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CHAPTER 1

Introduction

Legendrian knot theory is the theory of knots in contact topological and geometric

field. Legendrian knot theory plays an important role in low dimensional topology

since Legendrian knots reveal the topology and geometry of the underlying contact

manifold. For instance, Legendrian knots are used to detect overtwistedness of con-

tact structures [13], to detect topological properties of knots [22] and to distinguish

contact structures [21]. The main work of this thesis is to construct a topological

invariant of Legendrian knots: the integral graded homology CH∗(L) of Reeb chord

complex of Legendrian knots in contact 3-dimensional manifold R3 with standard

contact structure.

The theory of Legendrian knots was first introduced by Dmitry Fuchs and Serge

Tabachnikov [18] in 1990’s, since then many mathematicians like Y. Eliashberg [8],

J. Etnyre, K. Honda [12], L. Ng [25] and Y. Chekanov [3], have worked on this

topic. Recently, this topic has been active and many important results have been

published.

A Legendrian knot in R3 is a smooth knot which is tangent to a standard contact

structure ξstd on R3 everywhere. The standard contact structure ξstd on R3 is a

completely non-integrable 2-plane field given by the kernel of the 1-form dz − ydx.

Many important constructions and results in low-dimensional topology depend on our

ability to distinguish Legendrian knots. Thus the main question of Legendrian knot

theory is to classify Legendrian knots up to Legendrian isotopy.

Two Legendrian knots are Legendrian isotopic or equivalent if one can be de-
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formed into the other through Legendrian knots. Generally, we would like to classify

Legendrian knots by constructing invariants associated to a Legendrian knot that

remain unchanged when we deform the knot. For topological knots, there are many

invariants (see [2, 30] for example), but for Legendrian knots, very few invariants have

been found so far even though many mathematicians have worked on this topic.

It has been known for some time that there are three classical invariants of Leg-

endrian knots :Topological knot type k(L), Thurston-Bennequin number tb(L), and

Rotation number r(L).

Legendrian knots have been classified for a few knot types by classical invari-

ants, including Legendrian unknots [8], Legendrian torus knots and Legendrian figure

knots [12]. For a relatively long time, we do not know whether the classical invari-

ants can determine Legendrian knots completely up to Legendrian isotopy. In [3],

Chekanov found a new invariant: stable type of differential graded algebra (DGA),

where the algebra is Z2r(L) graded over Z2 and generated by the crossings of the

diagram of the Legendrian knot and the differential comes from counting certain im-

mersed polygons whose edges lie in the diagram of the knot and whose vertices lie

at the crossings. He proved that the DGA (AZ2 , ∂) associated to a Legendrian knot

changes by stable tame isomorphisms under Legendrian isotopy, moreover the contact

homology CH∗(L) =
ker∂

Im∂
is unchanged under Legendrian isotopy.

This new invariant can show that there exist Legendrian knots (52) which have the

same classical invariants, but are not Legendrian isotopic (see [3]). So the classical

invariants do not completely determine the Legendrian isotopy type of Legendrian

knots. After Chekanov, J.Etnyre, L.Ng and J.Sabloff [14] extended Chekanov’s DGA

to a DGA over Z[t, t−1] with a full Z grading. Even though we have known these

non-classical new invariants and three classical invariants, but the question of the

classification of Legendrian knots is still widely open.

Based on Etnyre, Ng and Sabloff’s work [14] and Eliashberg, Givental and Hofer’s
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work [9], in this thesis, we have found a new topological invariant of Legendrian

knots: the integral graded homology CH∗(L) of Reeb chord complex of Legendrian

knots, which is a Z-graded vector space over Z2 and is obtained from a chain complex

not from DGA. It is different from Chekanov’s invariant.

Let L be a generic Legendrian knot, to L we want to assign a Z-graded vector

space and to define a differential ∂n on the vector space. In our approach, first we

grade Reeb chords -i.e., Reeb flow lines that begin and end on Legendrian knot L

by the Maslov index [29], then we define a chain complex (Cn, ∂n) (called Reeb

chord complex of Legendrian knots), where Cn is a vector space over Z2 generated by

Reeb chords with Maslov index n and ∂n comes from counting J -holomorphic curves

in the symplectization of (R3, ξstd) with two Reeb chords as asymptotes so that the

difference between indices is one. Finally, we define the homology CH∗(L) of Reeb

chord complex of Legendrian knots. We have the following results by the ideas of

Floer homology [17], PDE and complex analysis techniques.

Proposition 3.3.1 Under the assumption r(L) 6= 0, the differential ∂n : Cn −→

Cn−1 satisfies ∂n−1 ◦ ∂n = 0 and {(Cn, ∂n)}n∈Z is a chain complex.

Then we obtain the following main theorem of the thesis.

Theorem 4.0.1 Under the assumption r(L) 6= 0, the homology CHn(L) =

Ker∂n
Im∂n+1

of Reeb chord complex is a topological invariant of Legendrian knots for

all n ∈ Z.

The rest of the thesis is divided into three chapters. Chapter 2 surveys the basic

notions of contact topology, especially the Legendrian knot theory and outlines results

concerning invariants of Legendrian knots.

In Chapter 3, first, we define the grading of Reeb chords and show that the grading

is well-defined in Section 3.1. Then, we describe the moduli space of J-holomorphic

disks and some important properties of J-holomorphic disks. Especially, we discuss a

version of Gromov compactness of the moduli space in Section 3.2. Finally, we define
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Reeb chord complex of Legendrian knots and prove that the Reeb chord complex is

a chain complex (i.e. the proposition 3.3.1) in Section 3.3. The chapter ends up with

the description of the homology CH∗(L) of Reeb chord complex of Legendrian knot

L.

In Chapter 4, we prove the invariance of the homology CH∗(L), i.e. Theorem

4.0.1. The proof consists of three steps which are shown in three sections 4.1, 4.2 and

4.3 respectively.

4



CHAPTER 2

Preliminaries

In this chapter, we first outline the basic notions of contact topology and Legendrian

knots. The second section surveys known results about invariants of Legendrian

knots. Especially, the Chekanov’s invariant: stable type of differential graded algebra

and its extension. (For more detailed discussion, see [11].)

2.1 The standard contact structure on R3

Let M be an orientable 3-manifold. A contact structure ξ on M is a completely non-

integrable tangent 2-plane field. Locally ξ is represented as the kernel of a 1-form α.

We know that non-integrability condition is equivalent to α ∧ dα 6≡ 0. Hence ξ is a

contact structure if and only if α ∧ dα 6≡ 0.

The simplest example of contact structure on R3 is given by the kernel of 1-form

α = dz − ydx, this is called standard contact structure on R3 and denoted by ξstd.

There are many other contact structures on R3, but Darboux’s theorem says that

all of them locally look like the standard one. Note that ξstd = ker(dz − ydx) =

span {∂y, ∂x + y∂z} . The plane field ξstd is indicated in Figure 2.1.

A Legendrian knot L in (R3, ξstd) is an embedded S1 that is tangent to ξstd every-

where. If we parametrize L:

γ(t) : S1 −→ R3 : t 7−→ (x(t), y(t), z(t))

Then the fact that L is tangent to ξstd can be expressed by γ′(t) ∈ ξstd or since

ξstd = ker(dz − ydx), we have
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z
y

x

Figure 2.1: The standard contact structure ξstd on R3

z′(t)− y(t)x′(t) = 0. (2.1)

Moreover, we will assume that γ(t) is a smooth function and an immersion in R3.

Usually, there are two ways to visualize a Legendrian knot in (R3, ξstd) via projecting

L onto a plane.

• The front projection σ : S1 −→ R2 : t 7−→ (x(t), z(t)), i.e. we project L onto

xz-plane.

• The Lagrangian projection Π : S1 −→ R2 : t 7−→ (x(t), y(t)), i.e. we project L

onto xy-plane.

Note that ( 2.1) implies that z′(t) = y(t)x′(t). Hence we can always recover the y

coordinate of γ(t) from the front projection σ by rewriting ( 2.1) as

y(t) =
z′(t)

x′(t)
if x′(t) is non-zero.

Thus anytime x′(t) = 0 so z′(t) must be. But this implies that L has no vertical

tangencies. Hence there must be some cusps for any Legendrian knot, in this case

y(t0) = lim
t−→t0

z′(t)

x′(t)
. It is interesting to note that our cusps must be “semi-cubic

parabolas ” i.e. after a change of coordinates z(θ) = 3θ3 and x(θ) = 2θ2 (see [11]).
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                        (a) (b)

Figure 2.2: The Lagrangian projection (a) and the front projection (b) of Legendrian

right trefoil knot.

2.2 Classical and DGA invariants of Legendrian knots

As we mentioned early, the fundamental problem in Legendrian knot theory is to

determine whether two Legendrian knots are Legendrian isotopic or not. Also note

that Legendrian knots are plentiful: any smooth knot can be approximated by a

Legendrian knot continuously. Two Legendrian knots L0 and L1 are Legendrian

isotopic if there is a continuous family Lt, t ∈ [0, 1], of Legendrian knots starting at

L0 and ending at L1.

We would like to classify Legendrain knots by constructing invariants, there are

three so called classical invariants. Obviously, underlying topological knot type K(L)

is an invariant of Legendrian knot since any Legendrian isotopy between Legendrian

knots is also a topological isotopy of underlying knots.

The second classical invariant is the Thurston-Bennequin number tb(L), which

measures the twisting of contact planes around the knot L. More precisely, we push

L out a small distance along z-axis, then we obtain a new Legendrian knot, denote by

L̂. Define tb(L) to be the linking number lk(L, L̂) of L and L̂. In the front projection

σ, there is a formula to compute Thurston-Bennequin number:

tb(L) = writhe(σ(L))− number of right cusps in σ(L).
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The last classical invariant, the rotation number r(L) is defined for oriented Leg-

endrian knots. It measures the twisting of the tangent direction to L inside ξstd.

More precisely, let Σ be a Seifert surface for L, if we trivialize ξstd over Σ, then r(L)

is the winding number of the oriented tangent direction to L with respect to this

trivialization. Accordingly, in the front projection,

r(L) =
1

2
(Dc − Uc).

Where Dc is the number of down cusps and Uc is the number of up cusps. Also note

that r(L) depends on the orientation of L, but tb(L) is independent of the choice

of orientation of L. There is an important relation between Thurston-Bennequin

number tb(L) and rotation number r(L) as follows.

Theorem 2.2.1 (Bennequin [11]) Let L be a Legendrian knot in (R3, ξstd). Let Σ

be a Seifert surface for L. Then tb(L) + |r(L)| ≤ −χ(Σ).

Legendrian knots have been classified for a few knot types by classical invariants,

including Legendrian unknots [8], Legendrian torus knots and Legendrian figure knots

[12]. For a relatively long time, we do not know whether the classical invariants can

determine Legendrian knots completely up to Legendrian isotopy. To answer this

question, Chekanov found a new invariant: stable type of differential graded algebra

DGA.(see [3])

The algebra . Let AZ2 be the Z2r(L) graded free associative unital algebra over

Z2 and generated by the set C of double points in Π(L) of the Legendrian knot. We

assume C is a finite set (since we assume L is generic).

The grading. To each crossing c ∈ C there are two points c+ and c− in L

that project to c. We let c+ be the point with large z coordinate. Choose a map

γc : [0, 1] −→ L that parametrizes an arc running from c+ to c−. Consider the

Lagrangian projection Π(γc) and denote the rotation number r(Π(γc)), now define

8



+ +

-

-

Figure 2.3: Sections near a crossing in Π(L)

the grading on c to be

|c| = 2r(Π(γc))−
1

2
mod 2r(L)

The differential . The differential comes from counting certain immersed polygons

whose edges lie in the Π(L) and whose vertices lie at the crossings. More precisely,

The neighbourhood of a crossing c in R2 is divided into four sections by Π(L). Two

are labelled positive (+) and two are labelled negative (−) (see Figure 2.3). Let Pk+1

be a k + 1 sided polygon with vertices labelled counter-clockwise v0, ..., vk and set

Ma
b1...bk

=
{
u : (Pk+1, ∂Pk+1) 7→ (R2,Π(L))|u(v0) = a, u(vi) = bi, i = 1, ..., k

}
where u maps a small neighbourhood of v0 to a positive (+) section and maps each

vi to a negative (−) section in Π(L).

We can now define

∂a =
∑
b1...bk

(#Z2Ma
b1...bk

)b1...bk

Chekanov [3] shows that the differential above is well-defined and ∂2 = 0. So we have

a differential graded algebra (AZ2(a1, ...an), ∂), note that this is not an invariant. To

get an invariant, Chekanov defines the stable tame isomorphism class of AZ2 . First,

we define a special algebra εi = AZ2(e1, e2) by setting |e1| = i, |e2| = i − 1, ∂e1 =

e2, ∂e2 = 0.

9



Definition 2.2.1 ( [14]) The degree i stabilization Si(AZ2(a1, ...an)) of AZ2(a1, ...an)

is defined to be AZ2(a1, ...an, e
i
1, e

i
2). The grading and differential are inherited from

both AZ2 and εi. Two algebras AZ2 and A′Z2 are stable tame isomorphic if there exist

two sequences of stabilizations Si1 , ...Sin and Sj1 , ...Sjm and a tame isomorphism

φ : Sin(...Si1(AZ2)...) −→ Sjm(...Sj1(A′Z2)...).

Two differential algebras (AZ2 , ∂) and (A′Z2 , ∂
′) are stable tame isomorphic if there

is a stable tame isomorphism from AZ2 to A′Z2 that is also a chain map.

Theorem 2.2.2 (Chekanov [3]) The DGA (AZ2 , ∂) associated to a Legendrian knot

changes by stable tame isomorphisms under Legendrian isotopy, moreover the contact

homology CH∗(L) =
ker∂

Im∂
is unchanged under Legendrian isotopy.

This new invariant can show that there exist a pair of Legendrian 52 knots which have

the same classical invariants (tb = 1 and r = 0), but are not Legendrian isotopic ( see

Figure 2.4). So the classical invariants do not completely determine the Legendrian

isotopy type of Legendrian knots.

(1)
(2)

Figure 2.4: The two non-Legendrian isotopic Legendrian 52 knots .

After Chekanov, J.Etnyre , L.Ng and J.Sabloff [14] extended Chekanov’s stable

type of DGA invariant to a DGA over Z[t, t−1] with a full Z grading. Their set-up is

very similar to Chekanov’s DGA.
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The algebra. A(a1, ...an) is the Z-graded free associative unital algebra over

Z[t, t−1] and generated by the set C of double points in Π(L).

The grading . The grading for t is defined to be 2r(L). To grade a generator ai,

we first specify a capping path γai in L which begins at the undercrossing of ai and

follows the orientation of L , and ends when it reaches the overcrossing of ai. Define

the grading of ai to be

|ai| = −2r(Π(γai))−
1

2

In addition, define the sign of a crossing ai to be sgnai = (−1)|ai|. To each sector Q

in the neighbourhood of a crossing ai, we associate a sign εQ,ai , called the orientation

sign.

The differential. The differential ∂ comes from counting immersed disks in Π(L).

Let D2
∗ = D2 \ {x, y1...yn}, where {x, y1...yn} ⊂ ∂D2. Fix a homology class A ∈

H1(L) = Z and define 4A(a; b1....bn) to be the space of all orientation-preserving

immersions f : (D2
∗, ∂D

2
∗) 7−→ (R2,Π(L)) (up to reparametrization) that satisfy:

• The homology class [(Π(L))−1(Im(f |∂D2) ∪ γa ∪ −γb1 ... ∪ −γbn)] is A.

• The map f maps the boundary punctures to the crossings and covers either

one or three sections with majority of sections positive at the crossing a and

negative at all other crossings bi.

Formally, we define the dimension of 4A(a; b1....bn) to be

dim(4A(a; b1....bn)) = |a| −
∑
|bi|+ 2n(A)r(L)− 1

Eventually, we define the differential to be :

∂a =
∑

dim(4A(a;b1....bn))=0

ε(a; b1...bn)t−n(A)b1...bn

where ε(a; b1...bn) is the product of orientation signs corresponding to sectors of

a, b1, ..., bn.

11



J. Etnyre, L. Ng and J. Sabloff [14] show that the differential is well-defined

and ∂2 = 0. Moreover the stable type of the algebra A(a1, ...an) is an invariant of

Legendrian knots.

Note that if we set t = 1, modulo the coefficient by two and the grading by

2r(L), then we can recover Chekanov’s DGA. Even though we have known these non-

classical invariants and three classical invariants, we may classify some Legendrian

knots (see [4], for example). But the question of the classification of Legendrian knots

is still widely open.
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CHAPTER 3

The Integral Graded Homology of Reeb Chord Complex

In this chapter, we define a new topological invariant of Legendrian knots: the integral

graded homology CH∗(L) of Reeb chord complex of Legendrian knots. This is a Z-

graded vector space over Z2 and the invariance will be shown in next chapter. To this

end, we first define the grading of each Reeb chord by Maslov index [29]. It turns out

that we can grade the set of Reeb chords by integers. Then we discuss some properties

of J-holomorphic disks and the moduli space of J-holomorphic disks in our situation.

Finally, we define a chain complex (Cn, ∂n) called Reeb chord complex, where Cn is

a vector space over Z2 generated by the set of Reeb chords with Maslov index n and

the differential ∂n comes from counting certain J-holomorphic curves with Lagrangian

boundary and asymptotic properties. We end this chapter by defining the integral

graded homology CH∗(L) of Reeb chord complex of Legendrian knots.

3.1 The grading of Reeb chords

In this section, we grade Reeb chords by Maslov index, the Reeb chords of a Legen-

drian knot in (R3, ξstd) are Reeb flow lines for the Reeb vector field Rα starting and

ending on a Legendrian knot. Recall that the standard contact structure ξstd is the

kernel of a 1-form α = dz − ydx, so ξstd= span {∂y, ∂x + y∂z}. The approach in this

section is analogous to [14].

Definition 3.1.1 ( [19]) A Reeb vector field Rα of (R3, ξstd) is a vector field such

that dα(Rα,−) ≡ 0 and α(Rα) ≡ 1.

13



From this definition, we can see that the Reeb vector field in our situation is

parallel to the z-direction ∂z. In fact, with respect to the basis {∂x, ∂y, ∂z}, we suppose

that Rα = (a, b, c), then dα = dx ∧ dy, the condition dα(Rα,−) ≡ 0 is equivalent to
0 1 0

−1 0 0

0 0 0



a

b

c

 = 0 =⇒


b

−a

0

 = 0 =⇒ a = b = 0

Combining this with α(Rα) ≡ 1, then we have that Rα = (0, 0, 1) = ∂z. Hence,

all the Reeb flow lines are vertical lines parallel to z-axis.( see Figure 3.1)

y
0

x

z
L

a

Figure 3.1: Rα = (0, 0, 1) = ∂z. All Reeb chords are parallel to z-axis starting and

ending on Legendrian knot L

Given a generic Legendrian knot L, we parametrize L :

γ(t) : S1 −→ R3 by t 7−→ (x(t), y(t), z(t)).

For a Reeb chord a(t) : [0, 1] −→ R3, i.e. ȧ(t) = Rα and a(0), a(1) ∈ L, to define

the index of a Reeb chord a(t), we choose a path γa inside Legendrian knot L that

connects a(1) to a(0), then there is an orientable surface F such that ∂F = γa(t)∪a(t).

We know that any orientable two plane bundle is trivial over a surface with boundary

(see [19]). Hence, ξ|∂F is trivial, so we can choose a symplectic trivialization of ξstd

over ∂F :

∂F × R2
Φ∼= ξ|∂F such that Φ∗dα = ω0
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where Φ is a diffeomorphism, ω0 is the standard symplectic form of R2. We define a

line bundle Λ(t) over ∂F = γa(t) ∪ a(t) as follows.

Λ(t) =


Tγa(t)L, over γa(t).

DΨα(t)(Ta(0)L), over a(t).

where {Ψα(t)} is a one-parameter group of diffeomorphisms induced by Reeb vec-

tor field Rα. Using the trivialization, Λ(t) may be viewed as a path of Lagrangian

subspaces of a fixed symplectic space (R2, ω0) in the following sense. In fact, for

∀X, Y ∈ TL, we have :

dα(X, Y ) = Xα(Y )− Y α(X)− α[X, Y ] = 0.

It follows that Tγa(t)L ⊂
(
ξ|γa(t), dα|γa(t)

)
is Lagrangian for any point in γa(t). For

Reeb vector field Rα, by Cartan formula, we have LRαdα = iRαdα + diRαα = 0 and

d

dt
Ψ∗α(t)(dα) = lim

h→0

Ψ∗α(t+ h)(dα)−Ψ∗α(t)(dα)

h

= Ψ∗α(t)

(
lim
h→0

Ψ∗α(h)(dα)− dα
h

)
= Ψ∗α(t)(LRαdα)

= 0.

This shows that Ψα(t) preserves the symplectic form dα, i.e. Ψ∗α(t)(dα) = dα.

Thus, DΨα(t) maps Ta(0)L to Lagrangian spaces. Actually,

Ψα(t) : R3 −→ R3 given by (x, y, z) 7−→ (x, y, z + t).

So DΦα(t) = Id with respect to {∂x, ∂y, ∂z} . Hence, by using above trivialization,

we may view the line bundle Λ(t) over ∂F as a path of Lagrangian subspaces of the

symplectic space (R2, ω0). In fact, if we choose a specific trivialization :

Φ : ∂F × R2 −→ ξ|∂F given by (q, ζ) 7−→ (q, ζ).
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Then we may identify Λ(t) with the following Lagrangian path Λ̄(t) in (R2, ω0):

Λ̄(t) = {(λx′(t), λy′(t))|λ ∈ R, 0 ≤ t ≤ 1} ⊂ (R2, ω0).

For the line bundle Λ(t) over ∂F = γa(t) ∪ a(t), there are two choices of γa(t)

inside L for the Reeb chord a(t), so we need to specify one of the choices of γa(t). In

order to do so, here we put the following conditions on the path Λ̄(t) as follows:


x′(0) > 0,

y(t) 6= y(0), 0 < t < 1.

(3.1)

These conditions guarantee that γa(t) is specified uniquely inside L. Actually,

the first condition gives an orientation of γa(t) and the second guarantees that γa(t)

connecting a(1) and a(0) inside L goes around these endpoints only once. Based on

above discussion, for a Reeb chord a(t), we define the Maslov index µ(Λ̄(t)) of the

Lagrangian path Λ̄(t) as the grading of Reeb chord a(t).

|a(t)| := µ(Λ̄(t)) =
∑

x′(t)=0,
t∈(0,1)

−sign {x′′(t)y′(t)} (3.2)

Proposition 3.1.1 The grading of Reeb chords defined above is well-defined under

the condition 3.1.

Proof. First, note that x′(t) = 0 corresponds to the cusps of legendrian knot L. Cusps

of a generic Legendrian knot are isolated and there are only finitely many cusps, hence

this is a finite sum. At x′(t) = 0, after a change of coordinates, each cusp can be

semi-cubic parabola [11], i.e. z(θ) = 3θ3, x(θ) = 2θ2, so we have x′′(θ) 6= 0. It follows

that x′′(t) 6= 0. Also note that γ(t) is an immersion, so whenever x′(t) = 0, we always

have y′(t) 6= 0. It follows that x′′(t)y′(t) 6= 0. Hence the grading of Reeb chords is an

integer.
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The grading µ(Λ̄(t)) of Reeb chord a(t) is independent of the choice of surface F .

For any such two orientable surfaces F1 and F2, let Λ̄1(t) and Λ̄2(t) be corresponding

Lagrangian paths, then F1 and F2 induce opposite orientations on the boundary, i.e.

∂F1 = −∂F2, if we parametrize ∂F1 = γa(t) ∪ a(t), then ∂F2 = γa(1 − t) ∪ a(1 − t).

For ∂F1 and ∂F2, they have the same cusps. Under the condition( 3.1), x′′(t)y′(t) has

opposite sign at each x′(t) = 0 with respect to ∂F1 and ∂F2. Therefore we have that

µ(Λ̄1(t))− µ(Λ̄2(t)) = 0. i.e. µ(Λ̄1(t)) = µ(Λ̄2(t)).

Finally, the grading µ(Λ̄(t)) of Reeb chord a(t) is also independent of the choice

of the trivialization Φ of ξ|∂F . In fact, given a different trivialization Ψ of ξ|∂F , by

the property of naturality of Maslov index (see [29]), that is : µ(Ψ(Λ̄(t))) = µ(Λ̄(t)).

Hence we have shown that the grading of Reeb chords is independent of the choices

of surface F and the trivializaton Φ of ξ|∂F . So the grading of Reeb chord is well-

defined.

By the formula r(L) =
1

2
(Dc − Uc), we can see that µ(Λ̄(t)) = 2r(γa). In fact,

each upward cusp corresponds to x′′(t)y′(t) > 0 and each downward cusp corresponds

to x′′(t)y′(t) < 0, hence
∑

x′(t)=0,
t∈(0,1)

−sign {x′′(t)y′(t)} = Dc − Uc = 2r(γa). (see Figure 3.2)

upward  cusps downward  cusps

Figure 3.2: Upward cusps correspond to x′′(t)y′(t) > 0 and downward cusps corre-

spond to x′′(t)y′(t) < 0.
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3.2 The moduli space of J-holomorphic curves

In this section, we consider the set of J-holomorphic curves [20, 24] satisfying the

prescribed boundary and asymptotic conditions. For (R3, ξstd) = (R3,Ker(dz−ydx)),

we first consider the symplectization (R3×R, ω = d(etα)) of (R3, ξstd), where t stands

for R-direction. Note that (R3 × R, ω) is a 4-dimensional symplectic manifold with

symplectic form ω = d(etα) = et(dt ∧ α + dα). Given a Legendrian knot L, then

L×R is a Lagrangian submanifold of (R3×R, ω), i.e. ω |L×R≡ 0. In fact, for any X,

Y ∈ T (L× R) ∼= TL× TR, we have that :

ω(X, Y ) = d(etα)(X, Y ) = X(etα(Y ))− Y (etα(X))− etα[X, Y ] = 0

Under the symplectization, there is a relation shown as follows.

Legendrian L ⊂ (R3, ξstd) −→ Lagrangian L× R ⊂ (R3 × R, ω)

For this relation, we have the following .

Proposition 3.2.1 If L1 and L2 are Legendrian isotopic in (R3, ξstd), then L1×R ∼=

L2 × R are Lagrangian isotopic in (R3 × R, ω).

Proof. Recall that if L1 and L2 are Legendrian isotopic, then there is an ambient

isotopy Φs : (R3, ξstd) −→ (R3, ξstd) satisfying the following.

(1). {Φs} is a family of contactomorphisms, i.e. Φ∗s(α) = fsα. Where fs : R3 −→ R+

is a suitable smooth family of smooth functions.

(2). Φ0 = Id, Φ1(L1) = L2 and Φs(L1) are Legendrian for all s

Now, we define a map on R3 × R as follows.

Φ̂s : R3 × R −→ R3 × R

(x, y, z, t) 7−→ (Φs(x, y, z), t+ log(1/fs))
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then Φ̂s is a family of diffeomorphisms of R3×R. To see this, suppose (Φs(x, y, z), t+

log(1/fs)) = (x̃, ỹ, z̃, T ), we have that DΦ̂s =

 DΦs 0

A 1

 Where A = (Tx, Ty, Tz),

it follows that det(DΦ̂s) 6= 0, also Φ̂s is surjective. Hence Φ̂s is a diffeomorphism for

each s. In addition,

Φ̂∗s(ω) = Φ̂∗s(de
Tα) = dΦ̂∗s(e

Tα)

= d(et+log(1/fs)Φ∗s(α))

= d(et+log(1/fs)fsα)

= d(etα)

= ω.

It follows that Φ̂s is a symplectomorphism for each s. Hence Φ̂s is Lagrangian isotopic.

Definition 3.2.1 ( [24]) A J-holomorphic curve in an almost complex manifold

(R3 × R, J) is a smooth map

f : (Σ, j) −→ (R3 × R, J)

satisfying Cauchy-Riemann equation : ∂̄Jf =
1

2
(df + J ◦ df ◦ j) = 0. Where Σ is a

Riemann surface with complex structure j.

Here, we choose the Riemann surface to be the unit disk D with two punc-

tures on the boundary, i.e. D \ {p, q}, the complex structure induced from C, i.e.

j =

 0 −1

1 0

.(By Uniformization theorem of Riemann surface, for unit disk there

is only one complex structure up to conformal equivalence ) In this thesis, the J-

holomorphic curves we are interested in are maps

f : (D \ {p, q} , ∂D \ {p, q}) −→ (R3 × R, L× R)
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such that f(∂D \ {p, q}) ⊂ L× R and satisfy certain asymptotic conditions near the

punctures. In this case, J-holomorphic curves are also called J-holomorphic disks. In

order to describe such J-holomorphic disks, we parametrize D \ {p, q} by using the

following conformal map

Φ : D \ {p, q} −→ R× [0, 1]

z 7−→ 1

π
log

1 + z

1− z
i

p

+1-1

q
- +

1

Figure 3.3: Conformal mapping between D \ {p, q} and R× [0, 1]

Remark 3.2.1 By Riemann mapping theorem, such a conformal map exists. (See

Figure 3.3)

For convenience, we denote Σ = R × [0, 1]. It is easy to see that Φ satisfies the

following properties.

(a) Φ|∂D\{p,q} = ∂Σ = R× {0} ∪ R× {1} .

(b) lim
z→p

Φ(z) = −∞ and lim
z→q

Φ(z) = +∞

(c) Φ maps lower-half boundary of ∂D \ {p, q} onto x-axis and maps upper-half

boundary of ∂D \ {p, q} onto horizontal line y = 1.

20



From now on, we identify D \ {p, q} with Σ = R × [0, 1]. We choose coordinates

(s, t) of Σ = R× [0, 1] and (X, Y, Z, T ) of R3 × R.

Remark 3.2.2 If we choose coordinators as above, then for a J-holomorphic disk ũ,

the Cauchy-Riemann equation ∂̄J ũ = 0⇔ ∂ũ

∂s
+ J(ũ(s, t))

∂ũ

∂t
= 0.

Given two Reeb chords p(t) and q(t), we consider the following set of J-holomorphic

curves.

Definition 3.2.2 The moduli space M(p, q) is the set of smooth maps :

ũ(s, t) = (u, T ) : (Σ, ∂Σ) −→ (R3 × R, L× R)

(s, t) 7−→ (X, Y, Z, T )

satisfying the following conditions.

(a) ũ is J-holomoprhic, i.e.
∂ũ

∂s
+ J(ũ(s, t))

∂ũ

∂t
= 0,

(b) ũ has finite energy: E(ũ) =

∫
Σ

ũ∗d(eTα) <∞,

(c) ũ satisfies the Lagrangian boundary : ũ|∂Σ ⊂ L×R. i.e. ũ(s, 0), ũ(s, 1) ⊂ L×R,

(d) Asymptotic properties :

lim
s→−∞

u(s, t) = p(t) and lim
s→−∞

T (s, t) = +∞

lim
s→+∞

u(s, t) = q(t) and lim
s→+∞

T (s, t) = −∞.

In above definition, we say p(t) positive and q(t) negative. The finite energy strip

condition (b) is needed here to guarantee the convergence of u at infinity (see [1]) and

to obtain compactness of the moduli space in the sense of Gromov compactness [20]

( Also note that u(D) is contained in a compact region K ⊂ R3 by condition (d)).

We know that for any symplectic manifold (M,ω) there is an almost complex

structure J compatible with ω, i.e. ∃(1, 1)-tensor J such that

(a) J ∈ End(TM) and J2 = −Id.

21



(b) ω(·, J ·) defines a Riemannian metric on M .

Now, (M,ω) = (R3×R, deTα), we choose a basis {∂X , ∂Y , ∂Z , ∂T} for T (R3×R) and

an almost complex structure J on R3 × R so that the matrix representation of such

a J with respect to this basis is given as follows.

J =



0 −1 0 0

1 0 0 0

0 −Y 0 1

Y 0 −1 0


Proposition 3.2.2 Above J is an almost complex structure on R3×R and compatible

with ω = d(eTα). J is also invariant under translation along T -direction.

Proof. It is easy to verify that J2 = −Id and J is smooth, so J is an almost complex

structure on R3 × R. Note that the symplectic form ω = d(eTα) = eT (dT ∧ dZ −

Y dT ∧ dX + dX ∧ dY ), so it has the following matrix representation with respect to

the basis {∂X , ∂Y , ∂Z , ∂T} :

ω =



0 eT 0 Y eT

−eT 0 0 0

0 0 0 −eT

−Y eT 0 eT 0


Now, in order to check compatibility, it suffices to check that ω(w, Jv) defines

a Riemann metric on R3 × R for any v, w ∈ T (R3 × R). Actually, the condition is

equivalent to the condition that the following matrix is positive definite.



0 eT 0 Y eT

−eT 0 0 0

0 0 0 −eT

−Y eT 0 eT 0





0 −1 0 0

1 0 0 0

0 −Y 0 1

Y 0 −1 0


=



eT + Y 2eT 0 −Y eT 0

0 eT 0 0

−Y eT 0 eT 0

0 0 0 eT


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It is easy to see that above symmetric matrix on the right hand is positive definite.

Hence J is compatible with ω. Since J is independent of T , so it is invariant under

T -translation.

Thus, every J-holomorphic disk is a part of vertical invariant family. So we con-

sider the space M̂(p, q) :=M(p, q)/R.

Proposition 3.2.3 With above complex structure J and coordinates, a smooth map

ũ = (X, Y, Z, T ) is a J-holomorphic disk if and only if ũ is the solution of the following

equation system:



Xs − Yt = 0

Ys +Xt = 0

Zs + Tt = Y Yt

Ts − Zt = −Y Xt

(3.3)

Proof. If ũ = (X, Y, Z, T ) is a J-holomorphic disk, then it satisfies Cauchy-Riemann

equation:
∂ũ

∂s
= −J(ũ(s, t))

∂ũ

∂t
. Now if we choose the almost complex structure J as

above, then we have the following

Xs

Ys

Zs

Ts


= −



0 −1 0 0

1 0 0 0

0 −Y 0 1

Y 0 −1 0





Xt

Yt

Zt

Tt


=



Yt

−Xt

Y Yt − Tt

−Y Xt + Zt


This is the equation system ( 3.3). Thus the proposition follows.

Therefore, the moduli space M̂(p, q) is the set of the solutions to equation system

( 3.3) satisfying Lagrangian boundary condition and asymptotic properties at Reeb

chords p(t) and q(t) as described in the definition 3.2.2. The important feature of

the moduli space M̂(p, q) is that it is a finite dimensional smooth manifold and can
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be compactified. Especially, if the difference between indices of Reeb chords p and q

is one, then the moduli space we consider is compact.

Lemma 3.2.1 ( [9]) The moduli space M̂(p, q) is a manifold of dimension dimM̂(p, q) =

|p| − |q| − 1.

The moduli space we consider here may not be compact, but it can be compactified

by adding to it broken J-holomorphic curves. This is similar to convergence to broken

trajectories in Floer homology [16, 17]. In order to compactify the moduli space, we

prove a version of the Gromov compactness [20]. To this end, we first define broken

J-holomorphic curve. For convenience, we denote D∗j = D \ {pj, qj}.

Definition 3.2.3 A broken curve ũ = (u, T ) = ((u1, T 1), (u2, T 2), · · · , (uN , TN)) is

union of J-holomorphic disks, ũj = (uj, T j) : (D∗j , ∂D∗j) −→ (R3 × R, L× R). To each

pj with j ≥ 2 is associated a puncture ql for some l 6= j such that lim
z→pj

uj(z) = lim
z→ql

ul(z).

Remark 3.2.3 In fact, the domain of a broken curve ũ is a connected, simply-

connected union of unit disks D∗1∪D∗2 · · ·∪D∗N by identifying pj and ql as in above def-

inition. It can be parametrized by a smooth curve ṽ : (D∗, ∂D∗) −→ (R3 × R, L× R).

(see Figure 3.3)

p l lq p j q
j

identifying

punctures p l lq p j q
j

Figure 3.4: The domain of a broken J-holomorphic curve

Definition 3.2.4 A sequence of J-holomorphic disks ũn = (un, T n) converges to a

broken curve ũ = (u, T ) = ((u1, T 1), (u2, T 2), · · · , (uN , TN)) if the following holds.
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(1) For each k ≤ N , there exists a sequence φkn : D∗k −→ D∗k of conformal maps

and a finite set Xk ⊂ D∗k such that ũn ◦ φkn converges to ũk uniformly in the

C∞-topology on compact subsets of D∗k \Xk.

(2) There is a sequence fn : D∗ −→ D∗ of diffeomorphisms such that ũn ◦ fn con-

verges to ṽ (the parametrization of ũ) in the C0-topology.

Remark 3.2.4 For the second convergence in above definition, ũ may be parametrized

as in remark 3.2.3. The definition of broken curves and convergence here are the

same as those given in [5, 7]. The finite set Xk ⊂ D∗k is the set of singularities of

J-holomorphic disks. (see [20, 26])

Proposition 3.2.4 Any sequence ũn in M̂(p, q) has a subsequence converging to a

broken holomorphic curve ũ = (ũ1, ũ2, · · · , ũN) in the sense of definition 3.2.4.

Before giving the proof of the statement, we recall some facts about sequence ũn

in M̂(p, q), Let ũn = (Xn, Y n, Zn, T n), then the coordinates of ũn satisfy the equation

Xn
s − Y n

t = 0 (3.4.1)

Y n
s +Xn

t = 0 (3.4.2)

Zn
s + T nt = Y nY n

t (3.4.3)

T ns − Zn
t = −Y nXn

t (3.4.4)

(3.4)

by the proposition 3.2.3. If we denote by ūn = (Xn, Y n) the first two components

of ũn, then the energy of ūn is also finite. Since ũ has finite energy: E(ũn) =∫
Σ

ũ∗nd(eTα) <∞, it follows that ūn has finite energy: E(ūn) =

∫
Σ

ū∗nd(α) <∞.

Also we have to note that ũn satisfies the Lagrangian boundary condition, hence

ūn = (Xn, Y n) has to satisfies the same boundary conditions. By previous section,

we know this condition is x and y coordinates of Legendrian knot L, i.e. ūn|∂Σ ⊂ Π(L).

Now, if we know the convergence of the sequence of ūn, then by the equation system

25



( 3.4) and boundary conditions, we can know the convergence of ũn. Note that for

Reeb chords p(t) and q(t), they correspond to crossings of Lagrangian projection of

Legendrian knot L, we denote these crossings by p and q .

To prove this proposition, we need the following lemma given in [5]. Here we also

need some notations, by above discussion, we may have a new moduli space in terms

of ūn, denote by M(p, q). We also call the element of M(p, q) holomorphic disk.

Definition 3.2.5 The moduli space M(p, q) is the set of smooth maps :

ū(s, t) : (Σ, ∂Σ) −→ (C,Π(L))

(s, t) 7−→ (X, Y )

Satisfying the following conditions.

(a) ū is holomorphic,

(b) ū has finite energy: E(ū) =

∫
Σ

ū∗d(α) <∞,

(c) ū satisfies the Lagrangian boundary : ū|∂Σ ⊂ Π(L). i.e. ū(s, 0), ū(s, 1) ⊂ Π(L),

(d) Asymptotic properties :

lim
s→−∞

ū(s, t) = p and lim
s→+∞

ū(s, t) = q.

Lemma 3.2.2 ( [5]) Assume ūn ∈ M(p, q) is a sequence of holomorphic disks, then

there exists a subsequence ūnj converging to a broken curve ū in the sense of definition

3.2.4.

With this lemma and above discussion, now we prove proposition 3.2.4.

Proof. of Proposition 3.2.4: given any sequence ũn ∈ M̂(p, q), we denote by

ũn = (Xn, Y n, Zn, T n), then we have an associated sequence ūn = (Xn, Y n), by

the equation ( 3.4) and the definition of the moduli space M̂(p, q), we have that

ūn = (Xn, Y n) ∈M(p, q). By lemma 3.2.2, there exists a subsequence ūnj = (Xn
j , Y

n
j )

26



converging to a broken curve ū in the sense of definition 3.2.4. Now, we can obtain a

subsequence ũnj ∈ M̂(p, q) by solving equation ( 3.4 ) with the Lagrangian boundary

conditions of ũn. Since the solution to equation( 3.4 ) is unique by PDE, hence we

have the subsequence ũnj = (Xn
j , Y

n
j , Z

n
j , T

n
j ) ∈ M̂(p, q) such that ūnj = (Xn

j , Y
n
j )

converging to a broken curve ū = (x, y). By the definition 3.2.4, if the first con-

vergence holds, i.e. for the broken curve ū = (ū1, ū2, . . . ūN), for each k ≤ N , there

exists a sequence φknj : D∗k −→ D∗k of conformal maps and a finite set Xk ⊂ D∗k

such that ūnj ◦ φknj converges to ūk uniformly in the C∞-topology on compact sub-

sets of D∗k \ Xk. Here ūk ∈ M(pk, qk), hence we can use ūk to construct a broken

curve ũk as follows uniquely. First, we take X and Y coordinates of ũk to be ūk,

then we solve the equation ( 3.4 ) to obtain Z and T coordinates, thus we have

ũk = (x, y, Z, T ). Also note that ūnj ◦ φknj converges to ūk in the C∞-topology, so

ũnj ◦ φknj = (Xn
j ◦ φknj , Y

n
j ◦ φknj , Z

n
j ◦ φknj , T

n
j ◦ φknj) must converge to ũk = (x, y, Z, T )

by the same way.

Proposition 3.2.5 If r(L) 6= 0 and |p| = |q| + 2, then the moduli space M̂(p, q) is

one dimensional compact manifold up to broken J-holomorphic disks.

Proof. In [28] proves that there are no bubbling-off disks and spheres under the as-

sumption r(L) 6= 0 (i.e. the minimal Maslov number Σ(L) ≥ 2). So any sequence of J-

holomorphic disks in M̂(p, q) has a subsequence converging to a broken J-holomorphic

disk in the sense of the first convergence in definition 3.2.4. Hence the closure of

M̂(p, q) is compact. By lemma 3.2.1, in this case dimM̂(p, q) = 1.

3.3 The differential and Reeb chord complex

Based on previous sections, we are in a position to define the homology of a generic

Legendrian knot L. Throughout the thesis, we assume that there are only finitely

many Reeb chords for the given Legendrian knot L as usual.
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Let Cn be the vector space over Z2 generated by the set of Reeb chords with

grading n, that is

Cn =

{
k∑
i=1

niai |ni ∈ Z2, |ai| = n

}
where the set {a1, a2 . . . ak−1, ak} is all Reeb chords of L with grading n. For any

generator a ∈ Cn, we define the differential ∂n : Cn −→ Cn−1 as follows.

∂na =
∑
|b|=n−1

#Z2M̂(a, b)b (3.5)

We then extend ∂n by linearity to Cn. Where #Z2M̂(a, b) is the number of points

in M̂(a, b) modulo 2, and where the sum ranges over all generators b ∈ Cn−1.

We will show that the differential ∂ is well-defined and (C∗, ∂∗) is a chain complex,

then we define the homology CH∗(L) .

Proposition 3.3.1 Under the assumption r(L) 6= 0, the differential ∂n : Cn −→

Cn−1 satisfies ∂n−1 ◦ ∂n = 0 and {(Cn, ∂n)}n∈Z is a chain complex

Proof. : First, by assumption, there are only finitely many Reeb chords and J-

holomorphic curves in M̂(a, b) are non-parametrized (i.e. Two J-holomorphic curves

f, g in M̂(a, b) are equivalent if there is a conformal map φ : D \ {a, b} −→ D \

{a, b} such that f = g ◦ φ). By the proposition 3.2.4 and lemma 3.2.1, we have

that M̂(a, b) is a compact zero-dimensional manifold. Hence |M̂(a, b)| is finite. So

the differential ∂ is well-defined. By ( 3.5), we have

∂n−1∂n(a) = ∂n−1

 ∑
|b|=n−1

#Z2M̂(a, b)b


=

∑
|c|=n−2

 ∑
|b|=n−1

#Z2M̂(a, b) ·#Z2M̂(b, c)

 c (3.6)

Given two Reeb chords , a of index n and c of index n−2, we will show that the sum∑
|c|=n−2

∑
|b|=n−1

#Z2M̂(a, b) ·#Z2M̂(b, c) is zero, then It follows that ∂2 = 0. Showing
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this has two steps.

Step 1. Gluing of J-holomorphic curves. Given a pair of J-holomorphic curves :

ũ = (u, T ) = (x, y, z, T ) ∈ M̂(a, b)

ṽ = (v, T̃ ) = (x̃, ỹ, z̃, T̃ ) ∈ M̂(b, c)

Then lim
s→+∞

u(s, t) = b(t) = lim
s→−∞

v(s, t). Also, note that both u(s, t)|∂Σ ⊂ L and

v(s, t)|∂Σ ⊂ L are smooth away from punctures and lim
s→+∞

u(s, i) = b(i) = lim
s→−∞

v(s, i)

where i = 0, 1. So u(s, i) and v(s, i) lie on the same strand of L near b(i) . Now,

choose ρ sufficiently large, let α: R −→ [0, 1] be a cut-off function such that

α(s)|s≤ρ ≡ 1 α(s)|s≥ρ+1 ≡ 0.

Similarly, let β: R −→ [0, 1] be a cut-off function such that

β(s)|s≤−ρ−1 ≡ 0 β(s)|s≥−ρ ≡ 1.

+1

(s)

__ _1

(s)

Figure 3.5: Two cut-off functions α(s) and β(s)

We glue ũ and ṽ together to obtain a one-parameter family of approximate solu-

tions Wρ of equation 3.3 as follows.

Wρ = ũ#ρṽ =


ũ(s, t), s ≤ ρ

α(s)ũ(s, t) + β(s− 2ρ− 1)ṽ(−s, t), ρ ≤ s ≤ ρ+ 1

ṽ(s− 2ρ− 2, t). s ≥ ρ+ 1
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By the conditions on u and v, we have the following two cases. See Figure 3.6

case (a)

+
_

b(t)

v(s,t) u(s,t)
u(s,t) v(s,t)

b(t)

case (b)

+_

Figure 3.6: There are two cases (a) and (b) for the gluing

v(- -1, 0)

case (1)

+ _

b(t)

u( ,1)

u( ,t)

u( ,o)

v(- -1, 1)

v(- -1, t)

Figure 3.7: One of the cases for the case (a)

For case (a), there are three cases in terms of the endpoints of u(s, 1) and v(−s, 1)

over [ρ, ρ + 1] (See Figure 3.7 and Figure 3.8). For case (b), there are also three

cases in terms of the endpoints of u(s, 0) and v(−s, 0) over [ρ, ρ + 1]. Here, we only

prove for case (1), one of the cases of the case (a).(See Figure 3.7.) The proof of

the other two cases is the same, the only difference is the endpoints of u(s, 1) and

v(−s, 1) over [ρ, ρ + 1]. Based on Wρ, we will construct a family of J-holomorphic

curves Mρ = Wρ + η̃ρ ∈ M̂(a, c) for some η̃ρ. Where
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v(- -1, 0)

case (2)

+ _

b(t)

u( ,1)

u( ,t)

u( ,o)

v(- -1, 1)

v(- -1, t) v(- -1, t)

v(- -1, 1)

v(- -1, 0)

case (3)

b(t)

u( ,1)

u( ,t)

u( ,o)

+ 
_

Figure 3.8: The other two cases for the case (a)

η̃ρ = (ηρ, T̄ ) : Σ −→ R3 × R

is a smooth map such that

(a) ∂̄J(Wρ + η̃ρ) = 0

(b) η̃ρ|Σ\Ω = 0, where Ω = [ρ, ρ+ 1]× [0, 1]

(c) ηρ satisfies the following boundary conditions on Ω
α(s)u(s, 0) + β(s− 2ρ− 1)v(−s, 0) + ηρ(s, 0) = γ0(s)

α(s)u(s, 1) + β(s− 2ρ− 1)v(−s, 1) + ηρ(s, 1) = γ1(s)

ηρ|{ρ,ρ+1}×[0,1] = 0.

+1

(s,t)
0 0

(s,1)

(s,0)

Figure 3.9: η̃ρ = 0 on Σ \ Ω and ηρ satisfies the boundary conditions on Ω.
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Where γ0(s) and γ1(s) are two reparametrizations of Legendrian knot L of pieces

of [v(−ρ − 1, 1), b(1)] and [v(−ρ − 1, 0), u(ρ, 0)] over [ρ, ρ + 1] respectively. If such

an η̃ρ exists uniquely and only depends on ρ, then Mρ = Wρ + ηρ ∈ M̂(a, c). So we

have a family of solutions of (3.1). This shows that ends of moduli space M̂(a, c)

correspond to pairs of connecting J-holomorphic curves ũ ∈ M̂(a, b) and ṽ ∈ M̂(b, c),

Also M̂(a, c) is a compact one-dimensional manifold. Hence one obtains

∂n−1∂na =
∑
|c|=n−2

 ∑
|b|=n−1

#Z2M̂(a, b) ·#Z2M̂(b, c)

 c

= 0

Step 2. The existence of η̃ρ. The rest of the proof is to show the existence of such

an η̃ρ. Suppose that

η̃ρ = (ηρ, T̄ ) : Σ −→ R3 × R

(s, t) 7−→ (x̄, ȳ, z̄, T̄ )

If we set Mρ = (X, Y, Z,T), then Mρ = Wρ + η̃ρ has coordinates as follows.

X = α(s)x(s, t) + β(s− 2ρ− 1)x̃(−s, t) + x̄(s, t)

Y = α(s)y(s, t) + β(s− 2ρ− 1)ỹ(−s, t) + ȳ(s, t)

Z = α(s)z(s, t) + β(s− 2ρ− 1)z̃(−s, t) + z̄(s, t)

T = α(s)T (s, t) + β(s− 2ρ− 1)T̃ (−s, t) + T̄ (s, t)

(3.7)

Note that η̃ρ satisfies the equation ∂̄J(Wρ + η̃ρ) = 0, It is equivalent to the following.



Xs − Yt = 0 (3.8.1)

Ys +Xt = 0 (3.8.2)

Zs + Tt = Y Yt (3.8.3)

Ts − Zt = −Y Xt (3.8.4)

(3.8)
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Combining with ( 3.7) then (3.8.1) and (3.8.2) are equivalent to the following

equations in terms of x̄ and ȳ coordinates of η̃ρ over Ω


x̄s − ȳt = −(α′x+ αxs + β′x̃− βx̃s − αyt − βỹt) = h1

ȳs + x̄t = −(α′y + αys + β′ỹ − βỹs + αxt + βx̃t) = h2

(3.9)

Based on these equations, we can derive Possion equation for x̄ as follows
4x̄ = f1 on Ω

x̄|∂Ω = g1 on ∂Ω

(3.10)

Where f1 = ∂sh1 − ∂th2 and g1 is a function over ∂Ω given by the condition (c)

of η̃ρ Then, by [15] we know that there is a unique solution for x̄ over Ω with the

prescribed boundary condition.

Similarly, we can find ȳ and z̄ coordinates of η̃ρ by solving Possion equations

respectively 
4ȳ = f2 in Ω

ȳ|∂Ω = g2 on ∂Ω

and 
4z̄ = f3 in Ω

z̄|∂Ω = g3 on ∂Ω

Where fi and gi (i = 2, 3) are obtained by the same way as ( 3.10). We have found

coordinates of ηρ = (x̄, ȳ, z̄). By the equations (3.8.3) and (3.8.4), using Poincare

lemma, we can find T̄ uniquely up to adding a constant, it is fine with moduli space

M̂(a, c) since we modulo R-direction. So far we have found η̃ρ = (x̄, ȳ, z̄, T̄ ) uniquely

and η̃ρ only depends on ρ. Therefore, this shows that (Cn, ∂n) is a chain complex.

This completes the proof.
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We call the chain complex (Cn, ∂n) Reeb chord complex of Legendrian knots. Now,

we are in a position to define the integral graded homology of Reeb chord complex as

follows

CHn(L) =
Ker∂n
Im∂n+1

(3.11)

We call CH∗(L) the integral graded homology of Reeb chord complex of Legen-

drian knot L. This is a Z−graded vector space over Z2 . We will prove that the

homology CH∗(L) is a topological invariant of Legendrian knots in the next chapter.
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CHAPTER 4

Invariance of The Integral Graded Homology of Reeb Chord Complex of

Legendrian Knots

The aim for this chapter is to prove the following main theorem of the thesis.

Theorem 4.0.1 Under the assumption r(L) 6= 0, the homology CHn(L) =
Ker∂n
Im∂n+1

of Reeb chord complex is a topological invariant of Legendrian knots for all n ∈ Z.

The proof is based on the following three sections, it turns out that CH∗(L) is un-

changed under the Legendrian Reidemeister moves. This shows that the homology

CH∗(L) is a Legendrian invariant.

Throughout the chapter, we choose a small neighbourhood of Reeb chords such

that all Legendrian Reidemeister moves take place in this small neighbourhood.

Meanwhile, we use L′ to stand for the Legendrian knot L after we perform one

of Legendrian Reidemeister moves and we use ∂̃ and ∂ to represent the correspond-

ing differentials. For convenience, we use M(L) and M(L′) to denote the set of all

J-holomorphic disks corresponding to L and L′ respectively.

4.1 Invariance of Move I

In this section, we prove that the homology CH∗(L) is unchanged under Legendrian

Reidemeister move I (See Figure 4.1). We show that there is a one-to-one correspon-

dence between the set of J-holomorphic disks in corresponding moduli spaces before

and after move I, this means that ∂̃ = ∂. Since there are no new-born Reeb chords

in move I, we number all Reeb chords in the same way for both knots L and L′.
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Move I

a

b

c

b
a

c

Figure 4.1: Legendrian Reidemeister Move I

Proposition 4.1.1 The homology CH∗(L) is unchanged under Legendrian Reide-

meister move I.

Proof. First, let’s look at a J-holomorphic disk with the Reeb chord a as one of

asymptotes and covers the corner shown in Figure 4.2

a

b

c

Move I

a
b

c

Figure 4.2: Correspondence between J-holomorphic disks with one of asymptotes at

a in Legendrian Reidemeister Move I

If there is a J-holomorphic disk with Reeb chord a as one of asymptotes shown

in the first picture of Figure 4.2, then after we perform move I, then there is a

corresponding J-holomorphic disk with Reeb chord a as one of asymptotes shown in

the second picture of Figure 4.2. Conversely, this is also true. Thus there is a one-

to-one correspondence between J-holomorphic disks in this case. Similarly, when the

segment [a, c] is not the boundary of J-holomorphic disks, we can show that there is a
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one-to-one correspondence between J-holomorphic disks before and after Legendrian

Reidemeister move I.

a

b

c

Move I
b

a

c a'

c'

Figure 4.3: Correspondence between J-holomorphic disks with asymptotes at a and

c in Legendrian Reidemeister Move I

If the segment [a, c] is the boundary of a J-holomorphic disk (see Figure 4.3),

we will also show that there is a one-to-one correspondence between J-holomorphic

disks before and after Legendrian Reidemeister move I. Suppose that there is a J-

holomorphic disk u with [a, c] as one of boundaries and a, c as asymptotes shown in

the first picture of Figure 4.3, then after we perform Legendrian Reidemeister move

I, we shall show that there is a corresponding J-holomorphic disk v shown in the

second picture of Figure 4.3. In fact, to obtain such a J-holomorphic disk v from u,

It suffices to show there is a J-holomorphic disk as shown in the Figure 4.4, we glue

this disk with u along [a, c], then we obtain the corresponding J-holomorphic disk

v. Thus we show that there is a one-to-one correspondence between J-holomorphic

disks before and after Reidemeister move I. In order to show the existence of such a

J-holomorphic disk, let’s look at the following local model. We choose a small cube

with edge ε ( see the first picture of Figure 4.4).

Let Q = [0, ε] × [0, ε] and we parametrize Q by (s, t). For this local model, we

have two concrete J-holomorphic disks as follows.

37



a

c

a'

c'

3

0
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30 3, , ()
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c

a

a'

c'

b

Figure 4.4: Local picture for the existence of a J-holomorphic disk in move I

If s ≤ t , W1(s, t) =



x = s

y = t

z = t− s

T =
1

2
t2 + t+ s

(4.1)

If s ≥ t , W2(s, t) =



x = s

y = t

z = s− t

T =
1

2
t2 − t− s

(4.2)

It is easy to verify that both W1 and W2 satisfy equations (3.1). W 1 satisfies

boundary condition given by the boundary of triangle (a′c′c) and W2 satisfies bound-

ary condition given by boundary of triangle (caa′). Where W i are (x, y, z) coordinates

of Wi (i = 1, 2) in R3. We also notice that W 1 and W 2 meet at edge cc′. In order to

obtain a J-holomorphic disk based on this local model. First, choose δ > 0 sufficiently
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small, let

Ω = {(s, t) ∈ Q | 0 ≤ s ≤ δ, 0 ≤ t ≤ s+ δ}

∪ {(s, t) ∈ Q | δ ≤ s ≤ ε− δ, s− δ ≤ t ≤ s+ δ}

∪ {(s, t) ∈ Q | ε− δ ≤ s ≤ ε, s− δ ≤ t ≤ ε}

and

A = {(s, t) ∈ Q | 0 ≤ s ≤ ε− δ, δ + s ≤ t ≤ ε}

B = {(s, t) ∈ Q | δ ≤ s ≤ ε, 0 ≤ t ≤ s− δ}

d

d 3

3

d

3_
d3_

A

B

0

3
Figure 4.5: The subsets Ω, A and B of [0, ε]× [0, ε]

Then we define a map Wδ: [0, ε]× [0, ε] −→ R3 × R as follows

Wδ(ζ) =


W1(ζ) ζ ∈ A

α(ζ)W1(ζ) + β(ζ)W2(ζ) ζ ∈ Ω

W2(ζ) ζ ∈ B

(4.3)

Where ζ = (s, t) ∈ Q, α and β are two cut-off functions on Q such that

• α(ζ)|A = 1 and α(ζ)|B = 0

• β(ζ)|A = 0 and β(ζ)|B = 1
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Based on Wδ, we will construct a J-holomorphic disk Mδ = Wδ + η̃δ for some η̃δ.

Where

η̃δ = (ηδ, T̃ ) : Q −→ R3 × R

is a smooth map such that

(a) ∂̄J(Wδ + η̃δ) = 0 on Q = [0, ε]× [0, ε]

(b) η̃δ|Q\Ω = 0

(c) ηδ on ∂Q satisfies the following boundary conditions.

(W δ + ηδ)|∂Q =



(s, ε, ε− s), 0 ≤ s ≤ ε

(0, t, t), 0 ≤ t ≤ ε

(s, 0, s), 0 ≤ s ≤ ε

(ε, t, ε− t). 0 ≤ t ≤ ε

Where W δ is (x, y, z) coordinates of Wδ. For convenience, we suppose Mδ =

(X, Y, Z, T ) and η̃δ = (x̃, ỹ, z̃, T̃ ), then by above conditions on η̃δ, we will show that

there exists such an η̃δ satisfying all above conditions and η̃δ only depends on param-

eter δ. Thus we obtain a J-holomorphic disk Mδ. By ( 4.1), ( 4.2) and ( 4.3), we

have

Mδ = Wδ + η̃δ =


(s, t, t− s, 1

2
t2 + t+ s), (s, t) ∈ A

(X(s, t), Y (s, t), Z(s, t), T (s, t)), (s, t) ∈ Ω

(s, t, s− t, 1

2
t2 − t− s), (s, t) ∈ B
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Where X, Y, Z and T are smooth functions on Ω and are given as follows.



X = α(s, t)s+ β(s, t)s+ x̃(s, t)

Y = α(s, t)t+ β(s, t)t+ ỹ(s, t)

Z = (α(s, t)− β(s, t))(t− s) + z̃(s, t)

T =
1

2
(α(s, t) + β(s, t))t2 + (α(s, t)− β(s, t))(t+ s) + T̃ (s, t).

(4.4)

Now, combine ( 4.4) with the condition (a), we can derive the equation given below

that ηδ has to satisfy.



x̃s − ỹt = (βt + αt)t− (βs + αs)s, (4.5.1)

ỹs + x̃t = −(βt + αt)s− (βs + αs)t, (4.5.2)

z̃s + T̃t =
1

2
t2(αt + βt)(2α + 2β − 1)− (βs − αs + αt − βt)s

+(α2 + β2 + ỹtα + ỹtβ + ỹαt + ỹβt − αs + βs − αt − βt − α− β)t

+ỹ(α + β + ỹt), (4.5.3)

T̃s − z̃t = −1

2
(αs + βs)t

2 − (αs − βs − αt + βt + x̃tα + x̃tβ)t− ỹx̃t

−(αs + βs − αt + βt + ỹαt + ỹβt)s− (α + β)(βt + αt)ts. (4.5.4)

(4.5)

By (4.5.1) and (4.5.2), it follows that x̃ satisfies Possion equation with prescribed

boundary condition given in (c).
4x̃ = f1 in Ω

x̃|∂Ω = g1 on ∂Ω

(4.6)
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Where f1 = −2(βs + αs) − (βss − βtt + αss − αtt)s and g1 is a piecewise smooth

map on ∂Ω. By the condition (c), we have

g1 =



ε(1− α(ε, t)− β(ε, t)) s = ε, ε− δ ≤ t ≤ ε

s(1− α(s, ε)− β(s, ε)) t = ε, ε− δ ≤ s ≤ ε

−s(α(s, s+ δ) + β(s, s+ δ)) t = s+ δ, 0 ≤ s ≤ ε− δ

0 s = 0, 0 ≤ s ≤ δ

s(1− α(s, 0)− β(s, 0)) t = 0, 0 ≤ s ≤ δ

−s(α(s, s− δ) + β(s, s− δ)) t = s− δ, δ ≤ s ≤ ε

For the equation ( 4.5), since Ω is simple connected, we know that there is a

unique solution for x̃ over Ω.

Similarly, we can find ỹ and z̃ coordinates of η̃ρ by solving the following Possion

equations respectively 
4ỹ = f2 in Ω

ỹ|∂Ω = g2 on ∂Ω

and 
4z̃ = f3 in Ω

z̃|∂Ω = g3 on ∂Ω

Where fi and gi (i = 2, 3) are obtained by the same way as (4.5). We have found

coordinates of ηδ = (x̃, ỹ, z̃). By the equations (4.4.3) and (4.4.4), using Poincare

lemma, we can find T̃ uniquely up to adding a constant, it is fine since we modulo

R-direction. So far we have found η̃δ = (x̃, ỹ, z̃, T̃ ) uniquely and η̃δ only depends on

δ. Thus we obtain a smooth J-holomorphic disk Mδ. This completes the proof.
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4.2 Invariance of Move II

In this section, we prove that the homology CH∗(L) is unchanged under Legendrian

Reidemeister move II. The proof is similar to the proof of move I. We also claim that

∂ = ∂̃. As in move I, since there is no new-born Reeb chords in move II, so we number

all Reeb chords the same before and after move II (see Figure 4.6).

c

b

a

Move II

b 

a

c

Figure 4.6: Legendrian Reidemeister Move II

In move II, we notice that the strand of L containing a(1) is under the strand of

L containing c(1). In move I, the strand of L containing a(1) is over the strand of L

containing c(1). In fact, this difference will not affect the fact that ∂ = ∂̃.

Proposition 4.2.1 The homology CH∗(L) is unchanged under Legendrian Reide-

meister move II.

Proof. First, let’s look at one of possibilities, if there is a J-holomorphic disk with

Reeb chord c as one of asymptotes and boundary as shown in the first picture of

Figure 4.7, then after we perform move II, there is a corresponding J-holomorphic

disk with the same asymptote at Reeb chord c as shown in the second picture of

Figure 4.7. Conversely, this correspondence also holds. Similarly, when [a, c] is not

the boundary of a J-holomorphic disk, we can show that there is a one-to-one corre-

spondence between the set of J-holomorphic disks before and after move II.
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c

b

a

Move II
c

b
a

Figure 4.7: Correspondence between J-holomorphic disks with one of asymptotes at

c in Legendrian Reidemeister Move II

If there is a J-holomorphic disk with [a, c] as one of boundaries shown in Figure 4.8,

then we can carry out the same proof as in proposition 4.1.1 to show that there is

also a one-to-one correspondence between J-holomorphic disks. Thus, we prove that

there is a one-to-one correspondence between the set of J-holomorphic disks before

and after move II. Hence ∂ = ∂̃.

c

b

a

Move II
c

b
a

Figure 4.8: Correspondence between J-holomorphic disks with asymptotes at a and

c in Legendrian Reidemeister Move II

4.3 Invariance of Move III

In this section, we prove that the homology CH∗(L) is unchanged under Legendrian

Reidemeister move III.
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a b

Figure 4.9: Legendrian Reidemeister move III

First, we notice that if we perform move III, then there are two new-born Reeb

chords a and b. We assume that |a| = k and |b| = k − 1, after Reidemeister move

III, denote its homology by ĈH∗(L) and boundary operator by ∂̃n, then let’s consider

the following chain complex:

· · · → Ck+1
∂̃k+1−→Ck ⊕ 〈a〉

∂̃k−→Ck−1 ⊕ 〈b〉
∂̃k−1−→Ck−2 → . . . . (4.7)

It is easy to see that for the boundary operator: ∂̃n = ∂n if n ≤ k − 2 or n ≥

k + 2, Since the rest part of Legendrian knot is the same as before if we perform

Reidemeister move III. Hence, there is no need to prove ĈHn(L) = CHn(L) when

n ≤ k − 2 or n ≥ k + 2. In the rest part of this section, we only need to prove that

ĈHn(L) = CHn(L) when n = k + 1, k, k − 1. For convenience, we may choose bases

{λ1, λ2, ...λn} for Ck+1, {β1, β2, ...βm, a} for Ck⊕〈a〉 , {η1, η2...ηs,b+η} for Ck−1⊕〈b〉

and {γ1, γ2, ...γt} for Ck−2 respectively. Here we also assume that ∂̃ka = b + η, where

η ∈ Ck−1.

If there is no risk of any confusion, we still use the same notations ∂̃n and ∂n for

the matrix representations of ∂̃n and ∂n with respect to corresponding bases. Then
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we have:

∂̃k+1 =

∂k+1

B1,n

 and ∂̃k =

 ∂k 0

B1,m 1

 (4.8)

Where B1,n is an 1 × n matrix whose entry b1,i, (i = 1, 2 . . . , n) is the coefficient

of a in the linear combination of ∂̃k+1λi with respect to the basis {β1, β2, . . . , βm, a}

for Ck ⊕ 〈a〉, similarly, B1,m is an 1 × m matrix whose entry b1,j(j = 1, 2, ...m) is

the coefficient of b + η in the linear combination of ∂̃kβj with respect to the basis

{η1, η2...ηs,b + η} for Ck−1 ⊕ 〈b〉. Note that ∂k ◦ ∂k+1 = ∂̃k ◦ ∂̃k+1 = 0, therefore, we

have  ∂k 0

B1,m 1


∂k+1

B1,n

 =

 ∂k ◦ ∂k+1

B1,m ◦ ∂k+1 +B1,n

 = 0 (4.9)

It follows that :

B1,m ◦ ∂k+1 = B1,n (4.10)

With respect to the bases {λ1, λ2, ...λn} for Ck+1, and {β1, β2, ...βm, a} for Ck ⊕ 〈a〉,

the matrix representation of Im∂̃k+1 can be given as follows:

Im∂̃k+1 =


∂k+1X

B1,nX


∣∣∣∣∣∣∣ ∀X ∈ Ck+1


by( 4.9)

=


 ∂k+1X

B1,m ◦ ∂k+1X


∣∣∣∣∣∣∣ ∀X ∈ Ck+1

 (4.11)

=


 Y

B1,mY


∣∣∣∣∣∣∣ Y = ∂k+1X ∈ Im∂k+1, ∀X ∈ Ck+1


Similarly, with respect to the bases {η1, η2, . . . , ηs,b + η} and {β1, β2, ...βm, a} the
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matrix representation of Ker ∂̃k and Im∂̃k can be given as follows:

Ker∂̃k =


X
x

 ∈ Ck ⊕ 〈a〉
∣∣∣∣∣∣∣ ∂kX = 0, B1,mX = x


=


X
x

 ∈ Ck ⊕ a

∣∣∣∣∣∣∣ X ∈ Ker ∂k, B1,mX = x

 (4.12)

Im ∂̃k =


 ∂k 0

B1,m 1


X
x


∣∣∣∣∣∣∣
X
x

 ∈ Ck ⊕ 〈a〉


=


 ∂kX

B1,mX + x


∣∣∣∣∣∣∣
X
x

 ∈ Ck ⊕ 〈a〉
 (4.13)

Now, we are ready to prove one of the main lemmas of this section.

Lemma 4.3.1 ĈHk(L) ∼= CHk(L).

Proof. First, we define a map :

ϕ : Ker∂k −→ Ker∂̃k

X −→

 X

B1,mX


Then, we will show that ϕ is isomorphic. In fact, ϕ has the following properties.

(a) For any X1, X2 ∈ Ker∂k, we have

ϕ (X1 +X2) =

 X1 +X2

B1,m(X1 +X2)


def
=

 X1

B1,m

+

 X2

B1,mX2


= ϕ (X1) + ϕ (X2) .

This shows that ϕ is a homorphism between two vector spaces Ker ∂k and Ker∂̃k.

47



(b) If ϕ (X) = 0 =⇒

 X

B1,mX

= 0 =⇒ X = 0, this implies that ϕ is injective.

(c) ∀β ∈ Ker∂̃k, by ( 4.12), it follows that β is of the form

 X

B1,mX

 for some

X ∈ Ker∂k. Hence, ϕ is surjective.

Therefore, ϕ is an isomorphism. We also note that

Im∂̃k+1 =


 Y

B1,mY


∣∣∣∣∣∣∣ Y = ∂k+1X ∈ Im∂k+1,∀X ∈ Ck+1

 (4.14)

Then,

ϕ|Im∂k+1
= Im∂̃k+1

Thus, we have that ĈHk(L) =
Ker∂̃k

Im∂̃k+1

∼=
Ker∂k
Im∂k+1

= CHk(L), this proves the lemma.

Lemma 4.3.2 ̂CHk+1(L) ∼= CHk+1(L).

Proof. Note that :

Ker∂̃k+1 =

X ∈ Ck+1

∣∣∣∣∣∣∣
∂k+1X

B1,nX

 = 0


by( 4.11)

=

X ∈ Ck+1

∣∣∣∣∣∣∣
 ∂k+1X

B1,m∂k+1X

 = 0


⇔ X ∈ Ker∂k+1

Hence, Ker∂̃K+1 = Ker∂k+1. Obviously, Im∂̃k+2 = Im∂k+2. So, we have that

̂CHk+1(L) =
Ker∂̃k+1

Im∂̃k+2

∼=
Ker∂k+1

Im∂k+2

= CHk+1(L), this proves the lemma.

Finally, we only need to check for n = k − 1. By chain complex ( 4.7) and the

bases we choose for Ck ⊕ 〈a〉 ,Ck−1 ⊕ 〈b〉 and Ck−2 as before, also we notice that
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Ck−1 ⊕ 〈b〉 = Ck−1 ⊕ 〈b + η〉, with respect to those bases, then the matrix represen-

tation of ∂̃k−1 is as follows :

∂̃k−1 =

[
∂k 0

]
(4.15)

Since ∂̃k−1|Ck−1
= ∂k and ∂̃k−1(b + η) = 0 and the first move does not affect other

Reeb chords. Hence, by ( 4.13)

Im∂̃k =


 ∂k 0

B1,m 1


Ym
y


∣∣∣∣∣∣∣
Ym
y

 ∈ Ck ⊕ 〈a〉


=


 ∂kYm

B1,mY + y


∣∣∣∣∣∣∣
Ym
y

 ∈ Ck ⊕ 〈a〉
 (4.16)

and by ( 4.12), we have

Ker∂̃k−1 =


Xs

x

 ∈ Ck−1 ⊕ 〈b + η〉

∣∣∣∣∣∣∣
[
∂k−1 0

]Xs

x

 = 0


=


Xs

x

 ∈ Ck−1 ⊕ 〈b + η〉

∣∣∣∣∣∣∣ ∂k−1Xs = 0

 (4.17)

=


Xs

x

 ∈ Ck−1 ⊕ 〈b + η〉

∣∣∣∣∣∣∣ Xs ∈ Ker∂k−1



Lemma 4.3.3 ̂CHk−1(L) ∼= CHk−1(L).

Proof. By ( 4.17), we know that any element in Ker∂̃k−1 is of the form

Xs

x

, where

Xs ∈ Ker∂k−1 . So we define a map:

49



Φ : Ker∂̃k−1 −→ Ker∂k−1

Xs

x

 −→ Xs

then, Φ satisfies the following conditions.

(a). Φ is a homomorphism. Since for any

Xs

x

,

X̃s

x̃

 ∈ Ker∂̃k−1,

Φ


Xs

x

+

X̃s

x̃


 def

= Xs + X̃s = Φ


Xs

x


+ Φ


X̃s

x̃


 .

(b).

I =: KerΦ
def
=


0

x


∣∣∣∣∣∣∣ x ∈ Z2


This is a subspace of Ker∂̃k−1. Since Φ


Xs

x


 = 0⇒ Xs = 0

(c). By definition, it is easy to see that Φ is subjective. Hence,

Ker∂̃k−1/I ∼= Ker∂k−1.

(d). By ( 4.14), we have

Φ(Im∂̃k) = Im∂k

In fact, for ∀

 ∂kYm

B1,mYm + y

 ∈ Im∂̃k , then its image is ∂kYm(∈ Im∂k) under the

map Φ. Since the Φ is subjective, this gives us Φ(Im∂̃k) = Im∂k.
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(e). KerΦ ⊂ Im∂̃k. By (b), we may choose

0

1

∈ KerΦ, then by ( 4.8 ), it is easy to

obtain that ∂̃k


0

1


 =

0

1

 ∈ Im∂̃k.

Thus, by (c),(d) and (e), we have

Ker∂̃k−1/I/Im∂̃k/I ∼=
Ker∂k−1

Im∂k

Hence,

̂CHk−1(L) =
Ker∂̃k−1

Im∂̃k
∼=

Ker∂k−1

Im∂k
= CHk−1(L)

By above three lemmas, we conclude

Proposition 4.3.1 The homology CH∗(L) is unchanged under Legendrian Reide-

meister move III.

4.4 The proof of invariance

Theorem 4.1 Under assumption r(L) 6= 0, the homology CHn(L) =
Ker∂n
Im∂n+1

of Reeb

chord complex is a topological invariant of Legendrian knots for all n ∈ Z.

Proof. The invariance of the homology CH∗(L) follows from propositions 4.1.1, 4.2.1

and 4.3.1.

Hence we have shown that the homology CH∗(L) of Reeb chord complex is un-

changed under Legendrian Reidemeister moves, thus it is an invariant of Legendrian

knots. It is a Z− graded vector space over Z2.
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