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CHAPTER 1

Introduction

Communication systems attempt to address what was said and who said it. There are

many modulation and encoding techniques for machines to transmit information, and many

protocols such as GSM, IP, Ethernet require the source of a message to include an identifying

address. In wired communications the closed nature of the media provides a modicum of

trust between clients. Wireless communications change the trust-paradigm since the media

is accessible by any party in close proximity. This opens a number of security risks since an

adversary can easily claim an identity or address of a known client. The security is a concern

because the address or identity claimed by a user could be used for routing, authentication,

or billing. Recently there have been major wireless protocols with exposed weaknesses based

on spoo�ng.

NFC (Near Field Communications) is a technology currently being advertised on many

smart-phones to share music play lists, contacts, and other data. Charlie Miller [3], has

shown how attackers can exploit NFC on Android-based phones from Samsung and Nokia to

run malicious code without the owner's consent . Although this exploit does not speci�cally

spoof an identity it does demonstrate how the latest wireless communications are actively

being exploited by assuming trust in an un-trustworthy media.

GSM (Global System for Mobile communication) operates a PLMN (Public Land Mobile

Network) that cell phones connect to [13]. Each cell phone has an identity number that

the network operator checks for billing and switching. Each network also has an identity

number, the MNC (Mobile Network Code). Both sides of the network, the operator and

the client, have been shown to be insecure and vulnerable to spoo�ng [7, 12, 13]. Security

researchers have demonstrated how to spoof phone clients to generate calls to expensive toll

numbers [7]. Independently some researchers have created GSM base stations that can claim

any MNC [13]. Since a cell phone in a PLMN doesn't authenticate a base station beyond

the MNC, attackers can route tra�c through fake stations and collect any information on

the link [12].
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The prevailing wireless LAN technology, IEEE 802.11, is also vulnerable to spoo�ng

and tra�c decryption [1]. The �rst encryption o�ered by the IEEE 802.11 standards, WEP

(Wired Equivalent Privacy), is known to be insecure and required replacement with WPA [5].

IEEE 802.11 requires transmitters to identify themselves with a MAC address, which can

easily be spoofed. Similarly, some phone vendors have partnered with carriers to o�oad

phones to public IEEE 802.11 networks when available, based purely on SSID. Attackers are

able to use so called honeypot attacks to lure such phones in to their networks and perform

man-in-the-middle attacks making the entire data session vulnerable to eavesdropping and

packet manipulation [15].

1.1 Physical Layer Authentication

Authentication requirements can be satis�ed with many approaches, depending on design

constraints. New protocols with authentication bits could be designed, which would ob-

solete legacy clients and decrease throughput e�ciency. Yu et al [24] refers to this type

of authentication as multiplexing since the message and authentication are multiplexed in

time. Recent research [2, 19�21] has used multi-path fading to uniquely identify users via

channel-estimation.

Using multi-path e�ects and other physical layer perturbances to authenticate users is

typically called �ngerprinting. Physical layer �ngerprinting, developed by Yu et al. [20, 21]

can be used to identify if a current user is the same as a previous user. This does not

intentionally modify a signal, but instead relies on natural degradation by multi-path and

other fading. Yu [26] and others [2, 19] also demonstrate the use of synthetic channels to

intentionally perturb the signal in ways that look like environmental a�ects, which can be

used to authenticate users using the inverse of the synthetic channel. Yu [24] calls this

technique embedded authentication because the authentication signal is embedded in the

transmitted message.

Embedding authentication messages within the physical layer preserves existing proto-

cols and legacy clients while adding link speci�c authentication. O� the shelf protocols can

be modi�ed to include authentication and still be used with existing hardware [25]. Further-

more, each wireless link on a network can meet di�erent security speci�cations. Modifying

the physical layer will generally lead to a reduction in signal quality, which means reducing

the probability of detecting the correct bit. Using the physical layer for detecting a speci�c
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user dates back to World War II when armies on both sides of the war were able to iden-

tify wireless telegraphy operators by their �st [17]. The �st of a telegraph operator is the

unique cadence used to key messages, similar to an individual's voice [9]. Since an operator

stays with a ship or platoon, di�erent armies were able to intercept telegraphs, identify the

operator, and triangulate position to track enemy troop movement [17]. In modern commu-

nications the signals are machine-generated and are designed to have no variance between

radios. All signals are degraded in some way, either due to fading, AWGN (Additive White

Gaussian Noise), or multi-path e�ects. These characteristics rapidly decorrelate in space,

which is the fundamental idea behind the �ngerprinting method previously mentioned [20].

1.1.1 Watermarking

Deliberately adding degradation before transmission is also called watermarking, which has

subtle di�erences from active channel emulation and �ngerprinting [4]. RF watermarking

is similar to image, video, and paper watermarking in that a low energy signal is added

on to the primary signal. Currently two types of watermarking are being researched: baud

dithering and constellation dithering [6, 8]. Both watermarking techniques embed a bit-

stream, the watermark, on top of the RF message that will uniquely identify the transmitter

in some way. This can be done a number of ways, and there are several proposed algorithms

to create a key that two clients can use to identify each other [26]. The watermarked signal

is referred to as the tag, which is generated as a function of the transmitted message and a

secret key [23].

Baud Dithering

Baud dithering changes the symbol timing on the transmitter, according to the tag [6]. This

creates a speci�c type of bit-noise called jitter, which naturally occurs in digital commu-

nications. When the receiver detects the incoming waveform a decision is made based on

the received symbol time so that the watermark can be recovered. The decoded message is

hashed with the secret key on the transmitter side so the tag is veri�ed.

Constellation Dithering

Constellation dithering changes the constellation in some way that creates two decision

regions around each constellation point: one decision region de�nes the message hypothesis

and another region de�nes the watermark hypothesis. Constellation dithering could change
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the amplitude or phase of a signal to embed the watermark. Since phase shift keying is known

to be the most energy-e�cient binary modulation we chose to focus on phase dithering as

a watermark method. The message stream can be modulated with any digital modulation

scheme; after modulation a small phase is added or subtracted, based on the watermark tag.

This creates smaller constellations around each message symbol. Similar to phase dithered

watermarking, [18] has used similar techniques to do hierarchical modulation.

Hierarchical Modulation

In hierarchical modulation two or more bit streams with di�erent priorities are combined

into a single signal. The main bit stream may be mission critical or require a higher bit

rate while the secondary bit stream is of lower priority or bit rate. Hierarchical modulation

embeds one signal on top of another allowing both signals to transmit on the same carrier

without increasing the bandwidth [18]. Phase dithered watermarking is similar to hierar-

chical watermarking, but has an added goal of stealth [10]. Since watermarking has the

appearance of adding noise, a �gure of merit for link analysis is the probability of bit and

tag recovery errors.

1.1.2 Phase Dithered Watermark

For the purpose of �nding the probability of bit errors, constellation watermarking is hier-

archical watermarking where the message is the primary bit stream and the watermark tag

is the secondary bit stream.

QAM/QAM Watermarking

[27] uses hierarchical QAM (Quadrature Amplitude Modulation) to create higher order

QAM constellations transmitting independent bit streams, then uses OFDM (Orthogonal

Frequency Division Multiplexing) to inverse multiplex the signal onto slower speed sub-

channels. [27] also provides P(BE) expressions for message and watermark symbols in an

AWGN channel in terms of the distance between constellation points. Figure 1.1 shows the

hierarchical QAM constellation used in [27]. In Figure 1.1 d1 is half the distance between

the adjacent message symbols, and d2 is half the distance between adjacent watermark

symbols in the same hierarchy. The �nal distance relevant to bit error probability, d′1, is

de�ned as the distance between adjacent watermark symbols in adjacent hierarchies. Using

this hierarchical QAM constellation for watermarking, [27] gives the probability of message
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bit error de�ned in Equation 1.1. The tag is only decoded if the entire frame or packet is

correct, since there is no point in decoding the tag if the message is in error. Given that the

message is correct, the probability of a tag bit being decoded properly is given in Equation

1.2 [23,27].

Pmessage(BE) =
1

4

(
erfc

d′1√
N0

+
d′1 + 2d2√

N0

)
(1.1)

Ptag(BE) =
1

4

(
erfc

d2√
N0

+ erfc
2d′1 + d2√

N0

− erfc
2d′1 + 3d2√

N0

)
(1.2)

2d1

2d2

2d1'

Figure 1.1: The hierarchical QAM constellation has '+' denoting where a message symbol is
located, which is surrounded by a low energy watermark constellation. The valid constella-
tion symbols are marked with circles. The distances marked show distance between message
constellations, watermarks for a given message, and watermarks for a di�erent message.

PSK/PSK Watermarking

Other researchers have used PSK modulation for bipodal phase shift keying as the water-

mark. [18] analyzes hierarchical PSK modulation to come up with exact bit error probabil-

ities. The notation 2/4-PSK denotes a primary channel that is BPSK modulated with a

secondary channel that is also BPSK modulated. The secondary channel symbols are mod-

ulated on top of the primary channel symbols, and hence there are two secondary channel

symbols for every primary channel symbol. [18] analyzes the phase error of hierarchical PSK

signals to �nd probabilities of bit and tag errors for 2/4-PSK given in Equations 1.3 and 1.4,

respectively. The γ term is the common �gure of merit, EbN0
. The φ is the angular distance

from a straight BPSK constellation point and the watermarked constellation point. This

distance is illustrated for a 2/4/8-PSK constellation as the angular distance for a BPSK
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watermarked signal from a QPSK constellation in Figure 1.2.

Pmessage(BE) = Q
(√

2γ cos (φ)
)

(1.3)

Ptag(BE) = Q
(√

2γ sin (φ)
)

(1.4)

The notation is extended to 2/4/8-PSK to refer to three independent channels that

transmit one bit each at the same time. Each channel is BPSK modulated on top of another

channel. Since the energy of each channel can be di�erent, each channel will have a di�erent

P(BE), allowing three di�erent priorities for three di�erent bit streams on a simultaneous

communication. The same authors have done similar work analyzing hierarchical QAM

constellations [18]. The probability of bit error for each channel is de�ned in terms of the

Pawula F-function, the phase-error probability distribution. To �nd the probability of bit

error for any given channel in a hierarchical PSK scheme can be found using a recursive

algorithm de�ned in [18].

Q

I
ϕ

Figure 1.2: The hierarchical PSK constellation adds or subtracts a phase shift compared to
a straight PSK constellation. The circles are watermarked constellation points that have a
small phase di�erence, φ, from a standard QPSK constellation.

Hierarchical PSK has been previously used in watermarking for authentication. [6] uses

2/4-PSK to watermark OFDM signals using QPSK and DQPSK, and compares the results to

baud-dithering the same signals. The QPSK and QPSK signals are modulated using OFDM

for better P(BE). [6] provides plots for the watermark bit error rate for baud-dithering and

constellation dithering. The results show for an equivalent watermark bit-rate the baud

dithering has a lower probability of bit error, but comes with a trade-o� in complexity and

compatibility with non-aware receivers.
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DPSK/PSK Watermarking

Another e�ort, [8], uses DBPSK as the message modulation and a rotated 8-PSK constel-

lation to determine the watermark, which could be described as a 2/8-PSK hierarchical

modulation. This method aimed to use existing blocks in a software framework called GNU

Radio to implement watermarking a non-coherent DPSK system. The rotated 8-PSK con-

stellation limits φ, the watermark angle, since the 8-PSK constellation points are already

de�ned to be equidistant. [8] uses Monte-Carlo simulations to �nd the theoretical probability

of bit errors for the message and watermark followed by over-the-air testing.

1.2 Stealth, Security, and Robustness

This thesis is focused primarily on signaling aspects of watermark authentication rather than

cryptographic concerns, but it is worth mentioning works which do focus on cryptographic

concerns related to watermarking. In the hypothetical cast of characters commonly used in

cryptography Alice and Bob are watermark-aware transmitters and receivers communicating

with authentication [9]. Carol is an watermark-unaware receiver that is also communicating

with Alice or Bob. Eve is an eavesdropper that tries to determine if authentication is

present, and to attack the authentication if it exists. [23, 25] both use this cast and de�ne

the stealth and robustness of the watermark authentication method. The authentication

system is said to be stealthy if it is di�cult to detect by Eve and if Carol is still able

to communicate [23, 25]. The authentication system is robust if it is di�cult for Eve to

disrupt [23,25].

[23,24] describes a general framework of measuring the stealth and impact of a physical-

layer watermark. Any receiver, such as Eve, is able to estimate the SNR of a given channel.

If the SNR for given blocks of the communication change rapidly and discretely then Eve

will suspect that a watermark authentication mechanism is being using [24].

[24] proposes a number of �tness tests, such as Kolmogorov-Smirnov or Lilliefors test,

as being able to detect a watermark with given watermark powers. With a priori knowledge

of the watermark and collaboration between Bob and Alice the watermark power can be

set to a level that is within the noise parameters, e�ectively hiding the watermark from

Eve, and improving Carol's signal [24]. [10] tests this approach in GNU Radio using the

QAM/QAM watermark described in [27] where the watermark is randomly placed on a

fraction of the transmitted signal. Using the SNR estimated from pilot symbols the impact

7



of the watermark on Carol and the presence of the watermark to Eve was tested. The

results show that packet errors were not adversely a�ected for select watermark power levels,

indicating that Carol's communication is not a�ected [10]. In addition, the SNR estimates

show that Eve cannot determine the presence of the watermark with signi�cant con�dence

[10]. [10] also experimentally determined the probability of correctly authenticating packets

at select watermark power levels and found in many cases the probability of authentication

approaches 1. Using a small, but un�nished experiment with falsely watermarked signals to

test the robustness against an attacker [10] found (although inconclusively) that there is a

small probability of falsely authenticating a user.
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CHAPTER 2

Thesis Layout and De�nitions

The scope of this thesis is in deriving closed-form expressions for the expected bit errors of

message and watermark signals in phase-dithered watermarking. This chapter provides a

layout of this thesis as well as de�nitions of terms and conventions used in the following chap-

ters. Chapters 3-5 derive probability of bit errors for phase-dithered coherent modulation

schemes; respectively covering BPSK, QPSK, and QAM. Chapter 6 shows the probability

of bit errors for non-coherent DBPSK. Chapter 7 concludes with suggestions for continued

research in this area. The appendices repeat existing proofs that are useful references for

standard modulations.

2.0.1 Contributions

This work makes the following contributions to existing knowledge:

• Independently veri�es existing closed form expressions for message and watermark

BERs for phase-watermarked BPSK and QPSK

• Develops closed form expressions, veri�ed by simulation, for the message and water-

mark BERs for phase-watermarked QAM

• Develops closed form expressions, veri�ed by simulation, for the message and water-

mark BERs for phase-watermarked DBPSK

2.0.2 Conventions

The rest of this document will use the following terms and symbols.

Watermark

The term watermark will be used as a noun to refer to the speci�c bit that is represented by

a post-modulation phase shift. The encoding of this bit is referred to as the watermark, and

the process of encoding the bit is referred to as watermarking. Recovering the watermark is

9



referred to as watermark recovery and there will be a watermark error rate and probability of

watermark error, PW . This is deliberately unique terminology than that used in some related

literature to emphasize the di�erence between the cryptological aspects of watermarking

and the physical process of embedding and decoding data. The watermarking literature

that studies cryptological aspects of embedding low power data, [10,25,26] will use the term

key to refer to the bit being transmitted. The relation is that a key will have meaning in

an authentication sense, but a watermark is a bit that may be used for any purpose.

E
N0

E
N0

is the symbol energy to noise ratio. This is used to describe the signal to noise ratio

normalized by symbol rate over bandwidth. The symbol E
N0

is commonly used in commu-

nications literature; now we introduce the subscripts that will be used in the remainder of

this thesis.

Eb
N0

describes the energy per bit to the noise power spectral density per bit. Similarly,

Es
N0

will describe the energy per symbol to the noise energy per symbol. The relation is that

a key will have meaning in an authentication sense, but a watermark is an arbitrary bit.

Pb

Pb is used as a shorthand for the probability of a message bit error occurring at the receiver.

This is normally expressed as a function of EbN0
.

Pb

(
Eb
N0

)
(2.1)

PS

PS is the short hand for the probability of a message symbol error occurring. Normally this

will be a function of ESN0
, for example,

PS

(
ES
N0

)
(2.2)

Miscellaneous

Some terminology useful for discussing bit detection will be introduced in the �rst deriva-

tion and will then be consistently used for remaining bit detectors using other modulation

schemes.
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T is the bit (symbol) length after modulation, measured in seconds.

θ is used as a message modulation angle.

φ is used as the watermark modulation angle.

ln refers to a random variable, hereafter called statistic in keeping with terminology used

by [22], used by a bit detector for making decisions, which is the nth output of a matched

�lter in the receiver.
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CHAPTER 3

Phase Dithered BPSK Error Rates

T

0
∫  dtx(t) l(t)y(t)

ψ=cos(t)

Bit

Detector

Figure 3.1: A typical coherent BPSK receiver with input x(t) makes a bit decision on l(t).

BPSK uses anti-podal phase-shifting to encode a single bit into a symbol for transmission.

A typical receiver, shown in Figure 3.1, requires only a single basis function to determine

the phase.

Quadrature

In-phase

Figure 3.2: A typical coherent BPSK constellation diagram.

3.1 Standard BPSK

A BPSK signal is modeled as shown in Equation 3.1. θ is a representation of the message

bit and will be either 0 or π. The constellation diagram for this signal is shown in Figure

3.2.

x(t) = cos (ωt+ θ) (3.1)
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The bit decision is made using the statistic l(t) from Figure 3.1. This statistic is a

bi-modal Gaussian random variable with variance depending on the noise power spectral

density, N0, shown in Equation 3.2. The relation between the variance and noise output of

a correlator and matched �lter detector is shown in Appendix A.

σ2 =
N0T

4
(3.2)

The Pb

(
Eb
N0

)
for BPSK, Equation 3.3, is well known in the literature [16,22]. The derivation

of the standard Pb equation will be a useful building block for deriving probability of bit

errors for watermarked BPSK.

Pb

(
Eb
N0

)
= Q

(√
2Eb
N0

)
(3.3)

3.2 Watermarked BPSK

Building from Equation 3.1, a watermarked BPSK symbol will appear in the form of Equa-

tion 3.4. Due to this being BPSK the same constraint remains on θ, the message modulation

angle will be either 0 or π.

x(t) = cos (ωt+ θ + φ) (3.4)

The watermark angle, φ, is selected to give the desired trade-o�s in watermarking; the

most obvious being stealth which is related to signal degradation. The larger angle will

improve probability of correct detection for the watermark but lower the probability of

detecting the correct message bit, thus reducing the watermark's stealthiness. Introducing

a binary watermark will split each existing message symbol in to two watermarked symbols.

With BPSK this results in four symbols as seen in the constellation diagram in Figure 3.3.

A standard BPSK receiver is capable of detecting watermarked message bits properly,

although with a lower Eb
N0

. The standard BPSK receiver is not capable of detecting the wa-

termark bits because the watermark moves symbols orthoganl to the basis function used in

demodulation. To overcome this a watermark-aware BPSK receiver must add in a quadra-

ture path for bit and watermark decisions.
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Quadrature

In-phase
φ

φ

Watermark: 0
Bit: 1

Watermark: 1
Bit: 1

Watermark: 1
Bit: 0

Watermark: 0
Bit: 0

Figure 3.3: Watermarked BPSK constellation. The watermark creates two more constella-
tion points.

3.2.1 Non-Watermark Aware BPSK Error Probability

Analysis shows the non-watermark aware BPSK receiver will result in the same bit error

probability for the message as the watermark aware receiver. Using the standard BPSK

receiver from Figure 3.1 the received signal is x(t). The output statistic for determining the

message bit is

l =

∫ T

0

(x(t) cos (ωt)) dt (3.5)

Substituting Equation 3.4 in to Equation 3.5 yields

l =

∫ T

0

((cos (ωt+ θ + φ)) cos (ωt)) dt (3.6)

After using common trigonometric identities this simpli�es to the following form

l = ±1

2

∫ T

0

(cos (φ) + cos (2ωt+ φ)) dt (3.7)

The double frequency term goes to zero because the integral limits, [0, T ], cover an integer

number of sinusoid periods. The result becomes the mean of a random variable used to

determine the bit.

l = ±T
2
cos (φ) (3.8)

Notice that the plus/minus of l indicates the message bit, and φ can be either positive or

negative depending on the watermark, resulting in the four symbols shown in Figure 3.3.

The results from Appendix B are now useful since we can substitute Equation 3.8 in to
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T

0
∫  dt

x(t)

l1(t)y1(t)

ψ1=cos(t)

T

0
∫  dt

l2(t)

y2(t)

ψ2= -sin(t)

Bit

Detector

Figure 3.4: A quadrature style receiver is capable of providing information about the bit
and watermark.

Equation B.9 and get

Pb

(
Eb
N0

)
= Q

0± T
2 cos (φ)√
N0T
4

 (3.9)

This is the same form used in the derivation of standard BPSK in Appendix B, but the

watermark introduces the cos term. After simple algebra the Pb for watermarked BPSK is

found to be

Pb

(
Eb
N0

)
= Q

(√
2Eb
N0

cos (φ)

)
(3.10)

3.2.2 Watermark Aware BPSK Message and Watermark Error Probability

It is possible to construct a watermark aware BPSK receiver with a single basis function

with an expected watermark phase o�set to receive the message bit and the watermark. This

is sub-optimal because it reduces the received signal quality. A better solution is adding

another basis function that is orthogonal to the �rst, making a quadrature receiver, shown

in Figure 3.4. The advantage of the quadrature receiver comes from simplicity of analysis

and the fact that quadrature receivers are readily available.

Using the quadrature receiver results in two statistics used to determine watermark and

message bits. They are,

l1 = ±
∫ T

0

[cos (ωt+ φ) cos (ωt)] dt (3.11a)

l2 = ±
∫ T

0

[cos (ωt+ φ) sin (ωt)] dt (3.11b)
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Using common product-to-sum trigonometric identities yields,

l1 = ±1

2

∫ T

0

[cos (2ωt+ φ) + cos (φ)] dt (3.12a)

l2 = ±1

2

∫ T

0

[sin (2ωt+ φ)− sin (φ)] dt (3.12b)

After integrating the �nal statistics for determining message bits and watermark the

result is

l1 = ±T
2
cos (φ) (3.13a)

l2 = ±T
2
sin (φ) (3.13b)

l1 only varies in the in-phase direction and l2 only varies in the quadrature direction.

l1 contains information on the presence of a watermark from the cosφ term, but since

cosφ = cos−φ the watermark bit, represented by the sign of φ cannot be determined from

l1. The result of this is that l1 e�ectively only provides information about the message bit

and l2 only provides information about the watermark. A decision on the message bit uses

the same criteria as Equation B.8.

Equation 3.13a is the same as Equation 3.8, so the Pb remains the same (Equation 3.10).

The probability of a watermark error, PW , is

PW

(
Eb
N0

)
= Q

(√
2Eb
N0

sin (φ)

)
(3.14)

Comparison to Hierarchical 2/4-PSK

[18] uses a di�erent approach to derive a closed from expression for hierarchical BPSK in

terms of The results from [18] are also presented for 2/4-PSK in terms of the Q-function,

which match exactly

3.2.3 Computer Simulations

Matlab was used to verify the derived Q-functions. Standard toolboxes were used to

create a custom BPSK modulator and demodulator as well as watermarking and watermark

recovery blocks. 104 random bits were used with a random binary watermark using a

watermark angle of φ = π
8 . Each bit was modulated with each symbol being a single period

and a sampling rate of 100 samples/symbol. The decision boundary for a message bit was
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set to be the Quadrature axis. The watermark decision boundary is set to be the In-Phase

axis. Figure 3.5 shows three lines:

• Black dots showing error rate averaged over 104 watermarked symbols with simulated

AWGN.

• A green dotted line showing the expected Pb for unwatermarked BPSK, shown for

reference. Calculated using Equation 3.3.

• A blue dashed line showing the expected b for watermarked BPSK with watermark

angle φ = π
8 , calculated using Equation 3.10

The watermarked BPSK bit detection is a very close match to what is expected. Water-

marked BPSK bit detection results in approximately 0.69 dB degradation in the message

Eb
N0

when φ = π
8 .

The watermark recovery rates are shown in Figure 3.6. This comes from the same

simulation as Figure 3.5 with 104 bits with a watermark angle φ = π
8 . Combining the

watermark and bit into a tuple, <watermark, bit>, the watermark was placed such that

the tuple of symbols is gray coded. For example the message bit 1 is in quadrants 1 and

4. A watermark of 0 moves the message bit 1 symbol to quadrant 1, and a watermark of

1 moves that symbol to quadrant 4. A watermark of 0 moves the message bit 0 symbol to

quadrant 2, and a watermark of 1 moves that symbol to quadrant 3. This is illustrated in

Figure 3.3. The simulation for PW provides a very close match to the expected watermark

error rate from Equation 3.14.
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Figure 3.5: BPSK Pb for a simulated watermarked signal, expected Pb for a watermarked
signal with φ = π

8 , and standard BPSK Pb. The black dots are simulated with 104 bits
averaged in to each dot.
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Figure 3.6: Watermark recovery error rates, PW for φ = π
8 . The blue dashed line is the

expected probability of watermark error. The black dots are simulated with 104 watermarked
bits for each dot.
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CHAPTER 4

Phase Dithered QPSK Error Rates

4.1 Standard QPSK

T

0
∫  dt

x(t)

l1(t)y1(t)

ψ1=cos(t)

T

0
∫  dt

l2(t)

y2(t)

ψ2= -sin(t)

Bit

Detector

Figure 4.1: A typical quadrature-style demodulator for QPSK coherent demodulation.

Quadrature

In-phase

Bits: 00Bits: 01

Bits: 11 Bits: 10

Figure 4.2: A grey-coded QPSK constellation. A pair of bits forms one of four symbols,
each separated by 90◦.

QPSK uses phase-shift keying to encode two bits into a symbol for transmission. QPSK

is very similar to BPSK, and the transmitted signal can be modeled similarly because both
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depend solely on a phase shift to encode information. The modeling equation for QPSK,

Equation 4.1, is the same as for BPSK, Equation 3.1.

x(t) = cos (ωt+ θ) (4.1)

Using QPSK the modulated phase angle θ can be one of four values, each separated by 90◦

and assummed equally likely. The constellation diagram for QPSK in this dissertation is

shown in Figure 4.2. A common receiver is the quadrature style receiver pictured in Figure

4.1.

σ2 =
N0T

4
(4.2)

The variance and noise power density for this receiver is commonly known; a derivation is

provided in Appendix A and the result repeated here in Equation 4.2. Since each symbol

contains two bits we are interested in �nding the PS for QPSK which will be expressed in

terms of ESN0
. For non-watermarked QPSK this is commonly known [16,22] and a derivation

is provided in Appendix C.

Pb

(
Eb
N0

)
= Q

(√
2Eb
N0

)
(4.3)

The relationship between PS and Pb for QPSK can be seen by comparing Equations

4.3 and 4.4 [22]. The di�erence between Eb and ES in these two equations is subtle, but

important; since each symbol has two bits ES = 2Eb. The full derivation can be found in

Appendix C; the �nal result from Equation C.15 is repeated here.

PS

(
ES
N0

)
= 2Q

(√
ES
N0

)
−
[
Q

(√
ES
N0

)]2
(4.4)

4.2 Watermarked QPSK

Phase-dithered QPSK splits each QPSK message symbol in to two watermarked symbols,

the same way phase-dithered BPSK message symbols were split in to two symbols. The

watermarked QPSK signal adds the phase o�set φ so that the transmitted signal takes the

form of Equation 4.5.

x(t) = cos (ωt+ θ + φ) (4.5)
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The angle θ can be one of the same four values from Equation 4.1 representing one of the

four possible message symbols. The watermark angle φ is a small angle that is either added

or subtracted, depending on the watermark bit. The watermarked QPSK constellation with

a gray-coded watermark is shown in Figure 4.3. In this context the gray-coding is seen

when the bits and watermark are combined in to a 3-tuple; for example the transmitted

tuple might be (high bit, low bit, watermark bit). Gray-coding the watermark improves the

probability of correctly recovering the watermark.

Quadrature

In-phase

φ

φ

Bits: 00
Watermark: 1

Bits: 01
Watermark: 1

Bits: 11
Watermark: 1

Bits: 10
Watermark: 1

Bits: 01
Watermark: 0

Bits: 11
Watermark: 0

Bits: 10
Watermark: 0

Bits: 00
Watermark: 0

φ
φ

Figure 4.3: A phase-dithered QPSK constellation with a grey-coded watermark. Each
watermarked symbol is φ radians from where the non-watermarked signal would be.

The same quadrature receiver used for standard QPSK is useful for receiving water-

marked QPSK. Since the same receiver is used the PS for a watermark-aware receiver is the

same as that of a non-watermark aware receiver when a watermarked message is transmitted.

4.2.1 Watermarked QPSK Probability of Message Bit Error

Symmetry allows the error rate analysis to focus on a single symbol since all symbols will

have the same probability of message and watermark errors. For simplicity the PS derivation

will be restricted to the symbol labeled with bits 00 and watermark 0 from Figure 4.3.

The decision region for this symbol are positive regions of the in-phase and quadrature

axes, or quadrant 1. Equation C.3 from Appendix C shows the derivation of the deci-

sion statistic for non-watermarked QPSK. Similar to non-watermarked QPSK, the decision

statistics, l1 and l2, for watermarked QPSK is found by correlating the received signal with
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the demodulator's basis functions. The mean of those statistics is

l1 =

∫ T

0

[
cos
(
ωt+

π

4
− φ

)
cos (ωt)

]
dt (4.6a)

l2 = −
∫ T

0

[
cos
(
ωt+

π

4
− φ

)
sin (ωt)

]
dt (4.6b)

Trigonometric identities simplify this to an addition of cosines and sines to simplify

integration. After integration the decision statistics evaluate to the results in Equation 4.7.

l1 =
1

2

∫ T

0

[
cos
(
2ωt+

π

4
− φ

)
+ cos

(π
4
− φ

)]
dt (4.7a)

l2 = −1

2

∫ T

0

[
sin
(
2ωt+

π

4
− φ

)
− sin

(π
4
− φ

)]
dt (4.7b)

The double frequency terms have an integer number of periods within the integral limits

of [0, T ], which results in 0 after integration. After integrating the single frequency term the

expected value of the decision statistics is

l1 =
T

2
cos
(π
4
− φ

)
(4.8a)

l2 =
T

2
sin
(π
4
− φ

)
(4.8b)

Bit decisions are made by comparing the sign of each decision statistic at the receiver.

For example, Equation C.8 could be the decision criteria for the two message bits, and then

the watermark bit is chosen by comparing l1 and l2. Equation C.8 shows the comparison to

determine watermark bits that would match the constellation in Figure 4.3

bitwatermark =


0 |l1|< |l2|

1 |l1|> |l2|
(4.9)

Deriving the message error rate uses the PDF of the decision statistics l1 and l2. The

expected values of these statistics, found in Equation 4.8, along with the noise PSD found

in Appendix A is all that is required to de�ne the PDFs (Equation 4.10) of l1 and l2, which

23



are fl1 and fl2 respectively.

fl1 (λ1) =
1

σ
√
2π

exp

(
−
(
λ1 − T

2 cos
(
π
4 − φ

))2
2σ2

)
(4.10a)

fl2 (λ2) =
1

σ
√
2π

exp

(
−
(
λ2 − T

2 sin
(
π
4 − φ

))2
2σ2

)
(4.10b)

The probability of symbol errors is the volume under the expected symbol region. As

previously stated, the symbol with bits labeled 00 and the watermark labeled 0 in Figure 4.3

which has decision regions bounded by the I and Q axes. Now, Equation 4.10 is substituted

in to Equation C.10 which gives the message symbol error rate for watermarked QPSK.

The Q-function representation of this is a more useful and succinct representation of this

probability. The Q-function of the message symbol error rate, Equation 4.11, is Equation

C.11 with Equation 4.10 substituted in for l1 and l2.

PS

(
ES
N0

)
= 1−

[
1−Q

(
0 + T

2 cos
(
π
4 − φ

)
σ

)][
1−Q

(
0 + T

2 sin
(
π
4 − φ

)
σ

)]
(4.11)

Rearranging terms and using the relationship between symbol time, T , and symbol

energy, ES , gives the PS in terms of ES
N0

. The �nal result in a familiar form is the PS in

Equation 4.12. The product term is included here for completeness, but in practice can be

omitted since it is su�ciently small for ES
N0

> 0dB. The omission of the product term for

standard QPSK is discussed by Fuqin while discussing the approximation of relating PS to

Pb [22]. The result is valid in this case because the relationship of PS to Pb is the same in

watermarked QPSK.

PS

(
ES
N0

)
=Q

(√
4Eb
N0

cos
(π
4
− φ

))
+Q

(√
4Eb
N0

sin
(π
4
− φ

))

−Q
(√

ES
N0

cos
(π
4
− φ

))
·Q
(√

4Eb
N0

sin
(π
4
− φ

))
(4.12)
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4.2.2 Watermark Recovery Error

The watermark error rate uses the same statistics (Equation 4.8) for decisions as the message

recovery. For watermark error rate analysis the watermark is assumed to be grey-coded

with the data as shown in Figure 4.3. The PW analysis will also use the symbol drawn with

bits 00 and a watermark of 0. The decision regions for the watermark that matches this

constellation are:

bitwatermark =


0 |l1|< |l2|

1 |l1|> |l2|
(4.13)

Graphically this region forms a right angle between the angles π
4 and π

4 . The watermark

error probability is the volume of the joint density function (Equation 4.10 outside of this

region.

PW

(
ES
N0

)
= 1−

∫ ∞
0

∫ λ1

−λ1

fl1 (λ1) ff2 (λ2) d l2 d l1 (4.14)

Substituting the probability density functions for l1 and l2 (Equation 4.15) in to Equation

4.14 and integrating will result in the PW .

fl1 (λ1) =
1

σ
√
2π

exp

(
−
(
λ1 − T

2 cos
(
φ− π

4

))2
2σ2

)
(4.15a)

fl2 (λ2) =
1

σ
√
2π

exp

(
−
(
λ2 − T

2 sin
(
φ− π

4

))2
2σ2

)
(4.15b)

The result of this substitution is shown in Equation 4.16. The Q-function is not a convenient

representation of this error probability because the limits of integration are not parallel to

the axes. A transformation to rotate the entire function may be possible; however, it is much

more convenient to leave the expression in Equation 4.16 and use numerical integration to

generate BER curves.

(4.16)

PW

(
ES
N0

)
= 1− 1

σ22π

∫ ∞
0

∫ l1

−l1

[
exp

(
−
(
λ1 − T

2 cos
(
φ− π

4

))2
2σ2

)

× exp

(
−
(
λ2 − T

2 sin
(
φ− π

4

))2
2σ2

)]
dλ2dλ1

The σ2 here is the noise power spectral density at the bit decision maker, and ES
N0

is the

message symbol energy to noise power spectral density.
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4.3 Computer Simulations

The message and watermark error rates, respectively Equations 4.11 and 4.16, are con�rmed

using computer simulations in Matlab. A custom QPSK modulator and demodulator pair

was used without any dependencies on non-standard toolboxes. The watermarking was done

with the same code using in BPSK simulations. Simulations used 104 randomly generated

symbols (2 · 104 bits) with a watermark angle φ = π
16 . Sampling rate was set to be 100

samples per symbol and the symbol duration was 1 sinusoid period. The simulations use

Eb
N0

as the controlled variable rather than ES
N0

. The relationship is simply 2EbN0
= ES

N0
.

The simulated constellation is the same used in the previous derivations, shown in Figure

4.3. Figure 4.4 shows the results of the simulation. The three lines shown are

• black dots with the percentage of the 104 symbols received in error for the given Eb
N0

• blue dashed line showing the expected symbol error rate for watermarked QPSK.

Calculated from Equation 4.12

• green dotted line showing non-watermarked, standard QPSK symbol error rates. Cal-

culated from Equation 4.4

The expected symbol error rate matches very close to the computer simulation. The

watermark angle has a large a�ect on the symbol error. When the watermark angle puts

the expected received symbol closer to the symbol decision boundary (I and Q axes) than

the non-watermarked symbol location then the message bit error rate becomes higher than

the watermark bit error rate. To prevent this the watermark angle should be kept lower

than π
8 .

The watermark error rate, shown in Figure 4.5, also matches very close to the simulation

when Eb
N0

> 0dB. The gap between the simulation and expected rates for Eb
N0

< 0 exists

because the expected rate, Equation 4.16, assumes anything outside of the decision region

that the transmitted symbol exists in will be wrong. Using Figure 4.3 as a reference the

constellation can be broken in to four decision regions for looking at the watermark. Oppo-

site sides of the constellation have the same watermark, but the received signal would have

to be dominated by noise for a symbol to land there. When Eb
N0

< 0dB the noise energy

is at least half of the received energy, so the symbol is on the wrong half of the quadrant

frequently. The di�erence between simulation and theory can be overcome by changing the

limits of integration in Equation 4.16, but this increases the time of numerical integration
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and does not provide any insight since communication is unlikely with such low SNRs, and

watermarks would not be e�ective.

−8 −6 −4 −2 0 2 4 6 8 10

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

Watermark Error Rate for Watermarked QPSK Receiver with φ=π/16

E
b
 / N

0
 [dB]

P
W

 [
p
ro

b
a
b

ili
ty

]

 

 

Simulation with 10
4
 bits, φ=π/16

Expected Watermark Error Rate, φ=π/16

Figure 4.5: Watermark error rate for QPSK. φ = π
16 . The mismatch for Eb

N0
< 0 is due to a

simpli�cation used in the plotted 'Expected Watermark Error Rate'.
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CHAPTER 5

Phase Dithered QAM Error Rates

5.1 16-QAM

QAM uses the sum of a weighted sine and cosine to form constellation symbols. There are a

large number of possible constellations with varying numbers of constellation points [11,22].

This study chooses to focus on square 16-QAM. A 16-QAM constellation encodes four bits in

to each symbol; a possible signal constellation is shown in Figure 5.1. The distance between

adjacent constellation points, labeled d in Figure 5.1, will be important for the derivation

of symbol error rates. Any of the transmitted symbols is formed using Equation 5.1, where

a(t) and b(t) are pulses with four levels each (2 bits in a(t) and 2 bits in b(t)).

r(t) = a(t) cos(ωt) + b(t) sin(ωt) (5.1)

The quadrature demodulator used for watermarked BPSK and QPSK detection is also

used for QAM symbol detection. A symbol decision is made by choosing the constellation

point that is the closest (Euclidean distance) to the output of the demodulator. Using this

decision rule creates squared decision regions around the inner symbols (labeled 5, 6, 9, and

10). The outer symbols have decision regions that are squared, but missing one or two edges

on the outside of the constellation, depending on whether the point is on a corner (missing

two edges) or on a side (missing one edge). These square decision regions, shown as the

thin lines in Figure 5.1, are useful for deriving symbol error rates and provide a method of

making symbol decisions faster than calculating 16 euclidean distances

For 16-QAM the probability of a symbol error is derived in Appendix D. QAM di�ers

from the previously studied modulations by having symbols with several possibilities of

energy. This introduces a new term used in the expression of symbol errors: Eavg, which

represents the average energy of all possible symbols. The probability of symbol error

for non-watermarked 16-QAM that is well known in the literature is repeated here from

Equation D.20. The work in Appendix D will be referenced during the derivation of symbol
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Figure 5.1: A square 16-QAM constellation with symbols numbered 0 through 15. The
distance d is the distance between adjacent constellation points.

errors for watermarked QAM.

PS

(
Eavg
N0

)
= 4Q

(√
Eavg
5N0

)
− 4Q

(√
Eavg
5N0

)2

(5.2)

5.2 Watermarked 16-QAM

Once again, this study is interested in phase-dithered watermarking, which splits each mes-

sage symbol in to two watermark symbols (just as it did with BPSK and QPSK). This type

of watermark applied to 16-QAM results in the constellation shown in Figure 5.2, which

highlights the watermark decision regions with a gray and white background. The water-

mark angle alternates between adjacent bits so that large regions of the same color share

a watermark bit. This arrangement is similar to a gray code in the sense that adjacent

symbols have minimal di�erences.

In the constellation shown the white regions with gray symbols have a watermark of bit of

0 and the gray regions with white symbols have a watermark bit of 1. The watermark angle,

de�ned as φ, is used to rotate the inner symbols. The remaining symbols must be shifted by

an angle normalized by distance from the origin to keep the arc distance between the non-
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Figure 5.2: A watermarked square 16-QAM constellation as seen at the output of a receiver's
matched �lter detector. Each point is rotated by an angle scaled by distance from the origin.

symbol radial distance watermark angle arc length

inner dT
√
2
4 φ φdT

√
2
4

outer edge dT
√
10
4

φ√
5

φdT
√
2
4

outer corner 3dT
√
2
4

φ
3 φdT

√
2
4

Table 5.1: Summary of symbol radii, scaled watermark angles, and resulting arc-length
distance from the non-watermarked symbol position.

watermarked symbol and the watermarked symbol constant for the entire constellation.

Table 5.1 shows the radial distance, normalized watermark angle, and arc length after

normalizing the angle for the three symbol locations (edge such as symbols 1 or 2, inner such

as symbols 9 or 10, and outer corner such as 0) in 16-QAM. Normalizing watermark angles

to keep constant arc lengths between non-watermarked symbols and watermarked symbols

is necessary to prevent excessive errors on the outer symbols. Without normalizing the

watermark angles even small angles could cause adjacent symbols to cross in to neighboring

decision regions for the higher energy symbols.

The energy of a transmitted symbol is not changed by watermarking because the water-

marked symbol is the same distance from the origin as the non-watermarked symbol. The
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watermarked symbol at the receiver for the duration of a speci�c symbol, r(t), is

r(t) = a cos(ωt± φ) + b sin(ωt± φ) (5.3)

For the symbol error rate analysis the metrics for inner constellation points (points 5, 6, 9,

10) are used because they represent the worst case in terms of symbol errors. These symbols

can have an error on all sides of their decision boundaries, unlike the outer symbols which

have an unbounded region on the outer edges of the expected constellation.

5.2.1 Watermarked 16-QAM Probability of Message Symbol Error

QAM demodulation uses the same quadrature demodulator as QPSK and watermarked

BPSK, shown in Figure 4.1. This demodulator splits the input to two paths, one (the I

channel) is mixed with a cosine and the other (the Q channel) is mixed with a sinusoid. After

mixing the channels go through a matched �lter detector; for square pulses this is integrate

and dump over the symbol length. Equation 5.6 shows this process. The matched �lter

outputs decision statistics, l1 and l2, that are used to determine symbol and watermark.

These statistics will have a distribution matching the communication channel. Through

an AWGN channel the means, l1 and l2, are the result of a noiseless signal through the

demodulator which is shown in Equation 5.6.

l1 =

∫ T

0

r(t) · cos(ωt)dt (5.4a)

l2 =

∫ T

0

r(t) · sin(ωt)dt (5.4b)

Substituting in the received signal, r(t), from Equation 5.3 gives Equation 5.5.

l1 =

∫ T

0

cos (ωt) [a cos(ωt± φ) + b sin(ωt± φ)] dt (5.5a)

l2 =

∫ T

0

sin (ωt) [a cos(ωt± φ) + b sin(ωt± φ)] dt (5.5b)
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Some algebraic manipulation and product-to-sum trigonometric identities results in

l1 =
1

2

∫ T

0

a [cos (2ωt± φ) + cos (±φ)] + b [sin(2ωt± φ) + sin(±φ)] dt (5.6a)

l2 =
1

2

∫ T

0

a [sin (2ωt± φ)− sin (±φ)] + b [cos(±φ)− cos(2ωt± φ)] dt (5.6b)

The next step is to solve the integration. Each statistic has four sinusoidal terms summed

together, which can each be integrated individually. The double frequency terms all result

in 0 after integration because the limits of integration cover an integer number of periods.

The remaining terms are all constant values, shown in Equation 5.8.

l1 =
aT

2
cos(±φ) + bT

2
sin(±φ)dt (5.7a)

l2 =
bT

2
cos(±φ)− aT

2
sin(±φ)dt (5.7b)

The following derivation will use the symbol labeled 10 in Figure 5.2 with the watermark

−φ. For this symbol the values of a and b are half the distance between adjacent symbols,

denoted a = b = d/2. Equation 5.8 shows the decision statistics for this symbol with the

previously mentioned substitutions.

l1 =
dT

4
cos(φ)− dT

4
sin(φ) (5.8a)

l2 =
dT

4
cos(φ) +

dT

4
sin(φ) (5.8b)

The decision boundaries for this symbol form a square region bounded by limits shown

in Equation 5.9. Q-functions can be used to express the symbol error rate because the

decision region boundaries are parallel to the I and Q axes. These decision boundaries are

illustrated along with Gaussian curve in Figure 5.3.

symbol10 =


0 < l1 <

dT
2

0 < l2 <
dT
2

(5.9)
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Figure 5.3: A 3-dimensional view of the probability density function of symbol 10. The teal
planes coming vertically up are the message decision regions around the symbol.
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PS

(
Eavg
N0

)
= 1−

[
1−

[
Q

(
dT
2 − l1
σ

)
+Q

(−l1
σ

)]]
×[

1−
[
Q

(
dT
2 − l2
σ

)
+Q

(−l2
σ

)]]
× (5.10)

(5.11)

PS

(
Eavg
N0

)
= 1−1−

Q
 dT

2 − dT
4 cos(φ) + dT

4 sin(φ)√
N0T
4


+Q

− dT
4 cos(φ)− dT

4 sin(φ)√
N0T
4

×1−

Q
 dT

2 − dT
4 cos(φ)− dT

4 sin(φ)√
N0T
4


+Q

− dT
4 cos(φ) + dT

4 sin(φ)√
N0T
4



(5.12)

PS

(
Eavg
N0

)
= 1−1−

Q
√d2T

4N0
(2− cos(φ) + sin(φ))

+

Q

√d2T

4N0
(− cos(φ) + sin(φ))

×1−

Q
√d2T

4N0
(2− cos(φ)− sin(φ))

+

Q

√d2T

4N0
(− cos(φ)− sin(φ))


The average energy per symbol, from Equation D.9, has not changed from non-watermarked

QAM since the watermark only rotates symbols around a circle. The average symbol energy

is now substituted in Eavg = 5d2T/4.
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(5.13)

PS

(
Eavg
N0

)
= 1−{
1−

[
Q

(√
Eavg
5N0

(2− cos(φ) + sin(φ))

)
+

Q

(√
Eavg
5N0

(− cos(φ) + sin(φ))

)]}
×{

1−
[
Q

(√
Eavg
5N0

(2− cos(φ)− sin(φ))

)
+

Q

(√
Eavg
5N0

(− cos(φ)− sin(φ))

)]}

Multiplying the terms results in

PS

(
Eavg
N0

)
= Q

(√
Eavg
5N0

(2− cos(φ) + sin(φ))

)
+Q

(√
Eavg
5N0

(− cos(φ) + sin(φ))

)

+Q

(√
Eavg
5N0

(2− cos(φ)− sin(φ))

)
+Q

(√
Eavg
5N0

(− cos(φ)− sin(φ))

)

−
[
Q

(√
Eavg
5N0

(2− cos(φ) + sin(φ))

)
+Q

(√
Eavg
5N0

(− cos(φ) + sin(φ))

)]

×
[
Q

(√
Eavg
5N0

(2− cos(φ)− sin(φ))

)
+Q

(√
Eavg
5N0

(− cos(φ)− sin(φ))

)]
(5.14)

The previous general solution, Equation 5.14, can be approximated by the slightly less

verbose form shown in Equation 5.17. This approximation assumes that the mean of the

decision statistics, l1 and l2, are equidistant to the decision boundaries, which is close

to being true for small watermark angles. For example, this symbol under consideration

(symbol 10) has distance from the origin r = dT
√
2/4. The in-phase displacement, δ, of

the symbol after watermarking can be found intuitively because the x-position (in-phase

direction) of a point on a circle centered at the origin is x = r cos(θ). For this symbol the

in-phase displacement, or the in-phase di�erence between the watermarked symbol and a

non-watermarked symbol, would be δ = dT
√
2
4 (cos(π/4) − cos(π/4 − φ/2)). As long as this

magnitude of displacement is much smaller than the total distance from one edge of the

decision boundary to the other the approximation of Equation 5.17 is valid. An alternative

form of this approximation is shown with only the terms required in Equation 5.16. If

φ = π
16 , then the inequality becomes 0.09 << 1, which is valid. The assumption begins

to break down around for watermark angles larger than π/14, when the displacement is less
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than an order of magnitude of the total distance between decision boundaries.

∣∣∣∣∣dT
√
2

2
(cos(π/4)− cos(π/4− φ/2))

∣∣∣∣∣ << dT

2
(5.15)

∣∣∣√2(cos(π/4)− cos(π/4− φ/2))
∣∣∣ << 1 (5.16)

PS

(
Eavg
N0

)
=2Q

(√
Eavg
5N0

(2− [cos (φ) + sin (φ)])

)
+

2Q

(√
Eavg
5N0

(2− [cos (φ)− sin (φ)])

)
− (5.17)

4Q

(√
Eavg
5N0

(2− [cos (φ) + sin (φ)])

)
×

Q

(√
Eavg
5N0

(2− [cos (φ)− sin (φ)])

)

5.2.2 Watermarked 16-QAM Probability of Watermark Recovery Error

The watermark error probability for a 16-QAM constellation cannot be easily simpli�ed to

a Q-function form because the optimal decision boundaries are not parallel to the in-phase

and quadrature axes. The decision boundaries used in this study, drawn in Figure 5.2, were

chosen to create large areas that share a binary watermark value. This causes the actual

watermark angle, either positive or negative, to be a function of the symbol and the binary

watermark value. These large regions of shared binary watermark values will reduce the

watermark error rate when compared to a constellation that does not take advantage of

grouping similar bit patterns in adjacent symbols. The side-a�ect of this is there are several

unique cases that must be considered to derive a general probability of a watermark error.

The following sections cover the four possible cases, and symmetry is used to focus on a

single quadrant.

From Figure 5.2 there is some symmetry in the watermark decision regions. The shaded

regions all have the same binary watermark value, and the regions with a white background

have the other binary value. The shaded regions also show the watermark boundaries; there

are two unique shapes to consider for the watermark error probability. Both of these cases

have one edge that extends to in�nity, but for the sake of identi�cation they will be called

the triangular region and the extended trapezoid. The triangular region is an isosceles
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triangle with a trapezoid missing from the unique edge; the triangle on the right side of the

constellation in Figure 5.2 is bounded by y = x and y = −x. The extended trapezoid is

the area that is shaded gray in Figure 5.2, and is the trapezoid that is missing from the

triangular section.

The probability of watermark error, derived in the following sections, must be left in

integral form and calculated numerically. The probability that is used can either be found

using the worst case, where the symbol closest to decision regions is used as representative

of all symbols, or the probability for all symbols can be averaged together. The simpler

approach of choosing the worst case symbol will give a slightly higher probability of error

than will be observed and be a faster and simpler calculation. For completeness the more

accurate estimate, averaging probability of error over all symbol possibilities, will be derived

here. Using symmetry there are four unique probabilities that will be calculated: one of the

watermarked symbols from symbol 10, both watermarked symbols from symbol 14, and one

watermarked symbol from symbol 15 in Figure 5.2. All of the other symbols will have the

same probability of a watermark error as one of these four symbols.

Case 1: watermark in triangular region

The �rst watermark region under consideration is bounded by the lines y = x and y = −x

for x > 0. There is a region from dT
2 < x < ∞ between the lines y = x/3 and y = −x/3

that needs to be subtracted from the previously mentioned region. The dT
2 bound is the

message symbol decision boundary, which is shared by the watermark decision boundary.

At the receiver each of these symbols is a normally distributed random variable. The mean,

µ, and variance, σ2, completely de�ne the random variable, which allows the probability of

a watermark error in this region to be written as shown in Equation 5.18. The limits of

integration come from the watermark decision boundaries, and the means are determined

by the decision statistics for the symbol under consideration.

(5.18)

PW = 1−
[∫ ∞

0

∫ x

−x

1

2
N
(
µx, σ

2
)
N
(
µy, σ

2
)
dydx−

∫ ∞
dT
2

∫ x
3

−x
3

N
(
µx, σ

2
)
N
(
µy, σ

2
)
dydx

]

With the symbols in this region there are three unique means, one for each of the three

symbols types (inner, edge, outer corner) that give di�erent probabilities of error. The
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di�erence in the means is the coe�cient used to weight the sine/cosine components. Again,

we refer to the distance between message symbols at the receiver as dT
2 .

Symbol 10 has already been analyzed in the previous section for the message error

probability, and the means (µx for the in-phase mean and µy for the quadrature mean) are

µx =
dT

4
(cosφ+ sinφ) (5.19a)

µy =
dT

4
(cosφ− sinφ) (5.19b)

For the remaining symbols the watermark angle must be normalized by their distance

from the origin compared to symbol 10, as summarized in Table 5.1. Symbol 14 with a

positive watermark angle is in this region and has the expected values

ux =

∫ T

0

cos (ωt)

[
3d

2
cos(ωt+

φ√
5
) +

d

2
sin(ωt+

φ√
5
)

]
dt (5.20)

uy =

∫ T

0

sin (ωt)

[
3d

2
cos(ωt+

φ√
5
) +

d

2
sin(ωt+

φ√
5
)

]
dt (5.21)

Which easily simpli�es to

µx =
dT

4

(
3 cos

φ√
5
+ sin

φ√
5

)
(5.22a)

µy =
dT

4

(
cos

φ√
5
− 3 sin

φ√
5

)
(5.22b)

Symbol 15 with a negative watermark angle has expected values

ux =

∫ T

0

cos (ωt)

[
3d

2
cos(ωt+

φ

3
) +

3d

2
sin(ωt+

φ

3
)

]
dt (5.23)

uy =

∫ T

0

sin (ωt)

[
3d

2
cos(ωt+

φ

3
) +

3d

2
sin(ωt+

φ

3
)

]
dt (5.24)

These expected values simplify to

µx =
3dT

4

(
cos

φ

3
+ sin

φ

3

)
(5.25a)

µy =
3dT

4

(
cos

φ

3
− sin

φ

3

)
(5.25b)
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Substituting any of the means from Equations 5.19, 5.22, 5.25 in to Equation 5.18 and

doing a numerical integration over the probability density function will yield the probability

of watermark recovery error for the corresponding symbols. The variance, σ2, is the same

well used variance utilized in the previous quadrature demodulators: N0T
4 .

Case 2: the extended trapezoid

Symbol 14 gets watermarked in to a region that looks like a trapezoid that was previously

subtracted from the large triangular region. The volume of the probability density function

outside of this region, and thus the probability of a watermark error, is found with the

integral, in Equation 5.26.

PW = 1−
∫ ∞
dT
2

∫ x
3

−x
3

N
(
µx, σ

2
)
N
(
µy, σ

2
)
dydx (5.26)

The expected values, µx and µy, for the probability density functions are the decision

statistics at the receiver. Equation 5.28 shows the mean values to use.

ux =

∫ T

0

cos (ωt)

[
3d

2
cos(ωt− φ√

5
) +

d

2
sin(ωt− φ√

5
)

]
dt (5.27a)

uy =

∫ T

0

sin (ωt)

[
3d

2
cos(ωt− φ√

5
) +

d

2
sin(ωt− φ√

5
)

]
dt (5.27b)

µx =
dT

4

(
3 cos

φ√
5
+ sin

φ√
5

)
(5.28a)

µy =
dT

4

(
cos

φ√
5
− 3 sin

φ√
5

)
(5.28b)

Summary

The four probability density functions for the unique symbol types are found in Equations

5.18 and 5.26 combined with the known expected values of the symbols.

The probability of watermark error for 16-QAM is complex because of the non-uniform

constellation spacing created by the watermark and phase normalizing. Optimizing the

chosen decision regions for successful watermark recovery creates four unique probabilities
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in two decision areas that need to be computed numerically and averaged together. In

practice it should be su�cient to choose one of the cases as representative and simplify the

calculation to a single integral, but all four cases are shown for completeness. The following

section will use a computer simulation to compare the average probability of watermark

errors to the expected watermark error using only symbol 10's probability of watermark

error. The complete equation for this error can be written by substituting Equation 5.19 in

to Equation 5.18; the result is shown in Equation 5.29.

(5.29)

PW = 1−[∫ ∞
0

∫ x

−x

1

2
N

(
dT

4
(cosφ+ sinφ) , σ2

)
N

(
dT

4
(cosφ− sinφ) , σ2

)
dydx

−
∫ ∞
dT
2

∫ x
3

−x
3

N

(
dT

4
(cosφ+ sinφ) , σ2

)
N

(
dT

4
(cosφ− sinφ) , σ2

)
dydx

]

5.2.3 Computer Simulations

Using a custom modulator/demodulator pair in MATLAB the probability of symbol error

and watermark error was tested and compared to the expected results. 105 symbols were

randomly generated and watermarked before passing through an AWGN channel. The

watermark angle, φ = π/16, used in this simulation refers to the watermark angle for the

inner symbols. The other symbols will be watermarked by another angle related to π/16

according to Table 5.1. The PS rates are very close to the expected rates, as seen in Figure

5.4. In this �gure the simulated probability of symbol error lies on top of the expected

probability of symbol error from Equation 5.17. Both can be compared to the symbol error

rate for standard 16-QAM constellation, plotted in green, using Equation D.20.

The probability of watermark error was simulated simultaneous to the symbol error.

The simulated probability (black dots) compared to the expected (green and blue dashed

lines) probability of watermark error is shown in Figure 5.5. The expected simpli�ed PW

here is calculated using Equation 5.29, which uses watermarked symbols from symbol 10

as the worst-case. Noting that the watermark consists of two possible symbols (one bit)

even though the message consists of 16 possible symbols (four bits) the expected watermark

errors are greater than 1/2 due to approximations used in the derivation of the watermark

error rate, which obviously is not possible in implementation. Speci�cally, the watermark

was assumed to be wrong outside of a single area. This is not the case with low ES
N0

since each

watermark value has four distinct regions (refer to Figure 5.2 in which it will be correctly

decoded.) A receiver may correctly give a watermark even if the received signal is far from
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tested. The
green line is non-watermarked 16-QAM for comparison.
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the correct symbol. This approximation is accurate at the higher ES/N0 values that yield a

more reliably detected watermark symbol. The probability of watermark is only inaccurate

when the PW is close to 0.5, where the system would be unusable. As indicated previously a

single integral could reasonably be substituted for the average over the four integrals given

in Section 5.2.1.
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CHAPTER 6

Phase Dithered Di�erential BPSK Error Rates

Di�erential BPSK (DBPSK) uses anti-podal signaling similar to coherent BPSK, but uses

the previous symbol rather than a locally generated sinusoid as the reference signal. This

technique increases the probability of bit errors, but reduces the receiver complexity by

not requiring coherent phase synchronization. An optimal implementation of the process is

shown in Figure 6.1 [22].

s(t)

xq(t)

ψ1=cos(t)

∫   dt
xin(t)

ψ2= -sin(t)

(k+1)T

kT

∫   dt
(k+1)T

kT

Delay T

Delay T

Σ

yq

yin-1

yq-1

zq

zin

yin

l

Figure 6.1: A non-coherent DBPSK receiver with input s(t) makes message and watermark
decisions on l.

6.1 DBPSK Receiver

The received signal, s(t), is split in to quadrature and in-phase components respectively

denoted xin(t) and xq(t). Equation 6.1 shows a model of what the received signal looks like

whereM(t) is the binary PSK message bit,W (t) is the watermark bit, and α is a phase o�set

assumed to be constant during the symbol duration from not being phase synchronized.

s(t) = cos (ωt+ πM(t) + φW (t) + α) (6.1)
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The pulse after integrating is referred to as yin(t) for the in-phase path and yq(t) for

the quadrature path. These pulses are multiplied with the previous symbol pulse which

will be referred to as yin−1(t) for the previous in-phase pulse and yq−1(t) for the previous

quadrature pulse.

yin(t) =

∫ T

0

cos (ωt+ πM(t) + φW (t) + α) · cos(ωt)dt

yq(t) =

∫ T

0

cos (ωt+ πM(t) + φW (t) + α) · sin(ωt)dt
(6.2)

Multiplying, integrating, and assuming an integer number of sinusoid cycles per symbol

yields

yin(t) =
T

2
cos (πM(t) + φW (t) + α)

yq(t) = −
T

2
sin (πM(t) + φW (t) + α)

(6.3)

The product of current symbols and previous symbols is zq(t) and zin(t). The notation

zin−1(t) and zq−1(t) will be used for the previous symbol, which is equivalent to zin(t− T )

and zq(t− T ). Using the second notation, expressions for z are given in Equation 6.4.

zin(t) = yin(t)yin(t− T )

zq(t) = yq(t)yq(t− T )
(6.4)

Substituting the integrator output from Equation 6.3 in to Equation 6.4 will give Equa-

tion 6.5.

zin(t) =
T

2
cos (πM(t) + φW (t) + α) · T

2
cos (πM(t− T ) + φW (t− T ) + α)

zq(t) = −
T

2
sin (πM(t) + φW (t) + α) · −T

2
sin (πM(t− T ) + φW (t− T ) + α)

(6.5)

Now looking at all possible combinations of message and watermark bits will give all

possible values for z, and eventually the expected values for l. The decision statistic, l, will

be used to determine watermark and message bits which is the sum of zq and zin, shown in

Equation 6.6.

l = zin(t) + zq(t) (6.6)

With di�erential signaling of two bits (one message bit and one watermark bit) there
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are four possible unique values for l. Keeping in mind that the actual bit transferred comes

from bit changes, the possible events are

• The message and watermark bits do not change

• The message bit does not change, but watermark does change

• The message bit changes, but watermark does not change

• Both message and watermark bits change

The expected values for the decision statistic, l, will be found in the following four

sections for each of these events.

6.1.1 Message and Watermark Bits do not Change

Starting with Equation 6.5, use M(t) =M(t− T ) = 0 and W (t) =W (t− T ) = −1.

zin(t) =
T 2

4
cos (−φ+ α) · cos (−φ+ α)

zq(t) =
T 2

4
sin (−φ+ α) · sin (−φ+ α)

(6.7)

After using common trigonometric identities and algebra this simpli�es to

zin(t) =
T 2

8
[1 + cos (−2φ+ 2α)]

zq(t) =
T 2

8
[1− cos (−2φ+ 2α)]

(6.8)

The sum of in-phase and quadrature components gives the decision statistic,

l =
T 2

4
(6.9)

6.1.2 Constant Message with Changing Watermark

In this case the messages will be M(t) =M(t−T ) = 0. The watermarks will be W (t) = −1

and W (t− T ) = 1. Substituting these in to Equation 6.5 gives

zin(t) =
T 2

4
cos (−φ+ α) · cos (+φ+ α)

zq(t) =
T 2

4
sin (−φ+ α) · sin (+φ+ α)

(6.10)
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Trigonometric identities and algebra simpli�es this to

zin(t) =
T 2

8
[cos (2φ) + cos (2α)]

zq(t) =
T 2

8
[cos (2φ)− cos (2α)]

(6.11)

The expected value of l in this case is

l =
T 2

4
cos 2φ (6.12)

6.1.3 Changing Message with Constant Watermark

In this case the messages will be M(t) = 0 and M(t − T ) = 1. The watermarks will be

W (t) =W (t− T ) = −1.

From equation 6.5 the values for z are

zin(t) =
T 2

4
cos (−φ+ α) · cos (π − φ+ α)

zq(t) =
T 2

4
sin (−φ+ α) · sin (π − φ+ α)

(6.13)

zin(t) =
T 2

8
[− cos (−2φ+ 2α)− 1]

zq(t) =
T 2

8
[+ cos (−2φ+ 2α)− 1]

(6.14)

The expected value of l,

l = −T
2

4
(6.15)

6.1.4 Changing Message and Changing Watermark

In the �nal case the messages are M(t) = 0 and M(t − T ) = 1. The watermarks will be

W (t) = −1, and W (t− T ) = 1.

Substituting the message and watermark in to Equation 6.5 yields

zin(t) =
T 2

4
cos (−φ+ α) · cos (π + φ+ α)

zq(t) =
T 2

4
sin (−φ+ α) · sin (π + φ+ α)

(6.16)

Which simpli�es to

zin(t) =
T 2

8
[cos (π + 2α) + cos (π + 2φ)]

zq(t) =
T 2

8
[cos (π + 2φ)− cos (π + 2α)]

(6.17)

48



Summing the in-phase and quadrature components for the expected value of l gives,

l = −T
2

4
cos(2φ) (6.18)

6.1.5 Decision Regions

Decision boundaries for determining the watermark and message bits are placed equidistant

from the previously derived expected values for l.

The expected values of l when the message changed, Equations 6.15 and 6.18, are both

negative of the expected values of l when the message changed. This results in l = 0 being

the boundary of a message bit decision.

When the watermark bit changes l comes from Equations 6.12 and 6.18. When the

watermark bit remains the same l comes from Equations 6.9 and 6.15. Assuming the wa-

termark bits are equally probable a decision boundary comes from the average of Equations

6.9 and 6.12 and another boundary is formed by the average of 6.15 and 6.18. Based on this

the decision boundaries are easily found and shown in Equation 6.19.

l = ±T
2

8
(1 + cos(2φ)) (6.19)

6.2 Bit Error Rates

6.2.1 DBPSK Noise

The DBPSK receiver from Figure 6.1 is well known to have noise with a laplacian probability

distribution. The laplacian distribution comes from the sum of the quadrature and in-phase

components which each have a product normal distribution. The sum of two product-normal

distributions will give a laplacian distribution [14]. For DBPSK the probability distribution

function of the noise is

fN (n) =
2

N0T
e−

4|n|
N0T (6.20)

6.2.2 Message Bit Energy

Assuming 1 bit/symbol With a symbol time of T the bit energy is

Eb =

∫ 2T

0

s2(t) (6.21)
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4
- - cos(2φ)
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B

Figure 6.2: Green vertical lines show the two expected values for the message bits not
changing between symbols. The black curves are half of the probability density function for
received symbols. The message error rate is the sum of the green area labeled A and the
red area labeled B.

The upper bound of integration is 2T because each bit has energy spread across two symbols.

The message and watermark values will not change the bit energy, so Equation 6.1 can be

used with M(t) = 0 and W (t) = 1.

This substitution gives

Eb =

∫ 2T

0

cos (ωt+ φα)
2
dt (6.22)

Evaluating will give the bit energy,

Eb = T (6.23)

6.2.3 Message Error Rate

The message error rate is the sum of the areas shown under the green (labeled B) and

red (labeled A) areas in Figure 6.2. These areas can be calculated by shifting the density

functions to be centered around 0 and �nding P (l > β), where β is the distance from the

expected value to the decision region.

The area under a right-hand side of a curve from Equation 6.20 is found with

PM (λ) =

∫ ∞
β

2

N0T
e−

4λ
N0T dλ (6.24)

Integrating gives,

PM (λ) =
2

N0T

(
−N0T

4
e−

4λ
N0T

)∣∣∣∣∞
λ=β

(6.25)
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Figure 6.3: The worst, and most unlikely case, in terms of bit errors is the noise moves
the received symbol in to the decision region furthest from where it would otherwise be
expected. The green bars are expected values for decision statistics, and the watermark
decision boundaries are shown with yellow bars. The message bit decision is based on the
y-axis.

Evaluating will result in

PM (β) =
1

2
e−4

β
N0T (6.26)

β is the distance from an expected value to the decision boundary. There are four possible

values for β that come from the expected values of l for message decisions. Two of these

values are shown in Figure 6.2, the other two are positive, but have the same magnitude.

Assuming that every combination of message bits is equally likely averaging the probability

for each expected value of l is

PM (
Eb
N0

) =
1

4

(
e−

T
N0 + e−

T
N0

cos 2φ
)

(6.27)

Substituting the bit energy from Equation 6.23 gives

PM (
Eb
N0

) =
1

4

(
e−

Eb
N0 + e−

Eb
N0

cos 2φ
)

(6.28)

6.2.4 Watermark Error Rate

For the watermark error rate, analysis from the message error rate is valid up to Equation

6.26. From Equation 6.26 β is now made to be the distance between expected values of l

and the decision boundaries for watermark bits, which were found in Equation 6.19

-

There are two expected values of l near each decision boundary that will dominate

the watermark errors, and they are the same distance for all four combination of message
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and watermark changes since the boundary was de�ned as the mean of these two expected

values. A diagram of this event happening is given in Figure 6.3. If a watermark error occurs

because the received signal is pushed beyond the far decision boundary then a symbol error

also occurs and noise has totally dominated the signal. This is a case that will not be

considered since it has a small e�ect on the error probability and will needlessly complicate

the �nal expression.

The distance, β, to use in Equation 6.26 to �nd the watermark error rate is The distance

β to use in Equation 6.26 is

β =
T 2

8
(1 + cos(2φ))− T 2

4
cos(2φ) (6.29)

β =
T 2

8
(1− cos(2φ)) (6.30)

Using Eb = T from Equation 6.23 and substituting it and Equation ?? in to Equation

6.26, the watermark error rate as a function of EbN0
is

PW (
Eb
N0

) =
1

2
e−

Eb
2N0

(1−cos 2φ) (6.31)

6.3 Comparison to Non-Watermarked DBPSK

Bit error rate curves in Figure 6.4 show predicted bit error rates for watermarked DBPSK

using watermark angles of φ = π
8 and φ = π

16 along with non-watermarked DBPSK.

Predicted watermark error rates for DBPSK are shown in Figure 6.5, and are plotted

using Equation 6.31. Watermark angles of φ = π
8 (dashed line) and φ = π

16 (solid line) are

shown. Using these plots it is evident that small watermark angles require a very high SNR

for usable reception.
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CHAPTER 7

Conclusion

7.1 Conclusion

Closed form expressions to calculate the probability of bit errors for message and water-

mark signals with phase-dithered watermarked BPSK, QPSK, 16-QAM, and DBPSK have

been presented. For coherent modulations the derived expressions have been veri�ed with

computer simulations. Although coherent BPSK results were found by [18], this study in-

dependently derived and veri� For BPSK, QPSK, and QAM results have been compared to

similar studies.

The probability of bit errors presented enable decision making in authentication and

quality of service applications. In authentication applications the phase-dithered watermark

presented enables a balance between stealth and probability of authentication. The true

probability of authentication would depend on cryptographic parameters such as key size

that are outside the scope of this investigation. Other than authentication the watermark

could be used as a side-channel with con�gurable priority based on the watermark angle,

enabling quality of service for multiple data streams with overlapping channel usage.

7.2 Future Work

The proposed modulation schemes should be implemented and tested in over the air radios.

Work has started on a watermarked BPSK constellation using GNU Radio 3.6, which should

be updated to GNU Radio 3.7.

Additionally, this research focused on watermarks that use watermark symbol duration

that is an integer multiple of the message symbol. Future work could investigate probability

of bit errors for independent watermark and message symbol durations, which could increase

stealth.
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APPENDIX A

Noise Power Spectral Density

To �nd the variance of a statistic out of a correlator/matched-�lter for BPSK the input

signal is purely noise

x(t) = n(t) (A.1)

The output is

l(t) =

∫ T

0

cos (w0t)n(t)dt (A.2)

Since the input, n(t), is de�ned as white Gaussian noise the output is characterised

completely by the mean and variance. The mean is set at 0. The variance is

σ2 = E
[
l2
]
= E

[∫ T

0

cos (w0t)n(t)dt

∫ T

0

cos (w0τ)n(τ)dτ

]
(A.3)

The τ symbol is introduced to make clear the independent dummy-variables for integration.

σ2 = E

[∫ T

0

∫ T

0

n(t)n(τ) cos (w0t) cos (w0τ) dtdτ

]
(A.4)

Since integration and expectation are linear operators and n(·) is the only random part of

this, it gets rearranged as follows

σ2 =

∫ T

0

∫ T

0

E [n(t)n(τ)] cos (w0t) cos (w0τ) dtdτ (A.5)

The expectation here is the auto-correlation of a white Gaussian random variable, which

by de�nition is

E [n(t)n(τ)] =
N0

2
δ(t− τ) (A.6)

Substituting this result back in to Equation A.5,

σ2 =
N0

2

∫ T

0

∫ T

0

δ(t− τ) cos (w0t) cos (w0τ) dtdτ (A.7)
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Now we use the sifting property of δ(·)

σ2 =
N0

2

∫ T

0

cos (w0t) cos (w0t) dt (A.8)

Using a common product-to-sum trigonometric identity and integrating,

σ2 =
N0T

4
(A.9)
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APPENDIX B

BPSK BER Derivation

A BPSK demodulator will receive a signal of the form

x(t) = ± cos (ωt) 0 ≤ t < T (B.1)

T is the bit time duration, and the ± comes from a π phase shift denoting the bit. At the

receiver this signal gets multiplied by

ψ(t) = cos (ωt) 0 ≤ t < T (B.2)

The product goes in to a matched �lter, an integrator giving

l(t) = ±
∫ T

0

[
cos2 (ωt)

]
dt (B.3)

l(t) = ±
∫ T

0

1

2
[cos (0) + cos (2ωt)] dt (B.4)

The double frequency term goes to 0 after integration because the limits of integration,

[0, T ], cover an integer number of periods. The result is

l(t) = ±T
2

(B.5)

The result, l, is the mean of a normally distributed random variable with variance derived

in Appendix A:

σ2 =
N0T

4
(B.6)

For convenience the Q-function will be used to express the Pb. The Q-function is the tail

probability of a normally distributed random variable, that is the area under the right-hand
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tail of a Gaussian curve. To review the de�nition:

Q(x) =
1√
2π

∫ ∞
0

e−
x2

2 dx (B.7)

Since the statistic going in to the bit detector of a BPSK demodulator has a non-zero

mean and non-singular variance the Q-function has to be normalized. The bit detector will

have a decision criteria, referred to as γ. The decision for a bit is made, for example, as

bit =


1 l > γ

0 l < γ

(B.8)

The Pb is

Pb

(
Eb
N0

)
= Q

(
γ − l
σ

)
(B.9)

Both symbols are assumed to be equally likely and are equidistant from the origin, so let

γ = 0. Substituting in γ, l, and σ, we get

Pb

(
Eb
N0

)
= Q

 0 + T
2√

N0T
4

 (B.10)

After some algebra this becomes

Pb = Q

(√
T

N0

)
(B.11)

At this point knowing the Eb is useful. The energy of the transmitted bit is

Eb =

∫ T

0

cos2 (ωt) dt (B.12)

After algebra,

Eb =
T

2
(B.13)

Substituting Equation B.13 in to Equation B.11 results in the well known Pb

Pb = Q

(√
2Eb
N0

)
(B.14)
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APPENDIX C

QPSK SER Derivation

A QPSK demodulator will receive a signal of the form

x(t) = ± cos (ωt+ θ) 0 ≤ t < T (C.1)

T is the bit time duration, and θ is the modulated phase shift denoting the transmitted bits.

This analysis will use the quadrature demodulator shown in Figure C.1 so that the signal

in Equation C.1 gets multiplied by

ψ1(t) = cos (ωt) 0 ≤ t < T (C.2a)

ψ2(t) = − sin (ωt) 0 ≤ t < T (C.2b)

The product goes in to a matched �lter, an integrator giving

l1(t) =

∫ T

0

[cos (ωt+ θ) cos (ωt)] dt (C.3a)

l2(t) = −
∫ T

0

[cos (ωt+ θ) sin (ωt)] dt (C.3b)

l1(t) =

∫ T

0

1

2
[cos (θ) + cos (2ωt+ θ)] dt (C.4a)

l2(t) =

∫ T

0

1

2
[sin (θ)− sin (2ωt+ θ)] dt (C.4b)

The double frequency terms go to 0 after integration because the limits of integration,

[0, T ], cover an integer number of periods. The result is

l1(t) =
T

2
cos (θ) (C.5a)

l2(t) =
T

2
sin (θ) (C.5b)
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T

0
∫  dt

x(t)

l1(t)y1(t)

ψ1=cos(t)

T

0
∫  dt

l2(t)

y2(t)

ψ2= -sin(t)

Bit

Detector

Figure C.1: Quadrature receiver used to demodulate QPSK signals.

The results, l1 and l2, are the means of two normally distributed random variables each

with variance derived in Appendix A:

σ2 =
N0T

4
(C.6)

For convenience the Q-function will be used to express the PS . The Q-function is the tail

probability of a normally distributed random variable, that is the area under the right-hand

tail of a Gaussian curve. To review the de�nition:

Q(x) =
1√
2π

∫ ∞
0

e−
x2

2 dx (C.7)

Since the statistic going in to the bit detector of a QPSK bit detector has a non-zero

mean and non-singular variance the Q-function has to be normalized. A symbol decision,

and therefore bit decisions, can be made by comparing the I (l1) and Q (l2) channels to

some threshold set to minimize PS . The orientation of our constellation means that each

quadrant is mapped to a single symbol. Bit decisions can be made by setting γ1 and γ2 to
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Figure C.2: The chosen QPSK constellation has a single constellation point in each quadrant.

0 and using the criteria in Equation C.8.

bit1 =


0 l1 > γ1

1 l1 < γ1

(C.8a)

bit2 =


0 l2 > γ2

1 l2 < γ2

(C.8b)

Now we will choose a constellation shown in Figure C.2 where each symbol is in a di�erent

quadrant. To calculate the PS we will use the PDFs of l1 and l2.

fl1 (λ1) =
1

σ
√
2π

exp

(
−
(
λ1 − T

2 cos
(
π
4

))2
2σ2

)
(C.9a)

fl2 (λ2) =
1

σ
√
2π

exp

(
− (λ2 − T

2 sin
(
π
4

)
)2

2σ2

)
(C.9b)

At this point it is convenient to use symmetry to focus in on a single constellation point.

We will choose the constellation point in quadrant 1. Notice for quadrant 1 in Figure C.2

θ = π
4 . The symbol is an error if the constellation is anywhere outside of the �rst quadrant;

so we will integrate using the limits [0,∞].

PS

(
ES
N0

)
= 1−

∫ ∞
0

fl1(λ1)dλ1

∫ ∞
0

fl2(λ2)dλ2 (C.10)
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This can be represented in a Q function as follows.

PS

(
ES
N0

)
= 1−

[
1−Q

(
0 + l1
σ

)][
1−Q

(
0 + l2
σ

)]
(C.11)

Substituting in the expected decision statistics:

PS

(
ES
N0

)
= 1−

[
1−Q

(
T
2 cos

(
π
4

)
N0T
4

)][
1−Q

(
T
2 sin

(
π
4

)
N0T
4

)]
(C.12)

Notice the switch from θ to π
4 , because this derivation uses the symbol in quadrant 0 that

is located at π
4 .

One �nal substitution for the ES should be made,

ES =

∫ T

0

cos2 (ωt+ θ) (C.13)

ES =
T

2
(C.14)

Now substituting in ES and simplifying terms we get

PS

(
ES
N0

)
=Q

(√
2ES
N0

cos
(π
4

))
+Q

(√
2ES
N0

sin
(π
4

))

−Q
(√

2ES
N0

cos
(π
4

))
Q

(√
2ES
N0

sin
(π
4

))
(C.15)

The previous form of Equation C.15 intentionally leaves the cos and sin terms as they

are as a reference for the watermarked QPSK derivation in this text. By simplifying the cos

and sin terms and making the approximation that the product term is close to 0 we get the

result commonly found in textbooks [16,22].

PS

(
ES
N0

)
= 2Q

(√
ES
N0

)
(C.16)

This PS can also be used to approximate the Pb. First, since there are two bits in

each symbol the rate assume that each symbol error causes one bit error. This is a close

approximation for gray-coded QPSK and gets rid of the 2 term. Next, the ES = 2Eb

substitution is made. This gives the same Pb as BPSK,

Pb

(
Eb
N0

)
= Q

(√
2Eb
N0

)
(C.17)
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This is an intuitive approximation for gray-coded QPSK with the chosen constellation

considering Equation C.8.
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APPENDIX D

QAM SER Derivation

Square 16-QAM uses a quadrature demodulator to make symbol decisions. The constellation

is the same as that shown in Figure 5.1. The transmitted signal is

r(t) = a(t) cos(ωt) + b(t) sin(ωt) (D.1)

a(t) and b(t) will hereon be replaced with equivalent values of d, the distance between

adjacent symbols.

First, we �nd the energy in each symbol. Symmetry allows us to focus on a single

quadrant.

Symbol 10 has symbol energy

E10 =

∫ T

0

d2

8
(2 cos (0) + sin (2ωct)− sin (0)) dt (D.2)

E10 =
d2T

4
(D.3)

Symbols 11 and 14 have the same energy,

E11,14 =

∫ T

0

(
3d

2
cos (ωct) +

d

2
sin (ωct)

)2

dt (D.4)

E11,14 =
5d2T

4
(D.5)

E15 =

∫ T

0

(
3d

2
cos (ωct) +

3d

2
sin (ωct)

)2

dt (D.6)

E15 =
9d2T

4
(D.7)
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The average symbol energy is

Eavg =
E10 + 2E11,14 + E15

4
(D.8)

Eavg =
5d2T

4
(D.9)

Next, the statistics of the output of the demodulator branches are calculated. The

in-phase portion for symbol 10 can be written as

l10 =

∫ T

0

(
d

2
cos (ωct) +

d

2
sin (ωct)

)
· cos (ωct) dt (D.10)

After trigonometric identities and integration, the output statistic is

l10 =
dT

4
(D.11)

Symbol 14, which neighbors symbol 10, has a mean in-phase value which can be calcu-

lated via

l14 =

∫ T

0

(
3d

2
cos (ωct) · cos (ωct) +

d

2
sin (ωct) · cos (ωct)

)
(D.12)

Again, it can be shown that this integrates to

l14 =
3dT

4
(D.13)

The decision boundary is in the middle of these two points, so

γ =
dT

2
(D.14)

The other decision boundary in the in-phase direction is 0 because it is the mid-point

between symbol 10 and symbol 6.

The probability of correct detection of symbol 10 is therefore

∫ dT
2

0

N

(
dT

4
,
N0T

4

)∫ dT
2

0

N

(
dT

4
,
N0T

4

)
dxdy (D.15)

Since the decision boundaries all run parallel to either the in-phase or quadrature axes
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they can be represented as Q-functions.

1− 2Q

 dT
2 − dT

4√
N0T
4

1− 2Q

 dT
2 − dT

4√
N0T
4

 (D.16)

This simpli�es to

[
1− 2Q

(
d
√
T/4√
N0/4

)][
1− 2Q

(
d
√
T/4√
N0/4

)]
(D.17)

1− 2Q

√d2T/4

N0

1− 2Q

√d2T/4

N0

 (D.18)

Now substituting in the average symbol energy found earlier,

[
1− 2Q

(√
Eavg
5N0

)][
1− 2Q

(√
Eavg
5N0

)]
(D.19)

The probability of a symbol error is the probability outside of this region. After rear-

ranging terms this is the common formula.

PS

(
Eavg
N0

)
= 4Q

(√
Eavg
5N0

)
− 4Q

(√
Eavg
5N0

)2

(D.20)

This is frequently presented in terms of k andM where k is the number of bits andM = 2k,

or modulation order [11,22].
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