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CHAPTER 1

INTRODUCTION

Fluid mechanics plays a pivotal role in engineering application to daily lives. The

prominently famous fluid dynamics partial differential equations (PDE) due to its

remarkable utility is the Navier-Stokes equations (NSE) (cf. [MB01]):

∂u

∂t
+ (u · ∇)u+∇π = ν∆u+ f, (1.1a)

∇ · u = 0, u(x, 0) = u0(x), (1.1b)

where u : RN × R+ 7→ RN represents the velocity vector field, π : RN × R+ 7→ R

the pressure scalar field, f : RN × R+ 7→ RN the external force (e.g. gravity) with

N ≥ 2, N ∈ N and ν ≥ 0 the viscosity of fluid. We note that

(u · ∇)u =
N∑
i=1

(ui
∂

∂xi

)u, ∆u =
N∑
i=1

∂2u

(∂xi)2
.

The dot product of a gradient vector and u represents the incompressibility

(volume-preserving) property of fluid. Given u0, the system (1.1a)-(1.1b) becomes

an initial value problem of an non-linear evolutionary PDE. As important role as the

system (1.1a)-(1.1b) plays in applications such as the design of aircraft and the study

of blood flow, it remains unknown whether the solution preserves the smoothness of

initial data globally in time. This problem has been so highly regarded that it has

become one of the seven Millennium Prize problems declared by the Clay Research

Institute (cf. [CJW06]).

My research interest concerns precisely the global regularity issue of the NSE
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(1.1a)-(1.1b). Over decades since the study of the NSE problem was initiated by

Professor Leray (cf. [L33]), various unique and creative ideas from countless number

of great mathematicians flourished and their results inspired subsequent generations

to come. My approach in research is to extend and improve previous results on not

only the NSE but also its related PDE making careful observation on structure of

each PDE.

In Chapter 2, we discuss the general reason why the existence and smoothness

of the NSE has remained an outstanding open problem in mathematical analysis for

more than 80 years. In particular, we discuss the bounded quantities and notions of

criticality. We also introduce the system of our main concern, the magnetohydrody-

namics (MHD) system of which its special case is the NSE.

In Chapter 3, we discuss a new research direction of the global regularity in the

logarithmically supercritical case, initiated by Professor Tao in [T07]. Subsequently,

we present our result on the logarithmically supercritical MHD system with zero

diffusivity which was the end point case omitted in the work by Professor Wu in

[W11] (cf. [Y14c]).

In Chapter 4, we discuss the global regularity issue of the two-dimensional gener-

alized MHD system with fractional Laplacians. Subsequently, we elaborate on why

the two-dimensional case is special and present our results from [Y14a] and [Y14e].

In Chapter 5, we discuss the component reduction results of the Serrin-type reg-

ularity criteria of the three-dimensional NSE and its related systems. Subsequently,

we present our results on the three-dimensional MHD system from [Y14h] and [Y14i].

Thereafter, we conclude making comments on some open problems and work in

progress toward these problems.

The style of this writing is rather a summary of the author’s research work in the

last four years. Mathematically we focus on the survey of previous results, motivation

and difficulty and only sketch of the proofs of the actual author’s new results. Most

2



of the main results in this thesis obtained by the author have already appeared in

refereed journals: [Y14a], [Y14c], [Y14e], [Y14h], [Y14i].
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CHAPTER 2

Navier-Stokes equations, bounded quantities and criticality

2.1 Generalized Navier-Stokes equations

For the purpose of this chapter’s discussion, we generalize the classical NSE (1.1a)-

(1.1b) by replacing the dissipative term −∆u by a fractional Laplacian defined by

Λ̂2αf(ξ) = |ξ|2αf̂(ξ) ∀α ≥ 0.

That is, we consider the generalized Navier-Stokes equations (g-NSE):

∂u

∂t
+ (u · ∇)u+∇π + νΛ2αu = f, (2.1a)

∇ · u =
N∑
i=1

∂ui

∂xi

= 0, u(x, 0) = u0(x). (2.1b)

We remark that at α = 1, the g-NSE reduces to the classical NSE (1.1a)-(1.1b). We

also mention now that in case ν = 0, the classical NSE is reduced furthermore to the

Euler equations.

The integral formulation of the fractional Laplacian for a restricted range of α ∈

(0, 1) has been studied intensively (e.g. [CC04] and [J05]). Hereafter let us write for

brevity

∂t :=
∂

∂t
, ∂i :=

∂

∂xi

.

Let us also denote a constant that depends on a, b by c(a, b) and A . B and A ≈ B

when there exists a constant c ≥ 0 of no significance such that A ≤ cB and A = cB
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respectively.

We now recall the statement of the Navier-Stokes Existence and Smoothness Prob-

lem (cf. [CJW06]). We fix N = 3 and assume that divergence-free u0 and f are both

smooth and bounded; i.e. u0, f ∈ C∞(R3), ∇·u0 = 0, ∀ multi-index γ1 and a natural

number γ2, ∀K > 0, ∃ C = C(γ1, γ2, K) > 0 such that

1.

|∂γ1
x u0(x)| ≤

C

(1 + |x|)K
∀ x ∈ R3,

2.

|∂γ1
x ∂γ2

t f(x, t)| ≤ C

(1 + |x|+ t)K
∀ (x, t) ∈ R3 × [0,∞).

The problem is to show that

1. with f ≡ 0, for any u0 satisfying the condition above, ∃ a solution to the NSE

(1.1a)-(1.1b), u ∈ C∞(R3 × [0,∞))3 such that its kinetic energy ‖u(t)‖2L2 is

uniformly bounded ∀ t ≥ 0,

2. or ∃ u0(x) and f(x, t) satisfying the conditions above and the smoothness breaks

down in finite time.

Because all the discussion in this thesis will be toward the global regularity result

rather than a blow-up, hereafter we assume f ≡ 0 in both (1.1a) and (2.1a).

Despite much effort by great mathematicians in generations since the work of

Professor Leray in [L33], the problem remains open. Yet, this problem continues to

captivate the hearts of young aspiring mathematicians. In the author’s opinion, it is

due to so many beautiful results from creative ideas that continue to indicate that

somehow the problem is “almost” solved. We briefly list some of these results in mind,

most of which were obtained by Professor Leray in [L33] and we refer to [MB01] for

a collective study on these directions of research:
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1. The global existence of a weak solution in case N = 3 has been shown, although

its uniqueness remains open.

2. The local existence of the unique strong solution in case N = 3 is also well-

known but whether it may be extended globally in time remains open.

3. The global existence of the unique strong solution with N = 3 is shown if the

initial data is sufficiently small.

4. The global existence of the unique strong solution if N = 2 is shown. In fact,

even for the two-dimensional Euler equations, the global existence of the unique

strong solution has been known (cf. [K67]).

5. Omitting ∇π term, the NSE becomes the Burger’s equation and the global

existence of the unique strong solution in any dimension N ≥ 2 is known (e.g.

[KNS08] in case N = 1 and the domain is a torus).

2.2 Bounded quantities and criticality

The solution to the NSE, similarly to many other PDEs based on physics, possess con-

served quantities. In this section we elaborate on a few and discuss their implications.

We take L2-inner products of the g-NSE (2.1a) with u to obtain

∫
∂tu · u+

∫
(u · ∇)u · u+

∫
∇π · u+ ν

∫
Λ2αu · u = 0.

We observe that the second and third terms immediately vanish after integration by

parts due to the incompressibility condition (2.1b):

∫ N∑
i,j=1

ui(∂iuj)uj =

∫ N∑
i,j=1

1

2
ui∂i(uj)

2 = −
∫ N∑

j=1

1

2
(∇ · u)(uj)

2 = 0,

∫
∇π · u = −

∫
π(∇ · u) = 0.
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Therefore, we obtain an identity of

1

2
∂t‖u‖2L2 + ν‖Λαu‖2L2 = 0.

Integrating in time leads to

sup
t∈[0,T ]

‖u(t)‖2L2 + 2ν

∫ T

0

‖Λαu‖2L2dt ≤ c(u0). (2.2)

This implies the conservation of kinetic energy supt∈[0,T ]‖u(t)‖2L2 and cumulative ki-

netic energy dissipation ν
∫ T

0
‖Λαu‖2L2dt. We note that more conserved quantities

have been found (cf. [MB01]); however, these two quantities have proven to be most

readily useful in utilizing for the global regularity proofs.

Now a basic approach of energy method to try to prove the validity of the first

possibility of the Millennium Prize Problem in N dimension would be to try to attain

a bound of the form

∂t‖u(·, t)‖2Hs ≤ A(t)B(t)‖u(·, t)‖2Hs ∀ t ∈ [0, T ],

where

∫ T

0

A(s)ds < ∞, sup
t∈[0,T ]

B(t) ≤ c,

so that by Gronwall’s inequality, this leads to

sup
t∈[0,T ]

‖u(·, t)‖2Hs ≤ ‖u0(·)‖2Hsesups∈[0,t] B(s)
∫ T
0 A(s)ds < ∞.

In case of the g-NSE, from (2.2) we see that the appropriate candidates for A and B

are surely

A(s) = ‖Λαu(·, s)‖2L2 , B(t) = ‖u(·, t)‖2L2 .
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We shall give a heuristic argument as to why the Existence and Smoothness prob-

lem of the Navier-Stokes equations remains difficult. Again, similarly to many other

systems of PDE that arise from physics, the solution to the NSE and the g-NSE obey

the scaling invariance; namely, if u : RN×[0, T ) 7→ RN solves the g-NSE (2.1a)-(2.1b),

then so does

uλ : RN × [0,
T

λ2α
) 7→ RN , uλ(x, t) := λ2α−1u(λx, λ2αt).

This implies that upon scaling, the L2-norm, on which we wish to rely on its uniform

boundedness as we discussed, has the following issue:

‖uλ(x, t)‖2L2 =

∫
RN

|λ2α−1u(λx, λ2αt)|2dx = λ4α−2−N‖u(·, λ2αt)‖2L2 .

Based on this observation, it is convention that we classify the g-NSE with various

powers of α as follows:

1. the g-NSE is energy-subcitical when α > 1
2
+ N

4
,

2. the g-NSE is energy-citical when α = 1
2
+ N

4
,

3. the g-NSE is energy-supercitical when α < 1
2
+ N

4
.

Notice for N = 2, the g-NSE (2.1a)-(2.1b) is energy critical while for N = 3,

g-NSE requires α = 5
4
to be critical. The Millennium Prize Problem is set for the

classical NSE (1.1a)-(1.1b) which is (2.1a)-(2.1b) at α = 1, N = 3 and hence in

the “energy-supercritical’ regime. The main point to which we come back hereafter

repeatedly is that the higher power the fractional Laplacian of the dissipative (or

diffusive) term, the easier the global regularity result becomes to show. We mention

that on the other hand, making the non-linear term somehow mild also achieves the

same goal (cf. [CIW08], [MX12], [K10] for the modified surface quasi-geostrophic

equations and [Y11a] for the modified porous media equations).
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2.3 Magnetohydrodynamics system

We now introduce the system of PDE which is very closely related to the NSE and is of

our main concern, namely the generalized magnetohydrodynamics (g-MHD) system:

∂tu+ (u · ∇)u+∇π + νΛ2αu = (b · ∇)b, (2.3a)

∂tb+ (u · ∇)b− (b · ∇)u+ ηΛ2βb = 0, (2.3b)

u(x, 0) = u0(x), b(x, 0) = b0(x), ∇ · u = ∇ · b = 0, (2.3c)

where b : RN × R+ 7→ RN is the magnetic field, η ≥ 0 the diffusivity constant and

β ≥ 0. The classical MHD system which is (2.3a)-(2.3c) at α = β = 1 describes the

motion of electrically conducting fluids and plays a fundamental role in astrophysics,

geophysics and plasma physics (cf. [ST83]). We observe that this system at zero

magnetic field (b ≡ 0) reduces to the g-NSE (2.1a)-(2.1b). The work by Serge and

Temam in [ST83] shows that the analogous results to the g-NSE with u replaced by

(u, b) can be obtained, e.g. the global existence of a weak solution pair (u, b) and the

local existence of the unique strong solution pair (u, b). However, the global regularity

issue in three-dimensional case in particular remains open.

For this system of equations, following our discussion on the rescaling issue, we

understand the following result by Professor Wu:

Theorem 2.1 ([W03]) Suppose N ≥ 2 and α ≥ 1
2
+ N

4
, β ≥ 1

2
+ N

4
. Given (u0, b0) ∈

Hs(RN), N ≥ 2, s > max{1 + 2α, 1 + 2β}, ∃ (u, b) that solves the g-MHD system

(2.3a)-(2.3c) and (u, b) ∈ Hs(RN) globally in time.

In short, the global regularity result for the generalized MHD-system (2.3a)-(2.3c)

was obtained above because at α = β, the g-MDH system regains its rescaling prop-

erty and α, β ≥ 1
2
+ N

4
, the system is in the sub-critical and critical regimes. Hence

the dissipation and diffusion strength suffice to suppress the non-linear terms and

close the a priori estimates, leading to the global regularity result.

9



CHAPTER 3

Logarithmic supercriticality

3.1 Logarithmically supercritical PDEs

Although improving the lower bound on the power of the fractional Laplacian in

the dissipative term of g-NSE (2.1a)-(2.1b) seems extremely difficult, Professor Tao

introduced the notion of “logarithmic supercriticality” on the wave equations and the

NSE (cf. [T07] and [T09]). The intuitive idea behind this phenomenon is as follows:

as we discussed in Chapter 2, the inequality of

∂t‖u(·, t)‖2Hs ≤ A(t)B(t)‖u(·, t)‖2Hs

seems to be the threshold in a way that if the term ‖u(·, t)‖2Hs on the right hand

side had any power bigger than 2, then we will not be able to show the finiteness as

desired, namely

sup
t∈[0,T ]

‖u(·, t)‖2Hs ≤ ‖u0‖2Hs exp

(
sup

t∈[0,T ]

B(t)

∫ T

0

A(τ)dτ

)
.

However, one can indeed obtain a “slightly worse” inequality and still show the

finiteness of supt∈[0,T ]‖u(·, t)‖2Hs , namely

∂t‖u(·, t)‖2Hs ≤ A(t)B(t)‖u(·, t)‖2Hs ln(e+ ‖u(·, t)‖2Hs),

which by a separation of variables implies

sup
t∈[0,T ]

‖u(·, t)‖2Hs . ‖u0‖2Hs exp

(
exp( sup

t∈[0,T ]

B(t)

∫ T

0

A(τ)dτ)

)
.

10



This is the heuristic idea behind the recent phenomenon of the global regularity

result in the logarithmically supercritical regime, of which its proof naturally has

the flavor of “Brezis-Wainger type inequality” argument (cf. [BW80]). This topic

of breaking the threshold of criticality logarithmically has caught so much attention

that by now there is an overwhelming amount of examples. We just wish to mention

several prominent work:

1. Euler equations in [CCW11],

2. Boussinesq system in [H11],

3. Wave equations in [R09].

3.2 Logarithmically supercritical MHD system with zero diffusivity

Motivated by such results, Professor Wu improved his own result from those in [W03]:

consider

∂tu+ (u · ∇)u− (b · ∇)b+∇π + νL2
1u = 0, (3.1a)

∂tb+ (u · ∇)b− (b · ∇)u+ ηL2
2b = 0, (3.1b)

where we denoted the operators L1,L2 defined as a Fourier operator with a specific

Fourier symbol e.g.

L̂1f(ξ) = m1(ξ)f̂(ξ), m1(ξ) ≥
|ξ|α

g1(ξ)
, (3.2)

for all sufficiently large |ξ| and g1 : R+ 7→ R+, g1 ≥ 1 is radially symmetric, non-

decreasing function. The operator L2 is defined analogously in terms of m2, g2 and

β. The following result was obtained in [W11]:

Theorem 3.1 (cf. [W11]) Suppose (u0, b0) ∈ Hs(RN), s > 1 + N
2
and

α ≥ 1

2
+

N

4
, β > 0, α + β ≥ 1 +

N

2
and

∫ ∞

1

dτ

τ(g21(τ) + g22(τ))
2)

= ∞.

11



Then the unique global classical solution pair (u, b) to the system (3.1a)-(3.1b) exists.

(Cf. also [Y12a] for a general result on the Leray-α and Lans−α models.) For

technical reasons, the endpoint case α = 1 + N
2
, β = 0 was infeasible in Professor

Wu’s proof. We now elaborate on this issue.

In general, even without logarithmic worsening in the dissipative and diffusive

terms, the end point case α = 1 + N
2

and zero diffusivity is slightly more subtle.

Consider such a g-MHD system with zero diffusion, N ≥ 3:

∂tu+ (u · ∇)u+∇π + νΛ2+Nu = (b · ∇)b, (3.3a)

∂tb+ (u · ∇)b− (b · ∇)u = 0, (3.3b)

for which the same procedure of taking L2-inner products on (3.3a)-(3.3b) with (u, b)

respectively as we did in Chapter 2 Section 2 on the g-NSE leads to the bounds of

sup
t∈[0,T ]

(‖u(t)‖2L2 + ‖b(t)‖2L2) +

∫ T

0

‖Λ1+N
2 u(τ)‖2L2dτ .u0,b0,T 1.

Then, on the H1-estimate, which is done by taking L2-inner products on (3.3a)-(3.3b)

with (−∆u,−∆b) respectively, we have

∂t(‖∇u‖2L2 + ν‖∇b‖2L2) + ‖Λ2+N
2 u‖2L2 .

∫
|∇u|3 + |∇u||∇b|2

.first term + ‖∇u‖L∞‖∇b‖2L2

where one faces the difficulty that H
N
2 (RN) is not embedded in L∞(RN). Fortunately

the Brezis-Wainger type inequality (cf. [BW80]) can close the estimate in this case by

possibly coupling with a higher-order estimate (cf. similar result on the Boussinesq

system in [Y14g]); however, in case of the logarithmically supercritical case, same

estimate will not work.

We now briefly discuss the proof in [W11] to clarify why the endpoint case re-

quires a different treatment. We refer to the Appendix for a review on Besov space

12



techniques.

Applying the Leray projection P, which is a projection onto the divergence-free

vector fields, on (3.1a) and then ∆j the Littlewood-Paley operator on (3.1a)-(3.1b)

leads to 
∂t∆ju+ νL2

1∆ju = −P∆j((u · ∇)u) + P∆j((b · ∇)b),

∂t∆jb+ ηL2
2∆jb = −∆j((u · ∇)b) + ∆j((b · ∇)u).

Taking L2-inner products with (∆ju,∆jb) lead to


∂t‖∆ju‖2L2 + 2ν‖L1∆ju‖2L2 = −2

∫
∆ju ·∆j((u · ∇)u) + 2

∫
∆ju ·∆j((b · ∇)b),

∂t‖∆jb‖2L2 + 2η‖L2∆jb‖2L2 = −2
∫
∆jb ·∆j((u · ∇)b) + 2

∫
∆jb ·∆j((b · ∇)u).

Multiplying by 22sj and summing over all j ≥ −1 leads to

∂t(‖u‖2Hs + ‖b‖2Hs) + 2ν
∑
j≥−1

22sj‖L1∆ju‖2L2 + 2η
∑
j≥−1

22sj‖L2∆jb‖2L2

= 3 nonlinear terms − 2
∑
j

22sj
∫

∆jb ·∆j((u · ∇)b).

To handle the product terms in Besov space, Professor Wu used Bony paraproduct

(cf. [C98]) and Besov commutator estimates. The idea of the proof is same as that

of the logarithmically supercritical NSE in [T09]. We must split between the high

and low frequency modes, for example by some M1 > 0. However, to handle the

logarithmic function gi, i = 1, 2 which is non-decreasing, at one point, it was crucial

in the work of [W11] to obtain the following estimate

∑
j>M1

g22(2
j)22sj‖∆jb‖2L22−2βj

( ∑
m≤j−2

2m(1+N
2
)‖∆mu‖L2

)2

.g22(2
M1)2−2M1(β−δ)‖b‖2Hs‖u‖2Hs ,

where he chose δ ∈ (0, β) so that

g22(2
j)2−2j(β−δ) ≤ g22(2

M1)2−2M1(β−δ)
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for j ≥ M1 (providedM1 is sufficiently large) because g2 grows logarithmically. Hence,

it is clear that β > 0 indeed was important.

Therefore, it seems that perhaps the case α = 1+N
2
with zero diffusivity requires a

new type of proof. We mention that the conjecture based on numerical analysis results

(e.g. [H85], [PPS95]) was that it should be possible to show the global regularity result

in this case because the velocity vector field seems to play a more dominant role than

the magnetic vector field in preserving their regularity. We now present our result:

Theorem 3.2 (cf. [Y14c]) Let ν > 0, η = 0, α ≥ 1 + N
2
and g1 satisfy

∫ ∞

e

dτ

g21(τ) ln(τ)τ
= ∞. (3.4)

Then for all initial data pair (u0, b0) ∈ Hs, s ≥ 3 + N , there exists a unique global

classical solution pair (u, b) to (3.1a)-(3.1b).

Remark 3.1 1. There are various ways to obtain different initial regularity con-

ditions. Indeed, improving the initial regularity is an important direction of

research of much interest (cf. [Y11b], [Y14d]). We chose the statement above

for simplicity of its proof.

2. This result completes all cases of global regularity of logarithmically supercritical

MHD system with equal or more dependence on the dissipation than diffusion.

It also improves the result of [W09] logarithmically. We mention that almost

simultaneously and independently the authors in [TYZ13a] obtained a very sim-

ilar but slightly different result (cf. Remark 1.1 (3) in [Y14c] for the detailed

discussion of the similarities and differences between the result in [Y14c] and

that of [TYZ13a]).

3. We mention that its proof was partially inspired by the work in [CMZ07], [Z10]

and [Z05].
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We now give an idea of the proof, just H1-estimate leaving interested readers to

[Y14c] for details. We assume without loss of generality that ν = 1 in (3.1a). Taking

L2-inner products of (3.1a)-(3.1b) with u and b respectively, we obtain as before

sup
t∈[0,T ]

(‖u(t)‖2L2 + ‖b(t)‖2L2) +

∫ T

0

‖L1u‖2L2dτ .u0,b0,T 1. (3.5)

For simplicity let us denote by X(t) := ‖∇u(t)‖2L2 + ‖∇b(t)‖2L2 . We apply ∇ on

(3.1a)-(3.1b), take L2-inner products with ∇u and ∇b respectively and sum to obtain

1

2
∂tX(t) + ‖L1∇u‖2L2 .

∫
|∇u|3 + |∇u||∇b|2.

We apply Hölder’s inequalities to obtain

1

2
∂tX(t) + ‖L1∇u‖2L2 . ‖∇u‖L∞(‖∇u‖L2 + ‖∇b‖L2)2. (3.6)

By Littlewood-Paley decomposition and Bernstein’s inequality, for some M1 > 0 to

be determined subsequently, we obtain

‖∇u‖L∞ ≤
∑
j≥−1

‖∆j∇u‖L∞

.
∑

2j≤M1

2j(
N
2
)

g1(2j)
‖∆j∇u‖L2g1(2

j) +
∑

2j>M1

2−j 2
j(N

2
+1)

g1(2j)
‖∆j∇u‖L2g1(2

j).

Since g1 is increasing, we obtain

‖∇u‖L∞ . g1(M1)
∑

2j≤M1

‖∆jL1u‖L2 +
∑

2j>M1

2−jg1(2
j)‖∆jL1∇u‖L2

by (3.2). We further bound using Hölder’s inequalities to obtain

‖∇u‖L∞ . g1(M1)
√

ln(M1)‖L1u‖L2 +M
− 1

2
1 ‖L1∇u‖L2 . (3.7)

Now we set M1 := e + X(t) so that by Young’s inequality we have from (3.6) and

(3.7)

15



‖∇u‖L∞(‖∇u‖L2 + ‖∇b‖L2)2

.g1(e+X(t))
√
ln(e+X(t))‖L1u‖L2X(t) + ‖L1∇u‖L2(‖∇u‖L2 + ‖∇b‖L2)

≤1

2
‖L1∇u‖2L2 + c (g1(e+X(t))

√
ln(e+X(t))‖L1u‖L2X(t) + cX(t).

Absorbing the dissipative term, we have by Young’s inequalities again from (3.6)

∂tX(t) + ‖L1∇u‖2L2 .
(
g21(e+X(t)) ln(e+X(t))

)
(e+X(t))

(
1 + ‖L1u‖2L2

)
. (3.8)

Separation of variables immediately implies that for any t ∈ [0, T ], we have

∫ e+X(t)

e+X(0)

dτ

g21(τ) ln(τ)τ
.
∫ T

0

1 + ‖L1u‖2L2dτ .u0,b0,T 1.

due to (3.5). By hypothesis (3.4) this implies

sup
t∈[0,T ]

X(t) < ∞. (3.9)

It now follows from integrating (3.8) in time and using (3.5) again that

∫ T

0

‖L1∇u‖2L2dτ .u0,b0,g1,T 1. (3.10)

Thus, we have shown

sup
t∈[0,T ]

(‖∇u(t)‖2L2 + ‖∇b(t)‖2L2) +

∫ T

0

‖L1∇u‖2L2dτ . 1.

We omit further details.
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CHAPTER 4

Two-dimensional generalized magnetohydrodynamics system

4.1 Two-dimensional generalized MHD system

In this chapter we discuss the global regularity issue of the generalized MHD system

in dimension two. From our discussion in Chapter 2 Section 2 concerning criticality,

in two-dimensional case we should require that the g-NSE (2.1a)-(2.1b) has a full

Laplacian in order to guarantee a global regularity result; no power less than one

should be allowed. However, a remarkable fact in the two-dimensional case is that

no Laplcian is necessary at all; i.e. the two-dimensional Euler equations still admits

a global regularity result.

In two-dimensional case with zero dissipation, we have

∂tu+ (u · ∇)u+∇π = 0.

Taking a curl leads to, with Ω := ∇× u,

∂tΩ + (u · ∇)Ω = 0. (4.1)

This is a transport-diffusion equation and hence Ω in L∞-norm becomes a conserved

quantity: in detail, multiplying (4.1) by |Ω|p−2Ω, p ≥ 2 and integrating in space leads

to

1

p
∂t‖Ω‖pLp = 0, (4.2)

where we used the fact that
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∫
(u · ∇Ω)|Ω|p−2Ω =

1

p

∫
(u · ∇)|Ω|p = −1

p

∫
(∇ · u)|Ω|p = 0 (4.3)

by integration by parts and the incompressibility condition (1.1b). Integrating in

time now leads to

sup
t∈[0,T ]

‖Ω‖Lp ≤ c(u0) (4.4)

with the constant independent of p. Taking p → ∞ leads to

sup
t∈[0,T ]

‖Ω‖L∞ ≤ c(u0). (4.5)

Although Ω = ∇ × u is not quite ∇u, by the standard boarderline techniques of

Brezis-Wainger type argument (cf. [BW80]) and div-curl lemma ([CLMS93]), their

difference can be overcome in some estimates. Hence, instead of the kinetic energy

in the form of the L2-norm of u, we have the L∞ norm of the vorticity Ω, more

or less a derivative of u. Due to this better conserved quantity, it is well-known

(e.g. [K67]) that the two-dimensional NSE with no dissipation, the Euler equations,

allows a global regularity result. It also implies that the two-dimensional g-NSE with

ν > 0, α ≥ 0 also admits the global regularity result. We remark that in the three-

dimensional case, the right hand side of (4.1) has (Ω · ∇)u and hence the argument

above in (4.2)-(4.5) breaks down.

A natural question is whether or not the two-dimensional MHD system also admits

such a special result. More precisely, we wish to answer the question of whether the

two-dimensional inviscid MHD system, i.e. (2.3a)-(2.3c) with ν = η = 0, admits a

globally unique smooth solution pair (u, b) as in the two-dimensional Euler equations.

This problem remains open. Indeed, a naive attempt at taking a curl on the (2.3a)

and following the same Lp-estimate argument as we did above, one realizes that no

better conserved quantity is obtained due to the presence of (b ·∇)b. Trying a similar

idea on (2.3b) does not lead to any obvious progress either. However, due to the
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effort by many mathematicians, we have recently seen much progress in this direction

of research. We now give a heuristic reason behind recent developments and survey

these results.

We denote by j := ∇× b which represents the current density. Taking a curl on

(2.3a), we obtain

∂tΩ + νΛ2αΩ = −(u · ∇)Ω + (b · ∇)j.

This implies that an identical procedure on the Lp-estimate, 2 ≤ p < ∞ of Ω as in

(4.2)-(4.4) leads to

∂t‖Ω‖pLp + ν

∫
Λ2αΩ|Ω|p−2Ω ≤ ‖(b · ∇)j‖Lp‖Ω‖p−1

Lp

by Hölder’s inequality. Then we discover an interesting relation, namely a sufficient

bound on the magnetic field (b, j) leads to a certain bound on the velocity field (u,Ω).

On the other hand, as we will discuss in the subsequent Chapter 5, it is well-known

that a sufficient bound on the velocity field (u,Ω) leads to a certain bound on the

magnetic field (b, j); this is because for example, upon an H1-estimate of (u, b) which

starts by taking inner products of (2.3a) by −∆u and (2.3b) by −∆b, every one of

four non-linear terms will have u but not necessarily b. The conclusion from this

observation is that one can hope to complete some iteration argument, bounding u

and b separately relying on previously attained bounds at each step, leading to higher

regularity.

We emphasize that taking advantage of the vorticity∇×u formulation rather than

the gradient of the velocity∇u is extremely important. In [Y14f], the author obtained

a global regularity result for the two-dimensional generalized magnetohydrodynamics−α

system in a challenging case using the vorticity formulation.

Based on this observation, in less than one year so many results have appeared.

Before we list them below, we firstly remind ourselves that prior to these results,
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to the best of the author’s knowledge, the global regularity issue of the generalized

MHD system (2.3a)-(2.3c) at α = 0 was never investigated; moreover, if β = 1, except

the logarithmic improvement in [W11], it was believed that α ≥ 1 was necessary to

guarantee the smoothness of the solution pair globally in time. Finally we emphasize

that improving these lower bounds of the fractional Laplacians is extremely important

as the classical three-dimensional NSE is energy-supercritical at α = 1 while for α ≥ 5
4
,

the global regularity result is attainable. Now let us review recent results:

For fixed α = 0,

1. Professor Tran, Professor Yu and Professor Zhai in [TYZ13b] showed that β > 2

suffices to obtain the global regularity result.

2. Independently from the result of [TYZ13b], the author in [Y14a] showed that in

fact β > 3
2
suffices. Professor Jiu and Professor Zhao in [JZ14a] also obtained

this result of β > 3
2
.

3. Professor Jiu and Professor Zhao in [JZ14b] and Professor Cao, Professor Wu

and Professor Yuan in [CWY14] independently showed that β > 1 suffices.

On the other hand, for fixed β = 1,

1. Professor Tran, Professor Yu and Professor Zhai in [TYZ13b] showed that in-

stead of α = 1, α ≥ 1
2
suffices. The author in [Y14a] also obtained this result

independently.

2. Professor Yuan and Professor Bai in [YB14] and the author in [Y14e] indepen-

dently showed that α > 1
3
suffices.

3. Professor Ye and Professor Xu in [YX14] showed that α ≥ 1
4
suffices.

We also wish to mention that there is a pre-print, unpublished nor posted on

arXiv, by Professor Fan, Professor Nakamura and Professor Zhou that claims that
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in case β = 1, α > 0 suffices. Moreover, we mention that numerical analysis results

such as [TYB13] suggests the global regularity result at α = 0, β = 1.

Because both our results in [Y14a] and [Y14e] are available in refereed journals

published already, let us apply this idea and obtain a new result in the next section

instead of repeat the proofs from [Y14a] and [Y14e].

4.2 Two-dimensional magneto-micropolar fluid system

In this section, we will apply the idea from the recent developments on the two-

dimensional generalized MHD system to obtain a global regularity result of the fol-

lowing two-dimensional magneto-micropolar fluid (MMPF) system:

∂tu+ (u · ∇)u− (b · ∇)b+∇
(
π +

1

2
|b|2
)

= (µ+ χ)∆u+ χ(∇× w), (4.6a)

∂tw + (u · ∇)w = γ∆w − 2χw + χ(∇× u), (4.6b)

∂tb+ (u · ∇)b− (b · ∇)u = ν∆b. (4.6c)

where we denoted

1. w the micro-rotational velocity,

2. χ the vortex viscosity,

3. µ the kinematic viscosity,

4. γ the angular viscosities.

The MMPF system at b ≡ 0 reduces to the micropolar fluid (MPF) system,

introduced by Professor Eringen in [E64] and [E66]. The MPF system represents the

fluids consisting of bar-like elements, e.g. anisotropic fluids, such as liquid crystals

made up of dumbbell molecules and animal blood. The actual MMPF system was

considered by the authors in [AS74]. It has been studied by many mathematicians
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and engineers; in particular, Professor Galdi and Professor Rionero in [GR77] showed

the results analogous to the classical MHD system such as

1. global existence of a weak solution (u,w, b) in dimensions N = 2, 3,

2. global existence of the unique strong solution in case initial data is small if

N = 3,

3. the unique weak solution if N = 2.

We aim to obtain the global regularity result with zero angular viscosity; i.e.

γ = 0, extending the result of [GR77]. Let us motivate our study. Firstly, similarly

to the NSE and the MHD system, for the MMPF system (4.6a)-(4.6c) at γ = 0, we

have the following conserved quantities:

sup
t∈[0,T ]

(
‖u(t)‖2L2 + ‖w(t)‖2L2 + ‖b(t)‖2L2

)
+

∫ T

0

‖∇u‖2L2 + ‖∇b‖2L2dτ .u0,w0,b0 1.

Taking a curl on (4.6a), we obtain

∂tΩ− (µ+ χ)∆Ω = −(u · ∇)Ω + (b · ∇)j − χ∆w.

Upon an L2-estimate of Ω, due to the lack of angular viscosity, we have no obvious

way to handle −χ∆w. Natural idea is to couple this estimate with that of w, but

taking L2-inner products on (4.6b) with −∆w leads to

1

2
∂t‖∇w‖2L2 ≤

∫
∇u · ∇w · ∇w − χ

∫
(∇× u)∆w

and the first terms is too difficult to handle without angular viscosity.

However, this difficulty has been overcome. We claim the following result:

Theorem 4.1 ([Y14j]) Let γ = 0. For every (u0, w0, b0) ∈ Hs(R2), s > 2, there

exists a unique solution (u,w, b) to (4.6a)-(4.6c) such that
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u, b ∈ C([0,∞);Hs(R2)) ∩ L2([0,∞);Hs+1(R2)), w ∈ C([0,∞);Hs(R2)).

The proof is an appropriate combination of the ideas from [DZ10] and [CWY14].

Let us sketch the outline of the proof.

The key observation by the authors in [DZ10] on the two-dimensional MPF system

with zero angular viscosity was that by defining

Z := Ω−
(

χ

µ+ χ

)
w, (4.7)

we can take advantage of its evolution in time governed by

∂tZ + (u · ∇)Z = (µ+ χ)∆Z − c1Z + c2w + (b · ∇)j (4.8)

where

c1 :=
χ2

µ+ χ
≥ 0, c2 :=

2χ2

µ+ χ
− χ3

(µ+ χ)2
.

This transport-diffusion equation type structure with the forcing term of (b · ∇)j

allows us to take advantage of the iteration scheme as follows:

1. sufficient bound on Z implies a certain bounds on w as (4.6b) is rather simple,

2. sufficient bound on Z and w implies the same bound on Ω by definition of Z in

(4.7),

3. sufficient bound on Ω implies a certain bounds on b, j because both non-linear

terms in (4.6c) has u,

4. sufficient bound on b, j implies a certain bounds on Z due to (4.8).

Thus, we can try to iterate this procedure to obtain high regularity. Let us state

these iterations in more detail; in contrast to the work in [CWY14], the iteration

scheme runs only once. Firstly, following a similar argument in [TYZ13a], [Y14a] we

can obtain
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Proposition 4.2.1 ([Y14j]) Suppose (u,w, b) solves (4.6a)-(4.6c) in time interval

[0, T ]. Then

sup
t∈[0,T ]

(‖Z(t)‖2L2 + ‖Ω(t)‖2L2 + ‖j(t)‖2L2) +

∫ T

0

‖∇Z‖2L2 + ‖∇j‖2L2dτ . 1.

After this, we obtain slightly higher integrability:

Proposition 4.2.2 ([Y14j]) Suppose (u,w, b) solves (4.6a)-(4.6c) in time interval

[0, T ]. Then for any 2 ≤ q ≤ 4,

sup
t∈[0,T ]

(‖Z(t)‖Lq + ‖Ω(t)‖Lq + ‖j(t)‖Lq) . 1. (4.9)

The following technical commutator estimate in Besov spaces is important part

of the proof:

Proposition 4.2.3 Let s > −1, f ∈ Hs(R2)∩L∞(R2),∇g ∈ Hs(R2)∩L∞(R2),∇·g =

0. Then for any k ≥ 3,

‖[∆k, g
i∂i]f‖L2 . ck2

−ks(‖∇g‖L∞‖f‖Hs + ‖∇g‖Hs‖f‖L∞). (4.10)

Moreover, for s > 0 if additionally ∇f ∈ L∞(R2), then for any k ≥ −1,

‖[∆k, g
i∂i]f‖L2 . ck2

−ks(‖∇g‖L∞‖f‖Hs + ‖g‖Hs‖∇f‖L∞) (4.11)

where {ck} ∈ l2k≥−1.

The first inequality was done in [DZ10] and the second in [Y14j] for completeness

after appropriate modifications. Using this commutator estimate, we can show the

following blow-up criterion for the solution (u,w, b) of our concern:

Proposition 4.2.4 Suppose (u0, w0, b0) ∈ Hs(R2), s > 2 and its corresponding solu-

tion triple (u,w, b) to (4.6a)-(4.6c) in time interval [0, T ] satisfies
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∫ T

0

‖Ω‖L∞ + ‖w‖2L∞ + ‖∇j‖L2dτ . 1

where Ω = ∇× u, j = ∇× b. Then (u,w, b) ∈ Hs(R2) for all time t ∈ [0, T ].

The crucial point here is that we do not need the bound on ∇w but only on w. Using

Propositions 4.2.2 and 4.2.3, this blow-up criterion can be shown to be satisfied. We

omit further details.

25



CHAPTER 5

Sufficient condition for smoothness

5.1 Serrin-type and Beale-Kato-Majda criteria

In this chapter we focus on the classical NSE and the MHD system and discuss their

sufficient condition for smoothness, namely the Serrin-type and the Beale-Kato-Majda

(BKM) criteria. Let us recall from Chapter 2 Section 2 that we have for the solution

to the classical NSE (1.1a)-(1.1b),

sup
t∈[0,T ]

‖u(t)‖2L2 + 2ν

∫ T

0

‖∇u‖2L2dτ ≤ c(u0).

It is a standard practice to write u ∈ Lr
TL

p
x to imply that

∫ T

0

‖u(τ)‖rLpdτ < ∞.

Then, from above we know already that in the case of the classical NSE,

sup
t∈[0,T ]

‖u(t)‖L2 < ∞,

∫ T

0

‖u(t)‖2L6dτ ≤ c

∫ T

0

‖∇u(t)‖2L2dτ < ∞

due to the homogeneous Sobolev embedding of Ḣ1(R3) ↪→ L6(R3). Hence, by inter-

polation we see that u ∈ Lr
TL

p
x for 3

p
+ 2

r
≥ 3

2
,∀ p ∈ [2, 6]. With this observation in

mind, we recall two important results, namely the Serrin-type regularity criteria and

the BKM criterion:

Theorem 5.1 ([S62]) If u is a weak solution to the three-dimensional NSE (1.1a)-

(1.1b) in [0, T ] and
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u ∈ Lr
TL

p
x for

3

p
+

2

r
< 1,

then u is unique.

Theorem 5.2 ([BKM84]) If u is a strong solution to the three-dimensional NSE

(1.1a)-(1.1b) at ν = 0 in [0, L] and L < T is such that the solution u satisfies

∫ T

0

‖Ω‖L∞dτ < ∞,

then there is no singularity up to T .

Despite the complication due to the additional three non-linear terms, we have

analogous Serrin-type and BKM criteria for the MHD system; e.g.

Theorem 5.3 ([CKS97]) If (u, b) solves the MHD system (2.3a)-(2.3c) and

∫ T

0

‖Ω‖L∞ + ‖j‖L∞dτ < ∞,

where Ω := ∇× u and j := ∇× b, then there is no singularity up to time T .

5.2 Component reduction results

We now discuss component reduction results. The idea of this relatively new direction

of research is that because for example in dimension three, writing u = (u1, u2, u3)

and ∇u as the three-by-three matrix of nine entries (∂iuj)
3
i,j=1, it is clear that

3∑
i=2

∫ T

0

‖ui‖rLpdτ .
∫ T

0

‖u‖rLpdτ,

and

∫ T

0

‖∂1u3‖rLpdτ .
∫ T

0

‖∇u‖rLpdτ,
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where we chose
∑3

i=2 ui and ∂1u3 arbitrarily. Thus, component reduction results, if at-

tained with same integrability condition on p, r, may be seen as a direct improvement

of the Serrin-type and BKM criterions.

We now mention some of these results. For the NSE (1.1a)-(1.1b), Professor Chae

and Professor Choe in [CC99] showed that the BKM-criteria which imposes conditions

on all three components of Ω = (Ω1,Ω2,Ω3), may be reduced to two:

Theorem 5.4 ([CC99]) Suppose (u, π) is a weak solution to the three-dimensional

NSE (1.1a)-(1.1b) and (0,Ω2,Ω3) ∈ Lr
TL

p
x for 3

p
+ 2

r
≤ 2, 1 < r < ∞, 3

2
< p < ∞,

then there is no singularity up to time T .

We remark that it remains open whether this BKM-criteria may be reduced to

one component of Ω, e.g. just Ω3.

For the MHD system, Professor Zhou in [Z05] and Professor He and Professor Xin

in [HX05] obtained important results of the regularity criteria that involves only u

eliminating conditions on b completely:

Theorem 5.5 ([Z05] and [HX05]) Suppose (u, b) solves the three-dimensional MHD

system (2.3a)-(2.3b) at α = β = 1 in [0, T ] and

∫ T

0

‖u‖rLpdτ < ∞,
3

p
+

2

r
≤ 1, 3 < p

or

∫ T

0

‖∇u‖rLpdτ < ∞,
3

p
+

2

r
≤ 2, 3 < p.

Then there is no singularity up to time T .

(cf. also [W08])

Thus, for the BKM criterion, according to the results in [CC99], we may drop

the condition on the first component Ω1 of Ω = (Ω1,Ω2,Ω3). A natural question

is whether any component reduction result attainable for the Serrin-type regularity
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criteria which, according to the results in [S62] and [B95], it imposes conditions on

all of

u = (u1, u2, u3) or ∇u =


∂1u1 ∂2u1 ∂3u1

∂1u2 ∂2u2 ∂3u2

∂1u3 ∂2u3 ∂3u3

 .

The answer is positive:

Theorem 5.6 ([KZ06]) If u solves the three-dimensional NSE (1.1a)-(1.1b) in [0,T]

and satisfies

∇u3 ∈ Lr
TL

p
x for

3

p
+

2

r
≤ 11

6
,

54

23
≤ p ≤ 18

5

or u3 ∈ Lr
TL

p
x for

3

p
+

2

r
≤ 5

8
,

24

5
≤ p ≤ ∞,

then there is no singularity up to time T.

For example, the first part of the theorem implies that although previous results

needed the bound on the entire Jacobian matrix of ∇u, it turns out that we only

need to bound the third row of the matrix.

The main idea of the proof in [KZ06] is that firstly, the authors estimated not

‖∇u‖2L2 of u that solves the NSE, but ‖∇hu‖2L2 where ∇h = (∂1, ∂2, 0). This requires

taking L2-inner products of (1.1a) with −∆hu where ∆hu = (∂2
11+∂2

22)u is a horizontal

Laplacian. Secondly, through a key lemma, the authors succeeded on separating u3

as follows:

∣∣∣∣∫
R3

(u · ∇)u ·∆hu

∣∣∣∣ ≤ c

∫
R3

|u3||∇u||∇∇hu|dx.

The important fact used to obtain this key inequality was that by incompressibility,

e.g.,

∂1u1 + ∂2u2 = −∂3u3.

29



This inequality implies

∂t‖∇hu‖2L2 + ‖∇∇hu‖2L2 =

∫
(u · ∇)u ·∆hu

≤c

∫
R3

|u3||∇u||∇∇hu|dx.

The heuristic hereafter is to manipulate inequalities to put all the responsibility of

global regularity to just u3 alone.

Remark 5.1 As we elaborated, the crucial property of the solution that must be used

in this type of result is the incompressibility of the solution. However, the incompress-

ibility within the non-linear term even if the solution itself is not even a vector may

still lead to the component reduction result. In [Y12b] and [Y13b], the author was

able to obtain this type of component reduction results for the regularity criteria of

the solution to the surface quasi-geostrophic equations and the incompressible porous

media equation governed by Darcy’s law, both of which the solution is a scalar.

Extensions and improvements of such component reduction results by many math-

ematicians followed (e.g. [KZ07], [PP04], [PP11], [CT08], [FQ13a], [FQ13b]). In par-

ticular, Professor Cao and Professor Titi in [CT11] obtained a regularity criteria of

either one of


∫ T

0
‖∂3u3‖rLpdτ < ∞, 3

p
+ 2

r
≤ 3(p+2)

4p
, 2 < p,∫ T

0
‖∂iu3‖rLpdτ < ∞, 3

p
+ 2

r
≤ p+3

2p
, 3 < p, i = 1 or 2,

for the three-dimensional NSE. The natural question is whether we can obtain similar

component reduction results for the three-dimensional classical MHD system. Specif-

ically, we wish to know whether or not we can reduce the regularity criteria in terms

of u or ∇u by Professor Zhou, Professor He and Professor Xin to just u3 or ∂iuj for

any i, j = 1, 2, 3, as done in the case of the three-dimensional NSE. This question
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remains open; however, due to a lot of effort by many mathematicians, we have seen

significant progress recently.

Professor Cao and Professor Wu in [CW10] showed in particular that its regularity

criteria can be reduced to ∂3u, not necessary ∇u. Its integrability conditions were

improved in [JZ12b]. Subsequently, Professor Lin and Professor Du in [LD13] and

the author in [Y13a] obtained as slightly more general result. It was shown that its

regularity criteria may be depend on any three partial derivatives to any direction

of u1, u2 and u3. The integrability condition in [LD13] and [Y13a] were recently

improved in [JZ14].

Let us describe the idea of the proof in [Y13a] (and [LD13]). The key was that

the following decomposition is attainable:

∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb (5.1)

.
∫
(|u1|+ |u2|+ |u3|)(|∇u|+ |∇b|)(|∇∇hu|+ |∇∇hb|).

We also mention the following inequality provided in [CT11] which has seen much

applications:

Lemma 5.1 ([CT11]) For any f, g, h ∈ C∞
c (R3) and i, j, k any distinct choices from

{1, 2, 3},

∣∣∣∣∫ fghdx

∣∣∣∣ . ‖f‖
γ−1
γ

L2 ‖∂if‖
1
γ

L
2

3−γ
‖g‖

γ−2
γ

L2 ‖∂jg‖
1
γ

L2‖∂kg‖
1
γ

L2‖h‖L2 , 2 < γ < 3.

With this lemma applied to our decomposition (5.1), we could place any partial

derivative on u1, u2, u3 and obtain the criteria of our claim.

To the best of the author’s knowledge, to this day, a regularity criteria of the

classical three-dimensional MHD system, i.e. (2.3a)-(2.3c) at α = β = 1, in terms

of any two entries of ∇u has not been obtained. However, the results of [LD13] and

[Y13a] suggested the following:
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Theorem 5.7 ([LD13], [Y13a]) Suppose the solution (u, b) to the three-dimensional

MHD system (2.3a)-(2.3c) at α = β = 1 in [0, T ] satisfies∫ T

0

‖∂2u2‖rLp + ‖∂3u3‖rLpdτ < ∞, 3 < p < ∞,
3

p
+

2

r
≤ 3

2p
+

1

2
.

Then there is no singularity up to time T .

This was an immediate corollary to our result and the divergence-free property

of u; i.e. ∂1u1 = −∂2u2− ∂3u3. This result led to an interesting observation, related

to the BKM-criteria. Firstly, we note that to the best of the author’s knowledge,

a regularity criteria of the three-dimensional MHD system in terms of two vorticity

components has not been shown, despite the fact that it was achieved by Chae and

Choe in [CC99]. In [PP11], the following lemma was provided:

Lemma 5.2 ([PP11]) Let u be a divergence-free sufficiently smooth vector field in

R3. Then there exists a constant C = C(q) such that for 1 < q < ∞, i, j = 1, 2

‖∂iuj‖Lq ≤ C(‖Ω3‖Lq + ‖∂3u3‖Lq).

Applying this Lemma 5.2 to Theorem 5.7, we obtain the following result:

Corollary 5.1 ([Y13a]) Suppose the solution (u, b) to the three-dimensional MHD

system (2.3a)-(2.3c) at α = β = 1 in [0,T] satisfies∫ T

0

‖Ω3‖rLp + ‖∂3u3‖rLpdτ < ∞, 3 < p < ∞,
3

p
+

2

r
≤ 3

2p
+

1

2
.

Then there is no singularity up to time T.

The results in [LD13] and [Y13a] were based on several observations. However,

a new result of deeper significance required a completely new decomposition of the

four non-linear terms as Professor Kukavica and Professor Ziane did in [KZ06] for the

three-dimensional NSE. Unfortunately, the difference between the NSE and the MHD

system is quite significant. Observe that upon the ‖∇hu‖L2-estimate of the solution

to the NSE (1.1a)-(1.1b), one only must estimate
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∫
(u · ∇)∆hu =

3∑
i,j=1

2∑
k=1

∫
ui∂iuj∂

2
kkuj,

which consists of 18 terms. However, in the case of the MHD system (2.3a)-(2.3b),

∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb

consists of 72. Moreover, due to the mixture of b, the cancellation of terms that used to

occur for the NSE case in [KZ06] is no longer valid. However, some progress has been

made. Firstly, Professor Jia and Professor Zhou in [JZ12a] obtained a decomposition

of

∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb

.
∫
(|u3|+ |b|)(|∇u|+ |∇b|)(|∇∇hu|+ |∇∇hb|)

with which they obtained a regularity criteria of

∫ T

0

‖u3‖rLp + ‖b‖rLpdτ < ∞,
3

p
+

2

r
≤ 3

4
+

1

2p
,

10

3
< p

(cf. [JZ12a]). Subsequently, in [Y14k] the dependence on b3 of b = (b1, b2, b3) was

completely eliminated only in the endpoint case. Yet, a decomposition of the four

non-linear terms of the MHD system such as∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb

≤c

∫
|u3|(|∇u|+ |∇b|)(|∇∇hu|+ |∇∇hb|)

or even

∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb (5.2)

≤c

∫
(|u2|+ |u3|)(|∇u|+ |∇b|)(|∇∇hu|+ |∇∇hb|)
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has never been seen, to the author’s best knowledge. Until very recently, there was

no result that has even reduced the criteria of the three-dimensional MHD system to

two components of u or any two entries of the Jacobian matrix of u.

We claim a step forward in this direction via a new approach. In [Y14h] we indeed

were able to reduce the criteria of 3-D MHD to any two components of u:

Theorem 5.8 ([Y14h]) Suppose (u, b) is the solution pair to the three-dimensional

MHD system (2.3a)-(2.3c) at α = β = 1 in [0, T ] and it satisfies∫ T

0

‖u2‖r1Lp1 + ‖u3‖r2Lp2dτ < ∞,
3

pi
+

2

ri
≤ 1

3
+

1

2pi
,

15

2
< pi, i = 1, 2.

Then there is no singularity up to time T.

The proof required two new ideas. Firstly, the author to this day has not found a

decomposition of the four non-linear terms in which two velocity components such as

u2, u3 are separated as in (5.2). In fact, the decomposition that was discovered was

the following:

Proposition 5.2.1 Suppose (u, b) is the solution pair to the three-dimensional MHD

system (2.3a)-(2.3b) at α = β = 1. Then

∫
(u · ∇)u ·∆hu−

∫
(b · ∇)b ·∆hu+

∫
(u · ∇)b ·∆hb−

∫
(b · ∇)u ·∆hb

.
∫
(|u2|+ |u3|+ |b2|+ |b3|)(|∇u|+ |∇b|)(|∇∇hu|+ |∇∇hb|). (5.3)

This proposition alone leads only to a criteria in terms of u2, u3, b2 and b3 which

has been obtained before (e.g. [BGR13], [JL10]). The result in [Y14h] required the

following proposition:

Proposition 5.2.2 (cf. [Y14h], [Y14i]) Let (u, b) be the solution pair to the three-

dimensional MHD system (2.3a)-(2.3b) with α = β = 1 in time interval [0, T ] and

j ∈ {1, 2, 3}. Then for for any p ∈ (2, 6), there exists a constant c(p) ≥ 0 such that
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sup
τ∈[0,t]

‖bj(τ)‖2Lp ≤ ‖bj(0)‖2Lp + c(p)

∫ t

0

‖∇b(λ)‖2L2‖uj(λ)‖2
L

6p
6−p

dλ

for any t ∈ [0, T ]. In case p = 6, there exists a constant c ≥ 0 such that

sup
τ∈[0,t]

‖bj(τ)‖2L6 ≤ ‖bj(0)‖2L6 + c

∫ t

0

‖∇b(λ)‖2L2‖uj(λ)‖2L∞dτ

for any t ∈ [0, T ].

Remark 5.2 1. Let us first point out that the main utility of this proposition is

that we can “shift” the dependence on bj to uj so that applying this proposition

twice appropriately to b2, b3, we may obtain the regularity criteria in terms of

u2, u3 alone.

2. The idea of the proof of this proposition was to observe that the j-th component

of the magnetic field b is governed in time by the equation

∂tbj + (u · ∇)bj − (b · ∇)uj = η∆bj

so that the Lp-estimates of bj leads to

1

p
∂t‖bj‖pLp + η(p− 1)

∫ ∣∣∣|∇bj||bj|
p−2
2

∣∣∣2 = ∫ (b · ∇)uj|bj|p−2bj

where the first non-linear term (u · ∇)bj vanished due to the incompressibility

condition (2.3c). At this stage, we observe that uj is already separated in the

right hand side. Appropriate sequence of energy estimates leads to the desired

result in Proposition 5.2.2.

3. We note that without a new idea, we cannot shift the dependence on uj to bj

due to the presence of ∇π.

We present another component reduction result which was quite surprising due to

the reasons on which we shall now elaborate. As we stated, the BKM-criterion for the
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three-dimensional NSE (1.1a)-(1.1b) in terms of Ω = ∇× u has been reduced by one

component in [CC99] to Ω2,Ω3 of Ω = (Ω1,Ω2,Ω3). However, it remains unknown

whether we can do the same for the three-dimensional MHD system although in

[Y13a], we saw that a regularity criteria may be reduced to ∂3u3 and Ω3.

We remark that because Ω3 = ∂1u2− ∂2u1, the regularity criteria in terms of ∂3u3

and Ω3 still requires some dependence on the behavior of all of u1, u2, u3. We also

recall the numerical analysis results in [H85] and [PPS95] that indicated that the

velocity field u plays more dominant role than the magnetic field b. Finally, when

Professor Jia and Professor Zhou in [JZ12a] tried to reduce the dependence on u to

u3 alone, they had to include all three components b1, b2, b3.

Hence, the question is, when we put the dependence on u3 alone and no other

component of u, can we reduce the dependence on b1, b2, b3 down to less components.

The answer has been shown to be positive. With j3 = ∂1b2−∂2b1 the third component

of the current density j = (j1, j2, j3), we present our result:

Theorem 5.9 ([Y14i]) Suppose (u, b) is the solution pair to the three-dimensional

MHD system (2.3a)-(2.3b) at α = β = 1 in [0, T ] and it satisfies

∫ T

0

‖u3‖r1Lp1 + ‖j3‖r2Lp2dτ < ∞,


3
p1

+ 2
r1

≤ 1
3
+ 1

2p1
, 15

2
< p1,

3
p2

+ 2
r2

≤ 2, 3
2
< p2.

(5.4)

Then there is no singularity up to time T.

We wish to point out a remarkable achievement of this theorem that may be

of interest to many working in the research direction of the Serrin-type regularity

criteria. The condition on j3 above is Serrin-class. That is, while if (u, b)(x, t) solves

the MHD system, then so does (uλ, bλ)(x, t) = λ(u(λx, λ2t), b(λx, λ2t)), λ > 0 and for

any i = 1, 2, 3, 3
p
+ 2

r
= 2 if and only if
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∫ T

0

‖∂iu‖rLpdτ =

∫ T

0

‖∂iuλ‖rLpdτ,

∫ T

0

‖∂ib‖rLpdτ =

∫ T

0

‖∂ibλ‖rLpdτ.

The proof required a new decomposition of the four non-linear terms that was not

obvious at first sight:

Proposition 5.2.3 Let (u, b) solve (2.3a)-(2.3b) at α = β = 1, N = 3. Then

∫
(u · ∇)u ·∆hu− (b · ∇)b ·∆hu+ (u · ∇)b ·∆hb− (b · ∇)u ·∆hb (5.5)

.
∫
|u3|(|∇u||∇∇hu|+ |∇b||∇∇hb|)

+ |b3|(|∇u||∇∇hb|+ |∇b||∇∇hu|) + |∇hu||∇hb||j3|.

Let us give an idea of the complexity of this decomposition. Firstly, using inte-

gration parts and the incompressibility conditions (2.3c) we obtain

∫
(u · ∇)u ·∆hu− (b · ∇)b ·∆hu+ (u · ∇)b ·∆hb− (b · ∇)u ·∆hb

=
3∑

i,j=1

2∑
k=1

∫
ui∂iuj∂

2
kkuj − bi∂ibj∂

2
kkuj + ui∂ibj∂

2
kkbj − bi∂iuj∂

2
kkbj

=
3∑

i,j=1

2∑
k=1

∫
−∂kui∂iuj∂kuj + ∂kbi∂ibj∂kuj − ∂kui∂ibj∂kbj + ∂kbi∂iuj∂kbj

:=I + II + III + IV.

At this point, we have 72 terms many of which do not contain u3 or b3 and certainly not

j3 in itself. The goal is to show that each and every one of them can be manipulated

to contain one of u3, b3 or j3. We further decompose I, II, III and IV as follows:

I = −
3∑

i=1

2∑
j,k=1

∫
∂kui∂iuj∂kuj −

3∑
i=1

2∑
k=1

∫
∂kui∂iu3∂ku3

= −
2∑

i,j,k=1

∫
∂kui∂iuj∂kuj −

2∑
j,k=1

∫
∂ku3∂3uj∂kuj −

3∑
i=1

2∑
k=1

∫
∂kui∂iu3∂ku3,
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II =
3∑

i=1

2∑
j,k=1

∫
∂kbi∂ibj∂kuj +

3∑
i=1

2∑
k=1

∫
∂kbi∂ib3∂ku3

=
2∑

i,j,k=1

∫
∂kbi∂ibj∂kuj +

2∑
j,k=1

∫
∂kb3∂3bj∂kuj +

3∑
i=1

2∑
k=1

∫
∂kbi∂ib3∂ku3,

III =−
3∑

i=1

2∑
j,k=1

∫
∂kui∂ibj∂kbj −

3∑
i=1

2∑
k=1

∫
∂kui∂ib3∂kb3

=−
2∑

i,j,k=1

∫
∂kui∂ibj∂kbj −

2∑
j,k=1

∫
∂ku3∂3bj∂kbj −

3∑
i=1

2∑
k=1

∫
∂kui∂ib3∂kb3,

and

IV =
3∑

i=1

2∑
j,k=1

∫
∂kbi∂iuj∂kbj +

3∑
i=1

2∑
k=1

∫
∂kbi∂iu3∂kb3

=
2∑

i,j,k=1

∫
∂kbi∂iuj∂kbj +

2∑
j,k=1

∫
∂kb3∂3uj∂kbj +

3∑
i=1

2∑
k=1

∫
∂kbi∂iu3∂kb3.

We now see that it is only the first sum in each decomposition of I, II, III and IV

that we do not have any u3, b3 or j3 as every other sum has either u3 or b3. We give

one example of how to handle the problematic sums leaving detail to [Y14i]. Consider

−
∫

∂1u1(∂1b2)
2

from the first integral of III,

∫
(∂1b2)

2∂2u2

from the first integral of IV, neither of which contains u3 or b3 and certainly not j3.

We combine them to obtain

∫
−∂1u1(∂1b2)

2 + (∂1b2)
2∂2u2 (5.6)

=

∫
∂3u3(∂1b2)

2 + 2∂2u2(∂1b2)
2 = −

∫
u3∂3(∂1b2)

2 +

∫
2∂2u2(∂1b2)

2,
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where we used the incompressibility conditions on u and integration by parts. We have

now obtained u3 in the first integral; however, the second integral remains problematic

without u3, b3 or j3. We now consider

−
∫

∂2u2(∂2b1)
2

from the first integral of III and

∫
(∂2b1)

2∂1u1

from the first integral of IV, again neither of which contains u3 or b3. We combine

them to obtain

∫
−∂2u2(∂2b1)

2 + (∂2b1)
2∂1u1 (5.7)

=

∫
∂3u3(∂2b1)

2 + 2∂1u1(∂2b1)
2 = −

∫
u3∂3(∂2b1)

2 +

∫
2∂1u1(∂2b1)

2.

Now we combine the second integrals from (5.6) and (5.7) to obtain remarkably that

2

∫
∂2u2(∂1b2)

2 + ∂1u1(∂2b1)
2

=2

∫
∂2u2(∂1b2)

2 + (−∂2u2 − ∂3u3)(∂2b1)
2

=2

∫
∂2u2

(
(∂1b2)

2 − (∂2b1)
2
)
− ∂3u3(∂2b1)

2

=2

∫
∂2u2(∂1b2 − ∂2b1)(∂1b2 + ∂2b1) + 2

∫
u3∂3(∂2b1)

2

=2

∫
∂2u2j3(∂1b2 + ∂2b1) + 2

∫
u3∂3(∂2b1)

2

.
∫

|∇hu||j3||∇hb|+ |u3||∇b||∇∇hb|.

Hence, we accomplished in separating u3, b3 or j3 in these four terms. After repeating

similar procedure, some of which are easier, we can finish the proof of Proposition

5.2.3.
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With this decomposition, we only need to apply Proposition 5.2.2 as before to

shift the dependence on b3 to u3 to obtain the desired regularity criteria that depends

only on u3 and j3. We omit further details.
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CHAPTER 6

CONCLUSIONS

We list here several interesting problems that are work in progress, all for which proofs

seem non-trivial:

1. As discussed in Chapter 5, for the three-dimensional NSE, there is a regularity

criteria of the solution in terms of any one entry of the Jacobian matrix of the

velocity vector field u (cf. [CT11]). Due to the addition of three more non-linear

terms that involve the magnetic vector field b, it seems to be a very challenging

open problem whether we can obtain a regularity criteria of the solution pair

to the MHD system in terms of any two entries of the Jacobian matrix of the

velocity vector field u (cf. [Y13a] for partial progress). Moreover, it remains

unknown whether we can reduce the two-velocity component regularity criteria

in [Y14h] to one velocity component.

2. Results of reducing the regularity criteria in terms of a gradient of the solution

to less number of partial derivatives may be seen as a type of anisotropic study

of the fluid mechanics PDEs. In this regard, in [Y14b] the author obtained the

global regularity result for theN -dimensional MHD system in anistoropic spaces

using anisotropic Littlewood-Paley theory. In short, while usually an initial

data in Hs(RN) being small implies that every partial derivative being small in

this norm, in [Y14b] the author showed that these “smallness” may be under

different regularity indices s1, s2, . . . , sN under some additional conditions. The

proof followed the work of [I99]. To the best of the author’s knowledge some of

these results are difficult to extend to the active scalars such as the surface quasi-
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geostrophic or the incompressible porous media equation governed by Darcy’s

law.

3. Natural phenomenon such as fluid motion is in general difficult to model com-

pletely due to its turbulent behavior unless one adds some stochastic term (ex-

pressed in the form of Brownian motion). Moreover, the study of stochastic

NSE has increasingly attracted attention from many mathematicians recently

(e.g. [F08] and references found therein). This is another direction of research

of much interest and this project is already in progress.

42



APPENDIX A

Besov Spaces

We denote by S(RN) the Schwartz space, S ′(RN), its dual and S0 to be the subspace

of S in the following sense:

S0 = {φ ∈ S,
∫
RN

φ(x)xγdx = 0, |γ| = 0, 1, 2, ...}.

Its dual S ′
0 is given by S ′

0 = S/S⊥
0 = S ′/P where P is the space of polynomials. For

j ∈ Z we define

Aj = {ξ ∈ RN : 2j−1 < |ξ| < 2j+1}.

It is well-known that there exists a sequence {Φj} ∈ S(RN) such that

supp Φ̂j ⊂ Aj, Φ̂j(ξ) = Φ̂0(2
−jξ) or Φj(x) = 2jNΦ0(2

jx)

and

∞∑
j=−∞

Φ̂j(ξ) =


1 if ξ ∈ RN \ {0},

0 if ξ = 0.

Consequently, for any f ∈ S ′
0,

∞∑
j=−∞

Φj ∗ f = f.

To define the inhomogeneous Besov space, we let Ψ ∈ C∞
0 (RN) be such that

Ψ̂(ξ) +
∞∑
j=0

Φ̂j(ξ) = 1, Ψ ∗ f +
∞∑
j=0

Φj ∗ f = f,
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for any f ∈ S ′. With that, we set ∆jf = 0 for j ≤ −2 and otherwise

4jf =


Ψ ∗ f if j = −1,

Φj ∗ f if j = 0, 1, 2, ...,

and define for any s ∈ R, p, q ∈ [1,∞], the inhomogeneous Besov space

Bs
p,q = {f ∈ S ′ : ‖f‖Bs

p,q
< ∞},

where

‖f‖Bs
p,q

=


(
∑∞

j=−1(2
js‖4jf‖Lp)q)

1
q , if q < ∞,

sup−1≤j<∞ 2js‖4jf‖Lp if q = ∞.

In particular Bs
2,2 = Hs. Finally, we have the following lemma:

Lemma A.1 (cf. [C98]) Bernstein’s Inequality: Let f ∈ Lp(RN) with 1 ≤ p ≤ q ≤ ∞

and 0 < r < R. Then for all k ∈ R+ ∪{0}, and λ > 0, there exists a constant Ck > 0

such that

‖Λkf‖Lq ≤ Ckλ
k+N( 1

p
− 1

q
)‖f‖Lp if supp f̂ ⊂ {ξ : |ξ| ≤ λr}.
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