderman (1980) and cor-

rected by Sa and Edwards (1993), shows that

P (Sη(Cz) := {η̂ : |z′η̂ − z′η| 6 ds(z′z)1/2,∀z ∈ Cz})

= P (Fr,ν 6
d2

r
) +

∫ d2/rb2

d2/r

P (Fs,r−s 6
r − s
s

λ21(t))fr,ν(t), dt (2.13)

where Cz has the form,

Cz = {z :
s∑
i=1

z2i ≥ q2
r∑

i=s+1

z2i }, (2.14)

q is a fixed constant and λ1(t) = d(t−d2)1/2−abt
a2t−d2 with a = q(1 + q2)−1/2, and b =

(1 + q2)−1/2.

Notice that in (2.13) the first term is exactly the same as P (Sγ(Rr)) and the

second term is the amount of gain from the constraint Cz over Scheffe’s bound. If

Row(Z) ⊆ Cz for some values s and q, a new critical value dRSCH (RSCH stands for

restricted Scheffe), can be obtained from equating (2.13) to (1 − α). From (2.13),
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it implies that dRSCH is smaller than dSCH = (rFα, r, ν)1/2 and consequently the

restricted Scheffe method constructs narrower confidence bands or intervals.

Casella and Strawderman (1980) pointed out that usually it was impossible to

obtain the explicit constraint Cx in the original problem corresponding to Cz, unless

PD′P is nearly orthogonal. Notwithstanding, an implicit relationship between Cz

and Cx is available. Consider a compact expression of Cz

Cz = {z : z′Mz ≥ 0}, (2.15)

where M is a diagonal matrix with the first s entries 1’s and the last r − s entries

−q2. Then the pertaining constrained set Cx in the original problem can be written

as

Cx = {x : x′PD−1MP ′x ≥ 0}.

However, this relationship between Cz and Cx does not adequately address the

question, i.e., given a Cx of interest, how to find a Cz in which Cx is contained.

Instead, a more practical approach, the rectangle embedding approach, was proposed

by Casella and Strawderman (1980).

2.2 Restricted Scheffe Method For a Finite Number of Comparisons

We want to apply the restricted Scheffe method, that was intended for a continuous

regression function, to a finite number of comparisons and construct simultaneous

confidence intervals. In adopting the restricted Scheffe method, a constraint cone Cz is

required that contains the discrete set from the finite comparisons in the transformed

problem.
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2.2.1 Rectangle Embedding Approach

Casella and Strawderman (1980) introduced a rectangle embedding approach

which assumes that the original set of interest has a hyperrectangle form,

Rx = {l1 6 x1 6 u1, l2 6 x2 6 u2, ..., lr 6 xr 6 ur}, (2.16)

where l1, ..., lr and u1, ..., ur are specified constants. This assumption not only has

a wide applicability to different problems, but also facilitates searching for all the

sets Cz of the form (2.14) that contain the transformed Rx. The conservative critical

value of the rectangle embedding approach is the smallest critical value of all those

obtained from (2.13) restricted to those cones Cz that cover the transformed Rx.

To find these covering cones, Cz, Casella and Strawderman (1980) showed that Rx

is convex, and that it retains its convexity after the transformation in (2.12). Let Rz

be the transformed Rx. Then the vertices of Rz are the images of the vertices of Rx.

That is, given a vertex xν of Rx, e.g. xν = (l1, l2, l3 . . . , ur)
′ or (l1, u2, u3 . . . , ur−1, lr)

′,

zν = D−
1
2P ′xν is a vertex of Rz. In implementing the search for Cz, Casella and

Strawderman (1980) only deal with the vertices of Rz. In fact, for each ith coordinate

zi, 1 6 i 6 r, they define

zmax
i = max |zi|,

zmin
i =


0, if min zi < 0 < max zi;

min |zi|, otherwise.

(2.17)

Then it is shown that for any integer s between 1 and r − 1, if the value

(
∑s

i=1 z
min
i )2

(
∑r

i=s+1 z
max
i )2
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is nonzero, it is the largest q2 such that the region of the form

{
s∑
i=1

z2i > q2
r∑

i=s+1

z2i } (2.18)

contains Rz. Otherwise, there exists no region of the form (2.18) that encloses Rz.

The rectangle embedding approach is intended for constructing confidence bands

where the regions of interest are continuous. However, when it comes to a finite

number of comparisons, the following example shows that the rectangle embedding

approach can fail. That is because there exists no s and q such that any Cz could

contain the rectangle envelope of the discrete set from the finite comparisons. (Note

the rectangle envelope of a set X is the smallest hyperrectangle set that contains X.)

Suppose we have 5 parameters of interest, β′ = (β1, β2, β3, β4, β5), where the last

parameter represents the control group. Assume there exists an estimator b′ of β′

with a multivariate normal distribution, N(β, σ2V ), where V is a correlation matrix

with a first-order autoregressive structure with φ = 0.5. In this scenario, we are

concerned with the linear combinations Cβ, where the matrix

C =


1 0 0 0 −1

0 1 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

 .

Since C is of full row rank, we reparameterize by letting γ = B−1Cβ, where B is a

nonsingular matrix and without loss of generality, we choose

B =


1 2 3 4

−1 1 2 3

−1 −1 1 2

−1 −1 −1 1

 . (2.19)
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Then the estimator γ̂ of γ is B−1Cb, with γ̂ v N(B−1Cβ, σ2B−1CV C′B′−1).

Now, we seek a value d such that

P (Sγ(Row(B)) = {γ̂ :|x′γ̂ − x′γ)| 6 ds(x′B−1CV C′B′−1x)1/2,

∀x ∈ Row(B)}) = 1− α.

We adopt the rectangle embedding approach, fit the rows of B into a rectangle

and find the Cz that contains the transformed rectangle and gives the smallest critical

value d from the restricted Scheffe equation (2.13).

Notice that,

Rx = {−1 6 x1 6 1, −1 6 x2 6 2, −1 6 x3 6 3, 1 6 x4 6 4}

is the smallest rectangle that contains Row(B). Let Rz denote the image of Rx after

transformation as in (2.12). Rx passes on its convexity to Rz, so the vertices of Rz are

exactly the images of the vertices of Rx. Hence, we obtain all the vertices of Rz by

implementing the transformation on the vertices of Rx, which are left-multiplied by

D−
1
2P ′, where PDP ′ is the eigenvalue decomposition of B−1CV C′B′−1. Then we

collect the maximum and minimum values of the vertices of Rz for each coordinate

according to (2.17). It turns out zmini = 0, for i = 1, 2, 3, 4. That means that there

exists no Cz that Rz could be embedded into. We obtain the same results when

choosing different values for φ.

It is noteworthy that given most choices of γ and the resulting B, the rectangle

embedding approach fails to find any cones Cz that cover the transformed Row(B).

Even if there exist some values of γ and B where covering cones are available from

the rectangle embedding approach, many of these cones turn out to be too large to

give a competitive critical value d. However, it is the rectangle envelope that prohibits

the derivation of an appropriate cone to obtain a sharp critical value. Consequently,

we seek a new approach that eliminates the need for the rectangle envelope.
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The drawback of the rectangle embedding approach arises particularly in some

scenarios such as all pairwise comparisons, where the number of comparisons, p, is

strictly larger than the number of linearly independent comparisons r. When we

choose a basis γ of the vector space generated by Cβ, γ can be any r linearly

independent combinations out of the p comparisons and all the p comparisons are

then expressed in terms of γ with a p × r coefficient matrix B. As p grows, we can

imagine that the rectangle envelope of Row(B) will become larger and larger, and

hence it becomes even more difficult to find a cone Cz that contains the transformed

image of the expanding rectangle envelope.

From the forgoing example, it appears that the failure of the rectangle embedding

approach is due to the overexpansion of Row(B) into a rectangle. In the situation

of continuous problems, the whole rectangle set in the original problem is of interest

and the rectangle embedding approach allows us to find the exact covering Cz in the

transformed problem. However, when we deal with a finite number of comparisons,

the set of interest is discrete. If we still apply the rectangle embedding approach and

throw the discrete set into a larger rectangle envelope, most of the time the rectangle

envelope will overly expand the discrete set causing excessively large covering cones,

and consequently rather conservative critical values. To resolve this overexpansion

issue, we can instead find exact covering cones for the discrete set. Searching for

the exact covering Cz’s, we can utilize the discreteness of Row(B), examine the

transformed image of each element in Row(B), and find the exact smallest Cz that

contains all those finite elements. This leads to a new approach, the minimal cone

approach.

2.2.2 Minimal Cone Approach

In the minimal cone approach, we look for the exact minimal cone Cz in the sense

that of all the Cz’s that cover the transformed Row(B), the minimal cone is the

one that leads to the smallest critical value. This approach applies whenever a finite

number of comparisons are considered. The cone Cz is determined by two factors, s
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and q2. The minimal Cz with the least critical value could result from any possible

value of s. Thus for all s = 1, 2, ..., r−1, we compute the largest q2 from each element

in the transformed Row(B), which would give the smallest cone in which that element

is enclosed. Then pick the smallest of all those q2 as the final q2 such that its resulting

Cz contains all the elements in the transformed Row(B). From (2.13), the critical

value with respect to each constraint Cz with varying s can be obtained. Of all those

locally minimal constraint cones, the one that corresponds to the smallest critical

value is the optimal Cz.

Now we illustrate the minimal cone approach with the previous example. First,

we transform the matrix B in the original problem into

Z = BPD−
1
2 =


1.1147 −0.6251 0.1001 0.4814

0.6393 −1.0852 −0.3963 −0.0806

0.1871 −1.1049 0.4935 −0.0232

−0.1873 −0.7302 −0.0134 0.6569

 ,

where r = rank(B) = 4.

For each s = 1, 2, 3, and each row of Z, we compute

q2m,s :=

∑s
i=1 z

2
mi∑r

j=s+1 z
2
mj

m = 1, 2, ..., p,

where zmk is the (m, k)th entry of Z. Then min16m6p q
2
m,s is the largest q2 with respect

to s, such that all the rows of Z are a subset of Cz(s, q
2), which is the cone defined

in (2.18) with parameters s and q2. With degrees of freedom of 60, we can solve for

the critical values from (2.13) by setting

P (Sη(Cz(s, min
16m6p

q2m,s))) = 1− α, s = 1, 2, ..., r − 1.
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The minimal cone is the Cz with the exact (s,min16m6p q
2
m,s) that gives the smallest

critical value of all the 3 sets of (s,min16m6p q
2
m,s). The final results are shown in

Table 1.

s 1 2 3
q2 0.0239 1.3165 1.3175
d 3.1758 3.0819 3.1556

Table 1: Cones Cz(s, q
2) and critical values d

Apparently, Cz(2, 1.3165) is the optimal Cz and the associated critical value d =

3.0819 < dSCH = (rFα,r,ν)
1
2 = 3.178185.

With a finite number of comparisons, the minimal cone approach is capable of

finding the optimal cone Cz that contains Row(Z) and gives the smallest critical

value, provided that such a cone exists. The overexpansion issue associated with

the rectangle envelopes that results in no covering cones or a large covering cone, is

completely resolved by the minimal cone approach. As for moderate-scale multiple

comparisons problems, it is clearly computationally feasible to utilize the minimal

cone approach.

To summarize, we give a general algorithm of obtaining critical values via the

restricted Scheffe method utilizing the minimal cone approach (the minimal restricted

Scheffe method). In the context of general multiple comparisons that we defined in

Chapter 2, we want to construct conservative 100× (1−α)% simultaneous confidence

intervals for Cβ of the form

c′jb± ds(c
′
jV cj)

1/2, j = 1, 2, ..., p.

In order to find such d,

1. Choose a basis γ of the vector space generated by Cβ. Then γ has the dimen-

sion r, which is the rank of C.
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2. Express Cβ as linear combinations of γ and obtain the coefficient matrix B,

i.e. Cβ = Bγ.

3. Calculate the matrix Z in the transformed problem. That is, Z = BPD−
1
2 ,

where PDP ′ is the eigenvalue decomposition of (B+CV C′B′+)−1 and V is

the known correlation matrix of b.

4. Compute

q2m,s :=

∑s
i=1 z

2
mi∑r

j=s+1 z
2
mj

m = 1, 2, ..., p, s = 1, 2, ..., r − 1,

where zmk is the (m, k)th entry of Z.

5. Find q2s = min16m6p q
2
m,s for each s = 1, 2, ..., r − 1.

6. Calculate the critical values ds from equating (2.13) to (1 − α), where α is a

predetermined error rate.

7. min16s6r−1 ds is the critical value given by the minimal restricted Scheffe

method.

Note that in the above algorithm, there are two factors that are not uniquely

determined, the basis γ and the eigendecomposition of (B+CV C′B′+)−1. Next we

are going to explore how different choices in these two factors would affect the critical

values of the minimal restricted Scheffe method.

2.2.3 Eigendecomposition Effect

In the restricted Scheffe method, the restriction is defined with respect to the

transformed problem. To make the transformation, we have the eigendecomposition

of the inverse matrix of (B+CV C′B′+). So (B+CV C′B′+)−1 is factorized as

(B+CV C′B′+)−1 = PDP ′, (2.20)
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Notice that in the eigendecomposition (2.20), if all the eigenvalues are distinct, D

is unique subject to the order of eigenvalues on the diagonal line. Then with a fixed

order of eigenvalues in D, P is unique subject to the signs of columns. That is, P

can be replaced by PI∗, where

I∗ =


±1

±1
. . .

±1

 .

However, since I∗ is commutative with any diagonal matrix,

Z∗ = BPI∗D−
1
2 = BPD−1/2I∗ = ZI∗,

which results in at most opposite signs to the columns of Z. In the minimal cone

approach, we only utilize the absolute values of the elements of Z and thus the choice

of variant forms of P does not affect the ultimate minimal cone.

Now let us investigate the effect of variant forms of D on the minimal cone.

Assume D and D̃ are two diagonal matrices of the eigenvalues of (B+CV C′B′+)−1

in different orders on the diagonal line. Then there exists a permutation matrix Q

such that QQ′ = I and

D̃ = QDQ′.

Thus, the eigendecomposition can be expressed as

PDP ′ = PQ′QDQ′QP ′ = (PQ′)D̃(PQ′)′ = P̃ D̃P̃ ′,

where P̃ = PQ′. Using these two eigendecomposition representations to define the

transformed problem (2.12), we have Z = BPD−1/2 and

Z̃ = BP̃D̃−1/2
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= BPQ′QD−1/2Q′, since D̃−1/2 = QD−1/2Q′,

= BPD−1/2Q′. (2.21)

Note that Z̃ is equal to Z right multiplied by Q′ which is also a permutation matrix.

That is to say, Z̃ is composed of the shuffled columns of Z. From the minimal cone

approach, we know that a switch of columns in Z would almost certainly lead to

a different resulting minimal cone and hence a different critical value. Therefore,

different orders of eigenvalues in D usually result in distinct critical values from the

minimal cone approach.

In most math/stat software, the eigenvalue decomposition routine by default gives

the diagonal matrix with eigenvalues placed in decreasing order from top to bottom.

However, simulation results show that among all the diagonal matrices with the eigen-

values in permuted orders, this default diagonal matrix is not always the one that

yields the smallest critical value via the minimal cone approach. In fact, no evidence

shows that the minimal critical value is related to a particular order of eigenvalues

in the diagonal matrix. Since there are (r!) permutations of the eigenvalues, where

r is the dimension of (B+CV C′B′+)−1, we apply the minimal cone approach to

all (r!) possible Z̃ in (2.21), obtain corresponding minimal cones and critical values,

and select the smallest critical value. In practice, as r! increases rapidly with r, an

allowed maximum number of permutations is set to control the computing time. If r!

exceeds this maximum threshold, we randomly select only the threshold amount of

eigenvalue permutations into comparison. Since this permuting technique uniformly

improves the critical values obtained from the previous algorithm, we include it as

part of the algorithm, by adding

8. Go to step 3 and let D choose a different permuted order of the eigenvalues on

the diagonal line. Do not proceed until the maximum number of permutations

is reached.
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9. Select the minimum of all the critical values obtained from the permuted orders

of the eigenvalues in D.

It is noteworthy that D does not necessarily have distinct eigenvalues. Hence,

the eigenvectors in P associated with duplicate eigenvalues are not unique. Lack

of enough scenarios that produce duplicate eigenvalues, it remains unclear how the

choices of the associated eigenvectors, jointly with the effect of eigenvalue permuta-

tions, change the critical value of the minimal restricted Scheffe method.

2.2.4 Effect of Basis Change

We have presented the minimal cone approach based on Cβ’s representation with

respect to an arbitrary basis γ. A question arises: Would a different choice of the basis

for Cβ result in a different Cz and consequently a different critical value? To answer

this question, we investigate elementary linear operations on the basis, including the

switching operation, the multiplication operation and the addition operation, as any

linear transformation is a composite of these three elementary operations.

Switching operation

A switching operation interchanges two rows and is represented by left multipli-

cation with an elementary matrix

Q1 =



1
. . .

0 1
. . .

1 0
. . .

1


.

Let γ̃ be a basis with two components of γ switched. Then,

Cβ = Bγ = B̃γ̃, where B̃ = BQ1 and γ̃ = Q1γ.
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With γ, the diagonalized coefficient matrix Z = BPD−
1
2 , where

(B+CV C′B′+)−1 = PDP ′

is the eigenvalue decomposition.

Now, γ̃ follows N(Q1γ,Q1B
+CV C′B′+Q′1) and

(Q1B
+CV C′B′+Q′1)

−1 = Q1(B
+CV C′B′+)−1Q′1

= Q1PDP
′Q′1

= (Q1P )D(Q1P )′.

Since Q1P is an orthonormal matrix, the eigenvalue decomposition is

(Q1B
+CV C′B′+Q′1)

−1 = P̃ D̃P̃ ′, where P̃ = Q1P and D̃ = D.

Then

Z̃ = B̃P̃ D̃−
1
2 = BQ1Q1PD

−1
2

= BPD−
1
2 , since Q1Q1 = I,

= Z.

Therefore, the switching operation on the basis actually does not make any change in

the transformed problem. That is to say that the minimal restricted Scheffe method

is invariant under the switching operation.

Multiplication operation and addition operation

The multiplication operation multiplies a row by a nonzero scalar and the addition

operation adds a row multiplied by a scalar to another row. These two operations

are represented by left multiplication with the following two elementary matrices,
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respectively.

Q2 =



1
. . .

1

a

1
. . .

1


, Q3 =



1
. . .

1
. . .

a 1
. . .

1


(a 6= 0).

Unfortunately, the previous invariance property does not extend to the multipli-

cation or addition operations. Because there is no explicit form of eigenvalue de-

composition for (Q2B
+CV C′B′+Q′2)−1 or (Q3B

+CV C′B′+Q′3)−1, it remains as

an open question how exactly the basis change from Q2 or Q3 affects the minimal

restricted Scheffe critical values.

In addition to the three elementary operations, we conducted an extensive inves-

tigation into arbitrary nonsingular matrices that cause basis change. However, there

is no sufficient evidence for a perceptible pattern of an optimal basis that gives the

smallest critical value from the minimal restricted Scheffe method. In practice, it is

impossible to search an infinite number of possible bases for an optimal basis. On the

other hand, the facts suggest that the change of basis has an important impact on the

minimal cone critical values. Hence, we introduce adopting the minimal restricted

Scheffe method with a certain number of varying bases and pick the minimum of the

critical values from these bases. Consequently, the algorithm is revised by including

10. Go to step 1 and modify γ by left-multiplying γ by a randomly generated

nonsingular matrix. Do not proceed until the allowed maximum number of

varying bases is reached.

11. Select the minimum critical values obtained from all the considered bases.
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2.3 Simulation: Comparing simultaneous confidence intervals

In this section, we present a simulation study to compare simultaneous confidence

intervals constructed by the mininal restricted Scheffe method with other appropriate

single-step methods. The single-step competitors include the hybrid method, Sidak’s

method, and Scheffe’s method. Since the single-step methods we consider have all

been proven to be conservative and utilize a common standard error, the performance

is only determined by the critical values provided by the different methods. Hence we

evaluate the performance of these confidence intervals in terms of relative efficiency.

The relative efficiency of the minimal restricted Scheffe method to another single-

step method is defined to be the squared ratio of their corresponding critical values.

This ratio approximates the ratio of sample sizes needed by the two methods to have

intervals of equal length. Hence, substracting the relative efficiency from 1 approx-

imately represents the percentage of sample-size savings of the minimal restricted

Scheffe method relative to the other method for achieving equal-length-intervals.

Specifically, our investigation includes the following factor settings for the general

multiple comparison model:

1. V matrix.

V is chosen to be a first-order autoregressive correlation matrix with parameter

φ, i.e. V = [vij] for vij = φ|i−j|, φ = 0, 0.5, 0.9.

2. C matrix. C is chosen to obtain the following sets of comparisons:

(a) All pairwise comparisons of β1, .., βk(MCA), p = k(k−1)
2

.

(b) Multiple comparisons with a control (MCC), p = k − 1.

(c) All of the parameters individually (SMM, the studentized maximum mod-

ulus), p = k.

3. Number of parameters k. We consider k = 4, 10.

4. Error degrees of freedom, ν. We consider ν = 5, 15, 60, 100.
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5. Nominal FWE level, α. We consider α = 0.05, 0.1.

From the simulation results, the percentages of sample-size savings of the minimal

restricted Scheffe method share very similar patterns when α = 0.05 and 0.1. Hence,

we present results only for α = 0.05. In Chapter 2, we discussed the two effects in our

algorithm that influence the minimal restricted Scheffe critical values, the eigenvalue

permutation and the basis change. In simulations, an eigenvalue permutation incurs

almost the same cost in computation as that of one basis change. Empirical results

show that allowing for more than 2 permutation iterations does not necessarily in-

crease the chance of obtaining a smaller critical value than when we only permute

the eigenvalue order twice for a given basis. Hence, we fix the number of permuta-

tions at two and allocate all the remaining computational resources for varying bases.

The minimal restricted Scheffe critical values and computing time in this simulation

study are obtained based on 100 basis variations. To generate each basis, we collect

the first r linearly independent vectors in Cβ and transform them into a randomly

selected basis via multiplying them by a non-singular matrix of which the elements

are independently and identically drawn from the standard normal distribution. Sim-

ilar results were observed when we used uniform distributions. It is noteworthy that

although less conservative minimal restricted Scheffe critical values can be attained

with an additional investment in basis iterations, they do not fundamentally change

the main pattern of performance in the following simulation results.

2.3.1 The minimal restricted Scheffe method and the hybrid method

Figure 1 provides the percentages of sample-size savings of the minimal restricted

Scheffe method in all the considered settings relative to the hybrid method. Note

that all the percentages are below zero, which means that the minimal restricted

Scheffe method is outperformed by the hybrid method. Moreover, a negative saving

percentage tells the percentage of extra sample sizes that the minimal restricted

Scheffe method has to pay for achieving equal-length intervals to the hybrid method.

31



Figure 1: Sample-size saving percentage of the minimal restricted Scheffe method to
the hybrid method.
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In Figure 1, the sample-size saving percentage of the minimal restricted Scheffe

method relative to the hybrid method drops rapidly as the number of parameters,

k, grows. That is to say, the performance of the minimal restricted Scheffe method

relative to the hybrid method becomes poorer with the increase of k. The values of the

correlation parameter, φ, do not seem to make as much difference in the percentage

of sample-size savings in MCA and MCC, as in SMM, where the saving percentage

increases substantially as φ rises. When k is small, the degrees of freedom do not

appear to play a role in the sample-size saving percentage of the minimal restricted
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Scheffe method relative to the hybrid method in any of the three scenarios. However,

when k is large, a slight increasing trend in saving percentages is detected in some

cases of MCC and SMM, as the degrees of freedom grow.

Figure 2: Sample-size saving percentage of the minimal restricted Scheffe method to
Sidak’s method.
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2.3.2 The minimal restricted Scheffe method and Sidak’s method

Figure 2 plots the percentages of sample-size savings of the minimal restricted

Scheffe method in all the considered settings relative to Sidak’s method. Similar to

the results relative to the hybrid method, the sample-size saving percentage of the

minimal restricted Scheffe method relative to Sidak’s method decreases as the number
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of parameters, k, increases. Degrees of freedom contribute to the variation in the

percentages of sample-size savings: lower degrees of freedom lead to a higher saving

percentage relative to Sidak’s method. Particularly, the minimal restricted Scheffe

method can outperform Sidak’s method and reaches up to 10% savings in sample

size relative to Sidak’s method in MCA, when the degrees of freedom are low. With

the same low degrees of freedom, similar patterns of the sample-size savings in the

minimal restricted Scheffe method relative to Sidak’s method are observed for some

SMM and MCC cases, given a small number of parameters and a high correlation

parameter.

Note that in SMM, the percentage of sample-size savings relative to Sidak’s

method improves as the correlation parameter φ increases. This is because, in SMM,

the covariance matrix of Cβ is reduced to V . A high value of φ directly reflects the

strong correlation between the comparisons, and consequently forms a tight cone con-

straint which leads to a small minimal restricted Scheffe critical value, whereas Sidak’s

method makes no use of the correlation information. A similar monotone trend also

exists in MCA and MCC when k is small, but it is not as clear as in SMM, since C,

in addition to V , also plays a role in the correlation values of the comparisons. In

addition, when k is large, the percentage of sample-size savings is almost constant in

MCA, regardless of the correlation values. This is attributed to the increased number

of comparisons in MCA as k rises. As a result, the minimal restricted Scheffe critical

values closely approach Scheffe’s critical values and the variation caused by φ in the

saving percentages relative to Sidak’s method becomes minor.

2.3.3 The minimal restricted Scheffe method and Scheffe’s method

Figure 3 gives the percentages of sample-size savings of the minimal restricted

Scheffe method in all the considered settings relative to Scheffe’s method. All the

saving percentages are positive, as the minimal restricted Scheffe method uniformly

improves on Scheffe’s method for a finite number of comparisons. The effects of the
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Figure 3: Sample-size saving percentage of the minimal restricted Scheffe method to
Scheffe’s method.
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numbers of parameters and the correlation parameter on the sample-size saving per-

centages of the minimal restricted Scheffe method relative to Scheffe’s method share

a similar pattern with those relative to Sidak’s method. The highest saving percent-

age is achieved in SMM when the correlation parameter φ = 0.9. This results from

the effect of extreme correlations between comparisons. In general, the percentage

of sample-size savings relative to Scheffe’s method decreases as the number of com-

parisons increases. Hence, in MCC, the sample-size saving percentages are relatively

high. With regards to degrees of freedom, the percentages of sample-size savings in
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MCA appear insensitive to the change in degrees of freedom, whereas in MCC and

SMM, the saving percentages show a slightly decreasing trend with the increase in

degrees of freedom.

2.3.4 Computing time

Figures 4 and 5 plot the execution time (in seconds) of computing the minimal

restricted Scheffe critical values and the hybrid critical values in MATLAB R2012b.

The computing time for the minimal restricted Scheffe method is obtained based on

100 basis variations. In Figures 4 and 5, the computing time of both the minimal

restricted Scheffe critical values and the hybrid critical values increases as the number

of parameters, k, increases. In fact, the computing time of the minimal restricted

Scheffe critical values is associated with r, as the minimal cone approach examines

(r−1) locally minimal cones to pick the optimal one; The computing time of the hybrid

critical values is associated with the number of comparisons, as the Hunter-Worsley

method, which takes most of the computing time in the hybrid method, makes use

of pairwise correlations between comparisons. The computing time for the minimal

restricted Scheffe method and the hybrid method is comparable in MCA, when k = 4.

However, the minimal restricted Scheffe method is much more computationally costly

than the hybrid method in other cases. The computing time of Sidak’s critical values

and Scheffe’s critical values are not presented, as it is in the magnitude of 10−4

seconds, almost negligible relative to the minimal restricted Scheffe method and the

hybrid method. To compute the minimal restricted Scheffe critical values, we choose

100 basis variations, because empirically the effect of basis change is significant when

the number of basis variations is below 100 and becomes subtle as the number of

basis change goes beyond 100. In practice, researchers can adjust the number of basis

iterations in the minimal restricted Scheffe method depending on the computational

resources.
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Figure 4: Computing time for the minimal restricted Scheffe method.
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Figure 5: Computing time for the hybrid method.
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3 Forced Sequential Methods

3.1 Sequentially Rejective Framework

In simultaneous testing, stepwise methods are often employed to obtain more

power than single-step methods when simultaneous confidence intervals are not of

interest. Particularly, single-step methods can be adapted into stepdown methods

which are methods that sequentially reject the most significant hypotheses. Romano

and Wolf (2005) constructed a general stepdown procedure from single-step methods

with both exact and random critical values. We restrict our focus to exact critical

values. Suppose there is only one common critical value for all the hypotheses in

the single-step methods and, without loss of generality, that a large test statistic

indicates evidence against the null hypothesis. Stepdown procedures begin by testing

the joint null hypotheses that all hypotheses are true. If the maximum test statistic is

a large value, reject its corresponding hypothesis; otherwise, stop. After a hypothesis

is rejected, treat the remaining hypotheses as a new family by rejecting for large

values of the maximum of the remaining test statistics, and so on. At each step, the

critical value that the largest test statistic is compared with comes from the single-step

test on the intersection of the hypothesis that remain. This procedure was further

generalized in the paper by Romano and Wolf (2010) by relaxing the assumption

of having identical critical values for all hypotheses. In order to conform to the

monotonicity condition on the critical values, Romano and Wolf (2005) adjusted the

critical value to be the maximum of the critical values from single-step tests on any

set that is a subset of the current remaining hypotheses. Goeman and Solari (2010)

generalized the work of Romano and Wolf (2005, 2010) to logically related hypotheses

and showed that their proposed sequentially rejective framework is a more versatile

approach to multiple comparisons. The sequentially rejective framework was shown

to encompass the stepdown framework of Romano and Wolf (2005) as a special case,
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as well as a wide range of other stepwise methods. More importantly, Goeman and

Solari (2010) gave sequential rejection conditions on which the sequentially rejective

framework strongly controls FWE.

3.1.1 Sequential Rejection Conditions

Goeman and Solari (2010) supposed that a statistical model is structured on a

parameter space Ω. Each ω ∈ Ω is a parameter configuration that fully determines

a probability measure Pω on a common outcome space S. Let H be a collection of

all null hypotheses. Under a probability measure Pω, define T (ω) and F(ω) as the

collection of all true null hypotheses and the collection of all false null hypotheses,

respectively. For each H ∈ H, suppose M(H) is a subset of Ω such that M(H) = {ω ∈

Ω | H ∈ T (ω)}. Then given T (ω) ⊇ I, where I is a subset of H, ω ∈
⋂
H∈IM(H).

For illustration, suppose under treatment i, a random sample Yi1, Yi2, . . . , Yin is

taken from a normal distribution N(µi, σ
2), i = 1, 2, 3. In this statistical model, the

parameter space Ω of (µ1, µ2, µ3, σ) is set to be R3 × R+. Hence, ω = (0, 3, 3, 1) ∈ Ω

is a specific parameter configuration and defines a probability measure Pω. As-

sume all pairwise comparisons among the treatment means are of interest, i.e.,

H = {H1, H2, H3} and

H1 : µ1 = µ2; H2 : µ2 = µ3; H3 : µ1 = µ3.

Then given ω = (0, 3, 3, 1), it follows that T (ω) = {H2}, F(ω) = {H1, H3} and

ω ∈M(H2) = {(µ1, µ2, µ3, σ) ∈ Ω | µ2 = µ3} ⊂ Ω.

In general, assume that TH : H → R is a test statistic function for each null

hypothesis H ∈ H and, without loss of generality, that large values of TH are evidence

against H. To formulate the sequentially rejective framework, define a critical value

function d = {dH}H∈H where each dH maps from the power set 2H of all subsets of
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H to R ∪ {−∞,∞}. Given the rejection set R from previous steps, the set

{H ∈ H \ R : TH > dH(R)}.

indicates the null hypotheses that would be rejected in the next step.

The sequentially rejective framework in the paper by Goeman and Solari (2010)

is executed in the following fashion. Let Ri denote the collection of null hypotheses

rejected after step i, i = 0, 1, ... Start with

R0 = ∅.

Iteratively,

Ri+1 = Ri ∪ {H ∈ H \ Ri : TH > dH(Ri)},

where R∞ = limi→∞Ri is the final set of all rejected null hypotheses. In a nutshell,

a sequentially rejective framework subsequently chooses hypotheses to reject on the

basis of the previously rejected set. Equivalently, critical values are adjusted after

each step, based on the newly rejected hypotheses. Now we quote the theorem proven

by Goeman and Solari (2010) which shows that under two conditions the sequentially

rejective framework controls FWE in the strong sense.

Lemma 1. (Sequential rejection conditions).

Suppose that for every R ⊆ S ⊆ H and every H ∈ H \ S,

dH(R) > dH(S) (3.22)

and that for every ω ∈ Ω,

Pω(
⋃

H∈T (ω)

{TH > dH(F(ω))}) 6 α. (3.23)
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Then, for every ω ∈ Ω,

Pω(R∞ ⊆ F(ω)) > 1− α.

Condition (3.23), the single-step condition, requires a weak form of FWE control

in the case where exactly all the false hypotheses and none of the true hypotheses have

been rejected. Condition (3.22), the monotonicity condition, ensures that if no false

rejection occurs in the weak control case, there must be no false rejections in the cases

with fewer hypotheses rejected previously than the weak control case. Consequently

Conditions (3.22) and (3.23) are sufficient to guarantee the strong FWE control of

the sequentially rejective framework.

Note that condition (3.22) immediately implies that ∀H ∈ H \ Ri,

dH(Ri) > dH(Ri+1). (3.24)

That is, the sequential rejection conditions guarantee nonincreasing critical values at

each step. However, it is important to be aware that condition (3.24), in place of

condition (3.22), does not suffice to control FWE in the strong sense.

3.2 Forced Sequential Methods

3.2.1 Forced Sequentially Rejective Method

The sequential rejection conditions provide a way to verify the strong FWE con-

trol, when developing a step-down procedure based on a single-step procedure. Of

the two sequential rejection conditions, the single-step condition is immediately jus-

tified by the strong FWE control property of the single-step tests that the stepdown

methods are developed from. However, these single-step tests do not clearly exhibit

the monotonicity condition. In fact, for most of the single-step tests that we have

considered, it is rather difficult to give a rigorous proof of monotonicity. That leads

us to speculate on forcing the monotonicity condition in stepdown methods. It turns
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out that under a certain assumption, if we modify the critical values in stepdown

methods by taking them to be the minimum of the critical values from single-step

tests on any set of which the current set of hypotheses can be a subset, the mono-

tonicity condition can be fulfilled, as well as the single-step condition. We refer to the

sequentially rejective framework based on those modified critical values as the forced

sequentially rejective method.

Recall the two sequential rejection conditions include the single-step condition and

the monotonicity condition. We are going to show that if single-step tests have FWE

control in the weak sense, under some assumptions, we can reassign critical values to

satisfy the monotonicity condition, while still preserving the single-step condition.

First, let us introduce two assumptions.

Assumption 1. (Subset pivotality condition)

For any subset I ⊂ H, ω̃(I) is the least favorable parameter configuration in terms

of FWE, among all ω ∈
⋂
H∈IM(H) if

sup
ω∈

⋂
H∈IM(H)

Pω(
⋃
H∈I

{TH > d}) = Pω̃(I)(
⋃
H∈I

{TH > d}),

for any real value d. Pω̃(I) is thus called the least favorable measure for I.

Given that ω̃(I) exists for any I ⊆ H, the subset pivotality condition requires

that there is an ω∗ ∈
⋂
H∈HM(H) such that for any I ⊆ H, the joint distribution of

{TH , H ∈ I} under Pω̃(I) is the same as that under Pω∗.

This means that, under the subset pivotality condition, an ultimate least favorable

measure exists and dominates all the least favorable measures.

Assumption 2. If dH(R) is a critical value of the single-step method applied to

H\R, then 1) dH(R) is identical for any H ∈ (H\R) and 2) ∀ω ∈
⋂
H∈H\RM(H),

Pω(
⋃
H∈H\R{TH > dH(R)}) 6 α. (That is to say, in a single-step method, individual

test statistics are compared with a common critical value and the single-step method

has FWE control in the weak sense.)

42



Moreover, for any R ⊆ H, since dH(R) gives the same critical value for all hy-

potheses H ∈ (H \ R) after the hypotheses in R have been rejected, let d(R) be

shorthand for dH(R).

Now under these two assumptions, we define the forced sequentially rejective

method (FSR) to be a sequentially rejective framework based on the modified critical

value function collection d∗FSR(.) such that ∀R ⊆ H,

d∗FSR(R) = min{d(U),∀U ⊆ R ⊆ H}. (3.25)

It is noteworthy that from the definition, FSR is applicable to any single-step method

that satisfies Assumption 2.

Theorem 1. Under the above two assumptions, the sequential rejection conditions

hold for the forced sequentially rejective method.

Proof. It suffices to verify the monotonicity condition and the single-step condition of

the forced sequentially rejective method. First, the monotonicity condition is trivial,

since it is easy to see ∀R ⊆ S ⊆ H,

d∗FSR(S) = min{d(U), ∀U ⊆ S ⊆ H} 6 d∗FSR(R), by R ⊆ S.

For any ω0 ∈ Ω, let T (ω0) and F(ω0) be the collections of true null hypotheses and

false null hypotheses, respectively. By the definition of d∗FSR(.) in (3.25), there exists

an R0 ⊆ F(ω0) such that d∗FSR(F(ω0)) = d(R0). Then,

Pω0(
⋃

H∈T (ω0)

{TH > d∗FSR(F(ω0))})

6 sup
ω∈

⋂
H∈T (ω0)

M(H)

Pω(
⋃

H∈T (ω0)

{TH > d∗FSR(F(ω0))})

= Pω̃(T (ω0))(
⋃

H∈T (ω0)

{TH > d(R0)})
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= Pω∗(
⋃

H∈T (ω0)

{TH > d(R0)}), for some ω∗ from the subset pivotality condition,

6 Pω∗(
⋃

H∈H\R0

{TH > d(R0)}), since T (ω0) = H \ F(ω0) ⊆ H \R0,

6 α, by the weak FWE control of the single-step method that is applied to H \R.

Since ω0 is arbitrarily chosen from Ω, the single-step condition holds for d∗FSR(.).

Therefore, Lemma 1 and Theorem 1 guarantee that under Assumptions 1 and 2,

FSR controls the FWE in the strong sense.

For ease in obtaining the critical values of FSR in (3.25), we represent d∗FSR(.) in

the following stepwise manner,

d∗FSR(Rn) =min{d∗FSR(Rn−1), d(U) : ∀U ∈ (2Rn \ 2Rn−1)},

and d∗FSR(∅) := d(∅). (3.26)

where Rn is the set of hypotheses rejected before step n and 2Rn is a power set of all

the subsets of Rn.

Expression(3.26) makes use of the critical value in the previous step d∗(Rn−1),

avoiding the redundant comparisons that expression(3.25) may indicate, and hence

it gives an algorithm for finding new critical values at each step.

Following the critical values in(3.26), it is easy to determine how many evaluations

of d(R) are required to obtain {d∗FSR(Rn)}∞n=0. If we count the computing time of

d(R) as 1 unit, for any R ⊆ H, then the total computation time for the critical values

of FSR is 2[R∞], where [.] is the count of components in a set and R∞ is the set of all

rejected hypotheses when FSR terminates.
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3.2.2 Equivalence of the forced stepdown method and FSR

Now given common critical values for all the hypotheses at each given step, con-

sider two possible rejection procedures that specify the ways sequential rejections are

implemented.

P1 : At each step with n null hypotheses, if there are totally r(r > 0) significant

signals, reject all the r signals and move on to next step with the remaining

(n− r) hypotheses. Otherwise, the procedure ends.

P2 : At each step with n null hypotheses, if there is any significant signal, only

reject the signal with the largest test statistic and move on to next step with

the remaining (n− 1) hypotheses. Otherwise, the procedure ends.

Notice that the forced sequentially rejective method defined in the previous section

follows P1. Now we define an analogous method that shares the same critical value

function with FSR but follows P2 and refer to this method as the forced stepdown

method (FSD). Then by the following theorem, we can show that FSD is equivalent

to FSR.

Theorem 2. Suppose a critical value function satisfies the monotonicity condition

and Assumption 2. Let R1
∞,R2

∞ be the eventual rejection sets from the two rejection

procedures P1 and P2, based on the same critical value function. Then R1
∞ = R2

∞.

Proof. Suppose R1
∞ 6= R2

∞. Then at least one of the following two assertions is true,

R1
∞ \ R2

∞ 6= ∅ or R2
∞ \ R1

∞ 6= ∅.

Without loss of generality, assume R2
∞ \ R1

∞ 6= ∅. That is, R2
∞ % R1

∞ ∩ R2
∞.

Then, of all the sequential steps of procedure 2, there is a step n such that

R2
n ⊆ (R1

∞ ∩R2
∞) ( R2

n+1, (3.27)

where Ri
n is the collection of the null hypotheses rejected after step n in manner i,

i = 1, 2.
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Take any r ∈ R2
n+1 \ (R1

∞ ∩R2
∞). Then r /∈ R2

n and r ∈ R2
n+1. It follows that,

Tr > d(R2
n),

where Tr is the test statistic of hypothesis r and d(R2
n) is the critical value for all the

remaining hypotheses after R2
n has been rejected.

Since r ∈ R2
n+1 \ (R1

∞ ∩R2
∞), r ∈ R2

n+1 ⊂ R2
∞ and thus r /∈ R1

∞.

On the other hand, (3.27) implies that

R2
n ⊆ (R1

∞ ∩R2
∞) ⊆ R1

∞.

As a result of the monotonicity condition,

d(R1
∞) 6 d(R2

n) < Tr.

This contradicts the fact that r /∈ R1
∞. Hence, the supposition is false andR2

∞\R1
∞ =

∅.

It follows that R1
∞ = R2

∞.

From the monotonicity condition of d∗FSR(.), Theorem 2 implies that FSD is equiv-

alent to FSR, as they terminate with the same final set of rejections. Moreover, it

is verified in Theorem 1 that under Assumptions 1 and 2, the forced sequentially

rejective method satisfies the sequential rejection conditions and hence it provides

strong control of the FWE. Consequently, with the same assumptions FSD controls

the FWE in the strong sense. In fact, the strong control of FWE in FSD can be

alternatively proven from a theorem due to Romano and Wolf (2005). In this paper

they used the theorem to derive a modified stepdown method which will be discussed

in section 3.2.4.
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Analogous to (3.26), we represent the critical value function d∗FSD(.) for FSD uti-

lizing the rejection procedure P2, as

d∗FSD(Rn) = min{d∗FSD(Rn−1), d(U ∪ (Rn \ Rn−1)) : ∀U ∈ 2Rn−1}

and d∗FSD(∅) := d(∅). (3.28)

Note that (3.28) can be considered as a special case of (3.26) when Rn \ Rn−1 only

includes one hypothesis. Thus, obtaining all the critical values of FSD requires 2[R∞]

evaluations of d(R). This coincides with the total computation time of FSR, as they

have the identical final set of rejections.

With regards to choosing between FSR and FSD, we let the practitioners deter-

mine which rejection method they prefer. However, given that FSR is equivalent to

FSD in all concerning aspects, henceforth we refer to both methods as the forced

stepdown method (FSD) and use d∗(.) to refer to either d∗FSR(.) or d∗FSD(.).

3.2.3 Forced Pathwise Methods

From section 3.2.2, the computation time for the critical values in the forced step-

down method grows exponentially with the total number of rejections. In order to

reduce the computational complexity of FSD, in this section we propose two alter-

native procedures that both force critical values to be monotone along the series of

rejections in each realization path. Based on the adoption of two different rejection

procedures, we refer to them as the forced pathwise sequentially rejective method

(FPSR) and the forced pathwise stepdown method (FPSD), respectively. Concisely,

the forced pathwise sequentially rejective method rejects all the significant signals

at each step, whereas the forced pathwise stepdown method only rejects the most

significant signal at each step.

In general, given a sequence of rejection sets (R0,R1, . . . ,Rn−1,Rn) in the current

realization path, the critical value for the remaining hypotheses in the two forced
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pathwise methods can be represented uniformly by

d̃(Rn) = min{d(Rm), 0 6 m 6 n},

d̃(∅) = d(∅). (3.29)

As a result of the uniform expression (3.29) of the critical values, from now on, we

use the term “the forced pathwise methods” to refer to both FPSR and FPSD. For

example, with the computing time of d(R) as unit 1, ∀R ⊆ H, the total computational

time for the critical values of the forced pathwise methods is the count of components

in the final sequence of rejection sets {R0,R1, . . . ,Rn, . . . ,R∞}.

For any sequence of rejection sets (R0,R1, . . . ,Rn−1,Rn),

d̃(Rn) = min{d(Rm), 0 6 m 6 n} > d∗(Rn),

where d∗(Rn) is the critical value of FSD defined in 3.25. That is, the critical val-

ues of the forced pathwise methods are never less than those of FSD. Thus under

Assumptions 1 and 2, the forced pathwise methods have strong control of the FWE.

Note that the two forced pathwise methods have been shown to share most char-

acteristics. However, they do differ in the pathwise context and consequently the

two forced pathwise methods could have different critical value sequences. In fact,

from (3.29), we can see that given a complete rejection path for FPSR, at each step

the critical values of FPSR are uniformly greater than or equal to those of FPSD,

because the former are the minimums from the previous steps in the path whereas

the latter take the minimums from not only the previous steps but also the individual

connection stairs that FPSD takes between the steps. Consequently, FPSD could end

up with more rejections than FPSR and hence is potentially more powerful. On the

other hand, the loss of power in FPSR is the cost for a smaller computational time

than FPSD when more than one hypothesis is rejected at any step.
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Now consider a special case. If the critical values of single-step methods satisfy

the monotonicity condition, the forced sequentially rejective method and the forced

stepdown method reduce to their forced pathwise counterparts, respectively. In this

case, the critical value functions in the forced pathwise methods come straight from

the single-step method and hence are the same for FPSR and FPSD. By Theorem 2,

the forced pathwise methods have the common final set of rejections. Therefore, in

this scenario FSD, FPSD and FPSR all lead to the same rejections. In view of com-

putational complexity, however, FPSR could save considerable computational time

in comparison to FSD and FPSD. In practice, given a single-step method satisfy-

ing Assumption 2, often times the simulation results indicate that the monotonicity

condition applies to the critical value function, even though the analytic proof is in-

tractable. In this situation, FPSR may be a preferable choice over FSD and FPSD, in

the sense that it potentially saves sufficient computational time without necessarily

sacrificing much power or even any.

3.2.4 Comparison of Sequential Methods

Note that if Assumption 2, the subset pivotality condition, holds, our proposed

forced stepdown method is guaranteed to control the FWE in the strong sense when

applied to any single-step method that satisfies Assumption 2. Alternatively, Romano

and Wolf (2005) constructed a modified stepdown method (RWSD) that has strong

control of the FWE under Assumption 2 and does not require Assumption 1. To

acquire monotonicity, they adjusted the critical value function as follows,

d∗∗(Rn) = max{d(U) : ∀U ⊇ Rn}.

Notice that d∗∗(Rn) is always greater than or equal to d(Rn) defined in 3.25. This

conservativeness is the cost for eliminating the subset pivotality assumption which

Romano and Wolf (2005) felt was too restrictive. However, Westfall and Troendle
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(2008) stated ”the subset pivotality condition is easily satisfied in many cases, includ-

ing the general multivariate regression model with location-shift multivariate (possibly

nonnormal) distributions”. Certainly, the general multiple comparisons model that

we considered in Chapter 2 is one of these cases. Then under the subset pivotality

condition,

d∗∗(Rn) > d(Rn) > d̃(Rn) > d∗(Rn),

and this implies that the Romano and Wolf (2005) modified stepdown method some-

times leads to less rejections than the forced pathwise stepdown method and hence

is potentially less powerful than all of our three proposed forced methods.

Now consider the computational time of RWSD. At the initial step

d∗∗(∅) = max{d(U) : ∀U ⊆ H},

which is the maximum critical value taken over all the possible rejection sets and

hence needs (2[H] − 1) evaluations of d(R). After the computation of d∗∗(∅), the

critical values in the follow-up step are determined completely based on the already

evaluated d(R) and do not require any more computations. Therefore, the total

computing time of RWSD is fixed at (2[H] − 1). Notice this is greater than 2[R∞], the

total computing time of FSD, the most time-consuming one of the three proposed

forced methods. Only when all the null hypotheses are rejected, FSD uses the same

computing time as RWSD, since no further critical values are calculated. Therefore,

the Romano and Wolf (2005) modified stepdown method is computationally more

intense than all of the proposed forced methods.

Now we provide an illustration of the construction of the critical values for the

three proposed forced methods and the Romano and Wolf (2005) modified stepdown

method via Figures 6 and 7. SupposeH = {H1, H2, H3, H4}. Given anyR ⊂ H, d(R)

is the critical value of a single-step method applied to all the remaining hypotheses in

H\R. Figure 6 shows a full diagram of possible sequential rejection paths, where each
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node represents the current collection of rejections. All rejection paths start with no

rejections. A rejection path can cover each level of the diagram or skip over multiple

levels to reach a lower level. Every time a path moves to a next level, a new hypothesis

is rejected. The termination of a rejection path can happen at any level. Without

loss of generality, assume TH1 > TH2 > TH3 > TH4 . Supposing that H1 and H2 have

already been rejected, Figure 7 provides the remaining possibilities of a full rejection

path and illustrates how the critical values for the various methods are determined

for the remaining hypotheses {H3, H4}. Let {a1, a2, . . . , ak} be a shorthand for the

set {Ha1 , Ha2 , . . . , Hak}. Now, given the rejection set {1, 2}, the critical values of the

four sequential procedures are demonstrated as follows,

I) FSD critical value

d∗({1, 2}) = min[d(∅), d({1}), d({2}), d({1, 2})] = min[d∗({1}), d({2}), d({1, 2})].

II) RWSD critical value

d∗∗({1, 2}) = max[d({1, 2}), d({1, 2, 3}), d({1, 2, 4})].

III) FPSD critical value

Suppose the current rejection sequence is ∅ → {1} → {1, 2},

d̃({1, 2}) = min[d(∅), d({1}), d({1, 2})] = min[d̃({1, 2}, d({1, 2})].

IV) FPSR critical value

Suppose the current rejection sequence is ∅ → {1, 2},

d̃({1, 2}) = min[d(∅), d({1, 2})].
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Figure 6: Full sequential rejection set diagram

i Each node represents the current rejection collection.

ii Arrows from node to node indicate directions of rejection paths.
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Figure 7: Partial sequential rejection set diagram

i Node of {1, 2} is the occurring rejection collection considered.

ii Arrows from node to node indicate directions of rejection paths.

Finally, in Table 2, we summarize the relationship between three proposed forced

methods and the Romano and Wolf (2005) modified stepdown method in terms of

FWE, power and computing time. The results in Table 2 are subject to Assumptions

1 and 2.

Table 2: Comparisons of the sequential methods

Criterion FSD FPSD FPSR RWSD

Strong FWE control 3 3 3 3

Power1 1 2 3 4

Computational consumption 2 3 4 1

1 Ordinal numbers indicate descending strength of the criteria.
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Now we consider applying our proposed forced procedures in the context of the

general multiple comparisons model. Specifically, we modify the hybrid method to

obtain all three proposed forced methods FSD, FPSD and FPSR. These three forced

sequential methods control the FWE in the strong sense and are potentially more

powerful than their single-step counterpart. In addition, with the subset pivotality

condition, all the three forced sequential methods potentially outperform the cor-

responding modified stepdown methods suggested by Romano and Wolf (2005), in

terms of both power and computing time. The performance of these above-mentioned

sequential methods will be investigated in detail in the following simulation study.

3.3 Simulation: Multiple testing with sequential methods

This section presents a simulation study that explores the performance of these

sequential methods in multiple tesing. We utilized the critical values of the hybrid

method to obtain the three proposed forced procedures FSD, FPSD, FPSR and the

Romano and Wolf (2005) modified stepdown procedure. We chose the hybrid method

because it outperforms the other single-step methods most of the time in the first

simulation study. We compared the performance of these sequential methods with

the stepdown Bonferroni method, also known as Holm’s procedure, and the stepdown

Sidak method in the context of SMM.

There have been some simulation-based methods that provide good approxima-

tions for exact multivariate-t quantiles, such as the algorithm by Genz and Bretz

(2009) based on Quasi-Monte Carlo methods. Since these simulation-based methods

are nearly exact, they outperform all the conservative methods that we have dis-

cussed. However, we do not consider modifying these simulation-based methods to

obtain stepdown methods, because these estimated critical values, based on simulated

data, are not always guaranteed to control the FWE.

Following the general multiple comparisons model, we generate a vector estimate

β̂ from a multivariate normal distribution with mean vector β = (β1, ...,βk) and
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covariance matrix σ2V . An estimate s2 of σ2 is generated from σ2χ2
ν

ν
, independently

from β̂, where ν is the degrees of freedom.

Each null hypothesis is Hj : βj = 0, and each alternative hypothesis is two-sided.

The performance criteria are empirical FWE, any-pair power, all-pairs power, the

average proportion of true positives, and computational time, where any-pair power

is referred to as the probability of rejecting at least one of the false hypotheses, and

all-pairs power is referred to as the probability of rejecting all false hypotheses, see

Ramsey (1978). The specific levels of additional factors concerning both the null and

alternative hypotheses are given below.

1. β values. The chosen levels are

(a) β = 0.

(b) Half of the βj’s are equal to 0 and half of the βj’s are equal to 1.5.

(c) Half of the βj’s are equal to 0 and half of the βj’s are equal to 3.

(d) Half of the βj’s are equal to 1.5 and half of the βj’s are equal to −1.5.

(e) Half of the βj’s are equal to 3 and half of the βj’s are equal to −3.

(f) All of the βj’s are equal to 1.5.

(g) All of the βj’s are equal to 3.

2. V matrix.

(a) Choose V to be a first-order autoregressive correlation matrix with pa-

rameter φ, i.e. V = [vij] for vij = φ|i−j|, φ = 0, 0.5, 0.9.

(b) Let V = [vij] for vij = φI{i 6=j}, where I{.} is an indicator function. φ =

0, 0.5, 0.9.

(c) Generate a random V from a Wishart distribution Wk(Σ, df), where Σ is

a first-order autoregressive correlation matrix with φ = 0.3, 0.8 and df , the

degrees of freedom, is chosen to be 5 and 60.
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3. C matrix. We consider SMM, i.e. C = I.

4. The variance σ2 = 1.

5. Number of parameters, k. We consider k = 4, 10.

6. Error degrees of freedom, ν. We consider ν = 30, 100.

7. Nominal FWE level, α. We consider α = 0.05, 0.1.

Figures 8-13 show the results of the empirical FWE and power of several methods

in the four scenarios for the mean vector β. All the results are based on 10, 000

repetitions. Of all the stepdown procedures developed from the hybrid method, we

include only the FPSR, as the FPSR uses the least computing time and the other

three stepdown procedures always have the same rejections as the FPSR. The identical

rejections from all these stepdown procedures are attributed to the monotonicity of

the hybrid critical values which was empirically observed, but not theoretically proven.

In order to show the power improvement of the stepdown procedure, we also compare

the single-step hybrid method with its stepdown version. The results in Figures 8-13

are presented for α = 0.05. We did not proceed with the comprehensive results for

α = 0.1, as the preliminary results exhibited similar patterns to those when α = 0.05.

These preliminary results for α = 0.1 are provided in Appendix B.

Figures 8-10 provide the simulated FWE from the three structures of V matrix,

for the case with all or half of the hypotheses being true. Particularly, the FWEs

in Figure 10 are the averages of the empirical FWEs obtained with five different

randomly generated V matrices from the Wishart distributions. So, the standard

error is
√

.05×0.95
10,000

≈ 0.002, for the simulated FWEs in Figure 8 and Figure 9, and

.0002√
5
≈ 0.0009, for the obtained FWEs in Figure 10. We can see that the results in

Figures 8-10 demonstrate the control of the FWE in all four considered methods, as

all the FWEs are either below α or within 2 standard errors of α. Specifically, when

φ = 0, in the least favorable case with all the null hypotheses being true, the simulated
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Figure 8: Empirical FWEs for hybrid FPSR, Holm’s procedure, stepdown Sidak and
single-step hybrid methods when V = AR1(φ)
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Figure 9: Empirical FWEs for hybrid FPSR, Holm’s procedure, stepdown Sidak and
single-step hybrid methods when V = [vij], for vij = φI{i 6=j}.
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Figure 10: Empirical FWEs for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods when V matrices are randomly generated from the

Wishart distributions.
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FWEs are similar for the stepdown Sidak, hybrid FPSR and Holm’s methods. For

large values of φ, the simulated FWE for the hybrid FPSR remains controlled at

α and is much closer to the nominal level than those of the stepdown Sidak and

Holm’s methods. Note that the single-step hybrid method has identical FWEs with

the hybrid FPSR, when all the null hypotheses are true. That is because, any (false)

rejections occur in the hybrid FPSR if and only if some hypotheses are rejected in

the first step by the single-step hybrid method. From Figures 8-10, we see that the

comparative patterns of the empirical FWEs in the four methods are consistent across

all three structures of the V matrix. Analogously, the following simulation results

of the power performance apply to all the three structures of V matrix. Therefore,

we chose to only present the results when V has the compound symmetry structure,

and the results with other two structures of V matrix can be found in Appendix A.

Figures 11-13 present the three measurements of powers for the four compared

methods, under three different configurations of false hypotheses. In these figures,

although the three power measurements show different behaviors as the correlation

changes, as far as the four considered methods are concerned, the powers of any-

pair and all-pairs basically have consistent patterns with the average power. The

only inconsistency occurs in the comparison between the hybrid method, and the

stepdown Sidak or Holm’s methods. Often times, while the average power of the

hybrid method is lower than those of the stepdown Sidak or Holm’s methods, the

any-pair power exhibits the converse relation. This may be due to the circumstances

where some hypotheses are rejected by the hybrid method whereas meanwhile no

rejections occur in the stepdown Sidak or Holm’s methods, because the hybrid method

is usually more powerful than the Sidak and Bonferroni methods. Sometimes, for a

large value of φ, if the average power of the hybrid method is higher than those of

the stepdown Sidak or Holm’s methods, the all-pair power may show a reverse trend.

This is probably because in the cases of “any-pair” rejections by the stepdown Sidak
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Figure 11: Any-pair power, average proportion of true positives, and all-pair power
for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with half βj’s equal to 3 and half βj’s equal to 0, when V = AR1(φ).
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Figure 12: Any-pair power, average proportion of true positives, and all-pair power
for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with half βj’s equal to 3 and half βj’s equal to −3, when V = AR1(φ).
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Figure 13: Any-pair power, average proportion of true positives, and all-pair power
for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 3, when V = AR1(φ).
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or Holm’s methods, the stepdown nature make them more likely to reject all false

hypotheses than the single-step hybrid method.

From Figures 11-13, we can see that the hybrid FPSR is usually the most powerful

method of the four, no matter which power measurement is concerned. Only when

the correlation is extremely low and the degrees of freedom is large, is the hybrid

FPSR outperformed by the stepdown Sidak method. The reason for this exception is

that in those cases, the test statistics
c′j β̂

sc′jV cj
are almost independent. Hence, Sidak’s

method is virtually exact and apparently less conservative than the hybrid method.

The performance of the stepdown procedures is closely related to that of their single-

step counterparts. Since for very low correlation and large degrees of freedom, Sidak’s

method is less conservative than the hybrid method, in the same cases the stepdown

Sidak method outperforms the hybrid FPSR. Likewise, when the correlation is high,

as the hybrid method provides a substantial gain in power over the Bonferroni method

and Sidak method, the power advantage of the hybrid FPSR relative to Holm’s pro-

cedure and the stepdown Sidak method is significant. In Figures 11-13, we did not

include the results for the case of βj = 1.5 in the false hypotheses but included them

in Appendix B, as they show very similar patterns to the results with βj = 3.

With regards to computation, although the hybrid FPSR requires much more

computing time than Holm’s procedure and the stepdown Sidak method, in practice

it is computationally feasible. For example, in Matlab R2012b, one repetition with

the hybrid FWER takes about 3 seconds if k = 4, and 10 seconds if k = 10.

From the simulation results in Chapter 2, we know that the minimal restricted

Scheffe method is outperformed by the hybrid method in all the considered scenarios.

Hence, when the minimal restricted Scheffe method is used to develop sequential

methods, these sequential methods are less powerful than the corresponding methods

utilizing the hybrid method. Here, to show the power difference of the sequential

methods developed from these two single-step methods, in Table 3 we present the

results of average power in the scenario where k = 4, ν = 100 and V = AR1(0.9).
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This is also the scenario where we obtained the highest relative efficiency of the

minimal restricted Scheffe method to the hybrid method.

In the simulation, we utilize the unique minimal restricted Scheffe critical values

at given steps when modifying them to obtain the critical values for each of the four

sequential methods. This means that, with a given set of hypotheses, the minimal

restricted Scheffe critical value is obtained subject to the same sets of eigenvalue

permutations and basis variations, when being modified to develop each of the four

sequential methods. Hence, the comparisons of the four resulting sequential meth-

ods exibit the patterns illustrated in Table 2. Additionally, our simulation results

show that the critical values of the minimal restricted Scheffe method agree with the

monotonicity condition almost all the time and hence the forced sequential methods

almost always have the same rejections. With a random choice of eigenvalue permu-

tation and basis variation, very rarely an extremely small critical value does occur

that breaches monotonicity. In that case, however, the differences in power within

the four sequential methods based on the minimal restricted Scheffe method are al-

most negligible, compared with the power differences of the sequential methods using

the hybrid method and the minimal restricted Scheffe method. Therefore, we choose

to compare the least time-consuming FPSR utilizing the minimal restricted Scheffe

method with the hybrid FPSR in Table 3. Note that the FPSR based on the mini-

mal restricted Scheffe method controls the FWE more conservatively than the hybrid

FPSR, and consequently exhibit lower power in all the considered configurations of

the false hypotheses.
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Table 3: Empirical FWEs and average proportion of true positives for hybrid FPSR
(hFPSR) and minimal restricted Scheffe FPSR (mFPSR) when k = 4, ν = 100 and

V = AR1(0.9) .

FWE
(hFPSR)

FWE
(mFPSR)

Average Power
(hFPSR)

Average Power
(mFPSR)

all βj = 0

0.047 0.028 - -
half of the βj = 1.5

0.038 0.032 0.207 0.161
half of the βj = ±1.5

- - 0.215 0.169
all βj = 1.5

- - 0.240 0.204
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4 Summary

Researchers often conduct large experiments designed to answer multiple related

questions. A separate inferences approach to these questions can cause many false

positives and lead to erroneous conclusions that may have negative consequences.

Multiple comparison procedures are intended to take into account and properly con-

trol for multiplicity through some joint measure of erroneous inference. The family-

wise error rate (FWE) is the probability of making at least one false positive among

all the hypotheses. Research conclusions are often made based on the entirety of

results from the comparisons. When the requirement of the simultaneous correctness

of all inferences must be satisfied, FWE is the appropriate choice for error control.

In this dissertation, we are concerned with FWE control. There are different types

of multiple comparison methods to control the FWE. Single-step methods make an

equivalent multiplicity adjustment for all the comparisons and are primarily used to

construct simultaneous confidence intervals. Hence, for single-step methods, we pro-

pose a minimal cone approach, which is applied to the restricted Scheffe method, for

constructing simultaneous confidence intervals for a finite number of comparisons.

Our simulation results indicate that, among the single-step competitors, the hy-

brid method outperforms the minimal restricted Scheffe method in all the considered

scenarios; The minimal restricted Scheffe method is, however, less conservative than

Sidak’s method for some cases when the degrees of freedom are low. For a finite

number of comparisons, the minimal restricted Scheffe method always outperforms

Scheffe’s method and the improvement over Scheffe’s method is considerable, if the

correlations between comparisons are high or the number of comparisons is small.

The minimal restricted Scheffe method is usually more computationally costly than
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the other considered methods. However, in practice, researchers can adjust the num-

ber of basis iterations in the minimal restricted Scheffe method depending on the

computational resources.

Stepwise methods are another type of multiple comparison methods in which the

current step result depends on the test results of previous steps. If only hypothesis

testing is of concern and simultaneous confidence intervals are not needed, stepwise

methods can substantially increase the power of the testing procedure. With regards

to stepwise methods, we develop new forced sequential methods that utilize single-step

methods to achieve improved power in multiple testing. At each step, our sequential

methods are reduced to single-step tests which control the FWER. We suggest mod-

ifications to the critical values such that the modified critical values are monotone at

all times. To facilitate computation, two of the three stepwise methods are proposed

to modify monotone critical values along the rejection path. Moreover, new sequen-

tial methods are developed from applying these modifications to the hybrid method

proposed by McCann and Edwards (2000).

To develop sequential procedures for the hybrid method, we suggest the forced

pathwise sequentially rejective method (FPSR), as in the simulation results it has the

same rejections as the other forced sequential methods but uses the least computing

time. In the simulation study, the hybrid FPSR exhibits the strong control of FWE

in all different settings of correlation structures between the test statistics. In terms

of power, the hybrid FPSR outperforms other competitor, except the stepdown Sidak

method for some cases when Sidak’s method is essentially exact. The power advantage

of the hybrid FPSR becomes particularly substantial when the correlations between

the test statistics are high. Additionally, from the simulation results, the hybrid

FPSR is computationally feasible; for instance, in MATLAB R2012b, one replication

with the hybrid FPSR takes about 10 seconds when testing 10 parameters in SMM.

The minimal restricted Scheffe method and the forced sequential methods are

designed to improve the performance of simultaneous confidence intervals or the power
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of multiple hypothesis testing, subject to strong FWE control. The minimal restricted

Scheffe method requires minimal assumptions on the distribution of the estimated

parameter vector, and the discrete set of comparisons can be any linear combinations

of the parameter vector. Meanwhile, the forced sequential procedures are applicable

to any single-step methods under mild conditions and show the potential to uniformly

improve power over their single-step counterparts. Therefore, one of our future plans

is to choose, apart from the hybrid method, another single-step method that may not

exhibit monotone critical values, and utilize it via the proposed sequential methods.

From the perspectives of power and computing time, it will be interesting to compare

these sequential methods that may end up with different rejections.
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Figure A.14: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 1.5 and half βj’s equal to 0, when V = AR1(φ).
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Figure A.15: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with half βj’s equal to 1.5 and half βj’s equal to −1.5, when V = AR1(φ).
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Figure A.16: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 1.5, when V = AR1(φ).
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Figure A.17: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with half βj’s equal to 3 and half βj’s equal to 0, when V = [vij], for
vij = φI{i 6=j}.
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Figure A.18: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 3 and half βj’s equal to −3, when V = [vij], for

vij = φI{i 6=j}.

Correlation φ

P
ow

er

0.
97

0.
99

any−pair power
nu=30

k=4

0.0 0.5 0.9

0.
5

0.
6

0.
7

0.
8

average power
nu=30

k=4

0.
0

0.
2

0.
4

0.
6 all−pair power

nu=30
k=4

0.
97

0.
99

any−pair power
nu=100

k=4

0.
5

0.
6

0.
7

0.
8

average power
nu=100

k=4

0.
0

0.
2

0.
4

0.
6 all−pair power

nu=100
k=4

0.
97

0.
99

any−pair power
nu=30
k=10

0.
5

0.
6

0.
7

0.
8

average power
nu=30
k=10

0.
0

0.
2

0.
4

0.
6 all−pair power

nu=30
k=10

0.
97

0.
99

0.0 0.5 0.9

any−pair power
nu=100

k=10

0.
5

0.
6

0.
7

0.
8

average power
nu=100

k=10

0.
0

0.
2

0.
4

0.
6

0.0 0.5 0.9

all−pair power
nu=100

k=10

FPSR
Holm
SSidak
Hybrid

78



Figure A.19: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 3, when V = [vij], for vij = φI{i 6=j}.
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Figure A.20: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 1.5 and half βj’s equal to 0, when V = [vij], for

vij = φI{i 6=j}.
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Figure A.21: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 1.5 and half βj’s equal to −1.5, when V = [vij], for

vij = φI{i 6=j}.
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Figure A.22: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 1.5, when V = [vij], for vij = φI{i 6=j}.

Correlation φ

P
ow

er

0.
2

0.
3

0.
4

0.
5

0.
6 any−pair power

nu=30
k=4

0.0 0.5 0.9

0.
10

0.
15

0.
20

average power
nu=30

k=4

0.
00

0.
10

0.
20 all−pair power

nu=30
k=4

0.
2

0.
3

0.
4

0.
5

0.
6 any−pair power

nu=100
k=4

0.
10

0.
15

0.
20

average power
nu=100

k=4

0.
00

0.
10

0.
20 all−pair power

nu=100
k=4

0.
2

0.
3

0.
4

0.
5

0.
6 any−pair power

nu=30
k=10

0.
10

0.
15

0.
20

average power
nu=30
k=10

0.
00

0.
10

0.
20 all−pair power

nu=30
k=10

0.
2

0.
3

0.
4

0.
5

0.
6

0.0 0.5 0.9

any−pair power
nu=100

k=10

0.
10

0.
15

0.
20

average power
nu=100

k=10

0.
00

0.
10

0.
20

0.0 0.5 0.9

all−pair power
nu=100

k=10

FPSR
Holm
SSidak
Hybrid

82



Figure A.23: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 3 and half βj’s equal to 0, when V matrices are

randomly generated from the Wishart distributions.a
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aThe power measurements shown in Figure A.26 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.24: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 3 and half βj’s equal to −3, when V matrices are

randomly generated from the Wishart distributions.a
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aThe power measurements shown in Figure A.27 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.25: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 3, when V matrices are randomly generated from the
Wishart distributions.a
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aThe power measurements shown in Figure A.28 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.26: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 1.5 and half βj’s equal to 0, when V matrices are

randomly generated from the Wishart distributions.a
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aThe power measurements shown in Figure A.26 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.27: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with half βj’s equal to 1.5 and half βj’s equal to −1.5, when V matrices

are randomly generated from the Wishart distributions.a
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aThe power measurements shown in Figure A.27 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.28: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid
methods with all βj’s equal to 1.5, when V matrices are randomly generated from

the Wishart distributions.a
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aThe power measurements shown in Figure A.28 are the averages of the empirical power measure-
ments obtained with five different randomly generated V matrices from the Wishart distributions.
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Figure A.29: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s equal to 0, when V = AR1(φ).
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Figure A.30: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a nonzero value, when

V = AR1(φ).
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Figure A.31: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a positive nonzero value and

half βj’s having the negative nonzero value, when V = AR1(φ).
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Figure A.32: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s having a positive value, when

V = AR1(φ).
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Figure A.33: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s equal to 0, when V = [vij], for

vij = φI{i 6=j}.
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Figure A.34: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a nonzero value, when

V = [vij], for vij = φI{i 6=j}.
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Figure A.35: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a positive nonzero value and

half βj’s having the negative nonzero value, when V = [vij], for vij = φI{i 6=j}.
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Figure A.36: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s having a positive value, when V = [vij],

for vij = φI{i 6=j}.
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Figure A.37: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s equal to 0, when V matrices are

randomly generated from the Wishart distributions.a
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aThe computing time shown in Figure A.37 are the averages of the obtained computing time with
five different randomly generated V matrices from the Wishart distributions.
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Figure A.38: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a nonzero value, when V

matrices are randomly generated from the Wishart distributions.a
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aThe computing time shown in Figure A.38 are the averages of the obtained computing time with
five different randomly generated V matrices from the Wishart distributions.
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Figure A.39: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with half βj’s having a positive nonzero value and

half βj’s having the negative nonzero value, when V matrices are randomly
generated from the Wishart distributions.a
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aThe computing time shown in Figure A.39 are the averages of the obtained computing time with
five different randomly generated V matrices from the Wishart distributions.

99



Figure A.40: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods with all βj’s having a positive value, when V

matrices are randomly generated from the Wishart distributions.a
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aThe computing time shown in Figure A.40 are the averages of the obtained computing time with
five different randomly generated V matrices from the Wishart distributions.
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Figure B.41: Empirical FWEs for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods when V = AR1(φ), k = 4 and α = 0.1.
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Figure B.42: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with half βj’s equal to 3 and half βj’s equal to 0, when V = AR1(φ), k = 4
and α = 0.1..
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Figure B.43: Any-pair power, average proportion of true positives, and all-pair
power for hybrid FPSR, Holm’s procedure, stepdown Sidak and single-step hybrid

methods with all βj’s equal to 3, when V = AR1(φ), k = 4 and α = 0.1..
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Figure B.44: Computing time for hybrid FPSR, Holm’s procedure, stepdown Sidak
and single-step hybrid methods when V = AR1(φ), k = 4 and α = 0.1..
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