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Abstract:

Digital images play an important role in social communities today. Many applica-
tions and devices have been developed to capture images, compress and store them,
and transfer from/to servers to/from end-users over broadband connection, wireless
communications, etc. In most applications, the goal is to maintain the high quality
of the images, but how to assess the quality of an image remains a challenge task.
Therefore, an effective and robust method of image quality assessment is crucial and
required.

One attribute that contributes to the quality of an image is its sharpness level. It is
easy and effortless for human subjects to judge sharpness level within an image or
cross images. However, the task is still challenging for a computer; only a handful of
algorithms can generate a local image sharpness map. Here, we present a simple, yet
effective wavelet-based algorithm for estimating both global and local image sharpness
(FISH, Fast Image SH arpness). FISH operates by first decomposing the input image
via a three-level separable discrete wavelet transform (DWT). Next, the log-energies
of the DWT sub-bands are computed. Finally, a scalar index corresponding to the
image’s overall sharpness is computed via a weighted average of these log-energies.
Testing on several image databases demonstrates that, despite its simplicity, FISH is
competitive with the currently best-performing techniques both for local sharpness
estimation and for no-reference image quality assessment of blurred images.

It is also known that the destruction of sharp regions due to JPEG2000 encoding
reduces visual quality. Therefore, a sharpness/blurriness estimator can be used to
estimate quality of JPEG2000-compressed images. In Chapter 4, we propose the
EDIQ algorithm, (EDge-based Image Quality), that estimate quality of JPEG2000-
compressed images via the edge/near-edge regions, which are defined by applying
edge detection and edge-pixel dilation. Then, perceived blurring is estimated by the
FISH algorithm and perceived ringing is estimated by the local variance of Lapla-
cian coefficients in the edge/near-edge regions. These local values are combined and
collapsed into the final quality index of the image. Testing on various subsets of
JPEG2000-compressed images demonstrates the efficacy of EDIQ in predicting the
quality of JPEG2000-compressed images.
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CHAPTER 1

INTRODUCTION

Digital images play an important role in social communities today. Many applications

and devices have been developed to capture images, compress and store them, and

transfer from/to servers to/from end-users over broadband connection, wireless com-

munications, etc. In most applications, the owners/producers want to maintain the

high quality of the images, but how to assess the quality of an image remains a chal-

lenge for the producers. An algorithm of image quality assessment (IQA) can be used

to validate the quality of a new compression standard or a new type of transmission

before delivery to the end-user. A service system can implement an IQA algorithm to

be able to realize and quantify the quality degradations of the images that occur in

the system, so that it can maintain, control, and possibly enhance the quality of the

data. Therefore, an effective and robust image quality assessment method is crucial

and required for many applications.

There are two types of quality assessment methods: the subjective and objective

methods. The subjective method is a reliable way of assessing the quality of an image

or a video, because human beings are the ultimate receivers in most applications and

the method collects ratings from human subjects. These subjective ratings are then

carefully processed using outlier rejection, score normalization, etc. to obtain the

statistically accurate quality score of the image/video in terms of Mean Opinion Score

(MOS) or Difference Mean Opinion Score (DMOS). However, despite the advantages

of high reliability and accuracy, the subjective methods have many disadvantages: it

is inconvenient, very time-consuming, and too expensive to deploy frequently because
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of system settings, subject fees, etc. Therefore, it is difficult and almost impossible to

collect customers’ ratings about the products and customize them to make it better.

Because of these disadvantages, the subjective assessment method is mainly necessary

in barely situations where quality must be assured.

The second IQA method is using a computer with a built-in algorithm, this is

so-called the objective method. Specifically, the goal of objective method in IQA

research is to design algorithms that can predict the perceived image quality auto-

matically and in a manner that agrees with human subjects. A reliable objective

quality metric can be employed to monitor quality for quality control systems, and

optimize the algorithms and the parameter settings of the processing system such as

image compression, image enhancement, etc.

Objective IQA algorithms can be classified according to the availability of the

original image, which is often considered to have perfect quality. The original image

may be used as a reference to compare with a distorted image; this type is called the

full-reference method. Nevertheless, in many practical applications, the reference im-

ages are often not accessible but human observers usually can effectively and reliably

assess the quality of distorted images without using any reference. Therefore, it is

highly desirable to develop algorithms that can evaluate image quality without the

knowledge of the reference. These algorithms are called blind or no-reference quality

assessment algorithms; developing a no-reference method is even more difficult than

a full-reference one.

For image quality assessment, one attribute of the image that contributes to its

quality is the sharpness level of the image. Although the term “sharpness” lacks a

precise technical definition, it is easy and effortless for human subject to point out

the sharp regions in an image and/or compare the sharpness level of the two images.

Intuitively, perceived sharpness is a combination of the captured resolution, which

cannot be changed in processing, and of acutance, which can be so changed. A sharp
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region in the image is the region in which fine details are resolvable (high resolution)

and in which edges and object boundaries appear to be of high contrast (high acu-

tance [2]). Indeed, most professional photographers attempt to maximize perceived

sharpness by using a high-resolution camera and employing digital retouching to in-

crease acutance (e.g., via unsharp masking). A sharper image often has higher quality

than the less sharp image, and the sharpness can be measured without the knowledge

of the reference image. Therefore, sharpness can be used to develop a no-reference

image quality assessment. In addition, auto-enhancement algorithms can use sharp-

ness information to sharpen images in a spatially adaptive fashion [3]; sharpness can

also be an useful factor for main subject detection in photographs [4].

Despite the ease with which that human subjects can judge the sharpness in an

image both locally and globally, this task remains quite challenging for a computer.

Knowing the important of a sharpness/blurriness estimator, many researchers have

developed their own algorithms to estimate sharpness of the image but only a handful

of algorithms can generate a local sharpness map. Here, we present our simple yet

effective approach to measure image sharpness both globally and locally and the

application of our sharpness measure to estimate quality of the JPEG2000-compressed

images. The next chapters in this thesis report are organized as follows:

• In Chapter 2, a literature review of the sharpness/blurriness estimators that

have been done in previous works is presented. Those methods have been clas-

sified into four different categories of algorithms based on their working mech-

anisms. Those categories are the edge-based methods, pixel-based methods,

transformed-based methods, and hybrid methods, which utilize the combina-

tion of working mechanisms from the three former methods.

• In Chapter 3, we present our Fast Image Sharpness algorithm (FISH) that

predict both the global and local image sharpness by examining the log-energy
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of the high-frequency components via the wavelet transformation. FISH oper-

ates by first decomposing the input image via a three-level separable discrete

wavelet transform (DWT). Next, the log-energies of the DWT subbands are

computed. Finally, a scalar index corresponding to the image’s overall sharp-

ness is computed via a weighted average of these log-energies. The performance

of the proposed algorithm is validated in terms of local sharpness estimation

and no-reference image quality assessment of blurred images.

• A typical application of the FISH image sharpness algorithm to construct a

no-reference image quality assessment algorithm for the JPEG2000-compressed

images is proposed in Chapter 4. The algorithm bases on the assumption that

the quality of JPEG2000-compressed images can be evaluated by computing

the perceived blurring and ringing artifacts in the edge/near-edge regions of

the image. The edge/near-edge regions are defined by applying the Canny

edge detection and edge-pixel dilation. The local perceived blurring artifact

is measured by the FISH algorithm and the local perceived ringing artifact is

measured by the local variance of the Laplacian coefficients. These local values

are combined and collapsed via root mean square to yield a single scalar that

represents the quality of the input JPEG2000-compressed image. Performance

evaluation is performed on the JPEG2000-compressed subsets of various image-

quality databases.

• Conclusions and potential future studies will be presented in Chapter 5 of the

thesis report.
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CHAPTER 2

LITERATURE REVIEW

It is important to note that sharpness is not necessarily the inverse of blurriness; an

unsharp region might not be blurred, and a blurred region might not be considered as

unsharp. However, for most applications on which researchers have tested their algo-

rithms, sharpness and blurriness have been used as two contrary concepts. Therefore,

in this chapter, we will review both sharpness and blurriness estimators.

Various algorithms have been proposed to estimate the sharpness/blurriness of

the images. These estimators can generally be classified into four main categories:

1) edge-based methods, which involve measuring the spread of edges; 2) pixel-based

methods, which work with the activities of image pixels in the spatial domain; 3)

transform-based methods, which work in the spectral domain; and 4) hybrid methods,

which utilize the combination of the three former methods. This chapter provides a

literature review of these four categories of sharpness/blurriness methods.

2.1 Edge-Based Methods

A common technique of sharpness/blurriness estimation involves measuring the spread

of edges: the narrower the spread of edges, the sharper the image. Marziliano et al.

[5] proposed a technique based on the smoothing effects of blur on edges. First, they

identify vertical edges in an image by using Sobel edge detector. Then, they scan each

row of the image to find local extreme locations closest to edge, which are defined as

the start and the end positions of the edge. The local blur measure is defined as the

difference between the end and the start position. Finally, the global blur measure for
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the whole image is obtained by averaging the local blur values over all edge locations.

Ong et al. [6] proposed a different approach for measuring spread of edges using

gradient direction. The proposed algorithm involves four following steps. In the

first step, gradients direction is defined as the angle between vertical and horizontal

gradients. The second step detects edge pixels using Canny edge detector. The third

step measures the edge-spread in the direction of the gradients and in the opposite

direction of the gradients. The final step computes the image quality measure as a

function of average edge-spread, which is computed by dividing the total amount of

edge-spread on all edge pixels by the number of edge pixels extracted from the image.

Edge spread can be measured from the line/edge profile [7, 8]. Dijk et al. [7]

determined the location and orientation of the lines and edges. The profiles of these

lines/edges are modeled by using different Gaussian functions. The width and ampli-

tude of the line/edge are then estimated from the response function, which is measured

from the Gaussian derivatives at several scales. Sharpness measured is formed by the

5th percentile of Gaussian variances at all points and the number of pixels for which

the variance is smaller than one (1). Chung et al. [8] presented a technique for a

non-parametric blur measure based on edge analysis from edge profile and gradient.

For any edge point, the blur is measured by the standard deviation of the edge mag-

nitude profile around that point and the value of the edge gradient magnitude. These

values are weighted by the contrast of the image and averaged to yield the perceptual

blur measure of the image.

Wu et al. [9] constructed a blurriness estimator using the point spread function

(PSF). They first detect edge locations using Sobel edge detector and then, extract

a sequence of points orthogonal to the edge. The derivative of this sequence is used

to obtain the line spread function (LSF); these LSFs are averaged across different

locations on the edges. Finally, the PSF parameters are characterized from the LPF

and the radius of the PSF is used as the degree of blurriness of the image. In Ref.
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10, Liu et al. also employs the Sobel edge detector to extract local edge features. A

statistical description of an image feature is used to unify these edge features values

to a single vector using eleven percentiles. This global descriptor is trained with a

circular back-propagation neural network system for blur estimation.

Ferzli and Karam [11] introduced the notion of just noticeable blur (JNB), which

is defined as a threshold that human subject can perceive blurriness around an edge,

given a contrast higher than the just noticeable difference. The JNB concept is used to

estimate the perceived blur distortion within each 64×64 edge block of the image (an

edge block is a block that contains a number of edge pixels greater than a threshold).

The distortion for each block is then used as the input of a probabilistic model to

estimate the perceived blur distortion of the whole image. The image sharpness index

is given by the ratio between the total number of edge blocks in the image and the

computed perceived blur distortion.

Using the concept of JNB in a different way, Narvekar and Karam [12] estimated

the sharpness of an image as the cumulative probability of detecting blur at an edge.

The image is divided into 64 × 64 blocks, each block is classified as edge block or

non-edge block depending on the edge information. For each edge pixel in an edge

block, the corresponding edge width and the JNB edge width are obtained from the

local contrast of the block. The probability of blur at the edge pixel is then computed

and compared with the probability of the JNB. As the amount of blur in the image

increases, the spread of the edges increases and results in a higher value and a higher

probability of blur detection at the considered edge.

The sharpness measure proposed by Corchs et al. [13] uses a region-based segmen-

tation algorithm to obtain the segmented image. This image is used to extract and

collect all the boundaries between two adjacent regions that are distinct segments.

The segments have been selected by considering various features and sharpness is

estimated by the median of the spread of edge segments.
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2.2 Pixel-Based Methods

Some sharpness/blurriness estimators operate in the spatial domain by examining the

activities of the image pixels. Crete et al. [14] generated a blurred version of the input

image by using a low-pass filter. Then, they computed the intensity variation between

neighboring pixels of both the input image and the low-pass filtered (blurred) image.

By comparing the two intensity variations, the authors estimate the blur annoyance

of the original image: a high variation difference between the original and the blurred

image means that the original image was sharp whereas a slight variation difference

means that the original image was already blurred.

Sharpness can be estimated from the activities of adjacent pixels or blocks of

pixels. Tsomko and Kim [15] proposed a blur estimator that introduces the prediction

residue as the difference between adjacent pixels. The proposed algorithm classifies

the images into three different levels of quality : globally sharp, globally blurry,

and average quality based on the variance of the prediction residue. Debing et al.

[16] proposed a block-based blur detection for the blurring artifacts caused by the

H.264/AVC compression. The blur index of the image is computed as the average of

all the local blur values calculated at the boundaries of macro blocks. A weighting

scheme based on video content is employed to reduce the influence from the texture.

Wee and Paramesran [17] argued that the eigenvalues of an image contain sta-

tistical information about that image: the most dominant eigenvalues contain image

information while the least dominant ones contain noise information. Based on this,

they proposed a method that estimates the image sharpness by using the dominant

eigenvalues of the covariance matrix of the image. The final image sharpness index

is determined by the trace of the first several eigenvalues. An approach similar to

[17] has been used in [18] by Zhu and Milanfar. The authors quantified the amount

of both blur and noise based on the singular value decomposition of the local image

gradient matrix. They argue that the singular values are sensitive to sharpness be-
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cause they reflect the strength of the gradients along the dominant direction and its

perpendicular direction. Sharpness metric is then constructed by using the singular

values of the local image gradient matrix.

2.3 Transformed-Based Methods

A number of sharpness/blurriness algorithms work in the spectral domain using trans-

forms such as the Discrete Cosine Transform (DCT), Discrete Fourier Transform

(DFT), and/or Discrete Wavelet Transform (DWT). For example, the algorithm de-

veloped by Marichal et al. [19] estimated sharpness based on the histogram of nonzero

DCT coefficients among all 8× 8 blocks of the transformed image. Kristan et al. [20]

estimate image sharpness based on the Bayes entropy computed from DCT coeffi-

cients. In order to reduce computational complexity, the authors divided the image

into 8× 8 blocks and then used the DCT to estimate the spectra with the ignorance

of the coefficients of an order higher than some predefined threshold. Next, sharp-

ness values are calculated separately for each sub-image and their mean is taken as a

measure of the overall image focus level.

Zhang et al. [21] argued that the sharpness of an image is closely related to

the peakedness of its power spectral density. Therefore, they proposed a statistical

measure using the bi-variate kurtosis. The DFT is computed first for the whole image,

and the resultant matrix is treated as a two-dimensional probability density function

that is used to compute the kurtosis. Sharpness is estimated based on the kurtosis of

the power spectral density of the image.

Shaked and Tastl [3] proposed an image sharpness measure based on localized

frequency analysis. The ideal high-pass and band pass filters are used to estimate

energy in different frequency bands. Sharpness is then estimated based on the ratio of

high-pass to low-pass energy computed from the spatial derivative of each line/column

of the image.
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In Ref. [22], Hassen et al. follow the idea that the phases of complex wavelet

coefficients exhibit a consistent relationship across scales in the vicinity of sharp

image features, such as edges and lines. The authors proposed a new measure to

quantify the degree of local phase coherence (LPC) at each spatial location to build

an LPC map. The overall sharpness index is then computed via a weighted sum of the

values in the LPC map using weights determined by the rank order of these values.

Hsin et al. [23] argued that a high-frequency component preserving the full in-

formation of a given image. The authors developed a sharpness measure based on

the output of a multi-channel filter bank, which is constructed from the Gaussian

derivative wavelets. The output of the filter bank does not only contain the complete

information of the input but also manifests prominent image features.

2.4 Hybrid Methods

In addition to the previous three categories, some of the sharpness/blurriness estima-

tors are implemented via a hybrid approach, which employs a combination of edge-

/pixel-based and transform-based methods [24–26]. Methods with hybrid approach

have generally proven to perform better than edge-only based or transform-only based

methods, though at the expense of added computational complexity.

Caviedes and Gurbuz [24] proposed a sharpness algorithm, which is a combination

of the spatial domain edge profile acutance and the kurtosis of the frequency spectrum

algorithms. The algorithm built a block-based sharpness estimator using the kurtosis

of the DCT coefficients of each block; the overall sharpness estimate is given by the

average of the sharpness values computed for edge profiles.

Chen and Bovik [25] proposed a blur metric that employs the statistics of the

image gradient histogram and a wavelet-based detail map. First, a probabilistic

support vector machine (SVM) is applied as a rough image quality evaluator. Then

the detail image is used to refine the blur measurements. Finally, the blur information

10



is pooled to predict the blur quality of images.

Vu et al. [26] used a block-based approach to develop the first method specifically

designed to measure local sharpness. Their method estimates the spatial and spectral

sharpness of local image regions using the slope of the local magnitude spectrum [27]

and the local total variation [28]; these values are then combined to generate an image

sharpness map.

Chen et al. [29] proposed an algorithm that models the gradient of the given

image as Markov chain and utilizes transition probabilities to compute a blurriness

measure. The authors first compute the transition probabilities for selected pairs of

gradient values and then combine these probabilities, using a pooling strategy, to

formulate the blurriness measure.

2.5 Summary

This chapter presented a literature review of the previous sharpness/blurriness esti-

mators that attempt to estimate the image sharpness both globally and locally. These

methods can be roughly classified into four different categories: edge-based methods,

pixel-based methods, transform-based methods, and hybrid methods according to

their working mechanisms.
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CHAPTER 3

A FAST WAVELET-BASED ALGORITHM FOR GLOBAL AND

LOCAL IMAGE SHARPNESS ESTIMATION

3.1 Introduction

A useful goal in image processing is to determine whether one image (region) appears

sharper than another does. Many applications find sharpness measure a crucial fac-

tor for tasks such as main-subject detection, image quality assessment, and image

restoration. Previous methods of sharpness/blurriness estimation have employed a

wide variety of approaches [see Chapter 2].

In this chapter, we present a sharpness estimator, called FISH (Fast Image

SH arpness), which offers the simplicity of a spectral-based method but with the

improved predictive performance of a hybrid method. Following Refs. 3, 21, FISH

operates under the assumption that perceived sharpness can be estimated by examin-

ing the energy in high-frequency bands. Here, we use a three-level separable discrete

wavelet transform (DWT) and measure the log-energy of each DWT subband. Sharp-

ness is estimated based on a weighted geometric mean of these log-energies. As we

will demonstrate, despite its simplicity, FISH is competitive with the currently best-

performing techniques. In addition, by clustering DWT coefficients, we show how

FISH can be easily modified to yield a map indicating the relative sharpness of each

image region. Thus, unlike most existing methods and similar to S3 [26], FISH can

generate maps of local image sharpness.

This chapter is organized as follows: In Section 3.2, we provide a brief introduction

of the discrete wavelet transform. Section 3.3 provides details of the FISH algorithm.

12



Section 3.4 presents performance of FISH in terms of within-image and across-image

sharpness estimation, and no-reference quality assessment of blurred images; this sec-

tion also includes a discussion of run-time requirements. Brief summary is presented

in Section 3.5.

3.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT), which is based on sub-band coding, is found

to yield a fast computation of wavelet transform for which the wavelets are discretely

sampled. In the DWT, a time-scale representation of the digital signal is obtained

using digital filtering techniques. The signal to be analyzed is passed through filters

with different cutoff frequencies at different scales.

3.2.1 Multi-Resolution Analysis using Filter Banks

The DWT can be realized by the iteration of filters with rescaling. The resolution of

the signal, which is a measure of the amount of detail information in the signal, is

determined by the filtering operations, and the scale is determined by the up-sampling

and down-sampling (subsampling) operations.

The DWT is computed by successive low-pass and high-pass filtering of the dis-

crete time signal as illustrated in Figure 3.1. This is called the Mallat algorithm

or Mallat-tree decomposition [30]. Its significance is in the manner it connects the

continuous-time multi-resolution to discrete-time filters. Figure 3.1 shows the DWT

decomposition of the 1D signal X[n], where n is an integer. The low-pass filter is

denoted by G0 while the high-pass filter is denoted by H0. At each level, the high-

pass filter produces detail information, d[n], while the low-pass filter associated with

scaling function produces coarse approximations, a[n].

At each decomposition level, the half band filters produce signals spanning only

half the frequency band. This doubles the frequency resolution as the uncertainty in
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Figure 3.1: DWT decomposition, the 1D signal X[n] is filtered by the low-pass filter

G and the high-pass filter H. At each level, the high-pass filter produces detail

information, d[n], while the low-pass filter associated with scaling function produces

coarse approximations, a[n].

frequency is reduced by half. In accordance with Nyquist’s rule if the original signal

has a highest frequency of ω, which requires a sampling frequency of 2ω radians,

then it now has a highest frequency of ω/2 radians. It can now be sampled at a

frequency of ω radians thus discarding half the samples with no loss of information.

This decimation by 2 halves the time resolution as the entire signal is now represented

by only half the number of samples. Thus, while the low-pass filtering removes half of

the frequencies and thus halves the resolution, the decimation by 2 doubles the scale.

With this approach, the time resolution becomes arbitrarily good at high frequen-

cies, while the frequency resolution becomes arbitrarily good at low frequencies. The

filtering and decimation process is continued until the desired level is reached. The

maximum number of levels depends on the length of the signal. The DWT of the

original signal is then obtained by concatenating all the coefficients, a[n] and d[n],

starting from the last level of decomposition.

Figure 3.2 shows the reconstruction of the original signal from the wavelet coeffi-

cients. The reconstruction is the reverse process of decomposition. The approxima-

tion and detail coefficients at every level are up-sampled by two, passed through the
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Figure 3.2: Original signal is reconstructed using IDWT from the wavelet coefficients.

The reconstruction is the reverse process of the decomposition.

low pass and high pass synthesis filters and then added. This process is continued

through the same number of levels as in the decomposition process to obtain the

original signal. The Mallat algorithm works equally well if the analysis filters, G0 and

H0, are exchanged with the synthesis filters, G1 and H1.

For the image, which is the 2D signal, the filtering is performed along rows and

along columns of the image alternatively. Figure 3.3 shows the filtering operation

applied to one level of the image. The coarse approximation at each level of the

decomposition (LL) will be decomposed until the number of levels is reached.

3.2.2 Cohen-Daubechies-Feauveau wavelet

Cohen-Daubechies-Feauveau (CDF) wavelet is the historically first family of biorthog-

onal wavelets, which was made popular by Ingrid Daubechies. In these wavelets, the

low-pass and the high-pass filters do not have the same length. The low-pass filter is

always symmetric, while the high-pass filter could be either symmetric or asymmetric.

CDF wavelets are the most popular wavelets. They represent the foundations

of wavelet signal processing and have numerous applications. The JPEG2000 com-

pression standard uses the biorthogonal CDF 5/3 wavelet (also called the LeGall 5/3

wavelet) for lossless compression and a CDF 9/7 wavelet for lossy compression. The
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Figure 3.3: DWT decomposition applied to the image signal. The figure shows the

filtering performed in one level of the decomposition.

notation 9/7 (or 5/3) represents the length of the discrete low-pass/high-pass filters

used in the tree decomposition.

Table 3.1 shows the coefficients of the centered scaling and wavelet sequences of

the filters used for CDF 9/7.

3.3 Fast Image SHarpness - FISH

The FISH algorithm uses the assumption that for the sharpness regions in the image,

most of its energy will be distributed in the high-frequency subbands of the wavelet

decomposition. The lower the level of wavelet subband or the higher the frequency,

the more energy is distributed in that level. Thus, the sharpness measure is estimated

from the log-energy in the high-frequency subbands via wavelet coefficients.

3.3.1 Global Image-Based FISH

Figure 3.4(a) shows a block diagram of the FISH algorithm to compute the global

sharpness index, which performs the following three steps for a given image I.
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Measure log-energy 
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Measure total log-energy 
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(a) Global sharpness estimation

HL3 

HL2 

HL1 
LH3 HH3 
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4x4 
2x2 

DWT coefficients of the image lena FISH sharpness map 
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DWT 

coefficients 
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(b) Clustering of wavelet coefficients to construct a local sharpness map

Figure 3.4: Illustration of global FISH algorithm (a) and DWT coefficients clustering into

a wavelet block of size 16×16 to construct a local perceived sharpness map (b). The orange

pixel and its two adjacent pixels in the sharpness map are shown according to the orange

stripe set of DWT coefficients and two adjacent sets of DWT coefficients with 50% overlap.

Note that, to promote visibility, the size of the blocks and sharpness map are not drawn to

scale. (Figure from Ref. 1.)
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Table 3.1: Coefficients of the filters used for CDF 9/7

Analysis LPF Analysis HPF Synthesis LPF Synthesis HPF

k 1/2 adual bdual aprim 1/2 bprim

-4 0.026748757411 0 0 0.026748757411

-3 -0.016864118443 0.091271763114 -0.091271763114 0.016864118443

-2 -0.078223266529 -0.057543526229 -0.057543526229 -0.078223266529

-1 0.266864118443 -0.591271763114 0.591271763114 -0.266864118443

0 0.602949018236 1.11508705 1.11508705 0.602949018236

1 0.266864118443 -0.591271763114 0.591271763114 -0.266864118443

2 -0.078223266529 -0.057543526229 -0.057543526229 -0.078223266529

3 -0.016864118443 0.091271763114 -0.091271763114 0.016864118443

4 0.026748757411 0 0 0.026748757411

1. Decompose the input image into a three-level DWT using the lifting scheme of

the CDF 9/7 filters [31].

2. Compute the log-energy of the DWT coefficients at each level.

3. Compute the overall sharpness index via a weighted sum of the per-level log-

energy values.

The details of each step are described in the following subsections.

Step 1: Compute the DWT using CDF 9/7 filters

If the input image is the color image, then it will be converted to grayscale using the

pixel-wise transformation as follows

gray img = 0.2989×R + 0.5870×G+ 0.1140×B (3.1)

where R, G and B stand for the red, green and blue channels of the color images.
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The grayscale input image is then decomposed into wavelet subbands by using

the CDF 9/7 filters [31] with three levels of decomposition. Let SLHn
, SHLn

, SHHn

denote the LH, HL, and HH subbands at DWT level n ∈ [1, 3]. (The LL3 subband,

which contains the low-frequency components, is not used.)

Step 2: Compute the Log-Energy at each DWT Level

Images that appear sharp generally contain more high-frequency content than images

which appear smooth/blurred. To quantify this effect, we first measure the log-energy

of each subband at each decomposition level as follows:

EXYk
= log10(1 +

1

Nk

∑

i,j

S2
XYk

(i, j)), (3.2)

where XY ∈ {LH,HL,HH} is the wavelet subband. The quantity Nk, k ∈ {1, 2, 3}

is the number of DWT coefficients in the subband at level k. The addition of one is

used to prevent negative values of EXYk
.

Next, we measure the total log-energy at each decomposition level via

Ek = (1− α)
ELHk

+ EHLk

2
+ αEHHk

, (3.3)

where the parameter α = 0.8 was chosen empirically to give greater weight to the

energy in the HH subband; this band can be regarded to span a higher radial spatial

frequency (by a factor of
√
2) than the LH and HL bands.

Step 3: Compute the Sharpness Index

Finally, the three per-level log-energy values E1, E2, and E3 are combined as follows

to determine a scalar sharpness index representing the image’s overall sharpness:

FISH =
3

∑

k=1

23−kEk. (3.4)

Here, FISH ≥ 0, is the overall sharpness index; the larger the index, the greater the

perceived sharpness. The factor 23−k = {4, 2, 1} when k = {1, 2, 3} is used to provide

greater weight to the finer scales (higher-frequency bands).
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3.3.2 Local Block-Based FISH

The previous section described the FISH algorithm applied to the entire image. It

is also possible to apply the algorithm in a block-based fashion to determine a map

denoting local perceived sharpness.

To generate a local sharpness map, we compute a collection of local FISH values

in a block-based fashion by using the clusters of DWT coefficients corresponding to

each block b of size 16 × 16 in the image. As shown in Figure 3.4(b), each DWT

subband is divided into small blocks of size 8× 8, 4× 4, and 2× 2 for levels 1, 2, and

3, respectively with 50% overlap between neighboring blocks. These small blocks are

assembled in clusters of size 16× 16 to estimate local perceived sharpness.

Specifically, as seen in Figure 3.4(b), a cluster of size 16×16 is assembled by taking

one 8×8 block from each level-1 subband, one 4×4 block from each level-2 subband,

and one 2 × 2 block from each level-3 subband at the same spatial location. This

cluster corresponds to a region of size 16 × 16 in the input image. Equations (3.2),

(3.3), and (3.4) are then applied to this cluster of DWT coefficients to yield a FISH

value that represents the perceived sharpness of the corresponding image region.

The FISH value is computed for every cluster of 16×16 DWT coefficients generated

with 50% overlap between neighboring blocks of DWT coefficients in each subband,

yielding a local sharpness map FISH(x, y). Because we use 50% of overlap between

neighboring blocks, each pixel in the sharpness maps corresponds to a block size of

8× 8 in the input image. Figure 3.4 (right), illustrates the sharpness map computed

by the FISH algorithm for the image lena.

It is also possible to collapse the sharpness map into a scalar sharpness index

representing the image’s overall sharpness. This index, FISHbb, is computed by

taking the root mean square of 1% largest values of local sharpness (FISH) indices
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(following from [26]):

FISHbb =

√

√

√

√

1

T

T
∑

i=1

FISH2
i , (3.5)

where T denotes the number of blocks which received the 1% largest FISH indices

of the sharpness map; and where FISH i, i = 1, 2, .., T denotes the FISH indices of

these blocks. The value of 1% is used because, as argued in [26], the overall perceived

sharpness of an image is largely determined by the image’s sharpest regions.

Examples of the local perceived sharpness maps computed from two different

images are shown in Figure 3.5. Located in Figure 3.5(a) are the image lena and its

corresponding FISH sharpness map. The sharp regions of the image corresponding to

the subject’s hair are well captured by the FISH sharpness map and are represented

by the brighter regions in the map. In the other hand, the smooth regions of the

image corresponding to the subject’s shoulder, which are the less sharp regions in the

image, are represented by the darker regions in the sharpness map.

In Figure 3.5(b), the image swarm, compressed by the JPEG2000 compression

standard, and its corresponding FISH sharpness map are shown. The blur regions

corresponding to the background of the image are well captured by the FISH sharpness

map and are represented by the darker regions in the map. The regions contain the

swarm are sharper than the background and are represented by the brighter regions

in the sharpness map.

3.4 Results and Discussion

3.4.1 Representative Results

Figures 3.6 and 3.7 show representative results that demonstrate the ability of FISH/FISHbb

to accurately estimate across-image and within-image sharpness (FISHbb only) for a

variety of images containing different sharpness levels. The images are ordered based

on subjective ratings of sharpness [26].
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(a) Image lena (left) and its local perceived blurring map (right)

(b) Image swarm (left) and its local perceived blurring map (right)

Figure 3.5: Examples of different images and their local perceived sharpness maps

generated by the FISH algorithm, the maps are normalized to promote visibility.

The brighter the region in the maps is, the greater the perceived sharpness is at the

corresponding spatial regions of the images.
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(1) ball 4.92 / 8.35

(2) airplane 11.91 / 17.33

(3) petal 11.35 / 19.38

Figure 3.6: Representative maps generated by using FISHbb along with sharpness

indices computed via FISH/FISHbb. The images were selected and organized in the

order of overall sharpness judged by human subjects.
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(4) zebra 13.20 / 18.86

(5) pelicans 14.00 / 20.59

(6) branches 21.20 / 25.70

Figure 3.7: Representative maps generated by using FISHbb along with sharpness

indices computed via FISH/FISHbb. The images were selected and organized in the

order of overall sharpness judged by human subjects.
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In terms of across-image sharpness, the FISH/FISHbb indices generally match the

relative perceived sharpness across these images. For example, two of the images, petal

and zebra, are not as sharp as images pelicans and branches, but are clearly much

sharper than image ball. FISH fails to predict the sharpness of image petal in com-

parison to image airplane while FISHbb fails to predict the sharpness of image petal in

comparison to image zebra. We believe that these failure cases are attributable to the

fact neither FISH nor FISHbb take into account local contrast. Such a measurement

could be implemented, though at the expense of added complexity. However, as we

will demonstrate shortly, both FISH and FISHbb perform very well overall in terms

of across-image quality assessment of blurred images.

In terms of within-image sharpness, FISHbb correctly estimates the perceived

sharpness of each image region. For example, in image petal, the flower’s stamens

and the edges of the petals are the sharpest regions in this image; these regions are

accurately highlighted in the corresponding FISHbb map. Similarly, in image branches,

the branches are much sharper than the smooth sky regions; this fact is well reflected

in the corresponding FISHbb map.

3.4.2 Performance Evaluation Criteria

Before evaluating performance of each algorithm on each subset of JPEG2000-compressed

images, we applied a four-parameter logistic transform to the raw predicted scores,

recommended by VQEG [32]. The four-parameter logistic transform is given by:

f(x) =
τ1 − τ2

1 + exp(−x−τ3
|τ4|

)
+ τ2, (3.6)

where x denotes the raw predicted score and τ1, τ2, τ3, and τ4 are free parameters

selected to provide the best fit of the predicted scores to the subjective rating scores.

Following VQEQ recommendations in Ref. 32, we employ the Spearman Rank-

Order Correlation Coefficient (SROCC) to measure prediction monotonicity, and em-

ploy the Pearson Linear Correlation Coefficient (CC) and the Root Mean Square
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Error (RMSE) to measure prediction accuracy. The prediction consistency of each

algorithm is measured by two additional criteria: the outlier ratio (OR [33]) and the

outlier distance (OD [34]). The outlier ratio (OR) is the ratio of number of false scores

predicted by the algorithm to the total number of scores. A false score is defined as

the transformed score lying outside the 95% confidence interval of the associated sub-

jective score [33]. In addition, the outlier distance (OD) is informative about how far

the outlier falls outside of the confidence interval. The OD is measured by the total

distance from all outliers to their closest edge points of the corresponding confidence

interval [34].

3.4.3 No-Reference Quality Assessment of Blurred Images

To evaluate the performance of FISH in predicting quality of blurred images, we used

the subsets of blurred images from four image-quality databases. They are the LIVE

database [35] (containing 145 blurred images), the IVC database [36] (20 blurred

images), the TID database [37] (96 blurred images), and the CSIQ database [34] (150

blurred images).

We compared our method against five sharpness estimators (ST [3], JNBM [11],

CPBD [12], LPCM [22], and S3 [26]), two blurriness estimators (MMZ [19] and MDWE

[5]). These algorithms are selected because they have high reported performance and

the implementation code is public available.

Table 3.2 shows the results of this evaluation. Both FISH and FISHbb perform

quite well on all four databases. In terms of CC and SROCC, FISHbb outperforms

other methods on the two largest databases (CSIQ and LIVE) and is competitive on

the other two databases; FISH and MMZ are the two best methods on IVC. In terms

of outlier analysis indicated by the OR and OD indices, FISHbb also shows the best

performance comparing to the other algorithms.
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Table 3.2: Performances of various algorithms on no-reference quality assessment

of blurred images; the two best results are highlighted; the last column shows the

average weighted by number of images in each database.

LIVE IVC TID CSIQ Avg. LIVE CSIQ

SROCC OR

JNBM 0.787 0.666 0.714 0.762 0.755 68.97% 36.67%

CPBD 0.919 0.769 0.854 0.885 0.884 62.76% 37.33%

ST 0.702 0.406 0.516 0.705 0.645 76.55% 42.67%

MMZ 0.860 0.971 0.732 0.860 0.835 66.90% 31.33%

MDWE 0.804 0.685 0.717 0.770 0.765 64.83% 34.00%

LPCM 0.928 0.835 0.803 0.905 0.886 58.62% 31.33%

S3 0.944 0.869 0.850 0.906 0.904 53.10% 32.67%

FISH 0.881 0.932 0.786 0.894 0.866 64.83% 26.00%

FISHbb 0.938 0.919 0.841 0.917 0.907 54.48% 24.00%

CC OD

JNBM 0.816 0.698 0.727 0.806 0.786 710.33 6.2824

CPBD 0.895 0.801 0.848 0.882 0.875 441.70 4.2688

ST 0.704 0.603 0.621 0.690 0.674 956.76 10.3675

MMZ 0.885 0.956 0.753 0.889 0.859 529.76 3.6740

MDWE 0.806 0.711 0.709 0.797 0.775 703.94 6.3801

LPCM 0.917 0.949 0.811 0.911 0.892 411.010 3.093

S3 0.943 0.928 0.877 0.911 0.914 285.97 3.0307

FISH 0.904 0.957 0.816 0.923 0.893 470.83 2.4168

FISHbb 0.944 0.941 0.858 0.943 0.923 289.85 1.6476
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3.4.4 Local Sharpness Estimation

We compared the sharpness maps estimated by FISHbb with ground-truth sharpness

maps obtained from human subjects as reported in Ref. 26. In Figures 3.8, 3.9, and

3.10, we show the original images and the corresponding sharpness maps obtained

from human subjects and estimated by S3 and FISHbb.

The S3 algorithm was specifically designed to generate sharpness maps and as

reported in Ref. [26], S3 generally yields the best map predictions comparing to the

other algorithms. As seen in Figures 3.8, 3.9, and 3.10, FISHbb can yield maps that

are well-correlated with ground-truth maps and quite competitive with S3’s maps.

This latter assertion is quantified in Table 3.3, which shows the SROCC, CC (after

non-linear regression), and RMSE between the ground-truth sharpness maps and the

maps predicted via S3 and FISHbb for all six different images.

3.4.5 Monotonic Prediction of Blur Parameter

One criterion that a good blur quality metric has to meet is that it should predict well

the blur parameters of the images. In case of the Gaussian blur images, the method

should be able to predict the variance of the Gaussian filter. We use 29 reference

images from the LIVE image database to generate a set of blur images using 15× 15

Gaussian filter with different variances selected from {0.4, 0.8, 1.6, 2.0, 2.4, 2.8}. Each

reference image has seven (7) blurred versions. Figure 3.11 shows the performance of

some blur quality methods in predicting the blur parameters. All the quality indices

are normalized to the range [0, 1] for better comparison. We can see that our method

is quite good in predicting the Spearman rank order of these parameters, the blur

index is not widely spread at the same level of Gaussian filter variance.
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Figure 3.8: Local sharpness maps of the two images Dragon and Flower obtained

from human observers, S3 and FISH algorithms.
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(3) Monkey (4) Orchid
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Figure 3.9: Local sharpness maps of the two images Monkey and Orchid obtained

from human observers, S3 and FISH algorithms.
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(5) Peak (6) Squirrel
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Figure 3.10: Local sharpness maps of the two images Peak and Squirrel obtained

from human observers, S3 and FISH algorithms.
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Table 3.3: Local Sharpness Prediction Accuracy

Image JNB CPBD ST MMZ MARZ S3 FISHbb

S
R
O
C
C

dragon 0.589 0.646 0.866 0.892 0.606 0.931 0.923

flower 0.706 0.756 0.643 0.547 0.631 0.712 0.749

monkey 0.313 0.506 0.529 0.885 0.049 0.916 0.897

orchid 0.439 0.796 0.759 0.841 0.409 0.920 0.910

peak 0.202 0.052 0.860 0.881 0.490 0.901 0.912

squirrel 0.835 0.829 0.704 0.801 0.684 0.794 0.854

Average 0.514 0.598 0.727 0.808 0.478 0.862 0.874

C
C

dragon 0.629 0.663 0.834 0.862 0.611 0.947 0.950

flower 0.665 0.858 0.696 0.873 0.761 0.936 0.927

monkey 0.428 0.495 0.517 0.940 0.276 0.944 0.959

orchid 0.500 0.831 0.814 0.868 0.097 0.914 0.929

peak 0.139 0.273 0.875 0.881 0.575 0.928 0.927

squirrel 0.849 0.935 0.905 0.942 0.852 0.938 0.941

Average 0.535 0.676 0.773 0.894 0.529 0.938 0.941

R
M

S
E

dragon 0.629 0.663 0.834 0.862 0.611 26.414 26.016

flower 0.665 0.858 0.696 0.873 0.761 28.805 31.191

monkey 0.428 0.495 0.517 0.940 0.276 29.801 25.906

orchid 0.500 0.831 0.814 0.868 0.097 39.671 36.221

peak 0.139 0.273 0.875 0.881 0.575 29.461 29.662

squirrel 0.849 0.935 0.905 0.942 0.852 29.683 31.256

Average 0.535 0.676 0.773 0.894 0.529 30.639 30.042
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Figure 3.11: Performance of blur parameter prediction. All the quality indices are

normalized to the range [0, 1] for better comparison. The bolded lines represent the

arithmetic mean of all the response lines.
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Table 3.4: Run-time requirements (seconds/image) tested on different image sizes;

the two fastest methods are highlighted.

512× 512 1024× 768 1280× 960 1600× 1200

JNBM 1.854 5.563 8.779 14.812

CPBD 2.162 7.364 12.306 22.927

ST 0.210 1.041 1.991 4.086

MMZ 0.608 1.859 2.985 5.024

MDWE 0.914 3.712 7.225 14.273

LPCM 0.909 2.852 4.151 6.993

S3 29.154 64.522 122.640 142.841

FISH 0.079 0.259 0.469 0.611

FISHbb 1.309 4.018 6.291 10.126

3.4.6 Run-time vs. Image Size

To evaluate run-time performance, we applied FISH, FISHbb, and other sharpness/blurriness

estimators to images of size 512×512, 1024×768, 1280×960, and 1600×1200 pixels.

Table 3.4 shows the average run-time of each algorithm in seconds, where the average

was taken over 100 trials. This test was performed using a modern desktop computer

(Intel Quad Core at 2.66 GHz, 12 GB RAM DDR2 at 6400 MHz, Windows 7 Pro

64-bit, Matlab 7.8). All of the methods were implemented in Matlab.

As shown in Table 3.4, FISH is the fastest algorithm for all image sizes, and FISHbb,

which is a block-based algorithm, is still significantly faster than the methods that

yield competitive predictive performance (S3, JNBM, CPBD; see Table 3.2). In terms

of memory requirements, both FISH and FISHbb have the same memory requirements

as a standard DWT with only a negligible amount of additional memory needed for

the output map (for FISHbb) and other scalar variables.
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3.5 Summary

This chapter presented a simple, yet effective algorithm (FISH) for estimating both

global and local image sharpness. By decomposing the input image via a three-level

separable DWT, FISH estimates sharpness based on a weighted geometric mean of

the DWT subband energies. FISH can also operate in a block-based fashion (FISHbb)

by applying the same computation to groups of DWT coefficients to generate a local

sharpness map. The proposed algorithm shows good performance in predicting the

local sharpness as well as the quality of the blurred images. We also demonstrated the

efficacy of FISH/FISHbb on predicting the level of blur in the Gaussian blur images.
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CHAPTER 4

APPLICATION OF SHARPNESS MEASURE TO JPEG2000

NO-REFERENCE IMAGE QUALITY ASSESSMENT

4.1 Introduction

The JPEG2000 compression standard has become popular in the field of image com-

pression due to its high coding performance. Low-rate JPEG2000-compressed images

exhibit blurring and ringing artifacts caused by the attenuation and quantization

of the high-frequency components. Several algorithms have been developed to pre-

dict the quality of JPEG2000-compressed images by quantifying these artifacts in a

manner that agrees with the visual quality judged by human subjects. The general

approach involves either estimating the amount of blurring artifacts or estimating the

perceived ringing artifacts, or a combination of the two estimations.

It is known that the destruction of sharp regions due to JPEG2000 encoding

reduces visual quality, resulting in the blurring artifacts. Therefore, it is straightfor-

ward to apply a sharpness/blurriness estimator for JPEG2000-compressed images to

estimate perceived blurring artifacts appear in such images. Many algorithms have

been developed to estimate quality of JPEG2000-compressed images by estimating

the amount of blurriness/sharpness in the image as discussed in Chapter 2. The

application of the blurriness/sharpness algorithms to predict the quality of blurred

images has shown competitive performance and promising results [38].

Nevertheless, the blurring artifacts in the JPEG2000-compressed images are dif-

ferent from the blurring artifacts in the blurred images, which are nearly uniform

across the images. As shown in the first and second rows of Figure 4.1, besides the
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blurring artifacts at some regions, a heavily distorted JPEG2000-compressed image

still contains very sharp regions (the log and branches in the logseaside image (top

row), the grass area in the foxy image (middle row)). These regions are well-captured

by the respective FISH sharpness maps in the second column of Figure 4.1.

For comparison, the image swarm and its FISH sharpness map are shown in the

third row of Figure 4.1. Due to the lack of high-frequency regions, this image is not

as sharp as the other two images, but human subjects rate the image swarm slightly

better than image log seaside and image foxy. This is because of the the annoying

high-frequency artifacts that are present in the latter images. Therefore, a sharpness

estimator, which often estimates only the effect of the blurring artifacts in the image,

is not adequate to predict quality of the JPEG2000-compressed images accurately.

One type of high-frequency artifact/distortion that appears in the JPEG2000-

compressed image is the ringing artifact; these artifacts in the JPEG2000-compressed

images make their containing regions sharper than the surrounding regions. The

ringing artifacts are caused by the quantization of the high frequency coefficients

resulting from a coding based on a wavelet transform; they often appear around the

strong edges and locally produce haloes and/or rings in the image and make the

image look sharper but worse in quality. Therefore, it is necessary to account for

the effect of the ringing artifacts in the image in order to estimate quality of the

JPEG2000-compressed image.

Tong et al. [39] presented a no-reference method for JPEG2000 images based on a

principal components analysis (PCA). First, by dividing all edge points in JPEG2000

images into distorted and undistorted, local features are extracted at each of the

detected edge points to indicate blurring and ringing. A model is then employed to

map these local features to local distortion estimates through the probabilities of the

edge points being distorted or undistorted. Quality is estimated based on the local

distortion estimates.
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Figure 4.1: Examples of two heavily distorted JPEG2000-compressed images (foxy

and log seaside) but contain very sharp regions [(a) and (b)]. The image swarm and

its sharpness map (c) is included for comparison.
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The method proposed by Barland et al. in Ref. 40 involves two stages that

estimate blurring and ringing artifact separately. The perceived blurring artifacts

are estimated by the increase of using the spatial information and pixel activity

in the whole image. The perceived ringing artifacts are estimated in the ringing

regions, which are supposed to appear around strong edges. These two indices and

the percentage of strong edges in the image are pooled to achieve the final quality

index of the compressed image.

In Ref. 41, Liang et al. presented an algorithm that employs the statistical

information on image gradient profiles. The algorithm measures blur artifacts by

using a gradient profile sharpness histogram and an existing just noticeable difference

(JND) threshold model [42]. The ringing artifacts are estimated by applying the

perceived ringing metric proposed in Ref. 43 to the regions associated with the

gradient profiles. A weighted Minkowski summation is employed to combine the

perceived blurring and ringing estimates into the quality estimate of the image.

Instead of an attempt to quantify the predefined artifacts (blurring and ringing)

in predicting the quality of a JPEG2000-compressed image, some researchers extract

features from the pixels/regions in the image and study the changes of these features

with respect to image quality. Sheikh et al. [44] presented a model which uses the

statistics of natural scene features as reference information to assess quality of the

distorted image. The authors reported that when JPEG2000 images are decomposed

via a wavelet transform, the subband probabilities indicate the loss of visual quality.

Image quality is estimated by computing features based on these probabilities from

all wavelet subbands and by applying a nonlinear combination of the features.

The quality of the JPEG2000-compressed images can also be estimated by mod-

eling the activities of pixels in the image. Sazzad et al. in Ref. 45 estimated image

quality based on pixel distortions and edge information. Visual artifacts in the image

cause pixel distortions, and these distortions are estimated by using local statistics of
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partially overlapping 5× 5 blocks. In addition, based on the assumption that human

visual perception is very sensitive to edge information in images, two features of the

edge information, zero-crossings rate and the histogram of vertical and horizontal

histogram edge features, are extracted from the input image. These features are then

combined via a training step to yield the final quality index of the image.

In Ref. 46, Zhang et al. proposed an algorithm that introduces a basic activity

map of general pixels. An arbitrary pixel in the image can be classified as monotone-

changing, zero-crossings, or inactive pixel depends on its activity with the adjacent

pixels. The activity map is then weighted by image’s structural content and pooled

to yield an estimate of image quality.

Zhang et al. [47] proposed a method to estimate image quality based on either

1D or 2D kurtosis in the discrete cosine transform domain of general image blocks.

The proposed measures were argued to be advantageous in terms of their parameter-

free operation and their computational efficiency (they do not require edge/feature

extraction). The image quality is estimated as the median of the kurtosis values

computed for all blocks in the image.

Another approach to estimate quality of JPEG2000-compressed images is to apply

a general no-reference image quality assessment. Modern no-reference image quality

assessment methods such as BLIINDS-II [48], DIIVINE [49], BRISQUE [50] have been

shown to have competitive performance on the subsets of JPEG2000-compressed im-

age in specific image-quality databases. These methods often extract quality features

from the images and apply a machine learning mechanism to train the model. De-

pending on the number of features, the method can take a significant amount of time

to estimate image quality.

Specifically, in Ref. 48, Saad et al. presented the BLIINDS-II algorithms which

estimate quality based on a generalized statistical model of local DCT coefficients.

BLIINDS-II operates on each 17× 17 image patch and extracts DCT-based contrast
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and DCT-based structural features. DCT-based contrast is defined as the average of

the ratio of the non-DC DCT coefficient magnitudes in the local patch normalized by

the DC coefficient of that patch. The DCT-based structure is defined based on the

kurtosis and anisotropy of each DCT patch. These features are combined to form the

quality estimate.

In Ref. 49, Moorthy and Bovik presented the DIIVINE algorithm, which employs

a steerable pyramid transform with two scales and six orientations. The features

extracted in DIIVINE are based on statistical properties of the subband coefficients.

A total of 88 features are extracted and used to estimate quality via the same two-

stage classification/regression framework.

In Ref. 50, Mittal et al. presented the BRISQUE algorithm, a fast no-reference

IQA algorithm which employs statistics measured in the spatial domain. BRISQUE

operates on two image scales; for each scale, 18 statistical features are extracted. The

36 features are used to perform distortion identification and quality assessment via

the aforementioned two-stage classification/regression framework.

Following the paradigm of estimating JPEG2000-compressed images based on the

perceived blurring and ringing artifacts separately as in Refs. 40, 51, in this chapter,

we present a no-reference quality assessment algorithm for JPEG2000-compressed

images. The algorithm is named EDIQ (EDge-based Image Quality) because it is

based on the perceived artifacts in the edge/near-edge regions of the images. A part

of this method has been presented at the SPIE conference [52]. The main assumption

used by the EDIQ algorithm is that the quality of JPEG2000-compressed images

can be estimated via the local perceived sharpness/blurriness and the local perceived

ringing artifacts of the edge/near-edge regions. Local perceived blurring artifact is

estimated via the FISH algorithm, and local perceived ringing artifact is estimated

by the local variance of the Laplacian image. These local values are combined and

collapsed into a quality estimate of the input JPEG2000-compressed image.
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This chapter is organized as follows: In Section 4.2, we provide details of the EDIQ

algorithm. Section 4.3 presents results of EDIQ on subsets of JPEG2000-compressed

images from various image-quality databases. Summary and limitations are presented

in Section 4.4.

4.2 Algorithm

The EDIQ algorithm estimates quality of a JPEG2000-compressed image by estimat-

ing perceived blurring artifact and perceived ringing artifact in the edge/near-edge

regions of that image. Specifically, given an input image, EDIQ performs the following

steps (shown in Figure 4.2) to estimate image quality:

1. Estimate local perceived blurring artifact by using FISH sharpness estimator.

2. Estimate local perceived ringing artifacts.

3. Determine edge/near-edge regions by using the Canny edge detection.

4. Combine and collapse maps to estimate image quality.

4.2.1 Estimate local blurring artifact

The blurring artifact in JPEG2000-compressed images is due to the attenuation of

the high-frequency components in the image’s frequency spectral. The more blur the

image, the worse the quality of the image. As stated in Chapter 2, the blurriness and

the sharpness can be used as antonym, a sharpness estimator can be used to estimate

the amount of blurring in the image. Moreover, the FISH algorithm has shown

competitive performance on predicting the quality of the blurred images; therefore,

we employ the FISH sharpness estimator as presented in chapter 3, to examine local

perceived blurring artifacts.
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Figure 4.2: Block diagram of the EDIQ algorithm. The input JPEG2000-compressed

image is used to generate a local perceived blurring map B(x, y), a local perceived

ringing map R(x, y), and an edge/near-edge regions masking map D(x, y). These

maps are combined and collapsed into a single scalar that represents the perceived

quality of the input image.

As described in chapter 3, the FISH algorithm is applied to every cluster of 16×16

DWT coefficients constructed with 50% overlap between neighboring blocks of DWT

coefficients in each subband, yielding a local FISH sharpness map. The local perceived

blurring artifact at location (x, y) of the input image, denoted by B(x, y), is computed

as the inverse of the local sharpness index at that location. In details, the blurring

artifact at the location (x, y) is given by

B(x, y) =
1

FISH(x, y)
. (4.1)

The greater the B(x, y) value, the greater the perceived blurring artifact at the

corresponding spatial region.

4.2.2 Estimate local perceived ringing artifact

As observed in Section 4.1, beside the blurring artifacts, the JPEG2000-compressed

images also contain the ringing artifacts, which cause the oscillation near sharp re-

gions. To estimate the perceived ringing artifacts, first we determine the ringing
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regions in the image by determining the edge/near-edge regions. The perceived ring-

ing artifacts are then estimated by computing local variance of the Laplacian image

corresponding to the detected ringing regions. The details are described as follows.

The grayscale input image I is filtered by a Laplace filter kernel κ [53, 54], whose

impulse response is given by :

κ =
1

4













0 1 0

1 −4 1

0 1 0













Let K denote the filtered-image, Laplacian image, obtained by convolving the

input image I with the filter kernel κ. The value at point (x, y) of the filtered-image

K is given by

K(x, y) =
1

4
{I(x− 1, y) + I(x+ 1, y) + I(x, y − 1) + I(x, y + 1)− 4× I(x, y)} .

(4.2)

As proposed in Refs. 40, 43, 55, the perceived ringing artifacts can be estimated

by the local variance of the intensity in the input image. Here, we assume that the

local perceived ringing artifact can be estimated by the local variance of the Laplacian

image K within the detected ringing regions in a block-based fashion. Let µ(b) and

σ2(b) denote the overall mean and variance of block b of size 16× 16 in the Laplacian

image K. These values are computed by

µ(b) =
1

16

16
∑

x=1

1

16

16
∑

y=1

b(x, y), (4.3)

σ2(b) =
1

16

16
∑

x=1

1

16

16
∑

y=1

[b(x, y)− µ(b)]2. (4.4)

The local perceived ringing artifacts at location of block b in the input image I,

denoted by R(b), is defined as

R(b) =











1 if σ(b) < 1
√

σ(b) otherwise.
(4.5)
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The greater the R(b) value, the greater the perceived ringing artifact at location

of block b. The process is performed on every block b of size 16 × 16 from the

Laplacian image K with 50% overlap between neighboring blocks, yielding a map R

that represents the local perceived ringing artifact of the image.

4.2.3 Determine edge/near-edge regions and estimate perceived quality

In JPEG2000-compressed images, the ringing artifact manifests itself in the form of

spurious oscillations in reconstructed pixel values in the vicinity of edges and causes

severe visual degradation [55]. We follow Refs. [40, 55] to estimate perceived quality

of a JPEG2000-compressed image by using the perceived blurring and ringing artifacts

in the edge/near-edge regions of the input image.

To determine the edge locations, we apply the Canny edge detection [56] with two

thresholds to obtain a binary edge map E. The threshold values have been chosen

empirically. The value at point (x, y) of the binary edge map E is given by

E(x, y) =











1 if E(x, y) is an edge point,

0 if E(x, y) is not an edge point.
(4.6)

Each edge point E(x, y) in the binary edge map is expanded to a d × d square with

the center located at that point to obtain a binary dilated map D. Here, d = 2ρ+1 is

an odd positive integer to ensure the existence of the center point. We further study

the robustness of our algorithm against different ρ values in Section 4.3.2. The binary

dilated map D is later used as a masking map to separate the edge/near-edge regions

and the non-edge regions. Specifically, the pixel value of the binary dilated map D

at point (x, y) is given by:










D(x+∆x, y +∆y)
{−ρ≤∆x,∆y≤ρ}

= 1 if E(x, y) = 1

D(x, y) = 0 otherwise

(4.7)

The regions in the input image corresponding to D(x, y) = 1 are considered the

edge/near-edge regions, denoted by Red; the regions of the input image corresponding
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to D(x, y) = 0 are considered the non-edge regions, denoted by Rne. A demonstration

of these regions in a JPEG2000-compressed image is shown in Figure 4.3. Figure 4.3

shows the input JPEG2000-compressed image sparrow (a), the binary edge map E

(b), and the binary dilated map D (c), the edge/near-edge regions (d), and the non-

edge regions (e).

4.2.4 Combine maps and estimate image quality

For the given input image, we have computed the perceived blurring map B(x, y),

the perceived ringing map R(x, y). We now combine these two maps to estimate the

perceived quality of the input image.

The local perceived artifacts at the location of point (x, y) is estimated as the

product of the local perceived blurring and the local perceived ringing at that location.

D(x, y) = B(x, y)×R(x, y). (4.8)

The quality of the input image is estimated by the root mean square of the inverse

of the perceived artifacts in the edge/near-edge regions. Specifically, the quality index

of the image, denoted by EDIQ, is given by

EDIQ =

√

√

√

√

1

Nb

∑

(x,y)∈Red

(

1

D(x, y)

)2

(4.9)

where Nb is the total number of points (x, y) in the edge/near-edge regions of the

image. Here, EDIQ is a single scalar that represents the perceived quality estimate of

the input JPEG2000-compressed image; the greater the EDIQ value, the better the

quality of the input image.
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(a) JPEG2000-compressed

(b) Binary edge map (c) Binary dilated map

(d) Edge/near-edge regions (e) Non-edge regions

Figure 4.3: Illustration of a JPEG2000-compressed image sparrow with the separate

edge/near-edge and non-edge regions. The figure shows the input image (a), the

binary edge map (b), the binary dilated edge map (c), the edge/near-edge regions

(d), and the non-edge regions (e) of the image.
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4.3 Results

4.3.1 Performance Evaluation

To evaluate performance of the EDIQ algorithm, we used the subsets of JPEG2000-

compressed images from six image-quality databases: A57 [57] (9 JPEG2000-compressed

images), IVC [36] (50 JPEG2000-compressed images), TID [37] (96 JPEG2000-compressed

images), TOYAMA [58] (98 JPEG2000-compressed images), CSIQ [34] (150 JPEG2000-

compressed images), and LIVE [35] (169 JPEG2000-compressed images).

We compared EDIQ with three JPEG2000-designed no-reference algorithms (NSS

[44], SAZHV [45], K1FB [47]) and three general no-reference image quality algo-

rithms (BLIINDS-II [48], DIVIINE [49], BRISQUE [50]) on these image subsets.

BLIINDS-II, DIVIINE, and BRISQUE are chosen because they are currently the

best-performing general no-reference image quality algorithms. The implementation

code for NSS, BLIINDS-II, DIVIINE, and BRISQUE are publicly available while the

other two algorithms, SAZHV [45] and K1FB [47], are implemented by the authors

following the algorithm description from the corresponding papers.

Before evaluating performance of each algorithm on each subset of JPEG2000-

compressed images, we also applied Equation 3.6 to the raw predicted scores. The

performance of predicting subjective ratings of quality was measured in terms of the

Spearman rank-order correlation coefficient (SROCC) for gauging prediction mono-

tonicity; the Pearson linear correlation coefficient (CC) (following non-linear regres-

sion; for gauging prediction consistency; and the outlier ratio (OR) [33] and outlier

distance (OD) [34] for outlier analysis.

Table 4.1 shows the performance of EDIQ and other six algorithms in terms of

SROCC, CC, RMSE, OR, and OD. The results of the best-performing algorithm are

bolded and the results of the second best-performing algorithm are italicized and

bolded. The results listed as “trained” are from algorithms that are trained on the
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LIVE image database and we do not make a comparison for those training data.

As seen in Table 4.1, the EDIQ algorithm yields high correlation with the sub-

jective ratings of quality in all six subsets of images. For all databases, EDIQ is the

best-performing algorithm or competitive with the best-performing algorithm. On

the A57, IVC, TID, and CSIQ databases, EDIQ yields the best performance in pre-

dicting image quality. EDIQ is competitive with NSS on the TOYAMA database.

On the LIVE database, EDIQ is better than K1FB while all the other algorithms are

trained on this database.

The present of a training step in an algorithm may cause that algorithm suffering

from over-fitting to the training database. For examples, NSS has a poor performance

on the CSIQ database despite its good performance on the TOYAMA and LIVE

databases; DIIVINE and BLIINDS-II do not perform well on the TOYAMA database;

and SAZHV fails to predict quality of JPEG2000 images on the TID database. Only

BRISQUE algorithm does not suffer from training and maintains competitive perfor-

mance comparing to EDIQ.

Figure 4.4 shows the scatter-plots of the transformed EDIQ scores versus the

subjective ratings of quality for all six subsets of images from different databases.

4.3.2 Performance with Different Dilated Size

To study the robustness of the EDIQ algorithm when the dilated size changes, we

measured the performance of the EDIQ algorithm on all image databases by using

different dilated size of the edge pixels from 9 × 9 to 25 × 25. Table 4.2 shows the

resulting SROCC and CC of this evaluation.

As seen from Table 4.2, with all the dilated size, EDIQ performs reasonably well on

predicting quality of JPEG2000-compressed images from all databases. The change

of the dilated size does not affect the performance of the EDIQ algorithm across all

databases, which shows that EDIQ is robust to the change of dilated size.
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Table 4.1: Performances of EDIQ and other no-reference (NR) IQA algorithms on six

different subsets of JPEG2000-compressed images.

General NR IQAs JPEG2000-specific NR IQAs

BLDS-II DVNE BRSQ NSS SAZHV K1FB EDIQ

S
R
O
C
C

A57 0.347 0.475 0.700 0.414 0.633 0.475 0.917

IVC 0.911 0.654 0.833 0.776 0.786 0.866 0.954

TID 0.911 0.842 0.904 0.366 0.649 0.769 0.919

TOYA 0.711 0.630 0.891 0.894 0.869 0.785 0.899

CSIQ 0.884 0.830 0.867 0.568 0.824 0.811 0.937

LIVE trained trained trained trained trained 0.907 0.932

C
C

A57 0.506 0.645 0.717 0.481 0.814 0.645 0.920

IVC 0.915 0.709 0.840 0.770 0.776 0.885 0.957

TID 0.919 0.876 0.906 0.345 0.657 0.757 0.928

TOYA 0.729 0.670 0.907 0.907 0.871 0.792 0.917

CSIQ 0.912 0.893 0.896 0.581 0.842 0.830 0.950

LIVE trained trained trained trained trained 0.913 0.937

R
M

S
E

A57 0.194 0.172 0.157 0.197 0.131 0.172 0.088

IVC 0.521 0.910 0.699 0.823 0.814 0.602 0.373

TID 0.756 0.925 0.810 1.799 1.446 1.252 0.715

TOYA 0.983 0.778 0.479 0.479 0.559 0.694 0.453

CSIQ 0.130 0.142 0.140 0.257 0.171 0.176 0.099

LIVE trained trained trained trained trained 10.271 8.822

O
R

IVC 8.00% 18.00% 18.00% 16.00% 20.00% 12.00% 4.00%

TID 64.58% 82.29% 70.83% 90.63% 81.25% 77.08% 75.00%

TOYA 15.31% 14.29% 2.04% 5.10% 7.14% 10.20% 6.12%

CSIQ 48.67% 50.00% 42.00% 57.33% 48.67% 51.33% 36.67%

LIVE trained trained trained trained trained 59.76% 57.40%

O
D

IVC 1.264 8.124 4.282 7.317 6.656 1.335 0.221

TID 37.822 53.802 42.389 126.680 90.468 69.634 36.342

TOYA 8.644 5.537 0.759 2.295 2.174 4.435 2.019

CSIQ 5.922 7.722 6.099 18.838 9.944 10.851 4.050

LIVE trained trained trained trained trained 661.709 548.222
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Figure 4.4: Scatter-plots of logistic-transformed scores predicted by EDIQ versus

subjective scores on the six subsets of JPEG2000-compressed images. The R val-

ues denote correlation coefficient (CC) between the logistic-transformed scores and

subjective ratings of quality.
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4.4 Summary and Limitations

In this chapter, an edge-based no-reference image quality algorithm for JPEG2000-

compressed images is proposed. The algorithm, named EDIQ, estimates the perceived

quality of given JPEG2000-compressed image by estimating the local perceived blur-

ring and ringing artifacts within the edge/near-edge regions. Perceived blurring is

estimated by using the FISH sharpness estimator and perceived ringing is estimated

by the local variance of the Laplacian image. Testing on various subsets of image-

quality databases demonstrated that the EDIQ algorithm is competitive with current

state-of-the-art algorithms of no-reference image quality assessment for JPEG2000-

compressed images.

However, the EDIQ algorithm is not without limitations. One limitation of the

EDIQ algorithm is that EDIQ takes into account only the distortion within the

edge/near-edge regions and ignores the distortion in the non-edge regions. The ar-

tifacts in the non-edge regions might have potential effects on the perceived quality

estimate of the image and we are currently study this effect.

The second limitation of the EDIQ algorithm comes from the FISH sharpness

estimator, which is used to estimate perceived blurring artifacts. The FISH algorithm

considers the smooth regions (e.g: sky, non-texture area) as the blur regions and

assigns the high perceived blurring to these regions. This limitation is partly overcome

by considering only the edge/near-edge regions but it still has potential effect to the

estimation of image quality.

As a part of the performance evaluation, we found that most of the JPEG2000-

compressed images in the tested image-quality databases are compressed by using

the baseline JPEG2000 standard, which is only one of many JPEG2000 compression

standards. The performance of the EDIQ algorithm in predicting quality of images

compressed by other standards remains an opening question; EDIQ might need to

modified or enhanced in order to perform that task accurately.
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Table 4.2: Performances of EDIQ on six different JPEG2000-compressed image sub-

sets with respect to different dilated size ρ. The results show the robustness of the

EDIQ algorithm against dilated size change.

ρ 4 5 6 7 8 9 10 11 12

d = 2ρ+ 1 9 11 13 15 17 19 21 23 25

SROCC

A57 0.950 0.950 0.950 0.917 0.917 0.917 0.917 0.917 0.917

IVC 0.955 0.955 0.955 0.953 0.954 0.954 0.954 0.954 0.953

TID 0.912 0.913 0.916 0.917 0.919 0.918 0.919 0.918 0.919

TOYA 0.888 0.890 0.894 0.897 0.899 0.901 0.905 0.907 0.907

CSIQ 0.937 0.937 0.937 0.937 0.937 0.937 0.936 0.937 0.937

LIVE 0.929 0.930 0.931 0.931 0.932 0.933 0.932 0.932 0.932

CC

A57 0.935 0.932 0.928 0.924 0.920 0.913 0.910 0.905 0.899

IVC 0.958 0.958 0.957 0.958 0.957 0.957 0.957 0.957 0.956

TID 0.925 0.926 0.926 0.927 0.928 0.929 0.929 0.929 0.930

TOYA 0.908 0.910 0.913 0.915 0.917 0.919 0.919 0.920 0.921

CSIQ 0.950 0.950 0.950 0.950 0.950 0.949 0.949 0.949 0.949

LIVE 0.932 0.934 0.935 0.936 0.937 0.937 0.937 0.937 0.937
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CHAPTER 5

CONCLUSIONS

In this thesis report, we have presented the following contents

5.1 Fast Image Sharpness Measure

This chapter presented a simple, yet effective algorithm (FISH) for estimating both

global and local image sharpness. By decomposing the input image via a three-level

separable DWT, FISH estimates sharpness based on a weighted geometric mean of

the DWT subband energies. FISH can also operate in a block-based fashion (FISHbb)

by applying the same computation to groups of DWT coefficients to generate a local

sharpness map. The proposed algorithm shows good performance in predicting the

local sharpness as well as the quality of the blurred images. We also demonstrated the

efficacy of FISH/FISHbb on predicting the level of blur in the Gaussian blur images.

5.2 JPEG2000 No-Reference Image Quality Assessment

An edge-based no-reference image quality algorithm for JPEG2000-compressed im-

ages is proposed in chapter 4. The algorithm, named EDIQ, estimates the perceived

quality of given JPEG2000-compressed image by estimating the local perceived blur-

ring and ringing artifacts within the edge/near-edge regions. Perceived blurring is es-

timated by using the FISH sharpness estimator and perceived ringing is estimated by

the local variance of the Laplacian filtered-image. Testing on JPEG2000-compressed

image subsets of various image-quality databases demonstrated that the EDIQ al-

gorithm is competitive with current state-of-the-art no-reference IQA algorithms in
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predicting quality of the JPEG2000-compressed images.

5.3 Future Work

5.3.1 General no-reference image quality assessment

The EDIQ algorithm proposed in chapter 4 can offer benefits for the camera manu-

facturer, image compression, etc. However, many types of distortion appear in the

digital images, such as blur, blocking, white noise, contrast, and so on, as is illus-

trated in Figure 5.1. Therefore, it is necessary and more efficient to have a general

no-reference image quality assessment that can predict image quality with all kinds of

distortions in a manner that agrees with subjective ratings of quality obtained from

human subjects.

With the success of FISH as an image sharpness algorithm and EDIQ, a no-

reference quality assessment for JPEG2000-compressed images, we will extend and

improve the EDIQ algorithm to make it become a no-reference quality assessment for

many kinds of distortions other than JPEG2000 compression artifact. The current

strategy of separating images into regions with different effects to human can be

applied to other distorted images.

A popular trend in the research of no-reference image quality assessment in par-

ticular and in signal processing in general is the application of machine learning to

develop a well-performed method. In term of no-reference image quality assessment,

because the reference image is absent, it is difficult for the computer to judge image

quality with a high correlation to the human subjects’ opinion. Application of ma-

chine learning can help train the algorithms to predict image quality in the manner

that human subjects do and obtain better performance.
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White noise - DMOS = 0.442 Blur - DMOS = 0.590

Contrast - DMOS = 0.458 Ringing - DMOS = 0.693

Blocking - DMOS = 0.639 Pink noise - DMOS = 0.673

Figure 5.1: Different types of distortion that appears in digital images and their

associated subjective ratings of quality. The quality of the image can vary across the

amount of distortion and across the distortion types.
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5.3.2 JPEG2000-compressed images with different compression standards

In our proposed algorithm, we only test the algorithm on the images that are com-

pressed using the baseline JPEG2000 compression. However, our algorithm has not

been validated for some other JPEG2000 compression standards. One reason is that

that kind of image-quality database is not available. The performance of the proposed

algorithm in predicting quality of images compressed by other standards remains an

opening question; we might need to modify or enhance our algorithm in order to

perform that task.

5.3.3 Application to video quality assessment

A video is a sequence of frames and each frame is a normal image, therefore, it is

possible to apply an IQA algorithm to every frame of the video to estimate quality of

that video. The quality index of every frame can be collapsed by a pooling method

(Minkowski, arithmetic mean, etc.) to yield a single scalar. This index can serve as

the representative quality index of the video, or it can be used as a part of a video

quality assessment algorithm.
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