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Title of Study: NET ECOSYSTEM EXCHANGE OF CARBON DIOXIDE AND 
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Major Field: CROP SCIENCE 

Abstract: Understanding carbon and water dynamics of switchgrass (Panicum virgatum 

L.) and high biomass sorghum (Sorghum bicolor L. Moench) ecosystems is crucial as the 

acreage of these feedstocks is expanding for cellulosic biofuels. Net ecosystem exchange 

(NEE) of CO2 and H2O was measured using eddy covariance system over co-located 

switchgrass and sorghum fields in south central Oklahoma, USA. The major objectives of 

this study were to quantify and examine seasonal variations in NEE, evapotranspiration 

(ET), and ecosystem water use efficiency (EWUE) over switchgrass and sorghum 

ecosystems in response to controlling factors, and to explore the underlying mechanisms. 

The results revealed photosynthetic photon flux density (PPFD) as the most significant 

environmental factor for variation in NEE under optimal weather conditions. However, 

warm air temperature and high vapor pressure deficit (VPD) obscured the NEE-PPFD 

relationship. Larger VPD (>3 kPa) limited photosynthesis and asymmetrical diurnal NEE 

cycles were observed in both ecosystems. Consequently, rectangular hyperbolic light-

response curve (NEE partitioning algorithm) consistently failed to provide good fits at 

high VPD. Modified rectangular hyperbolic light-VPD response model accounted for the 

limitation of VPD on photosynthesis and improved the model performance significantly. 

The magnitudes of CO2 and H2O fluxes were similar in both ecosystems during the active 

growing periods and the differences in carbon sink potential and seasonal water demand 

were primarily driven by the length of the growing season. Monthly ensemble averaged 

NEE of switchgrass and sorghum reached seasonal peak values of -33.02 ± 1.96 and -

35.86 ± 2.32 µmol m
-2

 s
-1

, respectively. Similarly, weekly average of daily integrated 

NEE reached seasonal peaks of -8.5 g C m
-2 

day
-1

 in switchgrass and -10.3 g C m
-2 

day
-1

 

in sorghum. During peak growth, daily ET reached up to 6.2 mm day
-1

 for switchgrass 

and 6.7 mm day
-1

 for sorghum. The EWUE was about 12 g CO2 mm
-1

 ET in switchgrass 

and about 10 g CO2 mm
-1

 ET in sorghum. This research showed strong seasonal carbon 

sink potential and high water use efficiency of both ecosystems in this region. However, 

evaluation over a longer term would be more valuable. 
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CHAPTER I 

 

 

INTRODUCTION 

Biofuels 

 

America consumes about 25% of the world’s oil as one-third of the automobiles (230 

million) are in America (National Biofuels Action Plan, 

http://www1.eere.energy.gov/biomass/pdfs/nbap.pdf, verified April 11, 2013). According 

to the projection of the U.S. Energy Information Administration (EIA), the reliance on 

foreign producers for oil will increase 30% by 2030 and the transport sector’s greenhouse 

gas emissions will rise by 40% (Annual Energy Outlook, 2007, 

ftp://ftp.eia.doe.gov/forecasting/0383(2007).pdf, verified April 11, 2013). The demand 

and cost of energy are increasing, and oil and gas reserves are declining. Current ethanol 

production from sugar/starch is non-sustainable because of direct competition with food 

and feed sources. In addition, corn (Zea mays L.) based ethanol is reaching the mandated 

blending wall limit of 15 million gallons (56 megaliters) per year in the U.S. Even if the 

total U.S. corn crop is used for ethanol production, it can supply only less than 25% of 

the total U.S. fuel consumption. Moreover, CO2 concentration is increasing in the 

atmosphere since Industrial Revolution of the mid-nineteenth century and most of the 

http://www1.eere.energy.gov/biomass/pdfs/nbap.pdf
ftp://ftp.eia.doe.gov/forecasting/0383(2007).pdf
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released CO2 into the atmosphere is a result of burning fossil fuels (Revelle and Suess, 1957). 

Due to these reasons, it is an essential to supplement the current energy consumption by 

alternative sources. There are numerous efforts worldwide to produce biofuels from biomass. 

Substituting fossil fuels with biofuels is one of the major avenues for reducing CO2 emissions 

as well (Pacala and Socolow, 2004). This is because bioenergy crops convert atmospheric 

CO2 to organic carbon in crop biomass and soil which ultimately could help offset CO2 

emissions (Adler et al., 2007).  

The Biomass Research and Development (R&D) Advisory Committee, a panel 

established by the Congress, has set a vision to supplement 30% of the current U.S. 

petroleum consumption with biofuels by 2030. Biomass is the America’s largest domestic 

source of renewable energy and the only current renewable source of liquid transportation 

fuel. To displace 30% of the county’s present petroleum consumption, one billion dry tons of 

biomass feedstock is required each year. The United States Department of Agriculture 

(USDA) estimated that the annual biomass potential of U.S. from forestland and agricultural 

land, two largest biomass sources, is over 1.3 billion dry tons (368 million dry tons from 

forestlands and 998 million dry tons from agricultural lands) (Perlack et al., 2005).  

Currently much emphasis has been given to efficiently and sustainably produce liquid 

transportation fuels from cellulosic feedstocks. As part of the U.S. Energy Independence and 

Security Act (EISA), the Renewable Fuel Standard mandates 16 billion gallons (60 billion 

liters) of biofuels from cellulosic feedstock out of total 36 billion gallons (136 billion liters) 

of biofuel production by 2022. This 2022 biofuel goal requires developing alternative 

feedstock sources to traditional feedstock like maize for food security and to meet increasing 

biofuel feedstock demand. Although the use of crop and forest residues can be one potential 
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source of biomass, switchgrass (Panicum virgatum L.) which is a highly productive C4 

perennial warm-season grass native to North America has been chosen as a model cellulosic 

feedstock by the U.S. Department of Energy (DOE) through a decade long, multi-location 

(31 sites) and multi-species (34 species) trials due to its potential for high yields, deep 

rooting characteristics, and potential value in carbon sequestration (Wright, 2007). Other 

species identified as potential bioenergy crops include corn, Miscanthus (Miscanthus 

giganteus), sugarcane (Saccharum officinarum), and the tree species poplar (Populus 

trichocarpa). Although it has not been widely reported, high biomass sorghum (Sorghum 

bicolor L. Moench) is also another very promising bioenergy crop because of its potential for 

high production and drought tolerant (Rooney et al., 2007). 

Ethanol production capacity has increased exponentially from 0.66 billion liters in 

1980 to more than 49 billion litters in recent years (RFA 2012, 

http://www.ethanolrfa.org/pages/statistics, verified May 1, 2013). This increased deployment 

of dedicated biomass crops has sparked numerous environmental concerns. To maximize the 

environmental and economic benefits of biofuels is a key goal of the National Biofuels 

Action Plan (NBAP). Biofuel production should be sustainable without adverse impact to the 

environment or natural resources. Thus, it is an essential to assess the environmental 

implications such as the effect of feedstock production from major dedicated energy crops on 

soil, water, and air quality. Fewer environmental impacts are predicted from advanced 

cellulosic fuel production compared with grain-based ethanol production (Heaton et al., 

2004). It is more likely that cellulosic crops provide positive effects on soil properties, 

biodiversity, energy balance, greenhouse gas mitigation, and carbon footprint (Rowe et al., 

2009). However, environmental impacts and ecosystem services of biofuel production should 

http://www.ethanolrfa.org/pages/statistics
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not be neglected (Rowe et al., 2009). Therefore, we have to consider several factors when 

selecting environmentally and economically viable bioenergy feedstocks (Hill et al., 2006).  

 

Ecosystem level CO2, H2O, and heat energy exchange measurements  

 

Exchanges of heat, water vapor, trace gases, and momentum occur between land surfaces and 

the atmosphere (overlying air). Several aspects of weather and climate are influenced through 

interactions between terrestrial ecosystems and the atmosphere (Pielke et al., 1998). Thus, a 

growing interest has recently emerged on the carbon and water dynamics of all kinds of 

ecosystems. Several methods can be used to measure CO2 and H2O fluxes over terrestrial 

surfaces. However, fluxes are generally measured using measurements of atmospheric 

elements in micrometeorological methods. Unlike several other methods, they do not modify 

the surface conditions and provide a spatially and temporally integrated measurement. 

Recently eddy covariance (EC) system has been considered as one of the most accurate 

micrometeorological methods which can measure net ecosystem exchange (NEE, the 

exchange of fluxes between an ecosystem and the atmosphere) at a scale of a few hectares to 

several kilometers (Baldocchi, 2003). Moreover, EC is the most viable method to measure 

NEE over short time scales, thus providing elucidation of the climatic controls on NEE 

(Baldocchi et al., 2001). Long term data sets from EC measurements are important to identify 

and characterize key physiological processes in the terrestrial carbon and water cycles 

(Goulden et al., 1998;Black et al., 2000). In addition, EC measurements are the prime source 

of data for developing and testing ecosystem process models (Baldocchi and Meyers, 

1998;Grant et al., 2005) and validating model parameterizations at the stand level (Law et al., 
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2000;Wilson et al., 2001). Due to these reasons, direct measurements of NEE by the EC 

technique have increased in recent years in order to determine the roles of different 

ecosystems in the global carbon and water cycles. FLUXNET, an international network of 

micrometeorological tower sites, coordinates regional and global analyses of continuous 

observations of exchanges of CO2, H2O, and energy between terrestrial ecosystems and the 

atmosphere from over 500 tower sites using the EC method (http://fluxnet.ornl.gov/, verified 

December 18, 2012). The North American Carbon Program Science Plan (Wofsy and 

Harriss, 2002) laid emphasis to quantify carbon sink of the North America. It requires NEE 

measurements in a variety of ecosystems. Understanding the response of all ecosystems to 

different environmental conditions is helpful for better understanding of the exchange of CO2 

and H2O between biosphere and the atmosphere. Unfortunately, very few studies of NEE 

measurements are reported in switchgrass (Skinner and Adler, 2010;Zeri et al., 2011). There 

is no information on carbon status of switchgrass ecosystems for the southern Great Plains of 

the United States, which will be the home to large stands of switchgrass in the near future 

(U.S. Department of Energy, 2011). Furthermore, earlier studies lacked thorough 

investigation of seasonal carbon dynamics in response to controlling factors. To our 

understanding there is no NEE study reported in high biomass sorghum (hereafter referred to 

as sorghum) yet. In addition, there is a scarcity of comparative NEE studies from co-located 

switchgrass and sorghum ecosystems. Better understanding of the seasonality of NEE with 

respect to controlling factors will be helpful for assessing climate change mitigation potential 

of these cellulosic feedstocks.  

Understanding the efficiency of bioenergy crops in using available water to produce 

biomass and store carbon in soil is an important metric of bioenergy crop performance (Zeri 

http://fluxnet.ornl.gov/
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et al., 2013). Quantifying and understanding of evapotranspiration (ET, the loss of water 

vapor from the ecosystem) and ecosystem water use efficiency (EWUE, net carbon uptake by 

the ecosystem per amount of water use) of bioenergy crops is very critical to assess the 

impact of increased deployment of dedicated biomass crops on local and regional hydrology. 

In most cases, ET is the second largest term after precipitation in the hydrological balance 

(Ford et al., 2007), indicating a major component of water balance in terrestrial ecosystems. 

The associated flux of latent heat, a major component of energy balance, has a major role on 

the planetary boundary layer dynamics (Baldocchi et al., 2000). Moreover, several 

hydrological and biological processes in an ecosystem are tightly linked via ET (McNulty et 

al., 1994;Wilson and Baldocchi, 2000). The study of ET is, therefore, fundamental for better 

understanding of terrestrial ecosystems. The EWUE, a key component of the hydrologic 

cycle which relates biomass production or carbon gain to water use, is intricately linked to 

biogeochemical cycles (Sellers et al., 1997). In recent years, EWUE has been considered as 

an important characteristic of vegetation productivity (Kuglitsch et al., 2008). The EWUE 

can be considered as a determinant of the sustainability of newly introduced crop species 

(Wallace, 2000). Emmerich (2007) suggested that EWUE would be an appropriate tool to 

compare different plant communities. Thus, the study of ET and EWUE in a variety of 

terrestrial ecosystems is an essential for the assessment of local, regional, and global water 

balances. But there is still a dearth of information on ET and EWUE of switchgrass and 

sorghum. This study takes advantage of recent technological advancements and used the EC 

technique for continuous half-hourly measurements of CO2, H2O, and energy fluxes from 

two dedicated energy crop species, switchgrass and sorghum. This study will be highly 
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useful to assess the sustainability and environmental benefits of large-scale expansions of 

these two major dedicated energy crops. 

 

Review of Literature 

 

The eddy covariance method and theory 

 

Measurement of heat, mass, and momentum exchanges between a homogenously flat surface 

and the overlying atmosphere using the EC method was proposed in the 1950s (Montgomery, 

1948;Swinbank, 1951). However, it took several decades for full implementation due to 

instrumental limitations. The continuous eddy flux measurements became possible only in 

the 1990s after the development of new generation sonic anemometers and infrared gas 

analyzers, and the first comprehensive EC software packages (McMillen, 1988). The EC 

measurements are made in the surface boundary layer. In the surface layer, measured fluxes 

which are approximately constant with height represent the fluxes from the underlying 

surfaces. However, atmospheric turbulent is the dominant transport mechanism for eddy flux 

measurements. 

The eddy flux (F) is approximately equal to the mean air density (ρa) multiplied by 

the mean covariance between deviations in instantaneous vertical wind speed (w) and mixing 

ratio (s), which is expressed as follows: 

''swF a      (1)
 

here over bar denotes temporal averaging (30-min) and the primes denote the deviation from 

the mean. Mixing ratio of a substance ‘c’ is defined as the ratio of density of the substance 
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(ρc) to the density of air (ρa). Open path LI-7500 analyzer does not measure mixing ratio, so 

there is an assumption that 

''swa  
'' cw      (2)  

 

Carbon dioxide flux (Fc) is presented as the mean covariance between deviations in 

instantaneous vertical wind speed and density of CO2 (ρc), which is expressed as: 

''

cc wF       (3)
 

Sensible heat flux (H) is equal to the mean air density multiplied by the covariance 

between deviations in instantaneous vertical wind speed and temperature (T). Inclusion of 

specific heat (Cp) term coverts it to energy units.  

''TwCH pa     (4)
 

Latent heat flux (LE) is calculated in a similar manner using water vapor (q) and later 

converted to energy units as follows: 

''qwLE a     (5)
 

where λ is latent heat of vaporization.  
 

 

NEE measurements and partitioning 

 

Eddy covariance measures NEE of matter and energy. The NEE of CO2 is the balance 

between two larger CO2 fluxes: gross ecosystem production (GEP, carbon uptake via 

photosynthesis) and ecosystem respiration (ER, carbon release from autotrophic and 

heterotrophic respiratory activities).  

NEE = ER - GEP    (6) 
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In this equation, ER is always positive and GEP is positive during daytime and zero at 

nighttime as no photosynthesis occurs during nighttime. In equation 6, during nighttime NEE 

is equivalent to ER as GEP is zero, resulting in positive values of NEE. But larger values of 

GEP than ER during daytime yields negative values of NEE. Thus, the sign convention of 

NEE in this study is that CO2 uptake by the ecosystem is negative, whereas a net CO2 release 

to the atmosphere is positive.  

The EC system does not measure ER and GEP individually. Instead, it provides the 

balance between these two terms. Thus, flux partitioning algorithms are necessary to estimate 

these component fluxes from measured NEE. One of the most widely used methods to 

partition NEE into GEP and ER is using the commonly used rectangular hyperbolic light-

response curve (Falge et al., 2001). 

ER
GPPPFD

PPFDGP
NEE 






max

max




  (7) 

where α is the apparent quantum yield (i.e., the initial slope of the light-response curve [mol 

CO2 mol
-1

 of photons)], PPFD is measured photosynthetic photon flux density (µmol m
-2

 s
-1

), 

GPmax is the maximum canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light saturation, and ER is 

respiration rate. However, the relationship between NEE and PPFD is influenced by several 

other factors such as temperature, VPD, and moisture stress. The CO2 flux of canopy 

saturates less rapidly than that of a single leaf because lower leaves in plant canopies may be 

PPFD limited when the upper leaves are PPFD saturated (Ruimy et al., 1995). The failure of 

rectangular hyperbolic light-response function to describe daytime NEE only as a function of 

PPFD has been observed in several ecosystems (Li et al., 2005;Pingintha et al., 2010;Wang et 

al., 2008). It was because of the fact that the light-response function failed to account for the 

reduction in NEE at high VPD in the afternoon. Lasslop et al. (2010) calculated GPmax as the 



10 
 

exponential decreasing function at high VPD to include the effect of VPD on photosynthesis 

as shown below: 

GPmax = GP0 exp [-k (VPD-VPD0)], if VPD > VPD0  (8) 

GPmax = GP0, if VPD < VPD0                 (9) 

where k indicates the response of GPmax to VPD. Lasslop et al. (2010) set VPD0 threshold as 

1 kPa.  

 

Daytime and nighttime ER  

 

Ecosystem respiration is the CO2 efflux from ecosystem to the atmosphere due to autotrophic 

(vegetation respiration) and heterotrophic (soil respiration) activities. Respiration is the 

second most important flux in the global carbon cycle after photosynthesis (Davidson et al., 

2006). Soil respiration includes release of CO2 from roots, soil microorganisms, and 

oxidation of carbon compounds (Lloyd and Taylor, 1994). During nighttime, NEE is 

equivalent to ER because photosynthesis does not occur at night. But during daytime, we do 

have both photosynthesis and respiration. Researchers have used different approaches to 

calculate ER: for example, the use of same ER during night and daytime (Lalrammawia and 

Paliwal, 2010), extrapolation of functional relationships between nighttime NEE and 

temperature to daytime conditions to estimate daytime ER (Xu et al., 2001). However, Villar 

et al. (1994) noted a reduction in dark respiration of leaves of two woody species 

(Heteromeles arbutifolia Ait. and Lepechinia fragans Greene) by 55% in light relative to 

darkness due to light inhibition of dark respiration. Similarly, Falge et al. (1996) modeled 

daytime respiration as half the rate of night time respiration at any temperature to account for 
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the light inhibition of respiration. The relationship between NEE and PPFD is linear at low 

levels of light intensities, but the linear relationship breaks and slope changes abruptly as a 

result of reduction in CO2 assimilation and higher respiration rates due to a lack of light 

induced inhibition of dark respiration. Thus, extrapolation of the linear relation of light curve 

to zero PPFD before the change in slope provides correct estimates of respiration for daytime 

(Villar et al., 1994;Bruhn et al., 2011). However, majority of the studies have used the 

intercept value of a hyperbolic light-response curve fit to determine ER using all daytime 

data.  

 

Energy balance closure  

 

The plausibility of EC measurements is assessed from energy balance closure (EBC) test. 

The EBC is determined by comparing turbulent heat fluxes (H + LE) with the available 

energy fluxes (Rn – G) as given below: 

Rn – G = H + LE  (10) 

where Rn is net radiation, G is soil heat flux, H is sensible heat flux, and LE is latent heat 

flux. 

The EC system under-estimates H and LE fluxes, and the sum of turbulent fluxes (H 

+ LE) measured is always less than the available energy (Rn - G) (Twine et al., 2000). The 

available energy (Rn - G) is found to be larger than the sum of turbulent fluxes (H + LE) in 

all kinds of ecosystems across the world. Currently the EBC for many field-experiments and 

for the CO2 flux networks is about 80% (Aubinet et al., 1999;Wilson et al., 2002). Now it 



12 
 

became obvious that experimental data could not close the energy balance at the Earth’s 

surface. However, the cause of underestimation is not well understood.  

Initially the EC system was assumed to underestimate turbulent fluxes systematically. 

Improvements in the sensors and the flux correction methods helped to improve EBC over 

the past decade (Foken et al., 2005). Errors in available energy measurements or from 

neglecting heat storage in biomass could be another possible reason for the lack of EBC 

(Cook et al., 2004;Desai et al., 2005). Various locations of the footprints for the 

measurements of Rn and G, which are close to the EC tower, and H and LE, which are larger 

and upwind of the tower, may induce some discrepancy in EBC (Flanagan et al., 2002). 

However, even a careful application of all corrections of the turbulent fluxes reduced the 

residual only slightly (Mauder and Foken, 2006). Recently it is reported that the time-

averaged fluxes (Finnigan et al., 2003) or spatially averaged fluxes including turbulent-

organized structures (Kanda et al., 2004) can close the energy balance. These findings 

indicate that the unclosed EBC problem is not related to errors involve in the EC system. 

Instead, it is related to the atmospheric phenomena which EC systems fail to measure. These 

evidences suggest that it is not simple to correct this problem.  

Based on previous investigations, it can be concluded that the correction of the lack 

of EBC in the surface layer cannot be a part of the EC method or its correction procedures. 

Missing flux is not a missing flux at the measuring point. Instead, it is related to the 

heterogeneous terrain and its influence on the turbulent exchange. At a first guess, the energy 

exchange between the atmosphere and the underlying surface on larger scales (> 1 km) can 

be corrected with Bowen ratio under the assumption that the scalar similarity is fulfilled 

(Foken, 2008).  
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Friction velocity threshold 

 

There is a consensus that the EC system underestimates NEE under stable nighttime 

conditions due to drainage loss of respired CO2 to low-lying areas because mixing is weak 

during weak turbulence conditions. These measurements should be replaced by empirically 

established values from respiration and temperature relationship during turbulent periods. 

Several authors have used different methods to determine the friction velocity (u*) threshold. 

Many researchers have visually examined the scatter plot of night time fluxes versus u* 

(Flanagan et al., 2002). But this method is subjective and can introduce lots of discrepancies. 

Use of a single threshold all the time will also introduce biases since u* shows diurnal and 

seasonal cycles, and meteorological and plant phenological characteristics influence u* 

threshold (Gu et al., 2005). Potential correlative in-phase relationship at the diurnal scale and 

out-of-phase relationship of seasonal time scale between ER and u* must be removed before 

determining u* threshold to make nighttime NEE independent of turbulent regimes (Gu et 

al., 2005). The critical μ* that produces correct nocturnal CO2 fluxes is not constant and it is 

site and vegetation specifics (Veenendaal et al., 2004). Threshold u* at different sites ranges 

from 0 to 0.6 m s
-1

 (Massman and Lee, 2002). Lalrammawia and Paliwal (2010) observed an 

underestimation of CO2 flux of Cenchrus ciliaris L. grassland ecosystem at μ* < 0.05 m s
-1

. 

Flanagan et al. (2002) noticed an underestimation of CO2 fluxes of northern temperate 

grassland at μ* < 0.25 m s
-1

. Hutyra et al. (2008) rejected data at μ* < 0.22 m s
-1

 in a tropical 

forest biome.  

Desai et al. (2005) compared normalized nighttime NEE to u* to determine u* cutoff. 

They considered u* cutoff where the deviations from normalized NEE (averaged over 0.05 m 
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s
-1

 friction velocity bins) remained consistently below zero. Deviations from mean 

normalized NEE was calculated by subtracting mean monthly nighttime NEE from observed 

NEE and then dividing the residual by the standard deviation of nighttime NEE for the 

month.  

Nighttime fluxes increase with u* at both high and low ends of u* but independent at 

intermediate ranges of u* so that this range should be determined for filtering process. Fluxes 

were underestimated at lower u* threshold and were subject to potential pressure pumping 

effects at higher u* threshold (Gu et al., 2005). Gu et al. (2005) suggested reproducible and 

site independent statistical approach called moving point test (MPT) to process large datasets 

of wide ranges of observed night time flux versus u* relationships.  

 

Flux corrections 

 

Lack of EBC (Twine et al., 2000) and underestimate of night time CO2 fluxes (Aubinet et al., 

1999) are two systematic biases in EC measurements. Eddy covariance underestimated the 

CO2 flux by the same factor as it underestimated the turbulent fluxes when EBC was not 

achieved (underestimation ranged from 10-30%) (Twine et al., 2000). Some authors have 

added EBC adjustment factors to the measured NEE values to account for underestimation 

(Twine et al., 2000; Barr et al., 2002). Barr et al. (2002) corrected CO2 flux for 

underestimation by EC by applying 12.5% EBC adjustment to high wind speed fluxes (μ* ≥ 

μ*
TH

, where μ*
TH 

is the threshold below which measured night time fluxes are rejected) at 

night and replacing low wind speed fluxes (μ* ≤ μ*
TH

) with values estimated from empirical 

relationship between the closure-adjusted high wind speed fluxes and soil temperature at 5 
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cm. Some studies did not apply EBC adjustment factors to correct CO2 fluxes (Cook et al., 

2004; Desai et al., 2005) since these energy imbalances could be from errors in available 

energy measurements or from neglecting heat storage in biomass.  

 

Data screening 

 

Requirement of turbulent atmospheric conditions is a major limitation of the EC technique 

otherwise flux is underestimated because of inability of flux sensors to record them. Thus, 

data screening for weak turbulence based on μ* at night is the most common among eddy 

flux communities. Another screening criterion is removal of sample from non-representative 

footprints, for example data for the period when wind is blowing right behind the tower.  

Turbulent fluxes were filtered to keep in the range of -200 to 800 Wm
-2 

(Wolf et al., 2011). 

Abnormal values were removed (Flanagan et al., 2002). Sun et al. (2010) removed distinct 

outliers and kept LE fluxes in a range of -200 to 800 W m
-2

 and H fluxes in a range of -200 to 

500 W m
-2

. Physically unreasonable CO2 fluxes beyond -50 to 50 µmol m
-2

s
-1

 were removed 

(Kochendorfer et al., 2011;Zeeman et al., 2010). Flux values for u’w’ < 0 m s
-1

 were 

removed (Zeeman et al., 2010). Statistical outliers beyond ±3 STD range from a 14 day 

running mean window were excluded (Wolf et al., 2011).  

 

Gap filling 

 

It is impossible to obtain continuous NEE measurements. Missing data occurs due to system 

failures and data rejection when wind is blowing through undesirable wind direction or 



16 
 

through a tower or when sensors are wet or if the measurements fail to meet acceptance 

criteria (Baldocchi, 2003). The average data coverage during a year was 65% across 19 sites 

(Falge et al., 2001) and 65-75% (Law et al., 2002). Thus, gap filling is required to get a 

cumulative sum over a period.  

Several gap-filling methods have been proposed in scientific literature such as mean 

diurnal variation method (MDV- an interpolation technique based on the temporal auto-

correlation of the fluxes), look-up tables (missing values are gap filled with the average of 

valid measurements under similar meteorological conditions), artificial neural networks 

(ANNs, an empirical nonlinear regression models), and nonlinear regression relationships 

between the flux and environmental drivers. A majority of the studies have employed 

empirical models based on dominant physiological processes for daytime and nighttime to 

fill data gaps. Respiration is greatly influenced by temperature. Exponential relationship 

between nighttime NEE and soil temperature can be created to fill gaps during nighttime and 

in the winter when ER is the only flux. During daytime in the growing season, 

photosynthesis is mainly driven by light so that hyperbolic relation between GEP and PPFD 

is commonly used to fill daytime gaps during the growing season (Flanagan et al., 2002).  

Linear interpolation between the values adjacent to the missing values is especially 

used to fill small gaps (2-3 half hourly missing values) for meteorological variables (sunlight, 

temperature and relative humidity) (Falge et al., 2001). Half-hourly gaps were filled with an 

average value of immediate before and after the gap (Wever et al., 2002). Two hour or fewer 

gaps were filled using interpolated values (Flanagan et al., 2002). Linear interpolation can be 

used if there is a linear relationship between CO2 flux and other some variables. In many 

cases, a linear relationship between PPFD and H2O flux can be used. Gaps in H2O flux data 
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were filled using diurnal values derived for each time stamp of the day based on 14 day 

means (Kochendorfer et al., 2011). Established monthly ET – ET0 regression models were 

used to fill gaps in a 30-min ET data set, and regression relationships between ET and Rn by 

month were used in case of unavailability of ET0 (Sun et al., 2010). They employed a linear 

interpolation method during lack of all meteorological variables.  

In the absence of empirical relationships due to missing meteorological data, mean 

diurnal variations (replacement of missing observations by the mean for that period on 

adjacent days) were used to estimate missing data (Falge et al., 2001;Flanagan et al., 2002). 

The size of data set used to develop these relationships depends on size of data gap. To fill 

gaps of 5 days or less, data for 3 days before and after the gap can be used. In case of a 

month data gap, 4 weeks of data before and after can be used. Law et al. (2002) used look-up 

table method to fill data gaps. For the look-up table method, tables are created for each site 

so that missing values can be “looked-up” based on the environmental conditions associated 

with the missing data. Falge et al. (2001) reported that several gap filling methods produced 

similar results and none of them introduced methodological bias.  

 

Estimates of ET and EWUE 

 

Total ET for 30-min period (mm 30-min
-1

) is calculated from EC measured H2O fluxes 

(mmol m
-2

 s
-1

) as follows: 

ET = (H2O flux*18.01528*1800)/10
6  

Several methods of EWUE calculations are reported in literature. Emmerich (2007) 

determined EWUE from the ratio of daily daytime NEE of CO2 to daily daytime ET (g CO2 
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per mm H2O) summed for the growing season. The EWUE was computed from the ratio of 

seasonal sums of daily daytime NEE or GEP to daily daytime ET (Tubiello et al., 1999). The 

EWUE was determined from the slope of daytime NEP vs ET and GEP vs ET using half 

hourly measurements of a single day (Kuglitsch et al., 2008). Kuglitsch et al. (2008) noticed 

that GEP and ET were tightly correlated than NEP and ET since respiration is not strongly 

coupled to ET and NEP relies on respiration. Day times with maximum CO2 uptake with 

minimum ET were selected to maximize regression equations and EWUE were compared 

between plant communities using slopes for the maximum EWUE (Emmerich, 2007). 

Baldocchi et al. (2001) proposed an instantaneous method of EWUE estimation from the 

slope of regression of daily day time NEE or GEP vs. ET on seasonal scale. Daily or monthly 

EWUE can be computed from the ratios of daily or monthly integrals of GEP or NEE to ET.  

 

Objectives 

 

The objectives of these studies were to 1) quantify seasonal variations in ET, EWUE, and 

seasonal distributions of energy partitioning in switchgrass in response to controlling factors, 

2) determine the seasonality of NEE in switchgrass with respect to controlling factors, 3) 

characterize the effects of key environmental factors on daytime NEE in switchgrass and to 

explore the underlying mechanisms, 4) quantify and contrast the magnitude of CO2 flux 

exchange between switchgrass and sorghum ecosystems under the same growing condition, 

and 5) compare differences in water use between switchgrass and high biomass sorghum. 
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ABSTRACT. Evapotranspiration (ET), ecosystem water use efficiency (EWUE), and 

energy partitioning in switchgrass (Panicum virgatum L.) ecosystems are crucial to 

understand its water and energy balances since switchgrass acreage is expanding for 

cellulosic biofuels. We measured CO2, H2O, and energy fluxes over a switchgrass field in 

Chickasha, OK, USA, using eddy covariance method. The objective of this study was to 

quantify seasonal variations in ET, EWUE, and seasonal distributions of energy 

partitioning in response to controlling factors. Seasonal (May to mid-November) 

cumulative ET (450 mm) was similar to cumulative rainfall (432 mm). During June to 

September, ET was 1.92 times of rainfall indicating that the crop experienced severe 

drought during the mid-growing season. Evapotranspiration showed a clear seasonality 
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with 3 – 4 mm day
-1 

during the active growing season (late May and June) to low rates of 

about 0.5 mm day
-1

 during the late growing season (November). The ET rate decreased 

during dry periods. On seasonal scale, more energy was partitioned to sensible heat flux 

(H) than latent heat (LE) due to drought. Estimation of EWUE by dividing time integrals 

of gross ecosystem production (GEP) by respective H2O fluxes (ET) at monthly time 

scale provided EWUE from 10.46 (August) to 14.08 (October) g CO2 mm
-1

 ET with a 

seasonal average of 12.01 g CO2 mm
-1

 ET. Seasonal patterns in EWUE were observed 

with smaller values during drought due to more rapid reduction in carbon assimilation 

(GEP) than ET. These findings confirm the major role of precipitation in determining 

water and energy balances in switchgrass.  

 

Key words: Ecosystem water use efficiency, Eddy covariance, Energy partition, Latent 

heat flux, Switchgrass.  

 

Introduction 

 

Increasing impact of greenhouse gas emissions on climate, increasing oil prices, and 

growing concern on energy security are raising an interest in renewable bioenergy 

production. In the United States, as corn (Zea mays L.) is reaching the mandated blending 

wall limit of 15 million gallons (56 megaliters) per year, extensive efforts are on to 

efficiently and sustainably produce liquid transportation fuels from lignocellulosic 

feedstocks. The lignocellulosic feedstocks vary from woodchips to dedicated energy 

crops such as switchgrass (NBAP; http://www1.eere.energy.gov/biomass/ pdfs/nbap.pdf; 
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verified June 10, 2012). Switchgrass, a native C4 perennial warm-season grass, has been 

considered as one of the most suitable cellulosic feedstock crops (McLaughlin and 

Adams Kszos, 2005). Large-scale expansion of switchgrass production in near future 

may considerably influence regional hydrologic and energy balances (Le et al., 2011). 

The hydrologic balance of terrestrial ecosystems is gaining interest in recent years 

(Aubinet et al., 1999) because drought affected geographic areas and drought intensity 

has increased globally in the last five decades (Dai et al., 2004) and drought is expected 

to influence the terrestrial hydrologic cycle in the near future.  

In the hydrological balance, ET (evapotranspiration or latent heat flux) is the 

second largest term after precipitation in most cases, consuming about 50 – 90% of 

precipitation (Ford et al., 2007). Moreover, ET (latent heat flux) is a major component of 

energy balances in an ecosystem (Burba and Verma, 2005). Evapotranspiration from 

dedicated energy crops has become a topic of interest due to expanding production of 

biofuels. Several aspects of weather and climate are greatly influenced by partitioning of 

energy (net radiation, Rn) into ET and H fluxes (Pielke et al., 1998). An in-depth study of 

ET and energy partitioning in an ecosystem is of great importance because energy, water, 

and carbon cycles are tightly linked via ET processes (Wilson and Baldocchi, 2000). 

Furthermore, ET directly links hydrologic and biological processes in an ecosystem 

(McNulty et al., 1994).  

Field measurement of EWUE (net carbon uptake by the ecosystem per amount of 

water loss as ET from the ecosystem) has recently been recognized as an important 

characteristic of vegetation productivity (Kuglitsch et al., 2008). Scaling up of leaf level 

measurements to the ecosystem level induces additional complications which affect 
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EWUE measurements (Ponton et al., 2006). Direct and continuous measurements of CO2 

and H2O exchanges by eddy covariance (EC) system provide the opportunity to 

determine EWUE (Law et al., 2002). However, EWUE estimations are available for only 

few ecosystems and are yet to be determined in switchgrass. Even though net ecosystem 

exchanges of CO2 and H2O are studied globally in a number of ecosystems using EC 

system, there is a dearth of EC studies in switchgrass, especially in the southern great 

plains of the United States. This study took advantage of recent technological 

advancements and used EC system for continuous half-hourly measurements of CO2, 

H2O, and energy fluxes in a switchgrass ecosystem to address those knowledge gaps. A 

study from a northeastern USA switchgrass field reported carbon dioxide and water 

fluxes (Skinner and Adler, 2010). However, the study lacked detailed analysis of EWUE, 

ET, and energy partitioning which is crucial to understand the links between ET and 

other switchgrass ecosystem processes. The major objectives of this study were to 

quantify ET, EWUE, and seasonal distribution of energy partitioning in switchgrass, and 

to determine the role of environmental controls over them. These findings will also be 

helpful to understand the effect of future climate change on water cycle and energy 

partitioning in a switchgrass ecosystem.  

 

Materials and Methods 

Site description 

 

Eddy covariance measurements were collected from a well-established switchgrass (cv. 

Alamo) field at South Central Research Station, Chickasha, OK (35.04
°
 N latitude, 97.95

° 
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W longitude, and 330 m above sea level altitude) during the 2011 growing season. Eddy 

covariance system had been set up at the North end of a flat eight hectare field facing 

towards the South as prevalent wind direction at the site was South to North. The field 

has 275 m fetch in the direction of prevailing winds and fetch in the East-West direction 

is 275 m. The surrounding field to the west was sorghum and the fields to the south and 

east were wheat fallows. The site was established in spring 2010 which was in energy 

sorghum for the previous two years. The crop was sown under no till condition at 38 cm 

row spacing in McLain silt loam soil (fine, mixed, superactive, thermic Pachic 

Argiustolls) and the experiment was rainfed. No fertilizer was applied in the 

establishment year and ammonium nitrate was broadcast applied in April 2011, the 

second year, at 75 Kg ha
-1

.   

 

Description of weather data 

 

Mean monthly maximum and minimum temperatures, and monthly total rainfall in 2011 

in comparison with a 30-year mean for the study site are presented in Table 1. Total 

annual precipitation in 2011 for the site was 525 mm while 30-year average was 896 mm. 

Table 1 shows that the growing season in 2011 was relatively warmer and drier than 30-

year average. Rainfall was not well distributed during the growing season. No rainfall 

was received in April. The site received very low amounts of rainfall (48% less than that 

of 30-year mean) during June to September in 2011. In July 2011 (the hottest month with 

mean monthly maximum temperature = 40.36 
0
C), only 9% of 30-year average rainfall 
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was recorded. The daily weather data for the study location was downloaded from the 

Oklahoma Mesonet website (www.mesonet.org; verified February 10, 2012).   

 

Eddy covariance and other supplementary measurements  

 

Fluxes were measured using EC system: CSAT3 sonic anemometer (Campbell Scientific 

Inc., Logan, UT, USA) and LI-7500 open-path infrared gas analyzer (IRGA, LI-COR 

Inc., Lincoln, NE, USA) mounted on top of a 2.2 m tall tower from the ground. Data was 

collected at 10 Hz frequency (10 samples sec
-1

) and fluxes were calculated for a 30-min 

averaging period. Fluxes in this study were only the measured CO2 and H2O eddy fluxes. 

Storage fluxes were considered negligible because the tower height was only 2.2 m. 

Quantum sensor (LI-190, LI-COR Inc., Lincoln, NE, USA) was used to measure 

photosynthetic photon flux density (PPFD). Net radiation above crop canopy was 

measured using net radiometer (NR-Lite, Kipp and Zonen, Delft, The Netherlands). 

Temperature and relative humidity were measured using temperature and relative 

humidity probe (HMP45C, Vaisala, Helsinki, Finland). Soil heat flux (G) was measured 

using self-calibrating heat flux sensors (HFP01SC, Hukseflux Thermal Sensors B.V., 

Netherlands) at 5 cm depth. Near surface soil temperature and moisture were measured 

using water content reflectometers (CS616, Campbell Scientific Inc., Logan, UT, USA) 

and averaging soil temperature probes (TCAV-L, Campbell Scientific Inc., Logan, UT, 

USA). Soil heat storage term (ΔS), stored energy in the soil above heat flux plates, was 

calculated using temporal changes in soil temperature and soil water content as shown in 

equation below: 

http://www.mesonet.org/
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t

dCT
S ss
     (1) 

where Cs is the heat capacity of moist soil, ΔTs is the change in surface soil temperature 

(K), d is the depth of soil (m) above heat flux plates, and t is time (sec). The heat capacity 

of the moist soil (Cs) was calculated as below 

wwvdbs CCC      (2) 

where b  is soil bulk density (1300 kg m
-3

), Cd is heat capacity of dry soil (840 J kg
-1

 K
-

1
), θv is volumetric soil water content (m

3 
m

-3
), w  is density of water (1000 kg m

-3
), and 

Cw is heat capacity of water (4180 J kg
-1

 K
-1

). Measured G and ΔS were added to obtain G 

at the surface. Data was collected at 10 Hz frequency and 30-min average values were 

calculated on-line using a datalogger (CR3000, Campbell Scientific Inc., Logan, UT, 

USA). The working condition of the flux tower and components, and data quality were 

continuously monitored through a dedicated online data display 

(http://energycrops.okstate.edu/eddy-flux-data).  

 

Biometric measurements  

 

Leaf area index (LAI), canopy height, and dry biomass (3 - 5 samples from 1 m
2 

area) 

were measured at two week intervals beginning on 9 May (DOY 129) to October for the 

better interpretation of flux measurements. Leaf area index was measured using a plant 

canopy analyzer (LAI-2000, LI-COR Inc., Lincoln, NE, USA).  

 

Data screening and gap filling 

http://energycrops.okstate.edu/eddy-flux-data
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It is widely acknowledged that EC system underestimates flux during low turbulent 

conditions. Hence, we avoided all CO2 and H2O flux data during low turbulence periods, 

below a friction velocity (u*) threshold of 0.20 m s
-1

. Samples from non-representative 

footprints, for example data for the period when wind was blowing behind the tower, 

were excluded. Turbulent fluxes were filtered to keep in the range of -200 to 500 W m
-2

 

for H and -200 to 800 W m
-2

 for LE (Sun et al., 2010). Unreliable CO2 fluxes beyond -50 

to 50 µmol m
-2

s
-1

 were removed (Zeeman et al., 2010; Kochendorfer et al., 2011; Wolf et 

al., 2011). Statistical outliers beyond ±3.5 STD range from a 14 day running mean 

window were excluded for CO2 and H2O fluxes. 

Half-hourly gaps in fluxes were filled with an average value immediately before 

and after the gap (Wever et al., 2002). Two hour or shorter gaps were filled using linear 

interpolated values (Flanagan et al., 2002). Linear or multiple linear regressions and 

exponential relationships between nighttime net ecosystem CO2 exchange (NEE) values 

and soil temperature, air temperature, and soil moisture were evaluated for a week to 

account for seasonal variability in parameters, and finally the relationships with the 

highest level of significance were used to fill larger gaps in nighttime CO2 flux. Daytime 

NEE (PPFD > 1 µmol m
-2

s
-1

) was partitioned into its two main components, GEP (gross 

ecosystem production) and ER (ecosystem respiration), and was modeled using 

commonly used rectangular hyperbolic light-response curve (Falge et al., 2001). Daytime 

ER was determined from the intercept of the ordinate while fitting the light-response 

curve. Larger gaps in H2O flux were filled using linear relationship between PPFD and 

H2O flux for a week. The linear relationship described the variability in H2O fluxes very 

well for most of the time periods (R
2
 > 0.80). Examples of selected models and 
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comparison of measured and modeled diurnal trends of H2O fluxes are provided in Fig. 1. 

Mean diurnal variations were used to fill gaps if there were no significant relationships 

between PPFD and H2O fluxes (Falge et al., 2001). These estimates were used to fill gaps 

and replace H2O fluxes during low turbulent periods (u* < 0.20 m s
-1

). Only measured 

half hourly values (not gap-filled) were used for the optimization of the model 

parameters.  

 

Energy balance closure  

 

The plausibility of EC measurements was assessed from energy balance closure (EBC) 

test. The EBC was determined on seasonal scale comparing turbulent heat fluxes (H + 

LE) with the available energy fluxes (Rn – G) for May to November. Canopy storage 

energy and the energy used in photosynthesis were not accounted in EBC calculation. 

Energy balance closure was calculated only if all four terms of EBC were available. 

 

Estimates of evapotranspiration and ecosystem water use efficiency 

 

Total ET for 30-min period (mm 30-min
-1

) was calculated from EC measured H2O fluxes 

(mmol m
-2

 s
-1

) as follows: 

ET = (H2O flux x18.01528 x 1800)/10
6  

 (3) 

We calculated EWUE during the daytime when there was carbon uptake into the 

ecosystem to relate EWUE to carbon sequestration (Tubiello et al., 1999). Nighttime 

measurements were not used in calculations because there were no carbon uptake by the 
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ecosystem during the nighttime (Ohmura, 1982). We quantified EWUE using following 

five methods:  

A) Ratio of seasonal sums (DOY 121 - 304) of daily daytime NEE or GEP to daily 

daytime ET (Tubiello et al., 1999). 

B) Ratio of monthly totals of daily daytime NEE or GEP to daily daytime ET. 

C) Estimation of EWUE from the slope of monthly amounts of GEP or NEE and ET. 

D) Instantaneous method of EWUE estimation from the slope of regression of daily 

day time NEE or GEP vs. ET on seasonal scale (Baldocchi et al., 2001). 

E) Estimation of daily EWUE from the ratios of daily integrals of GEP or NEE to ET  

 

Results and Discussion 

Energy balance closure 

 

The sum of half hourly values of turbulent fluxes (H + LE) was strongly correlated with 

available energy (Rn – G) (R
2
 = 0.93, P < 0.0001). Fitting the data points of the scatter 

plot in Fig. 2 yielded the slope of 0.77 for a linear regression which corresponds to EBC 

which is 23% less than the theoretical value (slope = 1). Such kind of underestimation of 

the EBC is very common for EC studies in all measured vegetation types (Aubinet et al., 

1999; Wilson et al., 2002). However, the cause of underestimation is not well understood. 

Twine et al. (2000) reviewed the observation results over grasslands and reported an 

average EBC of 70 – 80%. The mean EBC based on comprehensive evaluation of 22 sites 

and 50 site-years of data at FLUXNET sites was 80% (Wilson et al., 2002). In 
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comparison with these findings, our EBC value indicated the typical outcome for our 

data. It is reliable to examine energy partitioning among all energy fluxes.   

 

Leaf area index, above ground biomass, and canopy height 

 

Maximum LAI was only 3.8 m
2
 m

-2
 (mid-August) and the highest dry biomass was just 

6.52 t ha
-1 

(early September) due to severe drought. A strong relationship between LAI 

and dry plant biomass (t ha
-1

) was achieved (Biomass = 1.493 * LAI – 1.0, R
2
 = 0.86, P = 

0.0008). Both started to decline in late October due to the crop senescence. The crop 

reached a maximum height of 1.2 m in mid-September.  

 

Rainfall and evapotranspiration patterns 

 

Cumulative ET for the growing season (May to mid-November) in this study was 450 

mm while cumulative rainfall for the period was 432 mm. Similarly, Skinner and Adler 

(2010) reported that cumulative average annual ET from a switchgrass field in the 

northeastern USA was 474 mm with seasonal ET (May to September) ranging from 331 

to 358 mm. Monthly sums of rainfall and ET in Table 2 show that rainfall was higher 

than ET in May and October, but during the mid-season of active growing periods from 

June to September ET loss exceeded rainfall for each month. Cumulative water loss from 

ecosystem to the atmosphere via ET during June to September was 1.92 times higher than 

rainfall (cumulative ET was 321 mm and rainfall was 167 mm). Seasonal cumulative ET 

and rainfall patterns are shown in Fig. 3a. The figure shows that cumulative ET was 
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consistently higher than the cumulative rainfall from DOY 166 (June 15) to DOY 330 

(November 26). This result pointed out that the crop experienced severe drought during 

the mid-growing season. However, it depends on how much water the soil was able to 

supply. The initial profile water content and seepage were not measured and must have 

contributed to the total ET. Stored soil water during the non-growing season influenced 

ET and the yield during the growing season (Sun et al., 2011).  

 

Seasonal and diurnal variations in evapotranspiration  

 

Evapotranspiration showed clear seasonal pattern (Fig. 3b). The ET rate was 3 – 4 mm 

day
-1 

in late May and June, and it dropped to about 2 mm day
-1 

or less in July due to 

severe drought, and again slightly increased in August after some rainfall events. Lower 

ET rates of about 0.5 mm day
-1

 were observed during late growing season in November. 

Similar ET rates (3 - 3.75 mm day
-1 

during active growing periods and 0.5 mm day
-1

 in 

winter) from a switchgrass field in the northeastern USA were observed by Skinner and 

Adler (2010). We observed some spikes of ET (> 5–6 mm day
-1

) after big rainfall events 

during active growing season, but not after the crop senescence (November). The result 

signified that plant transpiration was the dominant component of measured ET over soil 

and plant evaporations. During the growing season, the daily ET in switchgrass in our 

study ranged from 0.5 - 4.8 mm while excluding ET spikes for rainfall recorded days and 

the day after a rainfall event of 5 mm or greater. Comparison of our results and the results 

from Skinner and Adler (2010) in switchgrass with reported values of ET for other crops 

available in the literature indicated the lower water consumption characteristic of 
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switchgrass. The daily ET was 3.5 – 5 mm in native tall grass prairie and 2.5 – 7 mm in 

wheat (Triticum aestivum L.) in north-central Oklahoma (Burba and Verma, 2005). The 

daily ET ranged from 1 - 7.8 mm in wheat and 1 - 5.1 mm in maize in the North China 

Plain, which in near similar latitudes of North America (Lei and Yang, 2010). It is 

important to mention here that severe drought during the growing season resulted in 

complete failure of forage sorghum [Sorghum bicolor (L.) Moench] in an adjacent plot 

but switchgrass still provided good biomass (> 6 t ha
-1

). This finding illustrates the 

possibility of switchgrass production under environments that experience regular drought. 

Great variation was observed for the maximum rates of ET among months during 

the growing season. Typical diurnal trends of ET (mm 30-min
-1

) for active growing 

periods (May to October) are provided in Fig. 4. Daytime ET was high, starting at around 

8 AM and reached a maximum at around 2 – 3 PM. The average peak daytime ET rates 

were 0.16, 0.18, 0.11, 0.15, 0.10, and 0.06 mm 30-min
-1

 in May, June, July, August, 

September, and October, respectively. The highest ET rates were observed in June due to 

active crop growth and the lowest in October due to crop senescence and lower solar 

radiation. The ET rate decreased in July due to drought, and it increased again in August 

due to increased availability of water. Our result supported the finding of Burba and 

Verma (2005) that distribution of precipitation played a major role in determining ET. 

However, it was evident only during the active growing season, but not after crop 

senescence indicating that the crop phenology strongly influences the precipitation - ET 

relationship. 

 

 



42 
 

Variability in energy partitioning 

 

Typical diurnal trends of energy fluxes and vapor pressure deficit (VPD) during active 

growing periods (May to October) are presented in Fig. 5. The figure shows great 

variations in VPD and energy partitioning among months during the growing season. 

Higher values of VPD (peak ranged from 5.2 to 6.2 kPa) were observed from June to 

August. Diurnal trends of VPD show that the minimum VPD was at around 7 AM and it 

reached a maximum at around 5 PM. The peak values of energy fluxes were observed at 

around 2 PM. Mean monthly peak values of Rn during the growing season ranged from 

524 – 590 W m
-2

. Mean monthly maximum values of H were from 176 W m
-2

 (August) 

to 246 W m
-2 

(July). Mean monthly peak values of LE ranged from 83 W m
-2

 (October) 

to 240 W m
-2 

(June). Monthly maximum values of G ranged from 27 W m
-2 

in October to 

122 W m
-2 

in May.  The maximum values of G showed declining trends over the growing 

season due to more coverage of land by the plant canopies. Due to this reason, a strong 

negative relationship between monthly peak values of G and LAI was observed (G = -

30.94 x LAI + 172.11, R
2
 = 0.73, P = 0.03). However, variability in LAI failed to 

describe variations in monthly peak values of H and LE due to drought effect.  

Figure 5 shows that LE was the dominant turbulent flux in May, June, and August, but H 

dominated in July, September, and October. Table 2 also shows the seasonal variation in 

energy partitioning. The monthly mean values of H, LE, G, and Rn during the growing 

season ranged from 54 to 100, 49 to 112, -5 to 32, and 195 to 262 W m
-2

, respectively 

(Table 2). Even though Table 2 provides monthly mean values of energy components and 

Fig. 5 provides half-hourly binned diurnal courses of energy fluxes for months, both 
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yielded similar results regarding energy partitioning. Interestingly, more energy was 

partitioned towards H during dry periods even during the mid-growing season (July, the 

hottest and the driest month). Similarly, H was greater than LE even in wet periods 

during the late growing season due to crop senescence. The results suggested that energy 

partitioning is sensitive to both biological and climatic factors. Sun et al. (2010) found 

smaller H than LE during the growing season, but H was greater than LE during dormant 

period in a pine (Pinus taeda) forest. On an annual basis, more energy (59%) was 

partitioned into LE in an irrigated cropland in China (Lei and Yang, 2010). Greater H 

than LE during the mid-growing season (July) in our study illustrated the effect of 

drought on partitioning of Rn and suggested that H can dominate over LE even during the 

growing season under water limited environment. Veenendaal et al. (2004) reported 

similar results that almost all available energy was consumed by H in water limited 

African woodland. The fraction of Rn used in ET (LE) was significantly reduced in 

drought year (59% during a year with no moisture stress vs. 49% during severe moisture 

stress) in native tallgrass prairie (Burba and Verma, 2005). It indicated that precipitation 

variation is a major control factor for partitioning of Rn into turbulent fluxes (H and LE).  

We observed the following scenarios of energy partitioning over switchgrass field on 

seasonal scale: 

H = 0.3919 x Rn – 16.12 (R
2
 = 0.80, P < 0.0001) 

LE = 0.2777 x Rn + 39.37 (R
2
 = 0.62, P < 0.0001) 

G = 0.1444 x Rn – 6.0998 (R
2
 = 0.66, P < 0.0001) 

H, LE, and G were significantly correlated with Rn (P < 0.0001). These regression 

models indicated that 39.19, 27.77, and 14.44 % of Rn were converted to H, LE, and G, 
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respectively. The result showed that H was the dominant turbulent flux on seasonal scale 

under a drought stressed switchgrass ecosystem and G contributed less in energy 

partitioning.    

 

Different calculations of ecosystem water use efficiency and seasonal variations 

 

We observed similar relationships between GEP and ET (R
2 

= 0.63, P < 0.0001), and 

NEE and ET (R
2
 = 0.61, P < 0.0001) at the seasonal time scale. However, monthly 

amounts of GEP (g CO2) and ET (mm) showed higher correspondence (GEP = 9.89 x ET 

– 2.1737, R
2
 = 0.86, P = 0.007) than monthly amounts of net ecosystem productivity 

(NEP =-NEE) and ET (NEP = 5.4 x ET – 206.89, R
2
 = 0.53, P = 0.10). This result 

indicated that variability in GEP and ET were more strongly linked than NEP and ET 

because NEP is the balance between GEP and ER, and ER is not tightly coupled with ET. 

Similar results were reported by Kuglitsch et al. (2008). Due to this reason, EWUE 

calculation based on GEP and ET are only described hereafter. 

Estimation of EWUE by dividing time integrals of GEP by respective H2O fluxes 

(ET) provided similar results at seasonal and monthly time scales. Ratio of seasonal sums 

of daily daytime GEP to daily daytime ET estimated daytime growing season EWUE of 

11.74 g CO2 mm
-1

 ET. Ratio of monthly totals of daytime GEP to daytime ET provided 

EWUE from 10.46 (August) to 14.08 (October) g CO2 mm
-1

 ET with a seasonal average 

of 12.01 g CO2 mm
-1

 ET (Table 3). The highest EWUE was observed in October due to 

smaller ET. These results were similar to the WUE of 12 – 15 g CO2 mm
-1

 ET observed 

by Skinner and Adler (2010) in a switchgrass field in the northeastern USA and of about 
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12 g CO2 mm
-1

 ET reported by Eggemeyer et al. (2006) in the sandhill grassland of 

Nebraska. We observed smaller values of EWUE during drought periods due to more 

rapid reduction in GEP than ET, similar to results reported by Kuglitsch et al. (2008) and 

Dong et al. (2011). 

Regression of monthly amounts of GEP and ET provided EWUE (regression 

slope) of 9.89 g CO2 mm
-1

 ET (R
2
 = 0.86, P = 0.007). More instantaneous method of 

EWUE calculation from regression slope of daily day time GEP to ET on seasonal scale 

yielded EWUE of 7.55 g CO2 mm
-1

 ET (R
2 

= 0.63, P < 0.0001). Removal of rainfall 

recorded days and the day after a rainfall event of 5 mm or greater produced slightly 

larger values of EWUE 8.64 g CO2 mm
-1

 ET (R
2 

= 0.66, P < 0.0001). Exclusion of rainy 

periods from the calculation helped to minimize the contribution of evaporation (not 

linked to GEP) on ET and slightly improved the regression model. Kuglitsch et al. (2008) 

also reported very minor changes in EWUE when rainy periods were excluded from the 

analysis.   

Ratios of daily values of GEP to ET (daily EWUE) ranged from 3.96 to 26.95 g 

CO2 mm
-1

 ET. The great variations in EWUE indicated that it is not a constant property 

(Emmerich, 2007) and greatly influenced by variability in CO2 and ET fluxes in response 

to environmental and physiological factors. However, variability in LAI did not explain 

variations in EWUE, GEP, and ET. Under normal conditions, the highest values of GEP 

and ET are observed during the period of maximum LAI. Declining trends of GEP and 

ET were seen at higher values of LAI in our study most likely due to dry and warm 

growing periods (Table 3). Timing and amounts of precipitation pulses affect CO2 and 

water fluxes (Huxman et al., 2004), which greatly influences EWUE. Lower EWUE was 
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observed at high VPD under hot and dry conditions. Thus, relationships between half 

hourly values of daytime EWUE and VPD were investigated for July (the driest and 

hottest month). The regression analysis showed that EWUE was negatively related to 

VPD (EWUE = 24.39 – 2.45 x VPD, R
2
 = 0.42, P < 0.0001). Strong negative relationship 

between EWUE and VPD was also reported by Testi et al. (2008). Water use efficiency is 

inversely related to VPD primarily because as VPD increases, the gradient driving water 

vapor transport increases, but the CO2 gradient is largely unchanged. The VPD effect was 

higher on GEP than ET (Kuglitsch et al., 2008). This leads to reduction in EWUE during 

daytime (high VPD).  

A multiple regression analysis was performed using half hourly daytime values 

for May to October to examine the combined effects of environmental factors (VPD, soil 

moisture, and PPFD) on EWUE. The regression analysis showed negative relationship 

between EWUE and environmental factors (EWUE = 29.31 – 1.72 x VPD – 25.78 x soil 

moisture – 0.004 x PPFD, R
2
 = 0.39, P < 0.0001, N=4016). The decline in EWUE during 

daytime is also attributed to increase in solar radiation because of a shift between the 

earlier maximum GEP and the later maximum ET (Kuglitsch et al., 2008). The GEP 

reached maximum at or before noon while ET reached a peak at 2-3 PM in our study. The 

higher the solar radiation, the more is the energy available to ET. Linear relationship 

between PPFD and H2O fluxes was observed in this study. Due to these reasons, EWUE 

was the highest in the early morning and then decreased to a more stable level during 

daytime with increasing VPD and radiation, and again rose in the evening after VPD and 

radiation dropped (Fig. 6a). Soil water content is also an important determinant of ET. In 

particular, an insufficient supply of water reduces ET rates. The multiple regression 
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analysis showed that EWUE decreased with increasing soil moisture. Furthermore, we 

calculated mean EWUE for four soil moisture classes (0.11 – 0.20, 0.20 – 0.30, 0.30 – 

0.40, and > 0.40 m
3
 m

-3
) for the growing season to investigate the influence of soil 

moisture on EWUE. Mean EWUE rates were 14.3, 13.29, 12.12, and 11.4 g CO2 mm
-1

 

ET, respectively. This showed that increased soil moisture causes a decrease in EWUE 

most likely due to more increase in ET than GEP with increased rate of water supply.   

Large variability in diurnal patterns of EWUE for three selected periods (June 8 to 15, 

July 8 to 15, and October 8 to 15) during the growing season showed how the pattern 

varied seasonally (Fig. 6b). July had the lowest daytime EWUE due to more rapid 

reduction in carbon assimilation than water loss. The GEP was reduced by 35%, but ET 

decreased by 21% in July as compared to June. Stronger decline in GEP than ET is also 

reported by Kuglitsch et al. (2008). The EWUE of gross carbon uptake declined during 

drought (Reichstein et al., 2002). Daytime EWUE was higher in October when ET 

demand was lower due to beginning of crop senescence and smaller VPD (the peak VPD 

was 5.2 kPa in June, 6.22 kPa in July, and 3.27 kPa in October).  

Law et al. (2002) evaluated EWUE of croplands, grasslands, forests, and tundra 

across international network “FLUXNET” sites, and reported that the slope of 

relationship between monthly GEP and ET (EWUE) was 3.4 g CO2 kg
-1

 H2O for 

grasslands, 3.2 g CO2 kg
-1

 H2O for deciduous broadleaf forests, 2.4 g CO2 kg
-1

 H2O for 

evergreen conifers, 3.1 g CO2 kg
-1

 H2O for crops, and 1.5 g CO2 kg
-1

 H2O for tundra 

vegetation. In comparison, our result in switchgrass yielded the slope of 9.89 g CO2 kg
-1

 

H2O. The results demonstrate higher water use efficiency of switchgrass ecosystems and 

the great potential of switchgrass production in drought prone regions. 
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Conclusions 

 

Seasonal patterns of ET, EWUE, and energy partitioning in switchgrass were analyzed 

from EC measurements. Partitioning of more energy towards H rather than LE in 

drought-stressed ecosystem on the seasonal scale and the observed lower values of ET 

and EWUE during dry periods indicated that precipitation patterns play a major role in 

determining ET, EWUE, and energy partitioning in switchgrass. The EWUE declined 

during drought periods due to more rapid reduction in carbon assimilation (GEP) rather 

than water loss (ET). Our results demonstrated lower ET and higher EWUE of 

switchgrass when compared with ET and EWUE values of other ecosystems. The results 

illustrated the great potential of switchgrass production in drought prone regions. 

However, evaluation over a longer term is required to understand seasonal variability of 

switchgrass EWUE and ET.   
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Table 1. Monthly mean maximum and minimum temperatures, and monthly total rainfall 

in 2011 in comparison with 30-year mean for Chickasha, Oklahoma, USA. 

 

2011 30-year mean 

Month 

Max T 

(
o
C) 

Min T 

(
o
C) 

Rain 

(mm) 

Max T 

(
o
C) 

Min T 

(
o
C) 

Rain 

(mm) 

Jan 10.03 -7.49 1.0 10.06 -3.44 33.5 

Feb 12.70 -2.65 12.2 14.00 -0.78 45.2 

Mar 19.42 4.36 1.3 18.83 4.06 71.9 

Apr 25.82 9.01 0 24.06 9.06 91.9 

May 27.51 13.79 105 28.06 14.72 133.1 

Jun 37.43 21.73 56 32.39 19.50 104.6 

Jul 40.36 24.19 5 35.28 21.56 53.6 

Aug 39.78 24.11 74 34.56 20.61 69.3 

Sep 30.55 13.1 32 30.61 16.22 91.4 

Oct 24.25 9.01 104 24.89 9.83 98.6 

Nov 16.35 3.21 94.2 17.06 3.22 54.4 

Dec 10.22 -1.42 39.9 11.50 -1.72 48.5 
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Table 2. Monthly mean values of sensible heat flux (H), latent heat flux (LE), soil heat 

flux (G), and net radiation (Rn), and monthly sums of rainfall and evapotranspiration (ET) 

in a switchgrass field during the 2011 growing season.  

Month H (Wm
-2

) LE (Wm
-2

) G (Wm
-2

) Rn (Wm
-2

) 

Rainfall 

(mm) 

ET (mm) 

       

May 54 93 31 195 105 81 

June 59 112 23 203 56 100 

July 100 93 32 262 5 75 

Aug 62 106 20 219 74 86 

Sep 94 68 15 215 32 60 

Oct 70 49 -5 - 104 36 
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Table 3. Monthly sums of gross ecosystem production (GEP) and daytime 

evapotranspiration (ET), and leaf area index (LAI) in a switchgrass field during the 2011 

growing season. Monthly values of ecosystem water use efficiency (EWUE) were 

determined by dividing monthly sums of daytime GEP by respective daytime ET. 

Month LAI GEP (g CO2/m
2
) ET (mm) 

EWUE_GEP (g CO2 

mm
-1

 ET) 

May  1.65 900 70 12.86 

June 1.97 1007 88 11.44 

July 2.91 650 62 10.48 

August 3.78 711 68 10.46 

September 3.80 547 43 12.72 

October 3.70 366 26 14.08 
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Fig. 1. Linear relationship between photosynthetic photon flux density (PPFD) and H2O 

fluxes in a switchgrass field for selected time periods: June 20 to 29 (a) and October 1 to 

8, 2011 (b). The solid lines in Fig. 1a and 1b are the best fit lines for linear regressions. 

Total independent data points are represented by N. Comparison of measured and 

modeled mean diurnal trends of H2O fluxes from May 28 to June 3, 2011 (c). Bars in Fig. 

1c represent standard errors of the means.  

  

 
y = 0.002*PPFD + 0.47

Adj. R
2
 = 0.88

p < 0.0001

N = 268

PPFD (mmol m-2
 s

-1)

-500 0 500 1000 1500 2000 2500

H
2
O

 F
lu

x 
(m

m
o
l m

-2
 s-1

)

0

1

2

3

4

5

6

y = 0.0009*PPFD + 0.26

Adj. R
2
 = 0.81

p < 0.0001

N = 216

PPFD (mmol m-2
 s

-1)

-500 0 500 1000 1500 2000

H
2
O

 F
lu

x 
(m

m
o
l m

-2
 s-1

)

0.0

0.5

1.0

1.5

2.0

2.5

(c)

Time (Hours)

  0   4   8   12   16   20

H
2
O

 F
lu

x 
(m

m
o
l m

-2
 s-1

)

0

1

2

3

4

5

6

7

Measured 

Modeled 

(b)(a)



59 
 

 

 

Fig. 2. Relation between half hourly values of the available energy (net radiation (Rn) - 

soil heat flux (G)) and the sum of the turbulent fluxes (sensible heat (H) + latent heat 

(LE)) in a switchgrass field during the 2011 growing season (May to November). The 

solid line is the best fit line for linear regression (R
2
 =0.93, P < 0.0001). Total number of 

independent data points are represented by N (=3630). The regression slope of 0.77 with 

R
2
 value of 0.93 indicated the good energy balance closure.  
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Fig. 3. Comparison of cumulative evapotranspiration (ET) and rainfall (a), and daily 

trends of ET and rainfall in a switchgrass field during the growing season (b).  
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Fig. 4. Diurnal trends of evapotranspiration for different months of the growing season. 

Bars represent standard errors of the means.  

  

Time (Hours)

  0   4   8   12   16   20

E
va

p
o
tr

an
sp

ir
at

io
n 

(m
m

 3
0
-m

in
-1

)

0.00

0.05

0.10

0.15

0.20

0.25

May

Jun

Jul

Aug

Sep

Oct



62 
 

 

 

Fig. 5. Half-hourly binned diurnal courses of energy fluxes for different months of the 

growing season. Diurnal courses of vapor pressure deficit (VPD in kPa) are also shown in 

separate y-axis. Bars represent standard errors of the means.  
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 Fig. 6. Diurnal trends of ecosystem water use efficiency (EWUE) and vapor pressure 

deficit (VPD) in July (a), and variability in diurnal patterns of EWUE for three selected 

periods (June 8 to 15, July 8 to 15, and October 8 to 15) during the growing season (b).   
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ABSTRACT. Understanding carbon dynamics of switchgrass ecosystems is crucial as 

switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used 

eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange 

(NEE) and its components – gross ecosystem production (GEP) and ecosystem 

respiration (ER) in response to controlling factors during the second (2011) and third 

(2012) years of stand establishment in the southern Great Plains of the United States 

(Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis 

and asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours 

than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light-

response curve (NEE partitioning algorithm) consistently failed to provide good fits at 
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high VPD. Modified rectangular hyperbolic light-VPD response model accounted for the 

limitation of VPD on photosynthesis and improved the model performance significantly. 

The maximum monthly average NEE reached up to -33.02 ± 1.96 µmol CO2 m
-2

 s
-1

 and 

the highest daily integrated NEE was -35.89 g CO2 m
-2

 during peak growth. Although 

large differences in cumulative seasonal GEP and ER were observed between two 

seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing 

season lengths and differences in aboveground biomass production. It suggests that net 

ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of 

CO2 during 5 to 6 months and total seasonal uptakes were -1128 ± 130 and -1796 ± 217 g 

CO2 m
-2

 in 2011 and 2012, respectively. In conclusion, our findings suggest that the 

annual carbon status of a switchgrass ecosystem can be a small sink to small source in 

this region if carbon loss from biomass harvesting is considered. However, year-round 

measurements over several years are required to assess a long-term source-sink status of 

the ecosystem. 

 

Introduction 

 

Carbon dioxide (CO2) concentration is increasing in the atmosphere since Industrial 

Revolution of the mid-nineteenth century. Most of the released CO2 into the atmosphere 

is a result of burning fossil fuels (Revelle and Suess, 1957). One of the major avenues for 

reducing CO2 emissions is by substituting fossil fuels with biofuels (Pacala and Socolow, 

2004). Bioenergy crops convert atmospheric CO2 to organic carbon in crop biomass and 

soil which ultimately could help offset CO2 emissions (Adler et al. 2007). As part of the 
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US Energy Independence and Security Act (EISA, an Act concerning the energy policy 

of the United States), the Renewable Fuel Standard mandates 36 billion gallons (136 

billion liters) of biofuel production by 2022, of which 16 billion gallons (60 billion liters) 

is mandated from cellulosic feedstock. Switchgrass (Panicum virgatum L.), a highly 

productive C4 perennial warm-season grass native to North America, has been chosen as 

a model cellulosic feedstock by the U.S. Department of Energy through a decade long, 

multi-location (31 sites) and multi-species (34 species) trials due to its potential for high 

yields, deep rooting characteristics, and potential value in carbon sequestration (Wright, 

2007). Thus, a growing interest has recently emerged on the carbon dynamics of 

switchgrass.  

Several studies have investigated carbon sequestration potential of switchgrass 

and reported that switchgrass has a great potential for storing significant quantity of soil 

carbon (Frank et al.  2004; McLaughlin and Walsh, 1998; Liebig et al. 2005). The deep 

and dense rooting system of switchgrass is an added advantage for soil carbon 

sequestration (Monti et al. 2012). Although switchgrass has a great potential to increase 

soil organic carbon, more information on measurements of net ecosystem CO2 exchange 

(NEE, the exchange of CO2 between an ecosystem and the atmosphere) is needed to 

determine the source-sink status, and the magnitude and seasonal dynamics of carbon in 

switchgrass ecosystems. Unfortunately, NEE measurements in switchgrass are limited. A 

study in switchgrass from northeastern USA (southwestern Pennsylvania) by Skinner and 

Adler (2010) and another study from central Illinois by Zeri et al. (2011) reported that 

switchgrass ecosystems were sinks of carbon for at least the first few years of 

establishment in those regions. However, information is not available on carbon status of 
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switchgrass ecosystems for the southern Great Plains of the United States, which will be 

the home to large stands of switchgrass in the near future (U.S. Department of Energy, 

2011). Thus, this study has great importance at a regional level since measured ecosystem 

level CO2 flux can be extrapolated to estimate the regional carbon balance (Wofsy et al. 

1993).  

Switchgrass has been classified into lowland and upland types based on its 

morphology and habitat (Porter, 1966). Lowland ecotypes have higher biomass yield 

potential and longer retention of photosynthetically active tissues in southern locations of 

the United States (Casler et al. 2004). The previous eddy covariance studies with 

switchgrass (Skinner and Adler, 2010; Zeri et al. 2011) have employed upland ecotypes 

of switchgrass while our study is with a lowland ecotype ‘Alamo’. Furthermore, earlier 

studies lacked thorough investigation of seasonal carbon dynamics. Better understanding 

of the seasonal NEE changes, with respect to controlling factors, will be helpful for 

assessing climate change mitigation potential of switchgrass.  

Our study analyzed eddy covariance measurements of CO2 fluxes during two 

growing seasons in 2011 and 2012. These two growing seasons represent diverse arrays 

of climatic conditions including severe droughts experienced by the crops in 2011, which 

provided us a unique opportunity to quantify the carbon dynamics of a switchgrass 

ecosystem under different environmental conditions. This study also examined the direct 

effects of drought on NEE and its components – gross ecosystem production (GEP, total 

amount of carbon fixed by photosynthesis in an ecosystem) and ecosystem respiration 

(ER, total amount of carbon loss from an ecosystem due to autotrophic and heterotrophic 

respiratory activities). This information will be of great importance as drought-affected 
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geographic areas and drought intensity has increased globally in the last five decades 

(Dai et al. 2004), and drought is expected to influence the terrestrial carbon cycle in the 

near future. Thus, a major objective of this study was to determine the seasonality of 

NEE in response to controlling factors. Analysis of two seasons of eddy covariance data 

can help determine the length of active growing period and seasonal patterns of 

photosynthetic and respiratory activities in switchgrass. This study also evaluates 

rectangular hyperbolic light-response curve and modified rectangular hyperbolic light-

VPD response model to fit daytime NEE across different vapor pressure deficit (VPD) 

ranges.  

 

Materials and Methods 

Site description and weather conditions 

 

Eddy covariance measurements were conducted over a switchgrass (cv. Alamo) field at 

South Central Research Station, Chickasha, OK (35.04
°
 N latitude, 97.95

°
W longitude, 

and 330 m above sea level altitude) during the 2011 and 2012 growing seasons (the 

second and third years of establishment, respectively). The crop was sown at 38 cm row 

spacing under no till conditions. The soil type was McLain silt loam (fine, mixed, 

superactive, thermic Pachic Argiustolls). Fertilizer was not applied in the establishment 

year, and ammonium nitrate was broadcast applied in April in the second and third years 

at 75 Kg ha
-1

. The experiment was rainfed and the site received 525 and 673 mm total 

annual rainfall in 2011 and 2012, respectively while the 30-year average (1981 to 2010) 

annual rainfall for the site was 896 mm (Table 4). The crop experienced mid-growing 
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season drought in 2011. As compared with the 30-year mean, spring was relatively 

warmer and wetter in 2012, and cooler and drier in 2011. Summer 2011 was 

exceptionally warm and dry, and summer 2012 was slightly warmer and drier as 

compared with the 30-year mean. Mesonet data for the area was downloaded from the 

Oklahoma Mesonet website (www.mesonet.org, verified January 2, 2013).   

 

Eddy covariance and other supplementary measurements, and sign convention 

 

Continuous CO2 fluxes measured from April 25 to October 31 (DOY 115-304) in 2011 

and from March 1 to October 31 (DOY 61-305) in 2012 using an eddy covariance system 

equipped with CSAT3 sonic anemometer (Campbell Scientific Inc., Logan, UT, USA) 

and LI-7500 open-path infrared gas analyzer (IRGA, LI-COR Inc., Lincoln, NE, USA) 

are presented in this study. The sensors were mounted at 2.2 m height from the ground in 

2011, but increased to 3 m on May 31, 2012, and again raised to 3.4 m on September 2, 

2012 due to increasing canopy height and to avoid measurement in the roughness sub-

layer. The switchgrass field (with energy sorghum in 2008 and 2009) was 8 ha and 

adjacent to the sorghum field to the west, mixed grass field to the north, and wheat 

fallows to the south and east. The EC system was set up at the north end of the plot facing 

towards the south, the prevalent wind direction. The fetch in the direction of prevailing 

wind and in the east-west direction was 275 m. Data were collected at 10 Hz frequency 

(10 samples sec
-1

) and NEE was calculated for a 30-min averaging period. The CO2 

storage was considered negligible. Thus, NEE presented in this study is the measured 

CO2 eddy flux only. Sign convention in this paper is that CO2 uptake by the ecosystem is 

http://www.mesonet.org/
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negative, whereas a net CO2 release to the atmosphere is positive. Supplementary 

measurements include photosynthetic photon flux density (PPFD), net radiation (Rn), soil 

heat flux (G), soil temperature and moisture, air temperature, and relative humidity. 

Details on these measurements as well as calculation of soil heat storage term for energy 

balance closure are provided in a previous publication (Wagle and Kakani, 2012). 

Periodic biometric measurements (mostly biweekly) of leaf area index (LAI), canopy 

height, and dry biomass (3-5 samples from 1 m
2 

area at randomly located positions) were 

taken throughout the entire growing season for better understanding of flux 

measurements. Leaf area index was measured with a plant canopy analyzer (LAI-2000, 

LI-COR Inc., Lincoln, NE, USA). Canopy height was measured from soil surface to the 

top most ligule. Harvested biomass samples were dried in an oven at 70
°
 C for a week 

and weighed. 

 

Data screening 

 

There is consensus that eddy covariance system underestimates NEE under stable 

nighttime conditions. We also observed underestimation of flux during low turbulence 

periods, below a friction velocity (u*) threshold of 0.20 m s
-1

. Hence, unreliable flux data 

during calm periods (u*< 0.20 ms
-1

) were excluded. However, the use of a single u* 

threshold at all times may induce some uncertainties because u* shows diurnal and 

seasonal cycles, and meteorological and plant phenological characteristics influence u* 

threshold (Gu et al. 2005). Negative nighttime NEE (as no photosynthesis occurs during 

night) during low wind velocity (< 1.5 m s
-1

) were removed. Samples from non-
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representative footprints (e.g., data for the period when wind was blowing from behind 

the tower) were avoided. Sensible heat (H) and latent heat (LE) fluxes were filtered to 

keep in the range of -200 to 500 Wm
-2

 and -200 to 800 Wm
-2

, respectively (Sun et al.  

2010). Physically unreasonable CO2 fluxes beyond -50 and 50 µmol m
-2

s
-1

 were removed 

(Zeeman et al. 2010; Kochendorfer et al. 2011; Wolf et al. 2011). In addition, we 

removed statistical outliers beyond ±3.5 STD range from a 14 day running mean window. 

 

Gap filling and partitioning of net ecosystem exchange 

 

An average value immediately before and after the gap was used to fill half-hourly gaps 

(Wever et al. 2002). Linear interpolated values were used for 2 h or fewer gaps (Flanagan 

et al. 2002). Larger gaps were filled using empirical models based on dominant 

physiological processes for daytime and nighttime. During nighttime, NEE is equivalent 

to ER whereas GEP is zero as photosynthesis does not occur at night (Barr et al. 2002). 

Only 6 h (22:00-04:00 h) of nighttime data during high turbulence (u* > 0.20 ms
-1

) were 

used to model ER to avoid the period of formation and breakup of the air temperature 

inversion (Black et al. 1996). Linear and multiple linear regressions between nighttime 

NEE and soil temperature, air temperature, and soil moisture were evaluated during a 7-

day period (sometimes 4 – 14 days) to account for seasonal variability in parameters. The 

exponential relationship between NEE values and the most significant variable was also 

investigated. Finally, the relationships with the highest level of significance were chosen 

(Flanagan et al. 2002). Mean respiration rates were calculated if no significant 

relationships of the variables were observed (Flanagan et al. 2002). These estimates of 
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ER were used to fill gaps and replace NEE values under low turbulent conditions (u* < 

0.20 m s
-1

) during nighttime. Daytime NEE (PPFD > 1 µmol m
-2 

s
-1

) was modeled and 

partitioned into its two components (GEP and ER) using the commonly used rectangular 

hyperbolic light-response curve (Falge et al. 2001). 

ER
GPPPFD

PPFDGP
NEE 






max

max




    (1) 

where α is the apparent quantum yield (i.e., the initial slope of the light-response curve 

[mol CO2 mol
-1

 of photons)], PPFD is measured photosynthetic photon flux density 

(µmol m
-2

 s
-1

), GPmax is the maximum canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light 

saturation, and ER is respiration rate. Here, GPmax was calculated as the exponential 

decreasing function at high VPD to include the effect of VPD on photosynthesis as 

suggested by Lasslop et al. (2010): 

GPmax = GP0 exp [-k (VPD-VPD0)], if VPD > VPD0  (2) 

GPmax = GP0, if VPD < VPD0                 (3) 

where VPD0 threshold was set to 1 kPa (Lasslop et al. 2010). All the fitted parameters 

were estimated using nonlinear least squares regression in SAS software (SAS Institute 

Inc. 2009, Cary, NC, USA) using short time period data (mostly a week and sometimes 

up to 14 days in case of insufficient data points or lack of good fits) to account for 

climatic variability. Daytime ER was estimated from the intercept of the ordinate while 

fitting light-response curves. Only measured half hourly values (not gap-filled) were used 

for the optimization of model parameters. These empirical functions were used to fill 

gaps during daytime. The gap filled time series of CO2 flux was summed to calculate 

seasonal NEE values. The sampling uncertainty (gap filling) errors with in seasonal 
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estimates of CO2 fluxes were determined as the standard error of the gap filling models as 

in Black et al. (2007). 

 

Results  

Energy balance closure 

 

Energy balance closure (EBC) above the switchgrass field was used to evaluate the 

accuracy of eddy covariance measurements. Only high quality fluxes of H and LE were 

used and EBC was calculated only when all four measurements (H, LE, Rn, and G) were 

available. Strong correlations were observed between the sum of half-hourly values of 

turbulent fluxes (H + LE) and available energy (Rn – G) on seasonal scale with R
2
 value 

of 0.93 for both years (Fig. 7). The slopes of regression lines which correspond to EBC 

were 0.77 and 0.83 for 2011 and 2012, respectively. The result indicated the typical 

outcome for our data as compared with EBC values reported in literature. An average 

EBC is 70 – 80% over grasslands across the globe at 30-min intervals (Twine et al.  

2000). We did not apply the EBC adjustment factor to correct underestimation of CO2 

fluxes since these energy imbalances could be from errors in available energy 

measurements or from neglecting heat storage in biomass (Cook et al. 2004; Desai et al. 

2005). 

Variations in leaf area index, biomass, and canopy height  

 

Switchgrass growth started earlier in 2012 due to a warmer and wetter spring (Table 1). 

Thus, we initiated biometric measurements on May 9 (DOY 129) in 2011 but on March 
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28 (DOY 88) in 2012. Evolution of LAI and dry biomass during the 2011 and 2012 

growing seasons is presented in Figure 8. Leaf area index, canopy height, and biomass 

were higher in 2012 than they were in 2011 due to better growing conditions (mild winter 

and greater precipitation) and increased maturity of the switchgrass stand. Canopy height 

reached a maximum of 1.2 m in mid-September in 2011 and 1.8 m in mid-July in 2012. 

Maximum LAI was 3.8 m
2
 m

-2
 (mid-August) in 2011, while it reached a maximum of 5.9 

m
2
 m

-2
 (mid-July) in 2012. The highest recorded aboveground dry biomass was 6.52 t ha

-

1 
in early September in 2011 as compared to 16.95 t ha

-1
 in mid-July in 2012. Strong 

relationships between LAI and dry plant biomass (t ha
-1

) were obtained in both years (in 

2011: Biomass = 1.49 x LAI – 1.0, R
2
 = 0.86; in 2012: Biomass = 4.51 x LAI – 7.72, R

2
 

= 0.82). Plant canopy height explained 85% and 97% of variability in aboveground 

biomass in 2011 and 2012, respectively. 

 

Flux Partitioning: ecosystem respiration and gross ecosystem production 

 

Development of specific relationships between nighttime ER and its controlling factors 

(soil temperature, air temperature, and soil moisture) for short windows (a week, 

sometimes 4 to 15 days to account for climatic variability) showed different responses of 

ER to environmental factors throughout the entire study period. For example, the 

exponential function of soil temperature provided a better fit for the period June 1 to 7, 

2012 (ER = 0.11 e
0.19 x soil temperature

, P < 0.0001, R
2
 = 0.90) while the exponential function 

of air temperature explained more variability in ER during May 16 to 19, 2011 (ER = 

0.098 e
0.17 x air temperature

, P < 0.0001, R
2
 = 0.81). Multiple regression of ER with air 
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temperature and soil moisture provided a better fit to the data during June 16 to 23, 2011 

(ER = 175 x soil moisture + 0.25 x air temperature – 26.46, P < 0.0001, R
2
 = 0.61). 

Linear regression of ER with soil moisture explained 54% of the variability in ER during 

July 16 to 23, 2012. Improved model fits were observed using only 6 h (22:00-04:00 h) of 

nighttime data than the use of whole nighttime data because of the removal of 

underestimated and overestimated ER values during formation and breakup of the air 

temperature inversion. 

To fit rectangular hyperbolic light-response curve for the daytime NEE 

measurements is a well-established method in eddy covariance communities in order to 

determine parameters for the light-response curve to estimate GEP and also to determine 

daytime respiration from the intercept of the ordinate (Zhao et al. 2010; Pilegaard et al. 

2001; Falge et al. 2001). Our study showed that the rectangular hyperbolic light-response 

curve failed to provide good fits for the periods with higher VPD (> 3 kPa) most 

probably due to the limitation of VPD on photosynthesis. Instead, modified rectangular 

hyperbolic light-VPD response model, which included the limitation of VPD on 

photosynthesis, provided better estimates of GEP and daytime ER, and improved the 

model performance significantly (Table 5, Fig. 9). Both models yielded similar results for 

the periods with smaller VPD (< 3 kPa). Comparison of diurnal trends of measured and 

modeled NEE using the original light-response curve and the modified light-VPD 

response model along with diurnal trends of PPFD and VPD for two selected periods: 

July 16-23, 2012 (diurnal mean of VPD ranged from 0.73 to 5.17 kPa) and May 24-31, 

2011 (diurnal mean of VPD ranged from 1.22 to 2.94 kPa) is provided in Figure 10. 

During dry period with high VPD, NEE increased rapidly after sunrise following the 
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trend of PPFD and then decreased suddenly at higher VPD before noon which resulted in 

asymmetrical diurnal cycles of measured NEE (Fig. 10a). In Figure 10b, symmetrical 

diurnal NEE cycle following the same pattern of PPFD was observed when the maximum 

VPD was smaller than 3 kPa. The magnitude and timing of peak NEE for the modified 

light-VPD response model were in good agreement with measured NEE, but the original 

light-response curve underestimated the daily peak of NEE before noon and 

overestimated NEE in the afternoon when VPD was more than 3 kPa. In contrast, 

modeled NEE from both models were in good agreement with measured NEE at smaller 

VPD (< 3 kPa).  

 

Diurnal and seasonal trends of net ecosystem exchange 

 

Typical daily trends of NEE for both growing seasons (May to October) are provided in 

Figure 11. Large differences were observed for NEE rates among months within and 

between growing seasons. Higher rates of carbon uptake and release were observed in 

2012 till July and then similar rates and patterns were observed in both seasons. The peak 

monthly average daytime and nighttime NEE rates during the 2011 and 2012 growing 

seasons are provided in Table 6. In 2011, the magnitude of daytime monthly average 

NEE rates ranged from -9.0 ± 0.74 µmol CO2 m
-2

 s
-1

 (October) to -17.92 ± 0.67 µmol 

CO2 m
-2

 s
-1

 (June) while in 2012 it ranged from -8.84 ± 0.99 µmol CO2 m
-2

 s
-1

 

(September) to -33.02 ± 1.96 µmol CO2 m
-2

 s
-1

 (May). The magnitude of nighttime 

monthly average NEE rates in 2011 ranged from 3.82 ± 0.54 µmol CO2 m
-2

 s
-1

 in October 
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to 6.48 ± 1.60 µmol CO2 m
-2

 s
-1

 in July. Similarly, in 2012 it ranged from 5.61 ± 0.98 

µmol CO2 m
-2

 s
-1

 in October to 11.55 ± 0.74 µmol CO2 m
-2

 s
-1

 in May. 

The seasonal courses of daily NEE, GEP, ER, VPD, and top-surface soil moisture 

(5 cm depth) changes are shown in Figure 12. During the beginning of the growing 

season, values of CO2 fluxes were small. Both GEP and ER started to increase with the 

beginning of the growing season. However, more rapid increments in photosynthesis than 

respiration, as a result of emergence and rapid growth of green leaves, caused a sharp 

increase in NEE in the beginning of the growing season. The remarkable differences in 

NEE between two seasons were its magnitude and the timing. Photosynthesis started 

dominating ER in the last week of March in 2012 with a NEE rate of -3.55 g CO2 m
-2

 d
-1

. 

The ecosystem began to absorb -2.23 g CO2 m
-2

 d
-1

 in the end of April in 2011. The 

maximum rate of net carbon uptake reached -21.5 g CO2 m
-2

 d
-1

 during May 24 to 31 in 

2011. In 2012, the maximum daily NEE reached a magnitude of -35.89 g CO2 m
-2

 d
-1

 

during June 8 to 15. Both GEP and ER decreased during late growing seasons. In both 

years, GEP rates were similar in late growing seasons, but ER rates were consistently 

higher for the 2012 growing season which altered the status of the ecosystem from sink to 

source of carbon from the beginning of September in 2012. In contrast, the ecosystem 

was a sink of carbon till the third week of October in 2011. 

Figure 12 shows that the magnitude of CO2 fluxes decreased during warm and dry 

periods and increased immediately after rainfall events. Both GEP and ER followed 

similar patterns of increasing and decreasing trends (signs are opposite: GEP is negative 

and ER is positive) over time (Fig. 12b). It indicates the similarity in responses of GEP 

and ER to environmental variables. The higher values of VPD were closely associated 



78 
 

with warm and dry periods (Fig. 12c). Top-surface soil moisture was highly variable 

during growing seasons. Volumetric soil water content was consistently lower during the 

2011 growing season, reaching the lowest value up to 0.11 m
3
 m

-3
. Soil moisture at 5 cm 

depth was over 0.20 m
3
 m

-3 
for most of the periods during the 2012 growing season due 

to timely rainfall.  

In 2011, cumulative seasonal (DOY 115-304) GEP and ER were -4370 ± 466 and 

3242 ±340 g CO2 m
-2

, respectively. Cumulative seasonal (DOY 61-305) GEP and ER 

were -7390 ± 1083 and 5594 ± 865 g CO2 m
-2

, respectively in 2012. These results show 

that total seasonal ER accounted for about 75% of cumulative seasonal GEP in both 

years, suggesting the great coupling between GEP and ER. However, GEP was reduced 

more rapidly than ER during drought and crop senescence period. In this study, ER was 

about 60% of GEP or less until June (peak growing period), increased to about 70-80% in 

July, and reached 90% or more after that. Weekly ecosystem carbon use efficiency 

(CUE) was calculated as the ratio of weekly average of daily net ecosystem productivity 

(NEP = -NEE, the sign changed NEE) to GEP. The greatest CUE was 52% (mid-May) in 

2012 and 51% (early June) in 2011. In other words, ER loss was about 48-49% of GEP 

during peak growth, indicating that 51-52% of GEP was the net uptake by the ecosystem 

during active growing periods.  

 

Discussion 

 

We found that the response of ER to the environmental factors (soil and air temperatures, 

and soil moisture) was different throughout the entire study period. No single controlling 
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factor explained variability in ER over the whole season. Exponential functions of soil or 

air temperature provided good fits at adequate soil moisture (> 0.20 m
3
 m

-3
). Volumetric 

water content below 0.20 m
3
 m

-3 
started to limit ER in this site. For most of the cases 

when soil moisture ranged from 0.17 to 0.22 m
3
 m

-3
, multiple regressions explained more 

variability than the simple linear regression or exponential function. The simple linear 

regression of soil water content was occasionally found to work when ER rates linearly 

declined as soil moisture gradually depleted from 0.20 m
3
 m

-3
. No significant 

relationships of the variables were observed during severe drought periods. The results 

suggest that the response of ER to environmental factors should be evaluated for short 

time periods (preferably a week) to account for the climatic variability.  

Asymmetrical diurnal NEE cycles were observed during periods with higher VPD 

due to substantially higher rates of NEE in the morning hours than in the afternoon at 

equal light levels (Fig 10a). Reduction in carbon uptake via stomatal limitation of GEP 

due to higher VPD and larger rate of respiration in the afternoon causes asymmetric 

shapes of diurnal NEE cycles (Körner, 1995; Lasslop et al. 2010). The original light-

response curve failed to reproduce asymmetrical diurnal NEE cycles even during dry 

periods with high VPD (Fig. 10a). It demonstrates that the model is unable to account for 

the decrease in NEE due to higher VPD in the afternoon. Consequently, the model 

underestimated NEE in the morning hours and overestimated in the afternoon hours, 

which is similar to the results reported by a previous study (Lasslop et al. 2010). 

However, the modified light-VPD model was able to reproduce asymmetrical diurnal 

NEE cycles due to better estimates of the parameters. At higher VPD, the original light-

response curve consistently overestimated α and daytime ER, but underestimated GPmax 
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(Table 5). This indicated that underestimation of GPmax was attributed to overestimation 

of daytime ER. The biases in the parameter estimates by the original light-response curve 

were larger at higher values of VPD, but the estimates were similar at smaller VPD (< 3 

kPa). These results illustrated that VPD > 3 kPa started to limit photosynthesis in 

switchgrass. Suyker and Verma (2001) also reported that VPD > 3.5 kPa constrained 

photosynthesis in prairie grasses and the ecosystem behaved as a source of carbon even 

during the daytime in north-central Oklahoma. 

The ecosystem was a net sink from the end of April through the third week of 

October in 2011 and from the end of March through the end of August in 2012 in this 

study. Reduction in photosynthetic capacity due to early senescence of crop (most likely 

due to a month earlier growth in the spring) and more respiratory CO2 loss due to bigger 

crops caused a net loss of CO2 to the atmosphere earlier in 2012. The results suggested 

that the ecosystem was a net sink of CO2 for 5 to 6 months (160-180 days). The 

switchgrass ecosystem was a sink for 98 days (late May through early September) in 

southwestern Pennsylvania (Skinner and Adler, 2010). Net carbon uptake by perennial 

grasses (miscanthus, switchgrass, and prairie) began around June and lasted until 

November in central Illinois (Zeri et al.  2011). Native prairies were sinks for about 125 

days in Texas (Dugas et al.  1999) and 150 days in north-central Oklahoma (Suyker and 

Verma, 2001). These results indicate a longer growing season of grasses in the southern 

Great Plains. Perennial grasses start growing earlier in southern regions due to mild 

winter and early spring. Moreover, lowland switchgrass ecotypes (commonly grown in 

sourthern regions) retain photosynthetically active tissues for longer periods than their 

upland counterparts (Casler et al.  2004). 
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Skinner and Adler (2010) observed stable amounts of annual GEP, ranging from -

3355 to -3451 g CO2 m
-2 

over four years, and declining trends of ER during the first three 

years, ranging from 3339 to 2487g CO2 m
-2 

yr
-1 

in a switchgrass field. The study also 

reported that increase in biomass was not related to GEP. But we observed significantly 

much higher GEP and ER in 2012 than in 2011, which can be explained by earlier crop 

growth, higher aboveground biomass due to more favorable climatic conditions, and 

increased maturity of switchgrass stand. Total seasonal GEP and ER in our study were -

4370 ± 466 and 3242 ± 340 g CO2 m
-2 

in 2011 and -7390 ± 1083 and 5594 ± 865 g CO2 

m
-2 

in 2012, respectively. The big differences in cumulative GEP and ER between our 

study and Skinner and Adler (2010) study are attibuted to different ecotypes of 

switchgrass, different climatic conditions, and different lengths of the growing season. 

Lowland ecotypes grown in southern regions are generally taller, thicker, and produce 

higher yields as compared to their upland counterparts grown in northern regions (Porter, 

1966). Higher ER rates in southern regions are associated with bigger crop size of 

lowland ecotypes and higher temperature in this region. The maximum daily intergrated 

NEE of -35.89 g CO2 m
-2

 d
-1

 in our study was greater than -30 g CO2 m
-2

 d
-1 

observed by 

Skinner and Adler (2010) in northeastern USA where photosynthesis is limited by both 

suboptimal light and temperature. The maximum diurnal carbon uptake rate of -33 ± 1.96 

µmol CO2 m
-2

 s
-1

 in our study was of magnitude as reported in prairie grasslands by 

previous studies for this region. The maximum rates of NEE during the growing season 

was -32 µmol CO2 m
-2

 s
-1 

in north-central Oklahoma (Suyker and Verma, 2001), -30 

µmol CO2 m
-2

 s
-1  

in northeastern Kansas (Kim and Verma, 1990), and -27.2 µmol CO2 

m
-2

 s
-1 

at the Blackland Research Center, Temple, Texas (Dugas et al. 1999). 
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In this study, cumulative GEP in 2011 was 41% less than that of 2012. The large 

portion of this difference came during the early growing season (before the canopy fully 

developed) while similar rates were observed later due to reduction in carbon assimilation 

capacity of plants (Fig. 11). Actively growing leaves, relatively longer days, and optimal 

temperature for photosynthesis in the spring favored more carbon uptake. Because of 

more rapid increase in GEP than ER carbon use efficiency of the ecosystem was about 

40% or more (up to 52%) until June. A gradual decline in net carbon uptake started from 

July because GEP started to decline rapidly due to reduction in photosynthetic area, but 

ER did not decrease greatly (Fig. 12), most likely due to respiration from dead and 

senescence tissues (Dufranne et al. 2011). As a result, the ratio of ER to GEP increased 

and ultimately the ecosystem was a source of carbon. Although different ratios of ER to 

GEP were observed over time during growing seasons, total seasonal ER accounted for 

about 75% of cumulative seasonal GEP in both years regardless of the length of growing 

seasons and differences in aboveground biomass production. However, due to differences 

in seasonal sums of GEP the ecosystem was able to gain -1128 ± 130 g CO2 m
-2

 and -

1796 ± 217 g CO2 m
-2

 during the 2011 and 2012 growing seasons, respectively. If loss of 

carbon from harvesting biomass needs to be included, assuming 40% carbon in biomass 

the carbon loss is estimated to be 586 g CO2 m
-2 

(removing 4 t dry biomass ha
-1

) and 

2051 g CO2 m
-2 

(removing 14 t dry biomass ha
-1

) during 2011 and 2012, respectively. In 

addition, the ecosystem releases small amounts of CO2 even during the dormant period 

via soil respiration. Accounting all these carbon losses and uncertainties in the 

measurements, our results suggest that the annual carbon status of a switchgrass 

ecosystem can be a small sink to small source in this region based on removal of annually 
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harvested biomass yields. This result is consistent with some previous studies (Skinner 

and Adler, 2010; Suyker et al. 2003; Zeri et al. 2011). When the loss of carbon during the 

burning was added in annual NEE, carbon source or sink strength of non-harvested 

prairie grassland in north-central Oklahoma was negligible in normal years and the 

ecosystem was a source in a year with severe soil moisture stress (Suyker et al. 2003). 

The switchgrass ecosystem in southwestern Pennsylvania was a small sink of carbon at 

no harvest or smaller biomass yields (< 4 t ha
-1

) but a small source at removal of about 6 t 

ha
-1

 dry biomass in its fourth year of establishment (Skinner and Adler, 2010). 

Switchgrass was a small sink at the end of 2.5 years of establishment in central Illinois, 

but higher amount of harvested biomass could exceed the net carbon balance uptake (Zeri 

et al. 2011). Year round measurements over several years are required to assess the long-

term source-sink status of this important ecosystem in this region. Our findings provide 

some guidance on seasonal carbon dynamics in switchgrass and also for regional 

estimates of carbon sequestration potential of switchgrass.  
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Table 4. Monthly mean maximum and minimum temperatures, and monthly total rainfall 

in 2011 and 2012 in comparison with the 30-year mean (1981 to 2010) for Chickasha, 

Oklahoma, USA. 

  
2011   2012   30-year mean 

Month 
Max 

T (
o
C) 

Min T 

(
o
C) 

Rain 

(mm) 

Max T 

(
o
C) 

Min T 

(
o
C) 

Rain 

(mm) 

Max T 

(
o
C) 

Min T 

(
o
C) 

Rain 

(mm) 

 

Jan 

 

10.03 

 

-7.49 

 

1 13.56 -2.57 49.78 

 

10.06 

 

-3.44 

 

33.5 

 

Feb 

 

12.7 

 

-2.65 

 

12.2 13.00 0.25 16.26 

 

14 

 

-0.78 

 

45.2 

 

Mar 

 

19.42 

 

4.36 

 

1.3 21.66 8.35 112.52 

 

18.83 

 

4.06 

 

71.9 

 

Apr 

 

25.82 

 

9.01 

 

0 24.11 12.03 78.74 

 

24.06 

 

9.06 

 

91.9 

 

May 

 

27.51 

 

13.79 

 

105 29.48 15.88 150.37 

 

28.06 

 

14.72 

 

133.1 

 

Jun 

 

37.43 

 

21.73 

 

56 33.51 19.33 71.37 

 

32.39 

 

19.5 

 

104.6 

 

Jul 

 

40.36 

 

24.19 

 

5 37.98 22.59 48.01 

 

35.28 

 

21.56 

 

53.6 

 

Aug 

 

39.78 

 

24.11 

 

74 36.04 20.61 42.67 

 

34.56 

 

20.61 

 

69.3 

 

Sep 

 

30.55 

 

13.1 

 

32 

 

31.56 

 

16.16 

 

117.35 

 

30.61 

 

16.22 

 

91.4 

 

Oct 

 

24.25 

 

9.01 

 

104 

 

22.61 

 

9.02 

 

13.72 

 

24.89 

 

9.83 

 

98.6 

 

Nov 

 

16.35 

 

3.21 

 

94.2 

 

20.3 

 

3.0 

 

21.84 

 

17.06 

 

3.22 

 

54.4 

 

Dec 

 

10.22 

 

-1.42 

 

39.9 

 

12.19  

 

-2.19  

 

21.84  

  

 11.5 

 

-1.72 

 

48.5 
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Table 5. Comparison of rectangular hyperbolic light-response curve fitting with or 

without using vapor pressure deficit (VPD) for selected time periods during growing 

seasons.   

 Model fit parameters  

Time periods Without VPD VPD included VPD range (kPa) 

May 24 – 31, 2011 α = 0.043 

GPmax = 50 

R = 6.43 

R
2
 = 0.96 

α = 0.043 

GPmax = 51 

R = 6.41 

R
2
 = 0.96 

1.22 to 2.94 

April 16 – 23, 2012 α = 0.0448 

GPmax = 70 

R = 7.67 

R
2
 = 0.90 

α = 0.0447 

GPmax = 71 

R = 7.64 

R
2
 = 0.90 

0.50 to 1.42 

July 16 – 23, 2011 α = 0.111 

GPmax = 12 

R = 5.14 

R
2
 = 0.24 

α = 0.029 

GPmax = 16 

R = 2.9 

R
2
 = 0.82 

1.97 to 6.1 

July 16 – 23, 2012 α = 0.0925 

GPmax = 23 

R = 8.45 

R
2
 = 0.36 

α = 0.0377 

GPmax = 41 

R = 6.30 

R
2
 = 0.87 

0.73 to 5.17 

The VPD range is the diurnal mean of VPD for the week. α is the apparent quantum yield 

(the initial slope of the light response curve (mol CO2 mol
-1

 of photons)), GPmax is the 

maximum canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light saturation, R is respiration 

(µmol m
-2

 s
-1

) during daytime, and R
2 

is the coefficient of determination. The P values 

were < 0.0001 in all conditions.  
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Table 6. The peak monthly average daytime and nighttime net CO2 ecosystem exchange 

(NEE) rates with standard errors (in brackets) during the 2011 and 2012 growing seasons.  

 2011 2012 

Month Daytime NEE 

(µmol CO2 m
-2

 s
-1

) 

Nighttime NEE 

(µmol CO2 m
-2

 s
-1

) 

Daytime NEE 

(µmol CO2 m
-2

 s
-1

) 

Nighttime NEE 

(µmol CO2 m
-2

 s
-1

) 

Apr   -26.39 (± 1.77) 7.51 (± 0.71) 

May -16.0 (± 1.34) 6.23 (± 0.57) -33.02 (± 1.96) 11.55 (± 0.74) 

Jun -17.92 (± 0.67) 6.20 (± 0.42) -23.80 (± 2.30) 9.52 (± 2.21) 

Jul -12.17 (± 0.53) 6.48 (± 1.60) -13.46 (± 0.91) 7.89 (± 1.59) 

Aug -11.74 (± 1.03) 6.39 (± 1.10) -11.72 (± 1.05) 7.88 (± 2.46) 

Sep -9.25 (± 0.75) 5.82 (± 1.31) -8.84 (± 0.99) 6.13 (± 0.55) 

Oct -9.0 (± 0.74) 3.82 (± 0.54) -10.23 (± 1.08) 5.61 (± 0.98) 
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Fig. 7. Energy balance closure for 2011 (DOY 121 to 304) and 2012 (DOY 61 to 305) 

growing seasons (a and b, respectively). Turbulent fluxes were measured by eddy 

covariance and the available energy was measured independent of eddy covariance. The 

black line is the best fit line for linear regression (P < 0.0001). Total numbers of 

independent data points were represented by N. The regression slopes of 0.77 and 0.83 

indicate the good closure of the energy balance (R
2 

= 0.93).   
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Fig. 8. Evolution of leaf area index (a) and dry biomass (b) of switchgrass during the 

2011 and 2012 growing seasons. Higher leaf area index and dry biomass were observed 

during the 2012 growing season.  
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Fig. 9. Light-response curve functions with or without using vapor pressure deficit (VPD) 

in the model for selected time periods: dots, 30-minute daytime net ecosystem CO2 

exchange (NEE) data from tower measurements; PPFD, photosynthetic photon flux 

density; SE, standard error of the estimate.  
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Fig. 10. Comparison of diurnal trends of measured and modeled net ecosystem exchange 

(NEE) using the original rectangular hyperbolic light-response curve and the modified 

light-VPD (vapor pressured deficit) response model along with diurnal trends of 

photosynthetic photon flux density (PPFD) and VPD for selected time periods: July 16-

23, 2012 (a), and May 24-31, 2011 (b). Bars represent standard errors of the means.   
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Fig. 11. Half-hourly binned diurnal courses of net ecosystem CO2 exchange (NEE) rates 

for different months of the growing seasons (May – October, 2011 and 2012). Each data 

point is a 30-min average value for the entire month. Negative values of NEE indicate 

carbon uptake and positive values indicate carbon release by the ecosystem. Bars 

represent standard errors of the means.   
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Fig. 12. Comparison of patterns of net ecosystem CO2 exchange (NEE) (a); gross 

ecosystem production (GEP) and ecosystem respiration (ER) (b); vapor pressure deficit 

(VPD) and top-surface soil moisture (5 cm depth) (c) during the 2011 and 2012 growing 

seasons.  
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CHAPTER IV 

 

 

ENVIRONMENTAL CONTROLS OF DAYTIME NET ECOSYSTEM EXCHANGE 

OF CARBON DIOXIDE IN SWITCHGRASS 

 

Pradeep Wagle and Vijaya Gopal Kakani 

 

Department of Plant and Soil Sciences, Oklahoma State University, 368 AG Hall, 

Stillwater, OK 74078, USA 

 

ABSTRACT. Net ecosystem CO2 exchange (NEE) over a young switchgrass (Panicum 

virgatum L.) stand was measured with the eddy covariance technique across two growing 

seasons in the southern Great Plains of the United States (Chickasha, OK). The objectives 

of the study were to characterize the effects of environmental factors on daytime NEE 

and to explore the underlying mechanisms. Photosynthetic photon flux density (PPFD) 

alone explained over 90% of the NEE variation during optimum environmental 

conditions. Canopy photosynthesis did not saturate at as high as 2000 µmol m
-2

s
-1 

PPFD. 

However, the carbon uptake by the ecosystem decreased up to 62% (monthly average) 

from morning to afternoon at equal light levels because of the stomatal closure control of 
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photosynthesis at high vapor pressure deficit (VPD). This resultant large hysteresis in 

NEE led to the failure of the rectangular hyperbolic light-response function in explaining 

the NEE-PPFD relationship. The NEE exhibited an optimum temperature range of 28-34 

°C and decreased markedly beyond 35 °C. Our results demonstrate that warm 

temperature and high VPD altered the NEE-PPFD relationship and thereby affected the 

ecosystem light-response parameters (respiration, quantum yield, and light saturated 

photosynthetic capacity). Thus, it is essential to incorporate the effects of temperature and 

VPD on ecosystem light-response into both empirical and mechanistic models. This study 

also suggests including the VPD effect in the NEE flux partitioning technique can 

account for the systematic presence of NEE hysteresis during non-optimal environmental 

conditions.  

 

Key words: CO2 flux, Eddy covariance, Net ecosystem exchange, Switchgrass, Vapor 

pressure deficit 

 

Introduction 

 

There is a growing interest to understand the influence of environmental factors, such as 

temperature and precipitation patterns, on net ecosystem CO2 exchange (NEE, the 

balance between CO2 uptake and release by an ecosystem) between terrestrial ecosystems 

and the atmosphere. Even though the carbon capture process is ultimately regulated at the 

molecular level, climate greatly affects the way in which terrestrial ecosystems sequester 

carbon (Jones and Donnelly, 2004). A mechanistic understanding of environmental 
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controls on NEE will be helpful to anticipate the potential impact of climate change 

scenarios on terrestrial ecosystem carbon cycling (Peters et al., 2007;Pingintha et al., 

2010). Temperature response functions, based on leaf level photosynthetic processes and 

organic matter decomposition, have been used in many ecosystem-level carbon cycle 

models (Friedlingstein et al., 2006). These models can be improved by better 

understanding the NEE-temperature relationship. However, thermal optimality of 

switchgrass NEE has not yet been determined. Direct measurement of NEE between an 

ecosystem and the atmosphere, and the associated environmental factors by the eddy 

covariance (EC) technique, provides an elucidation of the climatic controls on NEE 

(Baldocchi et al., 2001a). Recently EC data are being used to determine ecosystem 

parameters and to evaluate land surface models for the carbon cycle (Bonan et al., 2011). 

However, few studies have been reported on NEE measurements in switchgrass (Skinner 

and Adler, 2010;Zeri et al., 2011;Wagle and Kakani, 2013). Moreover, the previous 

studies lacked a detail investigation of environmental controls on NEE. A detailed study 

of physiological processes at the ecosystem scale may improve our ability to 

parameterize ecosystem models.  

A wide variety of different feedstocks would be necessary to produce one billion 

tons of biomass annually to generate enough biofuel to displace 30% of the United States 

petroleum usage by the year 2030 (Perlack et al., 2005). Substantial increase in 

productivity of biomass feedstocks, particularly switchgrass (Panicum virgatum), over 

the next two decades is one of the key assumptions of the ‘Billion Ton Study’ (U.S. 

Department of Energy, 2011). Biorefineries require efficient and accurate methods of 

estimating switchgrass biomass supplies (Schmer et al., 2010). Therefore, there is great 
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interest in predicting the productivity of this bioenergy crop spatially and temporally 

using modeling techniques (Brown et al., 2000;Adler et al., 2007). However, a majority 

of the models are empirical in nature and fail to provide inference to the underlying 

mechanisms for differences in productivity (Dohleman et al., 2009). Mechanistic models 

that employ photosynthetic CO2 assimilation require comprehensive field data sets across 

growing seasons at various environmental conditions for validating the models and 

understanding the physiological basis for observed differences in productivity (Dohleman 

et al., 2009). However, there is still a lack of information on the effect of environmental 

variables on ecosystem scale CO2 fluxes, and the magnitude and seasonality of light-

response parameters in switchgrass. Continuous field measurements of NEE and 

associated environmental factors over two full growing seasons provide a unique dataset 

for this emerging bioenergy crop. 

As NEE is the balance between carbon uptake (GEP, gross ecosystem production) 

and release (ER, ecosystem respiration), the partitioning of NEE into these two flux 

components is important for understanding the mechanistic response of NEE to 

environmental variables. It is common in EC studies to separate NEE into GEP and ER 

using a rectangular hyperbolic light-response function (LRF) (Falge et al. 2001). 

Although the response of NEE to photosynthetic photon flux density (PPFD) is described 

by a rectangular hyperbola, earlier we demonstrated that vapor pressure deficit (VPD) 

modified the NEE-PPFD relationship at high VPD and the LRF failed to provide good 

fits to daytime NEE (Wagle and Kakani, 2013). Previous  studies have also reported the 

failure of the LRF to describe daytime NEE in other ecosystems (Li et al., 2005;Lasslop 

et al., 2010;Pingintha et al., 2010). Temperature and VPD are expected to alter the 
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response of NEE to PPFD. However, the mechanistic understanding of those alterations 

is still lacking. Investigation of the relationships between light-response parameters and 

major environmental drivers provides insight into the response of an ecosystem to 

environmental stresses.   

The objectives of this study were to determine the response of switchgrass NEE to 

major environmental drivers (PPFD, air temperature, and VPD) and to explore the 

underlying mechanisms. This study also determines the magnitudes and seasonality of 

light-response parameters in response to controlling factors.  

 

Materials and Methods 

Site information 

 

The study site was located at Oklahoma State University South Central Research Station, 

Chickasha, OK (35.04
°
 N latitude, 97.95

°
W longitude, and 330 m above sea level 

altitude). The measurements were conducted in a well established switchgrass (cv. 

Alamo) field during the 2
nd

 and 3
rd

 years of establishment (2011 and 2012, respectively). 

The EC system was set up at the North end of a flat eight hectare field with sufficient 

upwind fetch (275 m) of uniform cover in the prevailing wind direction (South) and the 

East-West direction. The experiment was rainfed and the crop was sown in 38 cm wide 

rows. The soil is McLain silt loam soil (fine, mixed, superactive, thermic Pachic 

Argiustolls). Fertilizer was not applied in the establishment year, but ammonium nitrate 

was broadcast applied in April 2011 and 2012 at 75 kg N ha
-1

.  
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Net ecosystem CO2 exchange and other auxiliary measurements 

 

Continuous CO2 fluxes were measured using an EC system: CSAT3 sonic anemometer 

(Campbell Scientific Inc., Logan, UT, USA) and LI-7500 open-path infrared gas analyzer 

(IRGA, LI-COR Inc., Lincoln, NE, USA) during the 2011 (DOY 115-304) and 2012 

(DOY 61-305) growing seasons. The IRGA was tilted to a 30° angle to minimize dust 

and water droplet accumulation on the windows. Sensors were fixed at a 2.2 m height 

from the ground in 2011 due to a smaller canopy height but adjusted according to 

increasing canopy height in 2012 to avoid measurement in the roughness sub-layer. The 

post-processing software EddyPro (LI-COR Inc., Lincoln, NE, USA) was used to process 

10 Hz frequency flux data and fluxes were computed for 30-min averaging periods. A 

quantum sensor (LI-190, LI-COR Inc., Lincoln, NE, USA) was used to measure PPFD. 

Net radiation above the crop canopy was measured using a net radiometer (NR-Lite, Kipp 

and Zonen, Delft, The Netherlands). Temperature and relative humidity were measured 

using temperature and relative humidity probes (HMP45C, Vaisala, Helsinki, Finland). 

Top-surface soil temperature and moisture (5 cm depth) were recorded using water 

content reflectometers (CS616, Campbell Scientific Inc., Logan, UT, USA) and 

averaging soil temperature probes (TCAV-L, Campbell Scientific Inc., Logan, UT, 

USA). Soil heat flux (G) was measured using self-calibrating heat flux sensors 

(HFP01SC, Hukseflux Thermal Sensors B.V., Netherlands) at 5 cm depth. Environmental 

data collected at 10-Hz frequency were averaged for 30-min periods using a datalogger 

(CR3000, Campbell Scientific Inc., Logan, UT, USA). Rainfall and air temperature data 

for the study site was downloaded from the Oklahoma Mesonet website 
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(www.mesonet.org, verified January 2, 2013). Flux data quality was assessed by the 

degree of energy balance closure [(LE + H)/ (Rn - G)]. The energy balance closures of 

0.77 in 2011 and 0.83 in 2012 were typical for EC experiments (Wilson et al., 2002). 

Data for the period when wind was blowing from behind the tower and data for the 

period during low turbulence (friction velocity, u* < 0.20 m s
-1

) were removed. We also 

excluded unreasonable flux values and statistical outliers beyond ± 3.5 STD range from a 

14-day running mean window. The details on these measurements, including data 

screening and gap filling, have been provided in a previous publication (Wagle and 

Kakani, 2013). Sign convention in this study is that CO2 uptake by the ecosystem is 

negative and a net CO2 release to the atmosphere is positive.  

 

Analysis of canopy CO2 fluxes 

 

The data sets used in this study are daytime half-hourly data for the two growing seasons 

(May-October for the 2011 growing season and March-October for the 2012 growing 

season). Because of warm spring temperature the 2012 growing season started 

considerably earlier than in 2011. Simple and multiple regression analyses were 

performed at a monthly time scale between CO2 fluxes and major environmental 

variables (monthly average PPFD and air temperature, and monthly total precipitation) to 

examine the response of the ecosystem to changes in major environmental drivers.  

The light-response of NEE was evaluated using the LRF (Falge et al., 2001) as 

shown in equation 1 and the modified light-VPD-response model (LVRM) that accounted 

http://www.mesonet.org/
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for an exponential reduction in the light saturated maximum canopy CO2 uptake rate at 

high VPD as shown in equations 2 and 3. 

ER
GPPPFD

PPFDGP
NEE 






max

max




    (1) 

where α is the apparent quantum yield [i.e., the initial slope of the light-response curve 

(mol CO2 mol
-1

 of photons)], PPFD is measured photosynthetic photon flux density 

(µmol m
-2

 s
-1

), GPmax is the maximum canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light 

saturation, and ER is respiration rate at zero PPFD (y-intercept of the light-response 

curve, µmol m
-2

 s
-1

). 

000max )],([exp VPDVPDifVPDVPDkGPGP    (2) 

00max , VPDVPDifGPGP       (3) 

where k indicates the sensitivity of GPmax to VPD, and VPD0 threshold was set to 1 kPa 

(Lasslop et al., 2010). Changing this threshold to 2 kPa did not alter the results, but the 

coefficient of determination (R
2
) of the model fits was slightly decreased when threshold 

was set to 3 kPa. Fitted parameters were estimated using nonlinear least squares 

regression in SAS software (SAS Institute Inc., 2009, Cary, NC, USA). Measured 

daytime NEE data (not gap-filled) were fitted to the above mentioned models separately 

for each month of the growing seasons to obtain monthly estimates of GPmax, α, and ER 

to assess seasonality of the model parameters. 

To determine the magnitude of NEE hysteresis (reduction in NEE rates in the 

afternoon hours when compared to the morning hours at similar light levels), we 

compared NEE rates at similar light levels (around 1000-1100 µmol m
-2

 s
-1

 PPFD) in the 

morning and afternoon hours across two growing seasons. To examine the relationship 
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between NEE and PPFD, NEE observations for each season were separated into 10 

different bins of PPFD (< 100, 100-200, 200-400, 400-600, 600-800, 800-1000, 1000-

1200, 1200-1400, 1400-1600, and > 1600 µmol m
-2

 s
-1

). The mean NEE and PPFD per 

bin was calculated to analyze the NEE trends with PPFD. We also sorted NEE data into 

thirteen different temperature classes (<16, 16-18, 18-20, 20-22, 22-24, 24-26, 26-28, 28-

30, 30-32, 32-34, 34-36, 36-38, and > 38 °C) and six different VPD classes (< 1.2, 1.2-2, 

2-3, 3-4, 4-5, > 5 kPa) to investigate the response of NEE to temperature and VPD. The 

light-response models were fitted across temperature and VPD classes separately to 

determine the coefficients of light-response parameters for each temperature/VPD class.  

 

Results and Discussion 

Seasonal weather conditions  

 

The site experienced a relatively milder winter and cooler summer in 2012 as compared 

with 2011 (Fig. 13a). Mean monthly average air temperature ranged from 1.2 °C 

(January) to 32.4 °C (July) in 2011, while it ranged between 5.2 °C (February) and 30.1 

°C (July) in 2012. Table 7 shows that monthly mean daily maximum air temperature for 

the growing seasons ranged from 23.9 °C (October) to 39.6 °C (July) in 2011 and 20.5 °C 

(March) to 37.1 °C (July) in 2012. The site received timely rainfall in 2012 as compared 

with 2011 which was dry throughout most of the year (Fig. 13b). However, both years 

were drier than the average, with the annual precipitation 41% below the 30-year average 

of 896 mm in 2011 and 25% below in 2012.  
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Response of NEE to major environmental drivers 

 

Simple and multiple regression analyses showed that there were no relationships between 

NEE and the chosen environmental variables (PPFD, air temperature, and precipitation) 

at a monthly time scale, most likely due to different variance and covariance at different 

time scales as suggested by Baldocchi et al. (2001b). Wohlfahrt et al. (2008) also 

reported no significant relationships between annual NEE and environmental controls 

during the various periods in temperate mountain grassland. It is widely acknowledged 

that PPFD is the most significant environmental factor for variation in NEE. In general, 

photosynthetic activity and carbon uptake by the ecosystem increase as PPFD levels 

increase. But our study indicates that the correlation between NEE and PPFD is obscured 

by warm air temperature and high VPD in the summer. This is because a higher PPFD is 

associated with warm air temperature and high VPD. These conditions in the summer 

enhance respiration and reduce photosynthesis rates. The lack of a significant correlation 

between NEE and PPFD at a monthly time scale is associated with the limitation of 

photosynthesis by other environmental factors. Thus, we have investigated the response 

of NEE to PPFD, temperature, and VPD separately in the following sections. 

 

Response of NEE to PPFD 

 

When NEE was plotted against PPFD using mean values of NEE and PPFD per bin we 

observed rectangular hyperbolic-like response of NEE to PPFD in both seasons (Fig. 14). 

As a result, the LRF (equation 1) provided excellent fits for the data (R
2
 = 0.99 for the 
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2011 growing season and R
2
 = 0.96 for the 2012 growing season). The confounding 

effects of other environmental factors were masked when the bin averages were used to 

examine the NEE-PPFD relationship. But the confounding effect of high VPD limited the 

applicability of the LRF when the NEE-PPFD relationship was evaluated using half-

hourly data for short periods (i.e., weekly) (Table 8). The table shows that the LRF 

successfully described the relationship between NEE and PPFD (R
2
 > 0.90) at low VPD 

(< 3 kPa). The LRF, widely used by the EC community for NEE partitioning, became 

inadequate at VPD > 3 kPa. In contrast, the LVRM performed significantly better for the 

periods of high VPD. Different magnitudes of sensitivity of GPmax to VPD (represented 

by k in Table 8) for different ranges of VPD across two growing seasons concur with the 

finding of a previous study (Ludlow and Jarvis, 1971), that the response of 

photosynthesis to VPD is different for the same species when grown under different 

climatic conditions. 

 

Limitation of VPD on the NEE-PPFD relationship 

 

To further investigate the effect of VPD on the NEE-PPFD relationship, scatter plots 

(Fig. 15) of NEE vs. PPFD were plotted for two selected periods: one with smaller VPD 

(May 24-31, 2011: diurnal mean VPD ranged from 1.22 to 2.94 kPa) and the other with 

larger VPD (July 13-23, 2011: diurnal mean VPD range of 1.97-6.1 kPa). For the period 

of a smaller VPD, NEE increased with PPFD and there was no indication of canopy light 

saturation up to 2000 µmol m
-2

 s
-1 

PPFD (Fig. 15a). This result supports the finding of a 

previous study that photosynthesis in a warm-season prairie did not saturate at as high as 



110 
 

2100 µmol m
-2

s
-1 

PPFD
 
(Verma et al., 1992). The result suggests that VPD is not a 

limiting factor in the response of switchgrass NEE to PPFD when the maximum VPD < 3 

kPa. During July 16-23, a period with high VPD, we observed larger scatter of the data at 

high PPFD and NEE decreased considerably when PPFD exceeded about 1300 µmol m
-2

 

s
-1 

(Fig. 15b). A distinct hysteresis loop was evident for the NEE-PPFD relationship in 

the morning and afternoon hours. It highlights the confounding effect of VPD on the 

NEE-PPFD relationship. This NEE hysteresis is a result of the limitation of 

photosynthesis due to stomatal closure at high VPD and larger rate of respiration in the 

afternoon (Körner, 1995, Lasslop et al. 2010). 

 

Seasonal patterns of VPD and asymmetric diurnal NEE cycles  

 

To illustrate the underlying physiological mechanisms of reduction in NEE at high VPD, 

we examined the diurnal courses of NEE and VPD across the growing seasons. We 

observed great variations in VPD patterns with smaller values in the spring and late fall, 

and higher values during June to September (Table 7). As a result, NEE showed 

symmetric diurnal NEE cycles in the spring and late fall with a peak NEE at around 2:00 

PM (CST) when the maximum radiation occurred as shown in Figure 16. However, NEE 

reached a maximum at or before noon, before radiation reached a peak, due to the 

limitation of high VPD on photosynthesis, and asymmetric diurnal NEE cycles were 

observed from June through September (e.g. July in Fig. 16). These asymmetric diurnal 

NEE cycles are typical (Price and Black, 1990), most probably due to different 
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physiological responses of an ecosystem to environmental conditions in the afternoon 

than in the morning. 

The reduction in NEE rates in the afternoon hours when compared to the morning 

hours at similar light levels were evaluated across the growing seasons and presented in 

Table 9. The table shows that carbon uptake by the ecosystem was of a similar magnitude 

in the morning and afternoon hours in March and April at similar light levels. The NEE 

rates slightly decreased from morning to afternoon in May (7 – 9%) and October (0 – 

2.5%). The NEE rates decreased in the afternoon hours by 16 – 47% in June, 57 – 62% in 

July, 28 – 41% in August, and 35 – 36% in September, when compared to the morning 

hours. The greater reduction in NEE was observed during severe dry periods (high VPD). 

The results indicate that the NEE hysteresis phenomenon is associated with VPD effects 

on stomatal openings. Similar results were reported by Niu et al. (2011), that the 

magnitude of NEE hysteresis was larger in warmer than colder sites, with larger 

hysteresis during water stressed periods. These observations of NEE hysteresis are useful 

for understanding seasonal and inter-annual variability in NEE. 

 

Magnitude and seasonality of light-response parameters 

 

The values of GPmax, α, and ER increased to a maximum that coincided with periods of 

peak growth (May/June) and decreased towards senescence (Table 10) as observed 

previously for agricultural fields and grasslands (Gilmanov et al., 2003;Fischer et al., 

2007). The values of the model parameters were greater in 2012 than in 2011 because of 

a greater crop growth and more optimal growing conditions. The maximum monthly 
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average GPmax reached up to 31.1 µmol m
-2

 s
-1

 in 2011 and 50.3 µmol m
-2

 s
-1

 in 2012 

during peak growth. The monthly average values of α during the period of maximum 

GPmax were 0.045 and 0.074 mol CO2 mol
-1

 of photons in 2011 and 2012, respectively. 

Similarly, the highest value of ER during the peak growing period was 5.93 and 8.16 

µmol m
-2

 s
-1

 in 2011 and 2012, respectively. We observed a strong correlation (GPmax = 

8.31 x ER – 18.11, R
2
 = 0.74, for pooled monthly estimates across both seasons) between 

GPmax and ER since changes in photosynthetic capacity alter the primary processes (i.e., 

protein turnover and active transport) accounting for respiration (De Vries, 1975). Our 

estimate of monthly average α (0.074 mol CO2 mol
-1

 of photons) during the period of 

maximum GPmax in 2012 was higher than the value 0.044 mol CO2 mol
-1

 of photons 

suggested by Ruimy et al. (1995) as the upper limit for C3 and C4 grasslands. However, 

this estimate generally agrees with other studies on C4 species. The average α for NAD-

ME type C4 grasses, to which switchgrass belongs, was 0.060 mol CO2 mol
-1

 of photons 

under normal atmospheric conditions (Ehleringer and Pearcy, 1983) and it was 0.068 in 

maize (Zea mays) (Dohleman and Long, 2009), a NADP-ME type C4 species. Our 

estimates of maximum GPmax (50.3 µmol m
-2

 s
-1

) and ER (8.2 µmol m
-2

 s
-1

)
 
were of 

similar magnitudes to estimates by Gilmanov et al. (2003). Their estimates of GPmax and 

ER in a tallgrass prairie in Oklahoma were 52.5 and 8.3 µmol CO2 m
-2

 s
-1

, respectively. 

 

Dependency of light-response parameters to temperature and VPD  

 

Light-response parameters showed great variations with temperature (Fig. 17a,b,c) and 

VPD (Fig. 17d,e,f). All light-response parameters (GPmax, α, and ER) were smaller at 
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below optimum temperatures. A maximum GPmax occurred at an optimum temperature 

range between 30 and 32 °C. The maximum GPmax was higher (42.85 ± 3.96 µmol m
-2

 s
-

1
) in 2012 than in 2011 (33.51 ± 2.2 µmol m

-2
 s

-1
). The higher values of α were achieved 

at a temperature range of 20-25 °C. The ER increased with increasing temperature up to 

an optimum temperature range of 23-25 °C and then it delined. The GPmax increased as 

VPD increases up to a certain range and decreased thereafter. In 2011, the maximum rate 

of GPmax (29.9 ± 1.4 µmol m
-2

 s
-1

) was observed at a VPD range of 3-4 kPa. In 2012, 

GPmax exhibited a relatively flat response to VPD between 1.2 and 3 kPa, ranging from 

35 ± 2 to 36.6 ± 2.3 µmol m
-2

 s
-1

. Values of ER and α decreased with increasing VPD.  

 

Response of NEE to temperature and VPD 

 

The daytime NEE data, averaged over thirteen different bins of air temperature and six 

different bins of VPD, were plotted against air temperature and VPD (Fig. 18). The NEE 

increased rapidly with the temperature in the lower temperature range to reach a 

maximum and then declined as the temperature increased further. At high temperatures, 

the NEE decreases because photorespiration increases as a result of more increase in 

oxygenating reaction of RuBISCO than the carboxylating reaction (Long, 1991). In 

addition, high temperature enhances heterotrophic respiration as well. The optimum 

temperature for NEE was 33.8 °C in 2011 and 28.1 °C in 2012 (Fig. 18a). The optimum 

temperature range for GPmax (30-32 °C) and NEE (28-34 °C) in this study was in 

agreement with the result of a previous study that switchgrass photosynthesis was 

maximum at 30-35 °C (Warner et al., 1987). Higher optimum temperature for NEE in 
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2011 than in 2012 suggests that the optimum temperature shifts to a higher temperature in 

a warmer year, most probably due to thermal acclimation and overcompensation of 

increases in respiration by increases in photosynthesis at a higher temperature (Baldocchi 

et al., 2001a;Niu et al., 2012), as switchgrass is a native C4 warm-season grass. Niu et al. 

(2012) reported a positive correlation between optimum temperature for NEE and annual 

mean temperature. 

The NEE increased with increasing VPD at a smaller VPD, with higher values of 

NEE at a VPD range of 2-4 kPa in 2011 and at a VPD range of 1.2-3 kPa in 2012, and 

decreased thereafter (Fig. 18b). The result concurs with the finding of a previous study 

(Ludlow and Jarvis, 1971), that the response of photosynthesis to VPD is different for the 

same species when grown under different climatic conditions. The increase of NEE with 

increasing VPD at low VPD is because of increasing air temperature (VPD and 

temperature increase simultaneously) that enhances RuBISCO activity and in turn higher 

CO2 assimilation (Sage and Kubien, 2007) and not due to the alleviation of VPD related 

stomatal limitation. 

 

Conclusions 

 

The goals of this study were to characterize the effects of key environmental factors 

(PPFD, air temperature, and VPD) on daytime NEE and to explore the underlying 

mechanisms. The result shows that PPFD is the most significant environmental factor for 

variation in NEE in switchgrass under optimal conditions. However, warm air 

temperature and high VPD obscured the NEE-PPFD relationship, and thereby affected 
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the light-response parameters. As a result, the rectangular hyperbolic light-response curve 

failed to provide good fits for daytime NEE at high VPD (> 3 kPa). The carbon uptake by 

the ecosystem decreased up to 62% (monthly average) from morning to afternoon at 

equal light levels because of the limitation of photosynthesis due to stomatal closure at 

high VPD. The NEE exhibited an optimum temperature range of 28-34 °C and decreased 

markedly beyond 35 °C. The consistent presence of NEE hysteresis at higher VPDs 

suggests that asymmetric diurnal NEE cycles should be considered when simulating 

carbon cycle models.  
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Table 7. Peak diurnal monthly mean values of vapor pressure deficit (VPD) and air 

temperature across two growing seasons.  

 2011 2012 

Month VPD (kPa) Air Temp. (°C) VPD (kPa) Air Temp. (°C) 

Mar   1.21 20.5 

Apr   1.25 23.4 

May 2.74 27 2.17 28.2 

Jun 5.2 36.9 2.92 32 

Jul 6.22 39.6 4.74 37.1 

Aug 6.09 39.1 4.42 35.5 

Sep 3.84 30.3 2.41 27.2 

Oct 3.28 23.9 2.06 24.4 
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Table 8. Comparison of rectangular hyperbolic light-response function (LRF) and 

modified rectangular hyperbolic light-VPD-response model (LVRM) fits for selected 

time periods with different VPD ranges.  

Time periods LRF (R
2
) LRVM (R

2
) k VPD range 

(kPa) 

May 24-31, 2011 0.96 0.96 0.01 1.22-2.94 

Jul 16-23, 2011 0.24 0.82 0.31 1.97-6.1 

Aug 24-31, 2011 0.38 0.82 0.22 2.04-6.59 

Apr 16-23, 2012 0.90 0.90 0.02 0.50-1.42 

Jun 24-30, 2012  0.45 0.89 0.32 0.84-5.30 

Aug 1-7, 2012 0.60 0.93 0.17 1.64-6.76 

Vapor pressure deficit (VPD) range is the diurnal mean of VPD for the week, R
2
 is the 

coefficient of determination, and k represents the response of maximum canopy CO2 

uptake rate at light saturation (GPmax) to VPD.   
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Table 9. Magnitude of reduction (expressed in percentage) in net ecosystem CO2 

exchange (NEE) in the afternoon (PM) hours as compared to the morning (AM) hours at 

similar photosynthetic photon flux density (PPFD) across growing seasons.  

  2011 2012 

Month Time PPFD  

(μmol m
-2

 s
-1

) 

NEE 

(μmol m
-2

 s
-1

) 

Change 

(%) 

PPFD  

(μmol m
-2

 s
-

1
) 

NEE 

(μmol m
-2

 s
-

1
) 

Change 

(%) 

Mar AM 

PM 

 

 

  957 

983 

-6.08 ± 1.07 

-6.25 ± 1.36 

+2.8 

Apr AM 

PM 

   1027 

1008 

-25.39 ± 2.3 

-25.26 ± 1.66 

-0.5 

May AM 

PM 

1113 

1088 

-13.02 ± 1.29 

-11.81 ± 1.65 

-9.3 1023 

1003 

-27.46 ± 2.38 

-25.34 ± 2.28 

-7.7 

Jun AM 

PM 

1009 

1026 

-16.7 ± 0.71 

-8.8 ± 0.57 

-47.3 1004 

1085 

-21.46 ± 1.78 

-17.85 ± 2.29 

-16.8 

Jul AM 

PM 

1033 

1069 

-12.17 ± 0.53 

-4.56 ± 0.76 

-62.5 992 

999 

-13.46 ± 0.91 

-5.75 ± 0.82 

-57.2 

Aug AM 

PM 

1004 

1039 

-11.04 ± 1.04 

-6.49 ± 0.94 

-41.2 1061 

1077 

-10.35 ± 0.90 

-7.41 ± 0.94 

-28.4 

Sep AM 

PM 

1067 

1100 

-8.81 ± 0.56 

-5.62 ± 0.72 

-36.2 1057 

1030 

-7.49 ± 0.5 

-4.86 ± 0.57 

-35.1 

Oct AM 

PM 

1101 

1110 

-8.39 ± 0.55 

-8.40 ± 1.36 

0 956 

956 

-7.74 ± 1.2 

-7.54 ± 1.15 

-2.5 

Negative sign for change (%) indicates reduction in NEE in the afternoon hours as 

compared to the morning hours. The NEE rates and PPFD were half-hourly binned 

diurnal mean values for the entire month.   
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Table 10. Coefficients estimated from rectangular hyperbolic light-VPD (vapor pressure 

deficit)-response model (LVRM) fits for each month of the growing seasons.   

 

2011 2012 

Month α GPmax ER R
2
 α GPmax ER R

2
 

Mar 

    

0.029 15.0 3.79 0.32 

Apr 

    

0.074 45.2 6.01 0.82 

May 0.044 30.6 5.93 0.71 0.074 50.3 8.16 0.87 

Jun 0.045 31.1 5.62 0.86 0.063 40.4 7.11 0.85 

Jul 0.037 19.0 4.46 0.6 0.037 27.8 4.65 0.73 

Aug 0.033 24.6 5.50 0.5 0.050 21.9 5.43 0.81 

Sep 0.032 18.7 4.73 0.73 0.074 13.1    5.26 0.49 

Oct 0.035 14.9 3.56 0.56 0.046 17.9    4.87 0.66 

Here α is the apparent quantum yield (mol CO2 mol
-1

 of photons), GPmax is the maximum 

canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light saturation, and ER is respiration rate (µmol 

m
-2

 s
-1

) at zero photosynthetic photon flux density, and R
2
 is the coefficient of 

determination.     
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Fig. 13. Monthly average air temperature (a) and monthly total rainfall (b) in 2011 and 

2012 for Chickasha, Oklahoma, USA. 
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Fig. 14. Response of net ecosystem CO2 exchange (NEE) to photosynthetic photon flux 

density (PPFD). Each data point is the seasonal mean NEE at a PPFD class. Bars 

represent standard errors of the means. Minimum significant differences from Tukey’s 

HSD groupings were 1.95 and 2.22 for 2011 and 2012, respectively.    
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Fig. 15. The relationship between net ecosystem CO2 exchange (NEE) and 

photosynthetic photon flux density (PPFD) for two selected time periods: (a) May 24-31, 

2011 and (b) July 16-23, 2011.  
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Fig. 16. Half-hourly binned diurnal courses of net ecosystem CO2 exchange (NEE) and 

photosynthetic photon flux density (PPFD) for May, July, and October 2011. Negative 

values of NEE indicate net carbon uptake and positive values indicate carbon release by 

the ecosystem. Bars represent standard errors of the means.  

  

May

N
E

E
 (

m
o
l m

-2
 s-1

)

-20

-15

-10

-5

0

5

10

Jul Oct

Time of day (Hours)

  0   4   8   12   16   20

P
P

F
D

 (
m

o
l m

-2
 s

-1
)

0

500

1000

1500

Time of day (Hours)

  0   4   8   12   16   20

Time of day (Hours)

  0   4   8   12   16   20



130 
 

 

Fig. 17. Light-response parameters: maximum canopy CO2 uptake rate (GPmax) at light 

saturation, respiration (ER) at zero light levels, and apparent quantum yield (α) as a 

function of air temperature and vapor pressure deficit (VPD). The parameters were 

determined from daytime net ecosystem CO2 exchange (NEE) data categorized by air 

temperature and VPD classes and fit to the non-linear least square regression. Bars 

represent standard errors of the means. 
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Fig. 18. The response of daytime net ecosystem CO2 exchange (NEE)  to (a) air 

temperature and (b) vapor pressure deficit (VPD). Each data point is the mean NEE at a 

temperature/VPD class. Bars represent standard errors of the means. Minimum 

significant differences from Tukey’s HSD groupings for temperature were 2.86 and 2.92, 

and for VPD were 1.7 and 1.75 for 2011 and 2012, respectively. 
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CHAPTER V 

 

 

COMPARISON OF NET ECOSYSTEM CO2 EXCHANGE OF SWITCHGRASS AND 

HIGH BIOMASS SORGHUM 

 

Pradeep Wagle and Vijaya Gopal Kakani
 

 

Department of Plant and Soil Sciences, Oklahoma State University, 368 AG Hall, 

Stillwater, OK 74078, USA 

 

ABSTRACT. We analyzed eddy covariance carbon dioxide flux measurements from co-

located switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor 

L. Moench) fields during a growing season in 2012. The major objective of this study 

was to quantify and contrast net ecosystem CO2 exchange (NEE) between ecosystems. 

Monthly ensemble averaged NEE reached seasonal peak values of -33.02 ± 1.96 (May) 

and -35.86 ± 2.32 µmol m
-2

 s
-1

 (June) in switchgrass and sorghum, respectively. The 

weekly average of daily integrated NEE reached seasonal peaks of -8.5 g C m
-2 

d
-1

 in 

switchgrass and -10.3 g C m
-2 

d
-1

 in sorghum. Daily gross ecosystem production (GEP) 

reached seasonal peaks of 18.15 and 19.03 g C m
-2

 d
-1 

in switchgrass and sorghum, 
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respectively. The growing season (March-October) GEP and ecosystem respiration (ER) 

totals in switchgrass were 2017 ± 295 and 1527 ± 236 g C m
-2

, respectively. Similarly, 

the growing season (May-October) cumulative GEP and ER of sorghum were 1164 ± 183 

and 903 ± 134 g C m
-2

, respectively. The result shows that the switchgrass ecosystem was 

a larger carbon sink with a cumulative seasonal carbon uptake of -490 ± 59 g C m
-2

 

compared to -261 ± 48 g C m
-2 

by sorghum. Because the magnitude of CO2 exchange was 

similar, the difference in carbon sink strength between two ecosystems was driven mainly 

by the length of the growing season. Switchgrass was a net sink of carbon during five 

months (April-August), but the sorghum ecosystem appeared to be a net carbon sink for 

only three months (June-August).   

 

Keywords: Biofuels, Eddy covariance, High biomass sorghum, Net ecosystem exchange, 

Seasonal variation, Switchgrass. 

 

Introduction 

 

America consumes about 25% of the world’s oil as one-third of the automobiles (230 

million) are in America (NBAP, http://www1.eere.energy.gov/biomass/pdfs/nbap.pdf, 

verified April 11, 2013). According to the projection of the U.S. Energy Information 

Administration (EIA), the reliance on foreign producers for oil will increase 30% by 2030 

and the transport sector’s greenhouse gas emissions will rise by 40% (Annual Energy 

Outlook, 2007, ftp://ftp.eia.doe.gov/forecasting/0383(2007).pdf, verified April 11, 2013). 

The demand and cost of energy are increasing, and oil and gas reserves are declining. 

http://www1.eere.energy.gov/biomass/pdfs/nbap.pdf
ftp://ftp.eia.doe.gov/forecasting/0383(2007).pdf
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Moreover, CO2 concentration is increasing in the atmosphere since the Industrial 

Revolution of the mid-nineteenth century. Most of the released CO2 into the atmosphere 

is a result of burning fossil fuels (Revelle and Suess, 1957). It is, therefore, necessary to 

produce alternative fuels from renewable sources to supplement transportation fuel 

requirement. Current ethanol production from sugar/starch may not be sustainable 

because of the direct competition with food/feed sources. Thus, biofuels production from 

biomass is a viable choice of energy production. The U.S. has the capability of producing 

about 1.3 billion dry tons of biomass each year (Perlack et al., 2005). Switchgrass 

(Panicum virgatum L.) and high biomass sorghum (hereafter referred to as sorghum) 

(Sorghum bicolor L. Moench) have been proposed as dedicated biomass feedstocks for 

the southern Great Plains of the U.S.  

In recent years, direct measurements of net ecosystem CO2 exchange (NEE), the 

balance between carbon uptake through photosynthesis and carbon loss through 

respiration, have increased. The North American Carbon Program Science Plan (Wofsy 

and Harriss, 2002) emphasized quantifying the carbon sink of the North America by NEE 

measurements in a variety of ecosystems. Long-term eddy covariance monitoring 

networks such as Ameriflux, Euroflux, and Asiaflux have been established to measure 

NEE across a range of land-use categories, and data from several ecosystems are 

available for scientific communities. FLUXNET, an international network of 

micrometeorological tower sites, coordinates regional and global analysis of continuous 

observations of exchanges of CO2, H2O, and energy between terrestrial ecosystems and 

the atmosphere from over 500 tower sites using the eddy covariance method 

(http://fluxnet.ornl.gov/, verified December 18, 2012). However, few studies of NEE in 

http://fluxnet.ornl.gov/
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switchgrass have been reported to date (Skinner and Adler, 2010;Zeri et al., 2011;Wagle 

and Kakani, 2013). To our knowledge there has been no NEE study in high biomass 

sorghum yet. This paper not only quantifies NEE but also compares the magnitudes of 

NEE and its two components, gross ecosystem production (GEP, total carbon gained by 

the ecosystem) and ecosystem respiration (ER, total carbon lost by the ecosystem), 

between two contrasting (perennial and annual) feedstock species at the same experiment 

site.  

The objective of this study was to quantify and contrast the magnitude of CO2 

flux exchange between switchgrass and sorghum ecosystems under the same growing 

condition. In this study, NEE was compared between annual sorghum and perennial 

switchgrass in its third year of production in South Central (Chickasha) Oklahoma. 

 

Material and Methods 

Site description and weather conditions 

 

Eddy covariance measurements were performed over switchgrass (cv. Alamo) and 

sorghum (cv. ES 5200) fields located at adjacent plots at Oklahoma State University, 

South Central Research Station, Chickasha, Oklahoma. Switchgrass stand was 

established in spring 2010 and sorghum was planted in the second week of May. We 

applied ammonium nitrate at 75 kg N ha
-1 

in April for switchgrass and in May for 

sorghum. Both crops relied on rainfall. The site has been described in detail previously 

(Wagle and Kakani, 2013). Two flux towers were about 500 m from each other. Thus, 

both ecosystems experienced similar weather conditions. Monthly mean daily maximum 
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and minimum temperatures, and monthly rainfall in 2012 in comparison with the 30-year 

mean for the site are presented in Table 11. Winter and spring in 2012 were slightly 

warmer and wetter than the average, but summer and fall seasons in 2012 were slightly 

warmer and drier when compared with the 30-year average for the site. 

 

Micrometeorological and biometric measurements, and data screening 

 

Net ecosystem CO2 exchange from switchgrass and sorghum fields was measured using 

the eddy covariance technique in the 2012 growing season. At both ecosystems, a three-

dimensional sonic anemometer (Model CSAT3, Campbell Scientific Inc., Logan, UT, 

USA) and an open path infrared gas analyzer (IRGA; model LI-7500, LI-COR Inc., 

Lincoln, NE, USA) were mounted over the crop canopy. Sensor heights were adjusted 

according the canopy height not to measure fluxes in roughness sub-layer. Other climatic 

variables like photosynthetic photon flux density (PPFD), near surface soil temperature, 

moisture, soil heat (G) flux measurements (top 5 cm), and net radiation (Rn) were also 

collected. We also took periodic (mostly biweekly) biometric measurements for the better 

understanding of flux values. Leaf area index (LAI) was measured using a plant canopy 

analyzer (LAI 2000, LI-COR Inc., Lincoln, NE, USA). Biomass samples were 

destructively collected from three different 1 m
2
 areas in each field throughout the 

growing season and dried in an oven for a week at 70 °C before recording dry weights. 

Canopy height was also recorded. 

Flux measurements were collected at 10 Hz frequency and finally half-hourly 

CO2 fluxes were calculated from the covariance between CO2 density and vertical wind 
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speed. The eddy flux data was processed using eddy covariance processing software, 

EddyPro (LI-COR Inc., Lincoln, NE, USA). We screened data for the periods of low 

turbulent intensity (u* < 0.20 m s
-1

). The CO2 and turbulent fluxes were filtered to keep 

in the reliable range of fluxes. In addition, statistical outliers beyond ±3.5 standard 

deviation range were removed using a 14-day running mean window. Measurement 

details and data screening techniques have been provided in previous publications (Wagle 

and Kakani, 2012;Wagle and Kakani, 2013). Sign convention of NEE in this study is that 

a net CO2 uptake by the ecosystem is negative and a net CO2 release by the ecosystem is 

positive. 

 

Gap filling and partitioning of CO2 fluxes 

 

To fill missing data we employed different gap filling approaches based on the length of 

data gaps. Half-hourly gaps were filled using an average value immediately before and 

after the gap (Wever et al., 2002). Less than two hour gaps were filled using linearly 

interpolated values (Flanagan et al., 2002). Empirical models based on dominant 

physiological processes were developed to fill longer data gaps. Simple and multiple 

regression equations or exponential relationships were derived between nighttime NEE 

and soil temperature, air temperature, and soil moisture. Relationships with the highest 

level of significance were selected to fill nighttime NEE data gaps (Flanagan et al., 

2002). Mean NEE rates were calculated and filled the gaps for the periods when no 

significant relationships of the variables were observed (Flanagan et al., 2002). Initially, 
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we partitioned daytime NEE into GEP and ER using a widely used rectangular 

hyperbolic light-response curve function as shown below:   

ER
GPPPFD

PPFDGP
NEE 






max

max




    (1) 

where α, i.e. apparent quantum yield, is the initial slope of the light response curve (mol 

CO2 mol
-1

 of photons), PPFD is photosynthetic photon flux density (µmol m
-2

 s
-1

), GPmax 

is the maximum canopy CO2 uptake rate (µmol m
-2

 s
-1

) at light saturation, and ER is 

respiration rate at zero PPFD. We reported asymmetric diurnal NEE cycles in switchgrass 

mainly from June to September at this site (Wagle and Kakani, 2013) because of the 

limitation of higher vapor pressure deficit (VPD) on photosynthesis. Thus, the equation 1 

failed to provide good fits for the data. To address this problem, GPmax was calculated as 

the exponential decreasing function at high VPD to include the effect of VPD on 

photosynthesis as shown in a previous study (Lasslop et al., 2010): 

GPmax = GP0 exp [-k (VPD-VPD0)], if VPD > VPD0  (2) 

GPmax = GP0, if VPD < VPD0                (3) 

where VPD0 threshold was set to 1 kPa (Lasslop et al., 2010). Parameters were estimated 

using nonlinear least squares regression in SAS software (SAS Institute Inc. 2009, Cary, 

NC, USA). All empirical functions were developed for short time periods (mostly a week 

and sometimes up to 14 days in case of insufficient data points or lack of good fits) to 

account for climatic variability. Non-gap filled data were used for the optimization of 

model parameters. Daytime NEE data gaps were filled using these empirical functions. 

Seasonal total of NEE were calculated by summing the gap-filled half-hourly values. The 

sampling uncertainty (gap filling) errors with in seasonal estimates of CO2 fluxes were 
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determined as the standard error of the gap filling models as described in a previous study 

(Black et al., 2007). 

 

Results and Discussion 

Energy balance closure 

 

The plausibility of eddy covariance measurements is assessed from energy balance 

closure (EBC) test. The EBC was determined by comparing turbulent heat fluxes 

[sensible heat (H) + latent heat (LE)] with the available energy fluxes (Rn – G) as given 

below:  

EBC = (H + LE)/(Rn – G)      (4) 

We observed EBC of 0.83 for switchgrass and 0.82 for sorghum for half-hourly 

measurements in the 2012 growing season. Our result matches well with the typical range 

of eddy covariance measurements. The EBC for many field-experiments and for the CO2 

flux networks is about 80% (Aubinet et al., 1999;Wilson et al., 2002). Even a careful 

application of all corrections of the turbulent fluxes reduced the residual only slightly 

(Mauder and Foken, 2006). Recently it has been reported that the time-averaged fluxes 

(Finnigan et al., 2003) or spatially averaged fluxes including turbulent-organized 

structures (Kanda et al., 2004) can close the energy balance. These findings indicate that 

the unclosed EBC problem may not be related to errors involve in eddy covariance 

measurements. Instead, it may be related to the atmospheric phenomena which the eddy 

covariance system fails to measure. 
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Information on crop growth 

 

Because of mild winter in 2012 switchgrass growth began earlier in March, about 1.5-2 

months earlier than seen in 2011 and 2013. Even though sorghum was planted in the first 

week of May, sorghum growth occurred rapidly and the peak LAI was observed during 

mid-July for both ecosystems. The peak value of LAI was about 5.9 m
2
 m

-2
 for 

switchgrass and 5.7 m
2
 m

-2 
for sorghum. The highest recorded aboveground biomass in 

switchgrass was about 17 t ha
-1

 during mid-July while in sorghum it was about 27.6 t ha
-1

 

during mid-August. Canopy height reached a maximum of about 1.8 m in switchgrass 

and 2.2 m in sorghum. The result shows that the aboveground biomass of sorghum 

increased more rapidly and produced more aboveground biomass compared to 

switchgrass. 

 

Growing season patterns of ecosystem CO2 exchange 

 

Growing season distributions of daily NEE, GEP, and ER for both crops are shown in 

Figure 19. A similar seasonal phenology of CO2 uptake and release were observed over 

both ecosystems, with maximum carbon uptake during the active growing season 

followed by a rapid decrease in the late growing season due to dominance of ER over 

GEP. High rates of carbon assimilation (GEP) and low rates of ER resulted in substantial 

rates of carbon uptake by the ecosystems in the spring (Fig. 19). The magnitude of carbon 

uptake rate (NEE) was slightly greater in sorghum (-10.3 g C m
-2

 d
-1

) than in switchgrass 

(-8.5 g C m
-2

 d
-1

) because of slightly larger magnitude of GEP (19.03 g C m
-2

 d
-1

) and a 
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smaller magnitude of ER (10.24 g C m
-2

 d
-1

) in sorghum when compared to switchgrass. 

The peak GEP and ER of switchgrass reached 18.15 and 10.66 g C m
-2

 d
-1

, respectively. 

In both ecosystems, peak NEE values occurred in June and this period corresponded to 

the active growing periods. Both GEP and ER showed similar seasonal cycles as NEE 

(Fig. 19b,c), with higher rates of fluxes during the active growing phase and smaller rates 

of fluxes in the late growing season. The switchgrass ecosystem was able to acquire CO2 

at relatively higher rates during the late growing season (Fig. 19b). Both GEP and ER 

rates were also slightly larger in switchgrass than in sorghum during the late growing 

season. This is most probably because of deep-rooted switchgrass vegetation could have 

better access to groundwater. Relatively little rainfall was recorded in the late growing 

season for this site. The site received 293 mm of total rainfall from June to October while 

the 30-year average rainfall for the site was 418 mm. The site received 86% below the 

30-year average rainfall of 99 mm in October 2012. This led to an early yellowing of 

sorghum compared with switchgrass.  

The maximal NEE daily value of -8.5 g C m
-2

 d
-1

 in switchgrass in our study was 

a similar magnitude of the peak NEE for native tallgrass prairie (-8.4 g C m
-2

 d
-1

) in 

north-central Oklahoma (Suyker and Verma, 2001). We observed a slightly larger 

magnitude of daily peak NEE of -10.3 g C m
-2

 d
-1

 in sorghum, but it was a smaller 

magnitude of peak NEE of -17 g C m
-2

 d
-1 

in maize in eastern Nebraska (Suyker et al., 

2005). Peak GEP values of 19.03 g C m
-2

 d
-1 

(sorghum) and 18.15 g C m
-2

 d
-1

 

(switchgrass) in our study were smaller than those reported for irrigated maize (28-30 g C 

m
-2

 d
-1

) and rainfed maize (22-27 g C m
-2

 d
-1

) in eastern Nebraska (Suyker and Verma, 

2012), but were comparable to values reported for soybean (18 g C m
-2

 d
-1

) (Suyker et al., 
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2005) and a tallgrass prairie (19 g C m
-2

 d
-1

) (Turner et al., 2003). Similarly, peak ER 

values of about 10 g C m
-2

 d
-1 

in both switchgrass and sorghum in this study were also 

smaller than those reported by Suyker and Verma (2012) in irrigated maize (12-15 g C m
-

2
 d

-1
) and rainfed maize (9-13 g C m

-2
 d

-1
). But they were comparable to values reported 

by Xu and Baldocchi (2004) for a California grassland (9-10 g C m
-2

 d
-1

) and mentioned 

by Suyker et al. (2005) as unpublished data for a tallgrass prairie (9-9.5 g C m
-2

 d
-1

).  

 

Seasonal NEE, GEP, and ER 

 

Weekly cumulative NEE plotted in Figure 20 shows steadily increasing (more negative – 

more carbon uptake by the ecosystem) cumulative NEE from the beginning of the 

growing season to the end of August. In both ecosystems, increasing cumulative NEE 

switched to decreasing NEE after August due to dominance of ER over GEP. The result 

shows that the switchgrass ecosystem was a larger carbon sink throughout the growing 

season. The seasonal carbon uptake was -490 ± 59 and -261 ± 48 g C m
-2

 at switchgrass 

and sorghum ecosystems, respectively. 

The growing season cumulative values of GEP, ER, and NEE for both crops are 

shown in Table 12. Cumulative seasonal values of all three NEE, GEP, and ER fluxes 

from the switchgrass field were larger than those from the sorghum field. The growing 

season GEP total was 2017 ± 295 g C m
-2

 in switchgrass compared to 1164 ± 183 g C m
-2

 

in sorghum (a ratio of 1.73:1). Similarly, the growing season ER total in switchgrass was 

1527 ± 236 g C m
-2

 compared to 903 ± 134 g C m
-2

 in sorghum (a ratio of 1.69:1). 

Because peak daily values of GEP (18-19 g C m
-2

 d
-1

) and ER (about 10 g C m
-2

 d
-1

) were 
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similar between ecosystems, the cumulative difference of about 1.7 times higher GEP and 

ER in switchgrass is likely related to the earlier canopy development in switchgrass. It is 

important to mention here that switchgrass greened up in March and sorghum was 

planted in May and both crops were killed by frost in the first week of November. It 

shows that the switchgrass had two months longer growing season compared to the 

sorghum. 

Our study shows that the growing season ER/GEP ratio was about 0.76 in 

switchgrass and 0.78 in sorghum. March-August ER/GEP ratio was 0.70 in switchgrass 

and May-August ER/GEP ratio was 0.68 in sorghum. During the late growing season 

(September-October) the ER/GEP ratio increased at both ecosystems. For switchgrass it 

was 1.14, whereas for sorghum it was 1.42. The higher ER/GEP ratio after the crop 

senescence in the late growing season suggests that the carbon balance is linked to plant 

activity. The higher ER/GEP ratio in sorghum than switchgrass during the September-

October period indicates that carbon uptake by sorghum was inhibited more in this period 

due to dry conditions. Growing season ER/GEP ratios of 0.76 and 0.78 in our study were 

higher than the previously reported ratios for other ecosystems, most probably due to 

higher respiration rates and the limitation of photosynthesis in the afternoon hours during 

warm growing periods in this region. Growing season ER/GEP of 0.56 for maize and 

0.76 for soybean (Suyker and Verma, 2012), 0.6 for winter wheat  and 0.4 for potato and 

sugarbeets (Aubinet et al., 2009) have been reported. 
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Variability in NEE 

 

Diurnal NEE trends at switchgrass and sorghum ecosystems across the growing season 

are compared in Figure 21. Large seasonal and inter-species differences were observed 

for NEE rates. As expected, higher NEE rates were observed during the peak growth due 

to more canopy photosynthetic capacity. The NEE rates declined during the late growing 

season because of crop senescence. In switchgrass NEE rates reached a maximum in 

May, while the maximum NEE rates were observed in June in sorghum. The NEE rates 

in sorghum were larger during June and July than those in switchgrass, and they were 

smaller from August to October. The magnitudes of diurnal peak NEE (monthly average) 

reached up to -33.02 ± 1.96 (May) and -35.86 ± 2.32 µmol m
-2

 s
-1

 (June) in switchgrass 

and sorghum, respectively. These magnitudes of NEE matched with the results of 

previous studies in native tallgrass prairie for this region: -32 µmol m
-2

 s
-1 

in north-central 

Oklahoma (Suyker and Verma, 2001) and -30 µmol m
-2

 s
-1 

in northeastern Kansas (Kim 

and Verma, 1990).  

Nighttime respiration rates in switchgrass were higher in May, but they were 

similar during June and July when compared to the nighttime respiration rates in 

sorghum. Similar to daytime NEE rates, slightly smaller nighttime respiration rates were 

observed in sorghum from August to October.  

Average daily NEE at both ecosystems for the entire growing season is provided 

in Table 13. The switchgrass ecosystem was a net carbon sink from April through August 

with a peak daily uptake of -6.57 g C m
-2

 d
-1

 in May. The sorghum ecosystem was a net 

carbon sink from June through August with a peak daily uptake of -7.99 g C m
-2

 d
-1

 in 
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June. The result shows that the switchgrass was a net sink of carbon for five months 

(April-August) while the sorghum was a net sink of carbon only for three months (June-

August). Both ecosystems were carbon source in September and October, with larger 

rates of carbon release from the sorghum.    

 

Response of NEE to VPD 

 

We demonstrated that large VPD of over 3 kPa limited photosynthesis in switchgrass and 

caused asymmetric diurnal NEE cycles (substantially higher rates of NEE in the morning 

hours as compared to the afternoon hours at similar light levels) in our previous 

publication (Wagle and Kakani, 2013). To examine the effect of VPD on NEE in 

sorghum, we plotted diurnal trends of VPD and NEE (Fig. 22) for two ranges of VPD 

[one with the maximum VPD of about 3 kPa (June 16-30) and the other with the 

maximum VPD of over 5 kPa (August 1-14)]. During June 16-30, the maximum NEE 

was -40.78 ± 1.88 μmol m
-2

 s
-1

 at 1:30 PM when VPD was 2.8 kPa. But the NEE reached 

a peak (-6.98 ± 1.19 μmol m
-2

 s
-1

) at 11 PM during August 1-14 when VPD was 3.03 kPa 

and then decreased as VPD increased further. The result shows that the threshold VPD to 

affect photosynthesis in sorghum is also about 3 kPa as in switchgrass. As a result, both 

ecosystems had similar diurnal trends of NEE across the growing season except in June 

and July (most notably in July, Fig. 21). More symmetric diurnal NEE cycles were 

observed in sorghum during June and July. June and July were the active growing periods 

for sorghum as it was planted in May, but switchgrass had already lost some 

photosynthetic capacity after May. This is well supported by the higher NEE rates of 
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sorghum in June and July, and the declining trends of NEE in switchgrass after May as 

shown in Figure 21. Our result illustrates that plant’s response to VPD is not a constant 

property and the crop phenology alters the response of photosynthesis to VPD. Ludlow 

and Jarvis (1971) also reported that the response of photosynthesis to VPD varies for the 

same species when grown under different climatic conditions. 

 

Conclusions 

 

Net ecosystem CO2 exchange (NEE) was measured using eddy covariance system from 

co-located switchgrass and sorghum fields in south central Oklahoma, USA during the 

growing season in 2012. The purpose of this study was to quantify and contrast NEE in 

these two ecosystems. Monthly ensemble averaged NEE at switchgrass and sorghum 

reached seasonal peak values of -33.02 ± 1.96 and -35.86 ± 2.32 µmol m
-2

 s
-1

, 

respectively. Daily integrated NEE reached seasonal peaks of -8.5 and -10.3 g C m
-2 

d
-1

 in 

switchgrass and sorghum, respectively. Our result shows that both ecosystems were 

carbon sinks with the growing season carbon uptake of -490 ± 59 and -261 ± 48 g C m
-2 

by switchgrass and sorghum, respectively. Because peak values of gross ecosystem 

production (GEP, 18-19 g C m
-2

 d
-1

) and ecosystem respiration (ER, about 10 g C m
-2

 d
-1

) 

were similar at both ecosystems, the difference in carbon sink potential is likely related 

primarily to the length of the growing season. Switchgrass was a net sink of carbon 

during five months (April-August) while the sorghum was a net sink of carbon only 

during three months (June-August).  
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Table 11. Monthly daily mean maximum and minimum temperatures, and monthly total 

rainfall in 2012 in comparison with the 30-year mean (1981 to 2010) for Chickasha, 

Oklahoma, USA. 

  
  2012   30-year mean 

Month Max T (
o
C) Min T (

o
C) Rain (mm) Max T (

o
C) Min T (

o
C) Rain (mm) 

 

Jan 13.56 -2.57 49.78 

 

10.06 

 

-3.44 

 

33.5 

 

Feb 13.00 0.25 16.26 

 

14 

 

-0.78 

 

45.2 

 

Mar 21.66 8.35 112.52 

 

18.83 

 

4.06 

 

71.9 

 

Apr 24.11 12.03 78.74 

 

24.06 

 

9.06 

 

91.9 

 

May 29.48 15.88 150.37 

 

28.06 

 

14.72 

 

133.1 

 

Jun 33.51 19.33 71.37 

 

32.39 

 

19.5 

 

104.6 

 

Jul 37.98 22.59 48.01 

 

35.28 

 

21.56 

 

53.6 

 

Aug 36.04 20.61 42.67 

 

34.56 

 

20.61 

 

69.3 

 

Sep 

 

31.56 

 

16.16 

 

117.35 

 

30.61 

 

16.22 

 

91.4 

 

Oct 

 

22.61 

 

9.02 

 

13.72 

 

24.89 

 

9.83 

 

98.6 

 

Nov 

 

20.3 

 

3.0 

 

21.84 

 

17.06 

 

3.22 

 

54.4 

 

Dec 

 

12.19  

 

-2.19  

 

21.84  

  

 11.5 

 

-1.72 

 

48.5 
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Table 12. Growing season sums of net ecosystem CO2 exchange (NEE), gross ecosystem 

production (GEP), and ecosystem respiration (ER) (± uncertainty) from switchgrass and 

sorghum fields during their respective growing seasons in 2012.  

 Switchgrass (DOY 61-305) Sorghum (DOY 122-305) 

GEP (g C m
-2

) 2017 ± 295 1164 ± 183 

ER (g C m
-2

) 1527 ± 236 903 ± 134 

NEE (g C m
-2

) -490 ± 59 -261 ± 48 
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Table 13. Average daily net ecosystem exchange (NEE) of carbon (g C m
-2

 d
-1

) from 

switchgrass and sorghum fields across a growing season in 2012. Negative values of NEE 

indicate uptake (i.e., sink) and positive values indicate loss (i.e., source).  

 NEE (g C m
-2

 d
-1

) 

Months Switchgrass Sorghum 

March 0.71  

April - 4.87  

May -6.57 0.94 

June -4.82 -7.99 

July -1.36 -3.25 

August -0.45 -0.41 

September 0.71 0.81 

October 0.44 1.21 
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Fig. 19. Growing season patterns of net ecosystem CO2 exchange (NEE), gross 

ecosystem production (GEP), and ecosystem respiration (ER) in switchgrass (SWG) and 

sorghum (SG) ecosystems. Data lines represent 7-day average values of CO2 fluxes.   
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Fig. 20. Cumulative weekly net ecosystem CO2 exchange (NEE) in switchgrass and 

sorghum. Negative value of NEE indicates a net carbon uptake by the ecosystem.  
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Fig. 21. Half-hourly binned diurnal courses of net ecosystem CO2 exchange (NEE) in 

switchgrass (SWG) and sorghum (SG) across the growing season. Each data point is a 

30-min time-stamp average value for the entire month. Bars represent standard errors of 

the means. Negative values of NEE indicate uptake (i.e., sink) and positive values 

indicate loss (i.e., source).  
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Fig. 22. Half-hourly binned diurnal courses of net ecosystem CO2 exchange (NEE) and 

vapor pressure deficit (VPD) in sorghum during two selected periods: June 16-30, 2012 

(a) and August 1-14, 2012 (b). Each data point is a 30-min time-stamp average value for 

entire two weeks. Bars represent standard errors of the means.  
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CHAPTER VI 

 

 

COMPARISON OF CANOPY EVAPOTRANSPIRATION AND ECOSYSTEM 

WATER USE EFFICIENCY FOR SWITCHGRASS AND HIGH BIOMASS 

SORGHUM 

 

Pradeep Wagle and Vijaya Gopal Kakani
 

 

Department of Plant and Soil Sciences, Oklahoma State University, 368 AG Hall, 

Stillwater, OK 74078, USA 

 

ABSTRACT. We measured water and energy flux densities over co-located switchgrass 

(Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench) using 

eddy covariance systems during the 2012 growing season. The major objective of this 

study was to compare differences in water use between these contrasting ecosystems at 

the growing season scale. During the growing season, the daily ET (weekly average) was 

1.0-6.2 mm day
-1

 for switchgrass and 0.7-6.7 mm day
-1

 for sorghum. Total ET from both 

ecosystems was similar (487 mm from switchgrass and 465 mm from sorghum field) for 

the overlapping period of the growing season (May-October). Moreover, the magnitude 

of ET rate was similar at both ecosystems during the active growing periods. However,.
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growing season total ET was higher in switchgrass (653 mm, March-October) than in 

sorghum (465 mm, May-October) due to two months longer growing season of 

switchgrass. This result indicates that the difference in water use between two species 

was mainly attributed to the length of crop growing season. Monthly gross ecosystem 

production (GEP) showed a strong positive linear relationship with ET (R
2
 = 0.88 and 

0.91 in switchgrass and sorghum, respectively), suggesting a strong linkage between 

carbon gain and water loss over the season. The ratio of cumulative GEP to the respective 

ET yielded monthly ecosystem water use efficiency (EWUE) from 6.3 (March) to 16.1 

(June) g CO2 mm
-1

 ET in switchgrass and from 4.7 (May) to 13.6 (June) g CO2 mm
-1

 ET 

in sorghum, with seasonal averages of 12.6 and 9.9 g CO2 mm
-1

 ET for switchgrass and 

sorghum, respectively. The results illustrated the great production potential of both 

feedstocks in this region. The higher EWUE of switchgrass suggests that the carbon gain 

by the switchgrass ecosystem was enough to offset its higher water use for a longer 

growing season. 

  

Key words: Bioenergy, Ecosystem water use efficiency, Eddy covariance, 

Evapotranspiration, High biomass sorghum, Switchgrass. 

 

Introduction 

 

In the United States of America, 136 billion liters of biofuel production, including 79 

billion liters from cellulosic biofuels, is mandated by 2022 

(http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf, verified 

http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf


161 
 

April 30, 2013). This 2022 biofuel goal requires developing alternative feedstock sources 

to traditional feedstock like maize (Zea mays L.) for food security and to meet increasing 

biofuel feedstock demand. Cellulosic crops switchgrass (Panicum virgatum L.) and high 

biomass sorghum (Sorghum bicolor L. Moench) are considered as viable alternative 

sources. Ethanol production capacity has increased exponentially, from 0.66 billion liters 

in 1980 to more than 49 billion litters in recent years (RFA 2012, 

http://www.ethanolrfa.org/pages/statistics, verified May 1, 2013). Thus, the acreage of 

cellulosic feedstocks is increasing in the recent years (Biomass Crop Assistance Program, 

BCAP, http://www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap, 

verified November 21, 2013). This increased deployment of dedicated biomass crops has 

sparked numerous environmental concerns, including the impact on the regional 

hydrologic cycle. Fewer environmental impacts are predicted from advanced cellulosic 

fuel production compared with grain-based ethanol production (Heaton et al., 2004). It is 

more likely that lignocellulosic crops provide positive effects on soil properties, 

biodiversity, energy balance, greenhouse gas mitigation, and carbon footprint (Rowe et 

al., 2009). However, environmental impacts and ecosystem services of biofuel production 

should not be neglected (Rowe et al., 2009). Therefore, we have to consider several 

factors when selecting environmentally and economically viable bioenergy feedstocks 

(Hill et al., 2006).   

Understanding the efficiency of bioenergy crops in using available water to 

produce biomass and store carbon in soil is an important metric of bioenergy crop 

performance (Zeri et al., 2013). Quantifying and understanding of evapotranspiration 

(ET) and ecosystem water use efficiency (EWUE, net carbon uptake by the ecosystem 

http://www.ethanolrfa.org/pages/statistics
http://www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap
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per amount of water use) of bioenergy crops is very critical to assess the impacts of 

increased deployment of dedicated biomass crops on local and regional hydrology. In 

most cases, ET is the second largest term after precipitation in the hydrological balance 

(Ford et al., 2007), indicating a major component of water balance in terrestrial 

ecosystems. The associated flux of latent heat, a major component of energy balance, has 

a major role on the planetary boundary layer dynamics (Baldocchi et al., 2000). 

Moreover, several hydrological and biological processes in an ecosystem are tightly 

linked via ET (McNulty et al., 1994;Wilson and Baldocchi, 2000). The study of ET is, 

therefore, fundamental for better understanding of terrestrial ecosystems. The EWUE, a 

key component of the hydrologic cycle which relates biomass production or carbon gain 

to water use, is intricately linked to biogeochemical cycles (Sellers et al., 1997). The 

EWUE can be considered as a determinant of the sustainability of newly introduced crop 

species (Wallace, 2000). Thus, the study of ET and EWUE in a variety of terrestrial 

ecosystems is an essential for the assessment of local, regional, and global water 

balances. However, the study and comparison of ET and EWUE between commercial-

scale production of two contrasting cellulosic feedstocks, switchgrass and high biomass 

sorghum, at adjacent plots is lacking. We measured water and energy flux densities over 

co-located switchgrass and high biomass sorghum ecosystems in the southern Great 

Plains of the United States (Chickasha, OK) using two independent eddy covariance 

systems. Direct and continuous field-scale measurements of net ecosystem exchange 

(NEE) of CO2 and H2O by the eddy covariance system offer a great opportunity to 

compute and compare ET and EWUE between ecosystems. Such an estimation of ET 
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demand and EWUE provides bases for the selection of best suited feedstocks for 

bioenergy production for the region.  

The major objective of this study was to compare differences in water use 

between two candidate cellulosic bioenergy feedstocks switchgrass and high biomass 

sorghum at the growing season scale. We hypothesized that growing season total ET 

would be higher for switchgrass relative to sorghum due to a longer growing season. We 

also assumed that EWUE calculation based on total carbon uptake (GEP, gross 

ecosystem production) by the ecosystem yields higher EWUE in switchgrass because of 

higher total carbon uptake potential and higher below ground biomass when compared 

with sorghum. This study provides a unique opportunity to investigate the potential 

environmental impacts and services of large-scale productions of annual and perennial C4 

cellulosic feedstocks on water resources.  

 

Materials and Methods 

Description of study site 

 

Switchgrass and high biomass sorghum plots of eight hectares each were established at 

Oklahoma State University, South Central Research Station, Chickasha, Oklahoma. As 

two ecosystems were located at adjacent plots, we can assume that they were exposed to 

the same weather and atmospheric water demand. Switchgrass (cv. Alamo) was sown at 

0.38 m row spacing under no till conditions in spring 2010. . Sorghum (cv. ES 5200) was 

planted at 0.76 m row spacing on May 15, 2012. Ammonium nitrate was broadcasted at 
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75 kg N ha
-1 

in April for switchgrass and on May 18
th

 for sorghum. Site description has 

been provided in a detail previously (Wagle and Kakani, 2013). 

 

Flux measurements 

 

Carbon dioxide, water, and energy flux densities were continuously measured over 

switchgrass and sorghum ecosystems during the 2012 growing season using eddy 

covariance systems. The eddy covariance systems were composed of an infrared gas 

analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA) and a three-dimensional sonic 

anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA). Flux measurements 

were collected at 10 Hz frequency and computed for a 30-min averaging period. In 

addition to eddy covariance measurements, photosynthetic photon flux density (PPFD), 

net radiation (Rn), near top surface measurements of soil temperature, moisture, and soil 

heat (G) fluxes were collected at 10 Hz frequency and finally averaged for 30-min 

averaging periods using a datalogger (CR3000, Campbell Scientific Inc., Logan, UT, 

USA). Measurement details and data processing techniques have been described 

previously (Wagle and Kakani, 2013;Wagle and Kakani, 2012).  

 

Biometric measurements 

 

Because of mild winter in 2012, switchgrass greened up earlier in March. Biometric 

measurements were initiated on March 28, 2012 in switchgrass. Since sorghum was 

planted in May, the first biometric measurement was taken on June 12, 2012. Biometric 
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measurements were taken mostly biweekly throughout the growing season. Three 

biomass samples were taken from 1 m
2
 area at randomly located positions and oven dried 

in an oven for a week at around 70 °C. Leaf area index (LAI) was measured using a plant 

canopy analyzer (LAI-2000, LI-COR Inc., Lincoln, NE, USA). Canopy heights were also 

recorded periodically. 

 

Screening and gap filling of fluxes 

 

Statistical outliers beyond ± 3.5 STD range from a 14-day running mean window were 

removed. Sensible heat (H) and latent heat (LE) fluxes were filtered to keep in the range 

of -200 to 500 W m
-2

 and -200 to 800 W m
-2

, respectively (Sun et al., 2010). In addition, 

we excluded unreliable flux data during low turbulent periods (friction velocity, u* < 

0.20 m s
-1

). Half-hourly gaps in H2O fluxes were filled with an average value 

immediately before and after the gap (Wever et al., 2002). Shorter gaps (< 2 hours) were 

filled with linearly interpolated values (Flanagan et al., 2002). Larger gaps (> 2 hours) in 

H2O fluxes were gap filled using a linear relationship between PPFD and H2O fluxes as 

H2O fluxes showed very strong positive relationship with PPFD (R
2
 > 0.80, most of the 

cases) as shown in Figure 23. The PPFD-H2O relationships were developed for each 

week to account for seasonal variability. Partitioning and gap filling techniques for CO2 

fluxes have been described in a detail previously (Wagle and Kakani, 2013). 
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ET and EWUE calculations 

 

Total ET for 30-min periods (mm 30 min
-1

) was calculated from measured H2O flux 

(mmol m
-2

 s
-1

) using the following equation: 

ET = (H2O flux x 18.01528 x 1800)/10
6
  (1) 

Seasonal and monthly totals of ET were calculated by summing the gap-filled 

half-hourly values. Cumulative ET also included evaporation of intercepted water by the 

crop canopy. Although several methods of EWUE calculations are available in the 

literature, we estimated EWUE from the ratio of cumulative GEP to cumulative daytime 

ET over the growing season. Only ET for the daytime, when there was carbon uptake, 

was used to relate EWUE to carbon sequestration as suggested in a previous study 

(Tubiello et al., 1999). 

 

Results and Discussion 

Meteorology and crop growth 

 

As compared with the 30-year mean, the site experienced relatively warmer and wetter 

spring, and slightly warmer and drier summer in 2012. Overall, the site received 25% less 

rainfall in 2012 compared with the 30-year average (896 mm). The switchgrass growing 

season (March-October) total rainfall was 11% less than the 30-year average for the 

period (714 mm) and the sorghum growing season (May-October) total rainfall was 20% 

less than the 30-year average for the period (551 mm). Late growing season was 

relatively drier in 2012. Total rainfall recorded from August to October, 2012 was 174 
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mm while the 30-year average rainfall for that period was 259 mm. For both crops, LAI 

reached a maximum during mid-July. In switchgrass, LAI reached a maximum of 5.9 m
2
 

m
-2

 while the maximum LAI was 5.7 m
2
 m

-2 
in sorghum. The maximum recorded above 

ground biomass during the growing season was about 17 t ha
-1

 in switchgrass and 30 t ha
-

1
 in sorghum. 

 

Energy balance closure 

 

Energy balance closure (EBC) is considered as an important test of data quality of eddy 

covariance measurements (Foken et al., 2006). The EBC for half-hourly measurements 

was 0.83 for the switchgrass and 0.82 for sorghum in the 2012 growing season. The result 

shows that the measured turbulent fluxes accounted for over 80% of the available energy, 

as calculated from a linear regression of (H+LE) vs. (Rn-G). These results fall within the 

typical range of eddy covariance experiments (Foken et al., 2006).   

 

Energy fluxes 

 

Seasonal variations in the diurnal courses of H and LE fluxes for the selected months are 

shown in Figure 24. Diurnal patterns of energy fluxes were similar for both species. 

Energy fluxes were high during daytime, starting at around 8:00 AM and reached a 

maximum at around 2:00 PM. Peak diurnal means of H and LE fluxes for both ecosystem 

across the growing season are provided in Table 14. The table shows that in the 

beginning of the crop growing season H started to decrease and LE began to increase 
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until peak growing periods. The LE started to dominate over H in switchgrass from the 

first month of greening up (March), but H was the dominant turbulent flux in sorghum in 

May (the month of planting). The smallest H and the largest LE fluxes were observed 

during May and June in switchgrass and sorghum, respectively. The peak value of LE in 

switchgrass reached 390 (± 29) W m
-2

 in May while the peak LE in sorghum was 378 (± 

23) W m
-2

 in June. Similarly, the smallest value of H in switchgrass was 111 (± 17) W m
-

2
 in May while in sorghum it dropped down to 71 (± 9) W m

-2
 in June. The result shows 

that the smallest H and the largest LE fluxes coincided with the most active growing 

periods. After the most active growing periods, H began to increase and LE began to 

decrease in both ecosystems. As a result, H started to dominate over LE after June in 

switchgrass and after July in sorghum. The results demonstrate that a switch in energy 

partitioning is strongly associated with crop phenology (from H to LE after leaf 

emergence and from LE to H after crop senescence). 

 

Response of H2O flux to VPD  

 

The H2O flux data, averaged over seven different bins of VPD, was plotted against VPD 

(Fig. 25). The H2O flux increased rapidly with increasing VPD up to a threshold value. 

The maximum rates of H2O fluxes were observed in the VPD range of 2.5-3.5 kPa and 

declined thereafter. This result confirms the findings of previous studies (Anthoni et al., 

1999; Brümmer et al., 2012), that stomata began to close to restrict transpiration water 

loss when VPD exceeded a threshold. Generally, the driving force for transpiration 

increases as VPD increases causing increase in transpiration rates. This leads to reduction 
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in leaf water potential causing stomata to close and thereby reducing ET at higher VPD 

(Monteith, 1995). This concept of the response of H2O flux to VPD is very important to 

understand the patterns of EWUE. Tallec et al. (2013) observed a hyperbolic relationship 

between VPD and EWUE. The VPD value increases with increasing temperature. Thus, 

EWUE increases with increasing VPD at smaller VPD because of increasing air 

temperature that enhances RuBISCO activity and in turn higher CO2 assimilation (Sage 

and Kubien, 2007). Moreover, water loss through transpiration is limited at low 

temperatures (low VPD). Although decreased canopy conductance at high VPD reduces 

both carbon assimilation (GEP) and water loss (ET), more rapid reduction in GEP than 

ET (Tallec et al., 2013;Wagle and Kakani, 2012) leads to a decline in EWUE with 

increasing VPD at higher VPDs. Plants respond to an increasing VPD by partially closing 

stomata and potentially limiting carbon assimilation (Turner et al., 1985). A higher VPD 

can also inhibit photosynthesis, i.e. inhibition of CO2-saturated photosynthesis, via non-

stomatal effect (Morison and Gifford, 1983). Because of these reasons, the higher EWUE 

values are observed in the morning hours than in the afternoon (Wagle and Kakani, 

2012). 

 

Patterns of ET and rainfall 

 

Seven-day averages of daily ET along with the patterns of rainfall across the growing 

season are presented in Figure 26. Seasonal patterns of ET exhibited similar trends at 

both ecosystems. As expected, ET rates were larger during wet periods and smaller 

during dry periods. The switchgrass growth initiated earlier due to milder winter and 
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began to transpire earlier. Once sorghum started to grow, ET rates rapidly approached 

and exceeded those of the switchgrass field because of rapid gain of biomass and larger 

crop size. During the growing season, the weekly average of daily ET was 1.0-6.2 mm 

day
-1

 for switchgrass and 0.7-6.7 mm day
-1

 for sorghum. These magnitudes of ET were 

similar to ET from other major crops in this region. During the growing season, the daily 

ET was 2.5-7 mm for wheat (Triticum aestivum L.) and 3.5-5 mm for native tall grass 

prairie in north-central Oklahoma (Burba and Verma, 2005).    

Higher rates of ET were associated with the peak growth of the crops and smaller 

values of ET were observed in the early and late growing seasons at both ecosystems. 

The 7-day running-mean of daily ET reached a maximum of 6.7 mm day
-1

 in the 4
th

 week 

of June in sorghum, while in switchgrass it reached a maximum of 6.2 mm day
-1

 during 

the 3
rd

 week of May. The patterns of ET in switchgrass for the 2012 growing season 

reveal larger values than those in 2011 reported previously for this site (Wagle and 

Kakani, 2012) due to more optimal growing conditions and increased maturity of the 

stand in 2012. These results show that patterns of precipitation and canopy development 

greatly affect ET patterns. However, the sensitivity of ET patterns was different between 

two ecosystems. The ET rates decreased more sharply in sorghum during the late 

growing season because of an earlier senescence of sorghum. The relatively drier late 

growing season in 2012 caused an earlier senescence of sorghum.  

As determined from greening up to senescence for switchgrass and from planting 

to senescence for sorghum, the total growing season was longer for switchgrass by two 

months. Seasonal (March-October) cumulative ET (653 mm) in switchgrass was similar 

to cumulative rainfall (635 mm). Similarly, growing season (May-October) total ET (465 
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mm) in sorghum was similar to cumulative rainfall (443 mm) for the period. It shows a 

close correspondence between cumulative ET and rainfall for both ecosystems. Total ET 

from both ecosystems was similar (487 mm from switchgrass and 465 mm from sorghum 

field) for the overlapping period of the growing season (May-October). However, 

growing season total ET was higher in switchgrass (653 mm, March-October) than in 

sorghum (465 mm, May-October) due to the longer growing season of switchgrass. This 

result shows that switchgrass had 37% higher ET compared with sorghum over their 

respective growing seasons. While both species showed similar water use patterns during 

the active growing periods, the large difference in water use between two species was 

attributed to the length of crop growing season. It should be noted that some evaporation 

occurs during the time when sorghum field is fallow. The different growing season 

lengths make it more difficult to compare between ecosystems in this study.  

 

Seasonal variability in ET 

 

Typical diurnal trends of ET across the growing season at both ecosystems are provided 

in Figure 27. Great variation was observed for ET rates between species and among 

months of the growing season. Daytime ET was higher, starting at around 8 AM and 

reached a peak at around 2-3 PM. Unlike CO2 fluxes the diurnal courses of ET were 

relatively symmetrical. We had reported asymmetrical diurnal NEE cycles, most notably 

during June to September, previously (Wagle and Kakani, 2013). This result suggests that 

CO2 fluxes are more sensitive to environmental factors than H2O fluxes.  
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The ET rates showed a clear pattern of seasonality. In both ecosystems, ET rates 

started to increase with increasing crop growth and the highest ET rates were observed 

during the peak growth period. The ET rates declined during the late growing season due 

to crop senescence and lower solar radiation in late fall. In switchgrass, ET rates were the 

highest in May, while in sorghum the rates were the highest in June. Peak diurnal mean 

(monthly) of ET rates across the growing season are provided in Table 15. In May, ET 

rates were larger in switchgrass than in sorghum, but sorghum had higher rates of ET in 

June and July. Again from August, slightly higher ET rates were observed in switchgrass. 

In switchgrass, the magnitude of peak diurnal ET rates ranged from 0.08 (September) to 

0.28 mm 30-min
-1

 (May) whereas it ranged between 0.05 (October) and 0.28 mm 30-min
-

1
 (June) in sorghum. The result showed that ET magnitudes were similar at both 

ecosystems during the active growing period. This result was further supported by the 

data presented in Figure 28. The figure shows that monthly total ET was 141 mm in May 

for switchgrass and in June for sorghum. The seasonal pattern of monthly ET was similar 

in both ecosystems with increasing ET in the early growing season, reaching their 

maximum values during the peak growth periods, and declining thereafter (Fig. 28). Peak 

growing periods were May and June for switchgrass and sorghum, respectively. During 

the growing season, the lowest monthly total ET (43 mm month
-1

 in switchgrass and 34 

mm month
-1

 in sorghum) was observed in October at both ecosystems due to the crop 

senescence and less solar radiation. 
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Comparison of EWUE 

 

We found very strong linear relationships between monthly GEP (g CO2 m
-2

) and ET 

(mm) at both ecosystems on the seasonal time scale (switchgrass: GEP = 14.1 x ET – 

221.5, R
2
 = 0.88, P = 0.0005 and sorghum: GEP = 13.2 x ET – 305.6, R

2
 = 0.91, P = 

0.002). Brümmer et al. (2012) also observed highly significant (P < 0.001) linear 

relationships between monthly GEP and ET. The result indicates a strong linkage 

between carbon gain and water loss over the season. The physiological control of gas 

exchange results in a strong coupling between carbon and water fluxes at the leaf and 

ecosystem levels (Valentini et al., 1991). The slope of the linear relationship between 

monthly GEP and ET represents EWUE, showing that EWUE of switchgrass and 

sorghum were 14.1 and 13.2 g CO2 mm
-1

 ET, respectively. Estimation of EWUE from the 

ratio of monthly cumulative GEP to monthly daytime ET showed a smaller magnitude of 

EWUE in the early and late growing season and the highest EWUE during the peak 

growing season (June) at both ecosystems (Fig. 29). During the peak growing season, full 

canopy closure reduces the amount of radiation reaching the ground surface and 

ultimately reduces soil evaporation. On the other hand, radiation use efficiency is higher 

and thus increases photosynthesis. In switchgrass, EWUE was 6.3 g CO2 mm
-1

 ET in 

March (the first month of green up) due to a smaller GEP and it reached to a maximum of 

16.1 g CO2 mm
-1

 ET in June, with seasonal (March-October) average EWUE of 12.6 g 

CO2 mm
-1

 ET. The EWUE for switchgrass in our study was similar to the EWUE of 12-

15 g CO2 mm
-1

 ET reported by Skinner and Adler (Skinner and Adler, 2010) in a 

switchgrass field in southwestern Pennsylvania and of 12 g CO2 mm
-1

 ET observed by 
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Eggemeyer et al. (2006) in the sandhill grassland of Nebraska. In a dry and warm 

growing season in 2011, monthly EWUE in switchgrass for the same site ranged between 

10.5 and 14.1 g CO2 mm
-1

 ET, with a seasonal average of 12 g CO2 mm
-1

 ET (Wagle and 

Kakani, 2012). The result suggests a smaller year-to-year variability in EWUE. Similar to 

this study, Reichstein et al. (Reichstein et al., 2007) also observed very small interannual 

variability in EWUE of European forests. This is expected because of strong positive 

linear correlations between monthly GEP and ET, most likely due to the plant’s nature of 

regulating exchange of CO2 and H2O fluxes (Monteith and Greenwood, 1986). Brümmer 

et al. (2012) also reported that a strong relationship between monthly values of GEP and 

ET resulted in EWUE being relatively constant at several sites. These results confirm the 

findings of the previous studies (Law et al., 2002;Jassal et al., 2009), that ET and GEP 

are affected in a similar manner by stomatal limitation. However, slightly different 

responses of the CO2 and H2O fluxes to environmental variables cause a smaller 

interannual variability. We had observed a smaller EWUE in drought because of more 

rapid reduction in carbon assimilation than water loss (Wagle and Kakani, 2012).  

In sorghum, EWUE was 4.7 g CO2 mm
-1

 ET in the month of planting (May) and it 

reached to 13.6 g CO2 mm
-1

 ET in June, with a seasonal average EWUE of 9.9 g CO2 

mm
-1

 ET. The ratio of seasonal sums of daily daytime GEP to daily daytime ET provided 

EWUE of 12.9 and 10.8 g CO2 mm
-1

 ET for switchgrass and sorghum, respectively. 

These results show that switchgrass are more water efficient than sorghum.  

In agricultural studies, harvested biomass (crop productivity) is generally used to 

compute water use efficiency (WUE). The larger harvestable above ground biomass and 

smaller seasonal ET of sorghum in this study yields higher WUE for sorghum than 
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switchgrass if WUE is calculated based on above ground biomass and the amount of 

water used by the crops. The result indicates that the higher biomass productivity of 

sorghum comes at the expense of less carbon left in the field after removal of harvestable 

biomass when compared with switchgrass. A previous study also reported that row crops 

had higher WUE than perennials when this approach of WUE estimation was used (Zeri 

et al., 2013). However, calculation of WUE based on harvestable above ground biomass 

does not account for the total carbon uptake by the ecosystem. This agronomic metric 

neglects the several pools of carbon uptakes (soils, below ground biomass, litters, etc.). It 

accounts for only one carbon pool – harvestable above ground biomass (VanLoocke et 

al., 2012). A significant amount of resources is partitioned to below ground in perennial 

grasses (Anderson-Teixeira et al., 2009; Jackson et al., 1996). Studies of soil carbon 

storage shows that switchgrass sequesters significant carbon in soils (McLaughlin and 

Adams Kszos, 2005). Carbon allocated below ground offers several benefits such as 

contributing to soil fertility, carbon sequestration, and so on (Anderson-Teixeira et al., 

2009). This important portion of carbon pool is neglected when calculating WUE from 

harvestable above ground biomass. The EWUE should represent all trade-offs associated 

with carbon uptake and water use by the ecosystems. This study showed that the higher 

water use of switchgrass was offset by higher total seasonal carbon uptake by the 

ecosystem. Thus, the result suggests that the higher EWUE of switchgrass should be 

associated with other ecosystem services, for example adding more carbon to the soil, 

beyond harvestable above ground biomass. Because of these reasons, EWUE calculation 

based on GEP and ET seems more suitable and applicable estimate of EWUE especially 

for feedstock production. This approach allows us to compare the water use associated 
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with the total carbon gain by the ecosystem. Our results confirm the finding of 

VanLoocke et al. (2012) that the trade-off between carbon uptake and water loss for 

cellulosic feedstocks is variable depending on whether harvestable biomass or other 

ecosystem services are considered.  

 

Conclusions: 

 

The goal of this study was to compare ET patterns and EWUE of two candidate cellulosic 

feedstocks, switchgrass and high biomass sorghum, for the southern Great Plains of the 

United States using eddy covariance system. The results presented in this study illustrated 

that both species showed similar water use patterns during the active growing periods and 

the difference in water use between two species was mainly attributed to the length of 

crop growing season. While switchgrass had higher ET due to its longer growing season, 

the carbon gain by the switchgrass ecosystem was enough to offset this higher water use 

resulting in higher EWUE than that of high biomass sorghum. The results illustrated the 

great production potential of both feedstocks for this region. 
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Table 14. Peak diurnal means (monthly) of sensible (H) and latent heat (LE) fluxes (± 

standard errors) across the growing season.  

 Switchgrass Sorghum 

Month H (W m
-2

) LE (W m
-2

) H (W m
-2

) LE (W m
-2

) 

Mar 157 (± 11) 206 (± 22)   

Apr 126 (± 10) 285 (± 26)   

May 111 (± 17) 390 (± 29) 249 (± 15) 162 (± 20) 

Jun 224 (± 23) 224 (± 22) 71 (± 9) 378 (± 23) 

Jul 281 (± 17) 186 (± 18) 185 (± 18) 271 (± 28) 

Aug 246 (± 26) 152 (± 17) 217 (± 26) 136 (± 14) 

Sep 273 (± 17) 111 (± 10) 258 (± 22) 98 (± 9) 

Oct 205 (± 16) 121 (± 20) 225 (± 18) 85 (± 13) 
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Table 15. Peak diurnal mean (monthly) of evapotranspiration (ET) rate (± standard 

errors) across the growing season.  

 ET (mm 30-min
-1

) 

Month Switchgrass Sorghum 

Mar 0.15 (±0.02)  

Apr 0.22 (±0.02)  

May 0.28 (±0.02) 0.13 (±0.02) 

Jun 0.17 (±0.02) 0.28 (±0.02) 

Jul 0.14 (±0.01) 0.20 (±0.02) 

Aug 0.11 (±0.01) 0.10 (±0.01) 

Sep 0.08 (±0.01) 0.07 (±0.01) 

Oct 0.09 (±0.02) 0.05 (±0.01) 
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Fig. 23. Linear relationships between photosynthetic photon flux density (PPFD) and 

H2O flux for selected time periods: June 8-15, 2012 in switchgrass (a) and June 16-23, 

2012 in sorghum (b). The solid lines represent the best fit lines for linear regressions. 

Total half hourly data points are represented by N. 
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Fig. 24. Seasonal variation in the mean diurnal courses of sensible (H) and latent heat 

(LE) fluxes. Data points represent the diurnal mean of available data points for the entire 

months. Bars represent standard errors of the means.   
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Fig. 25. Effect of vapor pressure deficit (VPD) on H2O flux in switchgrass and sorghum. 

Bars represent standard errors of the means and letters represent Tukey’s HSD groupings 

at α = 0.05 (same letter indicates means are not significantly different). Minimum 

significant differences were 0.56 and 0.64 for switchgrass and sorghum, respectively.   
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Fig. 26. Seasonal patterns of evapotranspiration and rainfall. The data lines represent 

weekly averages of daily evapotranspiration and vertical bars represent total weekly 

rainfall.  
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Fig. 27. Half-hourly binned diurnal courses of evapotranspiration rates in switchgrass 

(SWG) and sorghum (SG) across the growing season. Each data point is 30-min time-

stamp average value for the entire month. Bars represent standard errors of the means.  

 

  

May

E
va

p
o
tr

an
sp

ir
at

io
n 

(m
m

 3
0
-m

in
-1

)

0.0

0.1

0.2

0.3

SWG

SG

June July

August

Time of day (Hours)

  0   4   8   12   16   20

E
va

p
o
tr

an
sp

ir
at

io
n 

(m
m

 3
0
-m

in
-1

)

0.0

0.1

0.2

0.3
September

Time of day (Hours)

  0   4   8   12   16   20

October

Time of day (Hours)

  0   4   8   12   16   20



190 
 

 

 

Fig. 28. Monthly cumulative evapotranspiration in switchgrass and sorghum across the 

growing season.  
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Fig. 29. Ecosystem water use efficiency (EWUE) for different months of the growing 

season.  
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CHAPTER VII 

 

CONCLUSION 

 

Ecosystem level CO2 and H2O fluxes were measured using eddy covariance (EC) system 

from co-located switchgrass and high biomass sorghum fields in south central Oklahoma, 

USA. The major objectives of this study were to quantify and examine seasonal 

variations in net ecosystem CO2 exchange (NEE), evapotranspiration (ET), and 

ecosystem water use efficiency (EWUE) of switchgrass and sorghum in response to 

controlling factors, and to explore the underlying mechanisms. 

Monthly ensemble averaged NEE at switchgrass and sorghum reached seasonal 

peak values of -33.02 ± 1.96 and -35.86 ± 2.32 µmol m
-2

 s
-1

, respectively. Daily 

integrated NEE reached seasonal peaks of -8.5 and -10.3 g C m
-2 

d
-1

 in switchgrass and 

sorghum, respectively. These NEE rates were of similar magnitudes or higher as reported 

in productive prairie grasslands for this region. Switchgrass ecosystem was a net sink of 

CO2 during 5 to 6 months and total seasonal uptakes were -1128 ± 130 and -1796 ± 217 g 

CO2 m
-2

 in 2011 and 2012, respectively. The higher carbon uptake potential of 

switchgrass in 2012 as compared with 2011 can be attributed to better growing condition 

and increased maturity of the plant stand. The switchgrass stand was established in spring 

2010. Sorghum ecosystem was a net sink of CO2 for only three months (June to August) 



193 
 

in 2012 with seasonal uptake of 956 ± 176 g CO2 m
-2

. Because peak values of gross 

ecosystem production (GEP, 18-19 g C m
-2

 d
-1

) and ecosystem respiration (ER, about 10 

g C m
-2

 d
-1

) were similar at both ecosystems, the difference in carbon sink potential is 

likely related primarily to the length of the growing season. Interannual variability in 

NEE in switchgrass ecosystem seems to be mainly driven by spring temperature and 

rainfall distribution in summer. Mild spring temperature caused earlier greening up of 

switchgrass, resulting in a longer growing season. Actively growing leaves, relatively 

longer days, and optimal temperature for photosynthesis in the spring favored more 

carbon uptake and increased carbon uptake by the ecosystem. High vapor pressure deficit 

(VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles 

(substantially higher NEE in the morning hours than in the afternoon at equal light 

levels), most notably from June to September. The result indicates that optimally warm 

and normal precipitation years can maximize net carbon sequestration of switchgrass and 

sorghum in this region. However, longer measurements are required to know about the 

timing that switches switchgrass ecosystem from carbon sinks to sources. We also 

observed that the response of ER to the environmental factors (soil and air temperatures, 

and soil moisture) was different throughout the entire study period, indicating that the 

response of ER to environmental factors should be evaluated for short time periods 

(preferably a week) to account for the changes in climate and plant phenology. Since 

NEE includes heterotrophic respiration as well additional measurements are needed to 

partition ER into autotrophic and heterotrophic components. 

The effects of major environmental factors [photosynthetic photon flux density 

(PPFD), air temperature, and VPD] on daytime NEE in switchgrass was characterized to 
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explore the underlying mechanisms. The result shows that PPFD is the most significant 

environmental factor for variation in switchgrass NEE (explained over 90% of the NEE 

variation) under optimum environmental conditions. Canopy photosynthesis did not 

saturate at as high as 2000 µmol m
-2

s
-1 

PPFD. However, this study indicates that the 

NEE-PPFD relationship is obscured by warm air temperature and high VPD in the 

summer. Carbon uptake by the switchgrass ecosystem decreased up to 62% (monthly 

average) from morning to afternoon at equal light levels because of the stomatal closure 

control of photosynthesis at high VPD (> 3 kPa). As a result, the light response function 

(LRF) provided biased estimates of light response parameters and yielded unreliable 

estimate (highly overestimated) of α (apparent quantum yield), which is used in several 

production efficiency (PEM) models to estimate GEP. Consequently these models highly 

overestimate GEP. The findings of this study suggest that the effect of VPD on carbon 

assimilation should be considered while partitioning NEE to account for the systematic 

presence of NEE hysteresis and determining light response parameters especially during 

dry and warm periods when temperature and VPD exceed thresholds. The NEE exhibited 

an optimum temperature range of 28-34 °C and decreased markedly beyond 35 °C. These 

observations will have implications for better understanding of temporal and spatial 

variation in fluxes. In addition, empirical functions developed based on the response of 

NEE to major environmental factors in this study can be used for the extrapolation of the 

site-specification measurements to the larger scales, and also for developing and testing 

ecosystem process models. 

Patterns of ET and EWUE, and seasonal distributions of energy fluxes [sensible 

(H) and latent heat (LE) fluxes] were examined over switchgrass and sorghum fields. The 
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results show that both species had similar water use patterns during the active growing 

periods. Diurnal patterns of energy fluxes were similar for both species. The results 

demonstrate that a switch in energy partitioning is strongly associated with crop 

phenology (from H to LE after leaf emergence and from LE to H after crop senescence) 

in both ecosystems. However, more energy was partitioned towards H during dry periods 

even in the mid-growing season of switchgrass (e.g. July 2011). Similarly, H was greater 

than LE even in wet periods during the late growing season due to crop senescence. The 

results suggest that energy partitioning is sensitive to both biological and climatic factors. 

Similar ET magnitude was observed (1.0-6.2 mm day
-1

 for switchgrass and 0.7-6.7 mm 

day
-1

 for sorghum) in both ecosystems in the 2012 growing season. These ET magnitudes 

were similar to ET from other major crops in this region. Total ET from both ecosystems 

was similar (487 mm from switchgrass and 465 mm from sorghum field) for the 

overlapping period of the growing season (May-October, 2012). However, seasonally 

integrated ET demand was higher in switchgrass due to longer growing season. As 

determined from greening up to senescence for switchgrass and from planting to 

senescence for sorghum, the total growing season was longer for switchgrass by two 

months in 2012. It should be noted that some evaporation occurs during the time when 

sorghum field is fallow. The difference in growing season lengths makes it more difficult 

to compare between ecosystems in this study. 

The ET magnitude (1.0-6.2 mm day
-1

) in switchgrass for the 2012 growing season 

was larger than in 2011 (0.5-4.8 mm day
-1

) at this site due to more optimal growing 

conditions and increased maturity of the stand in 2012. These results show that patterns 

of precipitation and canopy development greatly affect ET patterns. Switchgrass 
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ecosystem had a seasonal average EWUE of 12.6 g CO2 mm
-1

 ET while high biomass 

sorghum had a seasonal average EWUE of 9.9 g CO2 mm
-1

 ET in 2012. In a dry and 

warm growing season in 2011, seasonal average EWUE was 12 g CO2 mm
-1

 ET in 

switchgrass, suggesting a smaller year to year variability in EWUE because of strong 

positive linear correlations between monthly GEP and ET. However, slightly different 

responses of CO2 and H2O flux to environmental variables caused a smaller inter annual 

variability in EWUE. Unlike CO2 flux, the diurnal courses of ET were relatively 

symmetrical.  

In conclusion, both ecosystems showed strong seasonal carbon sink potential and 

high water use efficiency in this region. However, evaluation over a longer term would be 

more valuable. The findings of this study will be helpful for quantifying the effects of 

stress and changes in climate and plant phenology on carbon and water vapor exchanges, 

and for developing and testing mechanistic models and remote-sensing algorithms for 

switchgrass and sorghum. 
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