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Embedded systems comprise the majority of all cdermystems. Embedded systems
require many considerations that general purpos®aters do not. This is especially
true of real time systems, which must reliably perf within exact parameters. Despite
this, embedded systems have not been subjectextassive an analysis in the literature
from the viewpoint of someone wanting to develogarbedded product. Since failing
to understand the characteristics required for ldgueg embedded systems can cost
money and even lives this is a problem. As suetsfiecialized and esoteric nature of
the information is readily available is insuffictdor those looking to quickly and
cheaply develop a product.

In this thesis the QP State machine frameworkssuwdised. This is done for the goal of
helping the reader understand both how the framlefmctions as well as why it is
useful for developing real time embedded systeAdditionally, an attempt is made to
make the concepts understandable from the perspeifta reader new to the intricacies
of computing in embedded systems.

The specific implementation of the framework is darsing only freely available
software capable of running on an ordinary PC, al$ as two Arduino UNO
development boards. With the addition of a spreeeisprogram, the timing
characteristics of the framework are explored loothhe theoretical and practical level
with microsecond precision.
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CHAPTER |

INTRODUCTION

Today’s world is one of rapid, exponential, changéis is especially true in regards to that
uniquely human pastime of making tools, and applyirose tools to every aspect of our lives.
As a result, we are surrounded every day by thduymts of technology. Those products are
increasingly complex. Yet those products are etqoeby those who buy and use them to be
increasingly convenient. Paradoxically, we corgitw expect new devices to be both
improvements on previous generations and contimpedving at the same rapid pace, month-by-
month, year-by-year. Since the human capacityffought is comparatively static, the approach
to the dealing with the increasing complexity ofelepment must be in how we think and the
tools we use. Further, in order to better apprabelproblem, we must first understand the

problem better.

Each day in 1985, the average person encountesadd3 micro-controllers. In 1990 that
number had grown to 10. In 1995 the estimate Wa&édm things like microwaves (1), cars (up
to 10 as of 1995), and jets who might have a 18@8lander, Ridgely, & Ringgenberg, 2002).
As of 2009, automobile manufacturers were repoiingverage of between 35 and 45
microcontrollers per car with luxury cars averagifigto 50, and BMW'’s 7 Series using up to 70
(Murray, 2009). If cars can be used as a benchfoaitke number of microcontrollers
encountered, a person may have encountered ar@@nor 2nore each day in 2009. Further

complicating the issue is that as time goes ongnewips are developed and deployed, and older



ones become obsolete. For instance the commond Mamochip, currently supplies 734
different micro-controller units. (Microchip Techiogy Inc., 2012) While some of these MCUs
may be able to use identical code, many will Aidtus Microchip Technology Inc. can produce
hundreds of distinct chips. Given that Wikipedstd 37 different “common” brands (Wikimedia
Foundation, Inc., 2012), the variety of differeatdiware platforms potentially numbers in the
thousands today. That variety is likely to condéiria grow as time goes on. Thus, developers
must often choose a balance between the depthraadth to which their development teams
understand the hardware available. Choosing tathrdepth and too little breadth can result in
suffering the limitations of the chosen hardward forgoing the benefits of that not chosen. Too
much breadth and too little depth can prevent felploiting used hardware as well as potential
bugs due to poor understanding of the hardwanaligdtions. Both choices can be disastrous for
a developer, whether a small one-person startug haulti-national titan of industry. Strategies

that allow for increasing both depth and breadthraferstanding are thus of immense value.

Speaking of value, as computerized products beeonare ubiquitous, an increasing number of
those products are high volume and or low coste [dtv profit margins of low cost products, in
tandem with the multiplicative effect of high volemroducts means that the cost per unit
dedicated to the computational tasks is of criticgdortance. That cost can easily make the
difference between an economical product and faateduct. For instance Apple announced
that, as of March 2011 they had sold approximat@§ million iPhones worldwide (Costello,
2012). That means that even a penny differentiesiicost of the microcontrollers or
microprocessors in the iPhone would have madefardifce of over one million dollars. Thus it
can be seen, although given a somewhat extremepdaatinat being able to efficiently utilize the
resources of a given chip allowing for the useesSland cheaper hardware can make a huge
difference in the viability of an endeavor. Thisans that a method of designing and developing

software which avoids the use of excessive targeatiare resources such as memory, RAM,



cycles, etc. is immensely more critical in embedded low profile applications than it is in
general purpose computing environments such asapeakd laptop computers. This is an
important consideration as general purpose compatest microprocessors often have orders of
magnitude more resources than embedded systemmiarmtontrollers, and as such often
approach some programming tasks in an entirelgmfft manner. Memory management is a
good example as many programmers use heap meractyas that provided by C language’s
functions malloc() and free(). This is a probleecéuse the mechanism used is non-deterministic
and often wastes memory through memory fragmemd¥éalls, 2010). This is unacceptable to
the resource-limited and often time-critical apation of embedded systems and
microcontrollers. Non-deterministic behavior feea worked around in general purpose
applications by relying on the brute force of fastl power hungry microprocessors to handle the
task in time. In the typically slower microcontesk of embedded applications this strategy is
less useful. In time-critical or safety applicasoit is completely unacceptable to simply hope it
will be done in time. Memory fragmentation is alé@wise often ignored as the typical general
computer has large amounts of RAM memory, and &&m aise hard-drive space as well. Even
a slow continual leak of memory is often handleddstarting the computer. This often takes
care of itself automatically because general-puemasnputers are often restarted on a daily
basis. An embedded system on the other hand maydmy a few hundred bytes or kilobytes of
available memory and may be expected to run untstlfor years at a time, so ANY memory
fragmentation might lead to a catastrophic failkweting money or lives. Speaking of brute force
application of resources, the approach to desiganmgprogramming computerized systems must

also take into account another important compookabst, time.

The time that it takes to develop a product isaaitto the economics of the product. For one,
there are the direct costs of time, wages of thegomel working on the project. Between the

engineers, programmers, managers, and so on, petsmsts can accrue rapidly while



development is ongoing. Further, direct costs lileges are not the only costs associated with
prolonged development time. A developer that ¢aomten their development times has a much
greater range of strategic options regarding prodod market forces. For instance, Widget
Limited finishes primary development in 3 monthsile their competitor Gadget-Ware takes 6
months. Widget Limited can choose to deploy figstining first mover status, and the associated
advantages and disadvantages. Or Widget Limitgthtntidke the 3 extra months to test the
waters, refine the product, and penetrate the rharkas to have a superior product and customer
image when both release. Other options are ofsecavailable and the subject of an extensive
body of research, but Widget Limited has an und®eiatrategic advantage over Gadget-Ware,
due to having a greatly increased number of optigngurther, indirect cost of development

time, especially in software applications, is inguct refinements. A development strategy that
allows for rapid, yet predictable, change allowdeseloper greater responsiveness to flaws or
shortcomings in products, reducing the impact @xpected events during development.
Further, if a developer is unable to respond iash &nd effective manner to a bug or flaw in their
already released product, they may be passed exétime a customer searches for a supplier
and can develop a nasty reputation. This abilityespond rapidly becomes more critical as the

products become increasingly complex.

As the progression of home video players demomrstvet expect our devices to take on an
increasing set of tasks. VHS players were oncsidered perfectly functional with the ability to
play, pause, stop, rewind, and occasionally torcecdhen came the DVD player, with more
features like a menu, cursor, scenes, bonus featsubtitles, multiple languages, director
commentary, etc. Now we have a new generationud#-Bay players, of which some even keep
bookmarks or connect to the internet, accessingtedynstored features. Even further, these
Blue-ray players are already facing competitiodigital TV boxes which can stream shows and

movies from services like Netflix or Hulu through imternet connection. Some of these devices



are blurring the line between televisions, sterpos, and even phones. As these devices take on
more tasks and features, they become increasioghplex. This increasing complexity can
produce nightmares for developers if they do nettsufficient management strategies. This
complexity means that even coming up with an extinaigeature and specification list for a
product can become a monumental task. Many dewvelnopmethods require such a list before
development can even begin. Without the abilitgffaciently partition individual aspects of a
products behavior, clearly describing that behaw#@or be difficult. Without a clear idea of how a
product behaves, implementing that behavior is rmagle difficult and a developer will have

even larger hurdles for any new introduction omges. This complexity and how a developer

deals with it largely define how the developmerigaeiss progresses.

A common means of dealing with the complexity afyatem is to distribute the system. This
distribution is done by abstracting away groupbediavior into subsystems. This distribution
takes place both in hardware and the developmant ieself. A car, for instance, may have
different hardware controlling the engine, the legkhe environmental controls, media devices,
the lights, sensors, etc. Often these subsysteagshave different people working on them, in
parallel. Even on the software level, there airegthlike the user interface, hardware drivers,
operating systems, applications, memory manageraedtyarious other distinct groups of
behavior which need to be addressed. This digioib@across both teams and hardware means
that successful strategies must concisely andgaailefine how each group of behavior
interacts. These descriptions are important soetheh subsystem can be the focus of its
respective hardware and development sub-team.eBgrithing each group of behavior both
concisely and precisely, complexity can often b&tralcted away. This allows the sub-team to
effectively ignore the complexity of the overalssgm and focus on only one part of the system
at a time. If the description is imprecise, thenmex in which the subset interacts with the whole

can be poorly understood. Poor understandingasietlinteractions can result in the system



failing to work together properly. Conversely, dyeverbose descriptions of how each piece
behaves, expose sub-teams to too much of the begsadm complexity. This distracts from the
concentration that can be applied to the indivicwddsystem, compromising performance. How
strategies perform, describe, and implement thssidution of complexity can thus make the
difference between a mind-numbing mishmash of qoiscinat break down development and
hide bugs, to the ordered and efficient creatioa ocbmplex, yet deceptively simple and

effective, product.

A consequence of partitioning product developmemss separate, sometimes parallel running,
sub-teams is specialization. The brakes of atlarfuel mixture of the engine, the suspension
system, the transmission, the environmental catesld so on are systems whose development
and understanding often require highly specifi¢,weied knowledge. Assigning someone with
this detailed knowledge to each subsystem makesesdtiowever, requiring each team-member
to have a detailed knowledge of computer theory ammate who does, can be extremely
prohibitive. Most engineers will not likely haveth the detailed knowledge of an aspect of
engineering as well as be comfortable delving thintricacies of computer theory. As the
writer has personally experienced while acting tsaghing assistant, the mindset of a skilled
mechanical engineer is no guarantee of skill igEmming. Computer science is a separate
degree program for a reason, the considerationasligest endless. As a consequence, a
development team may be composed mostly, or entwséimembers who have limited
knowledge of computer programming, yet will be estpd to program effective code. Simply
requiring each parallel team to be watched ovéna@ude a computer scientist is cost prohibitive.
Yet having insufficient understanding can cripple subsystem. Thus how well a development
team and its accompanying software programmindesiyadeals with this lack of familiarity can

be critical.



As a product is under development, it needs tested. With the high complexity of products, it
is often impractical to create a complete prototfgrdesting. Each piece of the system often has
to have its individual performance tested, as a®lhow it interacts with other pieces of the
system. One increasingly common and cost effegtaye of doing this is to simulate parts of the
system. This allows different parts of the systerhe tested individually and against other parts
of the system without actually building them. As ttapabilities of simulation software
increases, this becomes an increasingly importamtob the development process (Bartos, 2007).
However in order to most effectively simulate ateys the software controlling the system needs
to behave the same in both the simulation andahlksystem. One way of doing this is to use the
same code during both testing and release. Thkeaser said than done though as many code
strategies are very sensitive to hardware changdsave to be effectively rewritten to change
hardware. Further, many coding strategies, sucupear-loops, have to be extensively rewritten
in order to implement new features. This extensgweriting can radically change the behavior of
the code, necessitating further testing. Theswbpitity and extension issues mean that a coding
strategy which produces consistent, predictablewehis important. By maintaining this
behavior, while being both highly portable and imstive to additions and changes, a strategy
can greatly increase the effectiveness of simulaind other testing. Such effective simulation

and testing can greatly reduce costs, speed dewelapand catch potential faults early.

As ever more products become increasingly commatéyireliability and safety become
increasing concerns. The concern for reliabibityd as a result safety, often trumps performance
speed and efficiency. Take for instance the chb@eeen an embedded controller that usually
responds in a few microseconds, but might freeZaibunder rare circumstances, and one which
will always respond in a millisecond or two. Tloerher might be preferable in some instances
like a graphics card, but not in car brakes or osladety critical systems. Even non-safety critica

systems might prefer the latter, such as a semsoegin a buoy out at sea or other hard to reach



systems. This need for reliability means thatdinategy which produces the fastest code is not
necessarily preferable to one which guaranteeghkatoftware will perform at a certain level.

Of course, no coding strategy can prevent hardfediteres. This need for reliability in both
hardware and software is one of the reasons whgrwibe obsolete microchips continue to be
used. Older chips, having been field tested byipus products, tend to have more experimental
data on failure modes and rates. This continueditislower, older, and often power hungry
chips means that guarantees are not a full sutestiuthe performance speed of code, but
instead a constraint. Thus an effective codingtegy for the increasingly computerized world

must take into account both efficiency and guaeshfgerformance simultaneously.

As we have seen, the changing face of technolognmthat the choice of coding strategy is
crucial to the process of product development.trategy has many demands that it must be
measured against. For one, the sheer number gfgmming tasks necessary means that it must
be applicable to a wide variety of applicationgr &nother, the variety of hardware choices
means that the strategy must produce highly partedfle that is insensitive to hardware
differences. The produced code must be compawdier to take advantage of the limited
resources available. The strategy must be ahiteglement and refine code quickly. The
strategy must aid the abstraction of the complskgit is presented with. The strategy must
facilitate distribution of responsibility acrossvééopment teams and hardware. The strategy
must be easily understandable to a wide varietisafiplines. The strategy must also facilitate
easy testing of both the complete system and stdyagseven before the product is built. And of
course, any coding strategy that is to be useglstems which will be used in remote or safety

critical systems must be above all else, reliabt guaranteed in its performance.



CHAPTER Il

REVIEW OF SYSTEMS AND PROGRAMMING STRATEGIES

System types under review

In order to choose a strategy for developmentetiirstrategies must be reviewed and compared
in their advantages and disadvantages. As wewdbiese strategies, we must choose and
remember our focus. For this paper, the focuskwelbn three types of systems which are
becoming increasingly commonplace. The first eSthtypes is embedded systems. The second
type is reactive, or event-driven, systems. Tlve tland perhaps most restrictive, is that of real-
time systems. These three types of systems ateenenutually inclusive nor exclusive, as

shown in Figure 1 below, yet between them includgde variety of systems used in many
aspects of life. Each of these types of systeragh&ir own considerations which must be

addressed in their design and will be discussealbel

The first of the system types under review are alfdbd systems. While no strict definition of

what constitutes an embedded system exists, tlevialy can be said:

“A general definition olembedded systems is: embedded systems are computing systems with
tightly coupled hardware and software integratitmt are designed to perform a dedicated
function. The word embedded reflects the factttiege systems are usually an integral part of a
larger system, known as the embedding system.giéuimbedded systems can coexist in an

embedding system” (Li & Yao, 2003).



Figure 1: Categories of Systemsunder Review

Further characteristics typical of embedded systmshe parallel development of hardware
software as well as croptatform developmel (Li & Yao, 2003). Parallel development refers
the practice of development teams for both theare of the system and the software to w
together so as to take into account each othevaradges and limitations. By contrast, m
hardware platforms such as PCs developed with little concern as to the specififtvaare
applicationswvhich will run on them. Additionally, many of tigograms which users a
familiar with are not developed for a specific makel model of a computer, but rather a ger
purpose oprating system like Windows. Cr«platform development, in turn, refers t
development proces$s which software crosses platforms from host tgeat A platform, in thic
context, is a set of hardware, software, and deveémt tools. The host plorm is the one o
which the program is developed. The target platfisr the environment in which the progr.
will actually run when deployed. This developmapproach is vital to embedded syste
because they often run on resource limited hardveat may not even have any user inter.

The crosglatform approach thus allows for a more resouiateplatform to be used by tl

10



developer for the actual task of programming, 8keC with its keyboard, mouse, graphics, etc.
As might be expected, these characteristics of daduesystems must be taken into account
during the evaluation of software development sgias. As these embedded systems become
increasingly common place, their importance agp&tof focus increases. At the same time,
general purpose computers, as opposed to embeygstedis, have been the subject of extensive
research and development over the years. Thiauiligjin research and development means that

embedded systems are fertile ground for review.

The second type of system with which the authaoigcerned is that of reactive, or event-driven,
systems. Event-driven systems are relatively comazomany modern operating systems and
Graphic User Interfaces (GUI) such as Windows ateast loosely event-driven. Samek gave a

general description of the importance and charatites of event-driven systems rather elegantly:

“Almost all computer systems in general, and embddtystems in particular, are event driven,
which means that they continuously wait for theuo@nce of some external or internal event
such as a time tick, an arrival of a data packebutton press, or a mouse click. After
recognizing the event, such systems react by peirfigrthe appropriate computation that may
include manipulating the hardware or generating fi8@vents that trigger other internal
software components. (That's why event-driven systre alternatively calledkactive systems.)
Once the event handling is complete, the softwaes @pack to waiting for the next event”

(Samek, 2008).

Samek then goes on to compare this approach vattofrsequential control, where the
“program waits for events in various places inétsecution path by either actively polling for
events or passively blocking on a semaphore oratieh operating system mechanism”
(Samek, 2008). The problem, as related by Samdhkat Wwhile a sequential program is waiting

for one kind of event, it is not doing any otherkvand is not responsive to other evénts

11



(Samek, 2008). It is this contrast in the apprdaaieacting to events which makes reactive
systems event-driven. It is also what makes tligyabf the programming strategy to deal with
multiple potential events in an unpredictable osteimportant. Without the ability to respond in
a logical, predictable, and efficient manner torgsethe resulting system may have unacceptable
performance behavior. Thus dealing with this betras an important characteristic of a truly

wide-ranging software development strategy.

The third type of system under review is that ofa-time operating system, or RTOS. While a
RTOS is closely related to an event-driven sysiems distinct. Further increasing the
importance of a RTOS is that they are often usetribedded systems. In order to understand
why this is the case we must first understand \&RTOS is and isn’t. As summarized by
National Instrumentsyeal-time operating systems are designedua a single program with

very precisetiming. Specifically, real-time operating systems canwliou to:
o Perform tasks within a guaranteed worst-case tiara#
o Carefully prioritize different sections of your gg@am
¢ Run loops with nearly the same timing each iteraftypically within microseconds)
o Detect if a loop missed its timing goal” (Natioriaktruments, 2012)

In contrast to a real-time operating system thegesgstems running without an operating system,
and those running general purpose operating systédadional Instruments stated this
eloquently in that general purpog@perating systems like Windows are designed totaiain

user responsiveness with many programs and semicgsng (ensuring "fairness"), while real-
time operating systems are designed to run critaggdlications reliably and with precise timing

(paying attention to the programmer's prioritiegNational Instruments, 2012).
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These three types of computing systems are oftertivined and related, but are nonetheless
independent types. As shown in Table 1 belowstesy can be many combinations thereof. Of
course due to differences in implementation, tweowise similar systems might be categorized
differently. As might be seen by the exampled-tieze operating systems are rarely used
outside out of embedded systems. This is bechegeténdency to focus on running small
groups of tasks with specific timing means thaythe almost always dedicated systems with

tight hardware interaction and are thus are aldoeelthed systems.

Description of System Embedded Event-driven Real-time
Old PC No No No
Alarm Clock Yes No No
Modern Windows PC No Yes No
Development PC running non-event-driven RTOS No No Yes
Development PC running event-driven RTOS No Yes Yes
Touchscreen Yes Yes No
MRI machine Yes No Yes
Modern Car Brake Controller Yes Yes Yes

Table 1: Examples of system classifications

Coding Strategies

There are many strategies as to how to organizeatieus operations performed by a program.
Each of these strategies has various advantagedisadiantages. Depending on the nature and
requirements of the system, the optimal strategyi$e can vary. Below is a discussion of some
strategies for organizing operations. As thessegies are more or less extensions and

specialized cases of each other, the simplestveifidee discussed first.

Sequential Control

The most basic of strategies for organizing theatmns of a program, is sometimes referred to
assequential control. This approach for handling the execution of paogoperations is more a

lack of strategy than strategy. This means thguiesetial control is mutually exclusive with

13



event-driven or real-time operating systems. TFlriategy consists of building the program order

directly into the outermost main loop as showniguFe 2 below.

wan T et
|
Initialize(); '
| | Busy-wait
] - 4+ 4 for screen
While(...){ : update event
Task A(); :
TaskB(); | | | = TTTT T~~~ -

Check for Event C ();

Task D();
Busy-wait
for screen
update event

[
} @eenSaver(};

End();

Figure 2: Example Sequential Control Pseudo-code (left) and Flowchart (right) (Samek, 2008)

While in some simple programs the sequential cbapproach can be simple and effective, it
has many disadvantages. Event responsivenessiffangreatly due to the fixed order of code
execution. Further, the pre-scripted order in Wlatt tasks occur can result in bloated and
difficult to follow code. Lastly, getting task ting precise can be difficult. These difficulties

grow rapidly as more code and tasks are added.

As a program takes on more tasks and events wihmsist deal with, event responsiveness can
suffer. In sequential programming this can beipalgrly extreme. By fixing the order of
program execution, the program can only attemptait for one task or event at any given time.

If a program is not ready for a task when code @txec reaches it, the program must either skip
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the task entirely or wait until the task can prate# the program skips the task, then the
program is not able to attempt to perform the &kin until the code loops all the way around
again or otherwise explicitly checks readinessis Thn mean that missing the conditions by a
single clock cycle has the same effect on respensiss as missing by an entire iteration of the
program. Alternatively, the program may choossitaply wait until it is ready for the task or

the event occurs. This approach however meanshthgtrogram can respond ONLY to that task
or event, and any others must wait until the destregh event or condition occurs. Waiting for a
relatively unimportant task while being unrespoasiv critical events has obvious downfalls, and
is likely unacceptable in safety or performancéiaal applications. Limiting the time for which

a program will wait for an event to occur can pdaa/some relief from this problem.

Additionally, a program may check if a task is npad an event has occurred in multiple,
strategically checked places. However, limitedtwaies and repeated conditional evaluations

can rapidly bloat and obscure the flow of codeyal as wasting valuable system resources.

As the number of tasks and events that a sequeotialol has to handle increase, the complexity
of the code to handle execution order grows rapidtyorder to pre-script the order in which a
program executes, conditional statements are ofteassary for circumstances in which multiple
avenues of code execution must be chosen frons iglione because a programmer must try to
take into account all of the valid code paths whdah occur during operation. As a result, each
possible path, or similar group of paths, tendgaibat least a small amount of code to handle it.
These conditional statements of code executiont@nelsult in an abundance of nested
conditional statements, variables to store contepieated code, or small functions. It is easy to
forget to deal with all possible results of nestedditionals, and properly assign and update all
context variables for each case. Repeated cotieusets extra resources, as well as providing
ground for a single bug to reappear throughouttuke, easily resurfacing after it is thought to be

fixed. A common solution to this repeated cod®igrap them up into a new function. This,
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however, can result in a large number of small fions with obscure purposes. Further, between
the extra function calls and variable passing, ¢ais come with extreme consequences in terms
of performance, memory, and stack usage. All e§¢hissues obscure the code and provide
fertile ground for bugs to occur. Careful orgatimacan keep the extra code to a minimum and
somewhat readable. However, as more and moreiaesisiust be made and paths become more
complex, code size begins to grow rapidly. Furthed likely more critical, it becomes more and

more difficult for the programmer to follow the tdting maze of obscure and bloated code.

Even without obscure and bloated code, sequerdrdtal tends to make precise timing difficult.
One of the main reasons for this obscuration, bigaand difficult timing is that task timing is
heavily interdependent. Timing interdependenaisto the pre-scripted order in which tasks
occur. Each task’s timing is directly dependentanh preceding task. For example, if, in a
program running (ABCABC.).task A has its code changed, all three tasks htweed their

timing. This means that code changes and addiliame a cascading effect on timing. This
cascading effect can obviously make code maintendifficult. This is especially difficult if

code can take more than one path, as each mighatumague timing. Of course one way around
this is to periodically have a task wait for sorimeetr to trigger. This allows you to slow down
and fix the frequency by calibrating to the timdtis is only a stopgap method however as while
one task is waiting for its timer, the programfigeetively frozen. This (A-wait-B-wait-C.).or
(ABC-wait-ABC-wait...) approach can quickly use up available clock cyaled timers. This

also requires lots of excess speed to insure Hudt ®@sk finishes before the wait time for the next
is ready. Furthermore, timers are generally preci@egsources and using them in this manner
tends to exhaust them quickly. As more tasks ddedthe complexity of this increases
exponentially. In multi-rate systems, this candsee nearly impossible. Once you start sharing
timers between multiple tasks to make things simpiau are either on your way to getting

spaghetti code or are leaving sequential controintok
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Schedulers

In order to leave sequential control behind itésassary to start delegating responsibility for the
order of the execution to the code itself. Thidase by having the outer loop of the program
running an algorithm which chooses which code ®cake. This is in contrast to sequential
control where the outer loop runs the code in adgtermined fashion. Figure 3 provides an
example side-by-side comparison of a sequentigraro and an event-driven scheduled

program. The algorithm, and its accompanying calealled thescheduler.
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Figure 3: (A) Sequential Control (B) Scheduled (Samek, 2008)

The scheduler is the portion of the program thabsks which code sections to run and when. In

turn “The scheduler is at the heart of every keér(lal& Yao, 2003). A kernel is the
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fundamental core of an operating system. Diffekemnbels vary in the services they provide, but
any multitasking operating system kernel requitdeast the use of a scheduler. As the heart of
the kernel, the scheduler deserves further disoussiro provide the appropriate background

information, two important hardware concepts mestiiscussed first.

The first of these concepts is the stack. Thekstawhere the return address is stored when a
function is called. This is necessary so a chipAdswhere to continue execution after a function
or call returns. Based on the hardware, programiainguage, and implementation, a stack may
also store a variety of other information like Ibeariables, register values, etc. Some hardware
implementations have a special hardware-based siititkixed size, only accessible from the
top. An example of this is the PIC18f4520 from Michip with room for 32 return addresses and
no other data (Microchip Technology Incorporate@D&). On the other hand, some
implementations use the general data SRAM alloiéngarying size as well as random access.
An example of this is the ATmega328P, which plabesstack in the 2KB general memory
allowing great flexibility in its use (Atmel Corpation, 2012). The ATmega328P is one of the
microprocessors used in the Arduino. This is imgoatrtn a multitasking environment because the
size and accessibility of the stack has a gredtaléafluence on the ease and manner of
managing multiple running tasks. This has a great df effect on the feasibility of various

scheduling algorithms, making them somewhat dep#rmehardware.

The second of these hardware concepts that ned#sdiscussed is that of the interrupt.
“Basically, an interrupt causes a program to suspéts current operation and branch to a
location elsewhere in memory. Then, after the paoghandles the event that caused the
interrupt, the interrupt service routine (ISR) meesstart the program from where it had
previously been suspend@bsenthal, 1995) This is akin to closing a book around a pencil to
keep your place in order to respond to someoneigpacted voice. You were reading without

constantly checking for a voice, but when yourdstected the noise, it interrupted your reading.
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Then when the persons comment has been handledayoeturn to where you left off thanks to
your pencil saving the place. Different chips hdiféerent interrupts, but typically include three
primary sources. These interrupts are triggereeMaynts external to the CPU, certain software
errors (like divide by zero), and certain speaiatiuctions. An interrupt allows a program to
note and respond quickly to an event without negtbrspecifically check or wait for the event.
Since normal code execution is suspended whil@ interrupted state, interrupts must follow
two basic rules: First, the ISR must save then restore all CPU, ntgrand I/O resources that it
uses. ... Second, it must get back out of the ISRickly as possible. The reason for this rule is
that ISRs should generally block new interruptslafter the ISR has completed running.
Therefore, an ISR should do as little as possiblthat interrupts are off for as little time as
possible(Rosenthal, 1995) The first rule is important because otherwise,itiberrupt service
routine might corrupt data being used by the codgerrupts. Many hardware devices are
designed to streamline the first rule by automéicaving and restoring many of the necessary
resources with special instructions. Interrupts/jute a large part of the framework which allows
CPU peripherals and other external devices to cameate with CPU itself when they are ready.
As a result, CPU clock cycles are only used wherettiernal world comes knocking. As such
interrupts are the means by which the CPU, andrmprogram, can efficiently get information

from the external world, critical for event-drivepstems.

Now that some of the background concepts have beefty explored, we can discuss the
scheduler itself in more detail. A brief overvieia scheduler is as follows. The scheduler is
responsible for allocating CPU timedchedulable entities. When more than one schedulable
entity exists, the scheduler is performingltitasking. When a scheduler changes from one
entity to another, it is performingcantext switch. The set of rules a scheduler uses to allocate

time is called acheduling algorithm. Once the scheduler has made its decision, & aise
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section of code called thdéspatcher to implement the decision. This overview is nsegiy

sparse and needs to be expanded upon further.

One of the first concepts to be expanded upon & wkactly is scheduled. The entities that are
handled by the scheduler go by various hames avelaying properties depending on the
kernel and implementation. The most basic of tleedities is the task, also sometimes called
threads. A task is an independent thread of execution thatains a sequence of independently
schedulable instruction@d.i & Yao, 2003).” Essentially, this makes tasikdividual sequentially
controlled programs. Tasks also contain a smadiuarhof information for helping the kernel and
operating system to keep track of what it needsptrate on the task. The exact resources the
kernel assigns to a task necessarily vary greaihedding on the individual kernel. Another
common entity is that of the process, which is sgeatially more feature-rich task supported by
some kernels. A process has more resources adgigiteand in some kernels can contain
multiple threads and tasks within itself to be sthied. Maintaining multiple tasks is what

allows a scheduler to perform multitasking.

Since a single CPU core can only run one set ¢fuicsons at a time, only one task can actually
run on a core at a time. By switching betweendaskcheduler is said to be multitasking. The
scheduler is allowing each task to run as if itevemning alone on the CPU for a limited time
before switching to another task. When this sviitighs done quickly, it can lead to the illusion
that multiple tasks are running simultaneouslysdme kernel-hardware combinations, a
scheduler allows for allocating tasks across mieltPU cores, allowing for multiple tasks to
truly run at the same time, managed by the kersebgduler. Multitasking has pitfalls however,
as it introduces a whole world of potential probdenMost of these problems revolve around the
use of shared resources and concurrency issuesactlof switching control from one task to

another is what causes many of these issues.
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The actual act of switching from one task to anothealled the context switch. This context
switch needs to save the context of the task b&imgped and restore the context of the task
being restarted. Depending on the kernel and hemglimplementation this context information
includes: the status of various CPU registerssthek used by the task, as well as various other
bookkeeping information. When done properly, tsktitself has no knowledge of the switch
occurring, operating as if it had run alone andistucbed. Because of the bookkeeping
information required, exactly how a context switslperformed is often heavily processor
specific. Additionally, the context switch entailgerhead, and can degrade performance when
an application is designed to include frequent@arswitching. Thus, when a context switch

happens and what task to run next are importargiderations.

When a context switch can occur and how the nektitachosen is what constitutes the
scheduling algorithm. One of the most importargsiions to ask of a scheduling algorithm is
whether it is pre-emptive or cooperative. In anekérunning a cooperative scheduling algorithm,
context switches only occur as a result of exptialts to the kernel by the running task. This
means that if the running task does not use a keatlavhich can result in a context switch, no
other tasks will run. In contrast, a pre-emptieeriel also generates context switches from
interrupts, such as timers or peripherals (Sam@88R This means that a context switch can
occur at any point during the execution of a taskess explicitly disabled. A cooperative kernel
control is passed much like the baton in a relag rar a game of hot potato. On the other-hand,
a pre-emptive kernel can forcibly take away confirmin a task by interrupting its execution, like
a fumble or interception in sports, or the changhegchannel in the middle of a TV show.
Another question to ask of a scheduling algoriterhaw it chooses which task to run when a

context switch occurs.

Two basic means of choosing which task to run aextRound Robin and Priority (Li & Yao,

2003). In Round Robin scheduling, processes areme after the other in order. True round-
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robin algorithms are pre-emptive systems wherestasi given specific time-slices and
interrupted after their allotted time is up, whetheished or not. Then once all other tasks have
had their turn, control is returned to the intetegptask. In a priority based system, tasks are
each assigned a priority. When a context swit@uiin a priority based system, the highest
priority task ready to run is then chosen to ruxtnén a pre-emptive environment, a context
switch occurs whenever a higher-priority task beesmeady, interrupting the current task. Many
other methods exist as well as hybrid methodsurég4 and 5 below show two scheduling
algorithms commonly used in real-time systems (LY&o, 2003). The full discussion of
different possible algorithms and their implemeiotat, advantages, and disadvantages is far

beyond the scope of this paper, and quite posaibkgntire textbook.
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Figure 5: Round-Robin with Priority Scheduling

Of course once a scheduler has decided which éaslntnext, it must actually pass control to
that task. This passing of control and the accatyipg context switch is performed by the
dispatcher. The dispatcher is what is called wixeneontrol is in the kernel and the kernel is

ready to pass control back to the user’s applinati®pecial attention must be paid to interrupt
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service routines. This is because the dispatadranat be called during the execution of an
interrupt service routine. In cooperative systetims,dispatcher is not called at all during an
interrupt service routine. In pre-emptive systeths,dispatcher is called as the interrupt service
routine exits. It is this calling of the dispatcladter an interrupt service routine which allows f
pre-emption. The actual implementation of the aisper varies based on hardware, kernel, and

scheduling algorithm.

Beyond the scheduling algorithm, how a kernel fiomst can have an impact on how tasks are
programmed. The way the tasks themselves ardwtedds in itself an important part of how
the system behaves. Any time you use any formuifitasking, the structure of the tasks and
how they interact with each other and the kernghortant. How this interaction is done is

much of what defines how a program interacts wWithdutside world.

UML Statechart Programs

There exist a large variety of fairly traditionalttitasking kernels, such as Linux. Each can and
often is the subject of volumes of work on how tilize the kernels tools to code multitasking
programs, and the pitfalls to be avoided. To engolmy one in detail would be a large
undertaking, and can be daunting for a programrhéis is largely because such traditional tools
often rely heavily on the programmer to structime program and code using the tools in such a
way as to deal with concurrency and resource shp@sues. As such we are now focusing
instead on a different strategy which underlinesajpproach which the author intends to explore
in later chapters. This strategy is to organizedbsired program into a set of state machines
through the use of Unified Modeling Language, orlLj8tatecharts. Of course in order to
explain the method and benefits of organizing @yam as a state machine, UML Statecharts

must first be explained.
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What isa State?

At heart, a statechart is a diagranstattes defining a state machine, their identifying prdijssr

and how they interact. So what exactly is a staieate is essentially & unk of behavigt
wherein the object or program behaves in a cevain (Samek, 2008). The idea being that the
state of a program is the only relevant informatieeded to determine how to respond to any
given input. For a list of examples, see Table@Ww. A state captures the relevant aspects of
the system's history very efficiently. For examale far as a keyboard is concerned, the set and
order in which keys have been pressed in the mast chatter so much as whether caps lock, ctrl,
and shift are active. A state can abstract awlgyoakible (but irrelevant) event sequences and
capture only the relevant ones. This means tiséeaad of recording the event history in a
multitude of variables, flags, and convoluted lo@is is the traditional approach, you rely mainly
on just one state variable that can assume oritgiget number of a priori determined values,
such as on or off, heating or cooling, etc. Theeaf the state variable crisply defines the
current state of the system at any given time. ddreept of state reduces the problem of
identifying the execution context in the code titey just the state variable instead of many
variables, thus eliminating a lot of conditionagjio. Moreover, switching between different states
is vastly simplified as well, because you neecessign just one state variable instead of

changing multiple variables in a self-consistentnea (Samek, 2008).

Microwave / Oven On, off, heating, baking, door open, etc.
Keyboard Capslock _on, CapsLock_off, ctrl_pressad, e
Car Off, Drive, Reverse, Park, etc.

Motor On, off, Stalled, Overheating, etc.
Time bomb Set, Disarmed, Countdown, Detonated
Seatbelt Latched, unlatched

Table 2: Basic State examples
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Nested States

In many even moderately complex systems, thereftga states which are very similar, or even
overlap. For example, a toaster oven might havakang state as well as a toasting state. In this
case, both states also imply being in the heatettg.s Rather than define two completely separate
states with duplicated behaviors, UML statechdhtsvefor the hierarchical abstraction of

common behavior. This is done through the useasfilchically nested states, making the
statechartdierarchical state machinex HSMs. Figure 6 below shows an example of Huat t
looks, using the toaster as an example.

i heating
*—. ° L OPEN_DOOR

|  —| superstate % L\
— »{ toasting ) v
- . ) ) ~door_open
" - X
)= = —| substate L‘ (_ baking ) (
L - .._.' LY : /

e, L.
A B

-

Figure 6: Nested states (A) generic (B) toaster oven (Samek, 2008)

The use of nested states allows for common beh&vioe grouped in higher level states. Further
nested states can then be “programmed by differefdas is similar to the inheritance of object
oriented programming, where the “is-a-kind-of” tedaship of inherited objects is replaced by
the “is-in-a-state” relationship of nested stat&his abstraction allows for the developer to zoom
in and out as necessary to the needed level af.détather, with extended states, nesting helps
to prevent the phenomenon of state explosion wiggtebnumber of states necessary to describe

a system increase geometrically as the compleXitlyeosystem grows (Samek, 2008).

Extended States

Since having a different state value for each amayesituation would create a vast number of
states for a program with even something as siapke counter (a 8 bit counter could add 256
states, two would add 256*256=65536 states), prograriables are often separated from states.
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Rather, theeomplete condition of the system (called extended state) is the combination of
qualitative, behavioraspect (the state) and the quantit:, data storagaspects (the extend
state variableg)Samek, 200¢. In this nterpretation, a change of variable does not alwapsy
a change of the qualitative aspects of the systmor and therefore does not lead to a ch
of state. State machines supplemented with variables areccaktended state machines
UML state machines belong to this categ As an example, in Figureb&low is an exampl
statechart modeling a keybo that breaks down after 1000 key presses. The tatyarf this it
that changing the durability is only a matter odbing a single varble, rather than changit

the states themselves.

/ key_count = 1000;

{ default h CAPS_LOCK /~ caps_locked ™
APS_LOCK——— \
/_.L J‘Q—C S_LOC \ )

ANY_KEY / —key_count; ANY_KEY [ --key_count;
choice guard
pseudostate conditions
- - - il

e - —
or ~0
\L[else [key_count == 0] >(0)< [key_count == 0 [else]—/

Figure 7: Fragile Keyboard (Samek, 2008)

Guard Conditions

The introduction of extended states is of little wsthout a means of them influencing
behavior of the stateachine. One of the more important mechanismshigiwextended sta
variables can be used to control the behaviorautyh the use of @rd conditions.To
summarize, guard condition is essentially a true/false statgmdnich is evaluated to see whi
path a state transition will ta or if an action will fire As an example, the fragile keyboard fr

Figure 6 tests whether or not te are any key presses left each time a key isgutessorder tc
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determine whether to break down and enter the i@, or continue operation. Without guard
conditions, extended state variables would notidbe @ control state-transitions, thus rendering
them largely useless. Of course care must be thietrguard conditions are not over-used. Such
abuse isthe primary mechanism of architectural decay inigies based on state machines.
Usually, in the day-to-day battle, it seems vergging, especially to programmers new to state
machine formalism, to add yet another extende@ statiable and yet another guard condition
(another if or an else) rather than to factor obetrelated behavior into a new qualitative aspect

of the system—the stgt®amek, 2008).”

Events

Now that we have talked about States and guarditimmg] we might be asking ourselves: How
do we pass information to and from the state magHhiow do we let it know something
happened that it needs to respond to? To dovilisiseevents. “In the most general terms, an
event is an occurrence in time and space that lygsfieance to the syste@@@amek, 2008).” It is
also worth noting that this does not strictly mézat the event must be a physical event, it could
also be the same or another state-machine annautiigihit has done something, etc. In

discussing events some terminology must be fleshied

The three main terms relevant to eventsemeat, occurrence, andinstance. The UML
specification states thafh event is the specification of some occurrenakrtiay potentially
trigger effects by an obje@®bject Management Group, 2011).” In other wdhis means that
event refers to a typegccurrence refers to an individual happening, aindtance refers to a
specific event-occurrence pair. For example, jmgss power button at noon on Friday is an
instance This instance is in turn composed of éventthe instance is a type of, a power button
press, and a specifaccurrenceof that event, the one Friday at noon. This negnsto be

unnecessarily complicated, but each of the thraeeguisotal source of information.
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The requirement of the three terms can be sedreiprocessing lifecycle of event instances.
First the occurrence of an event is an instanta;dunog which the system must process. This
need for response causes the need to create andesecording what type of event occurred and
any other relevant parameters which might be netaptbcess, such as which button was
pressed. Once this instance has been createght be conveyed to one or more state-machines
for processing. This means that the instance sadbsoutlives the actual occurrence and may
linger in the system for some time before it isqggssed and consumed. It is quite possible for
another occurrence of the event to occur beforgrailious occurrences have been processed,
thus the need for an instance for each occurreattesr than each event. By separating
information common to each occurrence into theifipation of the event, redundant

information can be reduced. Given the need forenspecificity in technical processes rather
than general conversation, this can be rather sorguand take time to get used to. Hopefully,

Table 3 below and the actual implementation andofiewents in chapters 3 and 4 will help to

make it more understandable.

Occurrence Instance
1 KeyPress ‘a’ KeyPress: ‘a’ at ‘b’
2 StateEntered ‘on’ StateEntered: ‘on’ at time ‘b’
3 Error ‘divby0’ Error: ‘divbyQ’ at line ‘c’ at time ‘b’
4 Message ‘hello’ Message: ‘hello’ at time ‘b’ in memg location ‘c’

Table 3: Event, occurrence, and instance examples

Actionsand Transitions

Now that we have objects to act on (states andhdgtestate variables), ways to inform them
(events), and means of making decisions (Guarditons), we need something to actually do if
statecharts are to be a useful programming strat€@mgge a state machine has received an event

and the guard conditions have been evaluatedfdtersachine will then perform an action
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and/or transition. Actions, in this context caferdo various things,such as changing a
variable, performing I/O, invoking a function, geang another event instance, or changing to
another state. Any parameter values associatedtiitfturrent event are available to all actions
directly caused by that evef@amek, 2008).” When an action causes a changfate, the
process is calledgiate transition or transition for short. UML statecharts haveadety of

special types of actions and transitions which amrfurther explanation.

Two very important classes of actions, especiallyHSMs (Hierarchical state machines), are
entry and exit actions. Entry and exit actionsgdormed whenever a state is entered or exited,
respectively. Because these actions are assogiéted state itself, rather than a transition,

“they often determine the conditions of operatiotheridentity of the state, very much as a class
constructor determines the identity of the objeghl constructegSamek, 2008).” There are
three major advantages of associating entry arichetions with the states themselves. Firstis a
reduction in redundancy. Hierarchical states nteahany given transition might pass through a
variety of states on its way from source to targath of which could have actions that need to be
performed as they are entered or exited. Additipnany given state, might have multiple
transitions associated with it. Without entry axit actions, the developer would have to ensure
that each and every one of these transitions paddithe correct actions as it maneuvered
between the various states. This could easilyitresduplicate and redundant code. A second
advantage df entry and exit actions is that they provide nsefam guaranteed initialization and
cleanup, very much like class constructors andrdegirs in OOP[Object-Oriented

Programming] (Samek, 2008).” This is importantbfar preventing errors as well as helping to
define the state. As an example of how entry aiitdaetions can help to prevent errors and
define the state, see Figure 8 of a toaster ovienvbdn this case, it can be seen how the
superstate “heating” is defined by having the heae the “door_open” state by having the light

on, and the two heating substates by their resgeséttings. In each case, the entry and exit
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actions ensure that these identities are preserVhd.third advantage is that as a result of the
reduction in redundancy and preservation of idgngitiding or altering states and transitions

becomes much simpler and less error prone, ailegiaintainability of the software.

- . ~
: heating € o
eniry / heater_on(}; P @
exit / heater_off(); T
toasting ——DOOR_OPEN—
entry / arm_time_event(me->toast_color); ‘ +
.Le"“ / disarm_time_event(); _ e door _open
- ry - entry / internal_lamp_on();
DO_BAKING % —DO_TOASTING- \ exit / internal_lamp_off();
- : >
) baking ™ SoR pibaE 4
entry / set_temperature(me->temperature); ‘ i '
| exit / set_temperature(0); )

Figure 8: Toaster oven state machine with entry and exit actions (Samek, 2008).

A second class of actions worth mentioning is thesieh do not cause a change in state. These
actions are also referred toiaternal transitions The important aspect of internal transitions to
note is that ho entry or exit actions are ever executed as alt@s an internal transition, even if
the internal transition is inherited from a highlewel of the hierarchy than the currently active
state. Internal transitions inherited from supetetaat any level of nesting act as if they were
defined directly in the currently active sta(€amek, 2008)” For an example of how internal
transitions look, see Figure 9 below, of a keybaaléth responds to any key press, but only

changes state with CAPS_LOCK.
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Figure 9: "UML state diagram of the keyboar d state machine with internal transitions. (Samek, 2008)"

The third class of actions that needs to be distlissthose associated directly with transitions.
These actions are slightly different in UML and thplementation which will be used in

chapters 3 and 4. In the UML specification, trdosiactions are evaluated as follows:

“1. Evaluate the guard condition associated withtthasition and perform the following

steps only if the guard evaluates to TRUE.

2. Exit the source state configuration.

3. Execute the actions associated with the traovsiti
4. Enter the target state configuratig@amek, 2008)”

In the QP framework created by Samek, steps 2 amd Bversed, with the actions performed

after the guard condition is evaluated, but befbeesource state is exited.

“1. Evaluate the guard condition associated withtthasition and perform the following

steps only if the guard evaluates to TRUE.

2. Execute the actions associated with the tramsiti
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3. Atomically exit the source state configuratiow @&nter the target state configuration

(Samek, 2008).

This is both simplifies the programming, as well@sognizes the fact that a state transition
needs to be atomic. This need for atomicity isabee the state machine is in an uncertain
configuration during the transition and thus carsajely be operated upon. As a result, the
author would argue that this departure from the Wgkcification by the QP framework is an

improvement, rather than a flaw.

Orthogonal Regions

Speaking of departures from the UML specificatibexiensions to state machines, the topic of
orthogonal regions bears discussion. There eRjstts which seem to be in more than one
independent state at the same time. For anotlyboked example, take the Num Lock and Caps
Lock keys. When typing, the keyboard can be immor off state for both keys. Without some
manner of being in more than one state at a tinentmber of states necessary becomes
multiplicative rather than additive. This keyboa&xmple of 2+2=4 or 2*2= 4 may make this
difference seem unimportant. Addition of Scrolickpfor 2+2+2=6 or 2*2*2=8, makes the
importance more apparent. It is this problem dejmendent states that the concept of orthogonal
regions was created to address. Orthogonal regiotise context of state machines, refer to sets
of independent states in which a state machinebaasimultaneously. To see what the keyboard

example looks like, see Figure 10 below.
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Figure 10: Orthogonal Regions of keyboard (Samek, 2008)

Orthogonal regions are not strictly supported m@P framework under discussion as they are

an expensive feature. This is becausach orthogonal region requires a separate statéade

(RAM) and some extra effort in dispatching eve@RY cycles)Samek, 2008).” Essentially,

each region is a separate state that must be selgatred, checked, and processed. This

separation necessitates an entirely different gpdpproach to handling the state machines than

the case of single nested states, cluttering updbe and reducing performance. However, the

separate nature of the states is also preciselthehlack of direct support for orthogonal regions

is not a problem. As pointed out by Rumbaugh etrad referenced by Samek, orthogonal

regions, as a general rule, are produced by aggweg&®umbaugh, Blaha, Lorenson, Eddy, &

Premerlani, 1990). This means that orthogonabregcan be produced by a composition of state

machines, rather than a single state machine witiogonal regions. As an example, take the

keyboard: one state for the main keyboard, andamthe numeric keypad. Also another

example of aggregation that could be presentediaes ®rthogonal regions or composite objects

would be an alarm clock. The state of the clockl the state of the alarm, either two regions of

one object, or a clock containing an alarm objddiis object composition is argued by Samek as

being superior to the single object-two state ¢astéhree main reasons. Firstis that of code

reusability. Creating the regions as separate stachines, one containing the others, they are

no longer interdependent and can be reused in otimebinations in the future. For example, the
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same alarm in another clock, or the numeric keypails own. Second;The composition of

state machines is not limited to just one levein@onents can have state machine
subcomponents; that is, the components can beicentaor lower-level subcomponents. Such a
recursion of components can proceed arbitrarilyglé®@amek, 2008).” This is advantageous as it
mirrors the reality that many, if not all, real wbpbjects are similarly composed of objects
aggregated together. Third, a full implementatborthogonal regions would imply that all
events are dispatched to all regions. A compasipdementation, on the contrary, allows the
container object to filter out irrelevant eventsl @upply supplemental data. This filtering can
obviously drastically cut down on the processingassary in the case of even moderately
complex aggregated systems. For instance, irt@siachine model of a keyboard, there is no
need for the numeric keyboard component to reaaitiication of key presses from the main
keypad. These advantages, combined with the nafueal world objects and data structures,
mean that the lack of direct orthogonal region supbpy the QP framework is not a flaw.

Instead, it is merely a case of the UML specifimatirying to handle any and all theoretical

possibilities, as opposed to being a model focigffit embedded programming.

Computational Limits of Statecharts

So at this point it should be asked: Are there lamols that cannot be programmed in the form of
a hierarchical, composite, state machine as disdussthis chapter? The answer to this is quite
simple. Yes, but no finite, linear-time, digitalroputer can solve those problems anyway. The

reasoning for why these traditional computers hheesame limitations is as follows:

1. The circuits in traditional computers are equinake finite-state machines, or FSMs

(Wright, 2005).

2. Since traditional computers send, receive, pro@gsstore data through such FSM

circuits, they are an aggregation of many small B8Nb larger FSMs.
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3. Hierarchical state machines (HSMs) of any recursiocomposition level are

mathematically equivalent to FSMs.

4. Therefore, any traditional computera HSM.

5. Thus anything a traditional computer is capableasf be modeled as a state machine

of the form discussed in this thesis.

As a point of clarification, the emphasis on théamof a traditional computer is not negligible.
There exist certain classes of computers which tnigty well work on algorithms that cannot be
fully represented as HSMs. For an example of sudbvice, take quantum computers. As the
author understands it, the basic principle of quamntomputing is to take advantage of the
guantum nature of reality. This quantum naturevesl very small objects, such as electrons and
photons, to be in multiple, even effectively alligfinite, states simultaneously. A state machine
on the other hand cannot do this, as it must laesimgle composite state at any given time, and
cannot respond to events while transitioning betwtbem. Other, more theoretical examples are
computers utilizing non-linear time phenomena sagklosed time-like curves. Such computers,
at least in some theories, rely on either infigtbenputational time, cause to follow effect, or
other exotic concepts. Both violate the finiteysmand effect nature of the state machines
discussed. While this means state machines magtiaable supply all the needs for some
highly experimental and theoretical computatiorelides, this is not a large limitation. For one,
in each case, the quantum or non-linear time compiocan be seen as merely a source of events
that would need to be processed by the more toaditiparts of the system. As a result, state
machines could very well be useful, if not suffidiein programing and understanding such
computers as well. Of course, just because thate=machinesanbe used to program any

traditional computer, does not always mean that ti# always be the most efficient or practical
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solution. A programming and development stratégyexists, that waslwaysmost efficient or

practical would certainly be Nobel Prize material.
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CHAPTER IlI

Methodology of State Chart Analysis

As an abstract method of organizing program cdu&etare many different ways to implement a
state chart programming method. There are alstisagssed in Chapter 1, thousands of
potential hardware targets to run the code on.th@purpose of this paper, the focus will be on
analyzing the use of the QP C++ framework on thduiro Uno. This approach was chosen for
several reasons. For one, unlike most real-tinmedtg, the QP C++ framework is open source
and free to use, as opposed to the thousandslafslaldeveloper could be expected to need for
National Instruments LabView or the venerable VxWs#or Also, the Arduino Uno not only has a
compatible development kit, but has several adgmstas a hardware platform. For one, the
Arduino is cheap, at $40 per board at the autlomal RadioShack. For another advantage, the
Arduino uses the AVR ATmega328 which uses a stasleth program pointer. This pointer
method allows for the use of the pre-emptive Qknkér As one of the world’s largest
microcontroller manufacturers, AVR is both commounged and provides a free compiler for use
with their chips. This means that for less tha@(band a basic pc, it is possible to have a pair of
microcontroller boards to test. As an added botinesQP framework comes with free
development tools such as the QM modeling tool Whitows for graphical programming.
Hopefully, the above stated benefits combined wWithanalysis, methodology, and results that
follow will convince the reader that the Arduinoda@P framework make a good platform for

demonstrating the benefits and performance oftéte shart approach to programming.
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Timing Characteristics

One of the most important characteristics to urtdagsabout any software approach, especially
for real-time and/or embedded systems is the tirnhagacteristics of various operations. Given
the prime importance of timing the author will attgt to establish a thorough analysis of the
timing. In establishing timing characteristicsisiimportant to show both characteristics of the
framework and establish a method by which othgyetagnvironments can have benchmarks
established. With that in mind, it becomes neagdsaexplore both the method of timing and

what to time.

Using the Arduino Uno asa Timer

The attempt to use Windows 7 based programs w@hitgltime microsecond intervals was
unsuccessful. Windows 7 is not a real-time platfand thus lacks the tools for reliably
performing such fine measurements precisely. $than approach was devised. Since the
Arduino UNO is so cheap, and can be run bare-métabut an overlaying operating system, a
second board was purchased to use as a timerfolltweing is the approach used to establish

and test the effectiveness of the Arduino as ageexmond precision timer.

The Arduino library contains a function called pitg). This function is designed to measure
pulses between 10 microseconds and 3 minutesgthemd return the length of the pulse in
microseconds. The function takes as parametengithe test, whether the pulse will be high or
low, and a timeout value. For simplicity, a higlige on the first available digital /O port of 2
was chosen, along with a 10 second timeout. Caaleimg this function on a loop and printing

the resulting values was run on one Arduino board.

The second board was then set to send out pulsge$omp. This was accomplished through
using a bitwise OR statement on the control regfstepin 2 of the second board. The built-in

digitalWrite() function was deliberately avoidededio the extra delay it would enter into the
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process. The delay length was then established tisé built-in delayMicroseconds(). This
was followed by another bitwise operation to tufintlee pulse. Once programmed, the two
boards, running off of the same set of USB porsl, their pin 2 ports connected by a resistor to

allow for communication.

By making use of the free TeraTerm software tolista serial communication with the Arduino
boards, it was simple to loop through large numbétsning runs and then copy and paste the
results into an excel spreadsheet. Initial runthisftiming method had the results listed in Table

4 below.

Pulse | Mean | Mode | Range | Min | Max
10 8.62 10 15 1 16
15 | 13.35 14 20 2 22
20 | 18.07 19 18 7 25
25 | 22.63 24 19 12 31
30 |27.24| 29 18 18 36

35 32.2 35 18 23 41
Table 4: Initial Timer Test Results, n=9999

While at first the author was dismayed at the lafcgrecision and attempted to develop a
calibration formula, a set of patterns was noticEtst, was that a linear fit to mean values @f th
data had a listed R value of .9999 across theatelledatasets. This suggested some very
consistent source of the errors. Second, it wésetbthat aside from the initial pulse of 10us,
the range was remarkably consistent at 18-20usaft8pa brief search online into the mechanics
of the pulseln() and delayMicrosecond() functiahg, author discovered that they work by
polling an internal register. The internal regisseconnected to the oscillator and increments

every microsecond.

Since neither function relied on interrupts, ththauthen attempted turning off interrupts before
sending each pulse and re-enabling them afterddsyg this on the board measuring the pulse, a

whopping 10us was dropped from the range of tinadwes. By also disabling the interrupts
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while sending each pulse, the result was far mogeige. By disabling interrupts on both boards,

a range in values of 2us was attained, lengthi@rigth, see Table 5 below.

Both Timer Both
interrupts | interrupts interrupts
enabled disabled disabled
Mean 32.19992 | 34.6487649 | 34.4171417
Range 18 8 2
Min 23 33 33
Max 41 41 35

Table5: Effect of Disabling Interrupts, 35us pulse n=9999

To put these results in perspective, the possiaeision needed to be explored. Internally, each
function works by polling an internal timer on ttl@p. Functionally, this means that in each
board, the produced or measured time will be batvilee requested or actual time, and one
microsecond smaller. The one microsecond smaderltroccurs when polling begins just before
the internal timer increments and the accurate Gowairs when polling begins just after
incrementing. As a result, a 2us board to boagdipion range is the best possible precision that
can be attained with the Arduino boards withoubrisg to an extensive rewrite using assembly
language. Since the Arduino runs at 16MHz, thiesiange of 8 computational cycles. While
being able to precisely and accurately measure dowe cycle would be ideal, it must be
remembered that we are working with less than $t@@h of equipment, and are limited in both

our accuracy and precision by the oscillators ms$ieem.

Precision of Timing the QP Framework

With a basic timing system in place, it is now titbeexplore the timing characteristics of the QP
Framework Pre-Emptive kernel on the Arduino Undarstfwve must establish a way to interpret
the results so we can narrow in on the number wipetational cycles needed to perform any

given task in the framework, and the uncertaintgun measurements. In order to do that we
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need to make a few assumptions about our measuteargth what is going on. Our first
assumption is the pulseln() function we are usimthe timer board retains its measured and
theoretical precision of -1microsecond to +Omicomse during our experiment. Second, we
assume that timing differences between the twodsoamount to less than one computational
cycle. These sources include several sourcesaf gfirst is that it is not necessarily true that
the test board voltage, rises and falls in a pdyfsgmmetric fashion. Likewise, the timer may
not recognize the change in voltage symmetricadtyviben a rise and fall. Another possible
source of error is EMF interference slightly algrthe signal voltage along the wire, introducing
small changes in pulse symmetry. Quick calculatiodicate that light can travel 75m within
one clock cycle, so signal propagation delay isljiknegligible for the short distance involved.
Additionally, the boards’ oscillators likely do noperate with exactly the same frequency.
Combined, while these timing differences are likglyte small, even a plus or minus of a small
fraction of a microsecond can cause, or prevenadalitional timer increment. This is what leads
to the addition of a microsecond increase in ouasueements uncertainty. Our second
assumption is that the processes we are measuwingtdeed to use cycles in multiples of four.
While this seems obvious, it must be rememberetthieatimer only resolves every four cycles.
Thus if a process takes 23 cycles for instancetjniier will see one of two results. The timer
will display 20 cycles if the process started lss1 one cycle after a timer increment, or 24
cycles if the process started less than one cyflerdan increment. Next, we assume that the
true time the process takes is a constant numbsyatés. This assumption follows directly from
the combination of the deterministic nature of fitaenework, and the disabled interrupts during
the process. Finally, we assume that when we wutests, our boards are out of sync by a
random factor. This allows us to use statisticallgsis of the results. These assumptions and

their consequences are summarized below in Tallaéng Assumptions and Consequences.
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Assumption M easur ement

pulseln() works true -1 to +0 microseconds
Max 1 cycle difference true -1 to +1 cycle
Non-4 possible true -3 to +3 cycles

Constant time and random sypdean approximates true

Total -2 to +1 microsecond precision

-8 to +4 cycle precision

Table 6: Timing Assumptions and Consequences

If the assumptions and analysis are accurate,ahgtimer results will be between 2
microseconds or 8 computational cycles smallerlamicrosecond or 4 computational cycles
larger than the true time a process takes. Fyréharge sample size should allow for a mean
close to the true value. If any test gives a rasfgesults greater than 3 microseconds, it will be
an indication of a flaw in the analysis. Now thet have a means to measure time, we must now

decide on what to measure.

State Machine Timing

With a method to time computation processes doviratwxactly to be timed must be decided.
Three of the most common tasks to be performeth&ydP framework are the initialization of
state machines into certain states, state chaagdsvent handling. These tasks are very much
the bread and butter operations that underlie seeofithe QP framework. Since they will each
be used frequently, they are worth timing. Furthemeans of describing the exact state

combinations possible are needed for clarification.

Much of the operation of the framework in contradliprogram behavior is in the state transition
framework. Transitions between states occur wherstate machine needs to change behavior,
such as car changing between forward and revaagesstTransitions to the same state essentially
act as a reset, exiting and then returning to éngesstate. Initial transitions occur when the
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destination state specifies a substate that is nbered by default. This is useful in
encapsulating and reusing behavior within statehinas, as a state transition can allow the
destination to decide which if any substates acesgary to finish the transition. Additionally

the state machines handle events using the samewirark as state transitions. The framework
does this through the use of what is called anniatdransition. For example, pressing a letter on
a keyboard triggers an internal transition to pssdabe key press, but generally does not result in
a change in state or reset. Since these inittadizanand state transitions encompass much of the
behavior specific to the use of the state machismmdéwork, they will be the focus of the timing

analysis.

Now that what to time has been decided, it is rergg0 specify a means of describing the exact
behavior being timed. First let us establish @esyatic naming system for states such that the
relationship between any two states is apparetfieimame. The method arrived at by the author
is to specify the name of any given state by ttterlés” followed by a string of numbers. The

“s” simply specifies that this is a state. The femis where the location of the state is encoded.
In order for this encoding to make sense, one mmgérstand the nesting levels of a state. As an
analogy to help in understanding nesting level, thechaming convention, think of a state as a
box. A top level state is one which is restingdily on a table. Inside this box might be smaller
boxes, which can have boxes inside as well, repgatith smaller and smaller boxes. The
nesting level of a state is how many boxes musigdemed in order to look inside. To look inside
a top level state, one needs only to open the istaté or nesting level 1. Nesting level 2 state
would be represented as boxes within another k&tingeon the table. This process can continue,
like Russian nesting dolls up to the nesting Idiveit in the given configuration of the QP
framework, 6 by default. Back to our analogy, wihate have two boxes on the table, three, or
more. To name them all the same would confusgshias each state needs a unique name. So

we indicate which one is which by naming the f&%f the second s2, and so on. We do this from
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left to right, top down, as we read our state diagr We can then easily picture which one goes

where. For example see Figure 12: Naming Digiti@als. Location.

LU
LU

Figure 11: Naming Digit value vs. L ocation

Now let us picture a different scenario. In thgersario, we have 6 boxes, one within the other up
to our nesting limit. We cannot simply call thede s2, s3, etc. as we would then be unsure if our
boxes were nested, or merely side by side. So waalo instead is add an extra digit at each
nesting level. For our analogy, this means thakh é@x has one more digit than the box it is in,

as in Figure 12: Nesting Level Digits.

4 sl I
4 s11
/ s111 N

J

s11111

—
- )

Figure 12: Nesting L evel Digits

Now, here comes the tricky part, we can have séberas on the table, each with its own name.
We can also have boxes nested within each othewekfer, what happens if we have a little of
both? Well if we follow a few simple rules, it Wilot be a problem. First we name our top level

boxes s1, s2, s3, and so on as above. Then, wéramevput one box inside of another, we
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simply name the smaller box after the bigger. dadtof being “s” plus 1, 2, 3, etc. from left to
right, we replace “s” with the name of the box we adding to. So if we add two boxes to state
s2, we would call the first one on the left s21 #elsecond on the right s22. The first box added
to s22 would be s221. As an example, see FigurEulBNaming Convention Example. This

allows us to uniquely identify any state.

4 s1 Y4 52 N

4 s11 Y4 s12 N\ || s21 Y4 $22 2\

((s11Y ((s112) | | [(s1217 (s1227 L/ s211° ((s2127 || ((s2217 ((s2227
-

D () | |

- J

)

Figure 13: Full Naming Convention Example

This convention also allows us to quickly deducéchistates/boxes a state is contained within.
Simply remove the last digit from the name of d@estand you then have the name of the
superstate. Repeat as necessary. The only tirthiig convention is that it is limited to 9
substates of any given state, including the toplleizater, it will be shown that a limit of 9 does
not prevent an analysis of relevant behavior. H@reone could us 0 as a digit, raising the limit
to 10. Or the hexadecimal a, b, c, d, e, and tba used to give 16. If hexadecimal is
insufficient for the user’s purpose, the additidraseparator character such as the underscore

would remove the limit entirely.

Now that we have a means of unambiguously namatgstwe need to review what kinds of
relationships states can have to each other. Ts¢ Ipasic relationship two states can have to
each other is to be superstate and substate, sudhand s11. This relationship can be deduced
quickly from the names. The substate s11 contam®iame of its parent superstate s1, with one
additional digit. In addition to being direct sugtate and substate, it is possible for a stabeto
nested multiple levels below a given superstateh sis s1112 and s1. In this multilevel nesting

case, state s1112 is the second substate of shich & the first substate of s11, which is the
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first substate of s1. A given state may have migtsubstates within itself, such as s1 having s11
and s12 as substates. This relationship, havemgdme superstate, makes states s11 and s12
what the author calls parallel substates. Puthirronvords, parallel substates are related through
a sibling pair, rather than only parent-childreirpaStates s1, s2, s3, etc. do share the same
hidden top level superstate, the table. This hidsigerstate is, however, treated differently in
the code. As such top level states like s1 arats2iot considered parallel substates for our
discussion, although they are in fact parallele TiRming scheme makes for easy identification
of parallel substates. Any state with a digit, dey the first, that is higher than 1 is a parallel
substate, or contained within one. With a mearguafkly describing the relationship between

states, we can move on to describing transitions.

The concept of transitions is important for thedlion of state machines. The exact functioning
of transitions is also critical for timing of theamework. The simplest type of transition we can
have is what is called an internal transition. iAiernal transition performs some action, possibly
with a guard condition, but does not result in argle in state. This is essentially the means by
which events which do not require a change in steggrocessed by the state machine. Another
type of transition vital for flexible specificatiaf state machines is the initial transition. As
discussed previously, an initial transition in atstspecifies that the state machine should enter a
specific substate. Taking these concepts intowaddeads to what the author calls a basic
transition. A basic transition is a transition athresults in a change in state, but neither needs
distinguish between parallel substates (siblings)triggers an initial transition. These

clarifications prove useful in defining exactly wimeeds to be timed.

Each transition has an origin and a destinatioime drigin of a transition is defined by both the
state the transition is associated with and thte sthich the state machine is in at the time. This
distinction is necessary due to the way superstatdsubstates behave. For example, a

transition may be defined in state s1 to occuesponse to event A. If the state machine is in
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state s11 which does not define a response to dvéhe transition from s1 will be triggered as a
result of Event A. This is distinct from the cagieere the state machine is in state s1, as there is
no need to check if s11 defines a response. Asudty one must specify both the state the
transition is associated with, and the state wthiehtransition is being called from in order to
fully define the origin of a transition. For exal@m@ state machine with s1 and s11 will have 3
possible origins: s1 while in s1, s11 while in sddd s1 while in s11. The next piece of
information needed to unambiguously identify a $raon is the destination. The destination is
defined by the destination state, and the initehgition(s), if any, which are triggered as a ltesu
For instance, if sl is specified as the destinaitanatters whether s1 has an initial transition
specified to s11, s111, etc. Likewise specifyifiy s distinct from specifying s1 with an IT
(initial transition) to s11, as extra calculati@are necessary. Thus we specify if an initial
transition or transitions take place. For examplesg - IT to s11, or s11 are three possible
destinations. Now we have a means of specifyiegpirameters of both the origins and

destinations of possible transitions.

At first glance, it may appear as if there is dedfvely infinite number of combinations of

origins and destinations for transitions, sincedtig a nearly unlimited number of possible states.
However, we can narrow things down. With a littrederstanding of the way the framework
deals with these transitions we can combine theitafpossibilities into a finite number of
possible unique configurations. One of the biggesans of narrowing things down is the
behavior of parallel substates. To understandaigvior, we need to understand how states are
linked. The algorithm which determines the patstates to enter and exit during a transition
starts with only two parameters, origin state amgddt state. In the QP framework, a state
contains a reference to its direct superstates 3Jinperstate reference is thidy means by which

the transition algorithm can determine the relatiop between states. In other words, the

algorithm can only ask a state who its parentasjts children or siblings. The algorithm uses
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these three pieces of information available todeor the deepest common superstate of origin
state and destination state. For instance stitisdmmon superstate of s111 and s1121, while
sl is the common superstate of s1 and s11. Thiavilr has a valuable consequence: A state
knows only itself, its superstate, and the destinaif its transitions. As a result, the existence
and number of any substates or parallel substatdaa the direct path is completely irrelevant.
Only the current state of the state-machine, e she transition is defined in, the destination,
the least common superstate, and any traversexs stettter. Or, put another way a transition can
move only up a nesting level 0 or more times, saesad or 1 times, then down a nesting level 0
or more times, in that order. Brief testing ofisas combinations bears this out. This allows us

to prune the infinite possibilities down a greaglde

With constraints on the infinite possibilities wancnow construct what shall be called prototype
state diagrams. A prototype state diagram hamthienum number of states that allow for
exploration of every possible transition. One ptygpe exists for each nesting level. A prototype
state machine can be constructed by the use of aifieple rules. First, since parallel substates
not in the path do not matter, there only needsetono substates per state. This is because, at
most, only two substates in the same superstatpassibly be in a single path from origin to
destination. Second, a pair of substates witlsémee superstate need only appear once per
nesting level. This was done in the leftmost (Istagigit value) state for simplicity. Third, each
state should have at least one substate up tegimg level limit. These rules result in the
following prototype state machines for nesting Is\{&IL) one through four below in Figure 14:

Prototype State Diagrams.
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Figure 12: Prototype State Diagrams

A first attempt to list all of the combinationstofnsitions proved haphazard and frustrating. A
large part of this was uncertainty as to which co@tions, if any, had yet to be tried. After a

little reflection, the author decided it would besbto find a way to quantify the combinations
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needed. The development of the naming scheme, reationships, and the prototype s
diagrams were integral to this effort. Howevegréhwas still the need to determine the nun

of transitions to measure.

In order to quantify the number of transitions plolesat any given nesting level, mathemat
models had to be developeThis was done by printing off the prototype statgtams and the
trying to exhaustively list every possible origmdadesination. For reference, these list are gi\
in Appendix C: Lists of @gins and DestinationsThese were recorded on an excel spread:
starting with nesting level 1 then moving on totmeglevel 2, then 3, then 4. These origins
destinations wie then carefully scrutinized for any patterns tt@tld lead to an equation. Or
these equations had been found for the first thes¢ing level, adding missing destinations
they were discoveredhe author noticed that no new patterns seemeppear at nesting level -
Thus the fourth nesting level was used as a cheekalthe inductive nature of the equal

development.

The first, and simplest, of theequations specifiethe possible origins for a transitic Because
only the relationsipi between origin and destination matters for tinpagposes, this number
rather small. For example, a transition betweearglls2 takes the same time as one betwe
and s1. This allowed for the origin states to twestrained to s1, s11, s1llc. A transition ma
also be called from a substate of the state gss@ated with.This adds a number of origil
equal to the nesting level each time a new ne#tivel is added Taking these factors in

account leads to the followirFormula 1: Unique Origins

RWR

S

I'|'=]
Formula 1: Unique Origins

Developing an equation for possible destinatioms@d much more difficult. However, breaki
the task into pieces produced better results.t, Firs transition might be an internal transiti
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resulting in one transition per origin. Secondibaransitions are relatively easy to derive from
the prototype state diagrams. Combining theseréhatively simple transitions gives us the
following Formula 2: Basic Destinations.
2NL +1
Formula 2: Basic Destinations

The development of an equation modeling the nurabpossible initial transition combinations
proved quite difficult at first. Originally the thor had been searching for polynomial models
and painstakingly writing down every found combioat Eventually it was noticed that some of
the patterns, as well as the original polynomiatf@f Formula 1 could be represented as
summation equations. This epiphany, combined thighconcept of parallel substates, was the
missing key. Ignoring parallel substates for thmmant, the number of unique destination paths
with initial transitions can be modeled by Form8idNon-Parallel Initial Transition

Combinations.

NL
2 E If-zrt—l _ J_]

a="2
Formula 3: Non-Parallél Initial Transition Combinations

The combination of Formula 2 and 3 cover all thstidation paths that do not include parallel
substates. Next, there is the need to determeaumber of such states. This resulted in
Formula 4: Number of Parallel Substates.

ML

Z[ﬂ —1)

a=2

Formula 4: Number of Parallel Substates

The final form of transition destinations includ®s$e in which an initial transition or transitions
occur in parallel substates. While the most dedigibrmula thus far, the patterns were the same,

leading to Formula 5: Parallel Initial Transitiom@binations.
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ML NL

9 z Z(Eb_u_H o 1]

a=3 bh=qg
Formula5: Paralld Initial Transition Combinations

A careful look at the formulae shows a few thingtiged in the original patterns. First, initial
transitions do not begin to occur until nestingele®. This makes sense as an initial transition
requires the existence of substates. Paralletaigissbegin at nesting level 2 as well for the same
reason. At nesting level 3, parallel substatesscguport an initial transition as well, leading to
Formula 5. At nesting levels of four or more, mgli&ional types of behavior seem to occur. This
allows us to formulate the total number of possibi@ue transitions. Adding up our results
gives the following Formula 6: Total Unique Traiwit Destinations and Formula 7: Total

Unique Transitions.

NL NL NL NL
2 ZB D (@t —1) 2 z;[zﬂ—l) + Z;(a — 1)+ 2NL +1
a=3 b=qa = a=

Formula 6: Total Unique Transition Destinations
Iransitions = Origins * Destinations
Formula 7: Total Unique Transitions

Calculating these values for each nesting levabupe default limit of 6 gives Table 7: Origins,

Destinations, and Transitions per Nesting Level.

1 1 3 0 0 0 3 3

2 3 5 2 1 0 8 24
3 6 7 8 3 1 19 114
4 10 9 22 6 5 42 420
5 15 11 52 10 16 89 1335
6 21 13 114 15 42 184 3864

Table7: Origins, Destinations, and Transitions per Nesting L evel
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Now that we know what exactly is possible at anseginesting level we can begin the process of
actually gathering the results. In order to ds #fficiently, we need a flexible and easily
adjustable means of testing the various combinatidrhanks to the graphical programming
interface included with the free modeling tool edllQM, this proved relatively simple. QM is
designed as a means of graphically programming stathines in the QP framework. For an

example, see Figure 13: QM State-Machine Examgtebe

F b
il CAArduino\libraries\gp\AprlNSTimer.qgm* - QM 2.3.2 T

File  Edit View Search Tools Window Help

L i LB T X & EaEEE -

[_* SM of NSTimer e |sef=]
State Machine
&——
Components
e =1 g B a2 o
C 7 N e
IR N IR
c A B e S e e
e L|_-| vy
T — 3
Property Editor & X Log Console 4
O State &
name: =511 E
superstate: |51 i
documentation: @
4 Il | ¥
Ready a D @l @1 ;Ln 1 Coll i

Figure 13: QM State-M achine Example

Now on to what is being timed. An early attemptdostart a pulse, start the transition to be

timed, and then stop the pulse in the entry aaifdhe destination state. This approach was
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unsuccessful because an entry action only occues wie state is entered from outside. Going

from state s11 to state s1 would not trigger anyerithis problem, along with the need to return
to the origin state before another transition cdagdimed required a different approach. After a
few iterations and refinements, the author arrigethe following code in bsp.cpp (board support

package C++ file).

void QF::onldle() {
//We are idle, so we are done processing
PULSE_OFF();
/[Flip flag on and off for test/reset
flag!=1,
Iltest if flag off
if('flag)

/IMake sure timer board has time to prepare

delay(15);

/[Start Pulse

PULSE_ON();

//[Post event signal A to start transition
AO_NSTimer->POST(Q_NEW(QEwt, A_SIG), &onldle)

}
//[Return to Origin if flag is on with signal B
else
{
AO_NSTimer->POST(Q_NEW(QEwt, B_SIG), &onldle)
}

Figure 14: Pulse Timing code in QF::onldl&()

The code above in Figure 14: Pulse Timing codehrt@ldle() creates a pulse starting just
before the creation of the event A which triggéwes transition to be timed. The pulse then ends
as soon as the idle function is called. This aflas to measure the time it takes to fully proeess

transition from start to finish, including the tirtee create and dispose of the event instance. The
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code then sends signal B which resets the stathingaso another round can begin. With this

code, we need only follow the following steps todia transition:

1. Draw the state machine

a. Draw an initial transition to the origin state.

b. Draw Signal A to represent the transition destorati

c. Draw any initial transitions that are part of thestination.

d. Draw signal B to return from ending state backtéotgg state.

e. Use signal C to ensure that origin state has tegaads visible for consistent

timing.

I. Each state uses switch case statements to prageatss As such the

number of signals available has a small (~1uskeffe

2. Press the Make (hammer) button in the QM compilowds to compile program

3. Press the upload (chip) button to upload to Arduino

4. Press reset button on timer Arduino.

5. Wait for timer board to collect and print 999 tisemples.

6. Copy results from TeraTerm Serial monitor to exstedet.

7. Record Min, Mean, and Max times

8. Repeat.
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With this set of steps, the author proceeded tlectalhe min, max and mean measurements for
every possible transition for the first three negtievels of the QP vanilla cooperative kernel.

The results are presented and discussed belowapt&ha.
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CHAPTER IV

Timing Results and Discussion

Nesting Level 1

That timing results have been gathered for evesgipte transition for the first three levels. dt i

now time to present and discuss them, starting Wadble 8: Timing Results for Nesting Level 1.

Transition Origins Transition Origins

Min (us) Mean (us)
s1(s1) s1(s1)
5 “S sl 56 5 é sl 56.854
2 2| 2 45 2 2| 2 46.021
€9 s %
= & Internal 44 = 81 Internal 44.496
Transition Origins Transition Origins
Max (us) g Floor (cycles) o 1!
s1(s1) s1(s1)
5 .S sl 58 S .5 sl 224
2 2| 2 48 2 2| 2 180
€9 s
= & Internal 45 = 81 Internal 176

Transition Origins Transition Origins

Mean (cycles) Ceiling (cycles)

s1(s1) s1(s1)
5 S sl 227.42 S 5 sl 232
2 2| 2 184.08 2 2| 2 192
€9 s B
= & Internal 177.98 = &1 Internal 180

Table 8: Timing Resultsfor Nesting Level 1
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Nesting Level 1 does not give much to discuss. siate before the parenthesis is the state in
which the transition is defined while the stat@arenthesis is the current state of the state
machine. Thus s1(s11) would be read as the offigim s1 while in s11.” The maximum range
in the results was 3us for the second transitibims matches well with the theoretical discussion
of the timing characteristics in Chapter 3 page #iBere are only 3 possible transitions for this
nesting level. The first represents a state ttimmséxiting and leaving the same state. The
second represents a transition between two states surprise here is that it takes approximately
24% longer to execute a transition to self thaartother state. It is possible that this is duthé¢o
order the transition code searches for the pathk®. The third data point is for an internal
transition. That an internal transition is theadeist is no surprise. The only curiosity is timet t
state-to-state transition took only 3.4% longenttige internal transition. One calculation that
helps to put the speed of the framework into fasu®w many transitions could be completed
per second. This works out to approximately 1720000, or 22400 transitions per second on
the ATmega328. Not bad for a cheap 16Mhz chipcddise if a program actually did that many
operations it would have no time left for anythelge. On a more practical note, 1000 random
transitions would use up 4.9% of the clock cyckesweerhead on average. While the author lacks
comparison data points for other operating systemiskernels, ~5% CPU overhead for 1000
operations per second seems rather effective. "Ghaease of organizing program behavior
through the combination of state machines in thér@mRework and QM modeling tool for
drawing the state charts, this seems rather atteaict the author. We will of course need to see

how this pattern holds at higher nesting levels.
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Nesting Level 2

. Transition Origins Transition Origins
Min (us) Mean (us)
s1(s1) s11(s11) | si1(s11) s1(s1) s11(s11) | si(s11)
2 s1 56 45 56 a s1 56.872 | 46.013 | 56.875
Sl s1-1Ttos11 73 70 69 Sfs1-1mtos11]| 73.141 | 70.086 | 69.036
s s11 61 56 57 £ s11 61.969 | 56.856 | 57.881
§ 512 61 48 61 § s12 61.977 | 48349 | 61.970
= 52 45 45 45 = s2 46.015 | 45996 | 46.011
=] s2-1Ttos21 48 48 48 ©|s2-1Ttos21| 49.010 | 49.000 | 48.999
= 21 48 48 48 e 521 48377 | 48355 | 48.360
= Internal 44 44 45 F| internal | 44512 | 44.481 | 45.931
Transition Origins Transition Origins
Max (us) Floor (cycles)
s1(s1) s11(s11) | s1(s11) s1(s1) s11(s11) | s1(s11)
2 s1 58 48 57 2 s1 224 180 224
S|s1-1Ttos11 74 71 70 Sls1-Imtos11]| 292 280 276
2 s11 64 57 60 £ s11 244 224 228
g 512 64 49 64 g s12 244 192 244
< 52 48 48 48 < s2 180 180 180
B |s2-1Ttos21 50 50 50 B s2-1Ttos21 192 192 192
= 21 49 49 49 = s21 192 192 192
= Internal 45 45 48 =1 Internal 176 176 180
Mean (cycles) Transition Origins Ceiling (cycles) Transition Origins
s1(s1) s11(s11) | si(s11) s1(s1) s11(s11) | si(s11)
2 s1 227.49 | 184.05 | 227.50 a s1 232 192 228
Sls1-1Ttos11]| 292.56 | 28034 | 276.14 Sls1-1mtos11] 296 284 280
s s11 24788 | 227.42 | 23152 £ s11 256 228 240
g 512 24791 | 193.40 | 247.88 § s12 256 196 256
= 52 184.06 | 183.98 | 184.04 = s2 192 192 192
©|s2-1Ttos21| 196.04 | 196.00 | 196.00 £|s2-1Ttos21| 200 200 200
= s21 193.51 | 193.42 | 193.44 e s21 196 196 196
= Internal 178.05 | 177.92 | 183.72 = Internal 180 180 192

Table 9: Timing Resultsfor Nesting Level 2

Moving on to the next nesting level, we have Tdbl&iming Results for Nesting Level 2. One
of the first patterns to notice is that the traonag we timed in nesting level 1 have not changed
more than ~1/100f a cycle. This strongly suggests that the time has remained unchanged.
In other words, substates beneath both origin @stirchtion do not affect timing. Another easily
discernible pattern is that internal transitiorietéhe same amount of time to execute as long as
the transition is defined in the current statelli@@@an internal transition of a superstate applie

an approximately 1.5us (6 cycle) overhead to thesition.
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A surprising result is that the time it takes tnsition to any of the s2 destinations is compjetel
independent of the origin in s1. In other wordh& common superstate of origin and destination
is the hidden top level superstate, the origin dusaffect the timing. Additionally the s2
transitions were among the fastest. It is likdlgttthis is a result of the order in which the
transition algorithm searches for the necessaty. pahese s2 transitions also allow us to discern
that an initial transition to a direct substatesgBus or 12 cycles, while selecting a destination
one nesting level lower takes ~2.3us or 9 cycléiseXt remains to be seen whether this pattern
holds. Another result is that the s11 and s12mhsins take equal time from s1(sl) (again read
as from s1 while in s1). To put this in more asdas terms, the time it takes to transition into a
direct substate from a superstate is independemhiwh substate is the destination. Of note here
is that the algorithm appears to check for dedtinatin substates after superstates or parallel
states. The transitions with s1 as the destingiiesent an interesting pattern. The s1(s11)
transition takes the same time as the s1(sl) tramsiThe final and somewhat confusing pattern
in the data is that the destination s1 — IT totskés the longest time to occur. What makes this
confusing is that the transition s2 — IT to s21ktoaly an additional 12 cycles for each origin,
while the sl versions take 65, 96, and 98 extréesycThe difference between the 96 and 98
could be related to the switch case signal proegsbut 65 is too different to result from that.
The ~30 cycle discrepancy could be related todhk bf need to exit s11 before the initial
transition, but there is probably something elsegon as well. Calculating our 1000 operation

overhead for this nesting level gives us: max 7.8fh,4.45%, and 5.4% for even distribution.

Nesting Level 3

Now moving on to the third nesting level, the mé&are and mean cycles is shown below in
Tables 10 and 11, with the rest shown in Appendib&a Tables. Some of our previous
patterns hold, while some do not. First, we getdame results as in nesting level 2. Second, the

s2 destinations are again independent of the oaigthamong the fastest. This strongly suggests
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that the algorithm is somewhat optimized for traoss between top level states, s1, s2, etc. The
12 and 9 cycle cost for initial transitions or aresting level for destination noted in the second
nesting level do not appear to be a constant. Memall s2 destinations take 192 to 212 cycles, a

range of only 20 cycles or 5us suggesting a redbtismall cost.

Transition Origins
Mean (us)

s1(s1) s11(s11) |s111(s111)| s11(s111) | si(s111) s1(s11)
sl 56.900 46.007 46.012 46.009 56.977 56.959
s1-I1Ttosll 73.131 70.082 49.005 70.197 73.125 69.036
s1-ITtosl1ll 81.190 81.455 82.348 77.352 77.075 81.184
s1-ITtosll-ITtos111 87.905 86.763 88.799 82.677 84.636 87.908
s11 61.966 56.873 48.378 56.956 61.957 57.863
s11-1Ttos111 77.651 73.135 70.077 69.030 73.548 77.655
é s111 75.026 61.985 56.879 57.863 70.976 75.036
*é s112 75.033 61.970 49.757 61.967 75.028 75.032
7 s12 61.965 48.363 48.349 48.319 61.970 61.963
a s12 -I1Tto s121 77.684 50.737 50.703 50.667 77.635 77.658
.5 s121 75.032 49.778 49.781 49.750 75.026 75.023
E s2 46.005 46.015 46.010 46.006 46.011 46.001
E s2-1Ttos21 49.002 49.006 49.004 49.003 49.003 48.998
s2-ITtos21-ITtos211 51.993 52.000 51.996 51.997 51.997 51.999
s2-ITtos211 50.719 50.693 50.717 50.683 50.667 50.719
s21-1Tto s211 50.621 50.689 50.725 50.691 50.693 50.667
s21 48.354 48.356 48.361 48.342 48.346 48.320
s211 49.756 49.790 49.766 49.769 49.775 49.764
Internal 44.510 44,515 44.513 45.917 48.243 45.923

Table 10: Mean transition time for Nesting Level 3
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Transition Origins

Mean (cycles)
s1(s1) s11(s11) |s111(s111)| s11(s111) | si(s111) s1(s11)
sl 227.60 184.03 184.05 184.04 227.91 227.84
s1-I1Ttosll 292.52 280.33 196.02 280.79 292.50 276.14
s1-ITtos11l 324.76 325.82 329.39 309.41 308.30 324.74
s1-ITtosll-ITtos111 351.62 347.05 355.20 330.71 338.54 351.63
s11 247.86 227.49 193.51 227.82 247.83 231.45
s11-1Ttos111 310.60 292.54 280.31 276.12 294.19 310.62
g s111 300.10 247.94 227.52 231.45 283.90 300.14
*é s112 300.13 247.88 199.03 247.87 300.11 300.13
2 s12 247.86 193.45 193.40 193.28 247.88 247.85
a s12 -1Ttos121 310.74 202.95 202.81 202.67 310.54 310.63
'5 s121 300.13 199.11 199.12 199.00 300.10 300.09
§ s2 184.02 184.06 184.04 184.02 184.04 184.00
E s2-1Ttos21 196.01 196.02 196.02 196.01 196.01 195.99
s2-ITtos21-ITtos211 207.97 208.00 207.98 207.99 207.99 208.00
s2-ITtos211 202.88 202.77 202.87 202.73 202.67 202.88
s21-1Tto s211 202.48 202.76 202.90 202.76 202.77 202.67
s21 193.42 193.42 193.44 193.37 193.38 193.28
s211 199.02 199.16 199.06 199.08 199.10 199.06
Internal 178.04 178.06 178.05 183.67 192.97 183.69

Table11: Mean Transition cyclesfor Nesting Level 3

The s12 destinations (s12, s12 - IT to s121, a@d)sshow a similar result to the s2 destinations.
When transitioning from any origin from within slhe state parallel to s12, the transition time is
independent of origin. Additionally, the only whayget into s12, s121, etc. faster is from a
substate. This again suggests that the algorghoptimized for transitioning between parallel
states. This parallel state optimization is shagain when transitioning between s111 and s112.
As it was in Nesting Level 2, the time it takegrmnsition into a direct substate from a superstate
is independent of which substate is the destinatftrNesting Level 3 we can also see that
traveling from a state to a substate nested 2dévalbw is independent of substate as well,
although more time consuming than traveling on¢imgs¢evel. Additionally, this holds true for
entering a direct substate then undergoing araittitinsition into the next nesting level. This
strongly suggests that, for a transition definedvatthe states listed in the destination, only the
combination of nesting levels descended and irtit#lsitions matter. As in previous nesting
levels, the time to process internal transitionshisrt and depends only on the degree of

separation between the origin states. The tirtakés for transition destination s1 seems to
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depend only on whether the transition is definesllior a substate of s1. The non-internal
transitions from origins s1(s11) and s1(s1l) matctoag the transition does not end up in s11.
The non-internal transitions from origins s11(sddjl s11(s111) match as long the does not end
up in s111. In both cases, when the transitiors epdin the substate, the s1(s11) or s11(s111)
transitions are slightly faster. These two patesmggest that the framework is designed such
that passing an event up one state does not talitoadl time. Additionally, the framework
seems to remember the state from which passed gawving time if the destination takes it back.
While there are likely more patterns in the datessibly some which are only noticeable at
higher nesting levels, there are a few things &pka mind. First is that since the number of
signals in a state has a small effect on the tirdungto the switch case in the signal processing.
This might be partially distorting deeper patteémghe data and would certainly cause minor
deviations from the patterns in practice. Secaritiat, as shown in Table 12: Reduced Dataset
for Nesting Levels 1-3, we can use these pattersghificantly reduce the number of data
points required to characterize the timing behaviirthis point we only need 41 data points to
describe the first 3 nesting levels, a reductio@®B% from the theoretical 141. Last, back to
our practical note, it would cause between 4.458%8&88% overhead for 1000 transitions per

second with an average of 5.9%.
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Mean (cycles) Transition Origins
No Initial Transitions s1(s111) s11(s11) | s11(s111) [s111(s111)
sl 184
s11
s12
s111
s112
s121 199
Initial Transition Chains s1(s1) s1(s11) s1(s111) s11(s11) | s11(s111) |s111(s111)
s1-I1Ttosll 293 276 293 280 281 196
s1-ITtosl1l1 325 308 326 309 329
s1-ITtosll-ITtosl111 352 339 347 331 355
s11-1Ttos111 311 294 293 276 280
s12-1Ttos121 311 203
s2 Destinations Independent of Origin
s2 184
s2-1Ttos21 196
s2-1Ttos21-1Ttos211 208
s2-1Ttos211 203
s21-1Ttos211
s21 193
s211 199
Internal Destinations s1(s1) | s11(s11) |s111(s111)] s11(s111) | si(s11) | si(s111)
Self 178 184 193

Table 12: Reduced Dataset for Nesting Levels 1-3

Overall, the results of timing the various trarmmsis for the first three nesting levels shows tbat t
QP framework can process any transition within &ing levels at between 178 cycles or 44.5us
and 355 cycles or 88.75us. It also shows thatrimeework is somewhat focused on performing
internal transitions and transitions between palratiates quickly. Since these are likely among
the most common transitions a state machine widkeogo during operation in practice, this is
likely near ideal. Now with the data gathered emdewed, it is time to get back to our

evaluation of the QP state machine framework.

64



CHAPTER V

Conclusion and Recommendations

Conclusions

In the beginning of this thesis, the author idégdifseveral characteristics that a software
programming strategy needed in order to addressdbds of modern developers. Now that the
QP state machine platform has been discussed ia detail, it can be evaluated with these
characteristics in mind. The authors objectivi@isonvince the reader that this approach is
worthy of consideration. One of the most vital reltderistics in showing the worth of the

approach taken with QP is broad applicability.

A programming strategy should, perhaps first oftzl applicable to a wide range of problems.
This is an area where QP excels. This is becéags®P platform is founded upon a lightweight
implementation of hierarchical state machines (HSK3 discussed in Chapter 2 pages 34 and
35, any traditional computer is at its heart a HSM\4. a result any code that could be stored and
run on such a computer could be written as a H&Me of the main limitations built in to the QP
framework is that a maximum of 63 Active Objecta ba active in a program. This limit is not
as bad as it might seem. It only means that tt@neot be more than 63 active threads of
execution on a given chip. It is conceivable far QP framework to run a major server, the
power grid of a large city, or something small egioto put inside a dollar store toy. This variety

of applications requires flexibility in hardwareaites.
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There are some programming methods, quite eagata bhnd quite flexible, who have the major
limitation of hardware choice and portability. L LabView, Windows, and Mac OS, are
software platforms with large user and developseba These platforms, however, require
powerful and expensive microprocessors to run.yEne simply unsuitable for something like

the pressure sensors in a car tire, or a thermosta QP platform, on the other-hand comes in
three versions, QP-C, QP-C++, and QP-nano, with dve heaviest, QP-C++, running easily on
the Arduino UNQO’s microcontroller. Additionally,uch of the behavior of the code is defined in
the state machines and platform. Only the boapgat package (bsp) needs to change with new
hardware. This allows for highly portable codegnsitive to hardware changes, which is a vital

requirement for the embedded system developer.

Related to the issue of hardware choice is theeissmemory use. If a program uses extensive
memory, it requires more hardware resources. Ailédtanalysis of the memory usage of the
QP-C++ platform was not the focus of this papes. sAch its exact parameters are unknown. It
can be said one of the nesting level 3 programd 18&8 bytes of flash memory to program.

The stack usage is unknown. This is an area dicfuture exploration. However, as this was the
heavy version of the platform with 9 states anijBals using less than 8kb of program memory,

it would seem to be relatively lightweight.

A benefit of the relatively lightweight nature dfet code, combined with the QM modeling tool,
is refinement speed. Once the board support padkeg platform is put together, much of the
development time is spent on altering the statehinas. As the author knows from experience
gathering the data for Chapter 4, QP allows foidrahange. Once up and running, it could
easily take less than 30 seconds to rearrange affdve state machines, recompile, and upload
using the QM tool. This means that code refinenaantimplementation can proceed quite

quickly. During the development of a product, étdity to add and alter features as needed,
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quickly and without compromising existing behavisryital. This state machine platform makes

this easy, with the abstraction of the state machiganization vital.

One of the pitfalls of many strategies is diffigulh encapsulating and abstracting code behavior.
State machines and states allow for this encajpeulahd abstraction to occur in a
straightforward manner. Each state-machine reptesecomponent of the software, such as a
valve, door, driver, engine, etc. that can do dé#ife things. Each state of said state machine then
represents a mode of behavior the component caatega. This allows for a natural,

mechanical means of separating and abstractinggrolgehavior into easily digestible pieces.

By dividing the program into pieces, the QP frameaids in distributing the burden of the
software. Separating program behavior into thedeapport package and state machines allows
for each member of a development team to focus@ms$pect with which they are familiar. If a
developer has a computer scientist, they wouldraliytbe a good choice for the support
package. The state machine controlling a motovpsealve, etc. would naturally fall on
someone familiar with digital controls and so dn.addition to separating the responsibility for
program behavior among team members, state madiliogsfor distributing the program
among hardware platforms as well. The state madioina motor might communicate with a
state machine for a valve. There is no need fombtor and valve to run on the same chip, so
long as a means of communication exists betweeatips. By running state machines on
different chips, the QP framework provides a cdasismeans of utilizing distributed computing

power.

A common limitation of many advanced and flexibbeling strategies is ease of understanding.
Many of the more powerful and flexible platformgjuge an extensive and intimate
understanding of computer science and programmi¥ighout such an understanding, it is

difficult to get desired program behavior, and heenpossible to understand exactly what is
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going on. The QP platform, as the author has atednto show, functions in a manner similar to
real-world mechanical objects. To summarize, firsbbjects behavior is a function of the state
the object is in. Second, an object respondstereal events. Third, an object only changes
behavior when it changes state. Fourth, an obpatte built up of smaller objects, each having
states and so forth. A strength of the QP platferthat by organizing program behavior in a
manner similar to real-world objects, defining amtlerstanding program behavior becomes

much more accessible for a variety of people.

A feature of many modern development processémiaged for testing and simulation. Given
the complex nature of many modern products, aloitly tive time and cost involved in creating
prototypes, it is useful to test portions of a pobjor program. By simulating and testing parts of
the final product individually, possibly simulatimgechanical components in software,
significant saving can be realized. This is ordggible if the software coding strategy allows it.
The QP platform, by working on a large variety afdware platforms, and encoding most
behavior in the state machines, facilitates thismany cases, the state machines can be coded in
such a way that no changes need to be made whengrtem between platforms and
simulations. Only the board support packages woakt to change. This allows for thorough
testing of portions of the program behavior pieg@iece. Combined with an understanding of
how the QP platform functions on each platform,Alnguino Uno being reviewed by the author,
allows for detailed analysis. This makes the GRf@im excellent for testing, simulation, and

prototyping purposes.

The last and perhaps most important feature a aodtatrategy requires for embedded and or
real-time systems is reliability. No matter howliveestrategy incorporates the previously

discussed characteristics, if it is nut utterlyaielle, it is useless for many applications. Aryeas
to understand, cheap, lightweight piece of softviarex brake servo is worse than useless if it

has a 1-in-a-million chance of freezing. Memorgke and non-deterministic behavior are
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common culprits of this. The QP platform doeshente this problem. Memory for the events is
pre-allocated in a deterministic fashion, prevamtag or leaks. This does mean that sufficient
memory must be allocated ahead of time, but thabeadetermined through testing or math.
Likewise, as the data collected in Chapter 4 shdtlvesplatform is highly deterministic. Each
given operation in the QP framework takes a premmeunt of time. This deterministic nature
makes the QP platform usable in real-time applicatiwvhere performance must meet guaranteed

parameters.

While the author is unfamiliar with the exact clesistics of other frameworks and operating
systems, the results of the analysis so far ha® tedauthor confident of two things. First, the
combination of state-machine architecture and thplgcal QM tool to precisely and accurately
control program behavior would be far simpler taerstand and use for those not already
intimately familiar with other methods. Second: firocessing cost for this simplicity is likely
small enough to justify use in even mass producdokelded systems. Without a large,
experienced, and thus expensive, team of compcitmce coders, which would likely require
proprietary software tools as well, it is unlikétyget much better performance. Thus, while it
may not be the preferred approach for Apple or doft, for companies which are either smaller

or not focused almost exclusively on computer progning, it might be worth adopting.

Recommendations

Due to the flexibility of the QP framework, thenmeanany possibilities for further exploration.
Perhaps the first that comes to mind is an exptoraif the pre-emptive kernel running on the
Arduino. A second of course to explore the timih@racteristics of the QP-C++ framework on
other platforms. A third avenue would be to expltre QP-C or QP-nano versions. A fourth
avenue would be to thoroughly explore the memoguirements of the platform, flash, stack,

and RAM. The QP framework also includes a powarftdrnal monitoring service called QSPY
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which could be enabled to assist in analysis dfargapplication. Let us briefly discuss these

further.

The QP framework includes both a cooperative apeepnptive version. For the timing analysis
in this thesis we used the cooperative versionchvaf the theoretical work for the cooperative
version would remain unchanged for a pre-emptivayais. The main change is that nearly any
operation done by or with an Active Object couldrterrupted by an operation with a higher
priority Active Object. It would be relatively spte, possibly simpler than the cooperative
version, to time a basic operation by the highestipy Active Object. One could start a pulse in
a lower priority object, create and post an everhé high priority Active Object, then end the
pulse. In the pre-emptive kernel, the Active Objeith high priority would take over when the
event was posted, only returning to the low pryoobject when finished. This could be chained
to explore various combinations. It is likely thatterrupting a transition in operation would add
~6-8 cycles to the time it takes to execute, amation call takes 4 cycles in the Arduino UNO,
one call out, one call back to return. The addivda third Arduino, or alteration of the timer
code could also be used to specifically causerinpions at desired times. As is hopefully
apparent, extending the analysis in this papenggte-emptive kernel might easily provide the

material for another thesis or creative component.

A perhaps obvious avenue for future informatiorhganhg efforts would be to run the
experiments on other hardware platforms. As lang hoard support package can be developed
for the desired platform, many of which are alreadgilable, the QP framework can run on
many target environments, from miniscule microcaligrs to massive supercomputers. It is
likely that there would be variations in the numbécycles which would be required for

different tasks. This variation can come fromway compilers create the code, formatting and

configuration used in porting the platform, as veadlthe way in which different chips run the
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instructions. As such, before using the QP frami&woa project, it might be prudent to run the

timing analysis so that performance characterist@sbe known precisely.

While the C++ version of the QP framework was usetthis thesis due to an already existing

port to the Arduino UNO, there are two other veamnsio As the author understands it the C version
is essentially identical, with the C++ version nigi@translation in program semantics. The C
version is mainly provided because some C++ comgpfter microcontrollers produce code with
serious performance issues. The nano version o Q&ite different. Many features are
removed or restricted. This is because the prirparpose of the QP nano version is to create a
framework which can run state machines with minineaburces. The creator of the QP
framework specifically stated as a goal for QP-nanieasible framework to be used by the
individual components, threads, and cores of a &hipd in the development of microcontrollers

and processors. As such the QP-nano, in partictgaitd serve as something to further explore.

One important characteristic of any program framdvi® memory. Program memory, stack
space, and RAM are precious resources in many aebesystems. As such, a detailed
understanding of how and how much of each is usattiqprove useful. In this thesis, the focus
was on understanding the state machine architeahgehe timing performance. Developing an
analysis of memory usage, would likely be a worthysuit. Speed, reliability, and memory
usage are vital characteristics. The stronglyrdetastic nature of the timing has already been
shown. With an analysis of memory, a developekitapfor a strategy would then have a good

idea of what they would get from QP.

Of course the final test of any strategy is hofuiitctions in application. With an understanding
of timing and memory with the platform in use,atains necessary to understand the specific
application. The QP framework includes a monitgpervice built into the code called QSPY.

This service when enabled in the compiler, providesy services for monitoring the framework
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as well as the behavior of the components sucheastate machines, event queues, memory
pools, etc. This would allow a developer to geteav of what is going on under the hood that
might not otherwise be possible. As for why thiswot explored in this thesis, there are two
main reasons. First was that while intended tlighéweight, it would inevitably alter the timing
characteristics slightly. Second, the timing fumes QSPY provides have a resolution of 256
microseconds on the Arduino Uno. This was fardoarse of a resolution for distinguishing the
time various framework tasks take. It might howdwe useful for practical applications,
especially since it does preserve the order in vtfilmgs are logged. For a fairly complex set of
Active Objects, activating the QSPY service in @as debug versions, or even production
versions if the ability to monitor justifies thesmurce usage, could conceivably greatly aid in

nearly any application.

Important for many who would explore it as welthe fact that it is free to learn and use, an
advantage over many less widely applicable alterest The author has hope that the reader has
been convinced that the QP framework is rich inoofymity. First, it has a wide range of
applicability in practical applications. Secoridpiiesents a near unlimited number of avenues for

learning or aiding development.
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APPENDICES

Appendix A: Code

NSTimer.ino (Arduino project file)

#include "gp_port.h"

#include "NSTimer.h"

#include "bsp.h"

#include "Arduino.h" // always include in your s&lt

Q_DEFINE_THIS_FILE
using namespace QP;

/1 Local-SCOPE ODJECLS =m-mmnmmmmmmm e
static QEvt const *NSTimer_queueSto[10]; // alo@tent queue buffer

static QF_ MPOOL_EL(QEvt) |_smlIPoolSto[10]; // stgeafor the small event pool

oo
void setup() {
I/ initialize the BSP
BSP_init();
/ initialize the framework and the underlying Rérkel
QF::init();
/ initialize event pools...
QF::poollnit(l_smlPoolSto, sizeof(l_smlPoolStogenf(l_smIPoolSto[0]));
AO_NSTimer->start(1, NSTimer_queueSto, Q_DIM(NSTintrieueSto),
(void *)0, OU); // start the NSTimer active object
}
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NSTimer.h

#ifndef NSTimer_h
#define NSTimer_h
using namespace QP;

enum NSTimerSignals { // signals for the NSTimeplagation
TIMEOUT_SIG = Q_USER_SIG,
A_SIG,
B_SIG,
C_SIG,
D_SIG,
E_SIG,
F_SIG,
G_SIG,
H_SIG
3

/] active ODJeCtS .......coveeiiiiiiiic e
$declare(components::AO_NSTimer) // "opaque" poitdedNSTimer AO

#endif // NSTimer_h

bsp.h

#ifndef bsp_h
#define bsp_h

#include <avr/io.h> /| AVR I/O

/I Sys timer tick per seconds

#define BSP_TICKS_PER_SEC 100

#define PULSE_ON() (PORTD |= (1 << (2)))
#define PULSE_OFF() (PORTD &= ~(1 << (2)))

void BSP_init(void);
void BSP_ledOff(void);
void BSP_ledOn(void);
#endif // bsp_h

bsp.cpp

#include "gp_port.h"
#include "NSTimer.h"
#include "bsp.h"
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#include "Arduino.h" // Arduino include file

Q_DEFINE_THIS_FILE

void BSP_init(void) {
DDRB = OxFF; // All PORTB pins are outputs (userE
PORTB = 0x00; // drive all pins low

void BSP_ledOff(void) {
PORTB &= ~(1 << 5);
}

void BSP_ledOn(void) {
PORTB |= (1 << 5);
}

void QF::onldle() {

//We are idle, so we are done processing

PULSE_OFF();

/[Flip flag on and off for test/reset

flag!=1,

Iltest if flag off

if('flag)

{

/IMake sure timer board has time to prepare
delay(15);

/[Start Pulse
PULSE_ON();

/[Post event signal A to start transition
AO_NSTimer->POST(Q_NEW(QEvt, A_SIG), &onlidle);

}

/[Return to Origin if flag is on with signal B
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else

{
AO_NSTimer->POST(Q_NEW(QEvt, B_SIG), &onldle);
}
}
I e
void Q_onAssert(char const Q_ROM * const Q_ ROM_VH#® int line) {
QF_INT_DISABLE(); /I disable all interrupts
BSP_ledOn(); /I User LED permanently ON
asm volatile ("jmp 0x0000"); // perform a softwaeset of the Arduino
}

ao NSTimer.cpp

#include "gp_port.h"

#include "bsp.h"

#include "NSTimer.h"

#include "Arduino.h”

//Q_DEFINE_THIS_FILE

[l NSTIMEr Class -------=-mmmm oo oo
$declare(components::NSTimer)

Il 'Local ObjJeCtS ----mmmmmm oo e e
static NSTimer |_NSTimer; // the single instanceN&Timer active object
Il Global 0bjJeCtS —----=mmnmmm e
QActive * const AO_NSTimer = &_NSTimer; // the apae pointer
/I Pelican class definition --------=-==-==m oo
$define(components::NSTimer)
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Appendix B: Nesting Level 3 Data

Min(us)
Min (us) Transition Origins
s1(s1) s11(s11) |s111(s111)| s11(s111) | s1(s111) s1(s11)

sl 56 45 45 45 56 56
s1-ITtosll 73 70 48 70 73 69
s1-ITtoslll 81 81 82 77 77 81
s1-ITtosll-ITtosl11l 87 86 88 82 83 87
s11 61 56 48 56 61 57
s11-1Ttos111 77 73 70 69 73 77
= 5111 75 61 56 57 70 75
‘é s112 74 61 49 61 75 75
b s12 61 48 48 48 61 61
a s12-1Ttos121 77 50 50 50 77 77
5 s121 75 49 49 49 75 74
G 52 45 45 45 45 45 45
E s2-1Ttos21 48 48 48 48 48 48
s2-1Ttos21-1Ttos211 50 50 50 50 50 50
s2-ITtos211 50 50 50 50 50 50
s21-1Ttos211 50 50 50 50 50 50
s21 48 48 48 48 48 48
s211 49 49 49 49 49 49
Internal 44 44 44 45 48 45
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Mean(us)

Transition Origins

Mean (us) s1(s1) s11(s11) |s111(s111)| s11(s111) | si(s111) s1(s11)
sl 56.900 46.007 46.012 46.009 56.977 56.959
s1-I1Ttosll 73.131 70.082 49.005 70.197 73.125 69.036
s1-1Ttos111l 81.190 81.455 82.348 77.352 77.075 81.184
s1-ITtosll-ITtoslll 87.905 86.763 88.799 82.677 84.636 87.908
sll 61.966 56.873 48.378 56.956 61.957 57.863
s11-1Ttos111 77.651 73.135 70.077 69.030 73.548 77.655
g s111 75.026 61.985 56.879 57.863 70.976 75.036
‘é s112 75.033 61.970 49.757 61.967 75.028 75.032
b s12 61.965 48.363 48.349 48.319 61.970 61.963
8 s12 -1Tto s121 77.684 50.737 50.703 50.667 77.635 77.658
.E s121 75.032 49.778 49.781 49.750 75.026 75.023
§ s2 46.005 46.015 46.010 46.006 46.011 46.001
E s2-1T tos21 49.002 49.006 49.004 49.003 49.003 48.998
s2-1Ttos21-ITtos211 51.993 52.000 51.996 51.997 51.997 51.999
s2-ITtos211 50.719 50.693 50.717 50.683 50.667 50.719
s21-1Ttos211 50.621 50.689 50.725 50.691 50.693 50.667
s21 48.354 48.356 48.361 48.342 48.346 48.320
s211 49.756 49.790 49.766 49.769 49.775 49.764
Internal 44.510 44.515 44.513 45917 48.243 45.923
Max(us)
Transition Origins
Max (us)
s1(s1) s11(s11) |s111(s111)| s11(s111) | si(s111) s1(s11)
sl 58 48 48 48 58 58
s1-I1Ttosll 74 71 50 71 74 70
s1-ITtosl111 82 82 83 78 78 82
s1-ITtosll-ITtos111 88 87 90 83 85 88
s11 64 57 49 58 64 60
s11-1Ttos111 78 74 71 70 74 78
g s111 77 64 57 58 73 77
*é s112 77 64 50 64 77 77
7 s12 62 49 49 49 64 64
a s12 - IT to s121 78 52 52 52 78 78
IS s121 77 50 50 50 77 77
§ s2 48 48 48 48 48 48
E s2-1T tos21 50 50 50 50 50 50
s2-1Ttos21-1Ttos211 53 53 53 53 53 53
s2-1Ttos211 52 52 52 52 52 52
s21-1Ttos211 52 52 52 52 52 52
s21 49 49 49 49 49 49
s211 50 50 50 52 50 50
Internal 45 45 45 48 49 48
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Floor (cycles)

Floor (cycles)

Transition Origins

s1(s1) s11(s11) |s111(s111)| s11(s111) | s1(s111) s1(s11)
sl 224 180 180 180 224 224
s1-ITtos1l 292 280 192 280 292 276
s1-1Ttos111 324 324 328 308 308 324
s1-1Ttosll-ITtos111 348 344 352 328 332 348
s11 244 224 192 224 244 228
s11-1Ttos111 308 292 280 276 292 308
g s111 300 244 224 228 280 300
E s112 296 244 196 244 300 300
2 s12 244 192 192 192 244 244
a s12 - 1T to s121 308 200 200 200 308 308
.5 s121 300 196 196 196 300 296
§ s2 180 180 180 180 180 180
E s2-1Ttos21 192 192 192 192 192 192
s2-1Ttos21-IT tos211 200 200 200 200 200 200
s2-1Ttos211 200 200 200 200 200 200
s21 - 1T to s211 200 200 200 200 200 200
s21 192 192 192 192 192 192
s211 196 196 196 196 196 196
Internal 176 176 176 180 192 180
M ean(cycles)
Transition Origins
Mean (cycles)
s1(s1) s11(s11) |s111(s111)| s11(s111) | s1(s111) s1(s11)
sl 227.60 184.03 184.05 184.04 227.91 227.84
s1-I1Ttosll 292.52 280.33 196.02 280.79 292.50 276.14
s1-1Ttos111 324.76 325.82 329.39 309.41 308.30 324.74
s1-1Ttosll-ITtos111 351.62 347.05 355.20 330.71 338.54 351.63
s11 247.86 227.49 193.51 227.82 247.83 231.45
s11 - 1T tos111 310.60 292.54 280.31 276.12 294.19 310.62
§ s111 300.10 247.94 227.52 231.45 283.90 300.14
‘é s112 300.13 247.88 199.03 247.87 300.11 300.13
7 s12 247.86 193.45 193.40 193.28 247.88 247.85
a s12 - IT to s121 310.74 202.95 202.81 202.67 310.54 310.63
.5 s121 300.13 199.11 199.12 199.00 300.10 300.09
§ s2 184.02 184.06 184.04 184.02 184.04 184.00
E s2-1Ttos21 196.01 196.02 196.02 196.01 196.01 195.99
s2-ITtos21-ITtos211 207.97 208.00 207.98 207.99 207.99 208.00
s2-ITtos211 202.88 202.77 202.87 202.73 202.67 202.88
s21-1Ttos211 202.48 202.76 202.90 202.76 202.77 202.67
s21 193.42 193.42 193.44 193.37 193.38 193.28
s211 199.02 199.16 199.06 199.08 199.10 199.06
Internal 178.04 178.06 178.05 183.67 192.97 183.69
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Ceiling(cycles)

Ceiling (cycles)

Transition Origins

s1(s1) s11(s11) |s111(s111)| s11(s111) | si(s111) s1(s11)
sl 232 192 192 192 232 232
s1-I1Ttosll 296 284 200 284 296 280
s1-1Ttos111l 328 328 332 312 312 328
s1-ITtosll-ITtoslll 352 348 360 332 340 352
sll 256 228 196 232 256 240
s11-1Ttos111 312 296 284 280 296 312
g s111 308 256 228 232 292 308
‘é s112 308 256 200 256 308 308
e s12 248 196 196 196 256 256
8 s12 -1Tto s121 312 208 208 208 312 312
.E s121 308 200 200 200 308 308
§ s2 192 192 192 192 192 192
E s2-1T tos21 200 200 200 200 200 200
s2-1Ttos21-1Ttos211 212 212 212 212 212 212
s2-ITtos211 208 208 208 208 208 208
s21-1Tto s211 208 208 208 208 208 208
s21 196 196 196 196 196 196
s211 200 200 200 208 200 200
Internal 180 180 180 192 196 192
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Appendix C: Listsof Originsand Destinations

Nesting Leve 1
Transition Origins Non-Parallel ITs
s1(s1) None
Basic Parallel Substates
sl None
s2
Internal Parallel ITs
None
Nesting Leve 2
Transition Origins Non-Parallel ITs
s1(s1) s1-I1Ttos11
s11(s11) s2-1Ttos21
s1(s11)
Parallel Substates
Basic s12
sl
s11 Parallel ITs
s2 None
s21
Internal
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Nesting Level 3

Transition Origins

Non-Parallel ITs

s1(s1) s1-1Ttosll
s11(s11) s1-1Ttos111
s111(s111) s1-1Ttosl11-ITtos111
s11(s111) s11-ITtosl111
s1(s111) s2-1Ttos21
s1(s11) s2-1Ttos21-1Ttos211
s2-1Ttos211
Basic s21-1Ttos211
sl
s11 Parallel Substates
s111 s112
s2 s12
s21 s121
s211
Internal Parallel ITs

s12-1Ttosl121
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Nesting Level 4

Transition Origins

Non-Parallel ITs

s1(s1) s1-I1Ttos11
s11(s11) s1-1Ttosl11
s111(s111) s1-1Ttosl1111
s1111(s1111) s1-ITtosll-ITtos111
s111(s1111) s1-ITtosll-ITtos1111
s11(s1111) s1-1Ttos111-ITtos1111
s1(s1111) s1-ITtosl1-ITtos111-1Ttos1111
s11(s111) s11-1Ttos111
s1(s111) s11-1Ttos1111
s1(s11) s11-1Ttos111-ITtos1111
s111-1Ttos1111
Basic s2-1Ttos21
sl s2-1Ttos211
s11 s2-1Ttos2111
s111 s2-1Ttos21-1Ttos211
s1111 s2-1Ttos21-1Ttos2111
s2 s2-1Ttos211-1Ttos2111
s21 s2-1Ttos21-1Ttos211-1Ttos2111
s211 s21-1Ttos211
s2111 s21-1Ttos2111
Internal s21-1Ttos211-1Ttos2111

s211 - 1T tos2111

Parallel Substates

s1112
s112
s1121
s12
s121
s1211

Parallel ITs

s12-ITtos121
s12-1Ttos1211
s12-1Ttos121-1Ttos1211
s121-1Ttos1211
s112 -ITtos1121
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