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Abstract: 
 
Embedded systems comprise the majority of all computer systems.  Embedded systems 
require many considerations that general purpose computers do not.  This is especially 
true of real time systems, which must reliably perform within exact parameters.  Despite 
this, embedded systems have not been subject to as extensive an analysis in the literature 
from the viewpoint of someone wanting to develop an embedded product.  Since failing 
to understand the characteristics required for developing embedded systems can cost 
money and even lives this is a problem.  As such the specialized and esoteric nature of 
the information is readily available is insufficient for those looking to quickly and 
cheaply develop a product.   
 
In this thesis the QP State machine framework is discussed.  This is done for the goal of 
helping the reader understand both how the framework functions as well as why it is 
useful for developing real time embedded systems.  Additionally, an attempt is made to 
make the concepts understandable from the perspective of a reader new to the intricacies 
of computing in embedded systems. 
 
The specific implementation of the framework is done using only freely available 
software capable of running on an ordinary PC, as well as two Arduino UNO 
development boards.  With the addition of a spreadsheet program, the timing 
characteristics of the framework are explored both on the theoretical and practical level 
with microsecond precision.          
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CHAPTER I 
 

 

INTRODUCTION 

Today’s world is one of rapid, exponential, change.  This is especially true in regards to that 

uniquely human pastime of making tools, and applying those tools to every aspect of our lives.  

As a result, we are surrounded every day by the products of technology.  Those products are 

increasingly complex.  Yet those products are expected by those who buy and use them to be 

increasingly convenient.  Paradoxically, we continue to expect new devices to be both 

improvements on previous generations and continue improving at the same rapid pace, month-by-

month, year-by-year.  Since the human capacity for thought is comparatively static, the approach 

to the dealing with the increasing complexity of development must be in how we think and the 

tools we use.  Further, in order to better approach the problem, we must first understand the 

problem better. 

 Each day in 1985, the average person encountered around 3 micro-controllers.  In 1990 that 

number had grown to 10.  In 1995 the estimate was 50, from things like microwaves (1), cars (up 

to 10 as of 1995), and jets who might have a 1000 (Auslander, Ridgely, & Ringgenberg, 2002). 

As of 2009, automobile manufacturers were reporting an average of between 35 and 45 

microcontrollers per car with luxury cars averaging 40 to 50, and BMW’s 7 Series using up to 70 

(Murray, 2009).  If cars can be used as a benchmark for the number of microcontrollers 

encountered, a person may have encountered around 200 or more each day in 2009.  Further 

complicating the issue is that as time goes on, newer chips are developed and deployed, and older 
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ones become obsolete.  For instance the common brand Microchip, currently supplies 734 

different micro-controller units. (Microchip Technology Inc., 2012)  While some of these MCUs 

may be able to use identical code, many will not.  Thus Microchip Technology Inc. can produce 

hundreds of distinct chips.  Given that Wikipedia lists 37 different “common” brands (Wikimedia 

Foundation, Inc., 2012), the variety of different hardware platforms potentially numbers in the 

thousands today.  That variety is likely to continue to grow as time goes on.  Thus, developers 

must often choose a balance between the depth and breadth to which their development teams 

understand the hardware available.  Choosing too much depth and too little breadth can result in 

suffering the limitations of the chosen hardware and forgoing the benefits of that not chosen.  Too 

much breadth and too little depth can prevent fully exploiting used hardware as well as potential 

bugs due to poor understanding of the hardware’s limitations.  Both choices can be disastrous for 

a developer, whether a small one-person start-up, or a multi-national titan of industry.  Strategies 

that allow for increasing both depth and breadth of understanding are thus of immense value. 

Speaking of value, as computerized products become more ubiquitous, an increasing number of 

those products are high volume and or low cost.  The low profit margins of low cost products, in 

tandem with the multiplicative effect of high volume products means that the cost per unit 

dedicated to the computational tasks is of critical importance.  That cost can easily make the 

difference between an economical product and failed product.  For instance Apple announced 

that, as of March 2011 they had sold approximately 108 million iPhones worldwide (Costello, 

2012).  That means that even a penny difference in the cost of the microcontrollers or 

microprocessors in the iPhone would have made a difference of over one million dollars.  Thus it 

can be seen, although given a somewhat extreme example, that being able to efficiently utilize the 

resources of a given chip allowing for the use of less and cheaper hardware can make a huge 

difference in the viability of an endeavor.  This means that a method of designing and developing 

software which avoids the use of excessive target hardware resources such as memory, RAM, 
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cycles, etc. is immensely more critical in embedded and low profile applications than it is in 

general purpose computing environments such as desktop and laptop computers. This is an 

important consideration as general purpose computers and microprocessors often have orders of 

magnitude more resources than embedded systems and microcontrollers, and as such often 

approach some programming tasks in an entirely different manner.  Memory management is a 

good example as many programmers use heap memory, such as that provided by C language’s 

functions malloc() and free().  This is a problem because the mechanism used is non-deterministic 

and often wastes memory through memory fragmentation (Walls, 2010).  This is unacceptable to 

the resource-limited and often time-critical application of embedded systems and 

microcontrollers.   Non-deterministic behavior is often worked around in general purpose 

applications by relying on the brute force of fast and power hungry microprocessors to handle the 

task in time.  In the typically slower microcontrollers of embedded applications this strategy is 

less useful.  In time-critical or safety applications, it is completely unacceptable to simply hope it 

will be done in time.  Memory fragmentation is also likewise often ignored as the typical general 

computer has large amounts of RAM memory, and can often use hard-drive space as well.  Even 

a slow continual leak of memory is often handled by restarting the computer.  This often takes 

care of itself automatically because general-purpose computers are often restarted on a daily 

basis.  An embedded system on the other hand may have only a few hundred bytes or kilobytes of 

available memory and may be expected to run undisturbed for years at a time, so ANY memory 

fragmentation might lead to a catastrophic failure costing money or lives.  Speaking of brute force 

application of resources, the approach to designing and programming computerized systems must 

also take into account another important component of cost, time. 

The time that it takes to develop a product is critical to the economics of the product.  For one, 

there are the direct costs of time, wages of the personnel working on the project.  Between the 

engineers, programmers, managers, and so on, personnel costs can accrue rapidly while 
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development is ongoing.  Further, direct costs like wages are not the only costs associated with 

prolonged development time.  A developer that can shorten their development times has a much 

greater range of strategic options regarding product and market forces.  For instance, Widget 

Limited finishes primary development in 3 months, while their competitor Gadget-Ware takes 6 

months.  Widget Limited can choose to deploy first, gaining first mover status, and the associated 

advantages and disadvantages.  Or Widget Limited might take the 3 extra months to test the 

waters, refine the product, and penetrate the market so as to have a superior product and customer 

image when both release.  Other options are of course available and the subject of an extensive 

body of research, but Widget Limited has an undeniable strategic advantage over Gadget-Ware, 

due to having a greatly increased number of options.  A further, indirect cost of development 

time, especially in software applications, is in product refinements.  A development strategy that 

allows for rapid, yet predictable, change allows a developer greater responsiveness to flaws or 

shortcomings in products, reducing the impact of unexpected events during development.  

Further, if a developer is unable to respond in a fast and effective manner to a bug or flaw in their 

already released product, they may be passed over next time a customer searches for a supplier 

and can develop a nasty reputation.  This ability to respond rapidly becomes more critical as the 

products become increasingly complex. 

As the progression of home video players demonstrate, we expect our devices to take on an 

increasing set of tasks.  VHS players were once considered perfectly functional with the ability to 

play, pause, stop, rewind, and occasionally to record.  Then came the DVD player, with more 

features like a menu, cursor, scenes, bonus features, subtitles, multiple languages, director 

commentary, etc.  Now we have a new generation of Blue-ray players, of which some even keep 

bookmarks or connect to the internet, accessing remotely stored features.  Even further, these 

Blue-ray players are already facing competition in digital TV boxes which can stream shows and 

movies from services like Netflix or Hulu through an internet connection.   Some of these devices 
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are blurring the line between televisions, stereos, pcs, and even phones.  As these devices take on 

more tasks and features, they become increasingly complex.  This increasing complexity can 

produce nightmares for developers if they do not have sufficient management strategies.  This 

complexity means that even coming up with an exhaustive feature and specification list for a 

product can become a monumental task.  Many development methods require such a list before 

development can even begin.  Without the ability to efficiently partition individual aspects of a 

products behavior, clearly describing that behavior can be difficult.  Without a clear idea of how a 

product behaves, implementing that behavior is made more difficult and a developer will have 

even larger hurdles for any new introduction or changes.  This complexity and how a developer 

deals with it largely define how the development process progresses. 

A common means of dealing with the complexity of a system is to distribute the system.  This 

distribution is done by abstracting away groups of behavior into subsystems.  This distribution 

takes place both in hardware and the development team itself.  A car, for instance, may have 

different hardware controlling the engine, the brakes, the environmental controls, media devices, 

the lights, sensors, etc.  Often these subsystems may have different people working on them, in 

parallel.  Even on the software level, there are things like the user interface, hardware drivers, 

operating systems, applications, memory management, and various other distinct groups of 

behavior which need to be addressed.  This distribution across both teams and hardware means 

that successful strategies must concisely and precisely define how each group of behavior 

interacts.  These descriptions are important so that each subsystem can be the focus of its 

respective hardware and development sub-team.  By describing each group of behavior both 

concisely and precisely, complexity can often be abstracted away.  This allows the sub-team to 

effectively ignore the complexity of the overall system and focus on only one part of the system 

at a time.  If the description is imprecise, the manner in which the subset interacts with the whole 

can be poorly understood.  Poor understanding of these interactions can result in the system 
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failing to work together properly.  Conversely, overly verbose descriptions of how each piece 

behaves, expose sub-teams to too much of the overall system complexity.  This distracts from the 

concentration that can be applied to the individual subsystem, compromising performance.  How 

strategies perform, describe, and implement this distribution of complexity can thus make the 

difference between a mind-numbing mishmash of concepts that break down development and 

hide bugs, to the ordered and efficient creation of a complex, yet deceptively simple and 

effective, product. 

A consequence of partitioning product development across separate, sometimes parallel running, 

sub-teams is specialization.  The brakes of a car, the fuel mixture of the engine, the suspension 

system, the transmission, the environmental controls, and so on are systems whose development 

and understanding often require highly specific, yet varied knowledge.  Assigning someone with 

this detailed knowledge to each subsystem makes sense.  However, requiring each team-member 

to have a detailed knowledge of computer theory, or a teammate who does, can be extremely 

prohibitive.  Most engineers will not likely have both the detailed knowledge of an aspect of 

engineering as well as be comfortable delving into the intricacies of computer theory.  As the 

writer has personally experienced while acting as a teaching assistant, the mindset of a skilled 

mechanical engineer is no guarantee of skill in programming.  Computer science is a separate 

degree program for a reason, the considerations are almost endless.  As a consequence, a 

development team may be composed mostly, or entirely, of members who have limited 

knowledge of computer programming, yet will be expected to program effective code.  Simply 

requiring each parallel team to be watched over or include a computer scientist is cost prohibitive.  

Yet having insufficient understanding can cripple the subsystem.  Thus how well a development 

team and its accompanying software programming strategy deals with this lack of familiarity can 

be critical. 
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As a product is under development, it needs to be tested.  With the high complexity of products, it 

is often impractical to create a complete prototype for testing.  Each piece of the system often has 

to have its individual performance tested, as well as how it interacts with other pieces of the 

system.  One increasingly common and cost effective way of doing this is to simulate parts of the 

system.  This allows different parts of the system to be tested individually and against other parts 

of the system without actually building them.  As the capabilities of simulation software 

increases, this becomes an increasingly important part of the development process (Bartos, 2007).  

However in order to most effectively simulate a system, the software controlling the system needs 

to behave the same in both the simulation and the real system.  One way of doing this is to use the 

same code during both testing and release.  This is easier said than done though as many code 

strategies are very sensitive to hardware changes and have to be effectively rewritten to change 

hardware.  Further, many coding strategies, such as super-loops, have to be extensively rewritten 

in order to implement new features.  This extensive rewriting can radically change the behavior of 

the code, necessitating further testing.  These portability and extension issues mean that a coding 

strategy which produces consistent, predictable behavior is important.  By maintaining this 

behavior, while being both highly portable and insensitive to additions and changes, a strategy 

can greatly increase the effectiveness of simulation and other testing.  Such effective simulation 

and testing can greatly reduce costs, speed development, and catch potential faults early. 

As ever more products become increasingly computerized, reliability and safety become 

increasing concerns.  The concern for reliability, and as a result safety, often trumps performance 

speed and efficiency.  Take for instance the choice between an embedded controller that usually 

responds in a few microseconds, but might freeze or fail under rare circumstances, and one which 

will always respond in a millisecond or two.  The former might be preferable in some instances 

like a graphics card, but not in car brakes or other safety critical systems.  Even non-safety critical 

systems might prefer the latter, such as a sensor placed in a buoy out at sea or other hard to reach 
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systems.  This need for reliability means that the strategy which produces the fastest code is not 

necessarily preferable to one which guarantees that the software will perform at a certain level.  

Of course, no coding strategy can prevent hardware failures.  This need for reliability in both 

hardware and software is one of the reasons why otherwise obsolete microchips continue to be 

used.  Older chips, having been field tested by previous products, tend to have more experimental 

data on failure modes and rates.  This continued use of slower, older, and often power hungry 

chips means that guarantees are not a full substitute for the performance speed of code, but 

instead a constraint.  Thus an effective coding strategy for the increasingly computerized world 

must take into account both efficiency and guaranteed performance simultaneously. 

As we have seen, the changing face of technology means that the choice of coding strategy is 

crucial to the process of product development.  A strategy has many demands that it must be 

measured against.  For one, the sheer number of programming tasks necessary means that it must 

be applicable to a wide variety of applications.  For another, the variety of hardware choices 

means that the strategy must produce highly portable code that is insensitive to hardware 

differences.  The produced code must be compact in order to take advantage of the limited 

resources available.  The strategy must be able to implement and refine code quickly.  The 

strategy must aid the abstraction of the complex tasks it is presented with.  The strategy must 

facilitate distribution of responsibility across development teams and hardware.  The strategy 

must be easily understandable to a wide variety of disciplines.  The strategy must also facilitate 

easy testing of both the complete system and subsystems, even before the product is built.  And of 

course, any coding strategy that is to be used in systems which will be used in remote or safety 

critical systems must be above all else, reliable and guaranteed in its performance. 
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CHAPTER II 
 

 

REVIEW OF SYSTEMS AND PROGRAMMING STRATEGIES 

System types under review 

In order to choose a strategy for development, current strategies must be reviewed and compared 

in their advantages and disadvantages.  As we review these strategies, we must choose and 

remember our focus.  For this paper, the focus will be on three types of systems which are 

becoming increasingly commonplace.  The first of these types is embedded systems.  The second 

type is reactive, or event-driven, systems.  The third, and perhaps most restrictive, is that of real-

time systems.  These three types of systems are neither mutually inclusive nor exclusive, as 

shown in Figure 1 below, yet between them include a wide variety of systems used in many 

aspects of life.  Each of these types of systems has their own considerations which must be 

addressed in their design and will be discussed below.  

The first of the system types under review are embedded systems.  While no strict definition of 

what constitutes an embedded system exists, the following can be said: 

“A general definition of embedded systems is: embedded systems are computing systems with 

tightly coupled hardware and software integration, that are designed to perform a dedicated 

function. The word embedded reflects the fact that these systems are usually an integral part of a 

larger system, known as the embedding system. Multiple embedded systems can coexist in an 

embedding system” (Li & Yao, 2003). 
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developer for the actual task of programming, like a PC with its keyboard, mouse, graphics, etc.  

As might be expected, these characteristics of embedded systems must be taken into account 

during the evaluation of software development strategies.  As these embedded systems become 

increasingly common place, their importance as a topic of focus increases.  At the same time, 

general purpose computers, as opposed to embedded systems, have been the subject of extensive 

research and development over the years.  This disparity in research and development means that 

embedded systems are fertile ground for review. 

The second type of system with which the author is concerned is that of reactive, or event-driven, 

systems.  Event-driven systems are relatively common as many modern operating systems and 

Graphic User Interfaces (GUI) such as Windows are at least loosely event-driven.  Samek gave a 

general description of the importance and characteristics of event-driven systems rather elegantly: 

“Almost all computer systems in general, and embedded systems in particular, are event driven, 

which means that they continuously wait for the occurrence of some external or internal event 

such as a time tick, an arrival of a data packet, a button press, or a mouse click. After 

recognizing the event, such systems react by performing the appropriate computation that may 

include manipulating the hardware or generating “soft” events that trigger other internal 

software components. (That’s why event-driven systems are alternatively called reactive systems.) 

Once the event handling is complete, the software goes back to waiting for the next event” 

(Samek, 2008). 

Samek then goes on to compare this approach with that of sequential control, where the 

“program waits for events in various places in its execution path by either actively polling for 

events or passively blocking on a semaphore or other such operating system mechanism” 

(Samek, 2008).  The problem, as related by Samek, is that “while a sequential program is waiting 

for one kind of event, it is not doing any other work and is not responsive to other events” 
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(Samek, 2008).  It is this contrast in the approach to reacting to events which makes reactive 

systems event-driven.  It is also what makes the ability of the programming strategy to deal with 

multiple potential events in an unpredictable order so important.  Without the ability to respond in 

a logical, predictable, and efficient manner to events, the resulting system may have unacceptable 

performance behavior.  Thus dealing with this behavior is an important characteristic of a truly 

wide-ranging software development strategy.  

The third type of system under review is that of a real-time operating system, or RTOS.  While a 

RTOS is closely related to an event-driven system, it is distinct.  Further increasing the 

importance of a RTOS is that they are often used in embedded systems.  In order to understand 

why this is the case we must first understand what a RTOS is and isn’t.  As summarized by 

National Instruments, “real-time operating systems are designed to run a single program with 

very precise timing. Specifically, real-time operating systems can allow you to: 

• Perform tasks within a guaranteed worst-case timeframe 

• Carefully prioritize different sections of your program 

• Run loops with nearly the same timing each iteration (typically within microseconds) 

• Detect if a loop missed its timing goal” (National Instruments, 2012) 

In contrast to a real-time operating system there are systems running without an operating system, 

and those running general purpose operating systems.   National Instruments stated this 

eloquently in that general purpose “Operating systems like Windows are designed to maintain 

user responsiveness with many programs and services running (ensuring "fairness"), while real-

time operating systems are designed to run critical applications reliably and with precise timing 

(paying attention to the programmer's priorities)” (National Instruments, 2012). 
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These three types of computing systems are often intertwined and related, but are nonetheless 

independent types.  As shown in Table 1 below, a system can be many combinations thereof.  Of 

course due to differences in implementation, two otherwise similar systems might be categorized 

differently.  As might be seen by the examples, real-time operating systems are rarely used 

outside out of embedded systems.  This is because their tendency to focus on running small 

groups of tasks with specific timing means that they are almost always dedicated systems with 

tight hardware interaction and are thus are also embedded systems. 

Description of System Embedded Event-driven  Real-time 
Old PC No No No 
Alarm Clock Yes No No 
Modern Windows PC No Yes No 
Development PC running non-event-driven RTOS No No Yes 
Development PC running event-driven RTOS No Yes Yes 
Touchscreen Yes Yes No 
MRI machine Yes No Yes 
Modern Car Brake Controller Yes Yes Yes 
Table 1: Examples of system classifications 

Coding Strategies 

There are many strategies as to how to organize the various operations performed by a program.  

Each of these strategies has various advantages and disadvantages.  Depending on the nature and 

requirements of the system, the optimal strategy for use can vary.  Below is a discussion of some 

strategies for organizing operations.  As these strategies are more or less extensions and 

specialized cases of each other, the simplest case will be discussed first. 

Sequential Control 

The most basic of strategies for organizing the operations of a program, is sometimes referred to 

as sequential control.  This approach for handling the execution of program operations is more a 

lack of strategy than strategy.  This means that sequential control is mutually exclusive with 
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event-driven or real-time operating systems.  This strategy consists of building the program order 

directly into the outermost main loop as shown in Figure 2 below.   

Figure 2: Example Sequential Control Pseudo-code (left) and Flowchart (right) (Samek, 2008) 

While in some simple programs the sequential control approach can be simple and effective, it 

has many disadvantages.  Event responsiveness can suffer greatly due to the fixed order of code 

execution.  Further, the pre-scripted order in which all tasks occur can result in bloated and 

difficult to follow code.  Lastly, getting task timing precise can be difficult.  These difficulties 

grow rapidly as more code and tasks are added. 

As a program takes on more tasks and events which it must deal with, event responsiveness can 

suffer.  In sequential programming this can be particularly extreme.  By fixing the order of 

program execution, the program can only attempt or wait for one task or event at any given time.  

If a program is not ready for a task when code execution reaches it, the program must either skip 

 

 

Main { 

Initialize(); 

While(…){ 

Task A(); 

Task B(); 

Check for Event C (); 

Task D(); 

… 

} 

End(); 

} 
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the task entirely or wait until the task can proceed.  If the program skips the task, then the 

program is not able to attempt to perform the task again until the code loops all the way around 

again or otherwise explicitly checks readiness.  This can mean that missing the conditions by a 

single clock cycle has the same effect on responsiveness as missing by an entire iteration of the 

program.  Alternatively, the program may choose to simply wait until it is ready for the task or 

the event occurs.  This approach however means that the program can respond ONLY to that task 

or event, and any others must wait until the designated event or condition occurs.  Waiting for a 

relatively unimportant task while being unresponsive to critical events has obvious downfalls, and 

is likely unacceptable in safety or performance-critical applications.  Limiting the time for which 

a program will wait for an event to occur can provide some relief from this problem.  

Additionally, a program may check if a task is ready or an event has occurred in multiple, 

strategically checked places.  However, limited wait times and repeated conditional evaluations 

can rapidly bloat and obscure the flow of code, as well as wasting valuable system resources. 

As the number of tasks and events that a sequential control has to handle increase, the complexity 

of the code to handle execution order grows rapidly.  In order to pre-script the order in which a 

program executes, conditional statements are often necessary for circumstances in which multiple 

avenues of code execution must be chosen from.  This is done because a programmer must try to 

take into account all of the valid code paths which can occur during operation.  As a result, each 

possible path, or similar group of paths, tends to get at least a small amount of code to handle it.  

These conditional statements of code execution tend to result in an abundance of nested 

conditional statements, variables to store context, repeated code, or small functions.  It is easy to 

forget to deal with all possible results of nested conditionals, and properly assign and update all 

context variables for each case.  Repeated code both uses extra resources, as well as providing 

ground for a single bug to reappear throughout the code, easily resurfacing after it is thought to be 

fixed.  A common solution to this repeated code is to wrap them up into a new function.  This, 
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however, can result in a large number of small functions with obscure purposes.  Further, between 

the extra function calls and variable passing, this can come with extreme consequences in terms 

of performance, memory, and stack usage.  All of these issues obscure the code and provide 

fertile ground for bugs to occur.  Careful organization can keep the extra code to a minimum and 

somewhat readable.  However, as more and more decisions must be made and paths become more 

complex, code size begins to grow rapidly.  Further, and likely more critical, it becomes more and 

more difficult for the programmer to follow the resulting maze of obscure and bloated code. 

Even without obscure and bloated code, sequential control tends to make precise timing difficult.  

One of the main reasons for this obscuration, bloating, and difficult timing is that task timing is 

heavily interdependent.  Timing interdependence is due to the pre-scripted order in which tasks 

occur.  Each task’s timing is directly dependent on each preceding task.  For example, if, in a 

program running (ABCABC…) task A has its code changed, all three tasks have altered their 

timing.  This means that code changes and additions have a cascading effect on timing.  This 

cascading effect can obviously make code maintenance difficult.  This is especially difficult if 

code can take more than one path, as each might have unique timing.  Of course one way around 

this is to periodically have a task wait for some timer to trigger.  This allows you to slow down 

and fix the frequency by calibrating to the timer.  This is only a stopgap method however as while 

one task is waiting for its timer, the program is effectively frozen.  This (A-wait-B-wait-C…) or 

(ABC-wait-ABC-wait…) approach can quickly use up available clock cycles and timers.  This 

also requires lots of excess speed to insure that each task finishes before the wait time for the next 

is ready. Furthermore, timers are generally precious resources and using them in this manner 

tends to exhaust them quickly.  As more tasks are added the complexity of this increases 

exponentially.  In multi-rate systems, this can become nearly impossible. Once you start sharing 

timers between multiple tasks to make things simpler, you are either on your way to getting 

spaghetti code or are leaving sequential control behind.   
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Schedulers 

In order to leave sequential control behind it is necessary to start delegating responsibility for the 

order of the execution to the code itself.  This is done by having the outer loop of the program 

running an algorithm which chooses which code to execute.  This is in contrast to sequential 

control where the outer loop runs the code in a predetermined fashion.  Figure 3 provides an 

example side-by-side comparison of a sequential program and an event-driven scheduled 

program.  The algorithm, and its accompanying code, is called the scheduler. 

 

Figure 3: (A) Sequential Control (B) Scheduled (Samek, 2008) 

The scheduler is the portion of the program that chooses which code sections to run and when.  In 

turn “The scheduler is at the heart of every kernel” (Li & Yao, 2003).  A kernel is the 
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fundamental core of an operating system.  Different kernels vary in the services they provide, but 

any multitasking operating system kernel requires at least the use of a scheduler.  As the heart of 

the kernel, the scheduler deserves further discussion.   To provide the appropriate background 

information, two important hardware concepts must be discussed first. 

The first of these concepts is the stack.  The stack is where the return address is stored when a 

function is called.  This is necessary so a chip knows where to continue execution after a function 

or call returns.  Based on the hardware, programming language, and implementation, a stack may 

also store a variety of other information like local variables, register values, etc.  Some hardware 

implementations have a special hardware-based stack with fixed size, only accessible from the 

top.  An example of this is the PIC18f4520 from Microchip with room for 32 return addresses and 

no other data (Microchip Technology Incorporated, 2008).  On the other hand, some 

implementations use the general data SRAM allowing for varying size as well as random access.  

An example of this is the ATmega328P, which places the stack in the 2KB general memory 

allowing great flexibility in its use (Atmel Corporation, 2012).  The ATmega328P is one of the 

microprocessors used in the Arduino. This is important in a multitasking environment because the 

size and accessibility of the stack has a great deal of influence on the ease and manner of 

managing multiple running tasks. This has a great deal of effect on the feasibility of various 

scheduling algorithms, making them somewhat dependent on hardware. 

The second of these hardware concepts that needs to be discussed is that of the interrupt.  

“Basically, an interrupt causes a program to suspend its current operation and branch to a 

location elsewhere in memory. Then, after the program handles the event that caused the 

interrupt, the interrupt service routine (ISR) must restart the program from where it had 

previously been suspended (Rosenthal, 1995).”  This is akin to closing a book around a pencil to 

keep your place in order to respond to someone’s unexpected voice.  You were reading without 

constantly checking for a voice, but when your ear detected the noise, it interrupted your reading.  
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Then when the persons comment has been handled, you can return to where you left off thanks to 

your pencil saving the place.  Different chips have different interrupts, but typically include three 

primary sources.  These interrupts are triggered by events external to the CPU, certain software 

errors (like divide by zero), and certain special instructions.  An interrupt allows a program to 

note and respond quickly to an event without needing to specifically check or wait for the event.  

Since normal code execution is suspended while in an interrupted state, interrupts must follow 

two basic rules: “First, the ISR must save then restore all CPU, memory and I/O resources that it 

uses. … Second, it must get back out of the ISR as quickly as possible. The reason for this rule is 

that ISRs should generally block new interrupts until after the ISR has completed running. 

Therefore, an ISR should do as little as possible so that interrupts are off for as little time as 

possible (Rosenthal, 1995).”  The first rule is important because otherwise, the interrupt service 

routine might corrupt data being used by the code it interrupts.  Many hardware devices are 

designed to streamline the first rule by automatically saving and restoring many of the necessary 

resources with special instructions.  Interrupts provide a large part of the framework which allows 

CPU peripherals and other external devices to communicate with CPU itself when they are ready.  

As a result, CPU clock cycles are only used when the external world comes knocking.  As such 

interrupts are the means by which the CPU, and in turn program, can efficiently get information 

from the external world, critical for event-driven systems. 

Now that some of the background concepts have been briefly explored, we can discuss the 

scheduler itself in more detail.  A brief overview of a scheduler is as follows.  The scheduler is 

responsible for allocating CPU time to schedulable entities.  When more than one schedulable 

entity exists, the scheduler is performing multitasking.  When a scheduler changes from one 

entity to another, it is performing a context switch.  The set of rules a scheduler uses to allocate 

time is called a scheduling algorithm.  Once the scheduler has made its decision, it uses a 
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section of code called the dispatcher to implement the decision.  This overview is necessarily 

sparse and needs to be expanded upon further.  

One of the first concepts to be expanded upon is what exactly is scheduled.  The entities that are 

handled by the scheduler go by various names and have varying properties depending on the 

kernel and implementation.  The most basic of these entities is the task, also sometimes called 

threads.  “A task is an independent thread of execution that contains a sequence of independently 

schedulable instructions (Li & Yao, 2003).”  Essentially, this makes tasks individual sequentially 

controlled programs.  Tasks also contain a small amount of information for helping the kernel and 

operating system to keep track of what it needs to operate on the task.  The exact resources the 

kernel assigns to a task necessarily vary greatly depending on the individual kernel.  Another 

common entity is that of the process, which is an essentially more feature-rich task supported by 

some kernels.  A process has more resources assigned to it and in some kernels can contain 

multiple threads and tasks within itself to be scheduled.  Maintaining multiple tasks is what 

allows a scheduler to perform multitasking. 

Since a single CPU core can only run one set of instructions at a time, only one task can actually 

run on a core at a time.  By switching between tasks a scheduler is said to be multitasking.  The 

scheduler is allowing each task to run as if it were running alone on the CPU for a limited time 

before switching to another task.  When this switching is done quickly, it can lead to the illusion 

that multiple tasks are running simultaneously.  In some kernel-hardware combinations, a 

scheduler allows for allocating tasks across multiple CPU cores, allowing for multiple tasks to 

truly run at the same time, managed by the kernel’s scheduler.  Multitasking has pitfalls however, 

as it introduces a whole world of potential problems.  Most of these problems revolve around the 

use of shared resources and concurrency issues.  The act of switching control from one task to 

another is what causes many of these issues. 
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The actual act of switching from one task to another is called the context switch.  This context 

switch needs to save the context of the task being stopped and restore the context of the task 

being restarted.  Depending on the kernel and hardware implementation this context information 

includes: the status of various CPU registers, the stack used by the task, as well as various other 

bookkeeping information.  When done properly, the task itself has no knowledge of the switch 

occurring, operating as if it had run alone and undisturbed.  Because of the bookkeeping 

information required, exactly how a context switch is performed is often heavily processor 

specific.  Additionally, the context switch entails overhead, and can degrade performance when 

an application is designed to include frequent context-switching.  Thus, when a context switch 

happens and what task to run next are important considerations. 

When a context switch can occur and how the next task is chosen is what constitutes the 

scheduling algorithm.  One of the most important questions to ask of a scheduling algorithm is 

whether it is pre-emptive or cooperative.  In a kernel running a cooperative scheduling algorithm, 

context switches only occur as a result of explicit calls to the kernel by the running task.  This 

means that if the running task does not use a kernel call which can result in a context switch, no 

other tasks will run.  In contrast, a pre-emptive kernel also generates context switches from 

interrupts, such as timers or peripherals (Samek, 2008).  This means that a context switch can 

occur at any point during the execution of a task, unless explicitly disabled.  A cooperative kernel 

control is passed much like the baton in a relay race, or a game of hot potato.  On the other-hand, 

a pre-emptive kernel can forcibly take away control from a task by interrupting its execution, like 

a fumble or interception in sports, or the changing the channel in the middle of a TV show.  

Another question to ask of a scheduling algorithm is how it chooses which task to run when a 

context switch occurs. 

Two basic means of choosing which task to run next are Round Robin and Priority (Li & Yao, 

2003).  In Round Robin scheduling, processes are run one after the other in order.  True round-
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robin algorithms are pre-emptive systems where tasks are given specific time-slices and 

interrupted after their allotted time is up, whether finished or not.  Then once all other tasks have 

had their turn, control is returned to the interrupted task.  In a priority based system, tasks are 

each assigned a priority.  When a context switch occurs in a priority based system, the highest 

priority task ready to run is then chosen to run next.  In a pre-emptive environment, a context 

switch occurs whenever a higher-priority task becomes ready, interrupting the current task.  Many 

other methods exist as well as hybrid methods.  Figures 4 and 5 below show two scheduling 

algorithms commonly used in real-time systems (Li & Yao, 2003).  The full discussion of 

different possible algorithms and their implementations, advantages, and disadvantages is far 

beyond the scope of this paper, and quite possibly an entire textbook.   

 

Figure 4: Pre-emptive Priority Scheduling 

 

Figure 5: Round-Robin with Priority Scheduling 

Of course once a scheduler has decided which task to run next, it must actually pass control to 

that task.  This passing of control and the accompanying context switch is performed by the 

dispatcher.  The dispatcher is what is called whenever control is in the kernel and the kernel is 

ready to pass control back to the user’s application.  Special attention must be paid to interrupt 



 

23 
 

service routines.  This is because the dispatcher cannot be called during the execution of an 

interrupt service routine.  In cooperative systems, the dispatcher is not called at all during an 

interrupt service routine.  In pre-emptive systems, the dispatcher is called as the interrupt service 

routine exits.  It is this calling of the dispatcher after an interrupt service routine which allows for 

pre-emption.  The actual implementation of the dispatcher varies based on hardware, kernel, and 

scheduling algorithm.  

Beyond the scheduling algorithm, how a kernel functions can have an impact on how tasks are 

programmed.  The way the tasks themselves are structured is in itself an important part of how 

the system behaves.  Any time you use any form of multitasking, the structure of the tasks and 

how they interact with each other and the kernel is important.  How this interaction is done is 

much of what defines how a program interacts with the outside world. 

UML Statechart Programs 

There exist a large variety of fairly traditional multitasking kernels, such as Linux.  Each can and 

often is the subject of volumes of work on how to utilize the kernels tools to code multitasking 

programs, and the pitfalls to be avoided.  To explore any one in detail would be a large 

undertaking, and can be daunting for a programmer.  This is largely because such traditional tools 

often rely heavily on the programmer to structure the program and code using the tools in such a 

way as to deal with concurrency and resource sharing issues.  As such we are now focusing 

instead on a different strategy which underlines the approach which the author intends to explore 

in later chapters.  This strategy is to organize the desired program into a set of state machines 

through the use of Unified Modeling Language, or UML, Statecharts.   Of course in order to 

explain the method and benefits of organizing a program as a state machine, UML Statecharts 

must first be explained. 
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What is a State? 

At heart, a statechart is a diagram of states defining a state machine, their identifying properties 

and how they interact.  So what exactly is a state?  A state is essentially a “chunk of behavior,” 

wherein the object or program behaves in a certain way (Samek, 2008).  The idea being that the 

state of a program is the only relevant information needed to determine how to respond to any 

given input.  For a list of examples, see Table 2 below.  A state captures the relevant aspects of 

the system's history very efficiently.  For example, as far as a keyboard is concerned, the set and 

order in which keys have been pressed in the past don’t matter so much as whether caps lock, ctrl, 

and shift are active.  A state can abstract away all possible (but irrelevant) event sequences and 

capture only the relevant ones.  This means that instead of recording the event history in a 

multitude of variables, flags, and convoluted logic, as is the traditional approach, you rely mainly 

on just one state variable that can assume only a limited number of a priori determined values, 

such as on or off, heating or cooling, etc.  The value of the state variable crisply defines the 

current state of the system at any given time. The concept of state reduces the problem of 

identifying the execution context in the code to testing just the state variable instead of many 

variables, thus eliminating a lot of conditional logic. Moreover, switching between different states 

is vastly simplified as well, because you need to reassign just one state variable instead of 

changing multiple variables in a self-consistent manner  (Samek, 2008). 

Description of System States 
Microwave / Oven On, off, heating, baking, door open, etc. 
Keyboard Capslock_on, CapsLock_off, ctrl_pressed, etc. 
Car Off, Drive, Reverse, Park, etc. 
Motor On, off, Stalled, Overheating, etc. 
Time bomb Set, Disarmed, Countdown, Detonated 
Seatbelt Latched, unlatched 
Table 2: Basic State examples 
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Nested States 

In many even moderately complex systems, there are often states which are very similar, or even 

overlap.  For example, a toaster oven might have a baking state as well as a toasting state.  In this 

case, both states also imply being in the heating state.  Rather than define two completely separate 

states with duplicated behaviors, UML statecharts allow for the hierarchical abstraction of 

common behavior.  This is done through the use of hierarchically nested states, making the 

statecharts hierarchical state machines or HSMs.  Figure 6 below shows an example of how that 

looks, using the toaster as an example.   

 

Figure 6: Nested states (A) generic (B) toaster oven (Samek, 2008) 

The use of nested states allows for common behavior to be grouped in higher level states.  Further 

nested states can then be “programmed by difference.”  This is similar to the inheritance of object 

oriented programming, where the “is-a-kind-of” relationship of inherited objects is replaced by 

the “is-in-a-state” relationship of nested states.  This abstraction allows for the developer to zoom 

in and out as necessary to the needed level of detail.  Further, with extended states, nesting helps 

to prevent the phenomenon of state explosion whereby the number of states necessary to describe 

a system increase geometrically as the complexity of the system grows (Samek, 2008). 

Extended States 

Since having a different state value for each and every situation would create a vast number of 

states for a program with even something as simple as a counter (a 8 bit counter  could add 256 

states, two would add 256*256=65536 states), program variables are often separated from states.  
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Figure 7: Fragile Keyboard (Samek, 2008)

Guard Conditions 

The introduction of extended states is of little use without a means of them influencing the 
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aspect (the state) and the quantitative, data storage aspects (the extended 

(Samek, 2008). In this interpretation, a change of variable does not always imply 

a change of the qualitative aspects of the system behavior and therefore does not lead to a change 

State machines supplemented with variables are called extended state machines and 

ate machines belong to this category.  As an example, in Figure 7 below is an example 

statechart modeling a keyboard that breaks down after 1000 key presses.  The advantage of this is 

that changing the durability is only a matter of changing a single variable, rather than changing 

(Samek, 2008) 

The introduction of extended states is of little use without a means of them influencing the 

machine.  One of the more important mechanisms by which extended state 

variables can be used to control the behavior is through the use of guard conditions.  

guard condition is essentially a true/false statement which is evaluated to see which 

path a state transition will take or if an action will fire.  As an example, the fragile keyboard from 

Figure 6 tests whether or not there are any key presses left each time a key is pressed in order to 

) is the combination of a 

aspects (the extended 

nterpretation, a change of variable does not always imply 

a change of the qualitative aspects of the system behavior and therefore does not lead to a change 

State machines supplemented with variables are called extended state machines and 

below is an example 

that breaks down after 1000 key presses.  The advantage of this is 

ble, rather than changing 

 

The introduction of extended states is of little use without a means of them influencing the 

machine.  One of the more important mechanisms by which extended state 

ard conditions.  To 

guard condition is essentially a true/false statement which is evaluated to see which 

.  As an example, the fragile keyboard from 

e are any key presses left each time a key is pressed in order to 



 

27 
 

determine whether to break down and enter the final state, or continue operation.  Without guard 

conditions, extended state variables would not be able to control state-transitions, thus rendering 

them largely useless.  Of course care must be taken that guard conditions are not over-used.  Such 

abuse is “the primary mechanism of architectural decay in designs based on state machines. 

Usually, in the day-to-day battle, it seems very tempting, especially to programmers new to state 

machine formalism, to add yet another extended state variable and yet another guard condition 

(another if or an else) rather than to factor out the related behavior into a new qualitative aspect 

of the system—the state (Samek, 2008).” 

Events 

Now that we have talked about States and guard conditions, we might be asking ourselves: How 

do we pass information to and from the state machine, how do we let it know something 

happened that it needs to respond to?  To do this, we use events.  “In the most general terms, an 

event is an occurrence in time and space that has significance to the system (Samek, 2008).”  It is 

also worth noting that this does not strictly mean that the event must be a physical event, it could 

also be the same or another state-machine announcing that it has done something, etc.  In 

discussing events some terminology must be fleshed out.   

The three main terms relevant to events are event, occurrence, and instance.  The UML 

specification states that “An event is the specification of some occurrence that may potentially 

trigger effects by an object (Object Management Group, 2011).”  In other words this means that 

event refers to a type, occurrence refers to an individual happening, and instance refers to a 

specific event-occurrence pair.  For example, pressing a power button at noon on Friday is an 

instance.  This instance is in turn composed of the event the instance is a type of, a power button 

press, and a specific occurrence of that event, the one Friday at noon.  This may seem to be 

unnecessarily complicated, but each of the three is a pivotal source of information.   
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The requirement of the three terms can be seen in the processing lifecycle of event instances.  

First the occurrence of an event is an instantaneous thing which the system must process.  This 

need for response causes the need to create an instance recording what type of event occurred and 

any other relevant parameters which might be needed to process, such as which button was 

pressed.  Once this instance has been created it might be conveyed to one or more state-machines 

for processing.  This means that the instance necessarily outlives the actual occurrence and may 

linger in the system for some time before it is processed and consumed.  It is quite possible for 

another occurrence of the event to occur before all previous occurrences have been processed, 

thus the need for an instance for each occurrence, rather than each event.  By separating 

information common to each occurrence into the specification of the event, redundant 

information can be reduced.  Given the need for more specificity in technical processes rather 

than general conversation, this can be rather confusing and take time to get used to.  Hopefully, 

Table 3 below and the actual implementation and use of events in chapters 3 and 4 will help to 

make it more understandable. 

 Event Occurrence Instance 

1 KeyPress ‘a’ KeyPress: ‘a’ at ‘b’ 

2 StateEntered ‘on’ StateEntered: ‘on’ at time ‘b’ 

3 Error ‘divby0’ Error: ‘divby0’ at line ‘c’ at time ‘b’ 

4 Message ‘hello’ Message: ‘hello’ at time ‘b’ in memory location ‘c’ 

Table 3: Event, occurrence, and instance examples 

Actions and Transitions 

Now that we have objects to act on (states and extended state variables), ways to inform them 

(events), and means of making decisions (Guard conditions), we need something to actually do if 

statecharts are to be a useful programming strategy.  Once a state machine has received an event 

and the guard conditions have been evaluated, the state machine will then perform an action 
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and/or transition.  Actions, in this context can refer to various things, “such as changing a 

variable, performing I/O, invoking a function, generating another event instance, or changing to 

another state. Any parameter values associated with the current event are available to all actions 

directly caused by that event (Samek, 2008).”  When an action causes a change in state, the 

process is called a state transition or transition for short.  UML statecharts have a variety of 

special types of actions and transitions which warrant further explanation. 

Two very important classes of actions, especially for HSMs (Hierarchical state machines), are 

entry and exit actions.  Entry and exit actions are performed whenever a state is entered or exited, 

respectively.  Because these actions are associated with a state itself, rather than a transition, 

“ they often determine the conditions of operation or the identity of the state, very much as a class 

constructor determines the identity of the object being constructed (Samek, 2008).”  There are 

three major advantages of associating entry and exit actions with the states themselves.  First is a 

reduction in redundancy.  Hierarchical states mean that any given transition might pass through a 

variety of states on its way from source to target, each of which could have actions that need to be 

performed as they are entered or exited.  Additionally, any given state, might have multiple 

transitions associated with it.  Without entry and exit actions, the developer would have to ensure 

that each and every one of these transitions performed the correct actions as it maneuvered 

between the various states.  This could easily result in duplicate and redundant code.  A second 

advantage “of entry and exit actions is that they provide means for guaranteed initialization and 

cleanup, very much like class constructors and destructors in OOP [Object-Oriented 

Programming] (Samek, 2008).”  This is important both for preventing errors as well as helping to 

define the state.  As an example of how entry and exit actions can help to prevent errors and 

define the state, see Figure 8 of a toaster oven below.  In this case, it can be seen how the 

superstate “heating” is defined by having the heater on, the “door_open” state by having the light 

on, and the two heating substates by their respective settings.  In each case, the entry and exit 
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actions ensure that these identities are preserved.  The third advantage is that as a result of the 

reduction in redundancy and preservation of identity, adding or altering states and transitions 

becomes much simpler and less error prone, aiding the maintainability of the software. 

 

Figure 8: Toaster oven state machine with entry and exit actions (Samek, 2008). 

 

A second class of actions worth mentioning is those which do not cause a change in state.  These 

actions are also referred to as internal transitions.  The important aspect of internal transitions to 

note is that “no entry or exit actions are ever executed as a result of an internal transition, even if 

the internal transition is inherited from a higher level of the hierarchy than the currently active 

state. Internal transitions inherited from superstates at any level of nesting act as if they were 

defined directly in the currently active state. (Samek, 2008)”  For an example of how internal 

transitions look, see Figure 9 below, of a keyboard which responds to any key press, but only 

changes state with CAPS_LOCK. 



 

31 
 

 

Figure 9: "UML state diagram of the keyboard state machine with internal transitions. (Samek, 2008)" 

 

The third class of actions that needs to be discussed is those associated directly with transitions.  

These actions are slightly different in UML and the implementation which will be used in 

chapters 3 and 4.  In the UML specification, transition actions are evaluated as follows: 

“1. Evaluate the guard condition associated with the transition and perform the following 

steps only if the guard evaluates to TRUE. 

2. Exit the source state configuration. 

3. Execute the actions associated with the transition. 

4. Enter the target state configuration (Samek, 2008)” 

In the QP framework created by Samek, steps 2 and 3 are reversed, with the actions performed 

after the guard condition is evaluated, but before the source state is exited.   

“1. Evaluate the guard condition associated with the transition and perform the following 

steps only if the guard evaluates to TRUE. 

2. Execute the actions associated with the transition. 



 

32 
 

3. Atomically exit the source state configuration and enter the target state configuration 

(Samek, 2008).  

This is both simplifies the programming, as well as recognizes the fact that a state transition 

needs to be atomic.  This need for atomicity is because the state machine is in an uncertain 

configuration during the transition and thus cannot safely be operated upon.  As a result, the 

author would argue that this departure from the UML specification by the QP framework is an 

improvement, rather than a flaw. 

Orthogonal Regions 

Speaking of departures from the UML specification of extensions to state machines, the topic of 

orthogonal regions bears discussion.  There exist objects which seem to be in more than one 

independent state at the same time.  For another keyboard example, take the Num Lock and Caps 

Lock keys.  When typing, the keyboard can be in an on or off state for both keys.  Without some 

manner of being in more than one state at a time, the number of states necessary becomes 

multiplicative rather than additive.  This keyboard example of 2+2=4 or 2*2= 4 may make this 

difference seem unimportant.  Addition of Scroll Lock, for 2+2+2=6 or 2*2*2=8, makes the 

importance more apparent.  It is this problem of independent states that the concept of orthogonal 

regions was created to address.  Orthogonal regions, in the context of state machines, refer to sets 

of independent states in which a state machine may be simultaneously.  To see what the keyboard 

example looks like, see Figure 10 below.  
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Figure 10: Orthogonal Regions of keyboard (Samek, 2008) 

Orthogonal regions are not strictly supported in the QP framework under discussion as they are 

an expensive feature.  This is because “Each orthogonal region requires a separate state variable 

(RAM) and some extra effort in dispatching events (CPU cycles) (Samek, 2008).”  Essentially, 

each region is a separate state that must be separately stored, checked, and processed.  This 

separation necessitates an entirely different coding approach to handling the state machines than 

the case of single nested states, cluttering up the code and reducing performance.  However, the 

separate nature of the states is also precisely why the lack of direct support for orthogonal regions 

is not a problem.  As pointed out by Rumbaugh et al. and referenced by Samek, orthogonal 

regions, as a general rule, are produced by aggregation (Rumbaugh, Blaha, Lorenson, Eddy, & 

Premerlani, 1990).  This means that orthogonal regions can be produced by a composition of state 

machines, rather than a single state machine with orthogonal regions.  As an example, take the 

keyboard: one state for the main keyboard, and one for the numeric keypad.  Also another 

example of aggregation that could be presented as either orthogonal regions or composite objects 

would be an alarm clock.  The state of the clock, and the state of the alarm, either two regions of 

one object, or a clock containing an alarm object.  This object composition is argued by Samek as 

being superior to the single object-two state case for three main reasons.  First is that of code 

reusability.  Creating the regions as separate state machines, one containing the others, they are 

no longer interdependent and can be reused in other combinations in the future.  For example, the 



 

34 
 

same alarm in another clock, or the numeric keypad on its own.  Second, “The composition of 

state machines is not limited to just one level. Components can have state machine 

subcomponents; that is, the components can be containers for lower-level subcomponents. Such a 

recursion of components can proceed arbitrarily deep (Samek, 2008).”  This is advantageous as it 

mirrors the reality that many, if not all, real world objects are similarly composed of objects 

aggregated together.  Third, a full implementation of orthogonal regions would imply that all 

events are dispatched to all regions.  A composite implementation, on the contrary, allows the 

container object to filter out irrelevant events and supply supplemental data.  This filtering can 

obviously drastically cut down on the processing necessary in the case of even moderately 

complex aggregated systems.  For instance, in a state machine model of a keyboard, there is no 

need for the numeric keyboard component to receive notification of key presses from the main 

keypad.  These advantages, combined with the nature of real world objects and data structures, 

mean that the lack of direct orthogonal region support by the QP framework is not a flaw.  

Instead, it is merely a case of the UML specification trying to handle any and all theoretical 

possibilities, as opposed to being a model for efficient embedded programming.  

Computational Limits of Statecharts 

So at this point it should be asked: Are there problems that cannot be programmed in the form of 

a hierarchical, composite, state machine as discussed in this chapter?  The answer to this is quite 

simple.  Yes, but no finite, linear-time, digital computer can solve those problems anyway.  The 

reasoning for why these traditional computers have the same limitations is as follows: 

1.  The circuits in traditional computers are equivalent to finite-state machines, or FSMs 

(Wright, 2005). 

2. Since traditional computers send, receive, process, and store data through such FSM 

circuits, they are an aggregation of many small FSMs into larger FSMs. 
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3. Hierarchical state machines (HSMs) of any recursion or composition level are 

mathematically equivalent to FSMs. 

4. Therefore, any traditional computer is a HSM. 

5. Thus anything a traditional computer is capable of can be modeled as a state machine 

of the form discussed in this thesis. 

As a point of clarification, the emphasis on the notion of a traditional computer is not negligible.  

There exist certain classes of computers which might very well work on algorithms that cannot be 

fully represented as HSMs.  For an example of such a device, take quantum computers.  As the 

author understands it, the basic principle of quantum computing is to take advantage of the 

quantum nature of reality.  This quantum nature allows very small objects, such as electrons and 

photons, to be in multiple, even effectively all or infinite, states simultaneously.  A state machine 

on the other hand cannot do this, as it must be in a single composite state at any given time, and 

cannot respond to events while transitioning between them.  Other, more theoretical examples are 

computers utilizing non-linear time phenomena such as closed time-like curves.  Such computers, 

at least in some theories, rely on either infinite computational time, cause to follow effect, or 

other exotic concepts.  Both violate the finite, cause and effect nature of the state machines 

discussed.  While this means state machines might not be able supply all the needs for some 

highly experimental and theoretical computational devices, this is not a large limitation.  For one, 

in each case, the quantum or non-linear time component can be seen as merely a source of events 

that would need to be processed by the more traditional parts of the system.  As a result, state 

machines could very well be useful, if not sufficient, in programing and understanding such 

computers as well.  Of course, just because these state machines can be used to program any 

traditional computer, does not always mean that they will always be the most efficient or practical 
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solution.  A programming and development strategy, if it exists, that was always most efficient or 

practical would certainly be Nobel Prize material. 
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CHAPTER III 
 

 

Methodology of State Chart Analysis 

As an abstract method of organizing program code, there are many different ways to implement a 

state chart programming method.  There are also, as discussed in Chapter 1, thousands of 

potential hardware targets to run the code on.  For the purpose of this paper, the focus will be on 

analyzing the use of the QP C++ framework on the Arduino Uno. This approach was chosen for 

several reasons.  For one, unlike most real-time kernels, the QP C++ framework is open source 

and free to use, as opposed to the thousands of dollars a developer could be expected to need for 

National Instruments LabView or the venerable VxWorks.  Also, the Arduino Uno not only has a 

compatible development kit, but has several advantages as a hardware platform.  For one, the 

Arduino is cheap, at $40 per board at the authors local RadioShack.  For another advantage, the 

Arduino uses the AVR ATmega328 which uses a stack based program pointer.  This pointer 

method allows for the use of the pre-emptive QK kernel.  As one of the world’s largest 

microcontroller manufacturers, AVR is both commonly used and provides a free compiler for use 

with their chips.  This means that for less than $100 and a basic pc, it is possible to have a pair of 

microcontroller boards to test.  As an added bonus, the QP framework comes with free 

development tools such as the QM modeling tool which allows for graphical programming.  

Hopefully, the above stated benefits combined with the analysis, methodology, and results that 

follow will convince the reader that the Arduino and QP framework make a good platform for 

demonstrating the benefits and performance of the state chart approach to programming.
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Timing Characteristics 

One of the most important characteristics to understand about any software approach, especially 

for real-time and/or embedded systems is the timing characteristics of various operations.  Given 

the prime importance of timing the author will attempt to establish a thorough analysis of the 

timing.  In establishing timing characteristics, it is important to show both characteristics of the 

framework and establish a method by which other target environments can have benchmarks 

established.  With that in mind, it becomes necessary to explore both the method of timing and 

what to time. 

Using the Arduino Uno as a Timer 

The attempt to use Windows 7 based programs to reliably time microsecond intervals was 

unsuccessful.  Windows 7 is not a real-time platform and thus lacks the tools for reliably 

performing such fine measurements precisely.  So another approach was devised.  Since the 

Arduino UNO is so cheap, and can be run bare-metal without an overlaying operating system, a 

second board was purchased to use as a timer.  The following is the approach used to establish 

and test the effectiveness of the Arduino as a microsecond precision timer. 

The Arduino library contains a function called pulseIn().  This function is designed to measure 

pulses between 10 microseconds and 3 minutes in length and return the length of the pulse in 

microseconds.  The function takes as parameters the pin to test, whether the pulse will be high or 

low, and a timeout value.  For simplicity, a high pulse on the first available digital I/O port of 2 

was chosen, along with a 10 second timeout.  Code running this function on a loop and printing 

the resulting values was run on one Arduino board.   

The second board was then set to send out pulses on a loop.  This was accomplished through 

using a bitwise OR statement on the control register for pin 2 of the second board.  The built-in 

digitalWrite() function was deliberately avoided due to the extra delay it would enter into the 



 

39 
 

process.  The delay length was then established using the built-in delayMicroseconds().   This 

was followed by another bitwise operation to turn off the pulse.  Once programmed, the two 

boards, running off of the same set of USB ports, had their pin 2 ports connected by a resistor to 

allow for communication. 

By making use of the free TeraTerm software to establish serial communication with the Arduino 

boards, it was simple to loop through large numbers of timing runs and then copy and paste the 

results into an excel spreadsheet.  Initial runs of this timing method had the results listed in Table 

4 below. 

Pulse Mean Mode Range Min Max 

10 8.62 10 15 1 16 

15 13.35 14 20 2 22 

20 18.07 19 18 7 25 

25 22.63 24 19 12 31 

30 27.24 29 18 18 36 

35 32.2 35 18 23 41 

Table 4: Initial Timer Test Results, n=9999 

While at first the author was dismayed at the lack of precision and attempted to develop a 

calibration formula, a set of patterns was noticed.  First, was that a linear fit to mean values of the 

data had a listed R value of .9999 across the collected datasets.  This suggested some very 

consistent source of the errors.  Second, it was noticed that aside from the initial pulse of 10us, 

the range was remarkably consistent at 18-20us.  So after a brief search online into the mechanics 

of the pulseIn() and delayMicrosecond() functions, the author discovered that they work by 

polling an internal register.  The internal register is connected to the oscillator and increments 

every microsecond.   

Since neither function relied on interrupts, the author then attempted turning off interrupts before 

sending each pulse and re-enabling them after.  By doing this on the board measuring the pulse, a 

whopping 10us was dropped from the range of timer values.  By also disabling the interrupts 
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while sending each pulse, the result was far more precise.  By disabling interrupts on both boards, 

a range in values of 2us was attained, length-2 to length, see Table 5 below.   

 

Both 

interrupts 

enabled 

Timer 

interrupts 

disabled 

Both 

interrupts 

disabled 

Mean 32.19992 34.6487649 34.4171417 

Range 18 8 2 

Min 23 33 33 

Max 41 41 35 

Table 5: Effect of Disabling Interrupts, 35us pulse n=9999 

 

To put these results in perspective, the possible precision needed to be explored.  Internally, each 

function works by polling an internal timer on the chip.  Functionally, this means that in each 

board, the produced or measured time will be between the requested or actual time, and one 

microsecond smaller.  The one microsecond smaller result occurs when polling begins just before 

the internal timer increments and the accurate time occurs when polling begins just after 

incrementing.  As a result, a 2us board to board precision range is the best possible precision that 

can be attained with the Arduino boards without resorting to an extensive rewrite using assembly 

language.  Since the Arduino runs at 16MHz, this is a range of 8 computational cycles.  While 

being able to precisely and accurately measure down to the cycle would be ideal, it must be 

remembered that we are working with less than $100 worth of equipment, and are limited in both 

our accuracy and precision by the oscillators inside them. 

 Precision of Timing the QP Framework 

With a basic timing system in place, it is now time to explore the timing characteristics of the QP 

Framework Pre-Emptive kernel on the Arduino Uno.  First we must establish a way to interpret 

the results so we can narrow in on the number of computational cycles needed to perform any 

given task in the framework, and the uncertainty in our measurements.  In order to do that we 
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need to make a few assumptions about our measurements and what is going on.  Our first 

assumption is the pulseIn() function we are using in the timer board retains its measured and 

theoretical precision of -1microsecond to +0microsecond during our experiment.  Second, we 

assume that timing differences between the two boards amount to less than one computational 

cycle.  These sources include several sources of error.  First is that it is not necessarily true that 

the test board voltage, rises and falls in a perfectly symmetric fashion.  Likewise, the timer may 

not recognize the change in voltage symmetrically between a rise and fall.  Another possible 

source of error is EMF interference slightly altering the signal voltage along the wire, introducing 

small changes in pulse symmetry.  Quick calculations indicate that light can travel 75m within 

one clock cycle, so signal propagation delay is likely negligible for the short distance involved.  

Additionally, the boards’ oscillators likely do not operate with exactly the same frequency.  

Combined, while these timing differences are likely quite small, even a plus or minus of a small 

fraction of a microsecond can cause, or prevent, an additional timer increment.  This is what leads 

to the addition of a microsecond increase in our measurements uncertainty.  Our second 

assumption is that the processes we are measuring do not need to use cycles in multiples of four.  

While this seems obvious, it must be remembered that the timer only resolves every four cycles.  

Thus if a process takes 23 cycles for instance, the timer will see one of two results.  The timer 

will display 20 cycles if the process started less than one cycle after a timer increment, or 24 

cycles if the process started less than one cycle before an increment.  Next, we assume that the 

true time the process takes is a constant number of cycles.  This assumption follows directly from 

the combination of the deterministic nature of the framework, and the disabled interrupts during 

the process.  Finally, we assume that when we run our tests, our boards are out of sync by a 

random factor.  This allows us to use statistical analysis of the results.  These assumptions and 

their consequences are summarized below in Table 6: Timing Assumptions and Consequences. 
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Assumption Measurement 

pulseIn() works true -1 to +0 microseconds 

Max 1 cycle difference true -1 to +1 cycle 

Non-4 possible true -3 to +3 cycles 

Constant time and random sync Mean approximates true 

Total -2 to +1 microsecond precision 

-8 to +4 cycle precision 

Table 6: Timing Assumptions and Consequences 

If the assumptions and analysis are accurate, then any timer results will be between 2 

microseconds or 8 computational cycles smaller and 1 microsecond or 4 computational cycles 

larger than the true time a process takes.  Further, a large sample size should allow for a mean 

close to the true value.  If any test gives a range of results greater than 3 microseconds, it will be 

an indication of a flaw in the analysis.  Now that we have a means to measure time, we must now 

decide on what to measure. 

State Machine Timing 

With a method to time computation processes down, what exactly to be timed must be decided.  

Three of the most common tasks to be performed by the QP framework are the initialization of 

state machines into certain states, state changes, and event handling.  These tasks are very much 

the bread and butter operations that underlie the use of the QP framework.  Since they will each 

be used frequently, they are worth timing.  Further, a means of describing the exact state 

combinations possible are needed for clarification. 

Much of the operation of the framework in controlling program behavior is in the state transition 

framework.  Transitions between states occur when the state machine needs to change behavior, 

such as car changing between forward and reverse states.  Transitions to the same state essentially 

act as a reset, exiting and then returning to the same state.  Initial transitions occur when the 
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destination state specifies a substate that is to be entered by default.  This is useful in 

encapsulating and reusing behavior within state machines, as a state transition can allow the 

destination to decide which if any substates are necessary to finish the transition.  Additionally 

the state machines handle events using the same framework as state transitions.  The framework 

does this through the use of what is called an internal transition.  For example, pressing a letter on 

a keyboard triggers an internal transition to process the key press, but generally does not result in 

a change in state or reset.  Since these initializations and state transitions encompass much of the 

behavior specific to the use of the state machine framework, they will be the focus of the timing 

analysis. 

Now that what to time has been decided, it is necessary to specify a means of describing the exact 

behavior being timed.  First let us establish a systematic naming system for states such that the 

relationship between any two states is apparent in the name.  The method arrived at by the author 

is to specify the name of any given state by the letter “s” followed by a string of numbers.  The 

“s” simply specifies that this is a state.  The number is where the location of the state is encoded.  

In order for this encoding to make sense, one must understand the nesting levels of a state.  As an 

analogy to help in understanding nesting level, and the naming convention, think of a state as a 

box.  A top level state is one which is resting directly on a table.  Inside this box might be smaller 

boxes, which can have boxes inside as well, repeating with smaller and smaller boxes.  The 

nesting level of a state is how many boxes must be opened in order to look inside.  To look inside 

a top level state, one needs only to open the state itself, or nesting level 1.  Nesting level 2 states 

would be represented as boxes within another box resting on the table.  This process can continue, 

like Russian nesting dolls up to the nesting level limit in the given configuration of the QP 

framework, 6 by default.  Back to our analogy, what if we have two boxes on the table, three, or 

more.  To name them all the same would confuse things, as each state needs a unique name.  So 

we indicate which one is which by naming the first s1, the second s2, and so on.  We do this from 
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left to right, top down, as we read our state diagram.  We can then easily picture which one goes 

where.  For example see Figure 12: Naming Digit value vs. Location. 

 

Figure 11: Naming Digit value vs. Location 

Now let us picture a different scenario.  In this scenario, we have 6 boxes, one within the other up 

to our nesting limit.  We cannot simply call these s1, s2, s3, etc. as we would then be unsure if our 

boxes were nested, or merely side by side.  So what we do instead is add an extra digit at each 

nesting level.  For our analogy, this means that each box has one more digit than the box it is in, 

as in Figure 12: Nesting Level Digits. 

  

Figure 12: Nesting Level Digits 

Now, here comes the tricky part, we can have several boxes on the table, each with its own name.  

We can also have boxes nested within each other.  However, what happens if we have a little of 

both?  Well if we follow a few simple rules, it will not be a problem.  First we name our top level 

boxes s1, s2, s3, and so on as above.  Then, whenever we put one box inside of another, we 

s1 s2 s3 s4 s5

s6 s7 s8 s9

s1

s11

s111

s1111

s11111

s111111
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simply name the smaller box after the bigger.  Instead of being “s” plus 1, 2, 3, etc. from left to 

right, we replace “s” with the name of the box we are adding to.   So if we add two boxes to state 

s2, we would call the first one on the left s21 and the second on the right s22.  The first box added 

to s22 would be s221.  As an example, see Figure 13: Full Naming Convention Example.  This 

allows us to uniquely identify any state.  

  

Figure 13: Full Naming Convention Example 

This convention also allows us to quickly deduce which states/boxes a state is contained within.  

Simply remove the last digit from the name of a state, and you then have the name of the 

superstate.  Repeat as necessary.  The only limit to this convention is that it is limited to 9 

substates of any given state, including the top level.  Later, it will be shown that a limit of 9 does 

not prevent an analysis of relevant behavior.  However, one could us 0 as a digit, raising the limit 

to 10.  Or the hexadecimal a, b, c, d, e, and f could be used to give 16.  If hexadecimal is 

insufficient for the user’s purpose, the addition of a separator character such as the underscore 

would remove the limit entirely.   

Now that we have a means of unambiguously naming states, we need to review what kinds of 

relationships states can have to each other.  The most basic relationship two states can have to 

each other is to be superstate and substate, such as s1 and s11.  This relationship can be deduced 

quickly from the names.  The substate s11 contains the name of its parent superstate s1, with one 

additional digit.  In addition to being direct superstate and substate, it is possible for a state to be 

nested multiple levels below a given superstate, such as s1112 and s1.  In this multilevel nesting 

case, state s1112 is the second substate of s111, which is the first substate of s11, which is the 

s1 s2

s11 s12 s22s21

s111 s112 s121 s122 s221 s222s211 s212
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first substate of s1.  A given state may have multiple substates within itself, such as s1 having s11 

and s12 as substates.  This relationship, having the same superstate, makes states s11 and s12 

what the author calls parallel substates.  Put in other words, parallel substates are related through 

a sibling pair, rather than only parent-children pairs.  States s1, s2, s3, etc. do share the same 

hidden top level superstate, the table.  This hidden superstate is, however, treated differently in 

the code.  As such top level states like s1 and s2 are not considered parallel substates for our 

discussion, although they are in fact parallel.  The naming scheme makes for easy identification 

of parallel substates.  Any state with a digit, beyond the first, that is higher than 1 is a parallel 

substate, or contained within one.  With a means of quickly describing the relationship between 

states, we can move on to describing transitions. 

The concept of transitions is important for the function of state machines.  The exact functioning 

of transitions is also critical for timing of the framework.  The simplest type of transition we can 

have is what is called an internal transition.  An internal transition performs some action, possibly 

with a guard condition, but does not result in a change in state.  This is essentially the means by 

which events which do not require a change in state are processed by the state machine.  Another 

type of transition vital for flexible specification of state machines is the initial transition.  As 

discussed previously, an initial transition in a state specifies that the state machine should enter a 

specific substate.  Taking these concepts into account leads to what the author calls a basic 

transition.  A basic transition is a transition which results in a change in state, but neither needs to 

distinguish between parallel substates (siblings) nor triggers an initial transition.  These 

clarifications prove useful in defining exactly what needs to be timed. 

Each transition has an origin and a destination.  The origin of a transition is defined by both the 

state the transition is associated with and the state which the state machine is in at the time.  This 

distinction is necessary due to the way superstates and substates behave.  For example, a 

transition may be defined in state s1 to occur in response to event A.  If the state machine is in 
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state s11 which does not define a response to event A, the transition from s1 will be triggered as a 

result of Event A.  This is distinct from the case where the state machine is in state s1, as there is 

no need to check if s11 defines a response.  As a result, one must specify both the state the 

transition is associated with, and the state which the transition is being called from in order to 

fully define the origin of a transition.  For example a state machine with s1 and s11 will have 3 

possible origins: s1 while in s1, s11 while in s11, and s1 while in s11.  The next piece of 

information needed to unambiguously identify a transition is the destination.  The destination is 

defined by the destination state, and the initial transition(s), if any, which are triggered as a result.  

For instance, if s1 is specified as the destination, it matters whether s1 has an initial transition 

specified to s11, s111, etc.  Likewise specifying s11 is distinct from specifying s1 with an IT 

(initial transition) to s11, as extra calculations are necessary.  Thus we specify if an initial 

transition or transitions take place. For example s1, s1 - IT to s11, or s11 are three possible 

destinations.  Now we have a means of specifying the parameters of both the origins and 

destinations of possible transitions.   

At first glance, it may appear as if there is an effectively infinite number of combinations of 

origins and destinations for transitions, since there is a nearly unlimited number of possible states.  

However, we can narrow things down.  With a little understanding of the way the framework 

deals with these transitions we can combine the infinite possibilities into a finite number of 

possible unique configurations.  One of the biggest means of narrowing things down is the 

behavior of parallel substates.  To understand this behavior, we need to understand how states are 

linked.  The algorithm which determines the path of states to enter and exit during a transition 

starts with only two parameters, origin state and target state.  In the QP framework, a state 

contains a reference to its direct superstate.  This superstate reference is the only means by which 

the transition algorithm can determine the relationship between states.  In other words, the 

algorithm can only ask a state who its parent is, not its children or siblings.  The algorithm uses 
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these three pieces of information available to search for the deepest common superstate of origin 

state and destination state.  For instance s11 is the common superstate of s111 and s1121, while 

s1 is the common superstate of s1 and s11.  This behavior has a valuable consequence:  A state 

knows only itself, its superstate, and the destination of its transitions.  As a result, the existence 

and number of any substates or parallel substates not in the direct path is completely irrelevant.  

Only the current state of the state-machine, the state the transition is defined in, the destination, 

the least common superstate, and any traversed states matter.  Or, put another way a transition can 

move only up a nesting level 0 or more times, sideways 0 or 1 times, then down a nesting level 0 

or more times, in that order.  Brief testing of various combinations bears this out.  This allows us 

to prune the infinite possibilities down a great deal. 

With constraints on the infinite possibilities we can now construct what shall be called prototype 

state diagrams.  A prototype state diagram has the minimum number of states that allow for 

exploration of every possible transition.  One prototype exists for each nesting level.  A prototype 

state machine can be constructed by the use of a few simple rules.  First, since parallel substates 

not in the path do not matter, there only needs to be two substates per state.  This is because, at 

most, only two substates in the same superstate can possibly be in a single path from origin to 

destination.  Second, a pair of substates with the same superstate need only appear once per 

nesting level.  This was done in the leftmost (lowest digit value) state for simplicity.  Third, each 

state should have at least one substate up to the nesting level limit.  These rules result in the 

following prototype state machines for nesting levels (NL) one through four below in Figure 14: 

Prototype State Diagrams. 
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Figure 12: Prototype State Diagrams 

A first attempt to list all of the combinations of transitions proved haphazard and frustrating.  A 

large part of this was uncertainty as to which combinations, if any, had yet to be tried.  After a 

little reflection, the author decided it would be best to find a way to quantify the combinations 

NL = 1 

  

NL = 2 

 

NL = 3 

 

NL = 4 

 

s2s1

s2s1

s11 s21s12

s1 s2

s11 s21s12

s211s121s111 s112

s1 s2

s11 s12 s21

s111 s112 s121 s211

s2111s1211s1121s1111 s1112



 

 

needed.  The development of the naming scheme, state relationships, and the prototype state 

diagrams were integral to this effort.  However, there was still the need to determine the number 

of transitions to measure.  

In order to quantify the number of transitions possible at any given nesting level, mathematical 

models had to be developed.  

trying to exhaustively list every possible origin and desti

in Appendix C: Lists of Origins and Destinations.  

starting with nesting level 1 then moving on to nesting level 2,  then 3, then 4.  These origins and 

destinations were then carefully scrutinized for any patterns that could lead to an equation.  Once 

these equations had been found for the first three nesting levels

they were discovered, the author noticed that no new patterns seemed to a

Thus the fourth nesting level was used as a check due to the inductive nature of the equation 

development. 

The first, and simplest, of these 

only the relationship between origin and destination matters for timing purposes, this number is 

rather small.  For example, a transition between s1 and s2 takes the same time as one between s2 

and s1.  This allowed for the origin states to be constrained to s1, s11, s111, et

also be called from a substate of the state it is associated with.  

equal to the nesting level each time a new nesting level is added.  

account leads to the following 

Developing an equation for possible destinations proved much more difficult.  However, breaking 

the task into pieces produced better results.  First, the transition might be an internal transition, 
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needed.  The development of the naming scheme, state relationships, and the prototype state 

diagrams were integral to this effort.  However, there was still the need to determine the number 

In order to quantify the number of transitions possible at any given nesting level, mathematical 

models had to be developed.  This was done by printing off the prototype state diagrams and then 

trying to exhaustively list every possible origin and destination.  For reference, these list are given 

rigins and Destinations.  These were recorded on an excel spreadsheet 

starting with nesting level 1 then moving on to nesting level 2,  then 3, then 4.  These origins and 

re then carefully scrutinized for any patterns that could lead to an equation.  Once 

these equations had been found for the first three nesting levels, adding missing destinations as 

, the author noticed that no new patterns seemed to appear at nesting level 4.  

Thus the fourth nesting level was used as a check due to the inductive nature of the equation 

The first, and simplest, of these equations specified the possible origins for a transition.

p between origin and destination matters for timing purposes, this number is 

rather small.  For example, a transition between s1 and s2 takes the same time as one between s2 

and s1.  This allowed for the origin states to be constrained to s1, s11, s111, etc.  A transition may 

also be called from a substate of the state it is associated with.  This adds a number of origins 

equal to the nesting level each time a new nesting level is added.  Taking these factors into 

account leads to the following Formula 1: Unique Origins 

  

Formula 1: Unique Origins 

Developing an equation for possible destinations proved much more difficult.  However, breaking 

the task into pieces produced better results.  First, the transition might be an internal transition, 

needed.  The development of the naming scheme, state relationships, and the prototype state 

diagrams were integral to this effort.  However, there was still the need to determine the number 

In order to quantify the number of transitions possible at any given nesting level, mathematical 

This was done by printing off the prototype state diagrams and then 

For reference, these list are given 

These were recorded on an excel spreadsheet 

starting with nesting level 1 then moving on to nesting level 2,  then 3, then 4.  These origins and 

re then carefully scrutinized for any patterns that could lead to an equation.  Once 

, adding missing destinations as 

ppear at nesting level 4.  

Thus the fourth nesting level was used as a check due to the inductive nature of the equation 

the possible origins for a transition.  Because 

p between origin and destination matters for timing purposes, this number is 

rather small.  For example, a transition between s1 and s2 takes the same time as one between s2 

c.  A transition may 

This adds a number of origins 

Taking these factors into 

Developing an equation for possible destinations proved much more difficult.  However, breaking 

the task into pieces produced better results.  First, the transition might be an internal transition, 
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resulting in one transition per origin.  Second, basic transitions are relatively easy to derive from 

the prototype state diagrams.  Combining these two relatively simple transitions gives us the 

following Formula 2: Basic Destinations. 

  

Formula 2: Basic Destinations 

The development of an equation modeling the number of possible initial transition combinations 

proved quite difficult at first.  Originally the author had been searching for polynomial models 

and painstakingly writing down every found combination.  Eventually it was noticed that some of 

the patterns, as well as the original polynomial form of Formula 1 could be represented as 

summation equations.  This epiphany, combined with the concept of parallel substates, was the 

missing key.  Ignoring parallel substates for the moment, the number of unique destination paths 

with initial transitions can be modeled by Formula 3: Non-Parallel Initial Transition 

Combinations. 

  

Formula 3: Non-Parallel Initial Transition Combinations 

The combination of Formula 2 and 3 cover all the destination paths that do not include parallel 

substates.  Next, there is the need to determine the number of such states.  This resulted in 

Formula 4: Number of Parallel Substates. 

  

Formula 4: Number of Parallel Substates 

The final form of transition destinations include those in which an initial transition or transitions 

occur in parallel substates.  While the most detailed formula thus far, the patterns were the same, 

leading to Formula 5: Parallel Initial Transition Combinations. 
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Formula 5: Parallel Initial Transition Combinations 

A careful look at the formulae shows a few things noticed in the original patterns.  First, initial 

transitions do not begin to occur until nesting level 2.  This makes sense as an initial transition 

requires the existence of substates.  Parallel substates begin at nesting level 2 as well for the same 

reason.  At nesting level 3, parallel substates can support an initial transition as well, leading to 

Formula 5.  At nesting levels of four or more, no additional types of behavior seem to occur.  This 

allows us to formulate the total number of possible unique transitions.  Adding up our results 

gives the following Formula 6: Total Unique Transition Destinations and Formula 7: Total 

Unique Transitions. 

  

Formula 6: Total Unique Transition Destinations 

  

Formula 7: Total Unique Transitions 

Calculating these values for each nesting level up to the default limit of 6 gives Table 7: Origins, 

Destinations, and Transitions per Nesting Level. 

NL 
(1) 

Origins 

(2) 

Basic 

Destinations 

(3) 

Non-

Parallel 

ITs 

(4) 

Parallel 

substates 

(5) 

Parallel 

ITs 

(6) 

Total 

Destinations 

(7) 

Total 

Transitions 

1 1 3 0 0 0 3 3 

2 3 5 2 1 0 8 24 

3 6 7 8 3 1 19 114 

4 10 9 22 6 5 42 420 

5 15 11 52 10 16 89 1335 

6 21 13 114 15 42 184 3864 

Table 7: Origins, Destinations, and Transitions per Nesting Level 
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Now that we know what exactly is possible at any given nesting level we can begin the process of 

actually gathering the results.  In order to do this efficiently, we need a flexible and easily 

adjustable means of testing the various combinations.  Thanks to the graphical programming 

interface included with the free modeling tool called QM, this proved relatively simple.  QM is 

designed as a means of graphically programming state machines in the QP framework.  For an 

example, see Figure 13: QM State-Machine Example below. 

 

Figure 13: QM State-Machine Example 

Now on to what is being timed.  An early attempt would start a pulse, start the transition to be 

timed, and then stop the pulse in the entry action of the destination state.  This approach was 
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unsuccessful because an entry action only occurs when the state is entered from outside.  Going 

from state s11 to state s1 would not trigger an entry.  This problem, along with the need to return 

to the origin state before another transition could be timed required a different approach.  After a 

few iterations and refinements, the author arrived at the following code in bsp.cpp (board support 

package C++ file). 

 

 

Figure 14: Pulse Timing code in QF::onIdle() 

The code above in Figure 14: Pulse Timing code in QF::onIdle() creates a pulse starting just 

before the creation of the event A which triggers the transition to be timed.  The pulse then ends 

as soon as the idle function is called.  This allows us to measure the time it takes to fully process a 

transition from start to finish, including the time to create and dispose of the event instance.  The 

void QF::onIdle() { 
//We are idle, so we are done processing 
PULSE_OFF(); 
//Flip flag on and off for test/reset 
flag!=1; 
//test if flag off 
if(!flag) 
{ 

//Make sure timer board has time to prepare 
delay(15); 
//Start Pulse 
PULSE_ON(); 
//Post event signal A to start transition 
AO_NSTimer->POST(Q_NEW(QEvt, A_SIG), &onIdle); 

} 
//Return to Origin if flag is on with signal B 
else 
{ 

AO_NSTimer->POST(Q_NEW(QEvt, B_SIG), &onIdle); 
} 

}  
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code then sends signal B which resets the state machine so another round can begin.  With this 

code, we need only follow the following steps to time a transition: 

1. Draw the state machine 

a. Draw an initial transition to the origin state. 

b. Draw Signal A to represent the transition destination 

c. Draw any initial transitions that are part of the destination. 

d. Draw signal B to return from ending state back to starting state. 

e. Use signal C to ensure that origin state has two signals visible for consistent 

timing. 

i. Each state uses switch case statements to process signals.  As such the 

number of signals available has a small (~1us) effect. 

2. Press the Make (hammer) button in the QM compiling tools to compile program 

3. Press the upload (chip) button to upload to Arduino. 

4. Press reset button on timer Arduino. 

5. Wait for timer board to collect and print 999 time samples. 

6. Copy results from TeraTerm Serial monitor to excel sheet. 

7. Record Min, Mean, and Max times 

8. Repeat. 
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With this set of steps, the author proceeded to collect the min, max and mean measurements for 

every possible transition for the first three nesting levels of the QP vanilla cooperative kernel.  

The results are presented and discussed below in Chapter 4. 



 

57 
 

CHAPTER IV 
 

 

Timing Results and Discussion 

Nesting Level 1 

That timing results have been gathered for every possible transition for the first three levels.  It is 

now time to present and discuss them, starting with Table 8: Timing Results for Nesting Level 1. 

 

Table 8: Timing Results for Nesting Level 1 

 

Transition Origins Transition Origins

s1(s1) s1(s1)

s1 56 s1 56.854

s2 45 s2 46.021

Internal 44 Internal 44.496

Transition Origins Transition Origins

s1(s1) s1(s1)

s1 58 s1 224

s2 48 s2 180

Internal 45 Internal 176

Transition Origins Transition Origins

s1(s1) s1(s1)

s1 227.42 s1 232

s2 184.08 s2 192

Internal 177.98 Internal 180
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Nesting Level 1 does not give much to discuss.  The state before the parenthesis is the state in 

which the transition is defined while the state in parenthesis is the current state of the state 

machine.  Thus s1(s11) would be read as the origin “from s1 while in s11.”  The maximum range 

in the results was 3us for the second transition.  This matches well with the theoretical discussion 

of the timing characteristics in Chapter 3 page 42.  There are only 3 possible transitions for this 

nesting level.  The first represents a state transition exiting and leaving the same state.  The 

second represents a transition between two states.  The surprise here is that it takes approximately 

24% longer to execute a transition to self than to another state.  It is possible that this is due to the 

order the transition code searches for the path to take.  The third data point is for an internal 

transition.  That an internal transition is the quickest is no surprise.  The only curiosity is that the 

state-to-state transition took only 3.4% longer than the internal transition.  One calculation that 

helps to put the speed of the framework into focus is how many transitions could be completed 

per second.  This works out to approximately 17500, 21700, or 22400 transitions per second on 

the ATmega328.  Not bad for a cheap 16Mhz chip.  Of course if a program actually did that many 

operations it would have no time left for anything else.  On a more practical note, 1000 random 

transitions would use up 4.9% of the clock cycles as overhead on average.  While the author lacks 

comparison data points for other operating systems and kernels, ~5% CPU overhead for 1000 

operations per second seems rather effective.  Given the ease of organizing program behavior 

through the combination of state machines in the QP framework and QM modeling tool for 

drawing the state charts, this seems rather attractive to the author.  We will of course need to see 

how this pattern holds at higher nesting levels. 
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Nesting Level 2 

 
Table 9: Timing Results for Nesting Level 2 

Moving on to the next nesting level, we have Table 9: Timing Results for Nesting Level 2.  One 

of the first patterns to notice is that the transitions we timed in nesting level 1 have not changed 

more than ~1/10th of a cycle.  This strongly suggests that the true time has remained unchanged.  

In other words, substates beneath both origin and destination do not affect timing.  Another easily 

discernible pattern is that internal transitions take the same amount of time to execute as long as 

the transition is defined in the current state.  Calling an internal transition of a superstate applies 

an approximately 1.5us (6 cycle) overhead to the transition. 

s1(s1) s11(s11) s1(s11) s1(s1) s11(s11) s1(s11)

s1 56 45 56 s1 56.872 46.013 56.875

s1 - IT to s11 73 70 69 s1 - IT to s11 73.141 70.086 69.036

s11 61 56 57 s11 61.969 56.856 57.881

s12 61 48 61 s12 61.977 48.349 61.970

s2 45 45 45 s2 46.015 45.996 46.011

s2 - IT to s21 48 48 48 s2 - IT to s21 49.010 49.000 48.999

s21 48 48 48 s21 48.377 48.355 48.360

Internal 44 44 45 Internal 44.512 44.481 45.931

s1(s1) s11(s11) s1(s11) s1(s1) s11(s11) s1(s11)

s1 58 48 57 s1 224 180 224

s1 - IT to s11 74 71 70 s1 - IT to s11 292 280 276

s11 64 57 60 s11 244 224 228

s12 64 49 64 s12 244 192 244

s2 48 48 48 s2 180 180 180

s2 - IT to s21 50 50 50 s2 - IT to s21 192 192 192

s21 49 49 49 s21 192 192 192

Internal 45 45 48 Internal 176 176 180

s1(s1) s11(s11) s1(s11) s1(s1) s11(s11) s1(s11)

s1 227.49 184.05 227.50 s1 232 192 228

s1 - IT to s11 292.56 280.34 276.14 s1 - IT to s11 296 284 280

s11 247.88 227.42 231.52 s11 256 228 240

s12 247.91 193.40 247.88 s12 256 196 256

s2 184.06 183.98 184.04 s2 192 192 192

s2 - IT to s21 196.04 196.00 196.00 s2 - IT to s21 200 200 200

s21 193.51 193.42 193.44 s21 196 196 196

Internal 178.05 177.92 183.72 Internal 180 180 192

Min (us)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

Mean (us)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

Floor (cycles)
Transition Origins

Max (us)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

Ceiling (cycles)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

Mean (cycles)
Transition Origins



 

60 
 

A surprising result is that the time it takes to transition to any of the s2 destinations is completely 

independent of the origin in s1.  In other words if the common superstate of origin and destination 

is the hidden top level superstate, the origin does not affect the timing.  Additionally the s2 

transitions were among the fastest.  It is likely that this is a result of the order in which the 

transition algorithm searches for the necessary path.  These s2 transitions also allow us to discern 

that an initial transition to a direct substate takes 3us or 12 cycles, while selecting a destination 

one nesting level lower takes ~2.3us or 9 cycles extra.  It remains to be seen whether this pattern 

holds.  Another result is that the s11 and s12 destinations take equal time from s1(s1) (again read 

as from s1 while in s1).  To put this in more accessible terms, the time it takes to transition into a 

direct substate from a superstate is independent of which substate is the destination.  Of note here 

is that the algorithm appears to check for destinations in substates after superstates or parallel 

states.  The transitions with s1 as the destination present an interesting pattern.  The s1(s11) 

transition takes the same time as the s1(s1) transition.  The final and somewhat confusing pattern 

in the data is that the destination s1 – IT to s11 takes the longest time to occur.  What makes this 

confusing is that the transition s2 – IT to s21 took only an additional 12 cycles for each origin, 

while the s1 versions take 65, 96, and 98 extra cycles.  The difference between the 96 and 98 

could be related to the switch case signal processing, but 65 is too different to result from that.  

The ~30 cycle discrepancy could be related to the lack of need to exit s11 before the initial 

transition, but there is probably something else going on as well.  Calculating our 1000 operation 

overhead for this nesting level gives us: max 7.3%, min 4.45%, and 5.4% for even distribution. 

Nesting Level 3 

Now moving on to the third nesting level, the mean time and mean cycles is shown below in 

Tables 10 and 11, with the rest shown in Appendix B: Data Tables.  Some of our previous 

patterns hold, while some do not.  First, we get the same results as in nesting level 2.  Second, the 

s2 destinations are again independent of the origin and among the fastest.  This strongly suggests 
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that the algorithm is somewhat optimized for transitions between top level states, s1, s2, etc.  The 

12 and 9 cycle cost for initial transitions or one nesting level for destination noted in the second 

nesting level do not appear to be a constant.  However all s2 destinations take 192 to 212 cycles, a 

range of only 20 cycles or 5us suggesting a relatively small cost.  

 
Table 10: Mean transition time for Nesting Level 3 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 56.900 46.007 46.012 46.009 56.977 56.959

s1 - IT to s11 73.131 70.082 49.005 70.197 73.125 69.036

s1 - IT to s111 81.190 81.455 82.348 77.352 77.075 81.184

s1 - IT to s11 - IT to s111 87.905 86.763 88.799 82.677 84.636 87.908

s11 61.966 56.873 48.378 56.956 61.957 57.863

s11 - IT to s111 77.651 73.135 70.077 69.030 73.548 77.655

s111 75.026 61.985 56.879 57.863 70.976 75.036

s112 75.033 61.970 49.757 61.967 75.028 75.032

s12 61.965 48.363 48.349 48.319 61.970 61.963

s12 - IT to s121 77.684 50.737 50.703 50.667 77.635 77.658

s121 75.032 49.778 49.781 49.750 75.026 75.023

s2 46.005 46.015 46.010 46.006 46.011 46.001

s2 - IT to s21 49.002 49.006 49.004 49.003 49.003 48.998

s2 - IT to s21 - IT to s211 51.993 52.000 51.996 51.997 51.997 51.999

s2 - IT to s211 50.719 50.693 50.717 50.683 50.667 50.719

s21 - IT to s211 50.621 50.689 50.725 50.691 50.693 50.667

s21 48.354 48.356 48.361 48.342 48.346 48.320

s211 49.756 49.790 49.766 49.769 49.775 49.764

Internal 44.510 44.515 44.513 45.917 48.243 45.923
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Table 11: Mean Transition cycles for Nesting Level 3 

The s12 destinations (s12, s12 - IT to s121, and s121) show a similar result to the s2 destinations.  

When transitioning from any origin from within s11, the state parallel to s12, the transition time is 

independent of origin.  Additionally, the only way to get into s12, s121, etc. faster is from a 

substate.  This again suggests that the algorithm is optimized for transitioning between parallel 

states.  This parallel state optimization is shown again when transitioning between s111 and s112.  

As it was in Nesting Level 2, the time it takes to transition into a direct substate from a superstate 

is independent of which substate is the destination.  At Nesting Level 3 we can also see that 

traveling from a state to a substate nested 2 levels below is independent of substate as well, 

although more time consuming than traveling one nesting level.  Additionally, this holds true for 

entering a direct substate then undergoing an initial transition into the next nesting level.  This 

strongly suggests that, for a transition defined above the states listed in the destination, only the 

combination of nesting levels descended and initial transitions matter.  As in previous nesting 

levels, the time to process internal transitions is short and depends only on the degree of 

separation between the origin states.  The time it takes for transition destination s1 seems to 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 227.60 184.03 184.05 184.04 227.91 227.84

s1 - IT to s11 292.52 280.33 196.02 280.79 292.50 276.14

s1 - IT to s111 324.76 325.82 329.39 309.41 308.30 324.74

s1 - IT to s11 - IT to s111 351.62 347.05 355.20 330.71 338.54 351.63

s11 247.86 227.49 193.51 227.82 247.83 231.45

s11 - IT to s111 310.60 292.54 280.31 276.12 294.19 310.62

s111 300.10 247.94 227.52 231.45 283.90 300.14

s112 300.13 247.88 199.03 247.87 300.11 300.13

s12 247.86 193.45 193.40 193.28 247.88 247.85

s12 - IT to s121 310.74 202.95 202.81 202.67 310.54 310.63

s121 300.13 199.11 199.12 199.00 300.10 300.09

s2 184.02 184.06 184.04 184.02 184.04 184.00

s2 - IT to s21 196.01 196.02 196.02 196.01 196.01 195.99

s2 - IT to s21 - IT to s211 207.97 208.00 207.98 207.99 207.99 208.00

s2 - IT to s211 202.88 202.77 202.87 202.73 202.67 202.88

s21 - IT to s211 202.48 202.76 202.90 202.76 202.77 202.67

s21 193.42 193.42 193.44 193.37 193.38 193.28

s211 199.02 199.16 199.06 199.08 199.10 199.06

Internal 178.04 178.06 178.05 183.67 192.97 183.69

Mean (cycles)
Transition Origins
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depend only on whether the transition is defined in s1 or a substate of s1.  The non-internal 

transitions from origins s1(s11) and s1(s1) match as long the transition does not end up in s11.  

The non-internal transitions from origins s11(s11) and s11(s111) match as long the does not end 

up in s111.  In both cases, when the transition ends up in the substate, the s1(s11) or s11(s111) 

transitions are slightly faster.  These two patterns suggest that the framework is designed such 

that passing an event up one state does not take additional time.  Additionally, the framework 

seems to remember the state from which passed from, saving time if the destination takes it back.  

While there are likely more patterns in the data, possibly some which are only noticeable at 

higher nesting levels, there are a few things to keep in mind.  First is that since the number of 

signals in a state has a small effect on the timing due to the switch case in the signal processing.  

This might be partially distorting deeper patterns in the data and would certainly cause minor 

deviations from the patterns in practice.  Second is that, as shown in Table 12: Reduced Dataset 

for Nesting Levels 1-3, we can use these patterns to significantly reduce the number of data 

points required to characterize the timing behavior.  At this point we only need 41 data points to 

describe the first 3 nesting levels, a reduction of 70.9% from the theoretical 141.  Last, back to 

our practical note, it would cause between 4.45% and 8.88% overhead for 1000 transitions per 

second with an average of 5.9%.  
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Table 12: Reduced Dataset for Nesting Levels 1-3 

Overall, the results of timing the various transitions for the first three nesting levels shows that to 

QP framework can process any transition within 3 nesting levels at between 178 cycles or 44.5us 

and 355 cycles or 88.75us.  It also shows that the framework is somewhat focused on performing 

internal transitions and transitions between parallel states quickly.  Since these are likely among 

the most common transitions a state machine will undergo during operation in practice, this is 

likely near ideal.  Now with the data gathered and reviewed, it is time to get back to our 

evaluation of the QP state machine framework.

No Initial Transitions s1(s1) s1(s111) s1(s11) s11(s11) s11(s111) s111(s111)

s1

s11 231 227 228 194

s12

s111 284 231 228

s112

s121

Initial Transition Chains s1(s1) s1(s11) s1(s111) s11(s11) s11(s111) s111(s111)

s1 - IT to s11 293 276 293 280 281 196

s1 - IT to s111 308 326 309 329

s1 - IT to s11 - IT to s111 339 347 331 355

s11 - IT to s111 294 293 276 280

s12 - IT to s121

s2 Destinations

s2

s2 - IT to s21

s2 - IT to s21 - IT to s211

s2 - IT to s211

s21 - IT to s211

s21

s211

Internal Destinations s1(s1) s11(s11) s111(s111) s11(s111) s1(s11) s1(s111)

Self 193

193

203

208

196

184

199

311 203

Independent of Origin

352

311

178 184

199

325

193248

300
248

Mean (cycles)

228 184

Transition Origins
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CHAPTER V 
 

 

Conclusion and Recommendations 

Conclusions 

In the beginning of this thesis, the author identified several characteristics that a software 

programming strategy needed in order to address the needs of modern developers.  Now that the 

QP state machine platform has been discussed in some detail, it can be evaluated with these 

characteristics in mind.  The authors objective is to convince the reader that this approach is 

worthy of consideration.  One of the most vital characteristics in showing the worth of the 

approach taken with QP is broad applicability. 

A programming strategy should, perhaps first of all, be applicable to a wide range of problems.  

This is an area where QP excels.  This is because the QP platform is founded upon a lightweight 

implementation of hierarchical state machines (HSM).  As discussed in Chapter 2 pages 34 and 

35, any traditional computer is at its heart a HSM.  As a result any code that could be stored and 

run on such a computer could be written as a HSM.  One of the main limitations built in to the QP 

framework is that a maximum of 63 Active Objects can be active in a program.  This limit is not 

as bad as it might seem.  It only means that there cannot be more than 63 active threads of 

execution on a given chip.  It is conceivable for the QP framework to run a major server, the 

power grid of a large city, or something small enough to put inside a dollar store toy.  This variety 

of applications requires flexibility in hardware choices. 
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There are some programming methods, quite easy to learn and quite flexible, who have the major 

limitation of hardware choice and portability.  Linux, LabView, Windows, and Mac OS, are 

software platforms with large user and developer bases.  These platforms, however, require 

powerful and expensive microprocessors to run.  They are simply unsuitable for something like 

the pressure sensors in a car tire, or a thermostat.  The QP platform, on the other-hand comes in 

three versions, QP-C, QP-C++, and QP-nano, with even the heaviest, QP-C++, running easily on 

the Arduino UNO’s microcontroller.  Additionally, much of the behavior of the code is defined in 

the state machines and platform.  Only the board support package (bsp) needs to change with new 

hardware.  This allows for highly portable code, insensitive to hardware changes, which is a vital 

requirement for the embedded system developer. 

Related to the issue of hardware choice is the issue of memory use.  If a program uses extensive 

memory, it requires more hardware resources.  A detailed analysis of the memory usage of the 

QP-C++ platform was not the focus of this paper.  As such its exact parameters are unknown.  It 

can be said one of the nesting level 3 programs used 7278 bytes of flash memory to program.  

The stack usage is unknown.  This is an area rich for future exploration.  However, as this was the 

heavy version of the platform with 9 states and 3 signals using less than 8kb of program memory, 

it would seem to be relatively lightweight. 

A benefit of the relatively lightweight nature of the code, combined with the QM modeling tool, 

is refinement speed.  Once the board support package for a platform is put together, much of the 

development time is spent on altering the state machines.  As the author knows from experience 

gathering the data for Chapter 4, QP allows for rapid change.  Once up and running, it could 

easily take less than 30 seconds to rearrange a few of the state machines, recompile, and upload 

using the QM tool.  This means that code refinement and implementation can proceed quite 

quickly.  During the development of a product, the ability to add and alter features as needed, 
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quickly and without compromising existing behavior, is vital.  This state machine platform makes 

this easy, with the abstraction of the state machine organization vital. 

One of the pitfalls of many strategies is difficulty in encapsulating and abstracting code behavior.  

State machines and states allow for this encapsulation and abstraction to occur in a 

straightforward manner.  Each state-machine represents a component of the software, such as a 

valve, door, driver, engine, etc. that can do different things.  Each state of said state machine then 

represents a mode of behavior the component can operate in.  This allows for a natural, 

mechanical means of separating and abstracting program behavior into easily digestible pieces. 

By dividing the program into pieces, the QP framework aids in distributing the burden of the 

software.  Separating program behavior into the board support package and state machines allows 

for each member of a development team to focus on the aspect with which they are familiar.  If a 

developer has a computer scientist, they would naturally be a good choice for the support 

package.  The state machine controlling a motor, servo, valve, etc. would naturally fall on 

someone familiar with digital controls and so on.  In addition to separating the responsibility for 

program behavior among team members, state machines allow for distributing the program 

among hardware platforms as well.  The state machine for a motor might communicate with a 

state machine for a valve.  There is no need for the motor and valve to run on the same chip, so 

long as a means of communication exists between the chips.  By running state machines on 

different chips, the QP framework provides a consistent means of utilizing distributed computing 

power. 

A common limitation of many advanced and flexible coding strategies is ease of understanding.  

Many of the more powerful and flexible platforms require an extensive and intimate 

understanding of computer science and programming.  Without such an understanding, it is 

difficult to get desired program behavior, and nearly impossible to understand exactly what is 
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going on.  The QP platform, as the author has attempted to show, functions in a manner similar to 

real-world mechanical objects.  To summarize, first an objects behavior is a function of the state 

the object is in.  Second, an object responds to external events.  Third, an object only changes 

behavior when it changes state.  Fourth, an object can be built up of smaller objects, each having 

states and so forth.  A strength of the QP platform is that by organizing program behavior in a 

manner similar to real-world objects, defining and understanding program behavior becomes 

much more accessible for a variety of people. 

A feature of many modern development processes is the need for testing and simulation.  Given 

the complex nature of many modern products, along with the time and cost involved in creating 

prototypes, it is useful to test portions of a project or program.  By simulating and testing parts of 

the final product individually, possibly simulating mechanical components in software, 

significant saving can be realized.  This is only possible if the software coding strategy allows it.  

The QP platform, by working on a large variety of hardware platforms, and encoding most 

behavior in the state machines, facilitates this.  In many cases, the state machines can be coded in 

such a way that no changes need to be made when moving them between platforms and 

simulations.  Only the board support packages would need to change.  This allows for thorough 

testing of portions of the program behavior piece by piece.  Combined with an understanding of 

how the QP platform functions on each platform, the Arduino Uno being reviewed by the author, 

allows for detailed analysis.  This makes the QP platform excellent for testing, simulation, and 

prototyping purposes. 

The last and perhaps most important feature a software strategy requires for embedded and or 

real-time systems is reliability.  No matter how well a strategy incorporates the previously 

discussed characteristics, if it is nut utterly reliable, it is useless for many applications.  An easy 

to understand, cheap, lightweight piece of software for a brake servo is worse than useless if it 

has a 1-in-a-million chance of freezing.  Memory leaks and non-deterministic behavior are 
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common culprits of this.  The QP platform does not have this problem.  Memory for the events is 

pre-allocated in a deterministic fashion, preventing lag or leaks.  This does mean that sufficient 

memory must be allocated ahead of time, but that can be determined through testing or math.  

Likewise, as the data collected in Chapter 4 shows, the platform is highly deterministic.  Each 

given operation in the QP framework takes a precise amount of time.  This deterministic nature 

makes the QP platform usable in real-time applications where performance must meet guaranteed 

parameters. 

While the author is unfamiliar with the exact characteristics of other frameworks and operating 

systems, the results of the analysis so far has made the author confident of two things.  First, the 

combination of state-machine architecture and the graphical QM tool to precisely and accurately 

control program behavior would be far simpler to understand and use for those not already 

intimately familiar with other methods.  Second, the processing cost for this simplicity is likely 

small enough to justify use in even mass produced embedded systems.  Without a large, 

experienced, and thus expensive, team of computer science coders, which would likely require 

proprietary software tools as well, it is unlikely to get much better performance.  Thus, while it 

may not be the preferred approach for Apple or Microsoft, for companies which are either smaller 

or not focused almost exclusively on computer programming, it might be worth adopting. 

Recommendations 

Due to the flexibility of the QP framework, there are many possibilities for further exploration.  

Perhaps the first that comes to mind is an exploration of the pre-emptive kernel running on the 

Arduino.  A second of course to explore the timing characteristics of the QP-C++ framework on 

other platforms.  A third avenue would be to explore the QP-C or QP-nano versions. A fourth 

avenue would be to thoroughly explore the memory requirements of the platform, flash, stack, 

and RAM.  The QP framework also includes a powerful internal monitoring service called QSPY 
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which could be enabled to assist in analysis of a given application.  Let us briefly discuss these 

further. 

The QP framework includes both a cooperative and pre-emptive version.  For the timing analysis 

in this thesis we used the cooperative version.  Much of the theoretical work for the cooperative 

version would remain unchanged for a pre-emptive analysis.  The main change is that nearly any 

operation done by or with an Active Object could be interrupted by an operation with a higher 

priority Active Object.  It would be relatively simple, possibly simpler than the cooperative 

version, to time a basic operation by the highest priority Active Object.  One could start a pulse in 

a lower priority object, create and post an event to the high priority Active Object, then end the 

pulse.  In the pre-emptive kernel, the Active Object with high priority would take over when the 

event was posted, only returning to the low priority object when finished.  This could be chained 

to explore various combinations.  It is likely that interrupting a transition in operation would add 

~6-8 cycles to the time it takes to execute, as a function call takes 4 cycles in the Arduino UNO, 

one call out, one call back to return.  The addition of a third Arduino, or alteration of the timer 

code could also be used to specifically cause interruptions at desired times.  As is hopefully 

apparent, extending the analysis in this paper to the pre-emptive kernel might easily provide the 

material for another thesis or creative component. 

A perhaps obvious avenue for future information gathering efforts would be to run the 

experiments on other hardware platforms.  As long as a board support package can be developed 

for the desired platform, many of which are already available, the QP framework can run on 

many target environments, from miniscule microcontrollers to massive supercomputers.  It is 

likely that there would be variations in the number of cycles which would be required for 

different tasks.  This variation can come from the way compilers create the code, formatting and 

configuration used in porting the platform, as well as the way in which different chips run the 
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instructions.  As such, before using the QP framework in a project, it might be prudent to run the 

timing analysis so that performance characteristics can be known precisely. 

While the C++ version of the QP framework was used in this thesis due to an already existing 

port to the Arduino UNO, there are two other versions.  As the author understands it the C version 

is essentially identical, with the C++ version merely a translation in program semantics.  The C 

version is mainly provided because some C++ compilers for microcontrollers produce code with 

serious performance issues.  The nano version of QP is quite different.  Many features are 

removed or restricted.  This is because the primary purpose of the QP nano version is to create a 

framework which can run state machines with minimal resources.  The creator of the QP 

framework specifically stated as a goal for QP-nano, a feasible framework to be used by the 

individual components, threads, and cores of a chip to aid in the development of microcontrollers 

and processors.  As such the QP-nano, in particular, could serve as something to further explore. 

One important characteristic of any program framework is memory.  Program memory, stack 

space, and RAM are precious resources in many embedded systems.  As such, a detailed 

understanding of how and how much of each is used could prove useful.  In this thesis, the focus 

was on understanding the state machine architecture and the timing performance.  Developing an 

analysis of memory usage, would likely be a worthy pursuit.  Speed, reliability, and memory 

usage are vital characteristics.  The strongly deterministic nature of the timing has already been 

shown.  With an analysis of memory, a developer looking for a strategy would then have a good 

idea of what they would get from QP. 

Of course the final test of any strategy is how it functions in application.  With an understanding 

of timing and memory with the platform in use, it remains necessary to understand the specific 

application.  The QP framework includes a monitoring service built into the code called QSPY.  

This service when enabled in the compiler, provides many services for monitoring the framework 
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as well as the behavior of the components such as the state machines, event queues, memory 

pools, etc.  This would allow a developer to get a view of what is going on under the hood that 

might not otherwise be possible.  As for why this was not explored in this thesis, there are two 

main reasons.  First was that while intended to be lightweight, it would inevitably alter the timing 

characteristics slightly.  Second, the timing functions QSPY provides have a resolution of 256 

microseconds on the Arduino Uno.  This was far too coarse of a resolution for distinguishing the 

time various framework tasks take.  It might however be useful for practical applications, 

especially since it does preserve the order in which things are logged.  For a fairly complex set of 

Active Objects, activating the QSPY service in various debug versions, or even production 

versions if the ability to monitor justifies the resource usage, could conceivably greatly aid in 

nearly any application. 

Important for many who would explore it as well is the fact that it is free to learn and use, an 

advantage over many less widely applicable alternatives.  The author has hope that the reader has 

been convinced that the QP framework is rich in opportunity.  First, it has a wide range of 

applicability in practical applications.  Second, it presents a near unlimited number of avenues for 

learning or aiding development.    
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APPENDICES 
 

 

Appendix A: Code 

NSTimer.ino (Arduino project file) 

#include "qp_port.h" 
#include "NSTimer.h" 
#include "bsp.h" 
#include "Arduino.h" // always include in your sketch 
 
Q_DEFINE_THIS_FILE 
 
using namespace QP; 
// Local-scope objects ------------------------------------------------------- 
static QEvt const *NSTimer_queueSto[10]; // alocate event queue buffer 
 
static QF_MPOOL_EL(QEvt) l_smlPoolSto[10]; // storage for the small event pool 
 
//............................................................................ 
void setup() { 

// initialize the BSP 
BSP_init(); 
// initialize the framework and the underlying RT kernel 
QF::init(); 
// initialize event pools... 
QF::poolInit(l_smlPoolSto, sizeof(l_smlPoolSto), sizeof(l_smlPoolSto[0])); 
AO_NSTimer->start(1, NSTimer_queueSto, Q_DIM(NSTimer_queueSto), 

(void *)0, 0U); // start the NSTimer active object 
} 
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NSTimer.h 

#ifndef NSTimer_h 
#define NSTimer_h 
using namespace QP; 
 
enum NSTimerSignals { // signals for the NSTimer application 

TIMEOUT_SIG = Q_USER_SIG, 
A_SIG, 
B_SIG, 
C_SIG, 
D_SIG, 
E_SIG, 
F_SIG, 
G_SIG, 
H_SIG 

}; 
 
// active objects .................................................. 
$declare(components::AO_NSTimer) // "opaque" pointer to NSTimer AO 
 
#endif // NSTimer_h 
 

bsp.h 

#ifndef bsp_h 
#define bsp_h 
 
#include <avr/io.h> // AVR I/O 
 
// Sys timer tick per seconds 
#define BSP_TICKS_PER_SEC  100 
#define PULSE_ON()   (PORTD |= (1 << (2))) 
#define PULSE_OFF()   (PORTD &= ~(1 << (2))) 
 
void BSP_init(void); 
void BSP_ledOff(void); 
void BSP_ledOn(void); 
#endif // bsp_h 

bsp.cpp 

#include "qp_port.h" 
#include "NSTimer.h" 
#include "bsp.h" 
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#include "Arduino.h"   // Arduino include file 
 
Q_DEFINE_THIS_FILE 
 
int flag=0; 
//............................................................................ 
void BSP_init(void) { 

DDRB = 0xFF; // All PORTB pins are outputs (user LED) 
PORTB = 0x00; // drive all pins low 

} 
 
//............................................................................ 
void BSP_ledOff(void) { 

PORTB &= ~(1 << 5); 
} 
 
//............................................................................ 
void BSP_ledOn(void) { 

PORTB |= (1 << 5); 
} 
 
//............................................................................ 
void QF::onStartup(void) { 
} 
 
//............................................................................ 
void QF::onCleanup(void) { 
} 
 
//............................................................................ 
void QF::onIdle() { 

//We are idle, so we are done processing 
PULSE_OFF(); 
//Flip flag on and off for test/reset 
flag!=1; 
//test if flag off 
if(!flag) 
{ 
//Make sure timer board has time to prepare 

delay(15); 
//Start Pulse 

PULSE_ON(); 
//Post event signal A to start transition 

AO_NSTimer->POST(Q_NEW(QEvt, A_SIG), &onIdle); 
} 
//Return to Origin if flag is on with signal B 
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else 
{ 

AO_NSTimer->POST(Q_NEW(QEvt, B_SIG), &onIdle); 
} 

} 
 
//............................................................................ 
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) { 

QF_INT_DISABLE();  // disable all interrupts 
BSP_ledOn();   // User LED permanently ON 
asm volatile ("jmp 0x0000");  // perform a software reset of the Arduino 

} 
 

ao_NSTimer.cpp 

#include "qp_port.h" 
#include "bsp.h" 
#include "NSTimer.h" 
#include "Arduino.h"  
//Q_DEFINE_THIS_FILE 
// NSTimer class ------------------------------------------------------------- 
$declare(components::NSTimer) 
// Local objects ------------------------------------------------------------- 
static NSTimer l_NSTimer; // the single instance of NSTimer active object 
// Global objects ------------------------------------------------------------ 
QActive * const AO_NSTimer = &l_NSTimer; // the opaque pointer 
// Pelican class definition -------------------------------------------------- 
$define(components::NSTimer) 
 



 

79 
 

Appendix B: Nesting Level 3 Data 

Min(us) 

 

 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 56 45 45 45 56 56

s1 - IT to s11 73 70 48 70 73 69

s1 - IT to s111 81 81 82 77 77 81

s1 - IT to s11 - IT to s111 87 86 88 82 83 87

s11 61 56 48 56 61 57

s11 - IT to s111 77 73 70 69 73 77

s111 75 61 56 57 70 75

s112 74 61 49 61 75 75

s12 61 48 48 48 61 61

s12 - IT to s121 77 50 50 50 77 77

s121 75 49 49 49 75 74

s2 45 45 45 45 45 45

s2 - IT to s21 48 48 48 48 48 48

s2 - IT to s21 - IT to s211 50 50 50 50 50 50

s2 - IT to s211 50 50 50 50 50 50

s21 - IT to s211 50 50 50 50 50 50

s21 48 48 48 48 48 48

s211 49 49 49 49 49 49

Internal 44 44 44 45 48 45

Min (us)
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o

n
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a

ti
o

n
s

Transition Origins
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Mean(us) 

 

Max(us) 

 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 56.900 46.007 46.012 46.009 56.977 56.959

s1 - IT to s11 73.131 70.082 49.005 70.197 73.125 69.036

s1 - IT to s111 81.190 81.455 82.348 77.352 77.075 81.184

s1 - IT to s11 - IT to s111 87.905 86.763 88.799 82.677 84.636 87.908

s11 61.966 56.873 48.378 56.956 61.957 57.863

s11 - IT to s111 77.651 73.135 70.077 69.030 73.548 77.655

s111 75.026 61.985 56.879 57.863 70.976 75.036

s112 75.033 61.970 49.757 61.967 75.028 75.032

s12 61.965 48.363 48.349 48.319 61.970 61.963

s12 - IT to s121 77.684 50.737 50.703 50.667 77.635 77.658

s121 75.032 49.778 49.781 49.750 75.026 75.023

s2 46.005 46.015 46.010 46.006 46.011 46.001

s2 - IT to s21 49.002 49.006 49.004 49.003 49.003 48.998

s2 - IT to s21 - IT to s211 51.993 52.000 51.996 51.997 51.997 51.999

s2 - IT to s211 50.719 50.693 50.717 50.683 50.667 50.719

s21 - IT to s211 50.621 50.689 50.725 50.691 50.693 50.667

s21 48.354 48.356 48.361 48.342 48.346 48.320

s211 49.756 49.790 49.766 49.769 49.775 49.764

Internal 44.510 44.515 44.513 45.917 48.243 45.923

Mean (us)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 58 48 48 48 58 58

s1 - IT to s11 74 71 50 71 74 70

s1 - IT to s111 82 82 83 78 78 82

s1 - IT to s11 - IT to s111 88 87 90 83 85 88

s11 64 57 49 58 64 60

s11 - IT to s111 78 74 71 70 74 78

s111 77 64 57 58 73 77

s112 77 64 50 64 77 77

s12 62 49 49 49 64 64

s12 - IT to s121 78 52 52 52 78 78

s121 77 50 50 50 77 77

s2 48 48 48 48 48 48

s2 - IT to s21 50 50 50 50 50 50

s2 - IT to s21 - IT to s211 53 53 53 53 53 53

s2 - IT to s211 52 52 52 52 52 52

s21 - IT to s211 52 52 52 52 52 52

s21 49 49 49 49 49 49

s211 50 50 50 52 50 50

Internal 45 45 45 48 49 48

Max (us)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s
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Floor(cycles) 

 

Mean(cycles) 

 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 224 180 180 180 224 224

s1 - IT to s11 292 280 192 280 292 276

s1 - IT to s111 324 324 328 308 308 324

s1 - IT to s11 - IT to s111 348 344 352 328 332 348

s11 244 224 192 224 244 228

s11 - IT to s111 308 292 280 276 292 308

s111 300 244 224 228 280 300

s112 296 244 196 244 300 300

s12 244 192 192 192 244 244

s12 - IT to s121 308 200 200 200 308 308

s121 300 196 196 196 300 296

s2 180 180 180 180 180 180

s2 - IT to s21 192 192 192 192 192 192

s2 - IT to s21 - IT to s211 200 200 200 200 200 200

s2 - IT to s211 200 200 200 200 200 200

s21 - IT to s211 200 200 200 200 200 200

s21 192 192 192 192 192 192

s211 196 196 196 196 196 196

Internal 176 176 176 180 192 180

Floor (cycles)
Transition Origins

T
ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 227.60 184.03 184.05 184.04 227.91 227.84

s1 - IT to s11 292.52 280.33 196.02 280.79 292.50 276.14

s1 - IT to s111 324.76 325.82 329.39 309.41 308.30 324.74

s1 - IT to s11 - IT to s111 351.62 347.05 355.20 330.71 338.54 351.63

s11 247.86 227.49 193.51 227.82 247.83 231.45

s11 - IT to s111 310.60 292.54 280.31 276.12 294.19 310.62

s111 300.10 247.94 227.52 231.45 283.90 300.14

s112 300.13 247.88 199.03 247.87 300.11 300.13

s12 247.86 193.45 193.40 193.28 247.88 247.85

s12 - IT to s121 310.74 202.95 202.81 202.67 310.54 310.63

s121 300.13 199.11 199.12 199.00 300.10 300.09

s2 184.02 184.06 184.04 184.02 184.04 184.00

s2 - IT to s21 196.01 196.02 196.02 196.01 196.01 195.99

s2 - IT to s21 - IT to s211 207.97 208.00 207.98 207.99 207.99 208.00

s2 - IT to s211 202.88 202.77 202.87 202.73 202.67 202.88

s21 - IT to s211 202.48 202.76 202.90 202.76 202.77 202.67

s21 193.42 193.42 193.44 193.37 193.38 193.28

s211 199.02 199.16 199.06 199.08 199.10 199.06

Internal 178.04 178.06 178.05 183.67 192.97 183.69

Mean (cycles)
Transition Origins

T
ra

n
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n
 D
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n
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Ceiling(cycles) 

s1(s1) s11(s11) s111(s111) s11(s111) s1(s111) s1(s11)

s1 232 192 192 192 232 232

s1 - IT to s11 296 284 200 284 296 280

s1 - IT to s111 328 328 332 312 312 328

s1 - IT to s11 - IT to s111 352 348 360 332 340 352

s11 256 228 196 232 256 240

s11 - IT to s111 312 296 284 280 296 312

s111 308 256 228 232 292 308

s112 308 256 200 256 308 308

s12 248 196 196 196 256 256

s12 - IT to s121 312 208 208 208 312 312

s121 308 200 200 200 308 308

s2 192 192 192 192 192 192

s2 - IT to s21 200 200 200 200 200 200

s2 - IT to s21 - IT to s211 212 212 212 212 212 212

s2 - IT to s211 208 208 208 208 208 208

s21 - IT to s211 208 208 208 208 208 208

s21 196 196 196 196 196 196

s211 200 200 200 208 200 200

Internal 180 180 180 192 196 192
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ra

n
si

ti
o

n
 D

e
st

in
a

ti
o

n
s

Ceiling (cycles)
Transition Origins
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Appendix C: Lists of Origins and Destinations 

Nesting Level 1 

 

 

Nesting Level 2 

 

Transition Origins Non-Parallel ITs

s1(s1) None

Basic Parallel Substates

s1 None

s2

Internal Parallel ITs

None

Transition Origins Non-Parallel ITs

s1(s1) s1 - IT to s11

s11(s11) s2 - IT to s21

s1(s11)

Parallel Substates

Basic s12

s1

s11 Parallel ITs

s2 None

s21

Internal
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Nesting Level 3

 

Transition Origins Non-Parallel ITs

s1(s1) s1 - IT to s11

s11(s11) s1 - IT to s111

s111(s111) s1 - IT to s11 - IT to s111

s11(s111) s11 - IT to s111

s1(s111) s2 - IT to s21

s1(s11) s2 - IT to s21 - IT to s211

s2 - IT to s211

Basic s21 - IT to s211

s1

s11 Parallel Substates

s111 s112

s2 s12

s21 s121

s211

Internal Parallel ITs

s12 - IT to s121
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Nesting Level 4

 

Transition Origins Non-Parallel ITs

s1(s1) s1 - IT to s11

s11(s11) s1 - IT to s111

s111(s111) s1 - IT to s1111

s1111(s1111) s1 - IT to s11 - IT to s111

s111(s1111) s1 - IT to s11 - IT to s1111

s11(s1111) s1 - IT to s111 - IT to s1111

s1(s1111) s1 - IT to s11 - IT to s111 - IT to s1111

s11(s111) s11 - IT to s111

s1(s111) s11 - IT to s1111

s1(s11) s11 - IT to s111 - IT to s1111

s111 - IT to s1111

Basic s2 - IT to s21

s1 s2 - IT to s211

s11 s2 - IT to s2111

s111 s2 - IT to s21 - IT to s211

s1111 s2 - IT to s21 - IT to s2111

s2 s2 - IT to s211 - IT to s2111

s21 s2 - IT to s21 - IT to s211 - IT to s2111

s211 s21 - IT to s211

s2111 s21 - IT to s2111

Internal s21 - IT to s211 - IT to s2111

s211 - IT to s2111

Parallel Substates

s1112 Parallel ITs

s112 s12 - IT to s121

s1121 s12 - IT to s1211

s12 s12 - IT to s121 - IT to s1211

s121 s121 - IT to s1211

s1211 s112 - IT to s1121
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