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Abstract:

Video quality assessment plays an important role in multimedia systems that
process digital images/videos such as video codec, video streaming server. The use
of video quality assessment algorithm helps optimize system parameters, increase
quality of service, and satisfy customers’ demands. Traditional method that recruits
human subjects to judge video quality often comes with the expense of time, money,
and effort while objective method, which uses computer and built-in algorithms to
judge video quality, offers a more affordable way. This dissertation report provides
an efficient approach to develop objective video quality assessment algorithm.

Algorithms in video quality assessment aim to predict quality of videos in a
manner that agrees with subjective ratings of quality judged by human subjects. From
that, two important factors are required for the research of video quality assessment.
The first factor is an algorithm that is able to predict video quality. Our approach
to develop such an algorithm bases on the analyses of spatial and spatiotemporal
slices in two separate stages. The first stage estimates perceived quality degradation
due to spatial distortion; this stage operates by adaptively applying our previous
image quality assessment algorithm on a frame basis with an extension to account
for temporal masking. The second stage estimates perceived quality degradation
due to joint spatial and temporal distortion; this stage operates by measuring the
dissimilarity between the two-dimensional spatiotemporal slices created by taking
time-based slices of the original and distorted videos. The combination of these two
estimates serves as an overall estimate of perceived quality degradation.

The second important factor in the research of video quality assessment is a
video-quality database with collected subjective ratings used to validate the algo-
rithms performance. We create our own video-quality database that consists of more
videos (216 videos) and more distortion types (six) comparing to the currently avail-
able video-quality databases. The experiment to collect subjective ratings of quality
is conducted by 40 different subjects following the SAMVIQ methodology.

Acknowledge that in many applications, the original video is not available;
we develop another video quality assessment algorithm that can predict quality of a
processed video without information of the original video. This algorithm, specifically
designed for videos compressed by Motion JPEG2000 compression standard, consists
of two analyses of quality degradations in the edge/near-edge regions and the non-
edge regions of the videos. The algorithm shows promise in the first step of developing
a general no-reference algorithm for video quality assessment.
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CHAPTER 1

OVERVIEW OF VIDEO QUALITY ASSESSMENT

1.1 Introduction

With the rapid growth of multimedia technologies, the digital videos play a sig-

nificantly important role in the social communities today. The demands for video

services, including video sharing, video streaming, video surveillance etc., increase

with the development of social networks and technologies. To satisfy those demands,

many applications have been developed to record videos, compress, store, and transfer

from/to the servers to/from the end-user over broadband connection, wireless com-

munications, etc. The recording devices range from a cellphone camcorder with low

resolution to the super high resolution supported by the professional camcorder and

therefore, the video quality varies. In most applications, the owners/producers want

to maintain the videos with high quality in order to provide excellent services to the

end-users/customers. To perform this task, producers need a video quality assess-

ment (hereafter referred to as VQA) method/system that can accurately predict the

quality of a specific video. This VQA method can be used to quantify the effect of a

new compression standard or a custom transmission environment to the video quality

before it is delivered to the end-user. VQA methods can also be implemented in a

service system to maintain, control, and possibly enhance the systems QoS (quality

of service), e.g. the video streaming service. Therefore, an effective and robust VQA

method is crucial and required for many applications.

There are two types of VQA methods: subjective and objective. The subjec-

tive method is a reliable way to judge video quality because this method collects
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quality ratings from a statistically large group of human subjects, which represent

the whole population of ultimate receivers in most video applications. These sub-

jective ratings of video quality are then carefully processed using rejection criterion,

score normalization, etc. to obtain the representative video quality score in terms of

Mean Opinion Score (MOS) and/or Difference Mean Opinion Score (DMOS). This

method has advantages of high reliability and accuracy, however, it is inconvenient,

very time-consuming, and too expensive to deploy frequently because of system set-

tings, calibrations, subject paid, etc. Therefore, it is difficult and virtually impossible

to collect subjective ratings about video products and customize them to improve

quality. Because of these disadvantages, the subjective assessment method is mainly

necessary in final product evaluation and/or standardization processes that strictly

require high assurance of service quality.

The second method that can be deployed to assess video quality is the objective

method, which offers a flexible and affordable way to perform VQA. The goal of the

objective VQA method is to design an algorithm that can predict perceived video

quality automatically and in a manner that agrees with subjective ratings given by

human subjects. Objective VQA algorithms can be classified according to the avail-

ability of the original/reference video, which is considered to be distortion-free or

perfect quality. A large number of proposed objective VQA algorithms in the liter-

ature assume that the reference video is fully available. Then, a VQA method can

compare that reference video with the distorted videos to quantify quality degrada-

tions based on the difference in visual perception between two videos. VQA methods

that fall into this category are called full-reference methods.

On the other hand, there are many practical service applications where the ref-

erence video is not available and we need to estimate video quality without any

knowledge of the reference video. Despite the unavailability of the reference video, it

is known that human subjects can effectively assess quality of a particular video with
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high reliability and accuracy. Therefore, it is necessary to develop an algorithm that

can evaluate video quality blindly. Those algorithms are called blind or no-reference

VQA algorithms; and, due to the lack of reference information, developing a no-

reference algorithm is more difficult and challenging than developing a full-reference

algorithm. The no-reference VQA method is often associated with a specific type of

video artifacts where the characteristics are homogeneous across videos.

In the last few decades, a great deal of efforts has been made to develop objective

VQA algorithms. Various algorithms has been reviewed and summarized in previous

work [4, 6]. Many of them incorporate perceptual quality measures by studying the

response characteristics of human visual system (HVS) to video quality. Some algo-

rithms study the impairment of the processed videos using non-visual video features.

However, VQA is still far from being a mature research topic. In fact, only limited

success has been reported from evaluations of models under strict testing conditions

and specific distortion types.

1.2 General approaches to full-reference VQA

The ability to quantify the visual quality of an image or video is a crucial step for any

system that processes digital media. Full reference VQA algorithms aim to estimate

quality of a distorted video comparing to the reference video in a manner that agrees

with the quality judgments reported by human observers. Currently, the most basic

and widely used as a baseline full-reference objective VQA algorithms are the mean

squared error (MSE) and peak signal-to-noise ratio (PSNR), which are defined as:

MSE =
1

N

∑

i,j,k

(Ii,j,k − Îi,j,k)
2 (1.1)

PSNR = 10 log10
L2

MSE
(1.2)

where N is the total number of digital pixels in the video; Ii,j,k and Îi,j,k are the pixel

3



values from the original and the distorted videos, respectively, at the spatial location

{i, j} of the kth frame; L is the dynamic range of the pixel values (For an 8 bits/pixel

monotonic signal, L = 255). The MSE and PSNR methods are widely used because

of their simple calculation, clear physical meanings, and ease of use for optimization

purposes. However, MSE and PSNR have been criticized for not correlating well with

the perceived quality scores rated by human subjects.

Over the last few decades, numerous image-based quality assessment algorithms

have been developed and shown to perform reasonably well on various image-quality

databases. Therefore, a natural technique to VQA is to apply existing IQA algorithms

to each frame of the video and to pool the per-frame results across time. Since each

video frame is a single image, the key advantage of this frame-based approach is that

it is very intuitive, easily implemented, and computationally efficient. However, such

a frame-by-frame IQA approach to estimate video quality often fails to correlate with

the subjective ratings of quality [7, 8].

One reason that frame-by-frame IQA performs less well for VQA is its ignorance

of video temporal information, which is important for video quality due to temporal

effects such as temporal masking and motion perception [9, 10]. To overcome this

limitations, many researchers have incorporated temporal information into their VQA

algorithms by supplementing frame-by-frame IQA with a model of temporal masking

and/or temporal weighting [3, 11–13]. For example, in Refs. 11 and 12, motion-

weighting and temporal derivatives have been used to extend SSIM[14] and VIF[15]

for VQA.

Modern VQA algorithms often estimate video quality by extracting and comparing

visual/quality features from localized space-time regions or groups of video frames.

For example, in Refs. 2, 16, video quality is estimated based on spatial gradients,

color information, and the interaction of contrast and motion from spatiotemporal

blocks; motion-based temporal pooling is employed to yield the quality estimate. In

4
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Figure 1.1: A video can be envisaged as a rectangular cuboid in which two of the sides
represent the spatial dimensions (x and y), and the third side represents the time dimension
(t). If one takes slices of the cuboid from front-to-back, then the extracted slices correspond
to normal video frames. Slicing the cuboid vertically and horizontally yield spatiotemporal
slices images (STS images). Examples of three different slice types are presented in part
(b) of the figure.
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Figure 1.2: Demonstrative STS images extracted from a static video [(a) and (b)], from a
video with a vastly different content for each frame [(c) and (d)], and from a typical normal
natural video [(e) and (f)]. The STS images for the atypical videos in (a)-(d) appear similar
to textures, whereas the STS images for normal videos are generally smoother and more
structured due to the joint spatial and temporal (spatiotemporal) relationship.

Ref. 10, video quality is estimated via measures of spatial quality, temporal quality,

and spatiotemporal quality for groups of video frames via a 3D Gabor filter-bank; the

spatial and temporal components are combined into an overall estimate of quality.

In Ref. 17, spatial edge features and motion characteristics in localized space-time

regions are used to estimate quality.

Furthermore, it is known that the subjective score of video quality is varying [18]

across time during the video display, and this temporal variation has strong influence

to the overall quality ratings [19, 20]. VQA models that consider these effects have

been proposed in Refs. 20–23. In Ref. 23, Ninassi et al. measured temporal variations

of spatial visual distortions in a short-term pooling for groups of frames through a

mechanism of visual attention; the global video quality score is estimated via a long-

term pooling. In Ref. 20, Seshadrinathan et al. proposed a hysteresis temporal
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pooling model of spatial quality values by studying the relation between time-varying

quality scores and the final quality score assigned by human subjects.

1.3 Analysis of spatiotemporal slices - A new approach for VQA

Traditional analyses of temporal variation in video quality assessment tend to for-

mulate methods to compute spatial distortion of a standalone frame [3, 12], of local

space-time regions [2, 17], or of groups of adjacent frames [10, 23], and then mea-

sure the changes of spatial distortion over time. An alternative approach, which is

the technique we adopt in this report, is to use spatiotemporal slices (as illustrated

in Figure 1.1), which allows one to analyze longer temporal variations [24, 25]. In

the context of general motion analysis, Ngo et al. [25] stated that analyzing the vi-

sual patterns of spatiotemporal slices could characterize the changes of motion over

time and describe the motion trajectories of different moving objects. Inspired by

this result, we develop and propose an algorithm that estimates quality based on the

differences between the spatiotemporal slices of the reference and distorted videos.

As shown in Figure 1.1(a), a video can be envisaged as a rectangular cuboid in

which two of the sides represent the spatial dimensions (x and y), and the third side

represents the time dimension (t). If one takes slices of the cuboid from front-to-

back, then the extracted slices correspond to normal video frames. However, it is

also possible to take the slices of the cuboid from other directions (e.g., from left-to-

right or top-to-bottom) to extract “images” that contain spatiotemporal information,

hereafter called the STS images. As shown in Figure 1.1(b), if the cuboid is sliced

vertically (left-to-right or right-to-left), then the extracted slices represent time along

one dimension and vertical space along the other dimension, hereafter called the

vertical STS images. If the cuboid is sliced horizontally (top-to-bottom or bottom-

to-top), then the extracted slices represent time along one dimension and horizontal

space along the other dimension, hereafter called the horizontal STS images.

7



D
is

to
rt

ed
 S

T
S

 i
m

ag
es

 
R

ef
er

en
ce

 S
T

S
 i

m
ag

es
 

Horizontal STS images Vertical STS images 

C
lo

se
-u

p
s 

Figure 1.3: Demonstrative STS images extracted from the reference and distorted videos.
The close-ups show some dissimilar regions between the STS images.

Figure 1.2 shows examples of STS images from some typical videos. At one ex-

treme, if the video contains no temporal changes (e.g., no motion, as in a static video),

then the STS images will contain only horizontal lines [see Figure 1.2(a)] or only ver-

tical lines [see Figure 1.2(b)]. In both Figure 1.2(a) and (b), the perfect temporal

relationship in the video content manifests as perfect spatial relationship along the

dimension that corresponds to time in the STS images. At the other extreme, if the

video is rapidly changing (e.g., each frame contains vastly different content), the STS

images will appear as random patterns. In both Figure 1.2(c) and (d), the random-

ness of temporal content in the video manifests as spatially random pixels along the
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dimension that corresponds to time in the STS images. The STS images for normal

videos [Figure 1.2(e) and (f)] are generally well structured due to the joint spatiotem-

poral relationship of neighboring pixels and the smooth frame-to-frame transition.

The STS images have been effectively used in a model of human visual-motion

sensing [26], in energy models of motion perception [27], and in video motion analysis

[24, 25]. Here, we argue that the temporal variation of spatial distortion is exhibited

as spatiotemporal dissimilarity in the STS images and thus, these STS images can

also be used to estimate video quality. To illustrate this, Figure 1.3 shows sample

STS images from a reference video (reference STS image) and from a distorted video

(distorted STS image) where some dissimilar regions are clearly visible in the close-

ups. As we will demonstrate, by quantifying the spatiotemporal dissimilarity between

the reference and distorted STS images, it is possible to estimate video quality.

Figure 1.4 shows sample STS images extracted from two distorted videos of the

LIVE video database [1] and the normalized absolute difference images between the

reference and distorted STS images. The associated estimates PSNRsts and MADsts

are computed by applying PSNR [28] and the Most Apparent Distortion (MAD)

algorithm [29] to each pair of the reference and distorted STS images and by averaging

the results across all STS images. The higher the PSNRsts value, the better the video

quality; and the lower the MADsts value, the better the video quality. As seen from

Figure 1.4, the PSNRsts and MADsts values show promise for VQA by comparing

the STS images, whereas the frame-by-frame MAD fails to predict the qualities of

these videos. However, it is important to note that, although PSNR and MAD show

promise when applied to the STS images, neither PSNR nor MAD were designed

for use with STS images. In particular, PSNR and MAD do not account for the

HVS responses to temporal changes of spatial distortion. Consequently, PSNRsts and

MADsts can yield predictions which correlate poorly with MOS/DMOS. Thus, we
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(a) pa2 25fps.yuv (b) pa8 25fps.yuv
DMOS = 44.51 DMOS = 61.27

Frame-by-frame MAD = 46.25 Frame-by-frame MAD = 46.64
Distorted STS image Abs. diff. STS image Distorted STS image Abs. diff. STS image

PSNRsts = 36.00 PSNRsts = 31.78
MADsts = 39.69 MADsts = 74.06

Distorted STS image Distorted STS image

Abs. diff. STS image Abs. diff. STS image

PSNRsts = 36.01 PSNRsts = 32.04
MADsts = 47.73 MADsts = 77.63

Figure 1.4: Sample STS images and their absolute difference STS images (relative to
the STS images of the reference videos) extracted from videos (a) pa2 25fps.yuv, (b)
pa8 25fps.yuv for vertical STS images (upper) and for horizontal STS images (lower).
The videos are from the LIVE video database [1]. The values obtained by applying
frame-by-frame MAD on normal (front-to-back) frames are shown for comparison.
The PSNRsts and MADsts values, which are computed from the STS images, show
promise in estimating video quality. However, neither PSNR nor MAD account for
the HVS responses to temporal changes of spatial distortion, and thus we propose an
alternative method of quantifying degradation of the STS images.
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propose an alternative method of quantifying degradation of the STS images via a

measure of correlation and a model of motion perception.

The contents of next chapters in this dissertation are organized as follows: In

Chapter 2, we provide a brief literature review of current full-reference VQA algo-

rithms. In Chapter 3, we describe details of our full-reference VQA algorithm named

ViS3, which operates based on the analyses of spatial and spatiotemporal slices im-

ages. Chapter 4 presents the CSIQ video-quality database, which is developed by

our Computation Perception and Image Quality lab. The database consists of more

videos, more distortion types, and serves as a trusted data set to validate VQA al-

gorithms. Experimental results on comparing performance of various algorithms on

different video databases are presented in Chapter 5. In Chapter 6, we propose our no-

reference VQA algorithm that is specifically designed for Motion JPEG2000 videos.

General conclusions and potential future research are presented in Chapter 7.
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CHAPTER 2

PREVIOUS WORK IN FULL-REFERENCE VQA

The ability to quantify quality of a video is a crucial step for any system that pro-

cesses digital media. Yet, determining quality in a manner that agrees with human

perception remains one of the greatest ongoing challenges in video processing. Current

algorithms of image/video quality assessment still face many challenges in predict-

ing of quality because of the presence of various distortion types in images/videos

[4, 30]. In this chapter, we provide a brief review of previous work in developing full-

reference VQA algorithms. Following the classification specified in Ref. 6, current

VQA methods can roughly be divided into four classes: (1) those which employ IQA

on a frame-by-frame basis, (2) those which estimate quality based on differences be-

tween various features of the reference and distorted videos, (3) those which estimate

quality based on statsitical differences between the reference and distorted videos,

and (4) those which attempt to model one or more aspects of the HVS.

2.1 Frame-by-frame IQA

As stated in Chapter 1, the most straightforward technique to estimate video quality

is to apply existing IQA algorithms on a frame-by-frame basis. These per-frame

quality estimates can then be collapsed across time to predict an overall quality

estimate of the video. Thus, it is not uncommon to find these frame-by-frame IQA

algorithms used as a baseline for comparison [1, 31], and some authors implement

this technique as a part of their VQA algorithms [32, 33]. However, due to the lack

of temporal information, this technique often fails to correlate with the perceived
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quality measurements obtained from human observers.

2.2 Algorithms based on visual features

An approach commonly used in VQA is to extract meaningful spatial and temporal

visual features of the videos and then estimate quality based on the changes of these

features between the reference and distorted videos [2, 16, 34–40].

One of the earliest feature-based VQA algorithm was proposed by Pessoa et al.[34].

Their VQA algorithm employs image segmentation and compute error measures with

different weights for different types of segment category. Frames of the reference and

distorted videos are first segmented into smooth, edge, and texture regions. Vari-

ous pixel-based and edge-detection-based error measures are then computed between

corresponding regions of the reference and distorted videos for both the luminance

and chrominance components. These error measures are normalized via a logistic

function, weighted based on segment category, and collapsed across all segments and

all frames to yield the overall estimate of video quality.

The most popular feature-based VQA algorithms in used is the Video Quality

Metric (VQM), which was developed by Pinson and Wolf [2, 16]. The block diagram of

the VQM algorithm is depicted in Figure 2.1. The VQM algorithm employs “quality

features” that represent spatial, temporal, and color characteristics of video, and

measures the differences between those features computed from the reference and

distorted videos in four sequential steps. The first step calibrates videos in terms

of brightness, contrast, and spatial and temporal shifts. The second step breaks the

videos into sub-regions of space and time, and then extracts a set of quality features

for each sub-region. The third step compares features extracted from the reference

and distorted videos to yield a set of quality indicators. The last step combines these

indicators into a video quality index.

Okamoto et al.[35] proposed a VQA algorithm, which operates based on the three
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Figure 2.1: Block diagram of the Video Quality Metric (VQM) as presented in Ref. 2.

general types of artifacts appearing in videos: blurring, blocking, and motion distor-

tion. The blurring artifacts in the edge regions are quantified via the average of edge

energy difference described in ANSI T1.801.03. The blocking artifacts are quantified

based on the ratio of horizontal and vertical edge distortions to other edge distortions,

and the average local motion distortion is quantified based on the average difference

between block-based motion measures of the reference and distorted frames. The

overall video quality is estimated via a weighted average of these three features.

In Ref. 36, Lee and Sim proposed a VQA algorithm that operates under the as-

sumption that the HVS is most sensitive near the locations of edges and block bound-

aries. Accordingly, their algorithm applies both edge-detection and block-boundary

detection to video frames from the reference video to locate these regions. Sepa-

rate measures of distortion for the edge regions and block regions are then computed

14



between the reference and distorted frames. These two features are supplemented

with a gradient-based distortion measure, and the overall estimate of quality is then

obtained via a weighted sum of these three features and averaged across all frames.

In the context of packet-loss scenarios, Barkowsky et al. [37] designed the TetraVQM

algorithm by adding a model of temporal distortion awareness to the VQM algorithm.

The key idea in TetraVQM is to estimate the temporal visibility of image areas and

assign weight to the degradations in these areas based on their durations. The al-

gorithm employs block-based motion estimation to track image objects over time.

The resulting motion vectors and motion-prediction errors are then used to estimate

the temporal visibility, which in turn is used as a supplement to VQM algorithm

for estimating overall video quality. In 39, Engelke et al. demonstrated that signif-

icant improvements to VQM and TetraVQM can be realized by augmenting these

techniques with information regarding visual saliency.

Various features can be combined with the support of machine learning to improve

VQA performance. In Ref. 13, Narwaria et al. proposed the Temporal Quality Vari-

ation (TQV) algorithm, a low-complexity VQA algorithm that employs a machine-

learning mechanism to determine the impact of spatial and temporal factors as well

as their interactions on the overall video quality. Spatial quality factors are estimated

by an SVD-based algorithm [41] and the temporal variation of spatial quality factors

is used as a feature to estimate video quality.

2.3 Algorithms based on statistical measurements

Another class of VQA algorithms has been proposed which estimate quality based on

differences in statistical features of the reference and distorted videos [3, 11, 12].

In Ref. 3, Wang et al. proposed the Video Structural Similarity (VSSIM) index

as depicted in Figure 2.2. VSSIM computes various structural similarity (SSIM [14])

indices at three different levels: the local region level, the frame level, and the video
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Figure 2.2: Block diagram of the Video Structural SIMilarity (VSSIM) algorithm (Figure
from Ref. 3

sequence level. In the local region level, the SSIM index of each region is computed

for the luminance and chrominance components, with greater weight is given to lu-

minance component. These SSIM indices are weighted by local luminance intensity

to yield the frame-level SSIM index. Finally, at the sequence level, the frame SSIM

index is weighted by global motion to yield an estimate of video quality.

Another extension of SSIM to VQA, called Speed SSIM, was also proposed by

Wang et al.[11]. The authors augmented SSIM with an additional stage that employs

Stocker and Simoncelli’s statistical model [42] of visual speed perception. The speed

perception model is used to derive a “spatiotemporal importance weight function”

which specifies a relative weighting at each spatial location and time instant. The

overall estimate of video quality is obtained by using this weight function to compute

a weighted average of SSIM over all space and time.

In Ref. 12, Sheikh et al. augmented the Visual Information Fidelity (VIF) IQA

algorithm [15] for use in VQA. VIF estimates quality based on the inferred information

that the distorted image provides about the reference image. VIF models images as

realizations of a mixture of marginal Gaussian densities of wavelet subbands, and

quality is then determined based on the mutual information between the subband

coefficients of the reference and distorted images. To account for motion, the Video

VIF (V-VIF) algorithm quantifies loss in motion information by measuring deviations

in the spatiotemporal derivatives of the videos, which are estimated by using separable
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bandpass filters in space and time.

Tao and Eskicioglu[33] proposed a VQA algorithm that estimates quality based on

the singular value decomposition (SVD). Each frame of the reference and distorted

videos are divided into 8 × 8 blocks, and then the SVD is applied to each block.

Differences in the SVDs of corresponding blocks from the reference and distorted

frames, weighted by the edge-strength in each block, are used to generate a frame-

level distortion estimate. Both luminance and chrominance SVD-based distortions

are combined via a weighted sum. These combined frame-level estimates are then

averaged across all frames to yield an overall estimate of video quality.

Peng et al. proposed a motion-tuned and attention-guided VQA algorithm based

on a space-time statistical texture representation of motion. To construct the space-

time texture representation, the reference and distorted videos are filtered via a bank

of 3D Gaussian derivative filters at multiple scales and orientations. Differences in

the energies within local regions of the filtered outputs between the reference and

distorted videos are then computed along 13 different planes in space-time to define

their temporal distortion measure. This measurement is further combined with a

model of visual saliency and frame-based Multi-Scale SSIM[43] to estimate quality.

2.4 Algorithms based on HVS models

A widely adopted approach to VQA is to estimate video quality via the use of various

models of the human visual system (HVS) [10, 44–55].

One of the earliest VQA algorithms based on a vision model was developed by

Lukas and Budrikis [44]. Their technique employs a spatiotemporal visual filter that

models visual threshold characteristics on uniform backgrounds. To account for non-

uniform backgrounds, the model is supplemented with a masking function based on

the spatial and temporal activities of the video.

The Digital Video Quality (DVQ) algorithm, developed by Watson et al. [49], also
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models visual thresholds to estimate video quality. The authors employ the concept

of Just Noticeable Differences (JNDs), which are computed via a DCT-based model

of early vision. After sampling, cropping, and color conversion, each 8×8 block of the

videos is transformed to DCT coefficients, converted to local contrast, and filtered

by the temporal contrast sensitivity function. JNDs values are then measured by

dividing each DCT coefficient by its respective visual threshold. Contrast masking

is estimated based on the differences between successive frames, and the masking-

adjusted differences are pooled and mapped to a visual quality estimate.

Other HVS-based VQA algorithms include the Moving Picture Quality Metric

(MPQM) [45], the Color Moving Picture Quality Metric (CMPQM) algorithm [46],

the Normalization Video Fidelity Metric (NVFM) algorithm [47], wavelet-based algo-

rithm [53, 55], and the MOtion-based Video Integrity Evaluation (MOVIE) algorithm

[10]. These algorithms generally simulate HVS responses to individual spatial and

temporal subbands of the reference and distorted videos, and then estimate quality

based on the extent to which these responses differ. A block diagram of the general

approach in these algorithms is presented in Figure 2.3.

Figure 2.3: Block diagram of the HVS-based VQA algorithms (Figure from Ref. 4)
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The MPQM algorithm, proposed by Basso et al. [45], employs a spatiotemporal

model of human vision via 17 spatial Gabor filters and two temporal filters on the

luminance component only. After contrast sensitivity and masking adjustments, dis-

tortion is measured within each subband and pooled to yield the quality estimate. The

CMPQM algorithm [46] extends and applies the MPQM algorithm to both luminance

and chrominance components with a reduced number of filters for the chrominance

components (nine spatial filters and one temporal filter).

The NVFM algorithm [47] implements a visibility prediction model based on Teo-

Heeger model [56]. Instead of using Gabor filters, the perceptual decomposition

is performed using a steerable pyramid with four scales and four orientations. An

excitatory-inhibitory stage and a pooling stage are performed to yield a map of nor-

malized responses. The distortion is measured based on the squared error between

normalized response maps generated for the reference and the distorted video.

Masry et al. [53] developed a VQA algorithm based on an efficient perceptually

motivated multichannel decomposition via a separable wavelet transform. A visual

masking model is implemented to account for HVS responses. To obtain optimal

masking parameters, a training step was performed on a set of videos and their

associated subjective quality scores. Later in Ref. 55, Li et al. utilized this algorithm

as a part of their VQA algorithm, which measures and combines detail losses and

additive impairments within each frame; optimal parameters were determined by

training the algorithm on a subset of the LIVE video database [1].

Seshadrinathan et al. [10] proposed the MOtion-based Video Integrity Evaluation

(MOVIE) algorithm that estimates spatial quality, temporal quality, and spatiotem-

poral quality via a multi-dimension subband decomposition. MOVIE decomposes

both the reference and distorted videos using a 3D Gabor filter-bank with 105 spa-

tiotemporal subbands. The spatial MOVIE component uses outputs of the spatiotem-

poral Gabor filters and contrast masking to capture spatial distortion. The temporal
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MOVIE component employs optical flow motion estimation to determine motion in-

formation, which is combined with the outputs of the spatiotemporal Gabor filters to

capture temporal distortion. These spatial and temporal components are combined

into an overall estimate of video quality.

2.5 Chapter summary

In summary, although previous VQA algorithms have analyzed the effects of spatial

and temporal as well as their interactions on video quality, none has estimated video

quality based on spatiotemporal slices (STS images), which contain important spa-

tiotemporal information on a longer time scale. Earlier related work was performed

by Pechard et al. in Ref. 57, where spatiotemporal tubes rather than slices were used

for VQA. Their algorithm, which was designed specifically to estimate the impact of

H.264 compression artifacts on quality, employs a segmentation to create spatiotem-

poral tubes that are coherent in terms of motion and spatial activity. In Chapter 3,

we will describe our HVS-based VQA algorithm, ViS3, which employs measures of

both motion-weighted spatial distortion and spatiotemporal dissimilarity of the STS

images to estimate perceived video quality degradation.
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CHAPTER 3

VIDEO QUALITY ASSESSMENT VIA ANALYSIS OF SPATIAL AND

SPATIOTEMPORAL SLICES

3.1 Introduction

In this chapter, we describe details of our full reference VQA algorithm that estimates

video quality degradation by measuring spatial distortion and spatiotemporal dissimi-

larity separately in two stages. To estimate perceived video quality degradation due to

spatial distortion, both the detection-based strategy and the appearance-based strat-

egy of the MAD algorithm [29] are adapted and applied to groups of normal video

frames. A simple model of temporal weighting using optical flow motion estimation is

employed to give greater weights to distortions in the slow-moving regions [3, 22]. To

estimate spatiotemporal dissimilarity, we extend models of Watson-Ahumada [58] and

Adelson-Bergen [27], which have been used to measure energy of motion in videos,

to the STS images and measure differences in local variance of spatiotemporal neural

responses. The spatiotemporal response is obtained by filtering the STS image via

one 1D spatial filter and one 1D temporal filter [27, 58]. The overall estimate of

perceived video quality degradation is given by a geometric mean of spatial distortion

and spatiotemporal dissimilarity values.

We have named our algorithm ViS3 according to its two main stages: the first

stage estimates Video quality degradation based on Spatial distortion (ViS1), and the

second stage estimates Video quality degradation based on the dissimilarity between

Spatiotemporal Slices images (ViS2). The final estimate of perceived video quality

degradation ViS3 is a combination of ViS1 and ViS2. The ViS3 algorithm is an
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upgraded version of our previous VQA algorithms presented in Refs. 59, 60. We

demonstrate performance of this algorithm on various video-quality databases and

compare to some recent VQA algorithms. We also analyze performance of ViS3 on

different types of distortion by measuring its performance on each subset of videos.

The major contributions of this algorithm are as follows. First, we provide a sim-

ple yet effective extension of our MAD algorithm for use in VQA. Specifically, we show

how to apply MAD’s detection- and appearance-based strategies to groups of video

frames, and how to modify the combination to take into account temporal masking.

This contribution is presented in the first stage of the ViS3 algorithm. Second, we

demonstrate that the spatiotemporal dissimilarity exhibited in the STS images can be

used to effectively estimate video quality degradation. We specifically provide in the

second stage of the ViS3 algorithm a technique to quantify the spatiotemporal dissim-

ilarity by measuring spatiotemporal correlation and by applying an HVS-based model

to the STS images. Finally, we demonstrate that a combination of the measurements

obtained from these two stages is able to estimate video quality quite accurately.

3.2 Algorithm

The ViS3 algorithm estimates video quality degradation by using the luminance com-

ponents of the reference and distorted videos in YUV color space. We denote I as

the cuboid representation of the Y component of the reference video, and we denote

Î as the cuboid representation of the Y component of the distorted video.

The ViS3 algorithm employs a combination of both spatial and spatiotemporal

analyses to estimate perceived video quality degradation of the distorted video Î

in comparison to the reference video I. Figure 3.1 shows a block diagram of the

ViS3 algorithm, which measures spatial distortion and spatiotemporal dissimilarity

separately via two main stages:

• Spatial Distortion: This stage estimates average perceived video distortion that
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Figure 3.1: Block diagram of the ViS3 algorithm. The Spatial Distortion stage is applied
to groups of normal video frames extracted in a front-to-back fashion to compute spatial
distortion value ViS1. The spatiotemporal dissimilarity value ViS2 is computed from the
STS images extracted in a left-to-right fashion and a top-to-bottom fashion. The final scalar
output of the ViS3 algorithm is computed via a geometric mean of the spatial distortion
and spatiotemporal dissimilarity values.

occurs spatially in every group of frames (GOF). A motion-weighting scheme

is employed to model the effect of motion on the visibility of spatial distortion.

These per-group distortion values are then combined into a single scalar, ViS1,

which represents an estimate of overall perceived video quality degradation due

to spatial distortion.

• Spatiotemporal Dissimilarity : This stage estimates video quality degradation by

computing the spatiotemporal dissimilarity of the STS images extracted from

the reference and distorted videos via the differences of spatiotemporal neural

responses. These per-STS-image spatiotemporal dissimilarity values are then

combined into a single scalar, ViS2, which represents an estimate of overall

perceived video quality degradation due to spatiotemporal dissimilarity.

Finally, the spatial distortion value, ViS1, and the spatiotemporal dissimilarity

value, ViS2, are combined via a geometric mean to yield a single scalar ViS3 that

represents the overall estimate of perceived video quality degradation. The following
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Figure 3.2: Block diagram of the Spatial Distortion stage. The extracted frames from the
reference and distorted videos are used to compute a visible distortion map and a statistical
difference map of each GOF. Motion estimation is performed on the reference video frames
and used to model the effect of motion on the visibility of distortion. All maps are combined
and collapsed to yield a spatial distortion value ViS1.

subsections provide details of each stage in the algorithm.

3.2.1 Spatial distortion

In the Spatial Distortion stage, we employ and extend our Most Apparent Distortion

(MAD) algorithm [29], which was specifically designed to estimate distortion in the

still images, to measure spatial distortion in each GOF of the video. The MAD

algorithm is composed of two separate strategies: (1) a detection-based strategy,

which computes the perceived distortion due to visual detection (denoted by ddetect);

and (2) an appearance-based strategy, which computes the perceived distortion due

to visual appearance changes (denoted by dappear). The perceived distortion due to

visual detection is measured via a masking-weighted block-based mean-squared error

in the lightness domain. The perceived distortion due to visual appearance changes

is measured by computing the average differences between block-based log-Gabor

statistics of the reference and distorted images.

The most apparent distortion (MAD) index of the distorted image is computed
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via a geometric weighted mean:

α =
1

1 + β1 × (ddetect)β2

, (3.1)

MAD = (ddetect)
α × (dappear)

1−α, (3.2)

where the weight α ∈ [0, 1] serves to adaptively combine the two distortion indices

(ddetect and dappear) based on the overall level of distortion estimated by the detection-

based strategy. As described in Ref. 29, for high-quality images, subjects tend to

look for distortion and MAD should obtain its value mostly from ddetect; whereas for

low-quality images, subjects tend to look for image content and MAD should obtain

its value mostly from dappear. Thus, an initial estimate of the quality level is required

in order to determine the proper weighting (α) of the two strategies. In Ref. 29,

the value of ddetect served as this initial estimate, and thus α is a function of ddetect.

The two free parameters β1 = 0.467, β2 = 0.130 were obtained after training the

algorithm on the A57 image database [61]; readers are recommended to see Ref. 29

for a complete description of the MAD algorithm.

To extend MAD for use in video quality assessment, we perform the following

steps (shown in Figure 3.2) on each group of N consecutive frames that are taken

from the video’s luminance (Y) component:

1. Compute a visible distortion map for each frame by using MAD’s detection-

based strategy. The maps computed from all frames in each GOF are then

averaged to yield a GOF-based visible distortion map.

2. Compute a statistical difference map for each frame by using MAD’s appearance-

based strategy. The maps computed from all frames in each GOF are then

averaged to yield a GOF-based statistical difference map.

3. Compute the magnitude of motion vectors in each frame of the reference video,
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the motion vectors are estimated via the Lucas-Kanade optical flow method

[62]. The motion magnitude maps computed from all frames in each GOF are

averaged to yield a GOF-based motion magnitude map.

4. Combine the three GOF-based maps computed from previous steps into a single

spatial distortion map; the Root Mean Squared (RMS) value of this map serves

as the spatial distortion value of the GOF. The estimated spatial distortion

values of all GOFs are combined via an arithmetic mean to yield a single scalar

that represents the perceived video quality degradation due to spatial distortion.

Explicitly, the video frames are extracted from the Y components of the reference

and distorted videos. Let It(x, y) denote the tth frame of the reference video I, and

let Ît(x, y) denote the tth frame of the distorted video Î, where t ∈ [1, T ] denotes the

frame (time) index, and T denotes the number of frames in video I. These video

frames are then divided into groups of N consecutive frames for both the reference

and the distorted video. The following subsections describe details of each step.

A Compute visible distortion maps

We apply the detection-based strategy from Ref. 29 to all pairs of respective frames

from the reference video and the distorted video. A block diagram of this detection-

based strategy is provided in Figure 3.3.

A.1 Detection-based strategy As illustrated in Figure 3.3, a preprocessing step

is first performed by using nonlinear luminance conversion and spatial contrast sen-

sitivity function filtering. Then, models of luminance and contrast masking are used

to compute a local distortion visibility map where distortions are present. Next, this

map is weighted by local MSE to yield a visible distortion map. The specific steps

are as follows (see Ref. 29 for additional details):
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Figure 3.3: Block diagram of the detection-based strategy used to compute a visible distor-
tion map. Both the reference and the distorted frame are converted to perceived luminance
and filtered by a contrast sensitivity function (CSF). By comparing the local contrast of
the reference frame L and the error frame ∆L, we obtain a local distortion visibility map.
This map is then weighted by local MSE to yield a visible distortion map.

First, to account for the nonlinear relationship between digital pixel values and

physical luminance of typical display media, the video I is converted to a perceived

luminance video L via

L = (a+ kI)γ/3 (3.3)

where the parameters a, k and γ are constants specific to the device on which the

video is displayed. For 8-bit pixel values and an sRGB display, these parameters

are given by a = 0, k = 0.02874, and γ = 2.2. The division by 3 attempts to take

into account the nonlinear HVS response to luminance by converting luminance into

perceived luminance (relative lightness).

Next, the contrast sensitivity function (CSF) is applied by filtering both the ref-

erence frame L and the error frame ∆L = L − L̂. The filtering is performed in the

frequency domain via

L̃ = F
−1[H(u, v)× F[L]] (3.4)

where F and F
−1 denote the DFT and inverse DFT, respectively; H(u, v) is the DFT-

based version of the CSF function defined by Equation (3) in Ref. 29.

To account for the fact that the presence of an image can reduce the detectability

of distortions, MAD employs a simple spatial-domain measure of contrast masking.

First, a local contrast map is computed for the reference frame in the lightness domain
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by dividing L̃ into blocks of 16 × 16 pixels (with 75% overlap between neighboring

blocks), and then measuring the RMS contrast of each block. The RMS contrast of

block b of L̃ is computed via

Cref (b) = σ̃ref (b)/µref (b), (3.5)

where µref (b) denotes the mean of block b of L̃, and where σ̃ref (b) denotes the mini-

mum of the standard deviations of four 8×8 subblocks of b. The block size of 16×16

was chosen because it is large enough to accommodate division into reasonably sized

sub-blocks (to avoid overestimating the contrast around edges), but small enough to

yield decent spatial localization (see Appendix A in Ref. 29).

Cref (b) is a measure of local RMS contrast in the reference frame and is thus

independent of the distortions. Accordingly, we next compute a local contrast map

for the error frame to account for the spatial distribution of distortions in the distorted

frame. The error frame ∆L is divided into blocks of 16 × 16 pixels (with 75% block

overlapping), and then the RMS contrast Cerr(b) for each block b is computed via

Cerr(b) =











σerr(b)/µref (b) if µref (b) > 0.5

0 otherwise,
(3.6)

where σerr(b) denotes the standard deviation of block b of ∆L. A lightness threshold

value of 0.5 is employed to account for the fact that the HVS is relatively insensitive

to changes in extremely dark regions.

The local contrast map is computed for both the reference frame and the error

frame for every block b of size 16× 16 with 75% overlap between neighboring blocks.

The two local contrast maps {Cref} and {Cerr} are used to compute a local distortion
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visibility map denoted by ξ(b) via

ξ(b) =























ln(Cerr(b))− ln(Cref (b)) if ln(Cerr(b)) > ln(Cref (b)) > −5

ln(Cerr(b)) + 5 if ln(Cerr(b)) > −5 ≥ ln(Cref (b))

0 otherwise.

(3.7)

The local distortion visibility map ξ is then point-by-point multiplied by the local

mean squared-error (MSE) to determine a visible distortion map denoted by Υd,

where the superscript d is used to imply that the map is computed from the detection-

based strategy. The visible distortion at the location of block b is given by

Υd(b) = ξ(b) ·MSE(b). (3.8)

Note that in Ref. 29, the visible distortion map Υd is collapsed into a single scalar

that represents the perceived distortion due to visual detection ddetect, which is com-

puted via ddetect =
√
∑

b[Υ
d(b)]2, where the summation is over all blocks. In this

dissertation, we do not collapse Υd at this step.

A.2 Apply to groups of video frames Let Υd

t denote the visible distortion map

computed from the tth frame of the reference video and the tth frame of the distorted

video. The visible distortion maps computed from all frames in the kth GOF will be

denoted by {Υd

N(k−1)+1,Υ
d

N(k−1)+2, · · · ,Υd

Nk}, where k ∈ {1, 2, · · · , K} is the GOF

index and K is the number of GOFs in the video. These maps are combined via a

point-by-point average across frames to yield a GOF-based visible distortion map of

the kth GOF, which is denoted by Ῡd

k :

Ῡd

k =
1

N

N
∑

τ=1

Υd

N(k−1)+τ . (3.9)
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Figure 3.4: Block diagram of the appearance-based strategy used to compute a statisti-
cal difference map. The reference and the distorted frame are decomposed into different
subbands using a 2D log-Gabor filter-bank. Local standard deviation, skewness, and kur-
tosis are computed for each subband of both the reference and the distorted frame. The
differences in local standard deviation, skewness, and kurtosis between each subband of
the reference frame and the respective subband of the distorted frame are combined into a
statistical difference map.

B Compute statistical difference maps

As argued in Ref. 29, when the distortions in the image are highly suprathreshold,

perceived distortion is better modeled by quantifying the extent to which the distor-

tions degrade the appearance of the image’s subject matter. The appearance-based

strategy measures local statistics of multi-scale log-Gabor filter responses to capture

changes in visual appearance. Figure 3.4 shows a block diagram of the appearance-

based strategy that is employed here to compute a statistical difference map between

the reference and the distorted frame.

B.1 Appearance-based strategy The appearance-based strategy employs a com-

putational neural model using a log-Gabor filter-bank (with five scales s ∈ {1, 2, 3, 4, 5}

and four orientation o ∈ {1, 2, 3, 4}), which implements both even-symmetric (cosine-

phase) and odd-symmetric (sine-phase) filters. The even and odd filter outputs are

then combined to yield magnitude-only subband values. Let {Rs,o} and {R̂s,o} de-

note the sets of log-Gabor subbands computed for a reference and a distorted frame,

respectively, where each subband has the same spatial size with the frames.

The standard deviation, skewness, and kurtosis are then computed for each block
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b of size 16×16 (with 75% overlap between blocks) for each log-Gabor subband of the

reference frame and the distorted frame. Let σs,o(b), ςs,o(b), and κs,o(b) denote the

standard deviation, skewness, and kurtosis computed from block b of subband Rs,o.

Let σ̂s,o(b), ς̂s,o(b), and κ̂s,o(b) denote the standard deviation, skewness, and kurtosis

computed from block b of subband R̂s,o. The statistical difference map is computed

as the weighted combination of the differences in standard deviation, skewness, and

kurtosis for all subbands. We denote Υa as the statistical difference map, where the

superscript a is used to imply that the map is computed from the appearance-based

strategy. Specifically, the statistical difference at the location of block b is given by

Υa(b) =
5
∑

s=1

4
∑

o=1

ws[|σs,o(b)− σ̂s,o(b)|+ 2|ςs,o(b)− ς̂s,o(b)|+ |κs,o(b)− κ̂s,o(b)|]. (3.10)

where the scale-specific weights ws = {0.5, 0.75, 1, 5, 6} (for the finest to coarsest

scales, respectively) are chosen the same as in Ref. 29 to account for the HVS’s

preference for coarse scales over fine scales (see Ref. 29 for more details).

Note that in Ref. 29, the statistical difference map Υa is collapsed into a sin-

gle scalar that represents the perceived distortion due to visual appearance changes

dappear, which is computed via dappear =
√
∑

b[Υ
a(b)]2, where the summation is over

all blocks. In the current dissertation, we do not collapse Υa at this step.

B.2 Apply to groups of video frames Let Υa

t denote the statistical difference

map computed from the tth frame of the reference video and the tth frame of the

distorted video. The statistical difference maps computed from all frames in the kth

GOF will be denoted by {Υa

N(k−1)+1,Υ
a

N(k−1)+2, · · · ,Υa

Nk}, where k ∈ {1, 2, · · · , K} is

the GOF index and K is the number of GOFs in the video. These maps are combined

via a point-by-point average across frames to yield a GOF-based statistical difference
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map of the kth GOF, which is denoted by Ῡa

k :

Ῡa

k =
1

N

N
∑

τ=1

Υa

N(k−1)+τ (3.11)

C Optical flow motion estimation

Both the detection-based strategy and the appearance-based strategy were specifically

designed for still images. They do not account for the effects of motion on the visibility

of distortion. One attribute of motion that affects the visibility of distortion in video

is the speed of motion (or the magnitude of motion vectors). According to Wang et al.

[3] and Barkowsky et al. [22], the visibility of distortion is significantly reduced when

the speed of motion is large. Alternatively, the distortion in slow-moving regions is

more visible than the distortion in fast-moving regions.

To model this effect of motion, we measure the speed of motion in different regions

of the video by using an optical flow algorithm. We specifically apply the optical

flow method designed by Lucas and Kanade [62] to estimate motion vectors from

the reference video. The Lucas-Kanade method assumes that the displacement of

the frame contents between two nearby frames is small and roughly constant within a

neighborhood (window) of a point under consideration. Thus, the optical-flow motion

vector is assumed to be the same within a window centered at that point; and it is

computed by solving the optical-flow equations using least squares criterion.

In this dissertation , we select a window of size 8× 8. For each pair of consecutive

frames, we obtain two matrices of motion vectors, Mv and Mh, which correspond to

the vertical and horizontal directions. The motion magnitude matrix is then com-

puted as M =
√

M2
v +M2

h . Each element in this matrix represents the motion

magnitude of a region defined by an 8× 8 block in the frame.

Let Mt denote the motion magnitude matrix computed from the tth video frame

and its successive frame, where t = 1, 2, · · · , T − 1 denotes the frame index and T
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is the number of frames in the video. For the kth GOF of the reference video, the

motion magnitude matrices computed from all N of its frames are averaged to yield

an average motion magnitude matrix via:

M̄k =
1

N

N
∑

τ=1

MN(k−1)+τ . (3.12)

Note that the sizes of Mt and M̄k are both 64 times smaller than a regular frame

because each value in these matrices represents motion magnitude of a 8× 8 window

in the regular frame. We therefore rescale the M̄k matrix to the size of the video frame

(using nearest-neighbor interpolation) to obtain the GOF-based motion magnitude

map of the kth GOF. This map is denoted by Ῡm

k , where the superscript m is used to

imply that the map is computed from the motion magnitudes.

D Combine GOF-based maps and compute spatial distortion value

For each GOF, we have computed the GOF-based visible distortion map Ῡd, the

GOF-based statistical difference map Ῡa, and the GOF-based motion magnitude

map Ῡm. Now, we extend and apply Equation (3.2) locally to respective regions

of the visible distortion map and the statistical difference map to obtain the GOF-

based most apparent distortion map. This map is then point-by-point weighted by

the motion magnitude map Ῡm

k to yield the spatial distortion map of the kth GOF. We

denote ∆k(x, y) of size W ×H, which is the video frame size, as the spatial distortion

map of the kth GOF. Specifically, the value at point (x, y) of the spatial distortion

map ∆k(x, y) is computed via

α̂(x, y) =
1

1 + β1 ×
[

Ῡd

k(x, y)
]β2

, (3.13)

∆k(x, y) =

[

Ῡd

k(x, y)
]α̂(x,y) ×

[

Ῡa

k(x, y)
]1−α̂(x,y)

√

1 + Ῡm

k (x, y)
. (3.14)
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The division by Ῡm

k (x, y) accounts for the fact that the distortion in slow-moving

regions is generally more visible than the distortion in fast-moving regions. When the

value in the motion magnitude map Ῡm

k is relatively large or the corresponding spatial

region is fast-moving, the visible distortion value in ∆k(x, y) is relatively small; when

the value in the motion magnitude map Ῡm

k is relatively small or the corresponding

spatial region is slow-moving, the visible distortion value in ∆k(x, y) is relatively large.

When there is no motion in the region, the visible distortion is determined solely by

frame-based visual detection Ῡd

k and visual appearance change Ῡa

k .

Figure 3.5 shows examples of the first frame (a) and the last frame (b) of a specific

GOF of videomc2 50fps.yuv from the LIVE video database [1]. The visible distortion

map (c), the statistical difference map (d), the motion magnitude map (e), and the

spatial distortion map (f) computed for this GOF are also shown. As seen from the

visible distortion map (c) and the statistical difference map (d), at the regions of

high visible distortion level (i.e. the train, the numbers in the calendar), the spatial

distortion map is weighted more by the statistical difference map. At the regions of

low visible distortion level (i.e. the wall background), the spatial distortion map is

weighted more by the visible distortion map.

As also seen from Figure 3.5(c) and (d), the region corresponding to the train at

the bottom of the frames is more heavily distorted than the other regions. However,

due to the fast movement of the train, which is reflected in the bottom of the motion

magnitude map (e), the visibility of distortion is reduced, making this region less

bright in the spatial distortion map (f).

To estimate spatial distortion value of each GOF, we compute the root mean

square (RMS) value of the spatial distortion map. The RMS value of the map ∆k(x, y)
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(a) First frame of the distorted GOF (b) Last frame of the distorted GOF

(c) Visible distortion map Ῡd

k(x, y) (d) Statistical difference map Ῡa

k(x, y)

(e) Motion magnitude map Ῡm

k (x, y) (f) Spatial distortion map ∆k(x, y)

Figure 3.5: Examples of the first and last frames (a, b), the visible distortion map (c), the
statistical difference map (d), the motion magnitude map (e), and the spatial distortion map
(f) computed for a specific GOF of the video mc2 50fps.yuv from the LIVE video database
[1]. All maps have been normalized in contrast to promote visibility. Note that the brighter
the maps, the more distorted the corresponding spatial region of the GOF; for the motion
magnitude map, the brighter the map, the faster the motion in the corresponding spatial
region of the GOF.
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of size W ×H is given by

∆̄xy

k =

√

√

√

√

1

W ×H

W
∑

x=1

H
∑

y=1

[∆k(x, y)]
2, (3.15)

where the superscript xy is used to remind readers that the value is computed from the

normal frames with two dimensions x and y. The overall perceived spatial distortion

value, denoted by ViS1, is computed as the arithmetic mean of all spatial distortion

values ∆̄xy

k across GOF via

ViS1 =
1

K

K
∑

k=1

∆̄xy

k . (3.16)

Here, ViS1 is a single scalar that represents the overall perceived quality degradation

of the distorted video due to spatial distortion in comparing to the reference video.

The lower the ViS1 value, the better the video quality. A value ViS1 = 0 indicates

that the distorted video is equal in quality to the reference video.

3.2.2 Spatiotemporal dissimilarity

In the distorted video, the distortion does not only impact the spatial relationship

between neighboring pixels within the current frame, the distortion can also affect

the transition between frames, which can be captured via the use of the STS im-

ages as demonstrated in Chapter 1. The difference between STS images from the

reference and distorted videos is referred to as the spatiotemporal dissimilarity in this

dissertation. If the spatiotemporal dissimilarity between the STS images is small, the

distorted video has high quality relative to the reference video; if the spatiotemporal

dissimilarity between the STS images is large, the distorted video has low quality

relative to the reference video. Figure 3.6 depicts a block diagram of the Spatiotem-

poral Dissimilarity stage, which estimates spatiotemporal dissimilarity between the

reference and the distorted video via following steps:
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Figure 3.6: Block diagram of the Spatiotemporal Dissimilarity stage of the ViS3 algorithm.
The STS images are extracted from the perceived luminance videos. The spatiotemporal
correlation and the difference of spatiotemporal responses are computed in a block-based
fashion and combined to yield a spatiotemporal dissimilarity map. All maps are then
collapsed by using root mean square and combined to yield the spatiotemporal dissimilarity
value ViS2 of the distorted video.

1. Extract the vertical and horizontal STS images in the lightness domain.

2. Compute a spatiotemporal correlation map of the STS images.

3. Filter the STS images via a set of spatiotemporal filters. These filtered images

are used to compute a map of spatiotemporal responses differences.

4. Combine the two above maps into a spatiotemporal dissimilarity map and col-

lapse this map into a spatiotemporal dissimilarity value. These per-STS-image

dissimilarity values are combined into a single scalar, ViS2, which represents

the overall perceived video spatiotemporal dissimilarity.

The following subsections describe details of each step.

A Extract the STS images

The reference video I and the distorted video Î are converted to perceived luminance

videos L and L̂ respectively using Equation (3.3). Let Sx(t, y) denote the vertical

STS image of the video cuboid L, where x ∈ [1,W ] denotes the vertical slice (column)

index, and W denotes the spatial width of the video (measured in pixels). As shown

previously in Figure 1.1, these vertical STS images contain temporal information in

the horizontal direction and spatial information in the vertical direction. Thus, for
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a video containing T frames, Sx(t, y) will be of size T × H, where H denotes the

spatial height of the video (measured in pixels). There are W such STS images

S1(t, y), S2(t, y), · · · , SW (t, y).

Similarly, let Sy(x, t) denote the horizontal STS image of the video cuboid L,

where y ∈ [1, H] denotes the horizontal slice (row) index, and H denotes the spatial

height of the video. These horizontal STS images contain spatial information in the

vertical direction and temporal information in the horizontal direction. Thus, for a

video containing T frames, Sy(x, t) will be of size W × T , and there are H such STS

images S1(x, t), S2(x, t), · · · , SH(x, t).

The STS images extracted from the reference video {Sx(t, y), Sy(x, t)} and the

STS images extracted from the distorted video {Ŝx(t, y), Ŝy(x, t)} are then used

to compute the spatiotemporal dissimilarity values. This procedure consists of two

main steps: (1) compute the spatiotemporal correlation maps, and (2) compute the

spatiotemporal response difference maps.

B Compute spatiotemporal correlation maps

One simple way that can potentially measure the spatiotemporal dissimilarity is com-

puting the local linear correlation coefficients of the STS images extracted from the

reference and the distorted videos. If the distorted video has perfect quality rela-

tive to the reference video, these two videos should have high correlation in the STS

images; if the distorted video has low quality relative to the reference video, the

spatiotemporal correlation is likely to be low.

Let ρ(b) denote the linear correlation coefficient computed from block b of the

two STS images Sx(t, y) and Ŝx(t, y). We define the local spatiotemporal correlation
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coefficient ρ̃(b) of these two blocks as

ρ̃(b) =























0 if ρ(b) < 0

1 if ρ(b) > 0.9

ρ(b) otherwise.

(3.17)

As shown in Equation (3.17), if the two blocks are highly positive correlated, we set

ρ̃(b) = 1. The threshold value of 0.9 was chosen empirically so that a relatively high

positive correlation (ρ > 0.9) is still considered perfect by the algorithm. On the

other hand, if the two blocks are negatively correlated, we set ρ̃(b) = 0 to reflect the

dissimilarity between the two blocks.

This process is performed on every block of size 16×16 with 75% overlap between

neighboring blocks, yielding a spatiotemporal correlation map denoted by Px(t, y)

between Sx(t, y) and Ŝx(t, y). Similarly, we compute a spatiotemporal correlation map

denoted by Py(x, t) between Sy(x, t) and Ŝy(x, t). Examples of the correlation maps

are shown in Figure 3.7(c). The brighter the maps, the higher the spatiotemporal

correlation between corresponding regions of the two STS images.

C Compute spatiotemporal response difference maps

The spatiotemporal correlation coefficient computed in previous section does not ac-

count for the response of human visual system to the joint spatiotemporal characteris-

tics of the video. Therefore, in addition to measuring the spatiotemporal correlation,

we employ a computational HVS model that takes into account joint spatiotemporal

perception based on the work of Watson and Ahumada in Ref. 58. This model applies

separate 1D filters to each dimension of the STS images to measure spatiotemporal

responses. In Ref. 27, Adelson et al. used these spatiotemporal responses to mea-

sure energy of motion in a video. Here, we apply similar model with different spatial

filters to the STS images and measure the differences of spatiotemporal responses in
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an attempt to estimate video quality degradation.

C.1 Decompose STS images into spatiotemporally filtered images As

stated by Adelson and Bergen in Ref. 27, the spatiotemporal information presented

in the STS images can be captured via a set of spatiotemporally oriented filters. Wat-

son and Ahumada [58] suggested to construct these filters via two sets of separate 1D

filters (spatial and temporal) with appropriate spatiotemporal characteristics. Fol-

lowing this suggestion, we employ a set of log-Gabor 1D filters {gs}, s ∈ {1, 2, 3, 4, 5},

as the spatial filters, where the frequency response of each filter is given by

Gs(ω) = exp

(

−
(ln | ω

ωs
|)2

2(lnBs)2

)

, (3.18)

where Gs, ωs, and Bs denote the frequency response, center frequency, and bandwidth

of the filter gs respectively, ω ∈ [−ωs, ωs] is the 1D spatial frequency. The bandwidth

Bs is held constant for all scales to obtain constant filter shape. We specifically choose

five scales and a filter bandwidth of approximately two octaves (Bs = 0.55). Without

the orientation information, these filters are the same as the log-Gabor filters used

the appearance-based strategy of Ref. 29 .

Two temporal filters {hz}, z ∈ {1, 2}, were selected according to Adelson-Bergen

model [27]. The impulse response at time instance t of each filter is given by

hz(t) = tnz exp(−t)

[

1

nz!
− t2

(nz + 2)!

]

(3.19)

where n1 = 6 and n2 = 9,which correspond to the fast and slow motion, were chosen

to approximate the temporal contrast sensitivity functions reported by Robson [63].

The STS images are filtered along the spatial dimension by each spatial filter and

then along the temporal dimension by each temporal filter to yield a spatiotemporally

filtered image, which represents modeled spatiotemporal neural responses. With five
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spatial filters and two temporal filters, each STS image yields 10 spatiotemporally

filtered images. We denote Rs,z
x (t, y) and Rs,z

y (x, t), (s ∈ {1, 2, 3, 4, 5} and z ∈ {1, 2}),

as the spatiotemporally filtered images obtained by filtering the STS images Sx(t, y)

and Sy(x, t) from the reference video via spatial filter gs and temporal filter hz. These

filtered images are computed via

Rs,z
x (t, y) = [Sx(t, y) ∗y gs] ∗t hz (3.20)

Rs,z
y (x, t) = [Sy(x, t) ∗x gs] ∗t hz (3.21)

where ∗d, d ∈ {x, y, t}, denotes the convolution operator along dimension d.

Similarly, we denote R̂s,z
x (t, y) and R̂s,z

y (x, t) as the spatiotemporally filtered im-

ages obtained by filtering the STS images Ŝx(t, y) and Ŝy(x, t) from the distorted

video via spatial filter gs and temporal filter hz. Then, the spatiotemporal response

differences ∆Rs,z
x (t, y) and ∆Rs,z

y (x, t) are defined as the absolute difference of the

spatiotemporally filtered images via

∆Rs,z
x (t, y) = |Rs,z

x (t, y)− R̂s,z
x (t, y)| (3.22)

∆Rs,z
y (x, t) = |Rs,z

y (x, t)− R̂s,z
y (x, t)|. (3.23)

Although the proper technique of estimating video quality based on the differences

in spatiotemporal responses remains an open research question, as discussed next, we

employ a simple yet effective measure based on the local standard deviation of the

spatiotemporal response differences.

C.2 Compute log of response difference maps We compute the local mean

and local standard deviation of the spatiotemporal response differences in a block-

based fashion. Let µs,z
x (b) and σs,z

x (b) denote the local mean and standard deviation

computed from block b of the response difference ∆Rs,z
x (t, y). Similarly, let µs,z

y (b)
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and σs,z
y (b) denote the local mean and local standard deviation computed from block

b of the response difference ∆Rs,z
y (x, t).

The adjusted standard deviation of block b of the error-filtered image at spatial

frequency index s and temporal frequency index z is given by

σ̃s,z
x (b) =















0, if µs,z
x (b) < p

σs,z
x (b)×

√

µs,z
x (b)

p+ µs,z
x (b)

, otherwise
(3.24)

and

σ̃s,z
y (b) =















0, if µs,z
y (b) < p

σs,z
y (b)×

√

µs,z
y (b)

p+ µs,z
y (b)

, otherwise
(3.25)

where p = 0.01 is a threshold value. When the mean value of absolute difference at

the location of block b is small, there is no dissimilarity between the regions at the

location of block b in the STS images; when the mean value computed from block b is

large enough, the dissimilarity is approximately measured by the standard deviation

of block b in the response differences.

This process is performed on every block of size 16 × 16 with 75% overlap be-

tween neighboring blocks, yielding maps of adjusted standard deviation σ̃s,z
x (t, y) and

σ̃s,z
y (x, t). The log of response difference maps Dx(t, y) and Dy(x, t) are computed

as the natural logarithm of a weighted sum of all the maps σ̃s,z
x (t, y) and σ̃s,z

y (x, t),

respectively, as follows:

Dx(t, y) = ln

(

1 + A

5
∑

s=1

2
∑

z=1

ws[σ̃
s,z
x (t, y)]2

)

(3.26)

Dy(x, t) = ln

(

1 + A
5
∑

s=1

2
∑

z=1

ws[σ̃
s,z
y (x, t)]2

)

(3.27)

where the weights {ws} = {0.5, 0.75, 1, 5, 6} were chosen following Ref. 29 to

account for the preference of human visual system for coarse scales over fine scales.
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The addition of one is to prevent the logarithm of zero, and A = 104 is a scaling

factor to enlarge the adjusted variance. Examples of the log of response difference

maps are shown in Figure 3.7(d). The brighter the maps, the greater the difference

in spatiotemporal responses between corresponding regions of the two STS images.

D Compute spatiotemporal dissimilarity value

The spatiotemporal correlation map P and the log of response difference map D are

combined into a spatiotemporal dissimilarity map via a point-by-point multiplication

∆x(t, y) = Dx(t, y)·
√

1− Px(t, y) (3.28)

∆y(x, t) = Dy(x, t)·
√

1− Py(x, t). (3.29)

Let ∆̄ty

c denote the RMS value of the spatiotemporal dissimilarity map ∆c(t, y)

of size T ×H, where c is the column (vertical slice) index of the vertical STS images.

Let ∆̄xt

r denote the RMS value of the spatiotemporal dissimilarity map ∆r(x, t) of

size W × T , where r is the row (horizontal slice) index of the horizontal STS images.

Specifically, these RMS values are computed as follows

∆̄ty

c =

√

√

√

√

1

T ×H

T
∑

t=1

H
∑

y=1

[∆c(t, y)]
2, (3.30)

∆̄xt

r =

√

√

√

√

1

W × T

W
∑

x=1

T
∑

t=1

[∆r(x, t)]
2, (3.31)

where W and H are the spatial width and height of the video frame respectively,

and T is number of frames in the videos. The superscripts ty and xt are used to

remind readers about the two dimensions of the STS images that are used to compute

the values. The spatiotemporal dissimilarity value, denoted by ViS2, between the
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mc2 50fps.yuv (LIVE) PartyScene dst 09.yuv (CSIQ)

(a) Reference STS image Sy(x, t)

(b) Distorted STS image Ŝy(x, t)

(c) Spatiotemporal correlation map Py(x, t)

(d) Log of response difference map Dy(x, t)

(e) Spatiotemporal dissimilarity map ∆y(x, t)

Figure 3.7: Demonstrative maps for two pairs of STS images Sy(x, t) and Ŝy(x, t) from
video mc2 50fps.yuv (LIVE) and PartyScene dst 09.yuv (CSIQ) with the correlation maps
Py(x, t), the log of response difference maps Dy(x, t), and spatiotemporal dissimilarity maps
∆y(x, t). All maps have been normalized to promote visibility. Note that the brighter the
spatiotemporal dissimilarity maps ∆y(x, t), the more dissimilar the corresponding regions
in the STS images.
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reference and the distorted video is given by

ViS2 =

√

√

√

√

1

W

W
∑

c=1

[

∆̄ty

c

]2
+

1

H

H
∑

r=1

[

∆̄xt

r

]2
. (3.32)

Here, ViS2 is a single scalar that represents the overall perceived video quality degra-

dation due to spatiotemporal dissimilarity. The lower the ViS2 value, the better the

video quality. A value ViS2 = 0 indicates that the distorted video has perfect quality

relative to the reference video.

Figure 3.7 shows the correlation maps Py(x, t), the log of response difference maps

Dy(x, t), and the spatiotemporal dissimilarity maps ∆y(x, t) computed from two pairs

of specific horizontal STS images. These maps are normalized to promote visibility.

The brighter values in the spatiotemporal dissimilarity maps ∆y(x, t) in Figure 3.7(e)

denote the corresponding spatiotemporal regions of greater dissimilarity.

As observed from video mc2 50fps.yuv (LIVE), the spatial distortion occurs more

frequently in the middle frames. These middle frames are also heavily distorted in

nearly every spatial region. This fact is well-captured by the spatiotemporal dissimi-

larity map in Figure 3.7(e) (left). As observed in Figure 3.7(e) (left), the dissimilarity

map is brighter in the middle of the map and along the entire spatial dimension. In

video PartyScene dst 09.yuv (CSIQ), the spatial distortion that occurs in the center

of the video is smaller than the distortion in the surrounding area. This fact is also

reflected in the spatiotemporal dissimilarity map in Figure 3.7(e) (right), where the

spatiotemporal dissimilarity map shows brighter surrounding regions compared to the

center regions across the temporal dimension.

3.2.3 Combine two prediction values

Finally, the overall estimate of perceived video quality degradation, denoted by ViS3,

is computed from the spatial distortion ViS1 and the spatiotemporal dissimilarity
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ViS2. The optimal combination of ViS1 and ViS2 remains an area of future research.

One possible solution is using an adaptive geometric weighted mean where the weight

can be selected based on the video features. Here, we treat ViS1 and ViS2 equally

since they estimate video quality using two different approaches. Moreover, the values

of ViS1 and ViS2 are computed in different scales so a geometric combination would

be more suitable than an arithmetic combination of the two indices.

Specifically, the ViS3 value is computed as a geometric mean of ViS1 and ViS2,

which is given by

ViS3 =
√

ViS1 × ViS2. (3.33)

Here, ViS3 is a single scalar that represents the overall perceived quality degradation

of the distorted video in comparing to the reference video. The smaller the ViS3

value, the better the video quality. A value ViS3 = 0 indicates that the distorted

video is equal in quality to the reference video. We will demonstrate the performance

of the ViS3 on various video-quality databases in Chapter 5.

3.3 Chapter summary

In this chapter, we proposed a full reference VQA algorithm that estimates video

quality degradation by measuring spatial distortion and spatiotemporal dissimilar-

ity separately in two stages. The spatial distortion value is computed based on two

strategies from the MAD algorithm and a model of temporal weighting. The spa-

tiotemporal dissimilarity value is computed from the analysis of the vertical and

horizontal STS images. Overall estimate of perceived video quality degradation is

given by a geometric mean of the spatial distortion and spatiotemporal dissimilarity

values. To evaluate performance of ViS3 algorithm, we need a practical database that

contains various videos and their associative subjective ratings of video quality; such

a trusted video-quality database is presented in Chapter 4.
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CHAPTER 4

CSIQ - A VIDEO DATABASE FOR QUALITY ASSESSMENT

4.1 Introduction

Although the video quality assessment has drawn a lot of attention from the research

communities these days, one important thing that makes the video quality assessment

more difficult is the lack of a video-quality database. The video database is necessary

and can be used as a reliable material to validate performance of a VQA method. A

good VQA method should be able to obtain high performance in predicting quality of

the videos in a selected video-quality database. The prediction performance is often

measured by the correlation between the scores predicted by the VQA algorithm and

the subjective ratings of quality, which are collected from a significant number of

trusted human subjects who participated in the experiment.

Currently, there are few video-quality databases that are available to the research

community. The most popular and widely used database for the Video Quality As-

sessment is the VQEG FR-TV Phase I developed by Video Quality Group Experts

[31]. The videos in the VQEG Phase I database are interlaced, which potentially

leads to visual artifacts when the video is displayed in increasingly common progres-

sive scan monitors. The process of de-interlacing can create distortions associated

with the particular algorithm used (juddering, combing, etc.). Moreover, the inter-

laced videos do not represent current trends in the video industry such as multimedia,

IPTV, HDTV, and so on. Furthermore, according to the final report [31], ten pro-

ponents (include PSNR) are used to perform video quality assessment; the results

and database are made publicly but they are not recommended as an ITU standard
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because those proponents show almost equivalent results.

The second video-quality database that is often used in the research of video

quality assessment recently is the LIVE Video Database, developed by the University

of Texas at Austin. It consists of ten (10) original sequences and 150 distorted

videos in the progressive scanning format. The database contains four types of typical

distortion including two compression distortion types (MPEG-2, H.264 ) and two

types of distortions caused by the wireless and IP transmission environments (Wireless

and IPPL) to the H.264 video streams. The diverse distortion makes this database

useful in testing the consistency of VQA algorithms. However, the LIVE database

does not contain the traditional distortion (white noise) and the newly released video

compression standard (H.265/HEVC). The videos in the LIVE database have been

also criticized for being noisy, darkened, and low contrast.

Another database that is made available for the research community is the IVPL

HD video database [64], developed by the Image and Video Processing Lab at the

Chinese University of Hong Kong. This database contains similar distortion types as

the LIVE database but has lesser number of distorted videos. However, the IVPL

database contains the distortion caused by wavelet compression (Dirac) which is miss-

ing from the LIVE database. The IVPL database can also be used to test on larger

screen resolution because all of the videos is in Full HD format (1920×1088). Similar

to the LIVE database, the IVPL database lacks some distortion types and the num-

ber of videos (128) is considered low comparing to the LIVE and VQEG databases.

Some algorithms, such as MOVIE [10], can not be used to test on HD videos because

it requires a relative large amount of memory to process these videos.

From the disadvantages and limitations of current video-quality databases, it is

necessary to have a new video-quality database with more videos and more distortion

types to validate the performance of objective VQA methods. In this chapter, we

present a newly developed database for video quality assessment that contains more
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videos (12 original sequences, 216 distorted sequences), more types of distortion (six),

and each distortion type has three different levels. Totally, there are 228 videos in the

raw YUV420 progressive format in this database including the original sequences. To

collect subjective ratings of video quality, an experiment has been performed following

the SAMVIQ methodology [65] with the participation of 35 subjects.

4.2 Original video sequences

There are many sources of high quality video sequences that are available for the

research community today such as the VQEG HD video database, the Technical

University of Munich database [66], or the videos from Xiph Media Test website [67].

Another source of high quality videos released recently is the original sequences from

the High Efficient Video Coding (HEVC) team [68], which is contributed by some

well-known producers like NTT Docomo, Samsung, etc. These videos are captured

by the professional, high-end equipment and stored in the YUV raw format.

4.2.1 Selected original sequences

From the available sources of high quality videos above, we carefully selected 12

original video sequences with various Spatial and Temporal Information according

to ITU-R BT.50 recommendation. Nine sequences are downloaded from the HEVC

project, one video (Carving) is selected from the Technical University of Munich

(TUM) database, and two other videos are downloaded from the Xiph Media website

[67]. The three latter videos are extracted from longer original sequences without

changing their frame rates. All 12 video sequences are processed to have the same

duration of ten seconds and the same spatial resolution of 832×480 whereas the frame

rates span a large range from 24 to 60 frames per second. The native information of

these selected videos is shown in Table 4.1 in terms of spatial resolution, frame rates,

and reference sources.
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Table 4.1: Native information of selected original video sequences

Videos Spatial resolution Fps Source

BQMall 832× 480 60 HEVC project [69]
Flowervase 832× 480 30 HEVC project [69]
Keiba 832× 480 30 HEVC project [69]
PartyScene 832× 480 50 HEVC project [69]
BQTerrace 1920× 1080 60 HEVC project [69]
BasketballDrive 1920× 1080 50 HEVC project [69]
Cactus 1920× 1080 50 HEVC project [69]
Kimono 1920× 1080 24 HEVC project [69]
ParkScene 1920× 1080 24 HEVC project [69]
Carving 1920× 1080 25 Tech. Univ. of Munich [66]
Chipmunks 1920× 1080 24 Xiph media [67]
Timelapse 3072× 2304 30 Xiph media [67]

Figure 4.1 shows the representative frames of these selected sequences. A brief

description of the video contents is provided as following

• BQMall - camera is panning from right to left showing people with various

actions in the shopping mall.

• BQTerrace - Camera pans and tilts, showing people in a restaurant, the cars in

the highway, and the still water in the river.

• BasketBallDrive - A group of youngsters works in team to score a goal in a

practice basketball game. Camera is chasing the ball in action.

• Cactus - Static camera, everything stays still except the spinning cactus bowl,

the board of joker cards, and the rolling tiger toy.

• Carving - Two mature men visit a carving shop, camera zooming out from a

doll’s face in the shop.

• Chipmunks - Cartoon movie shows three naughty chipmunks and a log of wood

coming from behind. Camera is static and tilting.
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BasketBallDrive BQMall BQTerrace

Cactus Carving Chipmunks

PartyScene Timelapse Kimono

ParkScene Flowervase Keiba

Figure 4.1: Representative frames of original video sequences in the CSIQ database

• Flowervase - Camera zooms in a flower vase on the table in the darkroom.

Lighting condition is getting brighter.

• Keiba - Fast moving of the horses and riders in a race track. Camera is panning

from left to right with a few big trees stay in the line of sight.

• Kimono - A lady walks in the garden to a wooden house, camera follows the

lady and captures the slow motion of human subject.

• ParkScene - Three riders are biking in the park from two opposite directions.

Camera is panning slowly.

• PartyScene - Three kids are playing at a Christmas party. Camera zooms in a
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girl who is blowing the water bubbles in the center of the video. The other kids

are running around the Christmas tree.

• Timelapse - Static camera captures lapse movement of clouds in the sky and

the trees underneath during daytime.

4.2.2 Spatial and temporal information

According to the ITU recommendation P.901 for tested video sequences, the selected

original video sequences should represent various level of spatial and temporal infor-

mation complexity. These spatial and temporal information measures are computed

for all frames of a complete test sequence. A maximum function is then used to re-

move the variability of these measures over time and yield the indices that represent

the spatial and temporal information complexity of the videos.

A Spatial perceptual information measurement

The spatial perceptual information, denoted by SI, is computed using the Sobel filter.

The luminance component of video frame at index n (Fn) is first filtered via the Sobel

filter [Sobel(Fn)]. The standard deviation of the pixel values in each Sobel-filtered

frame is then computed. The maximum value of these values across all frames is

chosen to represent the spatial information content of the video sequence. This process

can be represented in the equation form as:

SI = MAXtime{stdspace[Sobel(Fn)]} (4.1)

where stdspace is the operator to compute the standard deviation for each filtered

frame, MAXtime is the max operator performed across time dimension of the video.
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B Temporal perceptual information measurement

The temporal perceptual information, denoted by TI, is computed from the motion

difference feature, Mn(i, j), which is simply defined as the difference between the pixel

values (of the luminance component) at the same spatial location but at successive

frames. Mn(i, j) is given by:

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (4.2)

where Fn(i, j) is the pixel at the ith row and jth column of nth frame in time.

The measure of temporal information complexity, TI, is computed as the max-

imum over time (MAXtime) of the standard deviation over space (stdspace) of each

Mn(i, j) over all i and j. If two adjacent frames have more motion between them or

more different, the TI will have high value.

TI = MAXtime{stdspace[Mn(i, j)]} (4.3)

By using those definitions of spatial and temporal information complexity, we

compute the SI and TI indices for all selected original video sequences, these indices

are shown in Figure 4.2 in terms of a scatter plot between SI and TI indices. As

observed from Figure 4.2, the selected video sequences span a wide range of spatial

and temporal information complexity from low SI, low TI values (video Timelapse)

to high SI, high TI values (video Keiba). Therefore, these selected video sequences

represent different levels of spatial and temporal complexity, and can be used as

candidates for visual psycho-physical experiment of video-quality.
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Figure 4.2: Scatter plot of spatial information (SI) and temporal information (TI) com-
puted from selected video sequences

4.3 Test sequences and distortion types

For each selected video sequences, we created 18 test video sequences using six

types of distortions, three levels of distortion is used for each distortion type. The

distortion types consist of four compression-based distortion types [Motion JPEG

(MJPEG), H.264, HEVC, and wavelet compression using SNOW codec [70]], and

two transmission-based distortion types [packet-loss in a simulated wireless network

(WLPL) and additive white Gaussian noise (AWGN )]. The distortion levels were

adjusted manually and carefully selected so that the test video sequences spanned a

similar range of visual quality for different original sequence and different distortion

type. Figure 4.3 shows the representative frames that are generated from video Bas-

ketBallDrive with six different distortion types; the details for each distortion type

are described as below.

4.3.1 H.264 compression with constant bitrate

The H.264 compression standard has a very broad application range that covers many

forms of digital compressed video, from the low bit-rate Internet streaming applica-

tions to HDTV broadcast and Digital Cinema applications with nearly lossless coding.

Therefore, it is important to include the H.264 compressed videos in the database. To

generate these H.264 test sequences, we used the JM Reference software [71] version
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H.264 compression Wireless packet loss

Motion JPEG compression Wavelet compression - SNOW

White noise HEVC compression

Figure 4.3: Representative frames of six different distortion types generated from the same
video BasketBallDrive

15.0 to encode the original video sequences with three different constant bitrate levels

in order to obtain three different quality levels. The target bitrates for compression

are selected depending on the frame rate of the original sequences. To ensure that the

test sequences span the range from high to low quality, for each original sequence, we

generate various test sequences with different bitrates and then manually select three

videos for official testing. For videos with low frame rate (24, 25, and 30), we select

three birate levels of 512 Kbps, 1 Mbps, and 2 Mbps. For the high frame rate videos

(50 and 60 fps), the bitrate levels are selected at 1 Mbps, 2 Mbps, and 5 Mbps. Some

principal parameters for used in JM software are set as follows:
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• ProfileIDC = 100 (High Profile)

• GOP Structure = IBBPBB

• Chroma format = 4:2:0

• IntraPeriod = 14

• SymbolMode = 1 (CABAC)

• SearchMode = 3 (EPZS)

4.3.2 H.264 streams with wireless packet loss

Video transmission for mobile devices in a wireless environment is a major application

in high speed data systems. The superior compression efficiency and error resilience of

H.264 makes it ideal for use in harsh wireless transmission environments. A packet of

data transmitted over a wireless channel is susceptible to bit errors due to attenuation,

fading, and multi-users interference in wireless channels. The video streaming over

the wireless networks encounter with the popular packet loss and cause the distortion

in the receiver’s side. A typical pattern of the packet loss is the video with some

totally lost areas while the other areas maintains high quality.

The H.264 compressed bitstreams were created using the JM reference software to

obtain high quality (the QP parameter are set to 18). For each of the 12 high quality

original H.264/AVC bitstreams, a number of corrupted bitstreams were generated by

dropping packets according to a given error pattern. Except the coded slices belonging

to the first frames, the other slices might be discarded from the coded bitstream to

simulate loss packets. From five generated packet loss rates, three different packet

loss rates were chosen (0.5%, 1.5%, and 4.5%) to span the desired range of quality in

the simulated wireless environment.
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4.3.3 Motion JPEG

Motion JPEG (M-JPEG or MJPEG) is a video compression standard in which each

video frame or interlaced field of a digital video sequence is compressed separately

as a standalone JPEG-compressed image. MJPEG is originally developed for multi-

media PC applications, but MJPEG is now used by may video-capture devices and

non-linear video editing systems. The MJPEG compression is simple to implement,

requires minimal hardware, and can be useful for videos with rapidly changing motion

where motion estimation is unable to predict correctly.

Because the JPEG compression is used for each video frame, the MJPEG com-

pressed videos exhibit the blurring and blocky artifacts. In this CSIQ database, we

generate various MJPEG videos from each original sequence using the FFMPEG soft-

ware [70] with different values of quantization factor Q, which is in the range from 1

to 32. After carefully inspecting the effect of different Q values on the quality of the

compressed videos, we selected three different values (8, 16, and 30) for the Q factor

and applied to all the original sequences.

4.3.4 Wavelet compression - Snow codec

Comparing to more modern formats (such as JPEG2000 and H.264/MPEG-4 AVC),

JPEG compression is inefficient, using more bits to deliver similar quality. The

JPEG2000 compression standard has become popular in the field of image compres-

sion due to its high coding performance such as strong error resiliency, low latency,

high compression performance, and good perceptual quality. Its extension to video

compression, the Motion JPEG2000 (MJ2K), has been used as an efficient compres-

sion standard in various applications, which require fast, frequent, and convenient

frame access; high-quality high-resolution imaging (medical and satellite); or video

applications requiring real-time simple encoding.

Although the Motion JPEG200 compression for video is not available and is still
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under investigated in the FFMPEG software, the FFMPEG tool supports another

type of video compression using wavelet transformation called SNOW. The SNOW

codec offers both lossy and lossless coding, which features wavelet transform, over-

lapping block-based motion-compensation, and entropy coding that is not based on

Huffman coding. The default wavelet used by the SNOW codec in FFMPEG is

a symmetric biorthogonal compact 9/7 wavelet similar to the famous biorthoginal

Daubechies 9/7 wavelet. The quality of the MJ2K video can be controlled by the Q

factor in the FFMPEG software. We thoroughly checked and chosen three values of

4, 8, and 12 for the Q factor to generate SNOW test video sequences in our database.

4.3.5 White noise

White noise, a popular concept in analog video and television, is a random dot pattern

of static displayed when no transmission signal is obtained by the antenna receiver

of television sets and other display devices. The random pattern superimposed on

the picture, visible as a random flicker of “dots” or “snow”, is the result of electronic

noise and radiated electromagnetic noise accidentally picked up by the antenna. This

effect is most commonly seen with analog TV sets or blank VHS tapes.

Most of the video technologies now are very effective in white noise removal but

we still included this type of distortion here to make the database more diverse and

reliable. The Gaussian white noise is superimposed to the original sequences by

changing the values of signal to noise ratio (SNR) according to a sine function for two

cycles in the duration of 10 seconds. Three different patterns of the sine function are

chosen to represent the fluctuation of SNR values. The two peak amplitude values

of these functions are (3, 9), (6, 18), and (12, 20) respectively with random initial

phase. Figure 4.4 illustrates the fluctuation of the SNR for the duration of 10 seconds

at the second level of peak amplitude values ([6, 18]).
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4.3.6 HEVC compression

The newly High Efficiency Video Coding (HEVC/H.265) is a video compression stan-

dard, a successor to H.264/MPEG-4 AVC (Advanced Video Coding), that was jointly

developed by the ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video

Coding Experts Group (VCEG) [72], [68]. HEVC was designed to improve coding

efficiency compared to H.264/ MPEG-4 AVC, i.e. to reduce bitrate requirements

by half with comparable image quality, and at the expense of increased computa-

tional complexity. This improvement is needed for various applications that use high

definition videos. Two key features that make HEVC more efficient compared to

H.264/MPEG-4 AVC were the support for higher resolution video and the imple-

mentation of improved parallel processing methods. More detailed description about

the HEVC coding standard can be seen at Ref. [73]. The first official version of the

HEVC standard was completed and released in early 2013.

In the CSIQ database, we used the HM software [68] to generate HEVC coded
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sequences. The compression factor of the HEVC videos can be controlled by the

quantization parameter QP, the greater the QP value, the more compressed the HEVC

video. For each selected original video sequence, we manually choose three different

QP values (32, 38, and 44) from various QP values to generates HEVC-compressed

versions of test video sequences.

4.4 Experiment setup

The experiment to collect subjective ratings of quality for the CSIQ video database is

designed following the subjective assessment methodology for video and image quality

[65] (SAMVIQ), which has specifically been designed for multimedia content.

4.4.1 SAMVIQ methodology

In the procedure of SAMVIQ methodology, video sequences are shown in multi-

stimulus form, so that users can choose the order of tests and correct their votes

appropriately. The individual assessor can start and stop the evaluation process as

he/she wishes and is allowed to determine his/her own pace for performing the grad-

ing, modifying grades, playing back when needed, etc.

The test sequences are displayed randomly and quality evaluation is carried out

scene after scene. An explicit and a hidden reference are included in the test se-

quences. The explicit reference is an uncompressed version of the original sequence

and allows the assessor to determine a near-absolute measure of video quality. A

hidden reference is technically identical to the explicit reference but is not readily

available to the subjects. It is actually hidden among other stimuli and the subject

should be able to identify it based on their quality ratings.

Comparing to the DSCQS method, there is no continuous sequential presentation

of the video sequences in SAMVIQ method, this can prevent the assessor from making

errors of judgment due to a lack of concentration. The post-processing in SAMVIQ
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Figure 4.5: A sample screen-shot of the experiment graphical user interface

also includes some improved rejection criteria (compared with those used in BT.500).

The multimedia images/videos are assessed on a multimedia screen and platforms,

not on conventional TV displays, in order to avoid the artifacts due to interlacing

and flickering. As a result, SAMVIQ offers higher reliability.

4.4.2 Graphical user interface design

We built the graphical user interface to perform the experiment according to the

SAMVIQ methodology via Borland C++ Builder program. A screen-shot of the

experiment design is shown in Figure 4.5. To prevent visual latency, the under tested

video sequence is preloaded and carefully synchronized with the computer’s processing

performance to make sure that the video display duration is exactly 10 seconds.

The videos were displayed at their native resolution and the remaining areas of

the display were set to solid gray to eliminate the effect of surrounding regions. A

continuous scale for video quality was displayed on the screen to the users, with a
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cursor is preset at the center of the quality scale to avoid biasing subject’s opinion

of quality ratings. Five labels are marked on the quality scale to help subjects, the

marked labels are “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”. Subjects are

only able to move the cursor to change quality score after viewing the whole video

sequence at least one time; they were allowed to take as much time as needed to

review the video and enter the score. Subjects are allowed to go back to change their

score if they feel the previous entered scores need to be modified. Once the score was

assigned for every video in the subset of the same content, subject might proceed to

the next video by clicking the “Next” button, and after that, he/she cannot change

the score of the previous contents.

For each content, subjects are forced to watch the explicit reference video first and

then watch the other 19 videos (the hidden reference video and 18 distorted ones)

at a random order. Subjects need to finish all the videos of the same content before

they can proceed to next content. While being in the time of one content, subjects

are free to go back, replay previous videos, and change their opinion scores if needed.

During the experiment, subjects can take rest at any time but a break of at least 5

minutes is mandatory after a session of 30 minutes.

The experiment is performed in a darkened room in front of the HP Lacie monitor,

which is calibrated carefully. The distance from subject to the monitor are kept at

least six times the height of the video (about 70 cm). Twenty-five subjects from the

Digital Signal Processing class at Oklahoma State University and ten naive subjects

from other fields of study are voluntary to attend and conduct the experiment. The

subjects are divided into two groups so each video content is rated by either seventeen

or eighteen subjects.
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4.5 Data analysis

The raw subjective scores assigned by each subject to their test video sequences are

automatically stored in a text file. These files are collected for post-processing after

all subjects had finished the experiment. Let {si,j,k} ∈ [0, 100] denote the quality

assigned by subject ith to video jth of the kth content, where si,0,k denotes the score

of the explicit references and si,19,k denotes the score of the hidden references.

Normally, the explicit references are expected to rate at the highest quality com-

paring to other sequences of the same content; if any sequence is rated higher than the

explicit reference, we set the score of that video equal to the score of the explicit ref-

erence. If subjects rate the hidden reference lower than some of the distorted videos,

we set the score of the hidden reference equal to the score of the explicit reference.

Then, the scores assigned to the explicit references are excluded from the raw scores.

si,j,k = si,0,k if si,j,k > si,0,k (4.4)

si,19,k = si,0,k if si,j,k > si,19,k (4.5)

Next, the scores rated by each subject are converted to Z-scores using

zi,j,k =
si,j,k −Mi

Si

(4.6)

whereMi and Si are the mean and standard deviation of all scores rated by ith subject

which are given as follows

Mi =
1

J ×K

J
∑

j=1

K
∑

k=1

si,j,k (4.7)

Si =

√

√

√

√

1

J ×K − 1

J
∑

j=1

K
∑

k=1

(si,j,k −Mi)2 (4.8)
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where J = 19 is the number of test video sequences for each content and K = 12 is

the number of original video sequences.

To ensure the reliability of the subjective rating scores, the EBU rejection method

is applied to reject subjects who do not has the same opinion with the others. First,

we computed the overall Z-score z̄ as the average of the Z-scores rated by all subjects

for each test video sequence.

z̄j,k =
1

J ×K

J
∑

j=1

K
∑

k=1

zi,j,k. (4.9)

The Pearson linear correlation coefficient is used as the criterion of the rejection

process. If subject i has a correlation coefficient with the overall average Z-scores

(Pearson(zi, z̄)) lower than a threshold (α = 0.85), that subject is rejected and his

scores are excluded from the average scores. We repeat this step until all subjects

have the correlation coefficient of at least 0.85 with the overall average Z-scores. After

our rejection process, subjective scores rated by four subjects have been eliminated

and each video now has been rated by either 15 or 16 subjects.

The score of each video is then subtracted from the score of the respective hidden

reference video of the same content rated by the same subject to yield raw different

mean opinion score (DMOS).

dmosj,k = z̄19,k − z̄j,k (4.10)

The scores of the hidden references are now excluded from the DMOS scores.
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Again, the raw DMOS scores are normalized by converting to Z-scores using

µ = mean(dmosj,k) (4.11)

σ = std(dmosj,k) (4.12)

ẑj,k =
dmosj,k − µ

σ
(4.13)

The normalized DMOS scores ẑ, in the range of [-3, 3], are rescaled to the range [0,

100] to yield final DMOS scores via

DMOSj,k =
100× (3− Z̄j,k)

6
(4.14)

The final DMOS score of each test video sequence represents that video’s sub-

jective ratings of quality, the smaller the DMOS score, the better the video quality

according to human subjects. The DMOS scores are then used to validate and com-

pare performances of various VQA algorithms. The algorithm that predicts subjective

ratings of video quality better in some strictly approved criteria is said to have better

performance than the other.

4.6 Chapter summary

In this chapter, we described our work on creating a video database for video quality

assessment from the beginning of choosing the test sequences to the post-processing

of subjective scores. The CSIQ video database provides more videos, more distortion

types, and contains more recent compression standard comparing to other publicly

available video-quality databases. In next chapter, we will validate performance of our

VQA algorithm proposed in Chapter 3 and compare with some other VQA algorithms

in predicting quality of videos in the CSIQ database as well as in other databases.
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CHAPTER 5

VQA PERFORMANCE EVALUATION

In this chapter, we analyze performances of the proposed ViS3 algorithm and some

other VQA algorithms in predicting subjective ratings of video quality. These algo-

rithms are tested and validated on three publicly available video-quality databases.

5.1 Video quality databases

To evaluate performance of the proposed ViS3 algorithm and other VQA algorithms,

we used the following three publicly available video-quality databases that have mul-

tiple types of distortion:

1. The LIVE video database (four types of distortion) [1];

2. The IVPL video database (four types of distortion) [64];

3. The CSIQ video database (six types of distortion) [74].

5.1.1 LIVE video database

The LIVE video database [1], developed at the University of Texas at Austin, contains

10 reference videos and 150 distorted videos (15 distorted versions per each reference

video). All videos are in raw YUV420 format with a resolution of 768 × 432 pixels,

approximately 10 seconds in duration, and at frame rates of 25 or 50 fps.

There are four distortion types in this database: MPEG-2 compression (MPEG-

2 ), H.264 compression (H.264 ), simulated transmission of H.264-compressed bit-

streams through error-prone IP networks (IPPL), and simulated transmission of
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H.264-compressed bit-streams through error-prone wireless networks (WLPL). Three

or four levels of distortion are present for each distortion type.

5.1.2 IVPL video database

The IVPL HD video database [64], developed at the Chinese University of Hong Kong,

consists of 10 reference videos and 128 distorted videos. All videos in this database

are in raw YUV420 format with a resolution of 1920× 1088 pixels, approximately 10

seconds in duration, and at a frame rate of 25 fps.

There are four types of distortion in this database: Dirac wavelet compression

(DIRAC, three levels), H.264 compression (H.264, four levels), simulated transmission

of H.264-compressed bit-streams through error-prone IP networks (IPPL, four levels),

and MPEG-2 compression (MPEG-2, three levels). To reduce the computation time,

we downsampled the videos to the size of 960 × 544 using open source FFMPEG

software [70] with its default configuration.

5.1.3 CSIQ video database

The CSIQ video database [74], described in Chapter 4 of this dissertation, consists of

12 reference videos and 216 distorted videos. All videos in this database are in raw

YUV420 format with a resolution of 832× 480 pixels, a duration of 10 seconds, and

span a range of various frame rates: 24, 25, 30, 50, and 60 fps.

Each reference video has 18 distorted versions with six types of distortion, three

different levels for each type. The distortion types consists of four video compression

distortion types [Motion JPEG (MJPEG) , H.264, HEVC/H.265, and wavelet-based

compression using SNOW codec [70]], and two transmission-based distortion types

[packet-loss in a simulated wireless network (WLPL) and additive white Gaussian

noise (AWGN )]. The experiment was conducted following the SAMVIQ methodology

[65] with the participation of 35 voluntary subjects.
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5.2 VQA algorithms and performance measurements

We compared ViS3 with traditional PSNR [28] and some recent full-reference VQA

algorithms for which code is publicly available: VQM [2], MOVIE [10], and TQV [13]

on the three video-quality databases as stated above. PSNR was applied on a frame-

by-frame basis, VQM and MOVIE were applied using their default implementations

and settings, and TQV was applied using its original training parameters. For the

ViS3 algorithm, we employed a GOF size of N = 8.

All these algorithms are applied to the videos of the three aforementioned video-

quality databases to obtain the raw predicted quality scores. Before evaluating perfor-

mance of each algorithm on each video database, we applied a four-parameter logistic

transform to the raw predicted scores, as recommended by VQEG in Ref. 31. The

four-parameter logistic transform is given by:

f(x) =
τ1 − τ2

1 + exp(−x−τ3
|τ4|

)
+ τ2, (5.1)

where x denotes the raw predicted score and f(x) denotes the logistic fitted score; τ1,

τ2, τ3, and τ4 are four free parameters that are selected to provide the best fit of the

predicted scores to the subjective rating scores.

Following VQEG recommendations in Ref. 31 about performance measurements,

we employed the Spearman Rank-Order Correlation Coefficient (SROCC) to measure

prediction monotonicity, and employed the Pearson Linear Correlation Coefficient

(CC) and the Root Mean Square Error (RMSE) to measure prediction accuracy. The

prediction consistency of each algorithm was measured via two additional criteria:

the outlier ratio (OR [3]) and the outlier distance (OD [29]). The outlier ratio (OR)

is the ratio of number of false scores predicted by the algorithm to the total number

of predicted scores. A false score is defined as the transformed score lying outside the

95% confidence interval of the associated subjective score [3]. Whereas the outlier
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Table 5.1: Performances of ViS3 and other VQA algorithms in predicting video quality
in three video databases. The best-performing result is bolded and the second best-
performing result is italicized and bolded. Note that ViS3 is the best-performing
algorithm on all three databases.

PSNR VQM MOVIE TQV ViS3 ViS1 ViS2

SROCC

LIVE 0.523 0.756 0.789 0.802 0.816 0.762 0.736
IVPL 0.728 0.845 0.880 0.701 0.896 0.872 0.817
CSIQ 0.579 0.789 0.806 0.814 0.841 0.757 0.831

CC

LIVE 0.549 0.770 0.811 0.815 0.829 0.785 0.746
IVPL 0.723 0.847 0.879 0.722 0.896 0.863 0.823
CSIQ 0.565 0.769 0.788 0.795 0.830 0.739 0.830

RMSE

LIVE 9.175 7.010 6.425 6.357 6.146 6.807 7.313
IVPL 0.730 0.561 0.504 0.731 0.470 0.534 0.601
CSIQ 13.724 10.633 10.231 10.090 9.273 11.197 9.279

OR

LIVE 2.00% 1.33% 0% 0% 0% 0% 2.00%
IVPL 7.81% 0.78% 1.56% 7.81% 0.78% 1.56% 4.69%
CSIQ 12.96% 5.09% 4.17% 4.63% 3.70% 7.41% 3.24%

OD

LIVE 11.479 5.385 0 0 0 0 9.076
IVPL 3.422 0.411 0.222 2.556 0.616 1.085 1.005
CSIQ 169.183 56.334 44.635 40.946 28.190 59.619 30.546

distance (OD) indicates how far the outliers fall outside of the confidence interval.

The OD is measured by the total distance from all outliers to their closest edge points

of the corresponding 95% confidence interval [29].

5.3 Overall performance

The performance of each algorithm on each video-quality database is shown in Table

5.1 in terms of five evaluation criteria (SROCC, CC, RMSE, OR, and OD). The best-

performing result is bolded, and the second best-performing result is italicized and

bolded. These results indicate that ViS3 is the best-performing algorithm on all three

video databases in terms of all five evaluation criteria. The performances yielded by

ViS1 and ViS2 are also noteworthy.

In terms of prediction monotonicity (SROCC), ViS3 is the best-performing algo-

rithm on all three databases. On the LIVE and CSIQ databases, ViS3 and TQV are
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Figure 5.1: Scatter-plots of the logistic-transformed scores predicted by ViS3 versus subjec-
tive scores on the three video-quality databases. Notice that all the plots are homoscedastic.
The R values denote correlation coefficient (CC) between the logistic-transformed scores and
subjective quality rating scores (DMOS).

the two best-performing algorithms. On the IVPL database, ViS3 and MOVIE are

the two best-performing algorithms. A similar trend in performance is observed in

terms of prediction accuracy (CC and RMSE).

In terms of prediction consistency measured by the outlier ratio (OR), on the

LIVE database, three algorithms (MOVIE, TQV, and ViS3) have an OR of zero,

which indicates that they do not yield any outliers. On the IVPL database, both

ViS3 and VQM have only one outlier. On the CSIQ database, ViS3 and MOVIE are

the two algorithms with the least number of outliers.

In terms of the outlier distance (OD), on the LIVE database, three algorithms
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(MOVIE, TQV, and ViS3) have an OD of zero because they do not have any outliers.

On the IVPL database, MOVIE and VQM have the smallest OD. Although ViS3 yields

only one outlier on the IVPL database as well as VQM, ViS3 has larger OD because

this outlier lies further away from its confidence interval. This indicates that ViS3

has a weakness on the IPPL distortion, to which the outlier belongs. Furthermore,

on the CSIQ database, ViS3 and TQV yield the smallest OD values.

It can be observed from Table 5.1 that ViS1 and ViS2 yield different relative

performances depending on the database. ViS1 shows better predictions than ViS2

on the LIVE and IVPL databases. However, ViS2 shows better predictions than

ViS1 on the CSIQ database. Generally, ViS3 shows higher SROCC and CC and

lower RMSE, OR, and OD than either ViS1 or ViS2 alone. Nonetheless, it may be

possible to combine ViS1 and ViS2 in a adaptive fashion for even better prediction

performance, and such an adaptive combination remains an area for future research.

The scatter-plots of logistic-transformed ViS3 values vs. subjective scores (DMOS)

on the three databases are shown in Figure 5.1. The plots show a highly correlated

trend between the logistic-transformed ViS3 values vs. DMOS values. For all the

three video-quality databases, the predictions are homoscedastic; i.e., there are gen-

erally no sub-populations of videos/distortion types for which ViS3 yields lesser or

greater residual variance in the predictions. These residuals are used for an analysis

of statistical significance in Section 5.3.4.

5.3.1 Performance on individual types of distortion

We measured performance of ViS3 and other algorithms on individual types of dis-

tortion for videos from the three databases. For this analysis, we applied the logistic

transform function to all predicted scores of each database, then divided the trans-

formed scores into separate subsets according to the distortion types, and then mea-

sured the performance criteria in terms of SROCC and CC for each subset. Table 5.2
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shows the SROCC and CC values resulted from this computation.

In general, VQM, MOVIE, and ViS3 all perform well on the WLPL distortion;

these three algorithms show competitive and consistent performance on the WLPL

distortion for both the LIVE and CSIQ databases. For the H.264 compression dis-

tortion, ViS3 and MOVIE perform well and consistently across all subsets of H.264

videos on all three databases. ViS3 and MOVIE are also competitive on both the

MPEG-2 and the IPPL distortion types on the LIVE and IVPL databases.

In particular, on the LIVE database, ViS3 has the best performance on the WLPL

distortion, VQM and ViS3 have the best performance on the IPPL distortion, ViS3,

MOVIE and TQV are the three best-performing algorithms on the H.264 distortion,

TQV and MOVIE are the two best-performing algorithms on theMPEG-2 distortion.

The low performance of the ViS3 algorithm on H.264 and MPEG-2 compression

types in the LIVE video database is due to the outliers corresponding to specific videos

as shown in Figure 5.2; the outliers are marked by the red square markers. For H.264,

the outliers correspond to the video riverbed where the water’s movement significantly

masks the blurring imposed by the compression. However, ViS3 underestimates this

masking, and thus overestimates the DMOS. For MPEG-2, the sunflower seeds in

the video sunflower generally impose significant masking of the MPEG-2 blocking

artifacts. However, there are select frames in this video in which the blocking artifacts

become highly visible (owing perhaps to failed motion compensation), yet ViS3 does

not accurately capture the visibility of these artifacts, and thus underestimates the

DMOS. These types of interactions between the videos and distortions are issues

which certainly warrant future research.

On the IVPL database, ViS3 yields the best performance on three types of dis-

tortion (DIRAC, H.264, and MPEG-2 ); ViS3 yields the second best performance

on the IPPL distortion, on which MOVIE is the best-performing algorithm. VQM

and MOVIE are the second best-performing algorithms on the MPEG-2 distortion.
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Table 5.2: Performances of ViS3 and other VQA algorithms measured on different
types of distortion on the three video databases. The best-performing result is bolded
and the second best-performing result is italicized and bolded.

Database Distortion PSNR VQM MOVIE TQV ViS3

SROCC

LIVE

WLPL 0.621 0.817 0.811 0.754 0.845

IPPL 0.472 0.802 0.715 0.742 0.788

H.264 0.473 0.686 0.764 0.769 0.757
MPEG-2 0.383 0.718 0.772 0.785 0.730
All data 0.523 0.756 0.789 0.802 0.816

IVPL

DIRAC 0.860 0.891 0.888 0.786 0.926

H.264 0.866 0.862 0.823 0.672 0.876

IPPL 0.711 0.650 0.858 0.629 0.807

MPEG-2 0.738 0.791 0.823 0.557 0.834

All data 0.728 0.845 0.880 0.701 0.896

CSIQ

H.264 0.802 0.919 0.897 0.955 0.920

WLPL 0.851 0.801 0.886 0.842 0.856

MJPEG 0.509 0.647 0.887 0.870 0.789
SNOW 0.759 0.874 0.900 0.831 0.908

AWGN 0.906 0.884 0.843 0.908 0.928

HEVC 0.785 0.906 0.933 0.902 0.917

All data 0.579 0.789 0.806 0.814 0.841

CC

LIVE

WLPL 0.657 0.812 0.839 0.777 0.846

IPPL 0.497 0.800 0.761 0.794 0.816

H.264 0.571 0.703 0.790 0.788 0.773
MPEG-2 0.395 0.737 0.757 0.794 0.746
All data 0.549 0.770 0.811 0.815 0.829

IVPL

DIRAC 0.878 0.898 0.870 0.811 0.936

H.264 0.855 0.869 0.845 0.744 0.898

IPPL 0.673 0.642 0.842 0.735 0.802

MPEG-2 0.718 0.836 0.824 0.533 0.912

All data 0.723 0.847 0.879 0.722 0.896

CSIQ

H.264 0.835 0.916 0.904 0.965 0.918

WLPL 0.802 0.806 0.882 0.784 0.850

MJPEG 0.460 0.641 0.882 0.871 0.800
SNOW 0.769 0.840 0.898 0.846 0.908

AWGN 0.949 0.918 0.855 0.930 0.916

HEVC 0.805 0.915 0.937 0.913 0.933

All data 0.565 0.769 0.788 0.795 0.830
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Figure 5.2: Scatter-plots of logistic-transformed scores predicted by ViS3 versus subjective
scores on the H.264 and MPEG-2 distortion of the LIVE database. The second row shows
representative frames of the two videos corresponding to the outliers, which correspond to
the red square markers in the scatter plots.

PSNR, VQM, and MOVIE are competitive on both the DIRAC and H.264 distortion.

On the CSIQ database, TQV and ViS3 are the two best-performing algorithms

on the H.264 distortion; ViS3 and MOVIE are the two best-performing algorithms

on three types of distortion (WLPL, SNOW, and HEVC ); MOVIE and TQV are

the two best-performing algorithms on the MJPEG. On the AGWN distortion, ViS3

and TQV are competitive with PSNR, which is known to perform well for additive

Gaussian white noise.

Generally, ViS3 excels on the H.264 compression distortion and the wavelet-based

compression distortion (DIRAC, SNOW ); and ViS3, VQM, and MOVIE excel on the

WLPL distortion. ViS3 also performs well on the MPEG-2, HEVC, and AWGN dis-
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tortion. However, ViS3 does not perform well on the MJPEG compression distortion

compared to MOVIE and TQV.

5.3.2 Analysis on different types of camera motion

From the descriptions of the three tested video databases, it is acknowledged that

the videos contained in these databases have different types of camera motion. The

camera motion ranges from static to panning, tilting, and zooming. The STS images

used in the ViS3 algorithm have been used to characterized the motion information

of the video in previous researches [24, 25]. Thus, a study on the performance of ViS3

algorithm with respect to camera motion would be an interesting future topic.

Since the camera motion characteristic is out of the scope within this dissertation,

we manually classify camera motion based on our own observation of the videos and

based on the dominated motion types if the video has multiple types of camera motion.

The videos from three tested video databases are assigned to three different categories

of camera motion: static, zooming, and panning/tilting. The logistic transformed

scores of these videos are used to evaluate the performance of the ViS3 algorithm.

Table 5.3 shows the preliminary results of our study about the algorithm per-

formance with respect to camera motion types. As seen from Table 5.3, the overall

performance of ViS3 algorithm does not depend on the type of camera motion. How-

ever, the spatiotemporal dissimilarity part ViS2 does not perform well for videos with

static camera. This is due to the fact that for static camera, human subjects tend

to focus more on the moving object, therefore, the dissimilarity values of the STS

images correspond to the moving objects or regions should be weighted more in the

constitution of the ViS2 index.
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Table 5.3: Performances of ViS3 on the three video databases with three different
categories of camera motion. The best-performing result is bolded and the second
best-performing result is italicized and bolded.

Camera motion Static Pan/Tilt Zoom All types
ViS2

SROCC

LIVE 0.585 0.755 0.837 0.731
IVPL 0.835 0.896 0.828 0.818
CSIQ 0.780 0.878 0.831 0.831

CC

LIVE 0.598 0.767 0.858 0.740
IVPL 0.832 0.890 0.812 0.822
CSIQ 0.784 0.875 0.814 0.830

ViS3

SROCC

LIVE 0.729 0.852 0.851 0.816
IVPL 0.925 0.904 0.884 0.896
CSIQ 0.822 0.874 0.835 0.841

CC

LIVE 0.725 0.865 0.884 0.829
IVPL 0.932 0.895 0.886 0.896
CSIQ 0.811 0.861 0.806 0.830

5.3.3 Performance with different GOF sizes

As we mentioned in Section 3.2.1, for ViS1, the size of the GOF used in Equations

(3.9), (3.11), and (3.12) is a user-selectable parameter (N). The results presented in

the previous subsection were obtained with a GOF size of N = 8. To investigate how

the prediction performance varies with different GOF sizes, we computed SROCC

and CC values for ViS1 and ViS3 using values of N ranging from 4 to 16. The results

of this analysis are listed in Table 5.4.

As shown in the upper portion of Table 5.4, the performance of ViS1 tends to

increase with larger values of N . This trend may partially be attributable to the

fact that a larger GOF size can give rise to a more accurate estimate of the motion,

and thus perhaps a more accurate account of the temporal masking. Nonetheless,

as demonstrated in the lower portion of Table 5.4, ViS3 is relatively robust to small

changes in N . The choice of N = 8 generally provides good performance on all three

databases. However, the optimal choice of N remains an open research question.
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Table 5.4: Performances of ViS3 on three video databases with different GOF size.
The results show that ViS3 is robust with the change of the GOF size.

GOF size 4 6 8 10 12 16
ViS1

SROCC

LIVE 0.754 0.759 0.762 0.767 0.770 0.768
IVPL 0.868 0.871 0.872 0.871 0.873 0.874
CSIQ 0.751 0.753 0.757 0.758 0.759 0.760

CC

LIVE 0.778 0.783 0.785 0.789 0.791 0.793
IVPL 0.860 0.862 0.863 0.865 0.866 0.868
CSIQ 0.733 0.736 0.739 0.740 0.742 0.743

ViS3

SROCC

LIVE 0.818 0.817 0.816 0.814 0.813 0.812
IVPL 0.897 0.897 0.896 0.897 0.897 0.896
CSIQ 0.840 0.840 0.841 0.841 0.841 0.841

CC

LIVE 0.833 0.831 0.829 0.828 0.827 0.825
IVPL 0.896 0.896 0.896 0.896 0.897 0.896
CSIQ 0.829 0.829 0.830 0.830 0.830 0.830

5.3.4 Statistical significance analysis

To assess the statistical significance of differences in performances of ViS3 and other

VQA algorithms, we used an F -test to compare the variances of the residuals (er-

rors) of the algorithms’ predictions [75]. If the distribution of residuals is sufficiently

Gaussian, an F -test can be used to determine the probability that the residuals are

drawn from different distributions and are thus statistically different.

To determine whether the residuals of an algorithm have Gaussian distributions,

we performed the Jarque–Bera (JB) test (see Ref. 61) on the residuals to measure

the JBSTAT value. If the JBSTAT value is smaller than a critical value, then the

distribution of residuals is significantly Gaussian. If the JBSTAT value is greater

than the critical value, then the distribution of residuals is not Gaussian. The JB

test results show that for the LIVE database, all the algorithms pass the JB test and

their residuals have Gaussian distributions. On the IVPL database, only PSNR does

not pass the JB test. On the CSIQ database, only VQM and ViS3 pass the JB test.

We performed an F -test with 95% confidence to compare the residual variances
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Table 5.5: Statistical significance relationship between each pair of algorithms on
the three video databases. A “0” value implies that variances of residuals between
the algorithm indicated by the column and the algorithm indicated by row are not
significantly different. A “+” sign implies that the algorithm indicated by the column
has significantly smaller residual variance than the algorithm indicated by the row. A
“−” sign implies that the algorithm indicated by the column has significantly larger
residual variance than the algorithm indicated by the row.

PSNR VQM MOVIE TQV ViS3

LIVE

PSNR
❍
❍
❍

❍
❍
❍

+ + + +

VQM −
❍

❍
❍
❍
❍
❍

0 0 0

MOVIE − 0
❍
❍
❍

❍
❍
❍

0 0

TQV − 0 0
❍

❍
❍
❍

❍
❍

0

ViS3 − 0 0 0
❍
❍

❍
❍
❍
❍

IVPL

VQM
❍

❍
❍
❍
❍
❍

0 − +

MOVIE 0
❍
❍
❍

❍
❍
❍

− 0

TQV + +
❍

❍
❍
❍

❍
❍

+

ViS3 − 0 −
❍
❍

❍
❍
❍
❍

CSIQ
VQM

❍
❍
❍
❍
❍
❍

+

ViS3 −
❍
❍

❍
❍
❍
❍

of the algorithms whose distributions of residuals are significantly Gaussian. If the

variances are significantly different, we conclude that the two algorithms are signifi-

cantly different. The algorithm that yields smaller variance of residuals is concluded

to have better prediction performance.

Table 5.5 shows the F -test results between each pair of algorithms whose distribu-

tions of residuals are significantly Gaussian. A “0” value implies that two algorithms

are not significantly different in performance. A “+” sign implies that the algorithm

indicated by the column has significantly smaller residual variance than the algorithm
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indicated by the row, and therefore, it has better performance. A “−” sign implies

that the algorithm indicated by the column has significantly larger residual variance

than the algorithm indicated by the row, and therefore, it has worse performance.

As seen from Table 5.5, on the LIVE database, the variance of residuals yielded

by PSNR is significantly larger than the variances of residuals yielded by the other

algorithms, and therefore, PSNR is significantly worse than the other algorithms. The

difference in residuals of ViS3 and either of VQM, MOVIE, or TQV is not statistically

significant. On the IVPL database, the variance of residuals yielded by TQV is

significantly larger than the variances of residuals yielded by VQM, MOVIE, and

ViS3, and therefore, VQM, MOVIE, and ViS3 are significantly better than TQV on

this database. On both IVPL and CSIQ databases, the variance of residuals yielded

by VQM is significantly larger than the variance of residuals yielded by ViS3, and

therefore, ViS3 is significantly better than VQM on these databases.

Although ViS3 is not significantly better than MOVIE on any of the three databases,

it should be noted that MOVIE is not significantly better than VQM on any of the

three database while ViS3 is significantly better than VQM on the IVPL and CSIQ

databases. Moreover, MOVIE requires more computation time than ViS3. Specifi-

cally, using a modern computer (Intel Quad Core at 2.66 GHz, 12 GB RAM DDR2

at 6400 MHz, Windows 7 Pro 64-bit, Matlab R2011b) to estimate the quality of a

10-second video of size 352×288 (300 frames total), MOVIE requires about 200 min-

utes, whereas basic Matlab implementations of VQM and ViS3 require about 1 and

7 minutes, respectively. Reducing the computational complexity in the image/video

processing algorithms is a new project that we are currently working on. Experimen-

tal results in Refs. 76, 77 show significant improvement in computational complexity

via micro-architectural analysis of image quality assessment algorithms. These re-

sults provide a solid foundation for the performance improvement of video quality

assessment algorithms.
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5.4 Chapter summary

In this chapter, we analyzed prediction performance of the proposed ViS3 algorithm

and compared to some other VQA algorithms. The evaluation is performed on three

publicly available video-quality databases with five evaluation criteria. We also per-

formed some tests to judge the robustness of the ViS3 algorithm and evaluate the

significance difference in performances. Experimental results show that ViS3 is better

than current VQA algorithms and is robust to the change of the GOF size.
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CHAPTER 6

NO REFERENCE MOTION JPEG2000 QUALITY ASSESSMENT

6.1 Introduction

The JPEG2000 standard has become popular in the field of image compression due

to its high coding performance. Its extension to video compression, the Motion

JPEG2000 (MJ2K), has been used as an efficient compression standard in various

applications. With the superior coding performance of JPEG2000 compression stan-

dard such as strong error resiliency, low latency, high compression performance, and

good perceptual quality comparing to the other compression standards [78–82], it is

reasonable to expect the similar performance of MJ2K in comparing to other video

compression standards. Experiments performed by various researchers have shown

that the MJ2K has better compression performance than Motion JPEG and MPEG-

2, and has competitive performance with Intra-coding H.264/AVC video compression

in high-quality applications [81].

In general, MJ2K provides advantage features such as scalability, Region of In-

terest coding, rate control, error resiliency, and no blocky artifacts that beyond the

ability of Intra AVC coding. Furthermore, the intra-coded only mechanism in MJ2K

makes it easy to access individual frames and therefore, efficient to support large

dynamic range. MJ2K is widely used in video applications, which require fast, fre-

quent, and convenient frame access; high-quality high-resolution imaging (medical

and satellite); or video applications requiring real-time simple encoding. As a result,

JPEG2000 has been adopted as an archive format by the Digital Cinema Initiative

(DCI), which also deals with large image formats (2K, 4K) [81, 83].
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In video applications such as compression, transmission, archiving, etc., it is dif-

ficult and even unable to avoid degradation of video quality due to the effects of

implementation constraints (limited bandwidth, limited storage, etc.). These effects

impact the video’s visual perception and cause annoyance to the observers. Therefore,

it is necessary and sufficient to maintain quality of the video at the receiver/storage as

high as possible with/without knowledge of the original video. An algorithm that can

predict video quality in an accurate and reliable manner is highly needed, especially

when the original video is not available.

The MJ2K is intra-coded where each frame is an image compressed by JPEG2000

standard. To estimate quality of MJ2K videos, it is intuitive and straightforward

to estimate quality of each frame using an image-based quality estimators and then

collapse the indices over time. Many algorithms are developed to predict the quality

of JPEG2000-compressed images, the general approach involves either estimating

the amount of blurring artifacts or estimating the perceived ringing artifacts, or a

combination of the two estimates.

It is known that the destruction of sharp regions due to JPEG2000 encoding re-

duces visual quality, resulting in the blurring artifacts appear in the images. The

effect of blurring artifacts can be quantified by the average edge width [84], via the

edge spread along the gradient and its perpendicular directions 85, or based on either

1-D or 2-D kurtosis in the discrete cosine transform domain of general image blocks

[86], based on the total log-energy of the high frequency components in the wavelet

domain [87]. Although these blurriness/sharpness algorithms have shown competi-

tive performance at predicting the quality of blurred images [87, 88], they are often

failed to estimate effects of blurring artifacts to the quality of JPEG2000-compressed

images. This is because images compressed by the JPEG2000 compression standard

also exhibit ringing artifacts, which often appear around the strong edges and locally

produce haloes and/or rings in the images. To overcome this limitation, researchers
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have incorporated effects of both blurring and ringing artifacts in their algorithms

[89–92] to predict quality of JPEG2000-compressed images.

Instead of an attempt to quantify predefined artifacts (blurring and ringing) in

the JPEG2000-compressed images, some researchers extract features from the pix-

els/regions in the image and study the changes of these features with respect to

image quality. Sheikh et al. [93] presented a natural scene statistics model of visual

quality loss via the wavelet subband probabilities. Sazzad et al. [94] estimated image

quality based on pixel distortions and edge information. These algorithms employ a

training step to select optimal parameters. In Ref. 95, Zhang et al. proposed an algo-

rithm that introduces a basic activity map of general pixels via a pixel classification

into monotone-changing, zero-crossings, or inactive pixel. The activity map is then

weighted by structural content and pooled to yield an estimate of image quality.

While there is an abundance of algorithms that are designed to estimate quality

of JPEG2000 images, only a handful of algorithms has been proposed for MJ2K video

quality assessment. The algorithm proposed by Nishikawa and Kiya [96] focuses on

quality of MJ2K in a packet loss scenario. In fact, each frame in the MJ2K videos

is intra-coded by the JPEG2000 compression standard. As demonstrated in Figure

6.1(a, b), the visible and popular artifacts in MJ2K videos are the blurring and

ringing artifacts that are similar to artifacts in JPEG2000-compressed still images.

Therefore, researchers often rely on the image-based quality algorithm to estimate

quality of MJ2K videos via a pooling stage of frame quality indices over time.

As shown in Figure 6.1, a typical frame of a MJ2K videos (a) contains both

the blurring and ringing artifacts, especially around the sharp edges of the image

content. For example, the edges around the roof of the house are smoothed out and

the ringing artifacts appear as the oscillations in the regions around the edges. The

close-up regions in Figure 6.1(b) show the visibility of blurring and ringing artifacts

at the selected regions. To quantify effects of these artifacts to video quality, in
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(a) Frame 198 (b) Edge/near-edge regions of frame 198

(c) Non-edge regions of frame 198 (d) Non-edge regions of frame 199

(e) Red(198) (f) Rne(198) (g) Rne(199) (h)Abs. dif.
Close-ups of the edge-/near-edge region Red and non-edge region Rne

DMOS/MX (i) 35.09/0.0640 (j) 53.26/0.1387 (k) 70.88/0.4119
Temporal difference between consecutive frames from three compression levels

Figure 6.1: Representative frames and various types of distortion appear in a MJ2K
video and their selected close-ups regions for better visibility.
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the next sections of this chapter, we applied our image-based quality algorithm that

predicts quality of JPEG2000-compressed images based on the analysis of artifacts

in the edge/near-edge regions [5]. Blurring artifacts are estimated by the wavelet-

based sharpness algorithm, FISH [87], and ringing artifacts are estimated by the

local variance of the high frequency components measured by the Laplace filter. As

we had demonstrated in Ref. 5, the proposed algorithm is competitive with current

state-of-the-art algorithms in predicting quality of JPEG2000-compressed still images.

The video quality can be potentially estimated by pooling the frame quality indices

over time. However, this simple technique is usually criticized for not being well-

correlated with subjective ratings of quality because it ignores the role of motion

information to the perception of video quality. It is known that the visibility of

distortion in the videos is reduced in the fast-moving regions comparing to the slow-

moving regions [3, 22]. We employ a technique proposed in Chapter 3 and in Ref.

[97] to overcome this limitation of frame-based quality estimators.

The above approach estimates quality of MJ2K video by analyzing the artifacts

in the edge/near-edge regions. This approach works reasonably well for predicting

quality of the still images, because the edge/near-edge regions play an important role

in early vision and contain image details, while the non-edge regions do not contain

image details that are of interest to human subjects. However, in the MJ2K videos,

due to the temporal transition between video frames, the image structures, which

contain compression ringing artifacts, in the non-edge regions fluctuate over time

and generate temporal flickering artifact. This temporal flickering artifact appears as

“snow” distortion in the videos, and impacts video quality.

To illustrate the effect of temporal flickering, Figure 6.1(c, d) show the non-edge

regions extracted from two consecutive frames of the same video. The close-ups in

Figure 6.1(f, g) show the non-edge regions cropped from black bounding box of these

frames. Despite the similarity of these close-ups in terms of image structure and light
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intensity, when the video is playing, the temporal difference of these regions, repre-

sented by the absolute difference regions in Figure 6.1(h), exhibit temporal flickering

that appear as snow artifacts in the videos. We also show the temporal difference in

grayscale color of the same spatial and temporal location extracted from three videos

with increasing compression ratio from left to right in Figure 6.1 (i, j, k). These

differences are quantified by the absolute value of the average difference between two

regions (denoted by MX). Our preliminary computation for the selected regions

shows that this MX value is getting bigger when the video is more compressed or

the quality is getting worse. Therefore, this measurement of temporal change can

potentially reflect the quality of MJ2K videos.

In this chapter, we propose a no-reference VQA algorithm for MJ2K videos called

EDVQ (EDge-based Video Quality), which is based on two stages to estimate per-

ceptual visual artifacts in the videos. The quality of a MJ2K video is estimated by

quantifying the blurring and ringing artifacts that appear in the edge/near-edge re-

gions, and the temporal change of local light intensity in the non-edge regions. The

first stage of the EDVQ algorithm estimates quality of each JPEG2000-compressed

frame using the EDIQ algorithm proposed in Ref. 5. In the second stage, for each

group of N = 8 consecutive frames (denoted by GOF), we compute the absolute

value of average temporal difference in the non-edge regions for each pair of consec-

utive frames. The representative temporal change of the GOF is computed as the

maximum of these absolute values at each local block in the non-edge regions. These

values are then weighted by local motion magnitude, estimated by the Lucas-Kanade

optical flow method, to account for the effect of motion to the visibility of distortion.

The computed values are averaged over all blocks in the common non-edge regions of

all frames in the GOF to yield an overall value of temporal change in the non-edge

regions. By combining the values computed from two different stages, we yield a

scalar number that represents quality of the input MJ2K video.
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The remain of this chapter is organized as follows: In Section 6.2, we provide

details of the EDVQ algorithm. Section 6.3 presents results of EDVQ on subsets of

JPEG2000-compressed images and videos from CSIQ video quality database. Chapter

summary is presented in Section 6.4.

6.2 Algorithm

By recognizing the two observations above, in this section, we describe our proposed

no-reference VQA algorithm to for MJ2K videos, which employs the following steps

as illustrated in Figure 6.2.

1. Compute a perceived quality map for each frame by using EDIQ algorithm [5].

The maps computed from all frames in each GOF are then averaged to yield

a GOF-based perceived quality map. The dilated binary edge map computed

from the middle frame of each GOF serves as the masking to separate the

edge/near-edge regions and non-edge regions within each GOF.

2. Compute temporal change of light intensity within each GOF in a block-based

fashion. The temporal change in each 8× 8 block is computed as the maximum

change of average light intensity between each pair of consecutive frames in the

GOF. This process yields a map of temporal change due to minor oscillation.

3. Estimate magnitude of motion vectors in each video frame via Lucas-Kanade

optical flow method [62]. The motion magnitude maps computed from all frames

in each GOF are averaged to yield a GOF-based motion magnitude map.

4. Weight the perceived quality map and the temporal change map by the motion

magnitude map to model the effect of motion to quality perception. The RMS

values computed from the weighted perceived quality map in the edge/near-

edge regions and the weighted temporal change map in the non-edge regions are
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combined and averaged across all GOFs to yield a single scalar that represents

the perceived quality of the input video.

1. Estimate frame-based 

perceived quality maps 

4. Combine maps 

and collapse 

Motion JPEG2000 

video 

3. Estimate temporal 

change in the non-edge 

regions 

2. Estimate motion 

magnitude 

EDVQ 

 (!, ") 

#(!, ") 

$(!, ") 

Figure 6.2: Block diagram of the EDVQ algorithm. Each group of N consecutive
frames of the input MJ2K video is used to generate a local perceived quality map,
Q(x, y), a motion magnitude map M(x, y), and a map of temporal change in light
intensity T (x, y). These maps are motion-weighted, region-masked, and collapsed
into two scalar values, which are combined to yield a single scalar that represents the
perceived quality of the input image.

The details of the algorithm are described as follows:

6.2.1 Apply EDIQ to every single frames

The quality of each frame from the MJ2K video is estimated using the EDIQ algorithm

in Ref. 5, which is specifically designed for JPEG2000-compressed images. Here, we

give a brief description of how the algorithm works on each standalone video frame.

A Estimate local perceived blurring artifact

The blurring artifact in a JPEG2000-compressed image is due to the attenuation

of the high-frequency components in the image’s frequency spectral. To estimate

local perceived blurring artifact, we examine the energy in high-frequency wavelet

subbands, which have been employed in our recent sharpness estimator, Fast Image

SHarpness (FISH [87]).
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As described in Ref. 87, FISH applies a three-level separable discrete wavelet

transform (DWT) to the input image and measures the log-energy of the high-

frequency DWT subbands. A global image sharpness is estimated based on a weighted

geometric mean of these log-energies [see Figure 6.3(a)]. In addition, by clustering the

DWT coefficients as illustrated in Figure 6.3(b), FISH can be modified to construct

a map that represents the relative sharpness of each image region. The details of the

FISH algorithm are described as below.

The grayscale input image is first decomposed into wavelet subbands using the

Cohen-Daubechies-Fauraue 9/7 filters [98] with three levels of decomposition. Let

SLHk
, SHLk

, SHHk
denote the LH, HL, and HH subbands at DWT level k ∈ {1, 2, 3}

respectively. The log-energy of each subband at each decomposition level is given by

EXYk
= log10

(

1 +
1

Nk

∑

i,j

[SXYk
(i, j)]2

)

, (6.1)

The total log-energy at decomposition level k is then given by

Ek = 0.2× ELHk
+ EHLk

2
+ 0.8× EHHk

, (6.2)

Finally, the three per-level log-energy values E1, E2, and E3 are combined as

FISH =
3
∑

k=1

23−kEk, (6.3)

where the factors 23−k = {4, 2, 1} when k = {1, 2, 3} are used to provide greater

weight to the finer scales (higher-frequency bands). Here, FISH ≥ 0, is a single scalar

that represents the overall global perceived sharpness of the image; the greater the

FISH value, the greater the perceived image sharpness.

To generate a local sharpness map, we compute a collection of local FISH values

in a block-based fashion by using the clusters of DWT coefficients corresponding to
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(a) Global sharpness estimation
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(b) Clustering of wavelet coefficients to construct a local sharpness map

Figure 6.3: Illustration of global FISH algorithm (a) and DWT coefficients clustering into
a wavelet block of size 16×16 to construct a local perceived sharpness map (b). The orange
pixel and its two adjacent pixels in the sharpness map are shown according to the orange
stripe set of DWT coefficients and two adjacent sets of DWT coefficients with 50% overlap.
Note that, to promote visibility, the size of the blocks and sharpness map are not drawn to
scale. (Figure from Ref. 5.)
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each block b of size 16 × 16 in the image. As shown in Figure 6.3(b), each DWT

subband is divided into small blocks of size 8× 8, 4× 4, and 2× 2 for levels 1, 2, and

3, respectively with 50% overlap between neighboring blocks. These small blocks are

assembled in clusters of size 16× 16 to estimate local perceived sharpness. The FISH

value is computed for every cluster of 16× 16 DWT coefficients generated with 50%

overlap between neighboring blocks of DWT coefficients in each subband, yielding a

local FISH sharpness map.

As we observed, in the blurring regions, the high frequency components are at-

tenuated and filtered, therefore, we can employ the FISH sharpness map as the local

perceived blurring map of the input image, denoted by B(x, y). The greater the

B(x, y) value, the smaller the perceived blurring at the corresponding spatial region.

B Estimate local perceived ringing artifact

The present of the ringing artifacts in the JPEG2000-compressed images appear in

the form of oscillation in the regions, therefore the perceived ringing artifacts can be

estimated by computing local variance in intensity within the detected ringing regions

[90, 99, 100]. Here, we employ a simple method by applying a low-pass filter in order

to suppress the image structures from the distorted image. The difference image

between the input compressed image and the low-pass filtered image is assumed to

contain the ringing artifacts. Local variance is computed from the difference image

in a block-based fashion to estimate the perceived ringing artifacts. The details of

this step are described as follows.

The difference image between the input image I and the low-pass filtered-image Î

is denoted by K, which is given by K = I − Î. In other word, this difference image is

obtained by filtering the input image with a Laplace filter. The kernel of the Laplace
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filter used here is :

ker =
1

4
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Next, we compute local variance of the difference imageK in a block-based fashion.

Let µ(b) and σ2(b) denote the overall mean and variance of block b of size 16× 16 in

the difference image K. These values are given by

µ(b) =
1

16× 16

16
∑

x=1

16
∑

y=1

b(x, y), (6.4)

σ2(b) =
1

16× 16− 1

16
∑

x=1

16
∑

y=1

[b(x, y)− µ(b)]2. (6.5)

The perceived ringing artifact at location of block b in the input image I is assumed

to be proportional to the standard deviation σ(b) of the corresponding region at the

same location in image K. Specifically, let R(b) denote the perceived ringing artifact

at location of block b in the input image I, which is defined as follows

R(b) = σ(b) =
1

16

√

√

√

√

16
∑

x=1

16
∑

y=1

[b(x, y)− µ(b)]2. (6.6)

The greater the R(b) value, the greater the perceived ringing artifact at location

of block b. The process is performed on every block b of size 16 × 16 from the

difference image K with 50% overlap between neighboring blocks, yielding a map R

that represents the local perceived ringing artifacts in the image.

C Combine maps into perceived quality maps

For the given input image, we have computed the perceived blurring map B(x, y),

the perceived ringing map R(x, y). We now combine these two maps into a perceived

quality map of the input image via a point-by-point division
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Q(x, y) =































B(x, y)
√

R(x, y)
if R(x, y) > p

B(x, y)√
p

otherwise.

(6.7)

The use of parameter p = 1 is to prevent the division by zero and to differentiate

the ringing artifact from the remained image structure. When the perceived ringing

artifact is sufficiently small, the quality of the input image will solely be estimated by

the perceived blurring artifact. When the perceived ringing artifact is relative large,

the perceived image quality is relative low.

D Apply to the video frames

We apply the previous steps to each frame of the MJ2K video to yield a set of perceived

quality maps denote by Qt(x, y) where t is the index of the computed frame. The

perceived quality maps computed from all frames in each GOF are averaged to yield

the GOF-based quality map of that group. Specifically, let Q̄k denote the GOF-

based perceived quality map of the kth GOF, the value at point (x, y) of the Q̄k map

is computed via :

Q̄k(x, y) =
1

N

N
∑

τ=1

QN(k−1)+τ (x, y). (6.8)

where N = 8 represents the number of consecutive frames in the GOF.

For each GOF, we compute the overall dilated binary edge map from the middle

frame in the group. Specifically, to determine the locations of strong edges, we apply

the Canny edge detection [101] with two thresholds (low 0.1, high 0.4) to the middle

frame to obtain a binary edge map. Let Ek denote the binary edge map of the kth

GOF, the binary value at point (x, y) of the binary edge map Ek is given by

Ek(x, y) =











1 if Ek(x, y) is an edge point,

0 if Ek(x, y) is not an edge point.
(6.9)
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Each edge point Ek(x, y) in the binary edge map is expanded to a d× d square with

the center located at that point using image morphological processing (dilation) to

obtain a dilated binary edge map Dk. The regions of the input image corresponding

to Dk(x, y) = 1 are considered the edge/near-edge regions of the kth GOF, denoted

by Rk
ed; the regions of the input image corresponding to Dk(x, y) = 0 are considered

the non-edge regions of the kth GOF, denoted by Rk
ne.

6.2.2 Estimate effect of temporal change

As stated in previous section and in Figure 6.1, the temporal change of light intensity

in the non-edge regions has important effects on the video quality. These changes

appear as temporal flickering in the non-edge regions, the larger the temporal change

in light intensity, the worse the video quality.

To estimate the effect of temporal change to video quality, we employ a block-

based approach to each frame. For each block of 8 × 8 pixels, we compute the

temporal change (temporal difference) of light intensity for each pair of consecutive

frames within the GOF. This temporal change of block b between the tth and (t+1)th

frame is computed as the absolute difference in average light intensity. Let µt(b) and

µt+1(b) denote the arithmetic mean of pixel values in block b of the tth and (t + 1)th

frame respectively. Let G(b) denotes the maximum absolute difference between µt(b)

and µt+1(b) within the GOF. Specifically, for the kth GOF, Gk(b) is defined as

Gk(b) =
Nk
max

τ=N(k−1)+1
|µτ (b)− µτ+1(b)|. (6.10)

The effect of temporal change to video quality at the position of block b in the kth

GOF is computed as follows

Tk(b) =











G(b) if G(b) < 25

0 otherwise.
(6.11)

94



A threshold of 25 is employed to account for the fact that if the temporal change

is greater than a threshold, it is highly possible that the temporal change is caused

by content change between frames and does not affect video quality. Otherwise, the

greater the temporal change Tk(b), the more degraded the video quality at the location

of block b in the kth GOF.

6.2.3 Lucas Kanade motion estimation

Both the perceived quality and temporal change maps do not reflect the fact that

the visibility of distortion is significantly reduced when the speed of motion is large

[3, 22]. Alternatively, the distortion in slow-moving regions is more visible than the

distortion in fast-moving regions.

To model this effect of motion, we measure the speed of motion in different regions

of the video by using the optical flow method designed by Lucas and Kanade [62] as in

Chapter 3 to the input MJ2K video. The video is pre-filtered by a low-pass Gaussian

filter to eliminate the effect of noise to the estimated motion vectors. The Gaussian

kernel is chosen as a 11× 11 window size and a standard deviation of 3. For the kth

GOF, the motion magnitude matrices computed from all its frames are averaged to

yield an average motion magnitude matrix V̄k. This matrix is rescaled to the size

of the video frame by using nearest-neighbor interpolation to obtain the GOF-based

motion magnitude map of the kth GOF, denoted by Mk.

6.2.4 Combine maps and compute perceived quality index

For each GOF, we have computed the GOF-based perceived quality map Q̄k, the

GOF-based temporal change map Tk, the GOF-based motion magnitude map Mk.

The perceived quality map Q̄k and the temporal change map Tk are then point-by-

point weighted by the motion magnitude map Mk to yield corrected perceived quality
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and temporal change maps Q̃k and T̃k respectively as follows

Q̃k(x, y) = Q̄2
k(x, y)× (1 +Mk), (6.12)

T̃k(x, y) =
1

1 + exp
(

−Tk(x,y)
1+Mk(x,y)

) . (6.13)

To estimate perceived quality index of each GOF, we compute the root mean

square (RMS) value of the perceived quality map in the edge/near-edge regions and

the RMS value of the temporal change map in the non-edge regions. These RMS

values are given by

αk =
1

Ned

∑

Ek(x,y)=1

Q̃k(x, y), (6.14)

βk =
1

Nne

∑

Ek(x,y)=0

T̃k(x, y), (6.15)

V Qk =
log(1 + αk)

βk

(6.16)

where Ned and Nne are the number of pixels in the edge-/near-edge and non-edge

regions respectively. The overall perceived video quality, denoted by EDV Q, is com-

puted as the arithmetic mean of all perceived quality estimates V Qk via

EDVQ =
1

K

K
∑

k=1

V Qk. (6.17)

where K is the number of GOF in the video. Here, EDVQ is a single scalar that

represents the overall perceived quality of the given video. The greater the VQ value,

the better the video quality. A value VQ = 0 indicates that the video is completely

distorted and has the worst quality.
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Table 6.1: Performances of EDVQ and other algorithms on the subset of MJ2K com-
pressed videos. The best-performing result is bolded and the second best-performing
result is italicized and bolded.

SROCC CC RMSE OR OD

Full-reference VQA algorithms
PSNR 0.759 0.794 9.205 5.56% 14.682

MS-SSIM 0.865 0.895 6.771 0.00% 0

VQM 0.874 0.878 7.267 0.00% 0

No-reference VQA algorithms
NSS 0.509 0.488 13.227 5.56% 14.068

SAZHV 0.345 0.390 13.955 13.89% 24.072
K1FB 0.304 0.305 14.435 11.11% 21.908
EDIQ 0.682 0.689 10.987 2.78% 6.025
EDVQ 0.852 0.890 6.902 0.00% 0

6.3 Experimental results

In this section, we analyze the performance of the EDVQ algorithm in predicting

subjective ratings of quality on the subset of MJ2K videos from the CSIQ video

database [74, 97]. The subset consists of 36 distorted videos from 12 different contents

with 3 distorted versions per each content. We compared EDVQ with some full-

reference VQA algorithms PSNR [28], MS-SSIM [43], and VQM [2]. PSNR and MS-

SSIM were applied on a frame-by-frame basis, VQM was applied using their default

implementations and settings. We also compare performances of other JPEG2000

specific no-reference IQA algorithms on a frame-based approach. These methods are

NSS (developed by Sheikh et al. [93]), SAZHV (proposed by Sazzad et al. [94]),

K1FB (Zhang et al. [95]), and EDIQ [5]. The raw predicted scores are transformed

via a four-parameter logistic transform as in Equation 5.1.

The performance of each algorithm is shown in Table 6.1 in terms of five different

criteria (SROCC, CC, RMSE, OR, and OD). The best-performing result is bolded,

and the second best-performing result is italicized and bolded. These data indicates

that EDVQ is better than PSNR and competitive with the MS-SSIM and VQM

algorithms in terms of all five evaluation criteria for video quality prediction.
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It is also understandable that other frame-based no-reference JPEG2000 IQA

algorithms, when applied to estimate video quality, do not yield good prediction per-

formance due to the lack of temporal information analysis. The frame-based EDIQ

performed better than the other frame-based no reference JPEG2000 algorithms due

to its superior performance for still images. However, frame-based EDIQ is still far

from a competitor with EDVQ algorithm, which has an advantage of temporal weight-

ing and temporal flickering analysis comparing to the other frame-based algorithms.

6.4 Chapter summary

In this chapter, we proposed a no-reference VQA algorithm for estimating quality

of MJ2K videos. The algorithm, EDVQ, is based on our previous no-reference IQA

algorithm, which is specifically designed for JPEG2000-compressed images, and an

additional stage of analyzing the temporal change in the non-edge regions. These

measurements are weighted and modified by the motion magnitude to account for

the effects of motion to video quality. Experimental result shows that the proposed

algorithm has a competitive performance with popular full-reference VQA algorithms

and performs much better than other no-reference VQA algorithms, which are con-

structed from frame-based image quality of JPEG2000-compressed images.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

Through the contents of the previous chapters in this dissertation report, we have

presented the general knowledge of video quality assessment and the efforts of the

research community to develop VQA algorithms to tackle this problem. We also

proposed our approaches to estimate video quality with/without the reference infor-

mation and created the CSIQ video-quality database.

We developed a full reference VQA algorithm, ViS3, that analyzes various two-

dimensional space-time slices of the video to estimate perceived video quality degra-

dation via two different stages. The algorithm adaptively applies two strategies in the

MAD algorithm to groups of video frames with a model of temporal weighting to es-

timate perceived video quality degradation due to spatial distortion. Spatiotemporal

correlation and an HVS-based model of spatiotemporal responses are applied to the

STS images to estimate perceived video quality degradation due to spatiotemporal

dissimilarity. The overall estimate of perceived video quality degradation is given as

the geometric mean of the two measurements obtained from the two stages.

Via testing on various video-quality databases, we have demonstrated that our

proposed full reference VQA algorithm, ViS3, performs well in predicting video qual-

ity. V iS3 does not only excel at predicting video quality for the entire database with

varying types of distortion and varying distortion levels, but it also performs well on

videos with a specific type of distortion. Our performance evaluation demonstrates

that ViS3 is either better than or statistically tied with current state-of-the-art VQA
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algorithms. A statistical analysis also shows that ViS3 is significantly better than

PSNR, VQM, and TQV in predicting the qualities of videos from specific databases.

We also presented our newly developed video-quality database that contains more

videos and more distortion types comparing to the current available video-quality

databases. Our video-quality database (CSIQ video database) consists of 12 reference

videos and 216 distorted videos. All videos in this database are in raw YUV420

format with a resolution of 832 × 480 pixels, a duration of 10 seconds, and span a

range of various frame rates. Each reference video has 18 distorted versions with six

types of distortion; each distortion type has three different levels. A psycho-physical

experiment was conducted following the SAMVIQ testing protocol with 35 subjects

to collect subjective ratings of quality.

A no-reference VQA algorithm has been proposed in chapter 6 of this dissertation,

which is specifically designed for motion JPEG2000 videos. The algorithm, EDVQ,

estimates video quality based on a frame-based JPEG2000-compressed quality assess-

ment and an addition analysis of temporal flickering in the non-edge (smooth) regions.

Experimental results show that the approach in EDVQ algorithm can predict quality

of MJ2K videos in a good correlation with subjective ratings. The EDVQ algorithm

is better than other no-reference frame-based JPEG2000 quality algorithms and is

competitive with some popular full-reference VQA algorithms.

7.2 Limitations and potential improvements

Yet, our proposed algorithms, ViS3 and EDVQ, are not without limitations. One im-

portant limitation of ViS3 is in regards to the potentially large memory requirements

for long videos. The STS images of a long video can require a prohibitively large

width or height for the dimension corresponding to time. In this case, one solution

would be to divide the video into small chunks across time, where each chunk has a

length of approximately 500 to 600 frames. The final result can be estimated via the
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mean of the ViS3 values computed for each chunk.

Another limitation of both ViS3 and EDVQ is that they currently take into ac-

count only the luminance component of the video. Further improvements may be real-

ized by also considering degradations in chrominance. Another possible improvement

might be realized by employing a more accurate pooling model of the spatiotemporal

responses used in the spatiotemporal dissimilarity stage.

Equation (3.33) gives the same weight to the spatial distortion and spatiotem-

poral dissimilarity values. However, it would seem possible to adaptively combine

the two values in a way that more accurately reflects the visual contribution of each

degradation to the overall quality degradation. Our preliminary attempts to select

the weights based on the video motion magnitudes, the difference in motion, or the

variance of spatial distortion have not yielded significant improvements. We are cur-

rently conducting a psycho-physical study to better understand if and how the spatial

distortion and spatiotemporal dissimilarity values should be adaptively combined.

The incorporation of visual-attention modeling is another avenue for potential

improvements. Some studies have shown that visual attention can be useful for quality

assessment (e.g., Refs. 39, 102–104). One possible technique for incorporating such

data into ViS3 would be to weight the maps generated during the computation of both

ViS1 and ViS2 based on estimates of visual gaze data or regions-of-interest in both

space and time. Another interesting avenue of future research would be to compare

the ViS1 and ViS2 maps with gaze data to identify any existing relationships, and

perhaps determine techniques for predicting gaze data based on the STS images.

The approach in EDVQ algorithm is based on the observation of MJ2K videos

and is specifically designed this type of videos. Other types of videos have different

characteristics of distortion and requires more sophisticated study. The most poten-

tial future work can be developed from the current study of the EDVQ algorithm is to

construct a general no-reference VQA algorithm that can predict video quality with-
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out the requirement of the reference videos or the prior knowledge of the distortion

characteristic. It would be perfect to have a no-reference algorithm that can handle

all types of distortion as the V iS3 algorithm. The EDVQ algorithm suggests that we

can develop a no-reference VQA algorithm based on studying the characteristics of

separate distortion types in the videos. Once we characterized the distortion-related

features of the video, a machine learning mechanism can provide a great support of

combining these features into the final video quality score of the video. We have

already developed some algorithms for general image quality assessment [105, 106],

which show promises in prediction performance with different types of distortion. Ex-

tended versions of these algorithms for video quality assessment are potential research

topics that are currently under our study.
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