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Abstract: Research on the forensic applicatiorRNA analysis has increased greatly in
the last decade. Defined uses of RNA in forensayais include the use of RNA to
identify tissue type, determine sample age, anyg @lale in molecular autopsies.
Although recent research has indicated many pasgibénsic applications of RNA
analysis, many questions remain concerning thewhehaf RNA in degraded and

limited samples. Specifically, there remains talBorough understanding of the
differing patterns and rates of RNA degradatiopast-mortem and deposited samples.
Thus, choosing suitable RNA markers for evaluatirgapproximate age of a forensic
sample can be problematic. Development of a raiabld accurate molecular assay for
the determination of sample age (time-since dejposdf a biological sample and/or
post-mortem interval) will play a critical role irelping investigators establish the
timeline of events that surround a crime. The psepaf this research is to evaluate
MRNA degradation in forensically relevant biolodisample types (blood, saliva,
semen, and vaginal fluid) in order to establisbuesspecific transcriptome (total mMRNA)
degradation profiles and patterns that may coeelath the age of a sample.
Transcriptome sequencing of mMRNA isolated fromHrasd aged samples (0 days to 360
days old) was performed to evaluate the pattermsRNA degradation in relation to
sample age. Sequencing data was used to deterneipattern and rate of degradation
for each individual mRNA transcript in each samiylge. Sequencing data indicates that
the mRNA population and transcript degradationsragpear to be tissue-specific. The
MRNA degradation profiles obtained from this stedy be used to determine the
transcripts in each sample type that have deg@dpttterns and rates correlated with
sample age.
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CHAPTER |

INTRODUCTION

Historically, deoxyribonucleic acid (DNA) analysias played a dominant role in
forensic investigations, while use of ribonuclessda(RNA) analysis has been limited.
For several decades RNA was thought to be bothatnle and too susceptible to
degradation for use with most forensically relevearnples. However, several studies
over the past decade have demonstrated that RNAmayuch more stable &x vivo
samples than was once believed (Fordyce, Kampnizoorn, & Gilbert, 2013). With a
greater number of studies being performed on RN& fiorensic context, researchers
have begun investigating practical applicationRNfA analysis in forensic science.
Research has demonstrated the possible use of Ralgsss in tissue identification,
estimation of time since deposition and post moritgerval, and determination of
disease state, drug use, and mechanism of deafim@®rson, Howard, Hobbs, &
Bishop, 2005; M Bauer, 2007; Lindenbergh et aD12 Vennemann & Koppelkamm,
2010a). While the analysis of DNA can provide irtigegors with human identity, the
analysis of RNA from forensic samples may potelytipfovide a wealth of information

concerning when and how a crime occurred.
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A heightened interest in forensic RNA researchiogrart be attributed to several
studies that have demonstrated long-term statlofifgNA molecules irexvivo samples.
Forensically relevant biological samples are oftegraded and/or minimally available,
thus the demonstrated presence of RNA in theselsagpes was required before further
forensic applications of RNA analysis could be expdl. In research performed by
Kohlmeier and Schneider, RNA was successfully ieoland profiled from a 23-year old
blood stain (Kohlmeier & Schneider, 2012). Simiesults were achieved in a study by
Bauer et al.. with a 15 year old blood stain and study by Zubakov et al. with a 16 year
old blood stain (Martin Bauer, Polzin, & Patzel®03; Zubakov, Kokshoorn,
Kloosterman, & Kayser, 2009). In addition to blaaimples, studies of saliva, semen,
seminal fluid, vaginal secretion, sweat, and sldmdnstrate that RNA can be isolated in
a variety of biological samples that are severaryeld (Haas, Muheim, Kratzer, Bar, &
Maake, 2009; Sakurada, Akutsu, Fukushima, Watar&ab@shino, 2010; Sakurada,
Akutsu, Watanabe, Fujinami, & Yoshino, 2011; Viss&rbakov, Ballantyne, & Kayser,
2011). Studies such as these demonstrate the pibgsibisolating and analyzing RNA
from forensically relevant samples. While past ssithave demonstrated the stability of
RNA in aged biological material, the next line e§earch is determining how the
presence of RNA can be used to learn more abcarmals.

Over the past decade, there has been initial r@s@ar monitoring RNA
degradation as a time-clock for sample age estimakiowever, past research is limited
in both the number of RNA markers evaluated andypes of biological samples
included in analysis. Research evaluating sampmedggnonitoring RNA degradation

has mainly focused on ribosomal RNA (rRNA), housglieg mRNA transcripts, and



tissue-specific MRNA transcripts. These studieshailized both end-point PCR paired
with capillary electrophoresis and real-time reedranscriptase PCR (RT gPCR) to
monitor degradation rates in a few select RNA gmedtarly work focused on the
degradation rates of housekeeping mRNA transcaiptisrRNA, as these species have a
known presence in all tissue types. In work perfedroy Bower et al., analysis of 106
bloodstains, aged up to 15 years, revealed thalibhadance di-actin and cyclophilin
transcripts decreased in relation to sample agetMBauer, Gramlich, Polzin, &
Patzelt, 2003). Anderson et al.. expanded researfactin mMRNA degradation by
demonstrating that the approximate age of a bleaustin be predicted by determining
the ratio betweefi-actin mRNA and 18S rRNA (S. Anderson et al.., 200he 18S
rRNA product is stable and remains at a steady lE#va&bundance in aged stains
compared t@-actin mMRNA, which decreases in abundance over.tifries work
expanded to include the evaluation of different brop sizes of botlf-actin mRNA and
18S rRNA, with older bloodstains having a reducegsence of longer amplicons than
fresh samples (S. E. Anderson, Hobbs, & Bishop1l20Anderson et al.. found that the
most robust estimation of age came from a multataranalysis that takes into account
multiple amplicons (of varying sizes) on multiplengs (S. E. Anderson et al.., 2011).
While these initial studies of RNA degradation ged bloodstains have been limited to
only examining a few select RNA transcripts, th&uts do indicate a correlation
between sample age and RNA degradation rates.

The literature clearly indicates initial promise tesing RNA degradation as a
time-clock for sample age estimation. However, @&/indsearchers have identified a few

possible RNA markers for determining the approxarege of a biological sample, the



research is limited and does not include any eviali®f whole transcriptome (total
RNA in a sample) degradation patterns. The redspedificity in predicting the actual
age of a sample in many of these studies may bbw#d to the lack of consideration of
more accurate RNA markers available in the traptmme of a sample type (S. E.
Anderson et al.., 2011; Martin Bauer, Gramlichalet 2003; Vass, Fleming, Harbison,
Curran, & Williams, 2013; Young, Wells, Hobbs, &dBiop, 2013). Up until this point,
all past studies have worked under the assumgtiirtheir selected RNA transcripts
were accurate enough to measure the age of a sardgiever, in total, past studies on
estimating sample age through RNA degradation ksatiated less than 20 RNA
species. This limited number of evaluated transeigproblematic because the
transcriptome of any given tissue contains thousafigossible RNA targets that may
have degradation patterns more closely tied toigtiiad accurate sample age. While past
studies have chosen their RNA targets based on tkmi@muscript availability (i.e. rRNA,
housekeeping mMRNA transcripts, or tissue-specifRiNA transcripts), these targets may
not be the most accurate predictor of sample agestddly has ever monitored whole
transcriptome degradation in biological samples aveextended period (several months
to years). Thus, researchers have no way of chgdlsenmost accurate RNA markers for
establishing sample age in a specific sample type.

In addition to the limited number of RNA markersakiated, past research on
RNA degradation in deposited biological fluids h@sused largely on blood, with no
major studies having been performed on other facahyg relevant sample types (such as
semen, saliva, and vaginal fluid). Evaluation aldbgical fluid types other than blood is

critical since the cell types, cellular environneerand transcriptomes vary considerably



with each fluid type. Thus, RNA degradation patseand rates may likely be different in
each sample type. If investigators are going talide to evaluate time since deposition in
a variety of sample types, it is critical to stuRIMA degradation patterns and rates in

forensically relevant biological fluid types othitan blood.

Research Purpose

The main purpose of this study is evaluation ddltoiRNA degradation in
deposited biological fluid samples in an effortdentify specific mMRNA markers that
correlate with sample age. This research aimsa@ase the body of knowledge on how
MRNA behaves iex vivosamples (specifically, deposited blood, saliva,naigluid,
and semen; and human teeth), aged up to one ykaasi research using RNA to
establish the age of a sample (time since depasitid®MI) has relied upon a minimal
number of housekeeping mMRNA transcripts, tissueipenRNA transcripts, and 18S
rRNA. While these studies have demonstrated a oidationship between RNA
degradation and sample age, previous studies f@vdentified RNA markers that are
accurately correlated with long-term sample agmfdes aged up to one year or longer).
While the RNA markers examined in past studies yweesumably chosen because of
their known presence in biological tissues, theaekers are not necessarily the RNA
species whose abundance most closely correlatesaple age. This study will take a
different approach than any past study of RNA dedgfian by evaluating the total
MRNA of fresh and aged samples through use of gemération RNA sequencing

(RNA-seq). The broad knowledge gained from thislgton RNA degradation will



facilitate selection of specific mMRNA markers fatablishing approximate sample age in

each individual sample type.

Research Questions
Throughout the execution of this study, the follegvresearch questions will
provide guidance and focus to the research.
1. Is there an observable pattern or profile of tot&®INA degradation in
deposited biological fluid samples (blood, salis@men, and vaginal fluid)?
2. Do different mRNA transcripts degrade at differeates?
3. Do different biological fluid-types (blood, saliveemen, and vaginal fluid)
have different patterns and/or rates of RNA degrada
4. Does RNA degradation correlate with approximatearage for each of the

sample types?

Hypothesis

It is established that the transcriptome of a lgjmlal sample does degrade once it
is deposited outside of the body or upon deathrefbiee, RNA degradation patterns
should be observable by sequencing the transcrggahbiological samples that have
been aged under known conditions for controlled @ammof time. RNA transcripts have
varying size and complexity and will most likelyveadistinct rates of degradation.
Therefore, different RNA transcripts may producé&ue degradation profiles. Each of

the different fluid types that are tested will cantunique RNA transcripts, thus each



sample type will also produce a unique transcrigt@l®gradation profile. If these
degradation profiles correlate with time since dsfoan of the biological sample, then
the degradation profiles of specific identified mRMNanscripts within a sample could

help predict the approximate age of the sample.

Overview of Methodology

The methods utilized in this study aim to provideoanprehensive snapshot of
MRNA degradation over a specified amount of timen(Giths or 1 year) in four
forensically relevant sample types (blood, semaliva and vaginal fluid). The
methodology can be broken into four main components

In the first component of this study, a comprehenbterature search was
performed to identify mMRNA markers for blood, semsaliva, and vaginal fluid
(Appendix A). Tissue- and fluid-specific gene prottuare well established in the
literature, and several MRNA markers for specifimple types have been validated for
specificity and sensitivity. In this study tissygesific RNA transcripts are utilized to
establish sample-specific mMRNA degradation pattéFhe databases utilized in the
literature search include Google Scholar, NCBI PeldMand ScienceDirect. The search
terms included “RNA markers for tissue identificetti, “RNA markers for biological
fluid identification”, “RNA used to identify tissweand fluids”, “forensic identification of
fluids and tissues using RNA”, and “mRNA markersbelogical tissues and fluids”.
The identified tissue-specific RNA transcripts via# analyzed in the RNA-seq data to
determine if tissue-specific RNA degradation paiteare present in RNA markers

already published for forensic applications.



In the second component of this study, RNA-sextyppreparation was
optimized for low input and degraded biological gés. Protocols for production of
cDNA and sequencing libraries were evaluated fduced sequencing bias and
successful use with minimally available and degdeslmples. The selected protocol for
cDNA generation was the NUGEN Ovation® Kit for cONRUGEN Technologies, San
Carlos, CA). Following cDNA production, samples eéragmented and libraries were
constructed using the lon Plus Fragment Library(Kih Torrent™, Life Technologies,
Carlsbad, CA). All libraries were constructed using same protocol, independent of
sample type.

In the third component of this study, depositedybfiuid samples were aged and
MRNA was isolated and sequenced at periodic inteyato six months (saliva, semen,
and vaginal fluid) or one year (blood). Biologisaimples were collected and stored at
room temperature in the dark. Two replicates ohessonple type were analyzed at each
of the time-course sampling intervals. An RNA/DN#&xisolation procedure was used to
isolate RNA and cDNA generation and library productvere carried out using the
optimized protocol chosen in the second componkthteostudy. Once constructed,
libraries underwent template preparation on theT@neh™ 2 (OT2™) and prepared
templates were sequenced on the lon Torrent™ Par&enome Machine®, referred to
subsequently as lon PGM™,

In the fourth component of this study, all RNA-skda were analyzed. All raw
RNA-seq data sets were trimmed for quality andnadyto the human genome (HG19,
GrCH37). RNA-seq abundance values were first nam@dlby calculating the Reads per

Kilobase per Million (RPKM) value for each gene.li® values were then normalized



to a standard curve reflecting abundance levela &et of ERCC RNA external controls
that were spiked in to each individual RNA sampiemto cDNA synthesis. The
standard curve prepared from the normalized abuwedaalues of the ERCC spike-in
controls (Ambion®) was used to quantify mRNA levetspecific templates between
time points both within and between sample typegetermine the presence of mMRNA

degradation profiles and patterns



CHAPTER Il

REVIEW OF THE LITERATURE

A review of the literature reveals that while thesa large body of knowledge on
the types, roles, and degradation mechanisms of RN#in vivo context, much
remains to be understood about éixevivobehavior of RNA. The lack of knowledge
concerning RNA irex vivosamples is beginning to be remedied by studiessnding
the use of RNA analysis of post-mortem and depadditelogical samples. The results of
these studies indicate that RNA has the poterttiaffer a substantial amount of
information in a forensic context. However, if RNalysis is going to be fully utilized
in forensic analysis, it is critical that investiges obtain a more comprehensive
understanding of thex vivobehavior of RNA in different sample types.

Properties of RNA

RNA is a class of biological macromolecules respgmador a wide variety of
functions within the mammalian cell. In the humany RNA is responsible for vital
tasks including, coding, decoding, facilitatingnséation, monitoring protein expression,
and catalyzing reaction within the cell. In order RNA to perform a large variety of

vital functions, many different types of RNA exwsithin a single cell. Major classes of
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RNA include messenger RNA (mRNA), ribosomal RNANKR), transfer RNA (tRNA),
small nuclear RNA (snRNA), and micro RNA (miRNAEach different class of RNA is
uniquely adapted to perform a specific functionhmtthe cell. The major population of
RNA in any given human cell is rRNA (80%). The 28S, 5.8S, and 18S rRNAs form
the two ribosomal subunits that help catalyze pnaggnthesis during translation. The
tRNA, which is the next largest population of RNAthin a cell (15%), also aids in the
process of translation by moving the correct anaicids to the ribosome. The mRNA,
which carries transcribed genetic information, ¢ibutes a small percentage of the
overall RNA population with in a cell (3-5%). Altleer classes of RNA, including both
snRNA and miRNA, constitute a very small percentaigihe total RNA population
(<2%) (Lodish et al.., 2000; Vennemann & Koppelkan2®10a).

RNA molecules, like DNA molecules, are composedufleotides. However,
unlike DNA, RNA is single stranded (mMRNA). Additially, RNA can be highly
complexed with proteins that help define the strrectand function of the molecule
(rRNA and tRNA). The single stranded nature of RHAdSs itself to fast production,
molecular instability, and rapid degradation, pmigs that are important to the role of
RNA as an intermediate molecule. The RNA transaripst be both rapidly produced
and rapidly degraded in order for the cell to tigihegulate protein production. While the
single stranded structure of RNA is necessary tmta@ia a high turnover rate within the
living cell, this quality makes RNA much less seabhd much more vulnerable to
degradation then DNA. The double stranded structtiE2NA lends stability and
durability to the molecule, qualities that havea#d scientists access to the genetic code

even in very old samples; whereas RNA can be dedradd possibly absent from aged
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samples. While DNA has offered reliability in tlad, the highly unstable and labile
nature of RNA has caused concern for scientistisarpast when considering degraded or
limited biological samples (Vennemann & Koppelkan2Z10b).

The entire set of RNA molecules expressed withgivan cell or tissue type is
called the transcriptome. While the genome of &mgigerson is conserved throughout
every cell of the body, a property that has begaiogted by investigators for means of
personal identification, the transcriptome is difet in each cell type. Every different
cell type within the body will express a unique seRNA molecules, providing for
different cell types to have a distinct structunel &unction. Although the entire genome
is found in every cell of the body, only specifiengs get expressed in each different cell
type. The transcriptome of a given cell type asussis fluctuating and is influenced by
many factors including cell life cycle and cell @evnment. Additionally, RNA transcript
levels can vary within a given individual as wedllzetween individuals, a fact that must
be recognized when performing analysis of RNA saspVennemann & Koppelkamm,
2010a, 2010b). While analysis of the genome canigeanformation on human identity,
analysis of the transcriptome can provide deep®ogical insight. Due to the unique
RNA profile of each tissue type and the responsateire of RNA production, analysis of
the transcriptome can offer scientists informatiegarding tissue identity and biological
conditions (drug use, health status, activity lee#t.) at the point in time when a tissue

sample is collected (Bauer, 2007).
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Mechanisms of RNA Degradation:n vivo vs. EX vivo

Mechanisms oin vivo RNA degradation are well elucidated; with the thmeesgor
types of RNA degradation being deadynelation-mediatRNA decay (the most
common type of RNA degradation), non-sense medi@dgedy, and AU-rich element
mediated mMRNA decay. While researchers know thdtipleimethods ofn vivoRNA
degradation take place, the most common type of mB&fradation is deadynelation-
mediated decay. During deadynelation-mediated mRIB#ay, the poly-A tail is
gradually decreased by deadenylating nucleasé®tpdint that the PABP1 molecules
can no longer bind to the e1F4E and elF4G mole¢btasd to the 5’ cap), thus
exposing the 5’ cap. Once exposed, the 5’ capn®ved by decapping enzymes and the
unprotected mMRNA is degraded by 5’ to 3’ exonuasaand exosomes containing 3’ to
5’ exonucleases. RNA degradation in the cell ig@d process, with most RNAs having
a half-life of several hours (Sharova et al.., 20@ficient turn-over of RNA is essential
to for a cell to be able to adapt to its environtraard monitor cellular function.

The mechanisms @Xx vivoRNA degradation are not as well understoothasvo
degradation mechanisms. This is witnessed by ttteaHat the first paper on the
mechanism of RNA degradation in deposited and pustem samples was not
published until April, 2013 (Fordyce et al.., 2018Bhe degradation of RNA i@ex vivo
samples depends largely on sample type and sampdition. RNA degradation in fresh
post-mortem samples that are not preserved or drigdven by cellular RNases that
remain active in moist cellular material. Howevarsamples that are dried (such as dried
blood stains) or preserved (such as FFPE tissupleamRnases are largely inactivated,

resulting in RNA degradation that is driven modtlyphysical and chemical factors, such
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as sunlight or pH. Degradationax vivosamples is also driven by the molecular
structure of RNA. Due to the structure of RNA, @rficular the 2’0OH group, RNA
molecules are more susceptible to spontaneous lggdréhan DNA molecules.
Specifically, the 2’OH group can attack the phogpéster bond and cleave the backbone
of RNA. While RNA is more prone to spontaneous loygiis than DNA, it is important

to note that RNA is less prone to depurinationepydimidination than DNA. This is
because RNA forms stronger N-glycosidic bonds &@. This quality of RNA

actually increases iesx vivostability.

Although RNA is certainly more prone to degradatiban DNA in post-mortem
or deposited samples, RNA is often times more s&blivothen it isin vivo. This
guality is due to the inactivation of Rnases in ynax vivosamples (such as those that
have been dried, frozen, or preserved) (Fordyed .e2013). Thus, RNA is much more
stable in biological samples than was once assubhh@aever, theex vivoRNA
degradation rate is measurable over days and veaeksan be exploited to provide

information about sample deposition time (S. E. émisdn et al.., 2011).

Stability and Variability of RNA

In order for RNA to be successfully utilized in@énsic context, critical issues
including the questioned stability of the transtmipe and variable quantity of RNA in
degraded or minimally available biological sampiasst be addressed. Originally, it was
believed that RNA would be too difficult or evenpossible to access in degraded
samples due to its fragile, single stranded strectdowever, research has proven that

with enhanced molecular materials and methods saswg RNA in aged, degraded, and
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minimally available forensic samples is possibidwds also become clear that RNA may
not be as unstable as was once believed, with alesteidies showing the successful
isolation and analysis of RNA in decades old sasygf®hlimeier and Schneider
successfully isolated and profiled mRNA from a Z2u4yold blood stain (Kohimeier &
Schneider, 2012). Bauer, et al. and Zubakov, ddaih demonstrated successful isolation
of RNA from 15 and 16 year old blood stains, resipety. (Martin Bauer & Patzelt,
2008; Zubakov et al.., 2009). Similar results hbgen achieved with other aged
biological sample types, including; saliva, senmsminal fluid, vaginal secretion, sweat.
(Haas, Muheim, et al.., 2009; Sakurada et al..020011; Visser et al.., 2011). Studies
such as these have laid the ground work use of RMNysis in forensic science, by
demonstrating that RNA is much more stable in agadples than was once believed.
Aside from the presence of RNA in aged and degradetples, a second issue
that must be considered is the known variabilityRdfA expression levels. The
expression levels of RNA transcripts are not cartsthey are known to vary between
tissues within the same individual and between danthe pool of MRNA in a given
tissue is labile, reactive, and fluctuating duedastant environmental and biological
influence. Multiple factors are known to effect Ri&pression, including, gender, age,
health status, weight, activity level, medicaticasiount of water intake, stress level, and
drug and alcohol use, among several other fact@ariemann & Koppelkamm, 2010b).
A study performed by Koppelkamm, et al.. showed RMHA integrity and degradation
pattern fluctuate depending on tissue type, catideath, duration of agony, and body
mass index (BMI) of the donor. For example, braésaue appears to have reduced RNA

integrity compared to cardiac and skeletal muscteRNA from donors with an
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increased BMI (>25) has a lower integrity then RI¥8lated from normal weight donors
(Koppelkamm, Vennemann, Lutz-Bonengel, Fracassde&nemann, 2011). In order to
lessen the effects of transcriptome variabilitynestn tissues and between donors,
internal standards should be used to normalizeatatalegradation profiles should be
obtained for individual RNA transcripts that areluded in analysis. While sample to
sample transcriptome variation will never be cortglleeliminated, by recognizing that
variability does exist, steps can be taken to enthat correct conclusions are drawn

from the data produced.

The Role of RNA in Forensic Science

Over the past several decades the majority of &icestience research has
focused on the use of DNA, as witnessed by thetfedttup until 1994 there had only
been two articles published that focused on thenfsic application of RNA analysis
(Oehmichen & Zilles, 1984; Phang, Shi, Chia, & O1hg94). In the past decade, research
focusing on the use of RNA in forensic sciencel@ightened due to improved
technology to better support RNA analysis and areimsed understanding that RNA is
more stable in biologic samples than once beligvethnemann & Koppelkamm,
2010a). With these improvements, researchers hegenbto consider RNA analysis as a
possible forensic investigative tool, used to eckahe knowledge already obtainable
through traditional DNA analysis.

While the human genome can offer valuable inforarationcerning human
identification, DNA analysis does not offer insighto the events that surround a crime.

Expanding forensic molecular analysis to include”RMII increase the amount of
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information that can be gained from each individualogical sample. Some of the most
abundant research on the applications of RNA iarfsic science has focused on the
identification of biomarkers for sample identificat. Several investigators have focused
their research efforts on the unigue mRNA profilesent in each biological sample type.
The unique profile of both mMRNA and miRNA in ea@stie and fluid allows
investigators to specifically identify a biologicgdmple based on its RNA expression
pattern (Liang, Ridzon, Wong, & Chen, 2007; Lindergh et al.., 2012; Park et al..,
2012; Richard et al.., 2012; Zubakov et al.., 20¥0hile tissue and fluid identify can be
established with RNA biomarkers, research on tieeali R NA biomarkers has recently
expanded to provide a wider amount of informatibawt a given biological sample.

The responsive nature of the transcriptome to giok conditions allows
researchers to determine many aspects of the lpalogjate of a sample upon deposition
or death. By analyzing the RNA expression profil@a aample, researchers obtain a
snapshot of the biological condition of the dorkor example, analyzing the RNA
expression patterns of a tissue sample can proggkarchers with information
concerning the biological status of that tissuea btudy by Kagawa, et al., researchers
identified seven genes that had differential exgoespatterns throughout the process of
wound healing. By measuring the expression of thrasescripts, researchers could
successfully determine the approximate age of anddi{agawa et al.., 2009).

Molecular autopsies can also be performed throsghssing the expression pattern of
gene products at time of death (Vennemann & Kogetk, 2010a). Studies have
indicated gene products that are viable markersm@thamphetamine related deaths,

hypoxia related deaths, and mechanical asphyxiétkematsu, Takahashi, Kondo,
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Tsuda, & Nakasono, 2008; Matsuo, Ikematsu, & Nakas@009; Zhao et al.., 2008). In
one study by lkematsu et al., researchers weretalskeccessfully identify four candidate
biomarkers of strangulation (lkematsu, Tsuda, & &ano, 2006). Although much more
work is needed in the field of molecular autopsiesent research does indicate that
monitoring RNA expression in post-mortem tissue rassist analysts in determining
cause of death. RNA analysis as a whole has tlenpalto provide investigators with
additional information about a biological samplattivill complement information that is
already available through traditional molecularlgsia, offering insight on questions that
can simply not be answered by DNA. However, sudakagplication of any biomarker
will require having a thorough understanding of n#RIN anex vivocontext is critical to

insure proper interpretation of RNA analysis result

Identification of Body Fluids and Tissues

Body fluids and tissues, including blood, sememisal fluid, vaginal secretion,
saliva, and skin are regularly encountered in feienasework. Often times, it is critical
to an investigation to positively identify what g/pf tissue(s) and/or fluid(s) DNA was
isolated from. Serological techniques are regulanmployed in crime labs to identify
what type of biological material is present on faie samples. Current presumptive tests
are most frequently enzymatic or immunologicallgéd, and are at risk for inaccuracy.
Current presumptive testing methods also lack bléyato identify all tissues and fluids
in a mixed sample if certain fluid or tissue tyes present in only minor quantities.
Common presumptive tests for blood include the I€adeyer phenolphthalein test,

which relies on the peroxidase-like activity of hegiobin and can give false-positive test
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results with other peroxidases commonly found anpmaterial. Other confirmatory
tests, such as the HemaTrace® Card, rely on tleetigt of hemoglobin in blood and
therefore cannot determine if the source of thedlis menstrual or venous (Fleming &
Harbison, 2010). Most presumptive tests for salehg on the detection of salivary
amylase, which can be present in variable amouardemors, thus sensitivity level and
false-negatives are consistent issues. Presuntpstefor semen often rely on the
detection of Prostate Specific Antigen (PSA), whielm also be detected in male urine.
Current presumptive testing methods require a s¢p#est for the identification of each
different body fluid (blood, semen, and salivagdmg to increased sample consumption
and analysis time. Presumptive testing methodalacelimited to the type of biological
sample that they can test for. For example, tlsen@ commonly used presumptive test
for vaginal secretions or skin, both of which asesidered to be common biological
samples in forensic casework (Haas, Klesser, Md2&e,& Kratzer, 2009). Due to the
risk of inaccuracy, high levels of sample consumptand lack of comprehensive tests
for fluid and tissue identification, researchersénaought out the use of molecular
markers for sample identification.

The presence of a unique transcriptome in eack tisglie and fluid allows
biological samples to be identified based on tles@nce of specific MRNA and miRNA
products. By co-isolating RNA and DNA, sample idigcdition and human identity
testing can be streamlined into a single moleontak flow. Additionally, with the
creation of molecular panels of RNA markers, algiagsay could potentially identify
several different kinds of tissues and fluids ithbgingle and mixed samples.

Researchers have identified mMRNA and miRNA markarevery different kind of
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forensically common tissue and fluid, including waa blood, menstrual blood, semen,
seminal fluid, vaginal secretion, saliva, and gippendix A). Many of these markers
have been evaluated for specificity and sensitiartg optimized for identification of
forensic samples. In this study, tissue-specificARMinscripts will be monitored in aged
fluid samples to assess tissue-specific RNA degi@upatterns and to determine how

published RNA biomarkers hold up in aged samples.

Evaluation of RNA Degradation

While RNA can be successfully obtained from agedl mmimally available
biological samples, the isolated RNA is often ddgchdue to the inherent instability of
the transcriptome. Unlike DNA, which can remairbs&an biological samples for
decades, RNA begins to degrade almost immediat&y sample deposition or death
(Martin Bauer, Polzin, et al.., 2003). Due to themediate onset of degradation, changes
in the transcriptome of a sample can be observedtes, hours, days, months, and years
after a biological sample is deposited or deatlucdBy monitoring specific RNA
products in biological samples that are aged iardrolled environment, degradation
profiles can be developed to help analysts establismeline of events and approximate
sample age (Bauer, Polzin, & Patzelt, 2003).

Assessment of the state of RNA degradation in gpapan help determine age
of a biological sample, order of sample depositaong post-mortem interval (PMI). In
research performed by Anderson, et al., blood staire aged under controlled
conditions for 150 days. The results of this reslealemonstrate a linear relationship

between sample age and the ratio of two RNA pragfeictin mRNA and 18S rRNA
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(S. E. Anderson et al.., 2011; S. Anderson et2005). A separate study by Bauer, et al.
looked at blood stains that had been stored fdo U years and found a correlation
between sample age and capillary electrophoretik peea quotients of two
housekeeping gene produdisactin and cyclophilin (M. Bauer, Polzin, & Patz&003).
While both of these methods need refining beforedoemployed in a crime lab, they
provide initial evidence for a correlation betwd®NA degradation profiles and sample
age. In addition to determining the time since d&&pm of a sample, monitoring RNA
degradation of multiple samples from the same cso@ne can provide an investigator
with an order of sample deposition. If an analygst determine the approximate age of
multiple samples, an order of deposition can baldished (S. E. Anderson et al.., 2011;
Martin Bauer, Polzin, et al.., 2003). Past stutti@ge provided solid evidence that a
correlation does exist between the state of RNAatigion and sample age. However,
more research is needed to look at more biologaalple types and to further identify
RNA markers with degradation patterns that mostadipcorrelate with sample age.
Previous studies on the correlation between RNAatigion and PMI have not
been as conclusive as studies that have exammessince deposition of bloodstains.
Some studies have found that RNA degradation doeslate with the PMI(Martin
Bauer, Gramlich, et al.., 2003; Catts et al.., 2006ue, Kimura, & Tuji, 2002; Kimura,
Ishida, Hayashi, Nosaka, & Kondo, 2011), while otstedies show no correlation
(Heinrich, Matt, Lutz-Bonengel, & Schmidt, 2007;rieani et al.., 2010; Preece & Cairns,
2003). Specifically, one study used gPCR analysisldranscripts (both housekeeping
and tissue-specific) and found a correlation behwRNA degradation and the PMI in

tissue from the femoral quadriceps and liver, bunfd no correlation in skin, spleen,
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pancreas, stomach, and lung tissue (Sampaio-$Magalh&es, Carvalho, Dinis-Oliveira,
& Silvestre, 2013). The studies that found no elatron used a variety of tissues
including, brain, heart, muscle, liver, kidney, apdeen (Heinrich et al.., 2007; Partemi
et al.., 2010; Preece & Cairns, 2003). While tlteyes not appear to be a distinct trend in
which tissues do show a correlation and which dothe stability of RNA does appear

to vary by tissue type(Heinrich et al.., 2007; laat al.., 2002). Most of the studies that
have evaluated RNA degradation as a means for &stighPMI have analyzed tissues

for a very short time after death, ranging frono 1L1 hours with the shortest study and 7
days with one of the longest (Inoue et al.., 2@E@@npaio-Silva et al.., 2013).

While most of the studies that evaluate RNA degiadan relation to PMI
examine samples aged for a short time (less thday3), there has been initial research
done on RNA stability in tissues over an extendst @p to several months). Studies by
Vass et al. and Young et al. examine the stalmlitgNA over 120 days and 140 days,
respectively (Vass et al.., 2013; Young et al.130The results of these studies support
the possible use of RNA degradation as an estinodt®MI| over an extended time.
Young et al. performed the only study to date anldbhavior of RNA in post-mortem
teeth. Researchers buried eight pig heads in thengt routinely sampled teeth over 140
days and performed gPCR to analyze the abundarfzacin mRNA (Young et al..,
2013). The PCR assay targeted two separate, nateppang regions of thp-actin
MRNA transcript, one small amplicon and one lamg@l&con. Investigators analyzed
the differential expression of these segments 4@rdays postmortem. However, the
large amplicon dropped below the level of detecibB4 days post-mortem. With

increasing PMI, larger amplicons generally degrfadéer than smaller amplicons, due to
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the random nature of RNA degradation. On day Zlidalen increase in the degradation
of the small amplicon and a slowing in the degradadf the large amplicon interrupt the
observed linear degradation pattern otherwise geenghout the study. Thus, this
particular assay provides an unreliable estimatbePMI between days 14 and 28
(Young et al.., 2013). Despite this limitatione ttoncept of estimating the PMI using
RNA degradation within dental pulp still has potahtVass et al.. performed a similar
study, examining nails and rib bones instead dht@éass et al.., 2013). Investigators
developed a multiplex PCR assay that evaluatesadagion of keratin mRNA, 18S
rRNA, and keratin DNA to monitor nucleic acid deg@#ion in post-mortem nail and
bone samples up to 120 days. Researchers did ebsEMNA degradation in the aged
nail samples with the larger keratin mMRNA amplicbsappearing faster in the older
samples than the smaller mMRNA amplicon. However oiiserved correlation between
mRNA degradation and PMI was only slight, with ahv&ue of 0.21 for the longest
keratin mMRNA amplicon (i.e. only 21% of the varaatiin the data is attributable to age
of the sample) (Vass et al.., 2013). This study ed¢vealed that environment does have
an impact on the rate of RNA degradation, withldrger amplicons disappearing at a
faster rate in nail samples stored in soil and naseopposed to those stored in the air
(Vass et al.., 2013). While these studies do irtdiegpossible use of RNA degradation as
a predictor of PMI, more research is clearly nedddthd the most accurate RNA targets
for establishing both short and long-term sampke egjimation.

While previous studies provide initial evidence &direct correlation between
RNA degradation and sample age, much of the reséas focused on only a few

sample types (blood being the major source forissuof deposited samples).
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Additionally, the previous studies have been lichite only examining a few RNA
markers, mainly focusing on housekeeping mMRNA tapts and 18S rRNA.
Furthermore, no research has been performed tarieotifat RNA degradation occurs at
the same rate and patterns across multiple sayges.tThis research aims to provide a
more in-depth study of RNA degradation, taking iat@ount full transcriptome
degradation in a variety of biological fluid typddood, saliva, semen, and vaginal fluid)
to identify the mRNA transcripts that have degramdapatterns most closely related to

sample age.
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CHAPTER IlI

RNA-SEQ OF AGED BIOLOGICAL SAMPLES ON A NEXT-GENERAON

SEQUENCING PLATFORM

Introduction

DNA analysis is routinely applied in both forenaied medical testing to provide
information on human identify and genetic dise&sgular DNA testing performed by
both forensic and medical personnel today inclddEggment analysis (endpoint PCR
paired with capillary electrophoresis, gPCR), teedeDNA sequencing, exome
sequencing, and whole genome sequencing. While teeblnologies help investigators
gain a wealth of genetic information, the knowled@¢ainable through DNA testing can
be bolstered by additional evaluation of the RNAgant in a sample (Raghavachari et
al.., 2012). The value of RNA analysis lies in thactive and labile nature of the human
transcriptome (total RNA in a sample) as opposdtiéchuman genome. The genome of
an individual is constant throughout all tissue aallitypes, while the transcriptome is

variable and unique (Vennemann & Koppelkamm, 201Ra)two cell types or tissues
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within an individual will have the same transcripte. Additionally, no two individuals
are likely to have the exact same transcriptomeadudisz transcript expression levels
fluctuate based on differing biological conditiqssich as active disease state, drug use,
activity level, trauma) (M Bauer, 2007). While thenome is constant, the transcriptome
changes based on what proteins are biologicallgssry in each cell and tissue type at
any given time. It is this unique and labile nataf&NA that can be exploited to learn
more about a sample. However, routine use of RN&#yars in forensic and medical
investigations requires an in-depth knowledge efttanscriptome profile of different
biological fluids and tissues.

Over the past several decades in the fields of cntde biology and genetics, a
huge emphasis has been placed on sequencing tigeteriuman genome. The first
release of the sequenced human genome in 200Jebaddilowed by over a decade of
re-sequencing and deep sequencing of the humamgenehich still remains to be 100
percent complete. However, while thousands of hugemomes have been sequenced in
the years since the original human genome sequeaseeleased; full human
transcriptomes have not received nearly as muehtaih (Pertea, 2012). RNA analysis
presents a challenge not encountered with the hg®maome in that there are hundreds
of different transcriptomes in every individual.érhuman body is composed of four
major tissue types, 13 organ systems, and 200relff&inds of cells, each with a unique
transcriptome. Additionally, because RNA expresssoreactive to biological conditions,
transcriptomes can be variable between individ(Réstea, 2012). Obtaining
representative total RNA sequence data for evdlytssue, and fluid type is a massive

undertaking, still being pursued by research gralipsver the world. While challenging
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to obtain, full transcriptome data is a criticasfistep for investigators who are trying to
identify significant RNA biomarkers for forensic nredical application.

Representative full transcriptome sequencing daawaailable for a large number
of fresh biological fluids and tissues. Projectstsas the lllumina Human BodyMap
provide databases of full transcriptome next-gam@raequence (RNA-seq) of a variety
of human tissue types. Specifically, the Human Béaly provides RNA-seq data for 16
human tissues (Thibaut, n.d.). While databases asithis provide an excellent starting
point for full transcriptome data, they are famfrcomprehensive. Notably missing from
RNA-seq datasets are transcriptomes for biologiaaiples most commonly encountered
in forensic casework. Blood, for instance, is raeglylincluded in transcriptome
databases, while semen, saliva, and vaginal filgdhaticeably absent. The lack of
information concerning forensically relevant botlyds is made even more evident with
a simple Pubmed search. Searching for articlesams¢riptome sequencing reveals the
following number of hits; 107 articles for trangitome sequence of blood, ten articles
for transcriptome sequence of semen, five artidesranscriptome sequence of saliva,
and only one article for full transcriptome sequeentvaginal fluid. These results reveal
a clear gap of knowledge concerning the populatfdRNA in forensically relevant
sample types.

Increasing the amount of RNA-seq data for forenlyicalevant sample types
(blood, semen, vaginal fluid, and saliva) is impieeif RNA analysis is going to be
fully utilized in forensic analysis. Having represative total RNA-seq data for these
sample types will allow investigators to choosertiast applicable biomarkers for

benefitting forensic investigation. Currently, ragghers have identified forensically-
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relevant RNA biomarkers for sample identity, timeeg deposition/PMI estimation,
disease state, and cause of death (molecular )itsE. Anderson et al.., 2011; M
Bauer, 2007; Vennemann & Koppelkamm, 2010b). Mbéshese biomarkers have been
identified through microarray analysis or liter&wwearch paired with conformation with
endpoint PCR and capillary electrophoresis or RCIgPWhile these techniques are
appropriate for evaluating a few select RNA targgisy provide a limited picture of the
RNA present in a sample. RNA-seq data for foretigicalevant sample types would
provide investigators with a snapshot of most bawilable mMRNA species in a given
sample type, allowing for the selection of moreusate, sensitive, and specific
biomarkers for use with forensic investigation.

RNA-seq is most optimally performed on abundantsilable, non-degraded
RNA samples (Adiconis et al.., 2013). Unfortunatslgmples that are usually of forensic
relevance are often times low abundance and dedgyrddies, if RNA-seq is to be
employed in forensic research, it is critical thatjuencing methodologies be optimized
for low input, low quality samples. We recently foemed RNA sequencing of total
MRNA isolated from fresh and aged biological flsamples (blood, semen, saliva, and
vaginal fluid) in order to monitor transcript dedetion rates and patterns. This
sequencing was performed in an effort to identibmmrkers for estimating sample age
(RNA transcripts that have degradation rates tghtly correlate with sample age). In
order to perform this study, an RNA-seq methodulse with low input and degraded
biological samples was developed. The selectedadetbgy and representative RNA-

seq results from aged samples are presented here.
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Materials and Methods

Description of Samples

All sample collection, storage, and preparationhods described in this
manuscript adhere to the OSU-CHS IRB approved pobidated May 13, 2013 (See
Appendix, “Documentation of IRB").

This study utilized deposited human biologicaldlsamples, including, venous
blood, saliva, vaginal fluid, and semen. All biadlcg fluids were collected from adults,
over the age of 18 with a college level educatioadience, who provided informed
consent to having their samples sequengEadh of the biological fluids (blood, saliva,
vaginal fluid, and semen) was collected from stpdsticipants in a specific way. For
blood collection, about 10 cc’s of blood was dravam the participant’s arm. For saliva
collection, the participant deposited their sampte a sterile tube provided by the
investigator. Semen was obtained by providing @n¢ig@pant with a sterile container for
deposition of the sample. For vaginal fluid, thetipgpant received sterile swabs from the
investigator for collection of the sample. Uponlection, samples were provided a 10-
digit identification code that remained with thergde throughout the sample storage and
analysis process. The 10-digit identification numtznsisted of the date of collection
(mmddyy), a one letter symbol for the type of flaidtissue the sample consists of
(B=blood, S=saliva, E=semen, V=vaginal secretiany] the day (000-360) on which
RNA was to be isolated from the sample. The datotéction is important to establish
the real age of the sample, the one letter synshiohportant to identify the true tissue or

fluid type, and the day on which the sample RNA bd isolated is important to keep
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track of time-course sampling. An example codenfafe blood that is collected on June

1% 2013 and sampled after being aged for 30 da§804 13M030.

Sample Storage and Aging

Once collected and labeled, all samples were btanghediately to the lab for
RNA extraction or storage under controlled and seconditions (stored in the dark, in a
closed lab cupboard). Blood, saliva, and semen depesited onto paper cards in 50 pL
aliquots and allowed to air dry for storage. Vagihad was stored in the form that it
was collected (cotton swabs).

Blood samples were aged for up to 360 days. RNACAYA were isolated and
sequenced at 0 (fresh), 30, 60, 120, 180, 2703&0dlays post-deposition. Saliva,
vaginal fluid, and semen samples were aged food80 days. RNA and DNA were
isolated and sequenced at O (fresh), 60, 120, @dghast-deposition. All samples were
analyzed in duplicate at each sampling time-pdihe sample aging and analysis time-
course is presented in Table 1. Only blood hadpéarisequencing out to 360 days, as
opposed to 180 days, due to the expense of sequgeaach sample. Evaluating the
whole transcriptome of only one sample type owt toll 360 days aided in keeping costs
controlled, while still evaluating total mMRNA degdidion over an extended time. Blood
was chosen for extended aging due to its commaepoe in forensic casework. All
samples were analyzed in duplicate, thus two RN#atgns were performed for every

sample type at every time point.
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Table 1. Aging and sampling time-course for biologial samples An “X” represents a
sample that was extracted and sequenced.

Age (Days) Blood Saliva Vaginal Fluid Semen

0 XX XX XX XX

30 XX

60 XX XX XX XX

90

120 XX XX XX XX

150

180 XX XX XX XX

270 XX

360 XX

Co-Isolation of RNA and DNA

After aging for the assigned amount of time, RNAswsolated from each of the
sample types in duplicate. RNA isolation was penfed under sterile conditions with all
utilized equipment being treated with RNaseZap®g[diechnologies, Carlsbad, CA)
prior to each extraction. The methodology utiliZednucleic acid extraction (TRI
Reagent®, Sigma Aldrich) allows for the possibleismation of RNA and DNA.
Isolation of both RNA and DNA is important for tfeasibility of downstream forensic
human identification using DNA.

For biological fluid stains including, blood, semeamnd saliva, a cutting

approximately 1 cfin size was taken and placed in a 1.5 mL Epperifiare®
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(Eppendorf, Hauppauge, NY). For vaginal fluid swahe cotton swab was cut off of its
stick and placed in a 1.5 mL Eppendorf Tube®.

RNA and DNA isolation was performed using TRI Ra#@e(Sigma Aldrich, St.
Louis, MO), following manufactures recommended pcot. After isolation with TRI
Reagent®, the aqueous phase (containing the RNAjrencloudy, middle phase
(containing the DNA) of each sample were placetivim separate 1.5 mL tubes for
nucleic acid clean-up. RNA clean-up was perform@dzing Zymo Research RNA
Clean and Concentrator™ kit following manufactusenstructions (Zymo Research,
Irvine, CA). DNase Digestion was performed on eR&A sample using TURBO™
Dnase (Life Technologies, Carlsbad, CA) and follogvihe manufacturers provided
protocol. DNA clean-up was performed utilizing ZyiResearch DNA Clean and
Concentrator™ kit following manufacturer’s instnacts (Irvine, CA). Once eluted, all
samples were quantitated using a Nanodrop ND-106fbspectrophotometer (Thermo

Scientific, Wilmington, DE).

Generation of cDNA

For library preparation, 20 ng of total RNA fromcaasample was mixed with 4
pl of ERCC spike-in mix1 at a dilution of 1:10,008mbion®). The NUGEN Ovation®
RNA-seq System v2 (NuUGEN Technologies, San Ca@lédg,was used to generate
cDNA from each total RNA sample containing the ER§ike-in mix, following the
manufactures instructions. Upon purification, eeDINA sample was checked for quality
and quantity using the Nanodrop ND-1000 microspgttotometer (Thermo Scientific,

Wilmington, DE).

32



Fragment Library Preparation

All cDNA samples were fragmented with the Bioru@®ddCD 200 (Diagenode,
Denville, NJ) using a sonication time of 30 minutesin average fragment size of 200
bp. Once fragmented, cDNA libraries were generatadg the lon Plus Fragment
Library Kit following the manufacturer’s instructis (Life Technologies, Carlsbad, CA).
Replicates for each sample type at each time paen¢ barcoded using the lon Xpress™
Barcode Adapters (Life Technologies, Carlsbad, €A)hey could be analyzed on the
same lon 318™v2 chip in downstream sequencing.efaéed libraries were quantitated
using the lon Library Quantitation Kit following mafacturer’s instructions (Life

Technologies, Carlsbad, CA).

Template Preparation

After libraries were constructed and quantitatedhlate preparation was
performed with each library. Template preparat®the process of amplifying individual
RNA fragments onto lon Sphere™ Particles (ISPs)eamthing the sample for
template-positive ISPs that can be sequenced olethEorrent PGM™. Template
preparation of the cDNA libraries was performechgghe OneTouch™ 2 (OT2)
instrument and the lon PGM™ Template OT2 200 kitpfving the manufacturer’s
instructions (Life Technologies, Carlsbad, CA). Haenple is enriched for template-
positive ISPs with polyclonal and template-negatis@s being washed away. The
template-positive ISPs provide the sequencing tatapihen loaded onto the lon Torrent
PGM™. The process for template preparation anctlement was the same for all

libraries created in this study, regardless of danype.
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Sequencing of the Prepared Samples

Sequencing of the cDNA library fragments was penfked on the lon Torrent
PGM™  utilizing the lon PGM™ Sequencing 200 kitaszd following manufacturer’s
instructions (Life Technologies, Carlsbad, CA). Toe PGM™ relies on semiconductor
chip technology to sequence nucleic acid samplasiassively-parallel way. Each
sample of template-positive, enriched ISPs was aoedbwith buffer, primers, and
enzyme and the total reaction was loaded onto@318™ v2Chip. The sequencing chip
is composed of three layers; the top layer of mmoachined wells is where individual
ISPs sit during sequencing (with each well largeugi to hold a single ISP), the middle
ion sensitive layer, and the bottom layer whichsists of proprietary ion sensors. During
sequencing, the lon Chip is sequentially floodethwiNTPs that flow over individual
ISPs that are deposited in the micro-machined weds this study, we will utilize lon
318™ v2 chips (Life Technologies, Carlsbad, CA)eTon 318™ v2 chip has the largest
capacity for sequencing on the lon PGM™. The la@gacity is required for
transcriptome sequencing. The sequencing methoglolag the same for every library

created in this study, regardless of sample type.

Analysis of RNA-Seq Data

All raw sequencing reads for a given sample wagmad to the human reference
genome, Hg19 (GRCh38). After alignment, every sanmald RNA expression levels
calculated in the form of reads per kilobase péliani (RPKM) using the following
equation.

10° x C

RPKM =
(NXL
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RPKM values normalize expression levels by takimg account the total number of
sequencing reads in a run (N), the exon lengtlafgene (L), and the number of
sequencing reads that map to that gene (C). RPHi#ksare a more accurate assessment
of expression level than raw sequencing readsegsatijust for fluctuating factors such
as the total number of reads in a given run andlifferent sizes of genes in the genome
(Mortazavi, Williams, McCue, Schaeffer, & Wold, Z)0Alignment and RPKM
calculations were performed with CLC Bio Genomicseribench software (Cambridge,
MA).

After initial RPKM values are calculated, the RPKislues were normalized a
second time to the ERCC spike-in standards (Amb)om@ich form a standard curve
(input quantity vs. RPKM). The final normalized walfor each transcript is expressed in
molecules of RNA. This molecule value represeng¢saihundance of each RNA transcript

that is present in a given tissue’s transcriptome.

Results and Discussion

Utilization of an External Spike-in Standard

Quality assurance measures are critical when congpRNA sequencing data in
a number of sample types over a number of timetpoirariation in RNA expression
patterns as measured by RNA-seq analysis canriimuggt to differences in a number of
factors, including the starting quantity of RNA adjty of RNA, techniques or
instrumentation used, and the person performin@iiadysis. In order to perform
comparison of sequence data generated from mu#igpteples, a control was

incorporated into the RNA-seq procedure to norneghicocedural variations and provide
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a common baseline for data analysis. The ExterhB Rontrols Consortium (ERCC)
hosted by the National Institute of Standards aechfiology (NIST) has created a set of
internal RNA spike-in standards to help controlVariation that is inherently present in
RNA expression studies (Jiang et al.., 2011). Thileesin controls are a series of
unlabeled, polyadenylated transcripts that aregmtag solution in varying, known molar
concentrations. The ERCC control RNA (Ambion®) tenspiked in to RNA samples
and be carried through the generation of cDNAalipbuilding, template preparation,
and sequencing analysis with RNA extracted fromyifhdd samples. The ERCC
control RNA can be utilized to normalize comparsofh sequence results both within a
single sample and between samples. The inclusitimeatontrol RNA in every sample
that was analyzed for this project allowed for ¢befident comparison of expression
patterns in different samples. ERCC RNA Spike-intom mix was added to every RNA
sample before conversion to cDNA to help ensurescbicomparison and interpretation

of downstream sequencing results.

Design of an RNA-seq Library Construction Protocol

The first step in sequencing RNA is the preparatiba sequencing library. The
library preparation begins with RNA conversion BNA. The RNA that is to be
converted into cDNA and sequenced must be freRN#&. Removal of rRNA from the
sample ensures that successful sequencing of thk less abundant mMRNA population
can be achieved. Elimination of rRNA from the td&NA sample is traditionally
accomplished by either rRNA depletion or poly-Aesion. In addition to elimination of

rRNA and generation of cDNA, the library preparatioethodology also includes

36



subsequent fragmentation of the cDNA into pieces kriown size (for this study, 200 bp
libraries were created) by mechanical or enzynsdtearing. Following fragmentation,

the cDNA fragments have adapter oligonucleotidgestéid onto both ends. The adapter
sequences are necessary for the library to undemgplate preparation and sequencing.
The sample is then size selected to insure thdtrtaklibrary contains only cDNA
fragments of one consistent size (200 bp). Whike dlescribed process includes the basic
steps that must be present in every cDNA libragppration, there are multiple methods
of pursuing each step and creating the final cDNv#aty.

For this study we evaluated two different librail@ing methods that are
compatible with the lon Torrent™ System. Methodsenxampared on the basis of RNA
input requirement, elimination of rRNA, sequenchbigs, and time requirement. An
optimized RNA library preparation method was impieeto the success of downstream
sequencing and analysis of degraded samples, ¢hergisn of cDNA conversion and
library preparation methods was critical. Tabler@sents a comparison of the evaluated

cDNA conversion and fragment library preparatiorthods.
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Table 2. Comparison of cDNA Generation and LibraryPreparation Methods

. Input rRNA Poly-A Sequ'encmg .
Kit . . . Bias Time
Requirement Depletion Selection Introduced
o | GG ves | e | lpos
IS RNA-seq ( o(;)/; rRI\TA?C € (or poly-A (or rRNA selection: 6 hrs
g Kit v2 Depleted) selection) Depletion) 3’ bias
g NUGEN
Ovation
< No No
z | ® geNA' 50&3%;&% 9 (spA (SPIA No 3’ Bias | 4.5hrs
© 9 Amplification) | Amplification)
System
v2
c| lon™
Zx'% Plus
® & | Fragment| 100 ngor 1 pg N/A N/A N/A 2.5 hrs
O o .
g0 Library
o Prep

The NUGEN Ovation® RNA-seq System for conversiowhble RNA into
cDNA was found to consistently produce >5 pg of ¢Dfom an input of 20 ng of RNA
(both from fresh samples and samples that had &geh up to one year). In addition to
generating consistent amounts of cDNA from botkHrand aged RNA samples, the
NuGEN Ovation® kit was also desirable becausegtiired whole RNA for input, rather
than rRNA depleted or poly-A selected samples. Wiemding with degraded RNA
samples, poly-A selection and rRNA depletion prared are not ideal. Poly-A selection
introduces distinct bias into a sample by only @timg RNA fragments that contain a
poly-A tail to cDNA. It is likely that in a degradesample of RNA, many of the mRNA
fragments will no longer be attached to a poly-i thus during cDNA conversion much
of the sample would be lost. Ribosomal RNA depletsoknown to introduce

degradation into an RNA sample. In a sample pojmridhat is already degraded due to
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age, we did not want to further subject our samfaetegradation via rRNA depletion.
While the lon™ Total RNA-Seq Kit v2 requires rRNA&mletion or poly-A selection of
RNA samples, the NUGEN Ovation® kit does not. Rattiee NUGEN Ovation® kit
utilizes a SPIA™ amplification process to depléte total RNA sample of rRNA.
SPIA™ Amplification relies on a mix or poly-A primeand not-so-random random
primers to selectively amplify mRNA in the cDNA cgarsion process, therefore
depleting the sample of rRNA. The NUGEN Ovation®skiow starting requirement of
total RNA paired with the lack of an rRNA depletionpoly-A selection step made it
ideal for use with the aged samples required m shidy.

For library preparation, Life Technologies (Carldpb@&A) lon™ Plus gDNA
Fragment Library kit, offered the most applicalyifior this study. The lon™ Plus kit can
be combined with the NUGEN Ovation® kit (our preéer way of producing cDNA) and
can be utilized for production of cDNA or gDNA ldmies, allowing our lab to streamline

all library production into one workflow.

Optimization of a Fragmentation Protocol

Optimization of a 200 bp fragmentation protocoltbe Bioruptor® UCD200 was
performed by fragmenting 1ul aliquots of cDNA in 5Dof low TE for varying amounts
of time (10 minutes, 20 minutes, 30 minutes). Therdptor® was run on the low
setting, 30 seconds on, 30 seconds off, with ipkereshed every 10 minutes during the
sonication. Once complete, samples were electr@skdron an agarose gel to determine

the fragment size range generated by each amowoihafation time. Results can be seen
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in figure 1. The optimum sonication time that getted an average cDNA fraent size

of 200 bp was found to be 30 minut

10
Minutes

100 nt

Figure 1.Image of Gel Demonstrating Fragmentation with Bioriptor. Aliquots of
50 ul of low TE containing 1 g of cDNA were pladgadhe Boruptoron the low setting
for 10, 20, and @ minutes. The optimum sonication time for prodgcam average cDN.,

fragment size of 200 bp was found to be 30 min
RNA-seq on the lon PGN™
The lon Torrent™ PGM server provides a summary of run statisticefay
sample that is sequenced. Reviewing run statigtimgides information that reflects r
only on the success of the C™ run and lon PGM™sequencing, but also on the qua
of the input library samples. Ensuring that a ligriauilding protocol and sisequent

emulsion PCR and sequencing are able to genehatg uality and usable amount

sequencing reads is imperative when evaluatingjaeseing methodolog
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The lon PGM™ is not intended for whole transcripgosequencing and does not
offer the sequencing capacity to account for secjugra whole human transcriptome.
For this reason, it was imperative that we esthldisequence methodology on the lon
PGM™ that facilitated generation of as much mRNAusncing data as was possible
from each sample.

To determine the importance of output quantityegfigeencing reads on the quality
of sequencing data, the same cDNA library generfated RNA isolated from a fresh
(Time 0) blood stain was sequenced on both an 1dfi*8sequencing chip and an lon
318™ sequencing chip v2 (figure 2). The lon 314" dtas an average sequencing data
output of 400 to 550 thousand reads per run, whédon 318™ chip has an average
sequencing data output of 4 to 5.5 million readsrpe. As can be seen in figure 2, the
guality of each of the test sequencing runs thatlise same blood cDNA library was
high, with sufficient chip loading (over 80% in bathips), sufficient usable sequence,
and the desired targeted fragment length of ar@@@dbp (202 bp for each of the
reactions). While both runs were of usable quatiig, main difference lies in the output
of data from each chip type. The 314™ chip (fig#g produced 111M bases of data
and 639,020 total sequencing reads. The 318™ &giré 2B) produced a substantially
larger amount of data, with 1 G total bases an8®G508 total sequencing reads. These
numbers indicate that sequencing the library obh&chip as opposed to a 314 chip

produced approximately 10 times more data.
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Figure 2.314 and 318 chigcomparison A. lon Server sequencing run report for a ti
0 blood library sequenced on a 314 cIB. lon Server sequencing run report for a tin
blood library sequenced on a 318 v2 chip. The Bmes run report includes a summi
of chip loading, squencing reads produced, and the average seqgegeith lengtl

While these sequencing runs demonstrates that seiqgdibrary and run qualit
appear equal with both the 314 chip and 318 chigy tilso clearly show that there i
large increase idata output when sequencing on a 318 chip. Fdnduevaluation of th
effect of sequencing on a 314 chip vs. a 318 ¢hgsequencing reads from each

were analyzed. The data obtained from both rueretrimmed for quality, aligned to tr

human gnome (HG19), and RPKM values were calculateddcheene. Upo



comparison of these data, the affect that usea&lgjeence output has on the analysis

becomes clear (Table 3).

Number of % of Reads Num[l)):{e%fte%enes
Sequencing Reads| Aligned to HG19 (RPKM >1)
000Blood .
lon 314™ Chip 533,244 86% 8,137
000Blood .
lon 318™ v2 chip 3,212,785 87% 12,116

Table 3. Summary of data generated by sequencingat000BIood library on a 314
chip and a 318 v2 chip

As would be expected, the percentage of sequemeats that aligned to HG19
was similar for each of the runs (86% for 314 an@8or 38 v2). However, a vast
difference is observed when the number of genesctit in each run is considered. The
presence of about 10 times more sequencing reatstfre lon 318™ v2 chip as
compared to the lon 314™ chip, allowed for the ciéte of several thousand more
genes (12,116 genes detected in the 318 v2 ruB7 §édnes detected in the 314 run).
Specifically, there were 48.9% more genes detewsttdthe sequencing reaction run on
the 318 v2 chip when compared to the 314 chip sexng reaction. The sequencing
performed on the higher capacity 318 v2 chip isdftege a more complete representation
of the blood transcriptome than the data obtaioedhfe same library sequenced on the
314 chip. Thus, when attempting to get the mostpete picture of the transcriptome
while sequencing on the lon PGM™, the 318 v2 chiputd be used.

As the data generated from our developed librargimg procedure, OT2™

reactions, and chosen sequencing methodology ltithately be used to evaluate and
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compare the mRNA populations of multiple forendicatlevant sample types, having
the most complete picture of the transcriptomeassiple is absolutely critical. All
RNA-seq that aims to provide insight on the prafided behaviors of sample
transcriptomes should therefore be performed onv21éhips in order to maximize the

number of transcripts observed in the population.

RNA-seq Data Analysis Workflow

Once raw sequencing reads are obtained from thB@M™, they undergo a
multi-step data analysis process. In the first sfegequencing data analysis, all raw
sequencing reads for a given sample are aligndtetbuman reference genome, Hgl19
(GRCh38). After alignment, every sample will havidARexpression levels calculated in
the form of reads per kilobase per million (RPKMRPKM values normalize expression
levels by taking into account the total numberexfieencing reads in a run, the size of the
gene, and the number of sequencing reads thatatapttgene. RPKM values are a
more accurate assessment of expression level #sasaquencing reads as they adjust
for fluctuating factors such as the total numberreaids in a given run and the different
sizes of genes in the genome (Mortazavi et al082QAlignment and RPKM
calculations are performed with CLC Bio Genomicsribench software (Cambridge,
MA). After initial RPKM values are calculated gtflRPKM values will be normalized a
second time to the ERCC spike-in standards, wioam fa standard curve (known input
guantity of spike-in transcripts vs. RPKM). An exalmmERCC standard curve is
displayed in figure 3. Normalization to the spikestandard acts as a control for any

variation that might have been introduced by samppd@aration or user error, as the
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ERCC standards are spiked-in to each sample indiltidat a known molar
concentration (Jiang et al.., 2011). The ERCC spikandards form a standard curve

that can be utilized to normalize the RPKM valuksaxh individual transcript in a

sample. The final normalized value for each trapscs expressed in molecules of RNA.

This molecule value reflects the abundance of &dA transcript that is present in a

given tissues transcriptome.

ERCC Spike-in Standard Curve
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Figure 3. This graph displays the standard curve createtidgxternal ERCC control
that is spiked-in to each individual RNA sampleopto cDNA generation and library
preparation. The ERCC control consists of 92 trapgcpresent in varying molar
concentrations that, when sequenced, form a stdrmgdave (input molecules vs RPKM).

Assessment of RNA-seq Data
Once sequencing reads have been aligned to thenhwaigsence genome and
abundance values for each detected transcriptthes@ normalized, the data can be

further analyzed. In the development and optimizatf this RNA-seq protocol for
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analyzing total mMRNA from aged biological fluid spies, the data were evaluated on
multiple factors including alignment to the humangme, reproducibility between
technical replicates, sequencing bias, and sequeaptare of fresh and aged RNA

samples.

Alignment of RNA-seq Data to a Reference

In a sequencing reaction that generates hightgusguencing reads, the
majority of the reads should align to the estaklisheference genome (if the sample is
obtained from a single, known source). As all & samples utilized in this study were
single source human samples (blood, saliva, seamehyaginal fluid), the majority of the
reads were expected to align to the human refergaeeme. As expected, the majority
of the reads for both blood and semen samplesaigmthe human reference genome
(HG19). On average, 87% of the sequencing readsidod samples and 86% of the
reads for semen samples aligned to HG19. Howewékeublood and semen, saliva and
vaginal fluid did not align well to the human regace genome. On average, only 7% of
the sequencing reads for saliva and 8% of the setugreads for vaginal fluid aligned
to HG19. The drastic difference between the perotrgads aligning for blood and
semen as opposed to saliva and vaginal fluid cdargely attributed to the significant
amount of microbial RNA present in saliva and vagjifuid samples. All unaligned
reads from the saliva samples were assembled amiigs and aligned to the Human Oral
Microbiome Database (HOMD) which consists of geroagaquences for over 400 oral
microbial species. When aligned, on average ovés 80Dcontigs (previously unaligned

sequence reads) within a saliva sample mappedeio32\M microbial organisms (Figure
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4). Similar results were achieved for the unaligrestls from the vaginal fluid samples.
For vaginal fluid, the unaligned reads were assethbiito contigs and aligned to the
RefSeq genomic database. On average, over 90% whdinal fluid contigs (previously
unaligned sequence reads) aligned to over 230 malrorganisms. Once aligned to the
human genome and to the prospective sequence data@g#OMD and RefSeq) over

85% of reads in every sample were accounted fanialignment.

Fresh Saliva
% of Contigs aligned to 390 Organisms

Haemophilus parainfluenzae ATCC 33392, 6.842

Haemophilus parainfluenzae T3T1, 6.697

Prevotella melaninogenica ATCC 25845, 5.669

Neisseria subflava NJ9703, 5.476

Prevotella sp. oral taxon 299 F0039, 4.660

Prevotella melaninogenica D18, 4.282

Prevotella pallens ATCC 700821, 4.016

Campylobacter concisus strain 13826, 3.333

Veillonella sp. oral taxon 158 F0412, 3.107

Prevotella nigrescens ATCC 33563, 2.348

Figure 4. RNA data alignment shows presence of bata in saliva. This graph
represents the percent of contigs aligned to 3§@resms in the Human Oral
Microbiome Database (HOMD). The top ten organisrith aligned contigs are labeled.
The other 380 organisms are represented by a wedle chart corresponding to their
abundance level, but are not labeled.
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Determining Reproducibility between Technical Replcates

Two technical replicates for each sample type el @ the time points were
analyzed using the library building and sequenamgghodologies described in this
manuscript. Technical replicates are importanefiablishing the reproducibility of the
methodology and increasing confidence in the segjngmesults. Having a high degree
of similarity between two technical replicates @acrease the confidence of any
conclusions drawn from the data. Reproducibilitineen technical replicates was of
high importance for this study because whole trapssme sequencing is not possible on
the lon Torrent PGM. Rather, with every sequenceagtion, a representative population
of the mRNA in a sample library was being sequenced

To determine if the representative populations BINA sequenced in each
technical replicate were similar, comparisons werdormed between IgBPKM values
for each replicate in a sample pair (Figure 5 aigdré 6). For each sample pair, a graph
was generated with a single plotted point for egee represented in the sample
population (with the x-value of that point corresding to the abundance of that gene in
replicate one and the y-value of that point coroesiing corresponds to the abundance of
that gene in replicate two). If a given gene hassidime abundance (Log2RPKM) in both
of the replicates, the point for that gene will eake same x- and y-values. When the
data are plotted in this way, if two samples andgoe replicates of one another, you
would generate a straight line with an R value.0D1The data generated in this study
were highly reproducible, with replicates for ea¢hthe sample types generating an R
value of more than 0.80 (Figure 5). Technical kegiks of fresh blood, semen, and

vaginal fluid all generated plots with an R vald®®9. Technical replicates of fresh
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saliva generated a slightly lower R value of 018#h reproducibility between technic
replicates was also observed in samthat were aged. Figure 6 displays date
technical replicates of fresh blood and blood thas$ aged 60, 120, 180, 270, and
days. An R value of 0.99 is found in technical iegdes of every age, demonstrating |

degraded RNA does not affect thproducibility of the sequence data.

Blood “ 1 Semen

*1 R=0.99 ’ “ R=0.99

10011IMBON 2 RHA ey
DE1ISET80_2 RNABeq

e Vaginal . Saliva

Fluid A “: R=-0.84

R=0.99

BAUTIIVFORY 2 RHA B4
DHTIISAND_2 ANA-Sey

[} " 1 - ] 3
8011307800 1 RNA-Seq 9011354000 1 RiA-Sag

Figure 5. Replicate correlation in study sample typesLog, RPKM values for ever
gene in each of the time 0 (fresh) replicates &mhebody fluid were compared. Replic
1 for each sample type is on tr-axis and replicate 2 is on theayis. If two replicate:
have the exact same abundance for a specific genppint for that gene would fall ¢
the line. The R value for each of the sample typeksplayed on the graph. The close
1 an R value is, the motightly reproducible the replicates ¢
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Figure 6. Replicate correlation in aged blood specimensLog, RPKM values for ever
gene in each of the replicates for blood at evamed age were compared. Replice
for each sample is on thraxis and replicate 2 is on theayis. The R value for each
the sample types is displayed on the graph. A tightelation between replicat
(R=0.99) is observed with every sample time p
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Assessing Sequencing Bias

With any RNA-seq method, bias is present. Thisaglp because bias is inherent
in the preparation of all RNA sequencing librari#ile bias can never be completely
eliminated, it can be reduced. Bias can potentlaiyntroduced at a couple of points in
the preparation of libraries, including cDNA genema and fragmentation. Bias
introduced through the selection of mMRNA from aylapon of total RNA was
considered when outlining the library building mrosl described in this manuscript. The
NuGEN Ovation RNA-seq kit v2 was chosen, in pagtduse it utilizes SPIA technology
to convert mRNA to cDNA using specialized amplifioa primer mixes. Alternative
cDNA preparation methods include pre-treatmenheftotal RNA extract using rRNA
depletion or poly-A selection. The SPIA primersi{i of not-so-random random
primers and oligo-dT primers) help alleviate thasbobserved with poly-A selected
RNA. Libraries generated from poly-A selected RN&ngrally produce data that have a
3’ bias, as the cDNA is generated from the 3’ ehthe transcript. When only priming
from the 3’ end of a transcript for cDNA conversitime whole transcript does not always
get converted to cDNA. Thus, with the use of ordyypA primers you end up with a
cDNA library that has favored only those trans&ipdntaining a poly-A tail and is
biased towards the 3’ end of mMRNA molecules. Wig/Sprimers, the addition of the
random primers helps more evenly capture the emR& A population in the cDNA
conversion, thus partially alleviating the issugobias. Additionally, the SPIA random
primers were important so our libraries were nt¢ceve against mMRNA molecules that
do not contain a poly-A tail, as would be found mabundantly in aged or degraded

samples.
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Sequene data wer evaluated for bias by surveying the depth of segugreads
across the entire length of a transcript. If 3'sbma large issue, sequencing reads
align to the most 3’ exons, while few or no read lve present on the exons that
more 5’ in their location. Figure 7 displays sequegceads for the hemoglobin B ge
(HBB) aligned to the human genome. When observeagiencing reads aligned to 1
HBB reference gene, it is clear that there are elegjug reads aligning all the wayross
the reference, accounting for each of the exonsle/gequencing depth does app
deeper on the most 3’ exon when compared to the Bheson, sequencing depth for t
sample is greatest on the center exon (exon 2)leviliere is minor 3’ bias oerved,
sequencing reads are clearly spread across the ganscript length with son
clustering in the center of the transcript. The HiBhscript in figure 7 is representat

of read depths observed for other transcr

ehits

Figure 7. Alignment an(Bias in Sequencing ReadSequencing reads for the fre
blood sample aligned to the hemoglobin B (HBB) géite sequencing reads align to
three exons in the transcript, with the most redigging on the center exon. The spr:

of reads across thentire length of the gene (all exons) is indicat¥eeduced 3
sequencing bias.
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Sequence Obtained for Fresh and Aged Samples

Due to the fact that the sequencing methodologsudised in this manuscript was
specifically developed for use with forensicallyereant sample types, it is critical that
these methods generate sequence data for bothaindstiged samples. The previously
described methods were used to sequence bothdnelsaged blood, saliva, vaginal fluid,
and semen samples. Quality assurance steps wéardedahroughout the library
building procedure to ensure sufficient quantity guoiality of the libraries being
constructed from both fresh and aged samples. ifodaion, all RNA samples were
guantitated using the Qubit® RNA HS Assay followthg manufacturer’s protocol (Life
Technologies, Carlsbad, CA). For all samples, 20ffi@NA was converted to cDNA
and all cDNA was checked for purity (A260/280>1a8)d quantity using the Nanodrop
ND-1000 microspectrophotometer. Once cDNA libranese constructed, all libraries
were quantitated using the lon Library Quantitati@ron the Applied Biosystems® ABI
7500 gPCR instrument to ensure ample quantitydquencing (calculated dilution
factor > 1.0).

Sequence data were generated for fresh samplesaarmules aged up to one year.
Once sequencing for each sample was completewagtaevaluated for every sample
based on total number of usable reads, alignmehetbuman genome, and the number
of genes detected (Table 4). Every sample thatseggenced generated more than 1
million sequencing reads, except for a couple efdliest samples (vaginal fluid 180 day
sample and blood 360 day old sample). In the sastpbkd received less than 1 million
reads, the lower sequencing output could be dimater library quality due to the

degraded state of the RNA in those samples. Alljptesmaligned to the human genome as
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expected, with blood and semen aligning over 80%lisamples, saliva aligning on
average less than 10%, and vaginal fluid aligness lthat 15% (saliva and vaginal fluid
have lower alignment to HG19 due to a large miabpiesence in these sample types).
It is interesting to note that, in every type adlbgical fluid examined, the older samples
aligned less to the human genome than the frespleanThis decrease of alignment
over time could be due to reduced library qualitthwlegraded RNA or could be
attributed to an increasing microbial populatiorstsns aged. Reduced alignment to the
human reference genome and increased alignmenttobial genomes as stains age
may be an interesting area for future investigatinraddition to an observed decrease
with alignment to HG19 in aged samples, there afgzears to be a decrease over time
for each fluid in the number of genes detectethéendample. This observed decrease in
the number of genes detected is most likely dwettain transcripts in the population
dropping below the sequencing detection threshglddgrading into RNA fragments
smaller than the 200 BP library size. If an mRNAl@cale is cleaved in the degradation
process and ends up with a fragment size smaber 200 BP, that transcript will be
under represented in the sequencing library. Asssrage, it is likely that a greater
number of transcripts have degraded to a pointvéte detection of this sequencing
methodology, thus the sequencing reads align éwarfnumber of genes in aged
samples. Ultimately, this logic is the approachhage taken to examine mRNA
degradation.

While Table 4 does demonstrate that there is aprohble decrease in the

percent of alignment to HG19 and in the numberesfes detected in aged samples, the
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RNA isolated from both fresh and aged samples Wwasficient quantity and quality to
generate usable sequencing data for every sanmgilevéis analyzed.

Table 4.Evaluation of sequencing data for fresh and agelbical fluid samples

g:;ﬁ;ﬁ;?;iecgds % Alignment to HG19 Numlljag{ec(i:l‘t;enes
(E'fé‘s’ﬂ) 3,212,785 87% 12,116
(Ageglgngays) 2,467,087 82% 11,831
(Ageglgngays) Hosities 82% 11,702
(Aget?lfzog Days) 2,397,120 86% 10,397
(Age('i3 lfgg Days) Lol 82% 8,918
(Age(|13|2070C()j Days) LAREI 73% 8,838
(Age('i3 lé)gg Days) 510,998 75% 1,890
(ﬁ?g:ﬁ) 3,132,727 7% 4,201
(Agefiaflsig%ays) 2Ll 6% 1,510
(Agec? ?IiZ\E)aDays) 2,577,010 6% 923
(Agec? ?IiB\E)aDays) srdbraty 4% 520
Vaginal Fluid 1,662,114 18% 2,070
(Fresh)
(ngg'%%ugs) 2,824,657 11% 2,999
(ngciinﬂglgigys) 1,252,619 12% 2,112
J;Sé”fég '.B‘igys) 884,564 10% 1,618
é?glir; 3,051,682 85% 12,300
(Age%e&egays) 1,536,882 86% 11.874
(Ageielr;(e)nDays) 1,567,875 84% 10,937
(Ageielrg(e)nDays) 2,338,402 81% 10,800

Conclusions
Appropriate library building protocols and sequegcprocedures must be
considered for analysis of low input, degraded dampf RNA analysis is going to be

explored more thoroughly for applications in forerscience. RNA analysis is being
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considered more heavily than ever before for ugle ferensic investigation, as RNA
biomarkers are being discovered for tissue idexaiion, estimating sample age, and
molecular autopsy purposes. If RNA analysis is gambe seriously investigated for use
in routine casework, having an understanding of tmiéd MRNA behaves in both fresh
and aged samples is critical.

With this study, we have developed a methodologyrmscriptome sequencing
of RNA isolated from fresh and aged forensicallgvant biological samples. Using this
protocol we have generated the first base datdseRdIA profiles for fresh and aged
biological fluids (blood, saliva, semen, and vagihad). With this methodology and this
first dataset, investigators can begin to estaldibhoader understanding of the behavior
of mMRNA in deposited samples, allowing for the pmogelection of biomarkers for

investigative purposes.
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CHAPTER IV

TIME-DEPENDENT LOSS OF TRANSCRIPTS IN AGED FORENSBAMPLES

Introduction

DNA analysis is routinely used in forensic casewwrkdentify individuals who
were at a crime scene or associated with evidé¢tmeever, while DNA can provide
identify to an investigator, identification alonanmot always provide context to an
investigation. While DNA has been the gold standdrbrensic molecular investigation
for several decades, recent advancements in RNKsasanay provide a role for RNA in
forensic casework. Several recent studies have dsimaded the possibility that RNA
analysis has an important role in body fluid id&caition, molecular autopsy, and also
perhaps in suggesting a timeline for the deposiioa biological sample at a crime scene
and/or the post-mortem interval (PMI) (S. E. Anderset al.., 2011, 2011; Sampaio-Silva
et al.., 2013). Based on this work, RNA analysiglb@lear potential to contribute
significantly to the investigation of forensic neat.

The stability of the transcriptome in degraded arimally available biological
samples has been of concern for the widespreadfBSA analysis in forensics. RNA

was once considered difficult or even impossibladoess in degraded or limited samples
57



due to its fragile, single stranded structure. Hoaveresearch has proven that with
enhanced analytical methods, accessing RNA in afggtaded, and minimally available
forensic samples is possible (Martin Bauer & P&t2€108; Zubakov et al.., 2010). It has
also become clear that RNA may not be as unstableaa once believed, with RNA
being detected in forensic samples that are decdd€&ohimeier & Schneider, 2012).
The first published investigation ek vivomechanisms of RNA degradation was
published in 2013 (Fordyce et al.., 2013). In thaper, Fordyce et al.. discuss that the
degradation of RNA imx vivosamples depends largely on sample type and sample
condition. Cellular ribonucleases (RNases) thataiaractive in moist cellular material
drive RNA degradation in fresh post-mortem samgies are not preserved or dried.
However, in samples that are dried (such as dieadbstains) or preserved (such as
FFPE tissue samples), RNases are largely inaativaslting in RNA degradation that
is driven mostly by physical and chemical factasch as sunlight or pH) (Fordyce et
al.., 2013). Virtually all studies that have aizald forensic samples for mRNA
fragments have shown that RNA is much more stabkedlogical samples than was
once assumed. A logical extension of this reselaashquestioned if the degradation of
MRNA moleculegx vivooccurs at a steady rate such that transcript demalg act as a
“biological clock” (S. E. Anderson et al.., 2011a35 et al.., 2013). Researchers
evaluating sample age or PMI based upon RNA degcadhave mainly focused their
analyses on ribosomal RNA (rRNA), housekeeping mRiAscripts, and tissue-
specific mMRNA transcripts (S. E. Anderson et 2011; Martin Bauer, Gramlich, et al..,

2003; Vass et al.., 2013). Such studies have edillzoth end-point PCR paired with
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capillary electrophoresis and real-time reversesitaptase PCR to monitor degradation
rates in transcripts originating from a few seldagenes.

Early work on the assessment of RNA degradatiaelation to sample age
focused on the degradation rates of housekeepingAkRanscripts and rRNA, as these
species have a known presence in all tissue typegork performed by Bower et al.,
analysis of 106 bloodstains, aged up to 15 yeavgaled that the abundanceedictin
and cyclophilin transcripts decreased in relatmesample age (Martin Bauer, Gramlich,
et al.., 2003). Anderson et al. expanded resear¢hactin mMRNA degradation by
demonstrating that the approximate age of a bleaustin be predicted by determining
the ratio betweefi-actin mRNA and 18S rRNA (S. Anderson et al.., 20@8&mderson, et
al. further evaluated RNA degradation by examirdifferent amplicon sizes @factin
MRNA and rRNA in aged samples (S. E. Anderson.et20)11). Results of this study
indicated that large RNA amplicons disappear aiséef rate than small amplicons in
aged samples. Although these initial studies on RE&radation in aged bloodstains
have been limited to examining a few selected RiAdcripts, the results do indicate a
relationship between sample age and RNA degradedies.

In addition to the limited number of RNA markersakiated, past research on
RNA degradation in deposited biological fluids ha&&n narrowly focused on the number
of sample types considered in degradation anallysist studies have focused mainly on
blood, with no major research performed on othegrisically relevant sample types
(such as semen, saliva, and vaginal fluid). Evanatf biological fluid types other than
blood is critical as the cell types, cellular eoviments, and transcriptomes vary

considerably with each fluid type. Thus, RNA degtaoh patterns and rates may be
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different in each sample type as well. If investiga are going to be able to evaluate time
since deposition in a variety of sample typess ritical to study RNA degradation
patterns and rates in other forensically relevaviblyical sample types.

In this research, we aimed to provide a more cohesive study oéx vivo
RNA degradation in dried body fluid stains (spexfly, blood, saliva, vaginal fluid, and
semen). In examining RNA degradation, this studkta different approach than
previous studies by subjecting the total mMRNA e&fr and aged samples to analysis
through the use of next-generation sequencing réfidts of RNA-seq provide the first
ever comprehensive picture of mMRNA presence in fre$h and aged biological fluid
stains. These data facilitate evaluation of thengivey profile of the mRNA population
within a deposited sample over time. Based on tdat® degradation rates and profiles
for every individual transcript within the mRNA palation of a sample can be
determined. Furthermore, differences in mRNA degtiad rates and profiles between
sample types can be established. While thesepdatade an initial baseline for mRNA
degradation, the comprehensive nature of the dlatasafor selection of the most
appropriate mMRNA markers for sample age estimdtiahshould be considered for

future evaluation with a larger sample set.

Materials and Methods
Description of Samples
All sample handling described in this methodolagferes to the OSU-CHS IRB

approved protocol dated May 13, 2013.
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Biological fluid samples including blood, salivsemen, and vaginal fluid were
collected from donors who are over the age of IBsagned the informed consent form
for having their sample sequenced. Blood samples diawn in 10 cc aliquots by a
medical technologist. For saliva collection, thedodeposited approximately 1.0 mL of
saliva into a sterile collection tube. Vaginal éliwas collected by providing the donor
cotton swaps for collection of the sample. Semes eadiected by deposition of the
sample into a sterile collection tube providedh®e donor.

Upon collection blood, saliva, and semen sampla®weposited on nuclease-
free paper cards in 50 pl aliquots. Samples wdreléal with a unique 10-digit code and
all samples (cards containing blood, semen, andasahd vaginal fluid cotton swabs)
were stored in the dark, at room temperature. Sesnpére allowed to age for a specified

amount of time (Table 1) before RNA extraction pasformed.

Isolation of RNA

RNA isolation was performed with TRl Reagent® (8a&Aldrich, St. Louis,
MO), following the manufacturer’s instructions. Tagueous phase of the TRI
Reagent®, containing the isolated RNA, was tramséeto a clean 1.5 mL Eppendorf
tube. The RNA underwent further clean-up by Zymsdech Clean and Concentrator™
Kit, following the manufacturer’s instructions (ZgniResearch, Irvine, CA). RNA was
eluted in 15 pl dBO and all samples underwent a DNase digestion UdigBO ™
DNase (Life Technologies, Carlsbad, CA) followiing tmanufacture’s protocol. All
samples were quantitated on the Qubit® using th& RIS kit (Life Technologies,

Carlsbad, CA).
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cDNA Library Preparation

Samples containing 20 ng of isolated RNA were miwét 4 il of ERCC RNA
Spike-in mix 1(Ambion®) at a 1:10000 dilution. RNsamples were converted to cDNA
using the NUGEN Ovation® RNA-seq Kit v2 (NUGEN Taologies, San Carlos, CA),
following the manufacture’s protocol. All cDNA satap were checked for purity
(A260/280 > 1.8) and quantity using the Nanodrop-NIDO microspectrophotometer
(Thermo Scientific, Wilmington, DE).

Sample aliquots of 30 pl of low TE containing 1@fggDNA were fragmented on
the Bioruptor® UCD 200 (Diagenode, Denville, NJjato average fragment size of 200
bp. Once fragmentation was complete, cDNA librawese constructed using the lon
Plus Fragment Library kit (Life Technologies, Chdd, CA) following the
manufacturers protocol for 200 bp, 1 pg input lipnareparation. All libraries received
barcoded adapters so that each pair of techniphtates (same sample type and time
point) could be sequenced on the same lon 318™hiR2 lon Xpress™ barcode adapters
were utilized for all barcoding. All libraries wegeiantitated using the lon Library
Quantitation kit on the ABI 7500 gPCR instrumertdaing the manufacturer’s protocol
(Life Technologies, Carlsbad, CA). Based on quatitih results, dilution factors were

calculated for each library.

Template Preparation
Template preparation was performed on the OneTd¥c{f@T2) instrument.
Sample technical replicates (same sample type, Saregoint) were pooled together in

an equal concentration of 26 pM and loaded oneéddf2™ following the
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manufacture’s protocol (Life Technologies, Carlsb@d). After emulsion PCR on the
OT2™ was complete, samples were enriched on th&dorent™ ES to remove non-

templated and polyclonal ISPs.

Sequencing on the lon Torrent PGM

Once template preparation was complete, enrichaglége positive ISP’s were
mixed with buffer, control ISPs, and enzyme andlézhonto an lon 318™ v2 chip for
sequencing on the lon Torrent™ PGM. Default segugngarameters for 200 bp

libraries on a 318™ v2 chip were used for all segueg reactions.

Data Analysis

Analysis of the sequence data obtained from duglitash and aged biological
fluid samples proceeded through a three-step psotreshe first step of data analysis,
raw sequence data for a given sample were aligndtethuman reference genome, Hg19
(GRCh38). After alignment, every sample had RNAregsion levels calculated in the
form of reads per kilobase per million (RPKM). RRKalues normalize expression
levels by taking into account the total numberexfigeencing reads in a run, the size of the
gene, and the number of sequencing reads thatatapttgene (Mortazavi et al.., 2008).
Alignment and RPKM calculations were performed withC Bio Genomics Workbench
software (Cambridge, MA). After initial RPKM valuegere calculated, they were
normalized against the ERCC spike-in standards) fshich a standard curve is created
(input quantity of ERCC standard vs. RPKM) (FigByeNormalization to the spike-in

standard acts as a control for any variation thghtrhave been introduced by sample
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preparation or user error, as the ERCC standanddi{@n®) are spiked-into each
sequenced sample at a known molar concentratiang &t al.., 2011). The standard
curve that is produced from the ERCC spike-in stathsl can be used to estimate
abundance (molecules) of any sequenced transortpeisample (Figure 3). The final
normalized abundance value for each transcriptpsessed in molecules of RNA. Once
the data for each sample were normalized, datas¥tscompared within and between

sample types to determine mRNA degradation proéiles patterns.

Results and Discussion

Determination of Transcript Abundance over Time

Once the transcriptome sequencing data were naedalor each sample, the
data were compared across all of the analyzedpwirés for each tissue type to
determine if transcript abundance changed with $auage. Abundance values for
technical replicates of each sample type at eath pioint were averaged. The average
abundance of each individual transcript was thenpgared across all of the time points
for each sample type. By monitoring the changadiividual transcript abundance over
time, a degradation profile could be developedetrh individual mMRNA transcript in a
given sample transcriptome. If a transcript is ddagrg over time, you will see a decrease
in the transcripts abundance over time. Deternonatif individual transcript degradation
profiles was accomplished through calculation opsland Rfor each transcript over all
of the sequenced time points. The average samplthbasands of transcripts
represented at time O (fresh). This approach exastianscriptome degradation, thus

individual degradation profiles for thousands ofigein each sample type are revealed.
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The data generated through sequencing total mRblAted from biological
fluids aged up to one year indicate that therdoseovable change in the transcriptome of
a sample over time. Figure 8 depicts the averageddnce levels for every detected
transcript in a given sample type (for each flund @ach time point). There are hundreds
to thousands of points graphed above each time favieach sample. Each point on the
graph represents a single gene and its averagelabcm at the given time-point (x-axis).
When multiple comparisons analysis was performeth@sndata, all comparisons
between each of the time points were significatesg than 0.0001. This is an indication
that the abundance of detected genes within eaxplsdype is decreasing over time.

While figure 8 provides a snapshot of the total MRMbundance in each sample
at each time point (plotting one point for eacms@ipt detected at each time point), the
data can be filtered to examine the change of iddal transcripts over time. Having
access to the degradation rate and pattern oftesc$cript in the transcriptome of a
sample facilitates selection of mMRNA transcriptst thave a degradation rate that better

correlates with sample age.
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Figure 8. Determination of Transcript Abund ance over Time. These charts
depict the change in abundance of the transcrpassample over time. There is ¢
point plotted for the average abundance of eveng gietected at each sampled t

point. Plotting one point for each detected geregven time point demonstrates ti

there is a clear decrease in transcriptome abuedarer time for each tissuMultiple

comparisons analysis indicates a significant deer&éatween each of the time poi
(p<0.0001 for all comparisons).
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Transcript Drop-Out Observed in Aged Samples

While there is an observable decrease in the almaedavel of individual
transcripts over time, there is also a decreaieeimumber of transcripts detected at each
time point. Figure 9 depicts the number of transrdetected at each sampled time point
for each of the biological fluids. There is a dsge in the number of transcripts detected
at each time point. This trend is observed for eddhe biological fluid types. The point
at which a transcript disappears from detectiaralked transcript drop-out. For example,
in a given fluid type, if a transcript is presemtie fresh sample and in the 60 day
sample, but is no longer present in the 120 day#arthat transcript would have
dropped out at 120 days. This trend of transcdpdpping-out of sequence data is
represented by the decreasing number of transdgtésted over time in each of the

sample types (figure 9).
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Figure 9. Transcript Abundance over Time. This figure depicts the number of
transcripts detected at each time point for eadl fiype. There are fewer transcripts
detected as the samples age, indicating some tipissare dropping below sequencing

Transcript drop-out is observed in all sample typeshe samples age. Thus,

detection levels as the samples age.

transcript drop-out is a reflection of mMRNA degriala within the sample. As transcripts

degrade to a fragment size of less than 200 bz@ they will no longer be captured in

the sequencing library preparation. This graduaigcript degradation will be reflected

by a reduction of transcript abundance in the secjng data and eventual transcript

drop-out from the sequencing data. It is importariote that just because a transcript

has dropped-out of the sequencing data; it hageusssarily disappeared completely
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from the sample. Fragments of a transcript malylstipresent in a sample, but simply
not detectable by sequencing due to the requirenfe2@0 bp library fragments.
Monitoring transcript drop-out in the sequencinggda critical to identifying transcript
degradation profiles. Transcript drop-out time paovide insight into the degradation
rate of individual transcripts. For instance, as@ipt that drops-out of the sequencing
data at 60 days has a much steeper degradatiocorajgared to a transcript that is still
present at 180 days. Through evaluation of trapsdrop-out, insight into mRNA
degradation mechanisms can be achieved and apgephiort- and long-term markers

of age can be selected.

The Effect of Starting Abundance on Degradation Rat

Through the evaluation of transcript drop-out timaged samples, conclusions
can be drawn about the effect of starting transafjpndance on degradation rate. Figure
10 displays the average abundance at time 0 (§&siple) for the transcripts that drop
out at each of the sampled time points. For ingatie average time 0 abundance for
blood transcripts that have dropped-out by 30 dss77 molecules per ul. The average
time 0 abundance for blood transcripts that nevep dut (i.e. “Drop-out Not Observed”,
meaning these transcripts are detected at eveeygomt, including 360 days) is 13.84
molecules per pl. Thus, the average starting almasdfor transcripts that disappear by
30 days post-deposition is almost 3 times lowen tin@nscripts that are still present at

360 days post-deposition.
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Figure 10. Starting Transcript Abundance by Sampldaype. These graphs depict the
average starting abundance and standard deviatiarahscripts that drop out at the
specified times on the x-axis. There is an incréaslee average starting abundance of
transcripts that drop-out of detection at lateretipoints. While transcripts that drop out
in earlier time points (30 days, 60 days) have lotivee 0 (fresh sample) abundance.

A high starting abundance for a transcript coreglavell with that transcripts
continued presence in older samples. This trealabserved in all of the sample types
and is indicative of a correlation between tramgabundance in a fresh sample and the
time it will take for a transcript to degrade tpa@int below sequencing detection.

Therefore, the starting abundance of a transcrgt have an effect on the transcript

degradation rate. Transcripts with a higher abuodan time 0 (fresh sample) may
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disappear more slowly, simply because a larger latipan of molecules will take longer
to degrade. This property lends to abundant trgstsdnaving an increased presence in

aged samples compared to lowly abundant transcripts

Other Factors Affect Transcript Degradation

While starting transcript abundance does appeglatpa role in the rate at which
a gene disappears from sequencing detection, thedahbce level in the time 0 sample of
a transcript is not the only factor that influendegradation rate. By examining the
group of transcripts that drop-out at each samgihed point, genes with similar time O
abundance values can be identified in each groigi(@s 11, 12, 13, and 14). Therefore,
the abundance level of a transcript in a fresh sammot the only factor that affects that
transcripts degradation rate. Figure 11 depictsgbenario in aged blood samples. This
figure provides the average abundance levels @rsganscripts over seven time points
(fresh, 1 month old, 2 month old, 4 months old, &ths old, 9 months old, and 12
months old). The abundance of each transcriptarfrdsh sample is approximately 11
molecules per pl for each one of the transcripiguiieé 11). However, while all of the
transcripts have a similar starting abundance, @#adscript drops-out of detection at a
different time point. For example, SPINK2 is presarthe fresh blood sample at an
abundance of 11.79 molecules/ul, but disappeafisrognth. This is in stark contrast to
NDST2, which is present in the fresh blood sampkneabundance of 11.12
molecules/pl, but is also present at every samipiee point thereafter, including the 12

month sample.
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Figure 11.0Observed Decrease of Representative Transcripts Blood. Seven genes
with similar starting abundance in blood are digpth While the seven transcripts hi
similar starting abundances, they disappear atraifit times over the 12 moi time
course, indicating that starting abundance is m@woinly factor in determining tt

degradation rate of a transcript.

This same trend is observed for every other bickldiuid type evaluatec
Figures 12, 13, and14 present data for salivanel fluid, and semen, respective
Figure 12 provides data on four genes detectedliviesall with a starting abundance
about 50 molecules per ul (ranging from 48.19 mdeper pl to 54.95 molecules |
pl). However, while these transcripts all h a similar starting abundance, they c-out

from detection at different times. NINJI is presanthe fresh saliva sample, but is

longer detected as of the 2 mc-old saliva sample. In contrast, TPM3 is presenhé&
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fresh saliva sample and detec at every other sampled time point thereafter, idiclg
the 6 montheld sample. Figure 13 presents four genes detattemhinal fluid, all with ¢
starting abundance of around 30 molecules peraabing from 28.61 molecules per
to 30.77 molecules peil). Figure 14 presents four genes in semenyidl a starting
abundance of around 35 molecules per pl. Howegerjth blood and saliva, the starti
abundance in the genes presented for vaginal dliliidsemen were also not predictive
drop-out tme. In both of these fluids, genes are presentdchtive similar startin
abundances, but drastically different c-out times (ranging from droppi-out at 2

months, to no drop out observe(

Observed Decrease of Representative Transcripts
with Similar Starting Abundance
(Saliva)

40.00
\ # NINJL

Average Transcript Abundance
(Log2Molecules/pl)
L
o

.00
\ . WPTEN
20.00 | TIP1
\ i < TPM3
10.00 =
0.00 ’ ¥ .l ;
0 1 2 3 4 5 6 7
Age of Saliva Stain [Months)
Average Transcript Abundance with SD
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NINJ1 54.9545.15 0.00 0.00 0.00 -27.47 N/A
PTEN 48.1949.10 19.01+3.05 0.00 0.00 -13.66 0.97
TIP1 51.42+412.39 44.09+0.19  17.2644.00 0.00 -9.05 0.96
TPM3 54.5642.91 32.07+0.18  26.1243.33  12.23+1.57 -6.65 0.95

Figure 12.Observed Decrease of Representative Transcris in Saliva.The
abundance values for four transcripts in salivadésplayed. All of the transcripts have
similar starting abundance. However, they each-out at a different time point. Tlse

data indicates that factors other than time O abooe ffect sample degradation ra
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Observed Decrease of Representative Transcripts
with Similar Starting Abundance
(Vaginal Fluid)
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Figure 13.0Observed Decrease of Representative Transcripts Maginal Fluid. The

abundance values for four transcripts in vaginatfare displayed. All of the transcrif

have a similar starting abundance. However, each drop-ouat a different time poin

Thesedata indicates that factors other than time O abooel affect sample degradat
rate.
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Observed Decrease of Representative Transcripts
with Similar Starting Abundance
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Figure 14.0Observed Decrease of Representative Transcripts Bemen.The
abundance values for four transcriptsemen are displayed. All of the transcripts ha
similar starting abundance. However, they each-outat a different time point. The

data indicates that factors other than time O abooel affect sample degradation i

The presence of transcis that have similar starting abundance in eveng-

type that dropaut at different time points in the aging time cgiprovides evidence tr
factors other than simple starting abundance affecRNA degradation rate. While the
does not appear tee a correlation between transcript specificitysii-specific vs.
present in several sample types) or transcripttion¢housekeeping vs. cell signalir
etc.) and stability of the transcript in aged saspinore investigation is needed on
subject. In addition to transcript specificity and fuioet, there does not appear to t

correlation between transcript size and degradatitey however, more investigatior

needed on this issue as well. In addition to theisty abundance of a givelanscript, it
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is possible that transcript structure and functiontribute to the stability of the molecule

as well.

Tissue-Specific Degradation Patterns

In addition to establishing the fact that the tot&®NA of a sample is degrading
over time, another goal of this study was to exanissue-specific RNA degradation
patterns and profiles. It was hypothesized thaabge each fluid (blood, saliva, vaginal
fluid, and semen) is composed of a unique transump, cell types, cell environments,
and microbial populations, there would be differmates and patterns of degradation in
each fluid type. With just two technical replicatdsevery fluid at each time point
represented in this sequencing data set, it is itapbto note that any observed tissue-
specific differences are just initial observed tienFurther analysis of a larger sample
size would be needed to draw any firm conclusidimiatissue-specific RNA
degradation rates.

Understanding tissue-specific differences in RNyrdation rates is important
because the transcriptome of every biological éssufluid is unique and can therefore
not be expected to act in a uniform manner. Focemsalysts deal with a variety of
biological sample types. While it would be ideabtable to streamline mRNA analysis
into one universal assay, tissue-specific assaystmaequired for the proper analysis of
MRNA degradation in relation to sample age. Itrigoal that an understanding of the
transcriptome and its degradation rates and patemenestablished for every forensically
relevant sample type before conclusions are madeecning the creation of universal or

sample type-specific analysis procedures.
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Awareness of tissue-specific RNA degradation viras dcquired by reviewing
the published literature searching for forensisuesidentification markers for each
sample type. A comprehensive literature searchpga®rmed to identify mRNA
markers for blood, semen, saliva, and vaginal flGielveral tissue-tissue and fluid-
specific mMRNA biomarkers have been identified fee with forensic tissue
identification, with the aim of replacing traditiainserological techniques with molecular
analysis. Many of these mRNA biomarkers have bedidated for sensitivity and
specificity. In this study, fluid-specific RNA traaripts were utilized to monitor sample
type-specific mMRNA degradation patterns. Googled&oh NCBI PubMed, and
ScienceDirect databases were all utilized in ttesdture search for sample identity
biomarkers. Search terms included “RNA markerdigsue identification”, “RNA
markers for biological fluid identification”, “RNAised to identify tissues and fluids”,
“forensic identification of fluids and tissues ugiRNA”, and “mRNA markers for
biological tissues and fluids”. Once identifiedgstie-specific MRNA transcripts were
placed in a database to be used in the analysie@tged biological fluid samples
(Appendix A).

Tissue-specific transcripts were monitored in eafcthe sample types over the
entire aging time course. Results for each of lilnd types and their specific mRNA
markers are displayed in figures 15, 16, 17, andBl&d and semen specific markers
appear to remain present in the sample for thedstnrgmounts of time, with blood having
no transcripts drop-out until 12 months and senaainy no transcripts drop out in the
observed time frame (Figures 15 and 18). Salivavagihal fluid do not appear to have

as steady of a presence with their tissue-spécé#iscripts, with both sample types
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having séected transcript drc-out by 4 months (Figures 16 and 17). This obse

difference in stability of tissi-specific markers between the sample types (blodc

semen vs. saliva and vaginal fluid) could be duseteeral factors including overi

decreas@n the percentage of genes detected in the sayps bver time and tf

influence of microbial organisms on the samj
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Figure 15. Average Blooc-Specific Transcript Abundance over Time.Blood-specific
transcript degradation over 12 monthdisplayed. No transcripts dr-out until 12
months postieposition, indicating a large degree of stabdmyong bloo-specific

MRNA.
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Average Saliva-Specific Transcript Abundance Over Time
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Figure 16.Average Salive-Specific Transcript Abundance over TimeSaliva-specific
transcript degradation is displayewanscript dropaut is observed at 4 months for t
different genes, indicating a possible instabitifyfRNA in saliva

Average Vaginal Fluid-Specific Transcript Abundance Over Time
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Figure 17.Average Vaginal Fluid-Specific Transcript Abundance over TimeVaginal
fluid-specific transcript degradation is displayeranscript dropaut is observed at
months for one out of four genes, indicating a jmssnstability of RNA in salive
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Average Semen-Specific Transcript Abundance Over Time
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Figure 18.Average Seme-Specific Transcript Abundance over Time.Semen-
specific transcript degradation is displayed. Tcaipsdrop-out is not observed for any
the markers over the 6 month time course, indigaistability of mMRNA in seme

If other data, such as the number of transcriptsatied at eacsampled time
point (Figure 9) aréaken in to account alongside thssuespecific transcript data, sor
light may be shed on the apparent differencesaimsript stability between the tiss
types. The mRNA population in blood remains fagtgble over time, with over 70%
transcripts still present at 9 months |-deposition. A similar trend is observed in sem
with over 80% of the transcripts remaining at 6 therpos-deposition. In contrast to tt
transcriptome stability observed in blood and sematy 12% of transcripts in sali\
and 39% of transcripts in vinal fluid remain at 6 months podéposition. The numb
of transcripts remaining in each of the tissue® at 9 months po-deposition provide
evidence that the transcriptomes of blood and seappaar much more stable over ti

than the transcriptomexd saliva and vaginal fluid. This fact could off@me reason fc
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the early drop-out of tissue-specific mMRNA markaserved in saliva and vaginal fluid
(Figures 16 and 17).

Deeper evaluation of the RNA population isolatexhfrthe different sample types
offers some insight into the apparent differenceasiRNA stability among the different
fluid types. Read alignment statistics for eackhefsample types provides further divide
between blood and semen vs. saliva and vaginal.fAs listed in Table 4, the average
sequencing read alignment to HG19 was quite difteaenong the four sample types. For
blood, an average of 81% of the sequencing reagiseal to the human reference. Semen
achieved similar results, with an average alignno¢i84% of the sequencing reads. A
large departure from this trend was seen with aaamples, which, on average had only
6% of the sequencing reads aligned. The vaginal #amples were more in line with the
saliva samples, with an average of 13% of readsialy to the human reference. The
unaligned reads for both saliva and vaginal flugtevblasted against HOMD and Refseq
databases, respectively, and over 90% of the uredigeads were found to align to
microbial organisms. This alignment data demonssrédtat while the majority of the
RNA population was human for blood and semen, bativa and vaginal fluid had a
significant microbial presence. The heightenedqaes of microbial RNA in saliva and
vaginal fluid, not seen in blood and semen, maésiyihad a large effect on the detected
human mRNA population, possibly causing heightesegladation rates of human RNA
or drowning out the population of human RNA thatwigtectable by sequencing on the
PGM.

By examining known tissue-specific mMRNA markergambination with the

number of transcripts detected at each time pomngé&ch sample type, some tissue-
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specific differences in mMRNA degradation pattennd eates become apparent. Most
notable is the observed stability of mMRNA in blat semen compared to saliva and
vaginal fluid. This observation must be kept in chas these data are utilized for
selecting appropriate mRNA markers for sample ageiniversal mRNA transcripts
present in all tissue types may have drasticaffedint degradation rates based on what

tissue type is being considered.

Transcript Populations of Biological Fluids

In addition to considering the different rates @nafiles of transcript degradation
in the different sample types, it is also importenaccount for the population similarities
and differences of the different sample transcrgs. While no two biological sample
types will have an identical transcriptome, thereome degree of overlap between the
transcripts expressed in all of the mRNA populaianalyzed in this study. By
establishing transcript population similarities aiffierences, transcripts can be
categorized as universal (found in every sample;tgan be used to monitor age in any
sample type) or tissue-specific (found in only saenple type; can be used to monitor
tissue-specific age).

Sequence data for the time 0 (fresh) samples wergpared to identify overlap
between transcriptome populations of the diffet®akogical fluids (blood, saliva,
vaginal fluid, and semen). Figure 19 provides thmber of genes found in each tissue,
the number of tissue-specific genes, and the nuwibgenes found in the transcriptomes
of multiple sample types. While there is overlapAs®en all of the different tissues, the

transcript populations of particular importance thee tissue-specific transcripts (for
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blood, semen, saliva, and vaginal fluid) and taedcripts found in all of the tissue types

(universal transcripts).

Number of Detected Genes

Semen Vaginal Fluid
(12,300) (4,070)

Blood
(12,116)

Saliva
(4,201)

Figure 19. Tissue-Specific mMRNA ProfilesThis Venn diagram presents the number of
detected genes in the transcriptome of each bicdb§uid. For every tissue type there
are a number of tissue-specific transcripts. Adddily, there are 1,875 universal
transcripts that are common to all of the sampledcriptomes.

For each of the tissues, there are a significamthar of transcripts that are
sample-type specific. Specifically, there are 1,B84®d specific transcripts,124 saliva-
specific transcripts, 211 vaginal fluid-specifiariscripts, and 1,712 semen-specific
transcripts. These pools of tissue-specific trapscprovide a population for the

selection of tissue-specific markers to estimatesa age. In addition to sample-specific
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transcripts, there were also 1,875 transcripts comta all of the sample types. This pool
of transcripts provides a population for the setecof universal markers of sample age

that can be utilized with every sample type.

Identification of Markers for Sample Age Estimation

Having the degradation profile of the transcripgofor each fluid and tissue
(consisting of thousands of transcripts per sartyge) allows for the guided
identification of MRNA transcripts that have degr@on patterns and rates that most
closely correlate with sample age. Different mRNa#&nscripts were identified as
correlating to short, mid, or long-term sample dg&ta analysis for mRNA candidate
marker identification was performed in Microsoftdekxand Statistical Analysis Software
(SAS). Short-term age mRNA markers disappear @atllye degradation analysis (before
60 days). Candidate mRNA transcripts for short-terarkers of sample age are present
in the time 0 sample, but drop below detectableisece levels by the first measured
time point (1 month in blood, 2 months in salivamen, and vaginal fluid). Short term
markers should have a large negative slope angherhialue. Mid-term age mRNA
markers are identified as having a steady linegratiation rate and drop below
detectable sequence levels by middle time pointd,(&, or 9 months in blood; 4 or 6
months in saliva, semen, and vaginal fluid). Allrkeas selected for mid-range markers
should have a measurable abundance at severgbtimis and should have a strong
negative slope and high All mid-term candidate mRNA markers have a clewear
decrease in abundance as samples age and dropdekestable levels before the final

time-point (180 days or 360 days). Finally, canteddor long-term sample age
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estimation are identified as transcripts that aes@nt over all of the sequenced time
points. Candidates for long-term sample age estoim&iave a negative slope and a high
r,

Candidate markers for sample age estimation vadergtified with consideration
for tissue specificity. Markers were identified tlaae unique to each of the tissues, to
allow for tissue-specific estimation of sample afgssue-specific markers offer the
benefit of being applicable in a mixed sample saenahere each fluid in the mixture
could have a unique estimate for sample age. Auitly, fluid-specific markers reflect
fluid-specific mMRNA degradation patterns and pexilMarkers were also identified that
were found in every tissue that was analyzed. UsalanRNA markers for sample age
have the benefit of being widely applicable. Thesekers could potentially be
developed into an assay that would be applicalslage with a wide variety of sample

types. Both types of markers (tissue-specific asglie-nonspecific) were identified for

future investigation.

Universal Markers of Sample Age

To identify universal transcripts that degradedprably and could be useful to
estimate sample age, the 1,875 transcripts fouegeny biological fluid type were
evaluated based on degradation rate of each tighacross all of the samples. The slope
and F value for every transcript in the universal pogiolawas calculated for each tissue
type. Transcripts were first separated based omhey disappeared from each of the
sample types. Transcripts that disappeared by therih time point in all sample types

were placed into one group (short-term markersaofde age). Transcripts that never
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dropped out, (i.e. were detected at every timetpniavery tissue type) were placed into
a second group (long-term markers of sample agahiWeach group, transcripts were
further filtered based orf value. All transcripts with a tight linear degradatrate (f >

0.8) were kept for further consideration. Aftetdring based on a consistent degradation
trend across all sample types, and ovatues, there were eight transcripts that qualifie
as potential mid-term mRNA markers for sample agtan transcripts that qualified as
long-term markers for sample age. Two example usatanid-term sample age markers,
SERPINB2 and SPINT1 are displayed in Figure 20.0Athe fluid types have
SERPINB2 and SPINT1 present in the fresh samptee(0), but both of these transcripts
have dropped-out from all sample types by 6 montsle no mRNA markers were
present in all samples at the same starting abwed#me presence or absence of these
MRNA transcripts in a tissue could be an indicafapproximate sample age. Further

validation is needed with a larger sample number.

86



UniversalmRNA Markers of Mid-term Sample Age
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Figure 20.Universal mRNA Markers of Mid -term Sample Age.These graphs disgy
two example universal mMRNA markers of -range sample age, SERPINB2 ¢
SPINT1. Both of these transcripts are presentlifoat analyzed tissues in fre

samples, but dr-out by 6 months in all sample types.

Two example universal lo-term sample agmarkers, ACTB and and FTH1 are shc

in Figure 21. Similar to the m-range mRNA markers, there are no transcripts that
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the same starting abundance in all tissues andimggnasent throughout all time points.
However, both ACTB and FTH1 are present at time 8llisample types and do not
drop-out at any time. Both of these transcripts im&ésurable abundance in all of the
sample types at the latest measured time pointof@tms or 12 months).

While these transcripts on their own cannot bel isestimate the age of a
sample, these data demonstrate that there arers@iveRNA transcripts that appear to
have unique degradation rates. As these transatiptsommon to all tissues, a couple of
them (for example, one mid-range marker and ong-tange marker) could be
combined with analysis of rRNA in a real time assagveral studies have documented
the stability of rRNA over an extended period afi¢i Thus, rRNA provides an excellent
steady baseline and long-term marker of sampledgeuniversal mMRNA markers
documented in this study could be combined with ARNthe development of a qPCR
assay designed to measure transcript abundandeCR @ssay would facilitate the rapid
assessment of these RNA products in a large sgoopl@lation. Sample age may be
estimated from the presence or absence of diffenankers and their specific abundance
level in the sample. Based on the sequencing datgeal samples, the mid-range mRNA
marker would be expected to decrease with thedbsige and disappear first from
samples. The long-range mRNA marker would be exoeitt decrease at a slower rate

and disappear at a later time point (after 6 mqrebsording to our sequencing data).
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UniversalmRNA Markers of Long-term Sample Age
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Figure 21.Universal mRNA Markers of Long-term Sample Age.These graphs
display two example universal mMRNA marker:long+range sample age, ACTB a
FTHL. Both of these transcripts are present ifoait analyzed tissues in fresh samp
and do not drop out of detection for the entiresticourse
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The idea of a universal mMRNA marker of sample ag#tractive, as the existence
of universal markers would facilitate the developitngf a generic sample age estimation
assay. However, a universal assessment of mRNAadation would not necessarily
produce the most accurate estimation of sampldagerery sample type. Our
transcriptome abundance data for each tissue tygeaol2-month or 6-month time
course demonstrate that each tissue has an individunscriptome degradation rate. The
presence of a unique transcriptome degradationi@fof each sample type is evidenced
by the examination of the number of transcriptedietd at each time point for each
tissue type (Figure 9), and by the presence ofusmagegradation rates among identified
tissue-specific mMRNA markers (Figures 15-18). lhgtance, as previously discussed, our
data indicate that the transcriptomes of bloodserden appear to be degrading at a
slower rate than the transcriptomes of saliva aginal fluid.

The notion that transcripts degrade at differates in different sample types is
further supported by consideration of the identifimiversal mMRNA markers for long-
term sample age estimation. Take for exampleftaetin transcript (ACTB) presented in
figure 20. While ACTB is present at a measurablendlance level in all of the analyzed
time points for each of the sample types, theistagbundance and degradation rate
(slope) for this transcript is not consistent asrak tissues (Figure 20). Thus, previous
sample age estimation assays utiliZiagctin may not be equally applicable to all sample
types (S. E. Anderson et al.., 2011). Due to aum@pundance and rate of degradation of
ACTB in each sample type, simply monitoring theratbance of this transcript on its own
or in relation to another transcript would not resagily correlate with sample age. If a

universal mMRNA marker is going to be applied in ésémation of sample age, it is
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imperative that the analyst know the identity ¢ #ample they are working with, so data
analysis and conclusions can be adjusted to fikmloevn transcript degradation profile
for that specific sample type. Due to the preseriabstinct RNA degradation rates in
each sample type, evaluation of fluid-specific neaskmay be more indicative of actual

sample age.

Tissue-specific Markers of Sample Age

Upon comparison of transcript populations betwesghef the different fluid
types, there were 1,449 transcripts identifiedeaadunique to blood (Figure 19). For
further analysis, the population of blood-spedifanscripts was sorted into groups based
on when transcript drop-out occurred (1, 2, 4,,&ra2 months, or drop-out not
observed). Those transcripts that dropped-out toyptth or 2 months are considered
good candidates for short term age estimation.tidrescripts that dropped out by 4, 6, or
9 months are considered good candidates for mid-$ample age estimation. The
transcripts that did not drop out until 12 monthsvere found to have abundance in all
of the sampled time points are considered goodidates for long-term sample age
estimation.

With several possible candidates in each of thendigished groups, transcripts
with a similar time 0 abundance, but different donyt times could be selected (Figure
22). This approach for selecting possible candidedekers for sample age estimation in
blood would allow for the determination of the appmate age of a sample based on the
presence and specific abundance of a set of tigtsdf multiple transcripts all have the

same starting abundance, but drop-out of sequeeatagtion at different time points
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(spanning 1 to 12 months), those transcripts ageadiéng at different rates. Transcripts,
identified as having distinct degradation rates, loa exploited for sample age
estimation. If these transcripts (or a represergashort-range, mid-range, and long-
range marker) were monitored in bloodstains, thr@pmate age of the bloodstain
could be estimated based on the presence or abskesgecific transcripts and the

abundance of the detected transcripts.
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Figure 22. Select Blood-specific mRNA Markers of Saple Age.Select blood-specific
MRNA markers for sample age estimation are displa@@me marker from each drop-out
time (1, 2, 4, 6, 9, and 12 months and no-dropobserved) was chosen. The markers
presented in this figure are representative ofre¢yp®ssible markers present for each
drop-out point. These markers were selected basé@ang similar time 0 abundance
levels, which may facilitate their comparison wiatempting to age a sample based on
relative transcript abundance levels.

An example of how blood-specific transcript datayrba used to estimate the

approximate age of a sample can be found by remgpfigure 21. A sample of unknown
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age could be profiled for the presence and aburedahthese genes. The detection of
OCM2, among other transcripts, would indicate thatsample was less than 30 days
old. If, however, the only transcript detectedhe sample was LY9, one might conclude
that the sample was more than one year old. As#tsencing data are only composed
of 2 samples, and has a required detection lev200fbp fragments, these data are not
definitive for estimating sample age and should/drd used as a guide for the
development of future assays that can be usedd¢ersa larger number of samples.
These data can provide an excellent roadmap fectseh of transcripts that are likely to
be successful biomarkers for short-, mid-, and Jaangge blood stain age estimation.

A similar data analysis pipeline was used withdtleer sample types to identify
possible tissue-specific mMRNA markers of sampleiagaliva, vaginal fluid, and semen.
The populations of sample-specific mMRNA consistetlas transcripts specific to saliva,
211 transcripts specific to vaginal fluid, and B Zdanscripts specific to semen.
Transcripts specific for each tissue type wereesbbiased on when drop-out occurred (2
months, 4 months, 6 months, or drop-out not obsgn&plitting the data into four
groups based on transcript drop-out time allowedife identification of possible tissue-
specific markers of short-term age estimation @caipts that disappeared by 2 months),
mid-term age estimation (transcripts that disapgeay 4 or 6 months), and long-range
age estimation (transcripts that have detectahladdnce at all sampled time points).
Select tissue-specific markers of sample age haga presented for saliva, vaginal fluid,
and semen (Figure 23). As with blood, the selentadkers for these fluids are
representative of transcripts from each drop-oatgr(drop-out by 2, 4, and 6 months

and drop-out not observed). Also similar to bloibd, selected representative mRNA
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markers of sample age in saliva, vaginal fluid, aechen were selected for their similar
starting abundance values (abundance at time €holild be noted that the starting
abundance values for the four vaginal fluid traipgsrare more spread. The wide spread
of starting abundances in vaginal fluid can balaited to the absence of transcripts in
each group that have similar starting abundanceditianally, it should be noted that
there is no saliva-specific transcript that drops-af detection between 4 and 6 months.

As with blood, the identified markers for salivaginal fluid, and semen may be
indicative of sample age based on their presenabsence within a sample and their
abundance. The selected markers are excellentdzadifor further investigation with
gPCR, allowing for a larger sample size to be eataid.

The tissue-specific markers identified in thisdgtunay offer more power in
estimating sample age then the universal markatsatere identified. While more
cumbersome for assay development, as one assayg potgntially have to be developed
per tissue, tissue-specific markers have the beoferfinatching each specific biological
fluid’s unique degradation profile. While universahrkers may be present in all sample
types, these transcripts do not necessarily degttie same rate in all sample types.
Tissue-specific markers allow for the selectiomafrkers that have established
degradation rates within a given sample type. $hidy has demonstrated that RNA
degradation does not occur equally in all biolobilead types, thus sample —specific

markers should be considered for the most accassessment of sample age.
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Select Fluid-Specific mRNA Markers for Sample Age
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Conclusions

This study provides the first comprehensive anslgbex vivotranscriptome
degradation in four forensically relevant biolodiftaids. If RNA analysis is going to be
adapted into routine forensic casework, it is caitthat a more in-depth understanding of
MRNA degradation patterns and profiles is estabtisin addition to providing baseline
knowledge of the relationship between RNA degraaasind sample age, establishing the
behavior and profiles a#x vivoRNA samples is critical in other areas as well. If
researchers and forensic personnel want to reth@mnse of mRNA biomarkers for
investigative purposes, including tissue identifma and molecular autopsy findings,
having a complete understanding of those transcipanex vivocontext is necessary.
This study provides a database of mMRNA transcpptsent in fresh and aged samples at
several time points spanning up to six monthsyaalraginal fluid, and semen) or one
year (blood). The transcriptome abundance datadoh tissue type indicate that while
MRNA is degrading in all sample types, specifies@ipt degradation rates can vary
between different fluid types. The observed diffexes in transcript degradation rate can
be attributed to a number of factors, includingng@ipt starting abundance (level of
abundance in a time 0, fresh sample), transcrygt@mment (every fluid has a unique
profile of cells and microbial organisms), and séarippe.

The data generated in this study provide evidelnaeanalyzing a single or a few
generic transcripts (housekeeping, rRNA) may nahleemost effective way to estimate
sample age in a range of tissue and fluid typethdRathe data generated in this study
indicate that there are tissue-specific differenad2NA degradation rate that may affect

the interpretation of RNA degradation data. One Ri$8ay and set of data analysis
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guidelines may not be applicable to all sample syjBeing aware that there are tissue-
specific differences in RNA degradation will alldar the proper selection and analysis
of tissue-specific markers for sample age estimatio

It is important to recognize that the age estinmati@rkers identified for blood,
saliva, vaginal fluid, and semen are selected facsample size of two technical
replicates at each time point for each fluid typae to the small sample size, these
markers should not be considered absolute markea@ople age. Rather, these data
should be used as guidance for selecting markefsitfiner investigation with larger
numbers of samples. The markers outlined in fig@kand 22 are representative
transcripts that have distinct degradation profitesach of the tissue types. Thus, these
markers warrant further investigation as possibdekers for establishing sample age.
Further investigation of markers identified frone thull transcriptome degradation data
for each sample type should be performed on lowst, ©iigher throughput technologies,
such as RT gPCR. Simple gPCR assays could be @esigrmonitor identified
transcripts for each fluid type and a larger numidfesamples could be screened to
investigate the observed mRNA degradation trendsdofirmation of their correlation

to approximate sample age.
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CHAPTER V

CONCLUSIONS

As research continues to evolve on the recoveryaaatysis of RNA from post-
mortem tissues and forensic samples recovereddrone scenes, the possibility of
RNA analysis playing a routine role in forensiceaerk increases. A critical point in the
application of RNA analysis in forensic investigatiis the development of a thorough
understanding of RNA behavior @x vivosamples. This study had two major goals
concerning the analysis of mMRNA in deposited samptest, we developed an RNA-seq
methodology and RNA-seq analysis pipeline for aggtples that consistently exceeded
several stringent quality control measures thatieststhat good sequencing data was
obtained. The development of methods that accomteatigraded samples was
imperative for the successful analysis of forerigigalevant sample types. Additionally,
we aimed to do all analysis on an RNA-seq platfasmopposed to using the more
traditional qPCR or capillary electrophoresis @atfs, in order to gain a complete
picture of the mRNA in aging samples. The seconppbngoal of this study was the

analysis of total mRNA in fresh and aged biologitald samples of forensic relevance
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(blood, saliva, vaginal fluid, and semen). The Itssof this study are the first
comprehensive mRNA dataset in fresh and aged samiite data produced in this study
provide the first global look at how the transavipie is fluctuating as deposited samples
age. From these data, a greater understandingoifispgranscript degradation rates and
profiles can be gained for each sample type. Intiaticto outlining the degradation
patterns of the transcriptomes of four differemtidgical fluid stains, this study identified
both universal and tissue-specific mMRNA markersasfhple age that warrant further
investigation in a larger sample population. Speaily, the identification of these
markers has the potential to facilitate assay agweent for assessing the age of

deposited biological fluid samples.

Potential Impact

This research has potential impact not only infigle of forensic biology, but
also in the field of medicolegal death investigati®his is the first organized study of
full transcriptome degradation in human body flusdhel tissues. While RNA degradation
has been studied previously, only very few trampgsrinave ever been included in
degradation analysis. The results of this studiuoe total MRNA sequence data for a
variety of sample types (blood, saliva, semen \aginal fluid) over several time points,
spanning up to one year. This study has yieldeditstecomprehensive transcriptome
sequencing dataset that includes fresh and agemjlmal samples over a period of
several months to one year. These results prowdeath of data, demonstrating mRNA
degradation patterns and rates for each spedainstript present in each sample type.

These transcriptome degradation data have the fdtenaid investigators looking for
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MRNA markers for post-mortem or forensic sampldyamms Use of RNA analysis is
increasing in forensic investigations (includinge growing field of molecular
autopsies). If investigators plan to use any speoiRNA transcripts in their
investigations, it is critical that thex vivodegradation pattern and rate for each transcript
of interest be understood. The global data obtaireed this study will provide an

excellent starting point for investigators to detare theex vivodegradation of

individual transcripts of interest. Full transcdpte data from a fresh sample are
valuable, but this dataset takes transcriptomeesesng further into the applicable realm
of forensic science, providing data on aged andatkggl samples as well. If RNA

analysis is ever going to be successfully applefdiensic science, it is critical that

investigators understand the behavior of transciiptged, as well as fresh samples.

Future Directions

While the results of this study are comprehensivbat they provide the first set
of MRNA sequencing data for fresh and aged foresemigples, many questions were
initiated by this research that deserve furtheestigation. In particular, more
investigation is needed concerning the specifichmaism ofexvivo mRNA
degradation. Additionally, deeper analysis of therabiome mRNA population of saliva
and vaginal fluid may be relevant to assessinggeof those sample types. Finally, the
development of gPCR assays for further investigadioidentified mRNA markers for
sample age estimation will be performed in futuaeky

The results of this study indicate that the stgrabundance of a transcript (the

abundance of a transcript in the time 0, fresh $a@ngrectly impact the degradation rate

100



of that sample. In general, transcripts that lasgér in arex vivosamples have higher
starting abundances in the fresh sample (FigureH®)ever, the results of this study
also clearly indicate that the starting abundari@etoanscript is not the only factor that
affects transcript degradation rate. It is appatieat factors other than starting abundance
are important when transcripts are easily iderdifreall tissue types that have similar
starting abundance values but drop-out of sequgrdatection at different time points
(Figures 11, 12, 13 and 14). However, while itpparent that other factors are
influencing transcript degradation rate, more itigasion is needed to determine what
these specific factors are. Several factors shioalevaluated in this effort, including
transcript length and transcript secondary strectooth of which could have a direct
influence on the stability of a molecule.

Two of the fluids surveyed for this study, salivadlavaginal fluid, have a large
microbial population that influenced the amounhoman mRNA that was recoverable
from those sample types. While these samples @isiept a challenge due to the reduced
amount of sequencing reads available for humarsd¢rgts, the mRNA of the
microbiome of these samples does warrant furthexsingation for a possible correlation
with sample age. On average, over 90% of the umadigequencing reads from the
saliva and vaginal fluid samples mapped to eithetHOMD or RefSeq databases. Initial
assessment of the microbiome mRNA population haa performed for saliva (Figure
4, Appendix 2). The saliva mRNA data aligning te tHOMD database suggests that
there is some fluctuation in the microbial popuwas of the saliva stains as they age.
Evaluation of the microbiome of fresh samples imparison to aged samples may

reveal that there is a shift in the microbial p@pan that corresponds with approximate
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sample age. The vast majority of sequencing readsdth saliva and vaginal fluid
aligned to microbial genomes (over 75% for botliveadnd vaginal fluid), thus these
sequencing reads warrant further investigatiorutare transcriptome analysis of these
sample types.

The results of this study provide a baseline fertiRNA populations and
degradation rates in individual biological fluidpss. The data generated in this research
will be used to develop gPCR assays for assedsengge of each sample type (blood,
semen, saliva, and vaginal fluid) using data oletéifnom sequencing fresh and aged
samples. The point of utilizing full transcriptordegradation data is so we can make an
educated decision in selecting the most accuratkarsafor short-, mid-, and long-term
age estimation for each individual sample type.dda@ved gPCR assays for sample age
determination will be specifically designed to e the mRNA transcripts that have
degradation rates and patterns most closely retatedmple age, as reflected in the
MRNA sequencing data for each sample type. Theicreaf qPCR assays allows for
easy adaptation into high throughput, low cost darapalysis. Being able to determine
the approximate age of a sample using a simple &SRy would greatly benefit both
the fields of forensic biology and forensic patlgioDetermining the time-since
deposition of a sample would directly aid in prongla time-line of events surrounding a
crime. While other gPCR assays have been developgssess sample age, no assay is
currently in regular use in forensic labs. By atilg transcript degradation profiles
generated from mRNA sequencing, the future devedpraf gPCR assays will include

transcript targets that are observed to degradpeaific rates in each tissue type, rather
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than relying on the presence of housekeeping ghaegare only assumed to degrade at a

constant rate in every tissue type.
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APPENDICES

APPENDIX A: Comprehensive Literature Search Results for Tispaeific mMRNA
Markers

Venous Blood

Marker

Cross-Reactivity

Source

CD93

menstrual blood

Lindenbergh (2012)
Zubakov (2009)
Zubakov (2008)

AMICA1

menstrual blood

Lindenbergh (2012)
Zubakov (2009)
Zubakov (2008)

HBB

menstrual blood

Lindenbergh (2012)
Haas (March 2009,
Jan 2011, Nov 2011)
Wobst (2011)

ALAS2

semen

Richard (2012)
Juusola (2007)
Haas (Nov 2011)

PPBP

Park (2012)

Beta-Spectrin (SPTB)

vaginal secretion

Patel (2008)

Haas (2008)

Juusola (2005, 2007)
Haas (March 2009,
Nov 2011)

porphobilinogen
deaminase (PBGD)

Juusola (2005)

Patel (2008)

Haas (2008, March
2009, Jan 2011, Nov
2011)

Wobst (2011)
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Nussbaumer (2006)

HBA Haas (Nov 2011)

ALOXS5AP Zubakov (2008, 2009)
Zubakov (2008, 2009

AQPS Haas (Nof/ 2011) )
ALOX5AP Zubakov (2008, 2009)
Zubakov (2008, 2009

AQPS Haas (Nof/ 2011) )
ARHGAP26 Zubakov (2008, 2009)
Ci1QR1 Zubakov (2008, 2009)
C5R1 Zubakov (2008, 2009)
CASP1 Zubakov (2008, 2009)
MNDA Zubakov (2008, 2009)
NCF2 Zubakov (2008, 2009)

Ankyrin 1 (ANK1)

Fang (2006)
Haas (Nov 2011)

CD3G

Haas (Nov 2011)

Glycophorin A

Fleming (2010)

Saliva
Marker Cross-Reactivity Source
vaginal mucosa, Lindenbergh (2012)
KRT4 menstrual secretion, | Zubakov (2009)
and skin samples Zubakov (2008)
vaginal mucosa, Lindenbergh (2012)
KRT13 menstrual secretion, | Zubakov (2009)
and skin samples Zubakov (2008)
vaginal mucosa, Lindenbergh (2012)
SPRR2A menstrual secretion, | Zubakov (2009)
and skin samples Zubakov (2008)

STATH (Statherin)

nasal secretions

Lindenbergh (2012)
Richard (2012)
Sakurada (2009)
Patel (2008)

Juusola (2003, 2005,
2007)

Haas (2008, March
2009)

Wobst (2011)
Fleming (2010)
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HTN3 (histatin 3)

Lindenbergh (2012)
Richard (2012)
Sakurada (2009)
Patel (2008)

Juusola (2003, 2005,

2007)
Haas (2008, March
2009)
Wobst (2011)
Fleming (2010)
FDCSP Park (2012)
PRB1 Juusola (2003)
PRB2 Juusola (2003)
PRB3 Juusola (2003)
PRB4 Fang (2006)
SPRR1A Zubakov (2008, 2009)
KRT6A Zubakov (2008, 2009)
Semen
Marker Cross-Reactivity Source

PRM1 (Marker for
Sperm)

Lindenbergh (2012)
Patel (2008)

Haas (2008, March
2009, Dec 2009)
Juusola (2005, 2007)
Bauer (2003)
Wobst (2011)

SEMG1

Lindenbergh (2012)
Sakurada (2009)
Haas (Dec 2009)
Fang (2006)

PRM2
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Richard (2012)
Sakurada (2009)
Patel (2008)

Haas (2008, March
2009, Dec 2009)
Juusola (2005, 2007)
Bauer (2003)
Fleming (2010)




Richard (2012)

Fang (2006)
TGM4 Wobst (2011)
Fleming (2010)
MSMB Park (2012)
Nussbaumer (2006)
KLK (PSA) Haas (Dec 2009)
MCSP Fang (2006)
Vaginal Secretion (Mucosa)
Marker Cross-Reactivity Source
Lindenbergh (2012)
Richard (2012)
Patel (2008)
Muc4 Saliva Haas (2008, March
2009)
Nussbaumer (2006)
Juusola (2005)
Lindenbergh (2012)
Patel (2008)
HBD1 Haas (2008, March
2009)
Juusola (2005)
MSLN Park (2012)
CYP2B7P1 Hanson (2012)
MYOZ1 Hanson (2012)
ESR1 Semen, Saliva Fang (2006)
16S5-23S rRNA
intergenic spacer
region for menstrual blood Wobst (2011)
Lactobacillus gasseri
(GASS)
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Appendix B: Percent of Contigs Aligned to the HONMatabase for Saliva RNA-seq

Samples

Fresh Saliva
% of Contigs aligned to 390 Organisms

Haemophilus parainfluenzae ATCC 33392, 6.842

Haemophilus parainfluenzae T3T1, 6.697

Prevotella melaninogenica ATCC 25845, 5.669

Neisseria subflava NI9703, 5.476

Prevotella sp. oral taxon 299 F0039, 4.660

Prevotella melaninogenica D18, 4.282

Prevotella pallens ATCC 700821, 4.016

Campylobacter concisus strain 13826, 3.333

Veillonella sp. oral taxon 158 F0412, 3.107

Prevotella nigrescens ATCC 33563, 2.348

Saliva Aged 60 Days:
% of Contigs Aligned to 348 Organisms

Haemoghilus parainfluenzae ATCC 33392,
10,

Haemophilus parainfluenzae T3T1,9.256

Streptococcus mitis NCTC 12261, 6.392

Neisseria subflava NI9703, 6.171

86,5.097

Streptococcus mit

Gemella haemolysans ATCC 10379, 4.429

Capnocytophaga gingivalis ATCC 33624, 4.205

OB e A SRS 107 Veillonella sp. oral taxon 158 F0412, 3.419

Streptococcus pneumoniae AP200, 3.355
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Saliva Aged 120 days:
% of contigs Aligned to 384 Organisms

Neisseria subflava NJ9703, 6.162

Haemophilus parainfluenzae ATCC 33392, 5.531

Haemophilus parainfluenzae T3T1, 5.473

Prevotella melaninogenica ATCC 25845, 5.047

[capnocytophaga gingivalis ATCC 33624, 3.521

Rothia mucilaginosa ATCC 25296, 3.278

Porphyromonas sp. oral taxon 279 F0450, 3.203

Prevotella sp. oral taxon 299 F0039, 3.084

Campylobacter concisus strain 13826, 3.075

Prevotella melaninogenica D18, 2.919

Saliva Aged 180 Days:
% of Contigs aligned to 374 Organisms

Neisseria subflava NJ9703, 11.792

Haemophilus parainfluenzae T3T1,7.383

mophilus parainfluenzae ATCC 33392, 7.074

revotella melaninogenica ATCC 25845, 5.007

Prevotella sp. oral taxon 299 F0039, 3.978

Prevotella melaninogenica D18, 3.560

Streptococcus mitis NCTC 12261, 3.345

Neisseria flavescens NRL30031/H210, 2.285
Streptococcus mitis B6, 2.208

Porphyromonas sp. oral taxon 279 F0450, 2.201
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