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Abstract:  Research on the forensic applications of RNA analysis has increased greatly in 
the last decade. Defined uses of RNA in forensic analysis include the use of RNA to 
identify tissue type, determine sample age, and play a role in molecular autopsies. 
Although recent research has indicated many possible forensic applications of RNA 
analysis, many questions remain concerning the behavior of RNA in degraded and 
limited samples. Specifically, there remains to be a thorough understanding of the 
differing patterns and rates of RNA degradation in post-mortem and deposited samples. 
Thus, choosing suitable RNA markers for evaluating the approximate age of a forensic 
sample can be problematic. Development of a reliable and accurate molecular assay for 
the determination of sample age (time-since deposition of a biological sample and/or 
post-mortem interval) will play a critical role in helping investigators establish the 
timeline of events that surround a crime. The purpose of this research is to evaluate 
mRNA degradation in forensically relevant biological sample types (blood, saliva, 
semen, and vaginal fluid) in order to establish tissue-specific transcriptome (total mRNA) 
degradation profiles and patterns that may correlate with the age of a sample. 
Transcriptome sequencing of mRNA isolated from fresh and aged samples (0 days to 360 
days old) was performed to evaluate the patterns of mRNA degradation in relation to 
sample age. Sequencing data was used to determine the pattern and rate of degradation 
for each individual mRNA transcript in each sample type. Sequencing data indicates that 
the mRNA population and transcript degradation rates appear to be tissue-specific. The 
mRNA degradation profiles obtained from this study can be used to determine the 
transcripts in each sample type that have degradation patterns and rates correlated with 
sample age.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Historically, deoxyribonucleic acid (DNA) analysis has played a dominant role in 

forensic investigations, while use of ribonucleic acid (RNA) analysis has been limited. 

For several decades RNA was thought to be both too labile and too susceptible to 

degradation for use with most forensically relevant samples. However, several studies 

over the past decade have demonstrated that RNA may be much more stable in ex vivo 

samples than was once believed (Fordyce, Kampmann, Doorn, & Gilbert, 2013). With a 

greater number of studies being performed on RNA in a forensic context, researchers 

have begun investigating practical applications of RNA analysis in forensic science. 

Research has demonstrated the possible use of RNA analysis in tissue identification, 

estimation of time since deposition and post mortem interval, and determination of 

disease state, drug use, and mechanism of death (S. Anderson, Howard, Hobbs, & 

Bishop, 2005; M Bauer, 2007; Lindenbergh et al.., 2012; Vennemann & Koppelkamm, 

2010a). While the analysis of DNA can provide investigators with human identity, the 

analysis of RNA from forensic samples may potentially provide a wealth of information 

concerning when and how a crime occurred. 
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A heightened interest in forensic RNA research can in part be attributed to several 

studies that have demonstrated long-term stability of RNA molecules in ex vivo samples. 

Forensically relevant biological samples are often degraded and/or minimally available, 

thus the demonstrated presence of RNA in these sample types was required before further 

forensic applications of RNA analysis could be explored.  In research performed by 

Kohlmeier and Schneider, RNA was successfully isolated and profiled from a 23-year old 

blood stain (Kohlmeier & Schneider, 2012). Similar results were achieved in a study by 

Bauer et al.. with a 15 year old blood stain and in a study by Zubakov et al. with a 16 year 

old blood stain (Martin Bauer, Polzin, & Patzelt, 2003; Zubakov, Kokshoorn, 

Kloosterman, & Kayser, 2009). In addition to blood samples, studies of saliva, semen, 

seminal fluid, vaginal secretion, sweat, and skin demonstrate that RNA can be isolated in 

a variety of biological samples that are several years old (Haas, Muheim, Kratzer, Bär, & 

Maake, 2009; Sakurada, Akutsu, Fukushima, Watanabe, & Yoshino, 2010; Sakurada, 

Akutsu, Watanabe, Fujinami, & Yoshino, 2011; Visser, Zubakov, Ballantyne, & Kayser, 

2011). Studies such as these demonstrate the possibility of isolating and analyzing RNA 

from forensically relevant samples. While past studies have demonstrated the stability of 

RNA in aged biological material, the next line of research is determining how the 

presence of RNA can be used to learn more about a sample.  

Over the past decade, there has been initial research on monitoring RNA 

degradation as a time-clock for sample age estimation. However, past research is limited 

in both the number of RNA markers evaluated and the types of biological samples 

included in analysis. Research evaluating sample age by monitoring RNA degradation 

has mainly focused on ribosomal RNA (rRNA), housekeeping mRNA transcripts, and 
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tissue-specific mRNA transcripts. These studies have utilized both end-point PCR paired 

with capillary electrophoresis and real-time reverse transcriptase PCR (RT qPCR) to 

monitor degradation rates in a few select RNA species. Early work focused on the 

degradation rates of housekeeping mRNA transcripts and rRNA, as these species have a 

known presence in all tissue types. In work performed by Bower et al., analysis of 106 

bloodstains, aged up to 15 years, revealed that the abundance of β-actin and cyclophilin 

transcripts decreased in relation to sample age (Martin Bauer, Gramlich, Polzin, & 

Patzelt, 2003).  Anderson et al.. expanded research on β-actin mRNA degradation by 

demonstrating that the approximate age of a bloodstain can be predicted by determining 

the ratio between β-actin mRNA and 18S rRNA (S. Anderson et al.., 2005). The 18S 

rRNA product is stable and remains at a steady level of abundance in aged stains 

compared to β-actin mRNA, which decreases in abundance over time.  This work 

expanded to include the evaluation of different amplicon sizes of both β-actin mRNA and 

18S rRNA, with older bloodstains having a reduced presence of longer amplicons than 

fresh samples (S. E. Anderson, Hobbs, & Bishop, 2011). Anderson et al.. found that the 

most robust estimation of age came from a multivariate analysis that takes into account 

multiple amplicons (of varying sizes) on multiple genes (S. E. Anderson et al.., 2011). 

While these initial studies of RNA degradation in aged bloodstains have been limited to 

only examining a few select RNA transcripts, the results do indicate a correlation 

between sample age and RNA degradation rates.  

The literature clearly indicates initial promise for using RNA degradation as a 

time-clock for sample age estimation. However, while researchers have identified a few 

possible RNA markers for determining the approximate age of a biological sample, the 
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research is limited and does not include any evaluation of whole transcriptome (total 

RNA in a sample) degradation patterns. The reduced specificity in predicting the actual 

age of a sample in many of these studies may be attributed to the lack of consideration of 

more accurate RNA markers available in the transcriptome of a sample type (S. E. 

Anderson et al.., 2011; Martin Bauer, Gramlich, et al.., 2003; Vass, Fleming, Harbison, 

Curran, & Williams, 2013; Young, Wells, Hobbs, & Bishop, 2013). Up until this point, 

all past studies have worked under the assumption that their selected RNA transcripts 

were accurate enough to measure the age of a sample. However, in total, past studies on 

estimating sample age through RNA degradation have evaluated less than 20 RNA 

species. This limited number of evaluated transcripts is problematic because the 

transcriptome of any given tissue contains thousands of possible RNA targets that may 

have degradation patterns more closely tied to predicting accurate sample age. While past 

studies have chosen their RNA targets based on known transcript availability (i.e. rRNA, 

housekeeping mRNA transcripts, or tissue-specific mRNA transcripts), these targets may 

not be the most accurate predictor of sample age. No study has ever monitored whole 

transcriptome degradation in biological samples over an extended period (several months 

to years). Thus, researchers have no way of choosing the most accurate RNA markers for 

establishing sample age in a specific sample type. 

In addition to the limited number of RNA markers evaluated, past research on 

RNA degradation in deposited biological fluids has focused largely on blood, with no 

major studies having been performed on other forensically relevant sample types (such as 

semen, saliva, and vaginal fluid). Evaluation of biological fluid types other than blood is 

critical since the cell types, cellular environments, and transcriptomes vary considerably 
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with each fluid type. Thus, RNA degradation patterns and rates may likely be different in 

each sample type. If investigators are going to be able to evaluate time since deposition in 

a variety of sample types, it is critical to study RNA degradation patterns and rates in 

forensically relevant biological fluid types other than blood. 

 

Research Purpose 

The main purpose of this study is evaluation of total mRNA degradation in 

deposited biological fluid samples in an effort to identify specific mRNA markers that 

correlate with sample age. This research aims to increase the body of knowledge on how 

mRNA behaves in ex vivo samples (specifically, deposited blood, saliva, vaginal fluid, 

and semen; and human teeth), aged up to one year. All past research using RNA to 

establish the age of a sample (time since deposition or PMI) has relied upon a minimal 

number of housekeeping mRNA transcripts, tissue-specific mRNA transcripts, and 18S 

rRNA. While these studies have demonstrated a clear relationship between RNA 

degradation and sample age, previous studies have not identified RNA markers that are 

accurately correlated with long-term sample age (samples aged up to one year or longer). 

While the RNA markers examined in past studies were presumably chosen because of 

their known presence in biological tissues, these markers are not necessarily the RNA 

species whose abundance most closely correlates with sample age. This study will take a 

different approach than any past study of RNA degradation by evaluating the total 

mRNA of fresh and aged samples through use of next-generation RNA sequencing 

(RNA-seq). The broad knowledge gained from this study on RNA degradation will 
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facilitate selection of specific mRNA markers for establishing approximate sample age in 

each individual sample type. 

 

 

Research Questions  

 Throughout the execution of this study, the following research questions will 

provide guidance and focus to the research. 

1. Is there an observable pattern or profile of total mRNA degradation in 

deposited biological fluid samples (blood, saliva, semen, and vaginal fluid)? 

2. Do different mRNA transcripts degrade at different rates? 

3. Do different biological fluid-types (blood, saliva, semen, and vaginal fluid) 

have different patterns and/or rates of RNA degradation? 

4. Does RNA degradation correlate with approximate sample age for each of the 

sample types? 

 

Hypothesis 

It is established that the transcriptome of a biological sample does degrade once it 

is deposited outside of the body or upon death. Therefore, RNA degradation patterns 

should be observable by sequencing the transcriptomes of biological samples that have 

been aged under known conditions for controlled amounts of time. RNA transcripts have 

varying size and complexity and will most likely have distinct rates of degradation. 

Therefore, different RNA transcripts may produce unique degradation profiles. Each of 

the different fluid types that are tested will contain unique RNA transcripts, thus each 
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sample type will also produce a unique transcriptome degradation profile. If these 

degradation profiles correlate with time since deposition of the biological sample, then 

the degradation profiles of specific identified mRNA transcripts within a sample could 

help predict the approximate age of the sample.   

 

Overview of Methodology 

 The methods utilized in this study aim to provide a comprehensive snapshot of 

mRNA degradation over a specified amount of time (6 months or 1 year) in four 

forensically relevant sample types (blood, semen, saliva, and vaginal fluid). The 

methodology can be broken into four main components.  

 In the first component of this study, a comprehensive literature search was 

performed to identify mRNA markers for blood, semen, saliva, and vaginal fluid 

(Appendix A). Tissue- and fluid-specific gene products are well established in the 

literature, and several mRNA markers for specific sample types have been validated for 

specificity and sensitivity. In this study tissue-specific RNA transcripts are utilized to 

establish sample-specific mRNA degradation patterns. The databases utilized in the 

literature search include Google Scholar, NCBI PubMed, and ScienceDirect. The search 

terms included “RNA markers for tissue identification”, “RNA markers for biological 

fluid identification”, “RNA used to identify tissues and fluids”, “forensic identification of 

fluids and tissues using RNA”, and “mRNA markers for biological tissues and fluids”. 

The identified tissue-specific RNA transcripts will be analyzed in the RNA-seq data to 

determine if tissue-specific RNA degradation patterns are present in RNA markers 

already published for forensic applications. 
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 In the second component of this study, RNA-seq library preparation was 

optimized for low input and degraded biological samples. Protocols for production of 

cDNA and sequencing libraries were evaluated for reduced sequencing bias and 

successful use with minimally available and degraded samples. The selected protocol for 

cDNA generation was the NuGEN Ovation® Kit for cDNA (NuGEN Technologies, San 

Carlos, CA). Following cDNA production, samples were fragmented and libraries were 

constructed using the Ion Plus Fragment Library Kit (Ion Torrent™, Life Technologies, 

Carlsbad, CA). All libraries were constructed using the same protocol, independent of 

sample type.  

 In the third component of this study, deposited body fluid samples were aged and 

mRNA was isolated and sequenced at periodic intervals up to six months (saliva, semen, 

and vaginal fluid) or one year (blood). Biological samples were collected and stored at 

room temperature in the dark. Two replicates of each sample type were analyzed at each 

of the time-course sampling intervals. An RNA/DNA co-isolation procedure was used to 

isolate RNA and cDNA generation and library production were carried out using the 

optimized protocol chosen in the second component of the study. Once constructed, 

libraries underwent template preparation on the OneTouch™ 2 (OT2™) and prepared 

templates were sequenced on the Ion Torrent™ Personal Genome Machine®, referred to 

subsequently as Ion PGM™.  

 In the fourth component of this study, all RNA-seq data were analyzed. All raw 

RNA-seq data sets were trimmed for quality and aligned to the human genome (HG19, 

GrCH37). RNA-seq abundance values were first normalized by calculating the Reads per 

Kilobase per Million (RPKM) value for each gene. RPKM values were then normalized 
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to a standard curve reflecting abundance levels for a set of ERCC RNA external controls 

that were spiked in to each individual RNA sample prior to cDNA synthesis. The 

standard curve prepared from the normalized abundance values of the ERCC spike-in 

controls (Ambion®) was used to quantify mRNA levels of specific templates between 

time points both within and between sample types to determine the presence of mRNA 

degradation profiles and patterns
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CHAPTER II 
 

 

REVIEW OF THE LITERATURE 

 

 

A review of the literature reveals that while there is a large body of knowledge on 

the types, roles, and degradation mechanisms of RNA in an in vivo context, much 

remains to be understood about the ex vivo behavior of RNA. The lack of knowledge 

concerning RNA in ex vivo samples is beginning to be remedied by studies surrounding 

the use of RNA analysis of post-mortem and deposited biological samples.  The results of 

these studies indicate that RNA has the potential to offer a substantial amount of 

information in a forensic context. However, if RNA analysis is going to be fully utilized 

in forensic analysis, it is critical that investigators obtain a more comprehensive 

understanding of the ex vivo behavior of RNA in different sample types. 

Properties of RNA 

RNA is a class of biological macromolecules responsible for a wide variety of 

functions within the mammalian cell. In the human body RNA is responsible for vital 

tasks including, coding, decoding, facilitating translation, monitoring protein expression, 

and catalyzing reaction within the cell. In order for RNA to perform a large variety of 

vital functions, many different types of RNA exist within a single cell. Major classes of
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RNA include messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), 

small nuclear RNA (snRNA), and micro RNA (miRNA).  Each different class of RNA is 

uniquely adapted to perform a specific function within the cell. The major population of 

RNA in any given human cell is rRNA (80%). The 28S, 5S, 5.8S, and 18S rRNAs form 

the two ribosomal subunits that help catalyze protein synthesis during translation. The 

tRNA, which is the next largest population of RNA within a cell (15%), also aids in the 

process of translation by moving the correct amino acids to the ribosome. The mRNA, 

which carries transcribed genetic information, constitutes a small percentage of the 

overall RNA population with in a cell (3-5%). All other classes of RNA, including both 

snRNA and miRNA, constitute a very small percentage of the total RNA population 

(<2%) (Lodish et al.., 2000; Vennemann & Koppelkamm, 2010a). 

RNA molecules, like DNA molecules, are composed of nucleotides. However, 

unlike DNA, RNA is single stranded (mRNA). Additionally, RNA can be highly 

complexed with proteins that help define the structure and function of the molecule 

(rRNA and tRNA). The single stranded nature of RNA lends itself to fast production, 

molecular instability, and rapid degradation, properties that are important to the role of 

RNA as an intermediate molecule. The RNA transcript must be both rapidly produced 

and rapidly degraded in order for the cell to tightly regulate protein production. While the 

single stranded structure of RNA is necessary to maintain a high turnover rate within the 

living cell, this quality makes RNA much less stable and much more vulnerable to 

degradation then DNA. The double stranded structure of DNA lends stability and 

durability to the molecule, qualities that have allowed scientists access to the genetic code 

even in very old samples; whereas RNA can be degraded and possibly absent from aged 
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samples.  While DNA has offered reliability in the lab, the highly unstable and labile 

nature of RNA has caused concern for scientists in the past when considering degraded or 

limited biological samples (Vennemann & Koppelkamm, 2010b). 

 The entire set of RNA molecules expressed within a given cell or tissue type is 

called the transcriptome. While the genome of a given person is conserved throughout 

every cell of the body, a property that has been exploited by investigators for means of 

personal identification, the transcriptome is different in each cell type. Every different 

cell type within the body will express a unique set of RNA molecules, providing for 

different cell types to have a distinct structure and function. Although the entire genome 

is found in every cell of the body, only specific genes get expressed in each different cell 

type. The transcriptome of a given cell type or tissue is fluctuating and is influenced by 

many factors including cell life cycle and cell environment. Additionally, RNA transcript 

levels can vary within a given individual as well as between individuals, a fact that must 

be recognized when performing analysis of RNA samples (Vennemann & Koppelkamm, 

2010a, 2010b). While analysis of the genome can provide information on human identity, 

analysis of the transcriptome can provide deeper biological insight. Due to the unique 

RNA profile of each tissue type and the responsive nature of RNA production, analysis of 

the transcriptome can offer scientists information regarding tissue identity and biological 

conditions (drug use, health status, activity level, etc.) at the point in time when a tissue 

sample is collected (Bauer, 2007).    
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Mechanisms of RNA Degradation: In vivo vs. Ex vivo 

 Mechanisms of in vivo RNA degradation are well elucidated; with the three major 

types of RNA degradation being deadynelation-mediated mRNA decay (the most 

common type of RNA degradation), non-sense mediated decay, and AU-rich element 

mediated mRNA decay. While researchers know that multiple methods of in vivo RNA 

degradation take place, the most common type of mRNA degradation is deadynelation-

mediated decay. During deadynelation-mediated mRNA decay, the poly-A tail is 

gradually decreased by deadenylating nucleases to the point that the PABP1 molecules 

can no longer bind to the e1F4E and e1F4G molecules (bound to the 5’ cap), thus 

exposing the 5’ cap. Once exposed, the 5’ cap is removed by decapping enzymes and the 

unprotected mRNA is degraded by 5’ to 3’ exonucleases and exosomes containing 3’ to 

5’ exonucleases. RNA degradation in the cell is a rapid process, with most RNAs having 

a half-life of several hours (Sharova et al.., 2009). Efficient turn-over of RNA is essential 

to for a cell to be able to adapt to its environment and monitor cellular function.  

 The mechanisms of ex vivo RNA degradation are not as well understood as in vivo 

degradation mechanisms. This is witnessed by the fact that the first paper on the 

mechanism of RNA degradation in deposited and post-mortem samples was not 

published until April, 2013 (Fordyce et al.., 2013). The degradation of RNA in ex vivo 

samples depends largely on sample type and sample condition. RNA degradation in fresh 

post-mortem samples that are not preserved or dried is driven by cellular RNases that 

remain active in moist cellular material. However, in samples that are dried (such as dried 

blood stains) or preserved (such as FFPE tissue samples), Rnases are largely inactivated, 

resulting in RNA degradation that is driven mostly by physical and chemical factors, such 
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as sunlight or pH. Degradation in ex vivo samples is also driven by the molecular 

structure of RNA. Due to the structure of RNA, in particular the 2’OH group, RNA 

molecules are more susceptible to spontaneous hydrolysis than DNA molecules. 

Specifically, the 2’OH group can attack the phosphodiester bond and cleave the backbone 

of RNA. While RNA is more prone to spontaneous hydrolysis than DNA, it is important 

to note that RNA is less prone to depurination or depyrimidination than DNA. This is 

because RNA forms stronger N-glycosidic bonds than DNA. This quality of RNA 

actually increases its ex vivo stability.  

 Although RNA is certainly more prone to degradation than DNA in post-mortem 

or deposited samples, RNA is often times more stable ex vivo then it is in vivo. This 

quality is due to the inactivation of Rnases in many ex vivo samples (such as those that 

have been dried, frozen, or preserved) (Fordyce et al.., 2013). Thus, RNA is much more 

stable in biological samples than was once assumed. However, the ex vivo RNA 

degradation rate is measurable over days and weeks and can be exploited to provide 

information about sample deposition time (S. E. Anderson et al.., 2011).  

 

Stability and Variability of RNA 

In order for RNA to be successfully utilized in a forensic context, critical issues 

including the questioned stability of the transcriptome and variable quantity of RNA in 

degraded or minimally available biological samples must be addressed. Originally, it was 

believed that RNA would be too difficult or even impossible to access in degraded 

samples due to its fragile, single stranded structure. However, research has proven that 

with enhanced molecular materials and methods, accessing RNA in aged, degraded, and 
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minimally available forensic samples is possible. It has also become clear that RNA may 

not be as unstable as was once believed, with several studies showing the successful 

isolation and analysis of RNA in decades old samples. Kohlmeier and Schneider 

successfully isolated and profiled mRNA from a 23-year old blood stain (Kohlmeier & 

Schneider, 2012). Bauer, et al. and Zubakov, et al. both demonstrated successful isolation 

of RNA from 15 and 16 year old blood stains, respectively. (Martin Bauer & Patzelt, 

2008; Zubakov et al.., 2009). Similar results have been achieved with other aged 

biological sample types, including; saliva, semen, seminal fluid, vaginal secretion, sweat. 

(Haas, Muheim, et al.., 2009; Sakurada et al.., 2010, 2011; Visser et al.., 2011). Studies 

such as these have laid the ground work use of RNA analysis in forensic science, by 

demonstrating that RNA is much more stable in aged samples than was once believed.  

Aside from the presence of RNA in aged and degraded samples, a second issue 

that must be considered is the known variability of RNA expression levels. The 

expression levels of RNA transcripts are not constant; they are known to vary between 

tissues within the same individual and between donors. The pool of mRNA in a given 

tissue is labile, reactive, and fluctuating due to constant environmental and biological 

influence. Multiple factors are known to effect RNA expression, including, gender, age, 

health status, weight, activity level, medications, amount of water intake, stress level, and 

drug and alcohol use, among several other factors (Vennemann & Koppelkamm, 2010b). 

A study performed by Koppelkamm, et al.. showed that RNA integrity and degradation 

pattern fluctuate depending on tissue type, cause of death, duration of agony, and body 

mass index (BMI) of the donor. For example, brain tissue appears to have reduced RNA 

integrity compared to cardiac and skeletal muscle and RNA from donors with an 
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increased BMI (>25) has a lower integrity then RNA isolated from normal weight donors 

(Koppelkamm, Vennemann, Lutz-Bonengel, Fracasso, & Vennemann, 2011). In order to 

lessen the effects of transcriptome variability between tissues and between donors, 

internal standards should be used to normalize data and degradation profiles should be 

obtained for individual RNA transcripts that are included in analysis. While sample to 

sample transcriptome variation will never be completely eliminated, by recognizing that 

variability does exist, steps can be taken to ensure that correct conclusions are drawn 

from the data produced. 

 

The Role of RNA in Forensic Science 

Over the past several decades the majority of forensic science research has 

focused on the use of DNA, as witnessed by the fact that up until 1994 there had only 

been two articles published that focused on the forensic application of RNA analysis 

(Oehmichen & Zilles, 1984; Phang, Shi, Chia, & Ong, 1994). In the past decade, research 

focusing on the use of RNA in forensic science has heightened due to improved 

technology to better support RNA analysis and an increased understanding that RNA is 

more stable in biologic samples than once believed (Vennemann & Koppelkamm, 

2010a). With these improvements, researchers have begun to consider RNA analysis as a 

possible forensic investigative tool, used to enhance the knowledge already obtainable 

through traditional DNA analysis.  

While the human genome can offer valuable information concerning human 

identification, DNA analysis does not offer insight into the events that surround a crime.  

Expanding forensic molecular analysis to include RNA will increase the amount of 
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information that can be gained from each individual biological sample. Some of the most 

abundant research on the applications of RNA in forensic science has focused on the 

identification of biomarkers for sample identification. Several investigators have focused 

their research efforts on the unique mRNA profile present in each biological sample type. 

The unique profile of both mRNA and miRNA in each tissue and fluid allows 

investigators to specifically identify a biological sample based on its RNA expression 

pattern (Liang, Ridzon, Wong, & Chen, 2007; Lindenbergh et al.., 2012; Park et al.., 

2012; Richard et al.., 2012; Zubakov et al.., 2010). While tissue and fluid identify can be 

established with RNA biomarkers, research on the use of RNA biomarkers has recently 

expanded to provide a wider amount of information about a given biological sample.  

The responsive nature of the transcriptome to biological conditions allows 

researchers to determine many aspects of the biological state of a sample upon deposition 

or death. By analyzing the RNA expression profile of a sample, researchers obtain a 

snapshot of the biological condition of the donor. For example, analyzing the RNA 

expression patterns of a tissue sample can provide researchers with information 

concerning the biological status of that tissue. In a study by Kagawa, et al., researchers 

identified seven genes that had differential expression patterns throughout the process of 

wound healing. By measuring the expression of these transcripts, researchers could 

successfully determine the approximate age of a wound (Kagawa et al.., 2009).  

Molecular autopsies can also be performed through assessing the expression pattern of 

gene products at time of death (Vennemann & Koppelkamm, 2010a). Studies have 

indicated gene products that are viable markers for methamphetamine related deaths, 

hypoxia related deaths, and mechanical asphyxiation (Ikematsu, Takahashi, Kondo, 
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Tsuda, & Nakasono, 2008; Matsuo, Ikematsu, & Nakasono, 2009; Zhao et al.., 2008). In 

one study by Ikematsu et al., researchers were able to successfully identify four candidate 

biomarkers of strangulation (Ikematsu, Tsuda, & Nakasono, 2006). Although much more 

work is needed in the field of molecular autopsies, recent research does indicate that 

monitoring RNA expression in post-mortem tissue may assist analysts in determining 

cause of death. RNA analysis as a whole has the potential to provide investigators with 

additional information about a biological sample that will complement information that is 

already available through traditional molecular analysis, offering insight on questions that 

can simply not be answered by DNA. However, successful application of any biomarker 

will require having a thorough understanding of mRNA in an ex vivo context is critical to 

insure proper interpretation of RNA analysis results.  

 

Identification of Body Fluids and Tissues 

Body fluids and tissues, including blood, semen, seminal fluid, vaginal secretion, 

saliva, and skin are regularly encountered in forensic casework. Often times, it is critical 

to an investigation to positively identify what type of tissue(s) and/or fluid(s) DNA was 

isolated from. Serological techniques are regularly employed in crime labs to identify 

what type of biological material is present on forensic samples. Current presumptive tests 

are most frequently enzymatic or immunologically based, and are at risk for inaccuracy. 

Current presumptive testing methods also lack the ability to identify all tissues and fluids 

in a mixed sample if certain fluid or tissue types are present in only minor quantities. 

Common presumptive tests for blood include the Kastle–Meyer phenolphthalein test, 

which relies on the peroxidase-like activity of hemoglobin and can give false-positive test 
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results with other peroxidases commonly found in plant material. Other confirmatory 

tests, such as the HemaTrace® Card, rely on the detection of hemoglobin in blood and 

therefore cannot determine if the source of the blood is menstrual or venous (Fleming & 

Harbison, 2010). Most presumptive tests for saliva rely on the detection of salivary 

amylase, which can be present in variable amounts in donors, thus sensitivity level and 

false-negatives are consistent issues. Presumptive tests for semen often rely on the 

detection of Prostate Specific Antigen (PSA), which can also be detected in male urine.  

Current presumptive testing methods require a separate test for the identification of each 

different body fluid (blood, semen, and saliva), leading to increased sample consumption 

and analysis time.  Presumptive testing methods are also limited to the type of biological 

sample that they can test for.  For example, there is no commonly used presumptive test 

for vaginal secretions or skin, both of which are considered to be common biological 

samples in forensic casework (Haas, Klesser, Maake, Bär, & Kratzer, 2009). Due to the 

risk of inaccuracy, high levels of sample consumption, and lack of comprehensive tests 

for fluid and tissue identification, researchers have sought out the use of molecular 

markers for sample identification.     

 The presence of a unique transcriptome in each body tissue and fluid allows 

biological samples to be identified based on the presence of specific mRNA and miRNA 

products. By co-isolating RNA and DNA, sample identification and human identity 

testing can be streamlined into a single molecular work flow. Additionally, with the 

creation of molecular panels of RNA markers, a single assay could potentially identify 

several different kinds of tissues and fluids in both single and mixed samples. 

Researchers have identified mRNA and miRNA markers for every different kind of 
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forensically common tissue and fluid, including venous blood, menstrual blood, semen, 

seminal fluid, vaginal secretion, saliva, and skin (Appendix A).  Many of these markers 

have been evaluated for specificity and sensitivity and optimized for identification of 

forensic samples. In this study, tissue-specific RNA transcripts will be monitored in aged 

fluid samples to assess tissue-specific RNA degradation patterns and to determine how 

published RNA biomarkers hold up in aged samples.  

 

Evaluation of RNA Degradation  

While RNA can be successfully obtained from aged and minimally available 

biological samples, the isolated RNA is often degraded due to the inherent instability of 

the transcriptome. Unlike DNA, which can remain stable in biological samples for 

decades, RNA begins to degrade almost immediately after sample deposition or death 

(Martin Bauer, Polzin, et al.., 2003). Due to the immediate onset of degradation, changes 

in the transcriptome of a sample can be observed minutes, hours, days, months, and years 

after a biological sample is deposited or death occurs. By monitoring specific RNA 

products in biological samples that are aged in a controlled environment, degradation 

profiles can be developed to help analysts establish a timeline of events and approximate 

sample age (Bauer, Polzin, & Patzelt, 2003). 

Assessment of the state of RNA degradation in a sample can help determine age 

of a biological sample, order of sample deposition, and post-mortem interval (PMI). In 

research performed by Anderson, et al., blood stains were aged under controlled 

conditions for 150 days. The results of this research demonstrate a linear relationship 

between sample age and the ratio of two RNA products, β-actin mRNA and 18S rRNA 
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(S. E. Anderson et al.., 2011; S. Anderson et al.., 2005). A separate study by Bauer, et al. 

looked at blood stains that had been stored for up to 15 years and found a correlation 

between sample age and capillary electrophoretic peak area quotients of two 

housekeeping gene products, β-actin and cyclophilin (M. Bauer, Polzin, & Patzelt, 2003). 

While both of these methods need refining before being employed in a crime lab, they 

provide initial evidence for a correlation between RNA degradation profiles and sample 

age. In addition to determining the time since deposition of a sample, monitoring RNA 

degradation of multiple samples from the same crime scene can provide an investigator 

with an order of sample deposition. If an analyst can determine the approximate age of 

multiple samples, an order of deposition can be established (S. E. Anderson et al.., 2011; 

Martin Bauer, Polzin, et al.., 2003).  Past studies have provided solid evidence that a 

correlation does exist between the state of RNA degradation and sample age. However, 

more research is needed to look at more biological sample types and to further identify 

RNA markers with degradation patterns that most closely correlate with sample age.  

Previous studies on the correlation between RNA degradation and PMI have not 

been as conclusive as studies that have examined time-since deposition of bloodstains. 

Some studies have found that RNA degradation does correlate with the PMI(Martin 

Bauer, Gramlich, et al.., 2003; Catts et al.., 2005; Inoue, Kimura, & Tuji, 2002; Kimura, 

Ishida, Hayashi, Nosaka, & Kondo, 2011), while other studies show no correlation 

(Heinrich, Matt, Lutz-Bonengel, & Schmidt, 2007; Partemi et al.., 2010; Preece & Cairns, 

2003). Specifically, one study used qPCR analysis of 11 transcripts (both housekeeping 

and tissue-specific) and found a correlation between RNA degradation and the PMI in 

tissue from the femoral quadriceps and liver, but found no correlation in skin, spleen, 
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pancreas, stomach, and lung tissue (Sampaio-Silva, Magalhães, Carvalho, Dinis-Oliveira, 

& Silvestre, 2013).  The studies that found no correlation used a variety of tissues 

including, brain, heart, muscle, liver, kidney, and spleen (Heinrich et al.., 2007; Partemi 

et al.., 2010; Preece & Cairns, 2003). While there does not appear to be a distinct trend in 

which tissues do show a correlation and which do not, the stability of RNA does appear 

to vary by tissue type(Heinrich et al.., 2007; Inoue et al.., 2002). Most of the studies that 

have evaluated RNA degradation as a means for estimating PMI have analyzed tissues 

for a very short time after death, ranging from 1 to 11 hours with the shortest study and 7 

days with one of the longest (Inoue et al.., 2002; Sampaio-Silva et al.., 2013). 

While most of the studies that evaluate RNA degradation in relation to PMI 

examine samples aged for a short time (less than 7 days), there has been initial research 

done on RNA stability in tissues over an extended PMI (up to several months). Studies by 

Vass et al. and Young et al. examine the stability of RNA over 120 days and 140 days, 

respectively (Vass et al.., 2013; Young et al.., 2013). The results of these studies support 

the possible use of RNA degradation as an estimator of PMI over an extended time. 

Young et al. performed the only study to date on the behavior of RNA in post-mortem 

teeth. Researchers buried eight pig heads in the ground, routinely sampled teeth over 140 

days and performed qPCR to analyze the abundance of β-actin mRNA (Young et al.., 

2013). The PCR assay targeted two separate, non-overlapping regions of the β-actin 

mRNA transcript, one small amplicon and one large amplicon.  Investigators analyzed 

the differential expression of these segments for 140 days postmortem.  However, the 

large amplicon dropped below the level of detection at 84 days post-mortem.  With 

increasing PMI, larger amplicons generally degrade faster than smaller amplicons, due to 
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the random nature of RNA degradation.  On day 21, a sudden increase in the degradation 

of the small amplicon and a slowing in the degradation of the large amplicon interrupt the 

observed linear degradation pattern otherwise seen throughout the study.  Thus, this 

particular assay provides an unreliable estimate of the PMI between days 14 and 28 

(Young et al.., 2013).  Despite this limitation, the concept of estimating the PMI using 

RNA degradation within dental pulp still has potential. Vass et al.. performed a similar 

study, examining nails and rib bones instead of teeth (Vass et al.., 2013). Investigators 

developed a multiplex PCR assay that evaluates degradation of keratin mRNA, 18S 

rRNA, and keratin DNA to monitor nucleic acid degradation in post-mortem nail and 

bone samples up to 120 days. Researchers did observe mRNA degradation in the aged 

nail samples with the larger keratin mRNA amplicon disappearing faster in the older 

samples than the smaller mRNA amplicon. However, the observed correlation between 

mRNA degradation and PMI was only slight, with an R2 value of 0.21 for the longest 

keratin mRNA amplicon (i.e. only 21% of the variation in the data is attributable to age 

of the sample) (Vass et al.., 2013). This study also revealed that environment does have 

an impact on the rate of RNA degradation, with the larger amplicons disappearing at a 

faster rate in nail samples stored in soil and water as opposed to those stored in the air 

(Vass et al.., 2013). While these studies do indicate a possible use of RNA degradation as 

a predictor of PMI, more research is clearly needed to find the most accurate RNA targets 

for establishing both short and long-term sample age estimation.   

 While previous studies provide initial evidence for a direct correlation between 

RNA degradation and sample age, much of the research has focused on only a few 

sample types (blood being the major source for studies of deposited samples). 
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Additionally, the previous studies have been limited to only examining a few RNA 

markers, mainly focusing on housekeeping mRNA transcripts and 18S rRNA. 

Furthermore, no research has been performed to confirm that RNA degradation occurs at 

the same rate and patterns across multiple sample types. This research aims to provide a 

more in-depth study of RNA degradation, taking into account full transcriptome 

degradation in a variety of biological fluid types (blood, saliva, semen, and vaginal fluid) 

to identify the mRNA transcripts that have degradation patterns most closely related to 

sample age.  
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CHAPTER III 
 

 

RNA-SEQ OF AGED BIOLOGICAL SAMPLES ON A NEXT-GENERATION 

SEQUENCING PLATFORM 

 

 

Introduction 

 DNA analysis is routinely applied in both forensic and medical testing to provide 

information on human identify and genetic disease. Regular DNA testing performed by 

both forensic and medical personnel today includes fragment analysis (endpoint PCR 

paired with capillary electrophoresis, qPCR), targeted DNA sequencing, exome 

sequencing, and whole genome sequencing. While these technologies help investigators 

gain a wealth of genetic information, the knowledge obtainable through DNA testing can 

be bolstered by additional evaluation of the RNA present in a sample (Raghavachari et 

al.., 2012). The value of RNA analysis lies in the reactive and labile nature of the human 

transcriptome (total RNA in a sample) as opposed to the human genome. The genome of 

an individual is constant throughout all tissue and cell types, while the transcriptome is 

variable and unique (Vennemann & Koppelkamm, 2010a). No two cell types or tissues 
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within an individual will have the same transcriptome. Additionally, no two individuals 

are likely to have the exact same transcriptome because transcript expression levels 

fluctuate based on differing biological conditions (such as active disease state, drug use, 

activity level, trauma) (M Bauer, 2007). While the genome is constant, the transcriptome 

changes based on what proteins are biologically necessary in each cell and tissue type at 

any given time. It is this unique and labile nature of RNA that can be exploited to learn 

more about a sample. However, routine use of RNA analysis in forensic and medical 

investigations requires an in-depth knowledge of the transcriptome profile of different 

biological fluids and tissues.  

 Over the past several decades in the fields of molecular biology and genetics, a 

huge emphasis has been placed on sequencing the complete human genome. The first 

release of the sequenced human genome in 2001 has been followed by over a decade of 

re-sequencing and deep sequencing of the human genome, which still remains to be 100 

percent complete. However, while thousands of human genomes have been sequenced in 

the years since the original human genome sequence was released; full human 

transcriptomes have not received nearly as much attention (Pertea, 2012). RNA analysis 

presents a challenge not encountered with the human genome in that there are hundreds 

of different transcriptomes in every individual. The human body is composed of four 

major tissue types, 13 organ systems, and 200 different kinds of cells, each with a unique 

transcriptome. Additionally, because RNA expression is reactive to biological conditions, 

transcriptomes can be variable between individuals (Pertea, 2012). Obtaining 

representative total RNA sequence data for every cell, tissue, and fluid type is a massive 

undertaking, still being pursued by research groups all over the world. While challenging 
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to obtain, full transcriptome data is a critical first step for investigators who are trying to 

identify significant RNA biomarkers for forensic or medical application.  

Representative full transcriptome sequencing data are available for a large number 

of fresh biological fluids and tissues. Projects such as the Illumina Human BodyMap 

provide databases of full transcriptome next-generation sequence (RNA-seq) of a variety 

of human tissue types. Specifically, the Human BodyMap provides RNA-seq data for 16 

human tissues (Thibaut, n.d.). While databases such as this provide an excellent starting 

point for full transcriptome data, they are far from comprehensive. Notably missing from 

RNA-seq datasets are transcriptomes for biological samples most commonly encountered 

in forensic casework. Blood, for instance, is regularly included in transcriptome 

databases, while semen, saliva, and vaginal fluid are noticeably absent. The lack of 

information concerning forensically relevant body fluids is made even more evident with 

a simple Pubmed search. Searching for articles on transcriptome sequencing reveals the 

following number of hits; 107 articles for transcriptome sequence of blood, ten articles 

for transcriptome sequence of semen, five articles for transcriptome sequence of saliva, 

and only one article for full transcriptome sequence of vaginal fluid. These results reveal 

a clear gap of knowledge concerning the population of RNA in forensically relevant 

sample types.  

Increasing the amount of RNA-seq data for forensically relevant sample types 

(blood, semen, vaginal fluid, and saliva) is imperative if RNA analysis is going to be 

fully utilized in forensic analysis. Having representative total RNA-seq data for these 

sample types will allow investigators to choose the most applicable biomarkers for 

benefitting forensic investigation. Currently, researchers have identified forensically-
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relevant RNA biomarkers for sample identity, time-since deposition/PMI estimation, 

disease state, and cause of death (molecular autopsy) (S. E. Anderson et al.., 2011; M 

Bauer, 2007; Vennemann & Koppelkamm, 2010b). Most of these biomarkers have been 

identified through microarray analysis or literature search paired with conformation with 

endpoint PCR and capillary electrophoresis or RT-qPCR. While these techniques are 

appropriate for evaluating a few select RNA targets, they provide a limited picture of the 

RNA present in a sample. RNA-seq data for forensically relevant sample types would 

provide investigators with a snapshot of most or all available mRNA species in a given 

sample type, allowing for the selection of more accurate, sensitive, and specific 

biomarkers for use with forensic investigation.  

RNA-seq is most optimally performed on abundantly available, non-degraded 

RNA samples (Adiconis et al.., 2013). Unfortunately, samples that are usually of forensic 

relevance are often times low abundance and degraded. Thus, if RNA-seq is to be 

employed in forensic research, it is critical that sequencing methodologies be optimized 

for low input, low quality samples. We recently performed RNA sequencing of total 

mRNA isolated from fresh and aged biological fluid samples (blood, semen, saliva, and 

vaginal fluid) in order to monitor transcript degradation rates and patterns. This 

sequencing was performed in an effort to identify biomarkers for estimating sample age 

(RNA transcripts that have degradation rates that tightly correlate with sample age). In 

order to perform this study, an RNA-seq method for use with low input and degraded 

biological samples was developed. The selected methodology and representative RNA-

seq results from aged samples are presented here. 
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Materials and Methods 

Description of Samples  

All sample collection, storage, and preparation methods described in this 

manuscript adhere to the OSU-CHS IRB approved protocol dated May 13, 2013 (See 

Appendix, “Documentation of IRB”). 

 This study utilized deposited human biological fluid samples, including, venous 

blood, saliva, vaginal fluid, and semen. All biological fluids were collected from adults, 

over the age of 18 with a college level education in science, who provided informed 

consent to having their samples sequenced. Each of the biological fluids (blood, saliva, 

vaginal fluid, and semen) was collected from study participants in a specific way. For 

blood collection, about 10 cc’s of blood was drawn from the participant’s arm. For saliva 

collection, the participant deposited their sample into a sterile tube provided by the 

investigator. Semen was obtained by providing the participant with a sterile container for 

deposition of the sample. For vaginal fluid, the participant received sterile swabs from the 

investigator for collection of the sample. Upon collection, samples were provided a 10-

digit identification code that remained with the sample throughout the sample storage and 

analysis process. The 10-digit identification number consisted of the date of collection 

(mmddyy), a one letter symbol for the type of fluid or tissue the sample consists of 

(B=blood, S=saliva, E=semen, V=vaginal secretion), and the day (000-360) on which 

RNA was to be isolated from the sample. The date of collection is important to establish 

the real age of the sample, the one letter symbol is important to identify the true tissue or 

fluid type, and the day on which the sample RNA will be isolated is important to keep 
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track of time-course sampling. An example code for male blood that is collected on June 

1st, 2013 and sampled after being aged for 30 days is 060113M030.  

  

Sample Storage and Aging 

Once collected and labeled, all samples were brought immediately to the lab for 

RNA extraction or storage under controlled and secure conditions (stored in the dark, in a 

closed lab cupboard). Blood, saliva, and semen were deposited onto paper cards in 50 µL 

aliquots and allowed to air dry for storage. Vaginal fluid was stored in the form that it 

was collected (cotton swabs).  

Blood samples were aged for up to 360 days. RNA and DNA were isolated and 

sequenced at 0 (fresh), 30, 60, 120, 180, 270, and 360 days post-deposition. Saliva, 

vaginal fluid, and semen samples were aged for up to 180 days. RNA and DNA were 

isolated and sequenced at 0 (fresh), 60, 120, and 180 post-deposition. All samples were 

analyzed in duplicate at each sampling time-point. The sample aging and analysis time-

course is presented in Table 1. Only blood had periodic sequencing out to 360 days, as 

opposed to 180 days, due to the expense of sequencing each sample. Evaluating the 

whole transcriptome of only one sample type out to a full 360 days aided in keeping costs 

controlled, while still evaluating total mRNA degradation over an extended time. Blood 

was chosen for extended aging due to its common presence in forensic casework. All 

samples were analyzed in duplicate, thus two RNA isolations were performed for every 

sample type at every time point.  
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Table 1. Aging and sampling time-course for biological samples. An “X” represents a 
sample that was extracted and sequenced. 

 

Age (Days) Blood Saliva Vaginal Fluid Semen 

0 XX XX XX XX 

30 XX    

60 XX XX XX XX 

90     

120 XX XX XX XX 

150     

180 XX XX XX XX 

270 XX    

360 XX    

 

 

Co-Isolation of RNA and DNA 

 After aging for the assigned amount of time, RNA was isolated from each of the 

sample types in duplicate. RNA isolation was performed under sterile conditions with all 

utilized equipment being treated with RNaseZap® (Life Technologies, Carlsbad, CA) 

prior to each extraction. The methodology utilized for nucleic acid extraction (TRI 

Reagent®, Sigma Aldrich) allows for the possible co-isolation of RNA and DNA. 

Isolation of both RNA and DNA is important for the feasibility of downstream forensic 

human identification using DNA.  

For biological fluid stains including, blood, semen, and saliva, a cutting 

approximately 1 cm2 in size was taken and placed in a 1.5 mL Eppendorf Tube® 
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(Eppendorf, Hauppauge, NY). For vaginal fluid swabs, the cotton swab was cut off of its 

stick and placed in a 1.5 mL Eppendorf Tube®.  

RNA and DNA isolation was performed using TRI Reagent® (Sigma Aldrich, St. 

Louis, MO), following manufactures recommended protocol. After isolation with TRI 

Reagent®, the aqueous phase (containing the RNA) and the cloudy, middle phase 

(containing the DNA) of each sample were placed in two separate 1.5 mL tubes for 

nucleic acid clean-up. RNA clean-up was performed utilizing Zymo Research RNA 

Clean and Concentrator™ kit following manufacturer’s instructions (Zymo Research, 

Irvine, CA). DNase Digestion was performed on each RNA sample using TURBO™ 

Dnase (Life Technologies, Carlsbad, CA) and following the manufacturers provided 

protocol. DNA clean-up was performed utilizing Zymo Research DNA Clean and 

Concentrator™ kit following manufacturer’s instructions (Irvine, CA). Once eluted, all 

samples were quantitated using a Nanodrop ND-1000 microspectrophotometer (Thermo 

Scientific, Wilmington, DE). 

  

Generation of cDNA 

For library preparation, 20 ng of total RNA from each sample was mixed with 4 

µl of ERCC spike-in mix1 at a dilution of 1:10,000 (Ambion®). The NuGEN Ovation® 

RNA-seq System v2 (NuGEN Technologies, San Carlos, CA) was used to generate 

cDNA from each total RNA sample containing the ERCC spike-in mix, following the 

manufactures instructions. Upon purification, each cDNA sample was checked for quality 

and quantity using the Nanodrop ND-1000 microspectrophotometer (Thermo Scientific, 

Wilmington, DE).  
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Fragment Library Preparation 

All cDNA samples were fragmented with the Bioruptor® UCD 200 (Diagenode, 

Denville, NJ) using a sonication time of 30 minutes to an average fragment size of 200 

bp. Once fragmented, cDNA libraries were generated using the Ion Plus Fragment 

Library Kit following the manufacturer’s instructions (Life Technologies, Carlsbad, CA). 

Replicates for each sample type at each time point were barcoded using the Ion Xpress™ 

Barcode Adapters (Life Technologies, Carlsbad, CA) so they could be analyzed on the 

same Ion 318™v2 chip in downstream sequencing.  Generated libraries were quantitated 

using the Ion Library Quantitation Kit following manufacturer’s instructions (Life 

Technologies, Carlsbad, CA).   

 

Template Preparation 

 After libraries were constructed and quantitated, template preparation was 

performed with each library. Template preparation is the process of amplifying individual 

RNA fragments onto Ion Sphere™ Particles (ISPs) and enriching the sample for 

template-positive ISPs that can be sequenced on the Ion Torrent PGM™. Template 

preparation of the cDNA libraries was performed using the OneTouch™ 2 (OT2) 

instrument and the Ion PGM™ Template OT2 200 kit, following the manufacturer’s 

instructions (Life Technologies, Carlsbad, CA). The sample is enriched for template-

positive ISPs with polyclonal and template-negative ISPs being washed away. The 

template-positive ISPs provide the sequencing template when loaded onto the Ion Torrent 

PGM™. The process for template preparation and enrichment was the same for all 

libraries created in this study, regardless of sample type. 
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 Sequencing of the Prepared Samples 

Sequencing of the cDNA library fragments was performed on the Ion Torrent 

PGM™, utilizing the Ion PGM™ Sequencing 200 kit v2 and following manufacturer’s 

instructions (Life Technologies, Carlsbad, CA). The Ion PGM™ relies on semiconductor 

chip technology to sequence nucleic acid samples in a massively-parallel way. Each 

sample of template-positive, enriched ISPs was combined with buffer, primers, and 

enzyme and the total reaction was loaded onto an Ion 318™ v2Chip. The sequencing chip 

is composed of three layers; the top layer of micro-machined wells is where individual 

ISPs sit during sequencing (with each well large enough to hold a single ISP), the middle 

ion sensitive layer, and the bottom layer which consists of proprietary ion sensors. During 

sequencing, the Ion Chip is sequentially flooded with dNTPs that flow over individual 

ISPs that are deposited in the micro-machined wells. For this study, we will utilize Ion 

318™ v2 chips (Life Technologies, Carlsbad, CA). The Ion 318™ v2 chip has the largest 

capacity for sequencing on the Ion PGM™. The large capacity is required for 

transcriptome sequencing. The sequencing methodology was the same for every library 

created in this study, regardless of sample type. 

 

Analysis of RNA-Seq Data 

All raw sequencing reads for a given sample were aligned to the human reference 

genome, Hg19 (GRCh38). After alignment, every sample had RNA expression levels 

calculated in the form of reads per kilobase per million (RPKM) using the following 

equation.   
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RPKM values normalize expression levels by taking into account the total number of 

sequencing reads in a run (N), the exon length for a gene (L), and the number of 

sequencing reads that map to that gene (C). RPKM values are a more accurate assessment 

of expression level than raw sequencing reads as they adjust for fluctuating factors such 

as the total number of reads in a given run and the different sizes of genes in the genome 

(Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008). Alignment and RPKM 

calculations were performed with CLC Bio Genomics Workbench software (Cambridge, 

MA).    

After initial RPKM values are calculated, the RPKM values were normalized a 

second time to the ERCC spike-in standards (Ambion®), which form a standard curve 

(input quantity vs. RPKM). The final normalized value for each transcript is expressed in 

molecules of RNA. This molecule value represents the abundance of each RNA transcript 

that is present in a given tissue’s transcriptome.  

 

Results and Discussion 

Utilization of an External Spike-in Standard  

 Quality assurance measures are critical when comparing RNA sequencing data in 

a number of sample types over a number of time-points. Variation in RNA expression 

patterns as measured by RNA-seq analysis can be attributed to differences in a number of 

factors, including the starting quantity of RNA, quality of RNA, techniques or 

instrumentation used, and the person performing the analysis. In order to perform 

comparison of sequence data generated from multiple samples, a control was 

incorporated into the RNA-seq procedure to normalize procedural variations and provide 
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a common baseline for data analysis. The External RNA Controls Consortium (ERCC) 

hosted by the National Institute of Standards and Technology (NIST) has created a set of 

internal RNA spike-in standards to help control for variation that is inherently present in 

RNA expression studies (Jiang et al.., 2011). The spike-in controls are a series of 

unlabeled, polyadenylated transcripts that are present in solution in varying, known molar 

concentrations. The ERCC control RNA (Ambion®) can be spiked in to RNA samples 

and be carried through the generation of cDNA, library building, template preparation, 

and sequencing analysis with RNA extracted from body fluid samples. The ERCC 

control RNA can be utilized to normalize comparisons of sequence results both within a 

single sample and between samples. The inclusion of the control RNA in every sample 

that was analyzed for this project allowed for the confident comparison of expression 

patterns in different samples. ERCC RNA Spike-in control mix was added to every RNA 

sample before conversion to cDNA to help ensure correct comparison and interpretation 

of downstream sequencing results. 

 

Design of an RNA-seq Library Construction Protocol  

The first step in sequencing RNA is the preparation of a sequencing library. The 

library preparation begins with RNA conversion to cDNA. The RNA that is to be 

converted into cDNA and sequenced must be free of rRNA. Removal of rRNA from the 

sample ensures that successful sequencing of the much less abundant mRNA population 

can be achieved. Elimination of rRNA from the total RNA sample is traditionally 

accomplished by either rRNA depletion or poly-A selection. In addition to elimination of 

rRNA and generation of cDNA, the library preparation methodology also includes 
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subsequent fragmentation of the cDNA into pieces of a known size (for this study, 200 bp 

libraries were created) by mechanical or enzymatic shearing. Following fragmentation, 

the cDNA fragments have adapter oligonucleotides ligated onto both ends. The adapter 

sequences are necessary for the library to undergo template preparation and sequencing. 

The sample is then size selected to insure that the final library contains only cDNA 

fragments of one consistent size (200 bp). While this described process includes the basic 

steps that must be present in every cDNA library preparation, there are multiple methods 

of pursuing each step and creating the final cDNA library. 

For this study we evaluated two different library building methods that are 

compatible with the Ion Torrent™ System. Methods were compared on the basis of RNA 

input requirement, elimination of rRNA, sequencing bias, and time requirement. An 

optimized RNA library preparation method was imperative to the success of downstream 

sequencing and analysis of degraded samples, thus selection of cDNA conversion and 

library preparation methods was critical. Table 2 presents a comparison of the evaluated 

cDNA conversion and fragment library preparation methods.  
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Table 2. Comparison of cDNA Generation and Library Preparation Methods 
 

 Kit 
 Input 

Requirement 
rRNA 

Depletion 
Poly-A 

Selection 

Sequencing 
Bias 

Introduced 
Time 

cD
N

A
 G

en
er

at
io

n 

Ion™ 
Total 

RNA-seq 
Kit v2 

1 ng – 500 ng 
(Poly-A Selected 

or rRNA 
Depleted) 

Yes 
(or poly-A 
selection) 

Yes 
(or rRNA 
Depletion) 

If poly-A 
selection: 

3’ bias 
6 hrs 

NuGEN 
Ovation
® RNA-

Seq 
System 

v2 

500 pg – 100 ng 
(Total RNA) 

No 
(SPIA 

Amplification) 

No 
(SPIA 

Amplification) 
No 3’ Bias 4.5 hrs 

Li
br

ar
y 

P
re

pa
ra

tio
n Ion™ 

Plus 
Fragment 
Library 

Prep 

100 ng or 1 µg N/A N/A N/A 2.5 hrs 

 

The NuGEN Ovation® RNA-seq System for conversion of whole RNA into 

cDNA was found to consistently produce >5 µg of cDNA from an input of 20 ng of RNA 

(both from fresh samples and samples that had been aged up to one year). In addition to 

generating consistent amounts of cDNA from both fresh and aged RNA samples, the 

NuGEN Ovation® kit was also desirable because it required whole RNA for input, rather 

than rRNA depleted or poly-A selected samples. When dealing with degraded RNA 

samples, poly-A selection and rRNA depletion procedures are not ideal. Poly-A selection 

introduces distinct bias into a sample by only converting RNA fragments that contain a 

poly-A tail to cDNA. It is likely that in a degraded sample of RNA, many of the mRNA 

fragments will no longer be attached to a poly-A tail, thus during cDNA conversion much 

of the sample would be lost. Ribosomal RNA depletion is known to introduce 

degradation into an RNA sample. In a sample population that is already degraded due to 
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age, we did not want to further subject our samples to degradation via rRNA depletion. 

While the Ion™ Total RNA-Seq Kit v2 requires rRNA depletion or poly-A selection of 

RNA samples, the NuGEN Ovation® kit does not. Rather, the NuGEN Ovation® kit 

utilizes a SPIA™ amplification process to deplete the total RNA sample of rRNA. 

SPIA™ Amplification relies on a mix or poly-A primers and not-so-random random 

primers to selectively amplify mRNA in the cDNA conversion process, therefore 

depleting the sample of rRNA. The NuGEN Ovation® kit’s low starting requirement of 

total RNA paired with the lack of an rRNA depletion or poly-A selection step made it 

ideal for use with the aged samples required in this study.  

For library preparation, Life Technologies (Carlsbad, CA) Ion™ Plus gDNA 

Fragment Library kit, offered the most applicability for this study. The Ion™ Plus kit can 

be combined with the NuGEN Ovation® kit (our preferred way of producing cDNA) and 

can be utilized for production of cDNA or gDNA libraries, allowing our lab to streamline 

all library production into one workflow.  

 

Optimization of a Fragmentation Protocol 

Optimization of a 200 bp fragmentation protocol on the Bioruptor® UCD200 was 

performed by fragmenting 1µl aliquots of cDNA in 50 µl of low TE for varying amounts 

of time (10 minutes, 20 minutes, 30 minutes). The Bioruptor® was run on the low 

setting, 30 seconds on, 30 seconds off, with ice replenished every 10 minutes during the 

sonication. Once complete, samples were electrophoresed on an agarose gel to determine 

the fragment size range generated by each amount of sonication time. Results can be seen 



 

in figure 1. The optimum sonication time that generated an average cDNA fragm

of 200 bp was found to be 30 minutes. 

 

Figure 1. Image of Gel Demonstrating Fragmentation with Bioruptor.  
50 µl of low TE containing 1 µg of cDNA were placed in the Bi
for 10, 20, and 30 minutes. The optimum sonication time for producing an average cDNA 

fragment size of 200 bp was found to be 30 minutes.
 

RNA-seq on the Ion PGM

The Ion Torrent™

sample that is sequenced. Reviewing run statistics provides information that reflects not 

only on the success of the OT2

of the input library samples. Ensuring that a library building protocol and sub

emulsion PCR and sequencing are able to generate a high quality and usable amount of 

sequencing reads is imperative when evaluating a sequencing methodology. 
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in figure 1. The optimum sonication time that generated an average cDNA fragm

of 200 bp was found to be 30 minutes.  

Image of Gel Demonstrating Fragmentation with Bioruptor.  
50 µl of low TE containing 1 µg of cDNA were placed in the Bioruptor on the low setting 

0 minutes. The optimum sonication time for producing an average cDNA 
fragment size of 200 bp was found to be 30 minutes. 

seq on the Ion PGM™ 

™ PGM server provides a summary of run statistics for ever

sample that is sequenced. Reviewing run statistics provides information that reflects not 

only on the success of the OT2™ run and Ion PGM™ sequencing, but also on the quality 

of the input library samples. Ensuring that a library building protocol and sub

emulsion PCR and sequencing are able to generate a high quality and usable amount of 

sequencing reads is imperative when evaluating a sequencing methodology. 

10 

Minutes 
20 

Minutes 30 

Minutes 

in figure 1. The optimum sonication time that generated an average cDNA fragment size 

 
Image of Gel Demonstrating Fragmentation with Bioruptor.  Aliquots of 

on the low setting 
0 minutes. The optimum sonication time for producing an average cDNA 

PGM server provides a summary of run statistics for every 

sample that is sequenced. Reviewing run statistics provides information that reflects not 

sequencing, but also on the quality 

of the input library samples. Ensuring that a library building protocol and subsequent 

emulsion PCR and sequencing are able to generate a high quality and usable amount of 

sequencing reads is imperative when evaluating a sequencing methodology.  
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The Ion PGM™ is not intended for whole transcriptome sequencing and does not 

offer the sequencing capacity to account for sequencing a whole human transcriptome. 

For this reason, it was imperative that we establish a sequence methodology on the Ion 

PGM™ that facilitated generation of as much mRNA sequencing data as was possible 

from each sample.  

To determine the importance of output quantity of sequencing reads on the quality 

of sequencing data, the same cDNA library generated from RNA isolated from a fresh 

(Time 0) blood stain was sequenced on both an Ion 314™ sequencing chip and an Ion 

318™ sequencing chip v2 (figure 2). The Ion 314™ chip has an average sequencing data 

output of 400 to 550 thousand reads per run, while the Ion 318™ chip has an average 

sequencing data output of 4 to 5.5 million reads per run.  As can be seen in figure 2, the 

quality of each of the test sequencing runs that used the same blood cDNA library was 

high, with sufficient chip loading (over 80% in both chips), sufficient usable sequence, 

and the desired targeted fragment length of around 200 bp (202 bp for each of the 

reactions). While both runs were of usable quality, the main difference lies in the output 

of data from each chip type. The 314™ chip (figure 2A) produced 111M bases of data 

and 639,020 total sequencing reads. The 318™ chip (figure 2B) produced a substantially 

larger amount of data, with 1 G total bases and 5,630,598 total sequencing reads. These 

numbers indicate that sequencing the library on a 318 chip as opposed to a 314 chip 

produced approximately 10 times more data.   



 

Figure 2. 314 and 318 chip 
0 blood library sequenced on a 314 chip.  
blood library sequenced on a 318 v2 chip. The Ion server run report includes a summary 

of chip loading, sequencing reads produced, and the average sequencing read length.

 While these sequencing runs demonstrates that sequencing library and run quality 

appear equal with both the 314 chip and 318 chip, they also clearly show that there is a 

large increase in data output when sequencing on a 318 chip. For further evaluation of the 

effect of sequencing on a 314 chip vs. a 318 chip, the sequencing reads from each run 

were analyzed. The data obtained from both runs w

human genome (HG19), and RPKM values were calculated for each gene. Upon 
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314 and 318 chip comparison.  A. Ion Server sequencing run report for a time 

0 blood library sequenced on a 314 chip.  B. Ion Server sequencing run report for a time 0 
blood library sequenced on a 318 v2 chip. The Ion server run report includes a summary 

equencing reads produced, and the average sequencing read length.
 
 

While these sequencing runs demonstrates that sequencing library and run quality 

appear equal with both the 314 chip and 318 chip, they also clearly show that there is a 

data output when sequencing on a 318 chip. For further evaluation of the 

effect of sequencing on a 314 chip vs. a 318 chip, the sequencing reads from each run 

were analyzed. The data obtained from both runs were trimmed for quality, aligned to the 

enome (HG19), and RPKM values were calculated for each gene. Upon 

 

Ion Server sequencing run report for a time 
. Ion Server sequencing run report for a time 0 

blood library sequenced on a 318 v2 chip. The Ion server run report includes a summary 
equencing reads produced, and the average sequencing read length. 

While these sequencing runs demonstrates that sequencing library and run quality 

appear equal with both the 314 chip and 318 chip, they also clearly show that there is a 

data output when sequencing on a 318 chip. For further evaluation of the 

effect of sequencing on a 314 chip vs. a 318 chip, the sequencing reads from each run 

trimmed for quality, aligned to the 

enome (HG19), and RPKM values were calculated for each gene. Upon 
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comparison of these data, the affect that useable sequence output has on the analysis 

becomes clear (Table 3).  

 
Number of 

Sequencing Reads 
% of Reads 

Aligned to HG19 

Number of Genes 
Detected 

(RPKM >1) 

000Blood 
Ion 314™ Chip 

533,244 86% 8,137 

000Blood 
Ion 318™ v2 chip 

3,212,785 87% 12,116 

Table 3. Summary of data generated by sequencing the 000Blood library on a 314 
chip and a 318 v2 chip 

 
 

As would be expected, the percentage of sequencing reads that aligned to HG19 

was similar for each of the runs (86% for 314 and 87% for 38 v2). However, a vast 

difference is observed when the number of genes detected in each run is considered. The 

presence of about 10 times more sequencing reads from the Ion 318™ v2 chip as 

compared to the Ion 314™ chip, allowed for the detection of several thousand more 

genes (12,116 genes detected in the 318 v2 run, 8,137 genes detected in the 314 run). 

Specifically, there were 48.9% more genes detected with the sequencing reaction run on 

the 318 v2 chip when compared to the 314 chip sequencing reaction. The sequencing 

performed on the higher capacity 318 v2 chip is therefore a more complete representation 

of the blood transcriptome than the data obtained for the same library sequenced on the 

314 chip.  Thus, when attempting to get the most complete picture of the transcriptome 

while sequencing on the Ion PGM™, the 318 v2 chip should be used.  

As the data generated from our developed library building procedure, OT2™ 

reactions, and chosen sequencing methodology will ultimately be used to evaluate and 



44 

 

compare the mRNA populations of multiple forensically relevant sample types, having 

the most complete picture of the transcriptome as possible is absolutely critical.  All 

RNA-seq that aims to provide insight on the profiles and behaviors of sample 

transcriptomes should therefore be performed on 318 v2 chips in order to maximize the 

number of transcripts observed in the population. 

 

 RNA-seq Data Analysis Workflow 

Once raw sequencing reads are obtained from the Ion PGM™, they undergo a 

multi-step data analysis process. In the first step of sequencing data analysis, all raw 

sequencing reads for a given sample are aligned to the human reference genome, Hg19 

(GRCh38). After alignment, every sample will have RNA expression levels calculated in 

the form of reads per kilobase per million (RPKM).  RPKM values normalize expression 

levels by taking into account the total number of sequencing reads in a run, the size of the 

gene, and the number of sequencing reads that map to that gene. RPKM values are a 

more accurate assessment of expression level than raw sequencing reads as they adjust 

for fluctuating factors such as the total number of reads in a given run and the different 

sizes of genes in the genome (Mortazavi et al.., 2008). Alignment and RPKM 

calculations are performed with CLC Bio Genomics Workbench software (Cambridge, 

MA).   After initial RPKM values are calculated, the RPKM values will be normalized a 

second time to the ERCC spike-in standards, which form a standard curve (known input 

quantity of spike-in transcripts vs. RPKM). An example ERCC standard curve is 

displayed in figure 3. Normalization to the spike-in standard acts as a control for any 

variation that might have been introduced by sample preparation or user error, as the 
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ERCC standards are spiked-in to each sample individually at a known molar 

concentration (Jiang et al.., 2011). The ERCC spike-in standards form a standard curve 

that can be utilized to normalize the RPKM values of each individual transcript in a 

sample. The final normalized value for each transcript is expressed in molecules of RNA. 

This molecule value reflects the abundance of each RNA transcript that is present in a 

given tissues transcriptome.  

 

 
 

Figure 3. This graph displays the standard curve created by the external ERCC control 
that is spiked-in to each individual RNA sample prior to cDNA generation and library 

preparation. The ERCC control consists of 92 transcripts present in varying molar 
concentrations that, when sequenced, form a standard curve (input molecules vs RPKM). 

 
 

Assessment of RNA-seq Data 

 Once sequencing reads have been aligned to the human reference genome and 

abundance values for each detected transcript have been normalized, the data can be 

further analyzed. In the development and optimization of this RNA-seq protocol for 
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analyzing total mRNA from aged biological fluid samples, the data were evaluated on 

multiple factors including alignment to the human genome, reproducibility between 

technical replicates, sequencing bias, and sequence capture of fresh and aged RNA 

samples. 

 

Alignment of RNA-seq Data to a Reference 

 In a sequencing reaction that generates high quality sequencing reads, the 

majority of the reads should align to the established reference genome (if the sample is 

obtained from a single, known source). As all of the samples utilized in this study were 

single source human samples (blood, saliva, semen, and vaginal fluid), the majority of the 

reads were expected to align to the human reference genome. As expected, the majority 

of the reads for both blood and semen samples aligned to the human reference genome 

(HG19). On average, 87% of the sequencing reads for blood samples and 86% of the 

reads for semen samples aligned to HG19. However, unlike blood and semen, saliva and 

vaginal fluid did not align well to the human reference genome. On average, only 7% of 

the sequencing reads for saliva and 8% of the sequencing reads for vaginal fluid aligned 

to HG19. The drastic difference between the percent of reads aligning for blood and 

semen as opposed to saliva and vaginal fluid can be largely attributed to the significant 

amount of microbial RNA present in saliva and vaginal fluid samples. All unaligned 

reads from the saliva samples were assembled into contigs and aligned to the Human Oral 

Microbiome Database (HOMD) which consists of genomic sequences for over 400 oral 

microbial species. When aligned, on average over 90% of contigs (previously unaligned 

sequence reads) within a saliva sample mapped to over 340 microbial organisms (Figure 
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4). Similar results were achieved for the unaligned reads from the vaginal fluid samples. 

For vaginal fluid, the unaligned reads were assembled into contigs and aligned to the 

RefSeq genomic database. On average, over 90% of the vaginal fluid contigs (previously 

unaligned sequence reads) aligned to over 230 microbial organisms.  Once aligned to the 

human genome and to the prospective sequence databases (HOMD and RefSeq) over 

85% of reads in every sample were accounted for in an alignment.  

 

 
Figure 4. RNA data alignment shows presence of bacteria in saliva.  This graph 

represents the percent of contigs aligned to 390 organisms in the Human Oral 
Microbiome Database (HOMD). The top ten organisms with aligned contigs are labeled. 
The other 380 organisms are represented by a wedge in the chart corresponding to their 

abundance level, but are not labeled.  
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Determining Reproducibility between Technical Replicates 

 Two technical replicates for each sample type at each of the time points were 

analyzed using the library building and sequencing methodologies described in this 

manuscript. Technical replicates are important for establishing the reproducibility of the 

methodology and increasing confidence in the sequencing results. Having a high degree 

of similarity between two technical replicates can increase the confidence of any 

conclusions drawn from the data. Reproducibility between technical replicates was of 

high importance for this study because whole transcriptome sequencing is not possible on 

the Ion Torrent PGM. Rather, with every sequencing reaction, a representative population 

of the mRNA in a sample library was being sequenced.  

To determine if the representative populations of mRNA sequenced in each 

technical replicate were similar, comparisons were performed between log2RPKM values 

for each replicate in a sample pair (Figure 5 and Figure 6). For each sample pair, a graph 

was generated with a single plotted point for each gene represented in the sample 

population (with the x-value of that point corresponding to the abundance of that gene in 

replicate one and the y-value of that point corresponding corresponds to the abundance of 

that gene in replicate two). If a given gene has the same abundance (Log2RPKM) in both 

of the replicates, the point for that gene will have the same x- and y-values. When the 

data are plotted in this way, if two samples are perfect replicates of one another, you 

would generate a straight line with an R value of 1.00. The data generated in this study 

were highly reproducible, with replicates for each of the sample types generating an R 

value of more than 0.80 (Figure 5). Technical replicates of fresh blood, semen, and 

vaginal fluid all generated plots with an R value of 0.99. Technical replicates of fresh 



 

saliva generated a slightly lower R value of 0.84. High reproducibility between technical 

replicates was also observed in samples 

technical replicates of fresh blood and blood that was aged 60, 120, 180, 270, and 360 

days. An R value of 0.99 is found in technical replicates of every age, demonstrating that 

degraded RNA does not affect the re

Figure 5. Replicate correlation in study sample types. 
gene in each of the time 0 (fresh) replicates for each body fluid were compared. Replicate 
1 for each sample type is on the x
have the exact same abundance for a specific gene, the point for that gene would fall on 

the line. The R value for each of the sample types is displayed on the graph. The closer to 
1 an R value is, the more 
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saliva generated a slightly lower R value of 0.84. High reproducibility between technical 

replicates was also observed in samples that were aged. Figure 6 displays data for 

technical replicates of fresh blood and blood that was aged 60, 120, 180, 270, and 360 

days. An R value of 0.99 is found in technical replicates of every age, demonstrating that 

degraded RNA does not affect the reproducibility of the sequence data.   

Replicate correlation in study sample types. Log2 RPKM values for every 
gene in each of the time 0 (fresh) replicates for each body fluid were compared. Replicate 
1 for each sample type is on the x-axis and replicate 2 is on the y-axis. If two replicates 
have the exact same abundance for a specific gene, the point for that gene would fall on 

the line. The R value for each of the sample types is displayed on the graph. The closer to 
1 an R value is, the more tightly reproducible the replicates are.

saliva generated a slightly lower R value of 0.84. High reproducibility between technical 

that were aged. Figure 6 displays data for 

technical replicates of fresh blood and blood that was aged 60, 120, 180, 270, and 360 

days. An R value of 0.99 is found in technical replicates of every age, demonstrating that 

 

 
RPKM values for every 

gene in each of the time 0 (fresh) replicates for each body fluid were compared. Replicate 
axis. If two replicates 

have the exact same abundance for a specific gene, the point for that gene would fall on 
the line. The R value for each of the sample types is displayed on the graph. The closer to 

tightly reproducible the replicates are. 



 

Figure 6. Replicate correlation in aged blood specimens.  
gene in each of the replicates for blood at every sampled age were compared. Replicate 1
for each sample is on the x

the sample types is displayed on the graph. A tight correlation between replicates 
(R=0.99) is observed with every sample time point.
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Replicate correlation in aged blood specimens.  Log2 RPKM values for every 
gene in each of the replicates for blood at every sampled age were compared. Replicate 1
for each sample is on the x-axis and replicate 2 is on the y-axis. The R value for each of 

the sample types is displayed on the graph. A tight correlation between replicates 
(R=0.99) is observed with every sample time point. 

 
RPKM values for every 

gene in each of the replicates for blood at every sampled age were compared. Replicate 1 
axis. The R value for each of 

the sample types is displayed on the graph. A tight correlation between replicates 
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Assessing Sequencing Bias  

With any RNA-seq method, bias is present. This is partly because bias is inherent 

in the preparation of all RNA sequencing libraries. While bias can never be completely 

eliminated, it can be reduced. Bias can potentially be introduced at a couple of points in 

the preparation of libraries, including cDNA generation and fragmentation. Bias 

introduced through the selection of mRNA from a population of total RNA was 

considered when outlining the library building protocol described in this manuscript. The 

NuGEN Ovation RNA-seq kit v2 was chosen, in part, because it utilizes SPIA technology 

to convert mRNA to cDNA using specialized amplification primer mixes.  Alternative 

cDNA preparation methods include pre-treatment of the total RNA extract using rRNA 

depletion or poly-A selection. The SPIA primers (a mix of not-so-random random 

primers and oligo-dT primers) help alleviate the bias observed with poly-A selected 

RNA. Libraries generated from poly-A selected RNA generally produce data that have a 

3’ bias, as the cDNA is generated from the 3’ end of the transcript. When only priming 

from the 3’ end of a transcript for cDNA conversion, the whole transcript does not always 

get converted to cDNA. Thus, with the use of only poly-A primers you end up with a 

cDNA library that has favored only those transcripts containing a poly-A tail and is 

biased towards the 3’ end of mRNA molecules. With SPIA primers, the addition of the 

random primers helps more evenly capture the entire mRNA population in the cDNA 

conversion, thus partially alleviating the issue of 3’ bias. Additionally, the SPIA random 

primers were important so our libraries were not selective against mRNA molecules that 

do not contain a poly-A tail, as would be found more abundantly in aged or degraded 

samples.  



 

 Sequence data were

across the entire length of a transcript. If 3’ bias is a large issue, sequencing reads will 

align to the most 3’ exons, while few or no reads will be present on the exons that are 

more 5’ in their location. Figure 7 displays sequencing reads for the hemoglobin B gene 

(HBB) aligned to the human genome. When observing sequencing reads aligned to the 

HBB reference gene, it is clear that there are sequencing reads aligning all the way ac

the reference, accounting for each of the exons. While sequencing depth does appear 

deeper on the most 3’ exon when compared to the most 5’ exon, sequencing depth for the 

sample is greatest on the center exon (exon 2). While there is minor 3’ bias obs

sequencing reads are clearly spread across the entire transcript length with some 

clustering in the center of the transcript. The HBB transcript in figure 7 is representative 

of read depths observed for other transcripts. 

Figure 7. Alignment and
blood sample aligned to the hemoglobin B (HBB) gene. The sequencing reads align to all 
three exons in the transcript, with the most reads aligning on the center exon. The spread 

of reads across the entire length of the gene (all exons) is indicative of reduced 3’ 
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e data were evaluated for bias by surveying the depth of sequencing reads 

across the entire length of a transcript. If 3’ bias is a large issue, sequencing reads will 

align to the most 3’ exons, while few or no reads will be present on the exons that are 

ore 5’ in their location. Figure 7 displays sequencing reads for the hemoglobin B gene 

(HBB) aligned to the human genome. When observing sequencing reads aligned to the 

HBB reference gene, it is clear that there are sequencing reads aligning all the way ac

the reference, accounting for each of the exons. While sequencing depth does appear 

deeper on the most 3’ exon when compared to the most 5’ exon, sequencing depth for the 

sample is greatest on the center exon (exon 2). While there is minor 3’ bias obs

sequencing reads are clearly spread across the entire transcript length with some 

clustering in the center of the transcript. The HBB transcript in figure 7 is representative 

of read depths observed for other transcripts.  

 
Alignment and Bias in Sequencing Reads.  Sequencing reads for the fresh 

blood sample aligned to the hemoglobin B (HBB) gene. The sequencing reads align to all 
three exons in the transcript, with the most reads aligning on the center exon. The spread 

entire length of the gene (all exons) is indicative of reduced 3’ 
sequencing bias. 

evaluated for bias by surveying the depth of sequencing reads 

across the entire length of a transcript. If 3’ bias is a large issue, sequencing reads will 

align to the most 3’ exons, while few or no reads will be present on the exons that are 

ore 5’ in their location. Figure 7 displays sequencing reads for the hemoglobin B gene 

(HBB) aligned to the human genome. When observing sequencing reads aligned to the 

HBB reference gene, it is clear that there are sequencing reads aligning all the way across 

the reference, accounting for each of the exons. While sequencing depth does appear 

deeper on the most 3’ exon when compared to the most 5’ exon, sequencing depth for the 

sample is greatest on the center exon (exon 2). While there is minor 3’ bias observed, 

sequencing reads are clearly spread across the entire transcript length with some 

clustering in the center of the transcript. The HBB transcript in figure 7 is representative 

 

Sequencing reads for the fresh 
blood sample aligned to the hemoglobin B (HBB) gene. The sequencing reads align to all 
three exons in the transcript, with the most reads aligning on the center exon. The spread 

entire length of the gene (all exons) is indicative of reduced 3’ 
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Sequence Obtained for Fresh and Aged Samples 

 Due to the fact that the sequencing methodology discussed in this manuscript was 

specifically developed for use with forensically relevant sample types, it is critical that 

these methods generate sequence data for both fresh and aged samples. The previously 

described methods were used to sequence both fresh and aged blood, saliva, vaginal fluid, 

and semen samples. Quality assurance steps were included throughout the library 

building procedure to ensure sufficient quantity and quality of the libraries being 

constructed from both fresh and aged samples. Upon isolation, all RNA samples were 

quantitated using the Qubit® RNA HS Assay following the manufacturer’s protocol (Life 

Technologies, Carlsbad, CA). For all samples, 20 ng of RNA was converted to cDNA 

and all cDNA was checked for purity (A260/280>1.8) and quantity using the Nanodrop 

ND-1000 microspectrophotometer. Once cDNA libraries were constructed, all libraries 

were quantitated using the Ion Library Quantitation kit on the Applied Biosystems® ABI 

7500 qPCR instrument to ensure ample quantity for sequencing (calculated dilution 

factor > 1.0).  

Sequence data were generated for fresh samples and samples aged up to one year. 

Once sequencing for each sample was complete, data were evaluated for every sample 

based on total number of usable reads, alignment to the human genome, and the number 

of genes detected (Table 4). Every sample that was sequenced generated more than 1 

million sequencing reads, except for a couple of the oldest samples (vaginal fluid 180 day 

sample and blood 360 day old sample). In the samples that received less than 1 million 

reads, the lower sequencing output could be due to lower library quality due to the 

degraded state of the RNA in those samples. All samples aligned to the human genome as 
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expected, with blood and semen aligning over 80% in all samples, saliva aligning on 

average less than 10%, and vaginal fluid aligning less that 15% (saliva and vaginal fluid 

have lower alignment to HG19 due to a large microbial presence in these sample types). 

It is interesting to note that, in every type of biological fluid examined, the older samples 

aligned less to the human genome than the fresh samples. This decrease of alignment 

over time could be due to reduced library quality with degraded RNA or could be 

attributed to an increasing microbial population as stains aged. Reduced alignment to the 

human reference genome and increased alignment to microbial genomes as stains age 

may be an interesting area for future investigation. In addition to an observed decrease 

with alignment to HG19 in aged samples, there also appears to be a decrease over time 

for each fluid in the number of genes detected in the sample. This observed decrease in 

the number of genes detected is most likely due to certain transcripts in the population 

dropping below the sequencing detection threshold by degrading into RNA fragments 

smaller than the 200 BP library size. If an mRNA molecule is cleaved in the degradation 

process and ends up with a fragment size smaller than 200 BP, that transcript will be 

under represented in the sequencing library. As samples age, it is likely that a greater 

number of transcripts have degraded to a point below the detection of this sequencing 

methodology, thus the sequencing reads align to a fewer number of genes in aged 

samples.  Ultimately, this logic is the approach we have taken to examine mRNA 

degradation. 

 While Table 4 does demonstrate that there is an observable decrease in the 

percent of alignment to HG19 and in the number of genes detected in aged samples, the 
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RNA isolated from both fresh and aged samples was of sufficient quantity and quality to 

generate usable sequencing data for every sample that was analyzed.   

Table 4. Evaluation of sequencing data for fresh and aged biological fluid samples 

 Total Number of 
Sequencing Reads % Alignment to HG19 Number of Genes 

Detected 
Blood 

(Fresh) 
3,212,785 87% 12,116 

Blood 
(Aged 30 Days) 

2,467,087 82% 11,831 

Blood 
(Aged 60 Days) 

1,830,68 82% 11,702 

Blood 
(Aged 120 Days) 

2,397,120 86% 10,397 

Blood 
(Aged 180 Days) 

1,195,493 82% 8,918 

Blood 
(Aged 270 Days) 

2,497,672 73% 8,838 

Blood 
(Aged 360 Days) 

510,998 75% 1,890 

Saliva 
(Fresh) 

3,132,727 7% 4,201 

Saliva 
(Aged 60 Days) 

3,241,140 6% 1,510 

Saliva 
(Aged 120 Days) 

2,577,010 6% 923 

Saliva 
(Aged 180 Days) 

1,341,420 4% 520 

Vaginal Fluid 
(Fresh) 

1,662,114 18% 4,070 

Vaginal Fluid 
(Aged 60 Days) 

2,824,657 11% 2,999 

Vaginal Fluid 
(Aged 120 Days) 

1,252,619 12% 2,112 

Vaginal Fluid 
(Aged 180 Days) 

884,564 10% 1,618 

Semen 
(Fresh) 

3,051,682 85% 12,300 

Semen 
(Aged 60 Days) 

1,536,882 86% 11,874 

Semen 
(Aged 120 Days) 

1,567,875 84% 10,937 

Semen 
(Aged 180 Days) 

2,338,402 81% 10,800 

 

Conclusions 

 Appropriate library building protocols and sequencing procedures must be 

considered for analysis of low input, degraded samples, if RNA analysis is going to be 

explored more thoroughly for applications in forensic science. RNA analysis is being 
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considered more heavily than ever before for use with forensic investigation, as RNA 

biomarkers are being discovered for tissue identification, estimating sample age, and 

molecular autopsy purposes. If RNA analysis is going to be seriously investigated for use 

in routine casework, having an understanding of how total mRNA behaves in both fresh 

and aged samples is critical.  

With this study, we have developed a methodology for transcriptome sequencing 

of RNA isolated from fresh and aged forensically relevant biological samples. Using this 

protocol we have generated the first base dataset of mRNA profiles for fresh and aged 

biological fluids (blood, saliva, semen, and vaginal fluid). With this methodology and this 

first dataset, investigators can begin to establish a broader understanding of the behavior 

of mRNA in deposited samples, allowing for the proper selection of biomarkers for 

investigative purposes.  
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CHAPTER IV 
 

 

TIME-DEPENDENT LOSS OF TRANSCRIPTS IN AGED FORENSIC SAMPLES 

 

 

Introduction 

DNA analysis is routinely used in forensic casework to identify individuals who 

were at a crime scene or associated with evidence. However, while DNA can provide 

identify to an investigator, identification alone cannot always provide context to an 

investigation. While DNA has been the gold standard of forensic molecular investigation 

for several decades, recent advancements in RNA analysis may provide a role for RNA in 

forensic casework. Several recent studies have demonstrated the possibility that RNA 

analysis has an important role in body fluid identification, molecular autopsy, and also 

perhaps in suggesting a timeline for the deposition of a biological sample at a crime scene 

and/or the post-mortem interval (PMI) (S. E. Anderson et al.., 2011, 2011; Sampaio-Silva 

et al.., 2013). Based on this work, RNA analysis holds clear potential to contribute 

significantly to the investigation of forensic matters.  

The stability of the transcriptome in degraded or minimally available biological 

samples has been of concern for the widespread use of RNA analysis in forensics. RNA 

was once considered difficult or even impossible to access in degraded or limited samples 
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due to its fragile, single stranded structure. However, research has proven that with 

enhanced analytical methods, accessing RNA in aged, degraded, and minimally available 

forensic samples is possible (Martin Bauer & Patzelt, 2008; Zubakov et al.., 2010). It has 

also become clear that RNA may not be as unstable as was once believed, with RNA 

being detected in forensic samples that are decades old (Kohlmeier & Schneider, 2012).  

The first published investigation of ex vivo mechanisms of RNA degradation was 

published in 2013 (Fordyce et al.., 2013). In this paper, Fordyce et al.. discuss that the 

degradation of RNA in ex vivo samples depends largely on sample type and sample 

condition. Cellular ribonucleases (RNases) that remain active in moist cellular material 

drive RNA degradation in fresh post-mortem samples that are not preserved or dried. 

However, in samples that are dried (such as dried blood stains) or preserved (such as 

FFPE tissue samples), RNases are largely inactivated resulting in RNA degradation that 

is driven mostly by physical and chemical factors (such as sunlight or pH) (Fordyce et 

al.., 2013).   Virtually all studies that have analyzed forensic samples for mRNA 

fragments have shown that RNA is much more stable in biological samples than was 

once assumed.  A logical extension of this research has questioned if the degradation of 

mRNA molecules ex vivo occurs at a steady rate such that transcript decay could act as a 

“biological clock” (S. E. Anderson et al.., 2011; Vass et al.., 2013).  Researchers 

evaluating sample age or PMI based upon RNA degradation have mainly focused their 

analyses on ribosomal RNA (rRNA), housekeeping mRNA transcripts, and tissue-

specific mRNA transcripts (S. E. Anderson et al.., 2011; Martin Bauer, Gramlich, et al.., 

2003; Vass et al.., 2013). Such studies have utilized both end-point PCR paired with 
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capillary electrophoresis and real-time reverse transcriptase PCR to monitor degradation 

rates in transcripts originating from a few selected genes.  

Early work on the assessment of RNA degradation in relation to sample age 

focused on the degradation rates of housekeeping mRNA transcripts and rRNA, as these 

species have a known presence in all tissue types. In work performed by Bower et al., 

analysis of 106 bloodstains, aged up to 15 years, revealed that the abundance of β-actin 

and cyclophilin transcripts decreased in relation to sample age (Martin Bauer, Gramlich, 

et al.., 2003). Anderson et al. expanded research on β-actin mRNA degradation by 

demonstrating that the approximate age of a bloodstain can be predicted by determining 

the ratio between β-actin mRNA and 18S rRNA (S. Anderson et al.., 2005). Anderson, et 

al. further evaluated RNA degradation by examining different amplicon sizes of βactin 

mRNA and rRNA in aged samples (S. E. Anderson et al.., 2011). Results of this study 

indicated that large RNA amplicons disappear at a faster rate than small amplicons in 

aged samples. Although these initial studies on RNA degradation in aged bloodstains 

have been limited to examining a few selected RNA transcripts, the results do indicate a 

relationship between sample age and RNA degradation rates. 

In addition to the limited number of RNA markers evaluated, past research on 

RNA degradation in deposited biological fluids has been narrowly focused on the number 

of sample types considered in degradation analysis. Past studies have focused mainly on 

blood, with no major research performed on other forensically relevant sample types 

(such as semen, saliva, and vaginal fluid). Evaluation of biological fluid types other than 

blood is critical as the cell types, cellular environments, and transcriptomes vary 

considerably with each fluid type. Thus, RNA degradation patterns and rates may be 
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different in each sample type as well. If investigators are going to be able to evaluate time 

since deposition in a variety of sample types, it is critical to study RNA degradation 

patterns and rates in other forensically relevant biological sample types. 

In this research, we aimed to provide a more comprehensive study of ex vivo 

RNA degradation in dried body fluid stains (specifically, blood, saliva, vaginal fluid, and 

semen). In examining RNA degradation, this study took a different approach than 

previous studies by subjecting the total mRNA of fresh and aged samples to analysis 

through the use of next-generation sequencing. The results of RNA-seq provide the first 

ever comprehensive picture of mRNA presence in both fresh and aged biological fluid 

stains. These data facilitate evaluation of the changing profile of the mRNA population 

within a deposited sample over time. Based on these data, degradation rates and profiles 

for every individual transcript within the mRNA population of a sample can be 

determined. Furthermore, differences in mRNA degradation rates and profiles between 

sample types can be established.  While these data provide an initial baseline for mRNA 

degradation, the comprehensive nature of the data allows for selection of the most 

appropriate mRNA markers for sample age estimation that should be considered for 

future evaluation with a larger sample set. 

 

Materials and Methods 

 Description of Samples 

 All sample handling described in this methodology adheres to the OSU-CHS IRB 

approved protocol dated May 13, 2013.  
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 Biological fluid samples including blood, saliva, semen, and vaginal fluid were 

collected from donors who are over the age of 18 and signed the informed consent form 

for having their sample sequenced. Blood samples were drawn in 10 cc aliquots by a 

medical technologist. For saliva collection, the donor deposited approximately 1.0 mL of 

saliva into a sterile collection tube. Vaginal fluid was collected by providing the donor 

cotton swaps for collection of the sample. Semen was collected by deposition of the 

sample into a sterile collection tube provided to the donor.  

 Upon collection blood, saliva, and semen samples were deposited on nuclease-

free paper cards in 50 µl aliquots. Samples were labeled with a unique 10-digit code and 

all samples (cards containing blood, semen, and saliva and vaginal fluid cotton swabs) 

were stored in the dark, at room temperature. Samples were allowed to age for a specified 

amount of time (Table 1) before RNA extraction was performed.  

 

 Isolation of RNA 

 RNA isolation was performed with TRI Reagent® (Sigma Aldrich, St. Louis, 

MO), following the manufacturer’s instructions. The aqueous phase of the TRI 

Reagent®, containing the isolated RNA, was transferred to a clean 1.5 mL Eppendorf 

tube. The RNA underwent further clean-up by Zymo Research Clean and Concentrator™ 

Kit, following the manufacturer’s instructions (Zymo Research, Irvine, CA). RNA was 

eluted in 15 µl dH2O and all samples underwent a DNase digestion using TURBO™ 

DNase (Life Technologies, Carlsbad, CA) following the manufacture’s protocol. All 

samples were quantitated on the Qubit® using the RNA HS kit (Life Technologies, 

Carlsbad, CA).  
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 cDNA Library Preparation 

 Samples containing 20 ng of isolated RNA were mixed with 4 µl of ERCC RNA 

Spike-in mix 1(Ambion®) at a 1:10000 dilution. RNA samples were converted to cDNA 

using the NuGEN Ovation® RNA-seq Kit v2 (NuGEN Technologies, San Carlos, CA), 

following the manufacture’s protocol. All cDNA samples were checked for purity 

(A260/280 > 1.8) and quantity using the Nanodrop ND-1000 microspectrophotometer 

(Thermo Scientific, Wilmington, DE).  

 Sample aliquots of 30 µl of low TE containing 1 µg of cDNA were fragmented on 

the Bioruptor® UCD 200 (Diagenode, Denville, NJ) to an average fragment size of 200 

bp. Once fragmentation was complete, cDNA libraries were constructed using the Ion 

Plus Fragment Library kit (Life Technologies, Carlsbad, CA) following the 

manufacturers protocol for 200 bp, 1 µg input library preparation. All libraries received 

barcoded adapters so that each pair of technical replicates (same sample type and time 

point) could be sequenced on the same Ion 318™ v2 chip. Ion Xpress™ barcode adapters 

were utilized for all barcoding. All libraries were quantitated using the Ion Library 

Quantitation kit on the ABI 7500 qPCR instrument following the manufacturer’s protocol 

(Life Technologies, Carlsbad, CA). Based on quantitation results, dilution factors were 

calculated for each library.  

 

Template Preparation 

Template preparation was performed on the OneTouch2™ (OT2) instrument. 

Sample technical replicates (same sample type, same time point) were pooled together in 

an equal concentration of 26 pM and loaded on to the OT2™ following the 
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manufacture’s protocol (Life Technologies, Carlsbad, CA). After emulsion PCR on the 

OT2™ was complete, samples were enriched on the Ion Torrent™ ES to remove non-

templated and polyclonal ISPs.  

 

 Sequencing on the Ion Torrent PGM 

 Once template preparation was complete, enriched template positive ISP’s were 

mixed with buffer, control ISPs, and enzyme and loaded onto an Ion 318™ v2 chip for 

sequencing on the Ion Torrent™ PGM. Default sequencing parameters for 200 bp 

libraries on a 318™ v2 chip were used for all sequencing reactions.  

 

 Data Analysis 

Analysis of the sequence data obtained from duplicate fresh and aged biological 

fluid samples proceeded through a three-step process: In the first step of data analysis, 

raw sequence data for a given sample were aligned to the human reference genome, Hg19 

(GRCh38).  After alignment, every sample had RNA expression levels calculated in the 

form of reads per kilobase per million (RPKM).  RPKM values normalize expression 

levels by taking into account the total number of sequencing reads in a run, the size of the 

gene, and the number of sequencing reads that map to that gene (Mortazavi et al.., 2008). 

Alignment and RPKM calculations were performed with CLC Bio Genomics Workbench 

software (Cambridge, MA). After initial RPKM values were calculated, they were 

normalized against the ERCC spike-in standards, from which a standard curve is created 

(input quantity of ERCC standard vs. RPKM) (Figure 3). Normalization to the spike-in 

standard acts as a control for any variation that might have been introduced by sample 
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preparation or user error, as the ERCC standards (Ambion®) are spiked-into each 

sequenced sample at a known molar concentration (Jiang et al.., 2011). The standard 

curve that is produced from the ERCC spike-in standards can be used to estimate 

abundance (molecules) of any sequenced transcript in the sample (Figure 3). The final 

normalized abundance value for each transcript is expressed in molecules of RNA. Once 

the data for each sample were normalized, datasets were compared within and between 

sample types to determine mRNA degradation profiles and patterns.   

 

Results and Discussion  

Determination of Transcript Abundance over Time  

Once the transcriptome sequencing data were normalized for each sample, the 

data were compared across all of the analyzed time points for each tissue type to 

determine if transcript abundance changed with sample age. Abundance values for 

technical replicates of each sample type at each time point were averaged. The average 

abundance of each individual transcript was then compared across all of the time points 

for each sample type.  By monitoring the change in individual transcript abundance over 

time, a degradation profile could be developed for each individual mRNA transcript in a 

given sample transcriptome. If a transcript is degrading over time, you will see a decrease 

in the transcripts abundance over time. Determination of individual transcript degradation 

profiles was accomplished through calculation of slope and R2 for each transcript over all 

of the sequenced time points. The average sample has thousands of transcripts 

represented at time 0 (fresh). This approach examines transcriptome degradation, thus 

individual degradation profiles for thousands of genes in each sample type are revealed. 
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The data generated through sequencing total mRNA isolated from biological 

fluids aged up to one year indicate that there is observable change in the transcriptome of 

a sample over time. Figure 8 depicts the average abundance levels for every detected 

transcript in a given sample type (for each fluid and each time point). There are hundreds 

to thousands of points graphed above each time point for each sample. Each point on the 

graph represents a single gene and its average abundance at the given time-point (x-axis). 

When multiple comparisons analysis was performed on this data, all comparisons 

between each of the time points were significant at less than 0.0001. This is an indication 

that the abundance of detected genes within each sample type is decreasing over time.   

While figure 8 provides a snapshot of the total mRNA abundance in each sample 

at each time point (plotting one point for each transcript detected at each time point), the 

data can be filtered to examine the change of individual transcripts over time. Having 

access to the degradation rate and pattern of each transcript in the transcriptome of a 

sample facilitates selection of mRNA transcripts that have a degradation rate that better 

correlates with sample age. 

 

 



 

Figure 8.  Determination of Transcript Abund
depict the change in abundance of the transcripts in a sample over time. There is one 
point plotted for the average abundance of every gene detected at each sampled time 

point. Plotting one point for each detected gene at a gi
there is a clear decrease in transcriptome abundance over time for each tissue. 
comparisons analysis indicates a significant decrease between each of the time points 
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Determination of Transcript Abundance over Time
depict the change in abundance of the transcripts in a sample over time. There is one 
point plotted for the average abundance of every gene detected at each sampled time 

point. Plotting one point for each detected gene at a given time point demonstrates that 
there is a clear decrease in transcriptome abundance over time for each tissue. 
comparisons analysis indicates a significant decrease between each of the time points 

(p<0.0001 for all comparisons). 

 
ance over Time.  These charts 

depict the change in abundance of the transcripts in a sample over time. There is one 
point plotted for the average abundance of every gene detected at each sampled time 

ven time point demonstrates that 
there is a clear decrease in transcriptome abundance over time for each tissue. Multiple 
comparisons analysis indicates a significant decrease between each of the time points 
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Transcript Drop-Out Observed in Aged Samples 

While there is an observable decrease in the abundance level of individual 

transcripts over time, there is also a decrease in the number of transcripts detected at each 

time point. Figure 9 depicts the number of transcripts detected at each sampled time point 

for each of the biological fluids.  There is a decrease in the number of transcripts detected 

at each time point. This trend is observed for each of the biological fluid types. The point 

at which a transcript disappears from detection is called transcript drop-out. For example, 

in a given fluid type, if a transcript is present in the fresh sample and in the 60 day 

sample, but is no longer present in the 120 day sample, that transcript would have 

dropped out at 120 days. This trend of transcripts dropping-out of sequence data is 

represented by the decreasing number of transcripts detected over time in each of the 

sample types (figure 9).  
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Figure 9. Transcript Abundance over Time.  This figure depicts the number of 

transcripts detected at each time point for each fluid type. There are fewer transcripts 
detected as the samples age, indicating some transcripts are dropping below sequencing 

detection levels as the samples age.  
 

Transcript drop-out is observed in all sample types as the samples age. Thus, 

transcript drop-out is a reflection of mRNA degradation within the sample. As transcripts 

degrade to a fragment size of less than 200 bp in size, they will no longer be captured in 

the sequencing library preparation. This gradual transcript degradation will be reflected 

by a reduction of transcript abundance in the sequencing data and eventual transcript 

drop-out from the sequencing data. It is important to note that just because a transcript 

has dropped-out of the sequencing data; it has not necessarily disappeared completely 
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from the sample. Fragments of a transcript may still be present in a sample, but simply 

not detectable by sequencing due to the requirement of 200 bp library fragments. 

Monitoring transcript drop-out in the sequencing data is critical to identifying transcript 

degradation profiles. Transcript drop-out time can provide insight into the degradation 

rate of individual transcripts. For instance, a transcript that drops-out of the sequencing 

data at 60 days has a much steeper degradation rate compared to a transcript that is still 

present at 180 days. Through evaluation of transcript drop-out, insight into mRNA 

degradation mechanisms can be achieved and appropriate short- and long-term markers 

of age can be selected.  

 

The Effect of Starting Abundance on Degradation Rate 

Through the evaluation of transcript drop-out time in aged samples, conclusions 

can be drawn about the effect of starting transcript abundance on degradation rate. Figure 

10 displays the average abundance at time 0 (fresh sample) for the transcripts that drop 

out at each of the sampled time points. For instance, the average time 0 abundance for 

blood transcripts that have dropped-out by 30 days is 4.77 molecules per µl. The average 

time 0 abundance for blood transcripts that never drop out (i.e. “Drop-out Not Observed”, 

meaning these transcripts are detected at every time point, including 360 days) is 13.84 

molecules per µl. Thus, the average starting abundance for transcripts that disappear by 

30 days post-deposition is almost 3 times lower than transcripts that are still present at 

360 days post-deposition.   
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Figure 10. Starting Transcript Abundance by Sample type.  These graphs depict the 
average starting abundance and standard deviation for transcripts that drop out at the 

specified times on the x-axis. There is an increase in the average starting abundance of 
transcripts that drop-out of detection at later time points. While transcripts that drop out 
in earlier time points (30 days, 60 days) have lower time 0 (fresh sample) abundance.  

  

A high starting abundance for a transcript correlated well with that transcripts 

continued presence in older samples.   This trend was observed in all of the sample types 

and is indicative of a correlation between transcript abundance in a fresh sample and the 

time it will take for a transcript to degrade to a point below sequencing detection. 

Therefore, the starting abundance of a transcript may have an effect on the transcript 

degradation rate. Transcripts with a higher abundance at time 0 (fresh sample) may 
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disappear more slowly, simply because a larger population of molecules will take longer 

to degrade. This property lends to abundant transcripts having an increased presence in 

aged samples compared to lowly abundant transcripts.   

  

Other Factors Affect Transcript Degradation 

While starting transcript abundance does appear to play a role in the rate at which 

a gene disappears from sequencing detection, the abundance level in the time 0 sample of 

a transcript is not the only factor that influences degradation rate. By examining the 

group of transcripts that drop-out at each sampled time point, genes with similar time 0 

abundance values can be identified in each group (Figures 11, 12, 13, and 14).  Therefore, 

the abundance level of a transcript in a fresh sample is not the only factor that affects that 

transcripts degradation rate. Figure 11 depicts this scenario in aged blood samples. This 

figure provides the average abundance levels of seven transcripts over seven time points 

(fresh, 1 month old, 2 month old, 4 months old, 6 months old, 9 months old, and 12 

months old). The abundance of each transcript in the fresh sample is approximately 11 

molecules per µl for each one of the transcripts (Figure 11). However, while all of the 

transcripts have a similar starting abundance, each transcript drops-out of detection at a 

different time point. For example, SPINK2 is present in the fresh blood sample at an 

abundance of 11.79 molecules/µl, but disappears by 1 month. This is in stark contrast to 

NDST2, which is present in the fresh blood sample at an abundance of 11.12 

molecules/µl, but is also present at every sampled time point thereafter, including the 12 

month sample.  



 

Figure 11. Observed Decrease of Representative Transcripts in Blood. 
with similar starting abundance in blood are displayed. While the seven transcripts have 

similar starting abundances, they disappear at different times over the 12 month
course, indicating that starting abundance is not the only factor in determining the 

 

This same trend is observed for every other biological fluid type evaluated. 

Figures 12, 13, and14 present data for saliva, vagina

Figure 12 provides data on four genes detected in saliva all with a starting abundance of 

about 50 molecules per µl (ranging from 48.19 molecules per µl to 54.95 molecules per 

µl). However, while these transcripts all have

from detection at different times. NINJI is present in the fresh saliva sample, but is no 

longer detected as of the 2 month
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Observed Decrease of Representative Transcripts in Blood. 
with similar starting abundance in blood are displayed. While the seven transcripts have 

similar starting abundances, they disappear at different times over the 12 month
course, indicating that starting abundance is not the only factor in determining the 

degradation rate of a transcript. 

This same trend is observed for every other biological fluid type evaluated. 

Figures 12, 13, and14 present data for saliva, vaginal fluid, and semen, respectively. 

Figure 12 provides data on four genes detected in saliva all with a starting abundance of 

about 50 molecules per µl (ranging from 48.19 molecules per µl to 54.95 molecules per 

µl). However, while these transcripts all have a similar starting abundance, they drop

from detection at different times. NINJI is present in the fresh saliva sample, but is no 

longer detected as of the 2 month-old saliva sample. In contrast, TPM3 is present in the 

 
Observed Decrease of Representative Transcripts in Blood. Seven genes 

with similar starting abundance in blood are displayed. While the seven transcripts have 
similar starting abundances, they disappear at different times over the 12 month time 

course, indicating that starting abundance is not the only factor in determining the 

This same trend is observed for every other biological fluid type evaluated. 

l fluid, and semen, respectively. 

Figure 12 provides data on four genes detected in saliva all with a starting abundance of 

about 50 molecules per µl (ranging from 48.19 molecules per µl to 54.95 molecules per 

a similar starting abundance, they drop-out 

from detection at different times. NINJI is present in the fresh saliva sample, but is no 

old saliva sample. In contrast, TPM3 is present in the 



 

fresh saliva sample and detected

the 6 month-old sample. Figure 13 presents four genes detected in vaginal fluid, all with a 

starting abundance of around 30 molecules per µl (ranging from 28.61 molecules per µl 

to 30.77 molecules per µl). Figure 14 presents four genes in semen, all with a starting 

abundance of around 35 molecules per µl. However, as with blood and saliva, the starting 

abundance in the genes presented for vaginal fluid and semen were also not predictive of 

drop-out time. In both of these fluids, genes are presented that have similar starting 

abundances, but drastically different drop

months, to no drop out observed).  

Figure 12. Observed Decrease of Representative Transcript
abundance values for four transcripts in saliva are displayed. All of the transcripts have a 
similar starting abundance. However, they each drop
data indicates that factors other than time 0 abundance a
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fresh saliva sample and detected at every other sampled time point thereafter, including 

old sample. Figure 13 presents four genes detected in vaginal fluid, all with a 

starting abundance of around 30 molecules per µl (ranging from 28.61 molecules per µl 

r µl). Figure 14 presents four genes in semen, all with a starting 

abundance of around 35 molecules per µl. However, as with blood and saliva, the starting 

abundance in the genes presented for vaginal fluid and semen were also not predictive of 

me. In both of these fluids, genes are presented that have similar starting 

abundances, but drastically different drop-out times (ranging from dropping

months, to no drop out observed).   

Observed Decrease of Representative Transcripts in Saliva. 
abundance values for four transcripts in saliva are displayed. All of the transcripts have a 
similar starting abundance. However, they each drop-out at a different time point. The
data indicates that factors other than time 0 abundance affect sample degradation rate. 

at every other sampled time point thereafter, including 

old sample. Figure 13 presents four genes detected in vaginal fluid, all with a 

starting abundance of around 30 molecules per µl (ranging from 28.61 molecules per µl 

r µl). Figure 14 presents four genes in semen, all with a starting 

abundance of around 35 molecules per µl. However, as with blood and saliva, the starting 

abundance in the genes presented for vaginal fluid and semen were also not predictive of 

me. In both of these fluids, genes are presented that have similar starting 

out times (ranging from dropping-out at 2 

 
s in Saliva. The 

abundance values for four transcripts in saliva are displayed. All of the transcripts have a 
t at a different time point. These 
ffect sample degradation rate.  



 

Figure 13. Observed Decrease of Representative Transcripts in Vaginal Fluid. 
abundance values for four transcripts in vaginal fluid are displayed. All of the transcripts 
have a similar starting abundance. However, they
These data indicates that factors other than time 0 abundance affect sample degradation 
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Observed Decrease of Representative Transcripts in Vaginal Fluid. 
abundance values for four transcripts in vaginal fluid are displayed. All of the transcripts 
have a similar starting abundance. However, they each drop-out at a different time point. 

data indicates that factors other than time 0 abundance affect sample degradation 
rate.  

 
Observed Decrease of Representative Transcripts in Vaginal Fluid. The 

abundance values for four transcripts in vaginal fluid are displayed. All of the transcripts 
t at a different time point. 

data indicates that factors other than time 0 abundance affect sample degradation 



 

Figure 14. Observed Decrease of Representative Transcripts in Semen. 
abundance values for four transcripts in 
similar starting abundance. However, they each drop
data indicates that factors other than time 0 abundance affect sample degradation rate.

  

The presence of transcript

type that drop-out at different time points in the aging time course provides evidence that 

factors other than simple starting abundance affect the RNA degradation rate. While there 

does not appear to be a correlation between transcript specificity (tissue

present in several sample types) or transcript function (housekeeping vs. cell signaling, 

etc.) and stability of the transcript in aged samples, more investigation is needed on this 

subject. In addition to transcript specificity and function, there does not appear to be a 

correlation between transcript size and degradation rate, however, more investigation is 

needed on this issue as well. In addition to the starting abundance of a given tr
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Observed Decrease of Representative Transcripts in Semen. 
abundance values for four transcripts in semen are displayed. All of the transcripts have a 
similar starting abundance. However, they each drop-out at a different time point. These
data indicates that factors other than time 0 abundance affect sample degradation rate.

The presence of transcripts that have similar starting abundance in every fluid 

out at different time points in the aging time course provides evidence that 

factors other than simple starting abundance affect the RNA degradation rate. While there 

be a correlation between transcript specificity (tissue-specific vs. 

present in several sample types) or transcript function (housekeeping vs. cell signaling, 

etc.) and stability of the transcript in aged samples, more investigation is needed on this 

ct. In addition to transcript specificity and function, there does not appear to be a 

correlation between transcript size and degradation rate, however, more investigation is 

needed on this issue as well. In addition to the starting abundance of a given tr

 
Observed Decrease of Representative Transcripts in Semen. The 

semen are displayed. All of the transcripts have a 
at a different time point. These 

data indicates that factors other than time 0 abundance affect sample degradation rate. 

s that have similar starting abundance in every fluid  

out at different time points in the aging time course provides evidence that 

factors other than simple starting abundance affect the RNA degradation rate. While there 

specific vs. 

present in several sample types) or transcript function (housekeeping vs. cell signaling, 

etc.) and stability of the transcript in aged samples, more investigation is needed on this 

ct. In addition to transcript specificity and function, there does not appear to be a 

correlation between transcript size and degradation rate, however, more investigation is 

needed on this issue as well. In addition to the starting abundance of a given transcript, it 
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is possible that transcript structure and function contribute to the stability of the molecule 

as well. 

 

Tissue-Specific Degradation Patterns  

 In addition to establishing the fact that the total mRNA of a sample is degrading 

over time, another goal of this study was to examine tissue-specific RNA degradation 

patterns and profiles. It was hypothesized that because each fluid (blood, saliva, vaginal 

fluid, and semen) is composed of a unique transcriptome, cell types, cell environments, 

and microbial populations, there would be differing rates and patterns of degradation in 

each fluid type. With just two technical replicates of every fluid at each time point 

represented in this sequencing data set, it is important to note that any observed tissue-

specific differences are just initial observed trends. Further analysis of a larger sample 

size would be needed to draw any firm conclusions about tissue-specific RNA 

degradation rates.  

 Understanding tissue-specific differences in RNA degradation rates is important 

because the transcriptome of every biological tissue or fluid is unique and can therefore 

not be expected to act in a uniform manner. Forensic analysts deal with a variety of 

biological sample types. While it would be ideal to be able to streamline mRNA analysis 

into one universal assay, tissue-specific assays may be required for the proper analysis of 

mRNA degradation in relation to sample age. It is critical that an understanding of the 

transcriptome and its degradation rates and patterns are established for every forensically 

relevant sample type before conclusions are made concerning the creation of universal or 

sample type-specific analysis procedures.  
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 Awareness of tissue-specific RNA degradation was first acquired by reviewing 

the published literature searching for forensic tissue-identification markers for each 

sample type.  A comprehensive literature search was performed to identify mRNA 

markers for blood, semen, saliva, and vaginal fluid. Several tissue-tissue and fluid-

specific mRNA biomarkers have been identified for use with forensic tissue 

identification, with the aim of replacing traditional serological techniques with molecular 

analysis. Many of these mRNA biomarkers have been validated for sensitivity and 

specificity. In this study, fluid-specific RNA transcripts were utilized to monitor sample 

type-specific mRNA degradation patterns. Google Scholar, NCBI PubMed, and 

ScienceDirect databases were all utilized in this literature search for sample identity 

biomarkers. Search terms included “RNA markers for tissue identification”, “RNA 

markers for biological fluid identification”, “RNA used to identify tissues and fluids”, 

“forensic identification of fluids and tissues using RNA”, and “mRNA markers for 

biological tissues and fluids”. Once identified, tissue-specific mRNA transcripts were 

placed in a database to be used in the analysis of the aged biological fluid samples 

(Appendix A).  

 Tissue-specific transcripts were monitored in each of the sample types over the 

entire aging time course. Results for each of the fluid types and their specific mRNA 

markers are displayed in figures 15, 16, 17, and 18. Blood and semen specific markers 

appear to remain present in the sample for the longest amounts of time, with blood having 

no transcripts drop-out until 12 months and semen having no transcripts drop out in the 

observed time frame (Figures 15 and 18). Saliva and vaginal fluid do not appear to have 

as steady of a presence with their tissue-specific transcripts, with both sample types 



 

having selected transcript drop

difference in stability of tissue

semen vs. saliva and vaginal fluid) could be due to several factors including overall 

decrease in the percentage of genes detected in the sample types over time and the 

influence of microbial organisms on the samples.

 

Figure 15. Average Blood
transcript degradation over 12 months is 
months post-deposition, indicating a large degree of stability among blood
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lected transcript drop-out by 4 months (Figures 16 and 17). This observed 

difference in stability of tissue-specific markers between the sample types (blood and 

semen vs. saliva and vaginal fluid) could be due to several factors including overall 

in the percentage of genes detected in the sample types over time and the 

influence of microbial organisms on the samples. 
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Figure 16. Average Saliva
transcript degradation is displayed. T

different genes, indicating a possible instability of RNA in saliva.

Figure 17. Average Vaginal Fluid
fluid-specific transcript degradation is displayed. T
months for one out of four genes, indicating a possible instability of RNA in saliva.
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Average Saliva-Specific Transcript Abundance over Time.
transcript degradation is displayed. Transcript drop-out is observed at 4 months for two 

different genes, indicating a possible instability of RNA in saliva.
 

Average Vaginal Fluid-Specific Transcript Abundance over Time.
specific transcript degradation is displayed. Transcript drop-out is observed at 4 

months for one out of four genes, indicating a possible instability of RNA in saliva.

 
Specific Transcript Abundance over Time.Saliva-specific 

out is observed at 4 months for two 
different genes, indicating a possible instability of RNA in saliva. 

Specific Transcript Abundance over Time.Vaginal 
out is observed at 4 

months for one out of four genes, indicating a possible instability of RNA in saliva. 



 

Figure 18. Average Semen
specific transcript degradation is displayed. Transcript 

the markers over the 6 month time course, indicating a stability of mRNA in semen.
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than the transcriptomes of saliva and vaginal fluid. This fact could offer one reason for 
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Average Semen-Specific Transcript Abundance over Time. 
specific transcript degradation is displayed. Transcript drop-out is not observed for any of 

the markers over the 6 month time course, indicating a stability of mRNA in semen.

If other data, such as the number of transcripts detected at each sampled time 

taken in to account alongside the tissue-specific transcript data, some 

light may be shed on the apparent differences in transcript stability between the tissue 

types. The mRNA population in blood remains fairly stable over time, with over 70% of 

transcripts still present at 9 months post-deposition. A similar trend is observed in semen, 

with over 80% of the transcripts remaining at 6 months post-deposition. In contrast to the 

transcriptome stability observed in blood and semen, only 12% of transcripts in saliva 

and 39% of transcripts in vaginal fluid remain at 6 months post-deposition. The number 

of transcripts remaining in each of the tissues at 6 or 9 months post-deposition provides 

evidence that the transcriptomes of blood and semen appear much more stable over time 

of saliva and vaginal fluid. This fact could offer one reason for 
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the early drop-out of tissue-specific mRNA markers observed in saliva and vaginal fluid 

(Figures 16 and 17).  

Deeper evaluation of the RNA population isolated from the different sample types 

offers some insight into the apparent differences in mRNA stability among the different 

fluid types. Read alignment statistics for each of the sample types provides further divide 

between blood and semen vs. saliva and vaginal fluid. As listed in Table 4, the average 

sequencing read alignment to HG19 was quite different among the four sample types. For 

blood, an average of 81% of the sequencing reads aligned to the human reference. Semen 

achieved similar results, with an average alignment of 84% of the sequencing reads. A 

large departure from this trend was seen with saliva samples, which, on average had only 

6% of the sequencing reads aligned. The vaginal fluid samples were more in line with the 

saliva samples, with an average of 13% of reads aligning to the human reference. The 

unaligned reads for both saliva and vaginal fluid were blasted against HOMD and Refseq 

databases, respectively, and over 90% of the unaligned reads were found to align to 

microbial organisms. This alignment data demonstrates that while the majority of the 

RNA population was human for blood and semen, both saliva and vaginal fluid had a 

significant microbial presence. The heightened presence of microbial RNA in saliva and 

vaginal fluid, not seen in blood and semen, most likely had a large effect on the detected 

human mRNA population, possibly causing heightened degradation rates of human RNA 

or drowning out the population of human RNA that was detectable by sequencing on the 

PGM.  

By examining known tissue-specific mRNA markers in combination with the 

number of transcripts detected at each time point for each sample type, some tissue-
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specific differences in mRNA degradation patterns and rates become apparent. Most 

notable is the observed stability of mRNA in blood and semen compared to saliva and 

vaginal fluid. This observation must be kept in mind as these data are utilized for 

selecting appropriate mRNA markers for sample age, as universal mRNA transcripts 

present in all tissue types may have drastically different degradation rates based on what 

tissue type is being considered.  

 

Transcript Populations of Biological Fluids 

In addition to considering the different rates and profiles of transcript degradation 

in the different sample types, it is also important to account for the population similarities 

and differences of the different sample transcriptomes. While no two biological sample 

types will have an identical transcriptome, there is some degree of overlap between the 

transcripts expressed in all of the mRNA populations analyzed in this study. By 

establishing transcript population similarities and differences, transcripts can be 

categorized as universal (found in every sample type; can be used to monitor age in any 

sample type) or tissue-specific (found in only one sample type; can be used to monitor 

tissue-specific age).  

Sequence data for the time 0 (fresh) samples were compared to identify overlap 

between transcriptome populations of the different biological fluids (blood, saliva, 

vaginal fluid, and semen). Figure 19 provides the number of genes found in each tissue, 

the number of tissue-specific genes, and the number of genes found in the transcriptomes 

of multiple sample types. While there is overlap between all of the different tissues, the 

transcript populations of particular importance are the tissue-specific transcripts (for 
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blood, semen, saliva, and vaginal fluid) and the transcripts found in all of the tissue types 

(universal transcripts).  

 
 

Figure 19. Tissue-Specific mRNA Profiles. This Venn diagram presents the number of 
detected genes in the transcriptome of each biological fluid. For every tissue type there 

are a number of tissue-specific transcripts. Additionally, there are 1,875 universal 
transcripts that are common to all of the sample transcriptomes.  

 
 
 

For each of the tissues, there are a significant number of transcripts that are 

sample-type specific. Specifically, there are 1,449 blood specific transcripts,124 saliva-

specific transcripts, 211 vaginal fluid-specific transcripts, and 1,712 semen-specific 

transcripts. These pools of tissue-specific transcripts provide a population for the 

selection of tissue-specific markers to estimate sample age. In addition to sample-specific 



84 

 

transcripts, there were also 1,875 transcripts common to all of the sample types. This pool 

of transcripts provides a population for the selection of universal markers of sample age 

that can be utilized with every sample type. 

 

 Identification of Markers for Sample Age Estimation 

 Having the degradation profile of the transcriptome for each fluid and tissue 

(consisting of thousands of transcripts per sample type) allows for the guided 

identification of mRNA transcripts that have degradation patterns and rates that most 

closely correlate with sample age. Different mRNA transcripts were identified as 

correlating to short, mid, or long-term sample age. Data analysis for mRNA candidate 

marker identification was performed in Microsoft Excel and Statistical Analysis Software 

(SAS). Short-term age mRNA markers disappear early in the degradation analysis (before 

60 days). Candidate mRNA transcripts for short-term markers of sample age are present 

in the time 0 sample, but drop below detectable sequence levels by the first measured 

time point (1 month in blood, 2 months in saliva, semen, and vaginal fluid). Short term 

markers should have a large negative slope and a high r2 value. Mid-term age mRNA 

markers are identified as having a steady linear degradation rate and drop below 

detectable sequence levels by middle time points (2, 4, 6, or 9 months in blood; 4 or 6 

months in saliva, semen, and vaginal fluid). All markers selected for mid-range markers 

should have a measurable abundance at several time points and should have a strong 

negative slope and high r2. All mid-term candidate mRNA markers have a clear linear 

decrease in abundance as samples age and drop below detectable levels before the final 

time-point (180 days or 360 days). Finally, candidates for long-term sample age 
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estimation are identified as transcripts that are present over all of the sequenced time 

points. Candidates for long-term sample age estimation have a negative slope and a high 

r2.  

 Candidate markers for sample age estimation were identified with consideration 

for tissue specificity. Markers were identified that are unique to each of the tissues, to 

allow for tissue-specific estimation of sample age. Tissue-specific markers offer the 

benefit of being applicable in a mixed sample scenario, where each fluid in the mixture 

could have a unique estimate for sample age. Additionally, fluid-specific markers reflect 

fluid-specific mRNA degradation patterns and profiles. Markers were also identified that 

were found in every tissue that was analyzed. Universal mRNA markers for sample age 

have the benefit of being widely applicable. These markers could potentially be 

developed into an assay that would be applicable for use with a wide variety of sample 

types. Both types of markers (tissue-specific and tissue-nonspecific) were identified for 

future investigation. 

 

 Universal Markers of Sample Age   

 To identify universal transcripts that degrade predictably and could be useful to 

estimate sample age, the 1,875 transcripts found in every biological fluid type were 

evaluated based on degradation rate of each transcript across all of the samples. The slope 

and r2 value for every transcript in the universal population was calculated for each tissue 

type. Transcripts were first separated based on when they disappeared from each of the 

sample types. Transcripts that disappeared by the 6 month time point in all sample types 

were placed into one group (short-term markers of sample age). Transcripts that never 
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dropped out, (i.e. were detected at every time point in every tissue type) were placed into 

a second group (long-term markers of sample age). Within each group, transcripts were 

further filtered based on r2 value. All transcripts with a tight linear degradation rate (r2 > 

0.8) were kept for further consideration. After filtering based on a consistent degradation 

trend across all sample types, and on r2 values, there were eight transcripts that qualified 

as potential mid-term mRNA markers for sample age and ten transcripts that qualified as 

long-term markers for sample age. Two example universal mid-term sample age markers, 

SERPINB2 and SPINT1 are displayed in Figure 20. All of the fluid types have 

SERPINB2 and SPINT1 present in the fresh sample (time 0), but both of these transcripts 

have dropped-out from all sample types by 6 months. While no mRNA markers were 

present in all samples at the same starting abundance, the presence or absence of these 

mRNA transcripts in a tissue could be an indicator of approximate sample age. Further 

validation is needed with a larger sample number.  



 

Figure 20. Universal mRNA Markers of Mid
two example universal mRNA markers of mid
SPINT1. Both of these transcripts are present in all four analyzed tissues in fresh 

samples, but drop
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Universal mRNA Markers of Mid -term Sample Age. These graphs displa
two example universal mRNA markers of mid-range sample age, SERPINB2 and 
SPINT1. Both of these transcripts are present in all four analyzed tissues in fresh 

samples, but drop-out by 6 months in all sample types. 

Two example universal long-term sample age markers, ACTB and and FTH1 are shown 

in Figure 21. Similar to the mid-range mRNA markers, there are no transcripts that have 

 
These graphs display 

range sample age, SERPINB2 and 
SPINT1. Both of these transcripts are present in all four analyzed tissues in fresh 

 

e markers, ACTB and and FTH1 are shown 

range mRNA markers, there are no transcripts that have 
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the same starting abundance in all tissues and remain present throughout all time points. 

However, both ACTB and FTH1 are present at time 0 in all sample types and do not 

drop-out at any time. Both of these transcripts had measurable abundance in all of the 

sample types at the latest measured time point (6 months or 12 months).  

 While these transcripts on their own cannot be used to estimate the age of a 

sample, these data demonstrate that there are universal mRNA transcripts that appear to 

have unique degradation rates. As these transcripts are common to all tissues, a couple of 

them (for example, one mid-range marker and one long-range marker) could be 

combined with analysis of rRNA in a real time assay. Several studies have documented 

the stability of rRNA over an extended period of time. Thus, rRNA provides an excellent 

steady baseline and long-term marker of sample age. The universal mRNA markers 

documented in this study could be combined with rRNA in the development of a qPCR 

assay designed to measure transcript abundance. A qPCR assay would facilitate the rapid 

assessment of these RNA products in a large sample population. Sample age may be 

estimated from the presence or absence of different markers and their specific abundance 

level in the sample. Based on the sequencing data of aged samples, the mid-range mRNA 

marker would be expected to decrease with the fastest rate and disappear first from 

samples. The long-range mRNA marker would be expected to decrease at a slower rate 

and disappear at a later time point (after 6 months, according to our sequencing data).   



 

Figure 21. Universal mRNA Markers of Long
display two example universal mRNA markers of

FTH1. Both of these transcripts are present in all four analyzed tissues in fresh samples, 
and do not drop out of detection for the entire time course.
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Universal mRNA Markers of Long-term Sample Age. 

display two example universal mRNA markers of long-range sample age, ACTB and 
FTH1. Both of these transcripts are present in all four analyzed tissues in fresh samples, 

and do not drop out of detection for the entire time course.

 

term Sample Age. These graphs 
range sample age, ACTB and 

FTH1. Both of these transcripts are present in all four analyzed tissues in fresh samples, 
and do not drop out of detection for the entire time course. 
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The idea of a universal mRNA marker of sample age is attractive, as the existence 

of universal markers would facilitate the development of a generic sample age estimation 

assay. However, a universal assessment of mRNA degradation would not necessarily 

produce the most accurate estimation of sample age for every sample type. Our 

transcriptome abundance data for each tissue type over a 12-month or 6-month time 

course demonstrate that each tissue has an individual transcriptome degradation rate. The 

presence of a unique transcriptome degradation profile for each sample type is evidenced 

by the examination of the number of transcripts detected at each time point for each 

tissue type (Figure 9), and by the presence of unique degradation rates among identified 

tissue-specific mRNA markers (Figures 15-18). For instance, as previously discussed, our 

data indicate that the transcriptomes of blood and semen appear to be degrading at a 

slower rate than the transcriptomes of saliva and vaginal fluid. 

 The notion that transcripts degrade at different rates in different sample types is 

further supported by consideration of the identified universal mRNA markers for long-

term sample age estimation. Take for example, the β-actin transcript (ACTB) presented in 

figure 20. While ACTB is present at a measurable abundance level in all of the analyzed 

time points for each of the sample types, the starting abundance and degradation rate 

(slope) for this transcript is not consistent across all tissues (Figure 20). Thus, previous 

sample age estimation assays utilizing β-actin may not be equally applicable to all sample 

types (S. E. Anderson et al.., 2011). Due to a unique abundance and rate of degradation of 

ACTB in each sample type, simply monitoring the abundance of this transcript on its own 

or in relation to another transcript would not necessarily correlate with sample age. If a 

universal mRNA marker is going to be applied in the estimation of sample age, it is 
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imperative that the analyst know the identity of the sample they are working with, so data 

analysis and conclusions can be adjusted to fit the known transcript degradation profile 

for that specific sample type. Due to the presence of distinct RNA degradation rates in 

each sample type, evaluation of fluid-specific markers may be more indicative of actual 

sample age.  

 

Tissue-specific Markers of Sample Age 

Upon comparison of transcript populations between each of the different fluid 

types, there were 1,449 transcripts identified as being unique to blood (Figure 19). For 

further analysis, the population of blood-specific transcripts was sorted into groups based 

on when transcript drop-out occurred (1, 2, 4, 6, 9, or 12 months, or drop-out not 

observed). Those transcripts that dropped-out by 1 month or 2 months are considered 

good candidates for short term age estimation. The transcripts that dropped out by 4, 6, or 

9 months are considered good candidates for mid-term sample age estimation. The 

transcripts that did not drop out until 12 months or were found to have abundance in all 

of the sampled time points are considered good candidates for long-term sample age 

estimation.  

With several possible candidates in each of the distinguished groups, transcripts 

with a similar time 0 abundance, but different drop-out times could be selected (Figure 

22). This approach for selecting possible candidate markers for sample age estimation in 

blood would allow for the determination of the approximate age of a sample based on the 

presence and specific abundance of a set of transcripts. If multiple transcripts all have the 

same starting abundance, but drop-out of sequencing detection at different time points 
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(spanning 1 to 12 months), those transcripts are degrading at different rates. Transcripts, 

identified as having distinct degradation rates, can be exploited for sample age 

estimation. If these transcripts (or a representative, short-range, mid-range, and long-

range marker) were monitored in bloodstains, the approximate age of the bloodstain 

could be estimated based on the presence or absence of specific transcripts and the 

abundance of the detected transcripts. 

 

 
 

Figure 22. Select Blood-specific mRNA Markers of Sample Age. Select blood-specific 
mRNA markers for sample age estimation are displayed. One marker from each drop-out 

time (1, 2, 4, 6, 9, and 12 months and no-drop out observed) was chosen. The markers 
presented in this figure are representative of several possible markers present for each 
drop-out point. These markers were selected based on having similar time 0 abundance 
levels, which may facilitate their comparison when attempting to age a sample based on 

relative transcript abundance levels.  
 

 

An example of how blood-specific transcript data may be used to estimate the 

approximate age of a sample can be found by reviewing figure 21. A sample of unknown 
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age could be profiled for the presence and abundance of these genes. The detection of 

OCM2, among other transcripts, would indicate that the sample was less than 30 days 

old. If, however, the only transcript detected in the sample was LY9, one might conclude 

that the sample was more than one year old. As this sequencing data are only composed 

of 2 samples, and has a required detection level of 200 bp fragments, these data are not 

definitive for estimating sample age and should only be used as a guide for the 

development of future assays that can be used to screen a larger number of samples. 

These data can provide an excellent roadmap for selection of transcripts that are likely to 

be successful biomarkers for short-, mid-, and long-range blood stain age estimation. 

A similar data analysis pipeline was used with the other sample types to identify 

possible tissue-specific mRNA markers of sample age in saliva, vaginal fluid, and semen. 

The populations of sample-specific mRNA consisted of 124 transcripts specific to saliva, 

211 transcripts specific to vaginal fluid, and 1,712 transcripts specific to semen. 

Transcripts specific for each tissue type were sorted based on when drop-out occurred (2 

months, 4 months, 6 months, or drop-out not observed). Splitting the data into four 

groups based on transcript drop-out time allowed for the identification of possible tissue-

specific markers of short-term age estimation (transcripts that disappeared by 2 months), 

mid-term age estimation (transcripts that disappeared by 4 or 6 months), and long-range 

age estimation (transcripts that have detectable abundance at all sampled time points).  

Select tissue-specific markers of sample age have been presented for saliva, vaginal fluid, 

and semen (Figure 23). As with blood, the selected markers for these fluids are 

representative of transcripts from each drop-out group (drop-out by 2, 4, and 6 months 

and drop-out not observed). Also similar to blood, the selected representative mRNA 
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markers of sample age in saliva, vaginal fluid, and semen were selected for their similar 

starting abundance values (abundance at time 0). It should be noted that the starting 

abundance values for the four vaginal fluid transcripts are more spread. The wide spread 

of starting abundances in vaginal fluid can be attributed to the absence of transcripts in 

each group that have similar starting abundances. Additionally, it should be noted that 

there is no saliva-specific transcript that drops-out of detection between 4 and 6 months.  

As with blood, the identified markers for saliva, vaginal fluid, and semen may be 

indicative of sample age based on their presence or absence within a sample and their 

abundance. The selected markers are excellent candidates for further investigation with 

qPCR, allowing for a larger sample size to be evaluated.  

 The tissue-specific markers identified in this study may offer more power in 

estimating sample age then the universal markers that were identified. While more 

cumbersome for assay development, as one assay would potentially have to be developed 

per tissue, tissue-specific markers have the benefit of matching each specific biological 

fluid’s unique degradation profile. While universal markers may be present in all sample 

types, these transcripts do not necessarily degrade at the same rate in all sample types. 

Tissue-specific markers allow for the selection of markers that have established 

degradation rates within a given sample type. This study has demonstrated that RNA 

degradation does not occur equally in all biological fluid types, thus sample –specific 

markers should be considered for the most accurate assessment of sample age.  

 



 

Figure 23. Select Tissue
mRNA markers for saliva, vaginal fluid, and semen are presented. One marker for each 
drop-out time (2, 4, and 6 months and no drop
These markers are representative of larger groups of transcripts present for each drop
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Select Tissue-specific mRNA Markers of Sample Age. Select fluid

mRNA markers for saliva, vaginal fluid, and semen are presented. One marker for each 
time (2, 4, and 6 months and no drop-out observed) is presented for each fluid. 

These markers are representative of larger groups of transcripts present for each drop
time.  

 

Select fluid-specific 
mRNA markers for saliva, vaginal fluid, and semen are presented. One marker for each 

out observed) is presented for each fluid. 
These markers are representative of larger groups of transcripts present for each drop-out 
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Conclusions 

 This study provides the first comprehensive analysis of ex vivo transcriptome 

degradation in four forensically relevant biological fluids. If RNA analysis is going to be 

adapted into routine forensic casework, it is critical that a more in-depth understanding of 

mRNA degradation patterns and profiles is established. In addition to providing baseline 

knowledge of the relationship between RNA degradation and sample age, establishing the 

behavior and profiles of ex vivo RNA samples is critical in other areas as well. If 

researchers and forensic personnel want to rely on the use of mRNA biomarkers for 

investigative purposes, including tissue identification and molecular autopsy findings, 

having a complete understanding of those transcripts in an ex vivo context is necessary. 

This study provides a database of mRNA transcripts present in fresh and aged samples at 

several time points spanning up to six months (saliva, vaginal fluid, and semen) or one 

year (blood). The transcriptome abundance data for each tissue type indicate that while 

mRNA is degrading in all sample types, specific transcript degradation rates can vary 

between different fluid types. The observed differences in transcript degradation rate can 

be attributed to a number of factors, including transcript starting abundance (level of 

abundance in a time 0, fresh sample), transcript environment (every fluid has a unique 

profile of cells and microbial organisms), and sample type.  

The data generated in this study provide evidence that analyzing a single or a few 

generic transcripts (housekeeping, rRNA) may not be the most effective way to estimate 

sample age in a range of tissue and fluid types. Rather, the data generated in this study 

indicate that there are tissue-specific differences in RNA degradation rate that may affect 

the interpretation of RNA degradation data. One RNA assay and set of data analysis 
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guidelines may not be applicable to all sample types. Being aware that there are tissue-

specific differences in RNA degradation will allow for the proper selection and analysis 

of tissue-specific markers for sample age estimation.   

It is important to recognize that the age estimation markers identified for blood, 

saliva, vaginal fluid, and semen are selected from a sample size of two technical 

replicates at each time point for each fluid type. Due to the small sample size, these 

markers should not be considered absolute markers of sample age. Rather, these data 

should be used as guidance for selecting markers for further investigation with larger 

numbers of samples.  The markers outlined in figures 21 and 22 are representative 

transcripts that have distinct degradation profiles in each of the tissue types. Thus, these 

markers warrant further investigation as possible markers for establishing sample age. 

Further investigation of markers identified from the full transcriptome degradation data 

for each sample type should be performed on lower cost, higher throughput technologies, 

such as RT qPCR. Simple qPCR assays could be designed to monitor identified 

transcripts for each fluid type and a larger number of samples could be screened to 

investigate the observed mRNA degradation trends for confirmation of their correlation 

to approximate sample age. 
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CHAPTER V 
 

 

CONCLUSIONS 

 

 

As research continues to evolve on the recovery and analysis of RNA from post-

mortem tissues and forensic samples recovered from crime scenes, the possibility of 

RNA analysis playing a routine role in forensic casework increases. A critical point in the 

application of RNA analysis in forensic investigation is the development of a thorough 

understanding of RNA behavior in ex vivo samples. This study had two major goals 

concerning the analysis of mRNA in deposited samples. First, we developed an RNA-seq 

methodology and RNA-seq analysis pipeline for aged samples that consistently exceeded 

several stringent quality control measures that ensured that good sequencing data was 

obtained. The development of methods that accommodate degraded samples was 

imperative for the successful analysis of forensically relevant sample types. Additionally, 

we aimed to do all analysis on an RNA-seq platform as opposed to using the more 

traditional qPCR or capillary electrophoresis platforms, in order to gain a complete 

picture of the mRNA in aging samples. The second major goal of this study was the 

analysis of total mRNA in fresh and aged biological fluid samples of forensic relevance 
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(blood, saliva, vaginal fluid, and semen). The results of this study are the first 

comprehensive mRNA dataset in fresh and aged samples. The data produced in this study 

provide the first global look at how the transcriptome is fluctuating as deposited samples 

age. From these data, a greater understanding of specific transcript degradation rates and 

profiles can be gained for each sample type. In addition to outlining the degradation 

patterns of the transcriptomes of four different biological fluid stains, this study identified 

both universal and tissue-specific mRNA markers of sample age that warrant further 

investigation in a larger sample population. Specifically, the identification of these 

markers has the potential to facilitate assay development for assessing the age of 

deposited biological fluid samples.  

 

Potential Impact  

This research has potential impact not only in the field of forensic biology, but 

also in the field of medicolegal death investigation. This is the first organized study of 

full transcriptome degradation in human body fluids and tissues. While RNA degradation 

has been studied previously, only very few transcripts have ever been included in 

degradation analysis. The results of this study include total mRNA sequence data for a 

variety of sample types (blood, saliva, semen, and vaginal fluid) over several time points, 

spanning up to one year. This study has yielded the first comprehensive transcriptome 

sequencing dataset that includes fresh and aged biological samples over a period of 

several months to one year. These results provide a wealth of data, demonstrating mRNA 

degradation patterns and rates for each specific transcript present in each sample type. 

These transcriptome degradation data have the potential to aid investigators looking for 
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mRNA markers for post-mortem or forensic sample analysis. Use of RNA analysis is 

increasing in forensic investigations (including in the growing field of molecular 

autopsies). If investigators plan to use any specific mRNA transcripts in their 

investigations, it is critical that the ex vivo degradation pattern and rate for each transcript 

of interest be understood. The global data obtained from this study will provide an 

excellent starting point for investigators to determine the ex vivo degradation of 

individual transcripts of interest. Full transcriptome data from a fresh sample are 

valuable, but this dataset takes transcriptome sequencing further into the applicable realm 

of forensic science, providing data on aged and degraded samples as well. If RNA 

analysis is ever going to be successfully applied in forensic science, it is critical that 

investigators understand the behavior of transcripts in aged, as well as fresh samples. 

  

Future Directions  

 While the results of this study are comprehensive in that they provide the first set 

of mRNA sequencing data for fresh and aged forensic samples, many questions were 

initiated by this research that deserve further investigation. In particular, more 

investigation is needed concerning the specific mechanism of ex vivo mRNA 

degradation. Additionally, deeper analysis of the microbiome mRNA population of saliva 

and vaginal fluid may be relevant to assessing the age of those sample types. Finally, the 

development of qPCR assays for further investigation of identified mRNA markers for 

sample age estimation will be performed in future work. 

The results of this study indicate that the starting abundance of a transcript (the 

abundance of a transcript in the time 0, fresh sample) directly impact the degradation rate 
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of that sample. In general, transcripts that last longer in an ex vivo samples have higher 

starting abundances in the fresh sample (Figure 10). However, the results of this study 

also clearly indicate that the starting abundance of a transcript is not the only factor that 

affects transcript degradation rate. It is apparent that factors other than starting abundance 

are important when transcripts are easily identified in all tissue types that have similar 

starting abundance values but drop-out of sequencing detection at different time points 

(Figures 11, 12, 13 and 14). However, while it is apparent that other factors are 

influencing transcript degradation rate, more investigation is needed to determine what 

these specific factors are. Several factors should be evaluated in this effort, including 

transcript length and transcript secondary structure, both of which could have a direct 

influence on the stability of a molecule.   

Two of the fluids surveyed for this study, saliva and vaginal fluid, have a large 

microbial population that influenced the amount of human mRNA that was recoverable 

from those sample types. While these samples did present a challenge due to the reduced 

amount of sequencing reads available for human transcripts, the mRNA of the 

microbiome of these samples does warrant further investigation for a possible correlation 

with sample age. On average, over 90% of the unaligned sequencing reads from the 

saliva and vaginal fluid samples mapped to either the HOMD or RefSeq databases. Initial 

assessment of the microbiome mRNA population has been performed for saliva (Figure 

4, Appendix 2). The saliva mRNA data aligning to the HOMD database suggests that 

there is some fluctuation in the microbial populations of the saliva stains as they age. 

Evaluation of the microbiome of fresh samples in comparison to aged samples may 

reveal that there is a shift in the microbial population that corresponds with approximate 
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sample age. The vast majority of sequencing reads for both saliva and vaginal fluid 

aligned to microbial genomes (over 75% for both saliva and vaginal fluid), thus these 

sequencing reads warrant further investigation in future transcriptome analysis of these 

sample types.  

The results of this study provide a baseline for the mRNA populations and 

degradation rates in individual biological fluid types. The data generated in this research 

will be used to develop qPCR assays for assessing the age of each sample type (blood, 

semen, saliva, and vaginal fluid) using data obtained from sequencing fresh and aged 

samples. The point of utilizing full transcriptome degradation data is so we can make an 

educated decision in selecting the most accurate markers for short-, mid-, and long-term 

age estimation for each individual sample type. Developed qPCR assays for sample age 

determination will be specifically designed to include the mRNA transcripts that have 

degradation rates and patterns most closely related to sample age, as reflected in the 

mRNA sequencing data for each sample type. The creation of qPCR assays allows for 

easy adaptation into high throughput, low cost sample analysis. Being able to determine 

the approximate age of a sample using a simple qPCR assay would greatly benefit both 

the fields of forensic biology and forensic pathology. Determining the time-since 

deposition of a sample would directly aid in providing a time-line of events surrounding a 

crime. While other qPCR assays have been developed to assess sample age, no assay is 

currently in regular use in forensic labs. By utilizing transcript degradation profiles 

generated from mRNA sequencing, the future development of qPCR assays will include 

transcript targets that are observed to degrade at specific rates in each tissue type, rather 
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than relying on the presence of housekeeping genes that are only assumed to degrade at a 

constant rate in every tissue type. 
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APPENDICES 
 

  
 

APPENDIX A: Comprehensive Literature Search Results for Tissue-specific mRNA 
Markers 

 

Venous Blood 

Marker Cross-Reactivity Source 

CD93 menstrual blood 

Lindenbergh (2012)         

Zubakov (2009)    

Zubakov (2008) 

AMICA1 menstrual blood 

Lindenbergh (2012)         

Zubakov (2009)    

Zubakov (2008) 

HBB menstrual blood 

Lindenbergh (2012)            

Haas (March 2009, 

Jan 2011, Nov 2011)               

Wobst (2011) 

ALAS2 semen 

Richard (2012)       

Juusola (2007)                 

Haas (Nov 2011) 

PPBP   Park (2012) 

Beta-Spectrin (SPTB) vaginal secretion 

Patel (2008)                

Haas (2008)                   

Juusola (2005, 2007)         

Haas (March 2009, 

Nov 2011) 

porphobilinogen 

deaminase (PBGD) 
  

Juusola (2005)        

Patel (2008)             

Haas (2008, March 

2009, Jan 2011, Nov 

2011)                   

Wobst (2011) 
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HBA   
Nussbaumer (2006)        

Haas (Nov 2011) 

ALOX5AP   Zubakov (2008, 2009) 

AQP9  
Zubakov (2008, 2009)                 

Haas (Nov 2011) 

ALOX5AP   Zubakov (2008, 2009) 

AQP9   
Zubakov (2008, 2009)                 

Haas (Nov 2011) 

ARHGAP26   Zubakov (2008, 2009) 

C1QR1   Zubakov (2008, 2009) 

C5R1   Zubakov (2008, 2009) 

CASP1   Zubakov (2008, 2009) 

MNDA   Zubakov (2008, 2009) 

NCF2   Zubakov (2008, 2009) 

Ankyrin 1 (ANK1)   
Fang (2006)              

Haas (Nov 2011) 

CD3G 

 

Haas (Nov 2011) 

Glycophorin A   Fleming (2010) 

 

Saliva 

Marker Cross-Reactivity Source 

KRT4 

vaginal mucosa, 

menstrual secretion, 

and skin samples 

Lindenbergh (2012)         

Zubakov (2009)    

Zubakov (2008) 

KRT13 

vaginal mucosa, 

menstrual secretion, 

and skin samples 

Lindenbergh (2012)         

Zubakov (2009)    

Zubakov (2008) 

SPRR2A 

vaginal mucosa, 

menstrual secretion, 

and skin samples 

Lindenbergh (2012)         

Zubakov (2009)    

Zubakov (2008) 

STATH (Statherin)  nasal secretions  

Lindenbergh (2012)         

Richard (2012)     

Sakurada (2009)       

Patel (2008)       

Juusola (2003, 2005, 

2007)                 

Haas (2008, March 

2009)                  

Wobst (2011)     

Fleming (2010) 
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HTN3 (histatin 3)   

Lindenbergh (2012)         

Richard (2012)     

Sakurada (2009)       

Patel (2008)                      

Juusola (2003, 2005, 

2007)                                      

Haas (2008, March 

2009)                               

Wobst (2011)     

Fleming (2010) 

FDCSP   Park (2012) 

PRB1   Juusola (2003) 

PRB2   Juusola (2003) 

PRB3   Juusola (2003) 

PRB4   Fang (2006) 

SPRR1A   Zubakov (2008, 2009) 

KRT6A   Zubakov (2008, 2009) 

 

Semen 

Marker Cross-Reactivity Source 

PRM1 (Marker for 

Sperm) 
  

Lindenbergh (2012)       

Patel (2008)                            

Haas (2008, March 

2009, Dec 2009)       

Juusola (2005, 2007)       

Bauer (2003)                   

Wobst (2011) 

SEMG1   

Lindenbergh (2012)      

Sakurada (2009)          

Haas (Dec 2009)           

Fang (2006) 

PRM2 

 

Richard (2012)    

Sakurada (2009)           

Patel (2008)               

Haas (2008, March 

2009, Dec 2009)         

Juusola (2005, 2007)      

Bauer (2003)                           

Fleming (2010) 
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TGM4   

Richard (2012)                

Fang (2006)                     

Wobst (2011)       

Fleming (2010) 

MSMB   Park (2012) 

KLK (PSA)   
Nussbaumer (2006)           

Haas (Dec 2009) 

MCSP   Fang (2006) 

 

Vaginal Secretion (Mucosa) 

Marker Cross-Reactivity Source 

MUC4 Saliva 

Lindenbergh (2012)         

Richard (2012)          

Patel (2008)                                

Haas (2008, March 

2009)                       

Nussbaumer (2006)      

Juusola (2005) 

HBD1   

Lindenbergh (2012)            

Patel (2008)                          

Haas (2008, March 

2009)                                  

Juusola (2005) 

MSLN   Park (2012) 

CYP2B7P1   Hanson (2012) 

MYOZ1   Hanson (2012) 

ESR1 Semen, Saliva Fang (2006) 

16S-23S rRNA 

intergenic spacer 

region for 

Lactobacillus gasseri 

(GASS) 

menstrual blood Wobst (2011) 
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Appendix B: Percent of Contigs Aligned to the HOMD Database for Saliva RNA-seq 

Samples 
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