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Abstract: In this work, we identified the proteomics fingerprint of the anti-cancer drug 

candidate AUY922 in Jurkat leukemia cells and compared AUY922’s fingerprint  to the 

proteomics fingerprints of flagship Hsp90 inhibitors 17-DMAG and radicicol. Protein 

expression changes were identified by a label-free mass spectrometry technique, 

spectrum counting using a bottom-up proteomics approach. We identified 30 protein 

expression changes that were conserved among all the three Hsp90 inhibitors. To further 

validate findings from  spectrum counting assays and to identify more Hsp0 inhibitor-

induced protein expression changes, we quantified AUY922-induced and 17-DMAG-

induced protein expression changes by label-based Stable Isotope Labeling with Amino 

acids in Cell culture (SILAC) using a bottom-up proteomics approach. A total of 3000-

4000 inhibitor-induced protein expression changes were quantified. After statistical 

validation, 260 protein expression changes were found to be conserved among both the 

Hsp90 inhibitors. The large conservation of protein expression changes between 

AUY922 and 17-DMAG suggested that both inhibitors work via a similar mechanism. 

The protein expression changes common to AUY922 and 17-DMAG identified in this 

study can be used as biomarkers to test bioactivity of AUY922 in clinical trials and can 

also be used to validate new Hsp90 N-terminal inhibitors. Additionally, they can be 

compared to the proteomic fingerprints of agents that bind to the C-terminal domain of 

Hsp90, to determine if both classes of inhibitors share similar mechanisms of action. I 

also demonstrated that the anti-proliferative effects of AUY922 could be enhanced in 

combinatorial treatments with protein folding antagonist L-azetadine-2-carboxylic acid 

(AZC). I further used the SILAC approach to determine the mechanism of combinatorial 

effects of AUY922 and AZC and showed that the combinatorial effects were largely due 

to AZC-mediated suppression of chaperone induction. Thus, findings from this study 

suggest approaches for enhancing AUY922’s activity in clinical trials by using AUY922 

in combination with agents that suppress chaperone induction.
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CHAPTER I 
 

Literature Review 

 

 

Heat Shock Protein 90 (Hsp90) 

 

    Heat shock protein 90 (Hsp90) is arguably the most prominent of all the heat shock proteins. It is 

widely conserved across different domains of life (with the exception of archaea). In human beings, 

Hsp90 is the most abundant of all the Hsps, and constitutes about 1% of the total cellular protein. 

Hsp90’s isoforms play distinct biological roles in different cellular compartments. Cytoplasmic 

Hsp90 exists in two isoforms in mammalian cells, Hsp90α and Hsp90β. Hsp90β is constitutively 

expressed, whereas Hsp90α is heat or stress inducible. GRP94 and TRAP are the homologs of Hsp90 

in endoplasmic reticulum and mitochondria, respectively. 

 

Structure 

     Hsp90 has three domains: the N-terminal domain, the middle domain, and the C-terminal domain. 

X-ray crystallography studies have been used to understand the biological functions of each domain. 

Crystal structures of complexes between yeast Hsp90 and ATP/ADP have been produced [1] . This 

has led to the understanding that the N-terminal domain has a pocket for ATP binding. Hsp90 

inhibitors also bind to the ATP binding pocket in the N-terminal domain [2]. 
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   Hsp90’s middle domain harbors two important residues: Arg 380 and Gln 384, which are essential 

for Hsp90 ATPase activity. The middle domain also interacts with the client proteins [3]. The N-

terminal domain and the middle domain are connected to each other by a flexible linker.  

     The C-terminal domain is necessary for homo-dimerization. The C-terminal domain has a 

MEEVD sequence motif necessary for binding tetratricopeptide repeat-containing co-chaperone 

proteins. Several small molecule inhibitors also bind to this domain, here after called as C-terminal 

inhibitors [4]. Recently the C-terminal inhibitor site has been identified by protease fingerprinting, 

and by photo-affinity labeling followed by LC-MS/MS [5]. 

 

 Hsp90 function  

   Hsp90 is a molecular chaperone that folds proteins. Hsp90 folds proteins by undergoing a series of 

conformational changes. These conformational changes are driven by ATP binding and hydrolysis 

and are often referred to as the Hsp90 reaction cycle. Hsp90 exists as an open dimer in its free state. 

When ATP binds in the N-terminal pocket, the Hsp90 dimer undergoes structural transitions and 

acquires a closed conformation. This conformation allows the nascent polypeptides to be folded into 

their native conformations. Upon ATP hydrolysis and ADP release, Hsp90 is restored back to its open 

conformation. In the open conformation, the folded client proteins are released from Hsp90 [6].     

    Hsp90 functions in co-operation with a wide variety of other chaperones and co-chaperones. All 

these together constitute the Hsp90 chaperone machinery [7]. Co-chaperones play important roles in 

regulating Hsp90’s activity. A majority of the Hsp90 co-chaperones have TPR domains (examples: 

Hop, Chip and Tom70), and bind to the MEEVD motif in the C-terminal domain of Hsp90 [7]. Co-

chaperones assist Hsp90 by regulating it’s interactions with other chaperones, by stimulating or 

inhibiting ATPase activity, or by recruiting Hsp90 clients. Among the co-chaperones that modulate 
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ATPase activity of Hsp90, Aha1 and Crp6 stimulate the ATPase activity whereas Hop, Cdc37 and 

p23 inhibit the ATPase activity [8].  

Hsp90 Clients 

   The proteins that depend on Hsp90 for their conformation, stability, or activity are called Hsp90 

clients. To date, more than 200 proteins have been identified as Hsp90 clients, and the list is 

expanding. There are three major classes of Hsp90 clients: kinases, steroid hormone receptors and 

others that are not typically considered to be signal transduction proteins. Several steroid hormone 

receptors, including estrogen, androgen progesterone, and glucocorticoid receptors are known Hsp90 

clients [9, 10]. A wide variety of kinases including tyrosine kinases [11]  and cyclin dependent 

protein kinases [12, 13] are also Hsp90 clients. Telomerase [14], helicases, cytoskeletal proteins and 

several metabolic enzymes are other known Hsp90 clients [15]. A comprehensive list of Hsp90 client 

proteins can be found at http://www.picard.ch.  

Hsp90 Inhibitors 

      Hsp90 can be inhibited by small molecule inhibitors. The benzoquinone ansamycin geldanamycin 

(Fig 1.1), hereafter called “GA” was the first compound identified to inhibit Hsp90. GA reverts the 

Src tyrosine kinase mediated oncogenic transformation of NIH 3T3 cells by binding to Hsp90 and 

inhibiting its function [16]. Several years later, the macrocyclic anti-fungal antibiotic radicicol (Fig 

1.2) was also shown to inhibit Hsp90. Radicicol, like GA, suppresses oncogenic transformation by 

inhibiting the function of Hsp90 [17] . GA and radicicol act as Hsp90 inhibitors by binding to the 

ATP binding pocket in the N-terminal domain of Hsp90, and interfering with its ATPase cycle [18] . 

Thus these compounds are classified as N-terminal Hsp90 inhibitors.  

http://www.picard.ch/
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      Figure 1.1 - Geldanamycin               Figure 1.2 - Radicicol 

                                                           

                                                       Images from Wikipedia Commons 

 

   GA showed good anti-cancer effects in cancer cell lines and animal models. But it was poorly 

soluble, lacked stability and was toxic. Therefore, it was not used for clinical purposes. Instead, 

derivatives of GA (17-Dimethylaminoethylamino-17-demethoxygeldanamycin, hereafter called 17-

DMAG, and 17-N-allylamino-17-demethoxygeldanamycin, 17-AAG) were developed. In 17-DMAG, 

the C-17 methoxy group of GA was replaced by N-N-dimethylamine. Compared to GA, 17-DMAG 

had better solubility and entered phase I trials. However, it was discontinued due to toxicity 

(clinicaltrials.gov). Radicicol was never considered for clinical trials due to toxicity and absence of 

activity in vivo [19].  

     Several other Hsp90 inhibitors were developed by various approaches. Currently 13 different 

Hsp90 inhibitors are in clinical trials. All these inhibitors can be divided into three types depending 

on similarity to geldanamycin (IPT-504), radicicol (AUY922), or an adenosine like scaffold. 

 

AUY922 

     AUY922 is a small molecule Hsp90 inhibitor. AUY922 belongs to the resorcinylic isoxazole 

amide class (Fig 1.3), and is structurally related to radicicol by having a resorcinol moiety. AUY922 

C-17 
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exhibits high affinity for Hsp90 ATP binding pocket with an IC50 of 21 nM. Like other Hsp90 N-

terminal inhibitors, AUY922 also binds to the ATP binding pocket in the N-terminal domain of 

Hsp90 [20]. AUY922 depletes a wide variety of known Hsp90 clients and exerts potent anti-cancer 

effects in wide variety of cell lines and tumors at low nano-molar doses [21-26] . AUY922 exhibits 

cytostatic effects by arresting cells in G1/S or G2/M phase of the cell cycle [24]. Hence, AUY922 is 

considered as a promising candidate for cancer treatment. Currently, AUY922 is in Phase II clinical 

trials. 

                                                                 

Figure 1.3 - AUY922 (Wikipedia commons) 

In addition to Hsp90 N-terminal inhibitors, there are several small molecules that bind to the Hsp90 

C-terminal domain. Novobiocin is a coumarin antibiotic. It was the first compound that was identified 

to bind to the C-terminus of Hsp90. Similar to novobiocin, the coumarin antibiotics chlorobiocin and 

coumermycin A1 also bind to the Hsp90 c-terminal domain. All these compounds deplete known  

Hsp90 clients proteins such as erbB2, Raf-1 and p53 in cultured breast cancer cells [4]. However, 

unlike N-terminal inhibitors, they do not up-regulate Hsp70. Cisplatin also binds to Hsp90’s C-

terminal domain, and inhibits its activity [27] . EGCG, a green tea ingredient, also depletes Hsp90 

clients, including telomerase and several kinases [28]. Dr. Brian Blagg (Kansas University) has 

synthesized other structurally related C-terminal inhibitors that have anti-cancer activities in vitro 

[29-31]. The novobiocin and chlorobiocin binding sites in the Hsp90 C-terminal domain were 

identified recently [5]. 
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Uses of Hsp90 inhibitors 

    The biological roles of Hsp90 have been elucidated by using Hsp90 inhibitors as tools.  

Hsp90 plays important roles in cancer by supporting mutant tyrosine kinases like Src [16]  and mutant 

p53 [32]. These Hsp90 roles were elucidated using geldanamycin. Since then, proteins involved in the 

six hallmark traits of cancer [33]  including receptor tyrosine kinases (EGFR), serine threonine 

kinases (Raf1 and Akt) [34], HIF1α [35]  and MMP2 [36] have been identified as Hsp90 clients by 

using Hsp90 inhibitors as tools. 

     Using Hsp90 inhibitors as tools, several Hsp90 dependent proteins have been identified [17, 37-

40] . These discoveries include steroid hormone receptors, kinases, and transcription factors. 

Identifications of steroid hormone receptors, kinases and transcription factors as Hsp90 clients led to 

highlight Hsp90’s role in steroid signaling, signal transduction, transcription, and immune responses. 

Other proteins such as Hsf1, calcineurin and nitric oxide synthase have also been identified as Hsp90 

clients, thus implicating Hsp90’s roles in heat shock response, calcium signaling and  nitric oxide 

signaling [7].  

     Hsp90 inhibitors are considered as promising candidates for cancer treatment. Hsp90 inhibitors 

attack  multiple oncogenic pathways simultaneously [41]. One model predicts that the selectively 

tumoricidal activity of Hsp90 inhibitors is due high affinity confirmation of Hsp90 in cancer cells [42, 

43]. However, this model has been questioned by Haystead et al. [44]. Nevertheless, the fact that 

Hsp90 inhibitors accumulate at a high rate in cancer cells compared to normal cells remains [42]. 

Additionally, Hsp90 inhibitors result in the depletion of proteins involved in all six hallmark traits of 

cancer [45]. Owing to these properties, Hsp90 inhibitors are considered to be viable candidates for 

cancer treatment.  

       Hsp90 inhibitors are also considered for the treatment of neurodegenerative disorders. 

Neurodegenerative diseases like Alzheimer’s and Parkinson’s are caused due to the accumulation of 
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toxic protein aggregates. Hsp90 inhibitors are predicted to ameliorate protein aggregates by inducing 

chaperones through the HSF1 mediated heat shock response [46]. 

 

Consequences of Hsp90 Inhibition 

   Hsp90 inhibition leads to the degradation of Hsp90-dependent client proteins. By inhibiting Hsp90 

from cycling through the chaperone cycle, client protein folding is compromised, resulting in their 

degradation. According to one prominent model, inhibitor-bound Hsp90 recruits CHIP (carboxy-

terminus of Hsp70 interacting protein), an E3 ubiquitin ligase, leading to the ubiquitylation of Hsp90 

client proteins and their subsequent degradation through the proteasome [47]. Attempts to study the 

global effects of Hsp90 inhibitors using proteomics approaches are discussed below. 

     Other major consequence of Hsp90 inhibition is activation of the heat shock response (HSR). The 

HSR is a signaling pathway involved in regulating protein homeostasis or proteostasis during stress 

conditions (discussed in more detail below). Inhibition of Hsp90 by small molecule inhibitors 

compromises Hsp90’s function. In one model, functionally compromised Hsp90 can no longer bind 

Hsf1 and as a result Hsf1 gets activated. Activated Hsf1 then initiates the heat shock response by 

acting as a transcription factor. In vitro, in an activation lysate model system, geldanamycin was 

reported to compromise Hsp90’s function and activate Hsf1 [48]. However, this model is not 

universally accepted. As pointed out by Shamovsky et al. [49] : “Despite numerous studies and 

extensive characterization, no defined in vitro system has been developed that reproduces Hsp90-

mediated repression of HSF in vitro.” In transformed fibroblasts, geldanamycin treatment results in 

increase in the levels of Hsps and this was shown to be mediated by Hsf1 activation [50]. In primary 

mouse skeletal myoblasts, two distinct Hsp90 inhibitors 17-AAG and AUY922 induce the expression 

of Hsp70, a consequence of Hsf1 activation [51]. There are two explanations for the activation of 

Hsf1 by Hsp90 inhibitors. According to one explanation, Hsp90 inhibitors cause bonafide  
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proteotoxic stress and result in the activation of Hsf1. According to the other explanation, Hsp90 

inhibitors activate Hsf1 by inhibiting Hsp90 and interfering with Hsp90 mediated repression of Hsf1. 

 

Proteomics of Hsp90 inhibition 

     Prior to 2012, four different studies described the effects of Hsp90 inhibitors at the proteome level 

(see the 2012 review by Hartson and Matts [15]). All these studies were done utilizing mass 

spectrometry approaches. The effects of 17-AAG on the proteome of A2780 ovarian cancer cells 

were reported in 2007 using 2D gel electrophoresis followed by MALDI-TOF mass spectrometry. In 

this study, 42 proteins including chaperones, mini chromosome maintenance (MCM) proteins, 

histones and other proteins involved in post-translational modifications were found to be altered upon 

Hsp90 inhibition [52]. Later in the same year, proteome wide effects of GA in anaplastic large cell 

lymphoma cells were reported using cICAT-LC-MS/MS approach. In this study, expression of 176 

proteins was found to altered by GA treatment. Proteins involved in the 26S proteasome were found 

to be up-regulated and proteins involved in signal transduction and protein and nucleic acid 

metabolism were found to be down-regulated [53]. In 2008, effects of radicicol on the ubiquitination 

of Hsp90 dependent proteins were reported in Hela cells using 2D gel electrophoresis followed by 

LS-MS/MS. This study identified several proteins involved in metabolism, gene transcription and 

signal transduction to be ubiquitinated upon Hsp90 inhibition, thus suggesting the Hsp90’s role in 

regulating these processes [54]. In 2008, effects of IPI-504 on the proteome of a pancreatic cancer 

cell line were studied using the ITRAQ (isobaric tags for relative and absolute quantitation) 

technique. In this study, 20 proteins were found to be down-regulated and 40 proteins were found to 

be up-regulated upon Hsp90 inhibition. Proteins involved in signal transduction, transport and 

metabolism were found to be altered [55].  

      In 2011/2012, two groups reported the global proteome-wide changes induced by Hsp90 

inhibitors. The first study published in late 2011, reported the global effects of 17-DMAG on the 
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proteome of HeLa cells using the SILAC approach. In this study, 7,000 proteins were identified and 

6,000 proteins were quantified. Within the major class of proteins up-regulated were proteases and 

heat shock proteins and among the down-regulated were kinases and DNA damage response proteins 

[56]. In 2012, another landmark study reported the proteome-wide changes induced by geldanamycin 

in four different cancer cell lines using SILAC approach. More than 6,200 proteins were identified in 

all the four cell lines and 1,600 proteins showed significant changes in protein expression. This study 

confirmed that Hsp90 inhibition mainly results in to the up-regulation of proteins involved in the 

stress response and down-regulation of kinases [57].  

     This thesis also utilizes SILAC similar to the studies above. This work will be compared to the 

SILAC studies above and will be presented in detail in the discussion section of chapter III. We will 

also cross reference our work to the older studies. 

 

Proteostasis 

      Protein homeostasis (“proteostasis”) describes the concept that living cells have biological 

pathways that work together to preserve the biological functions of proteins under diverse growth 

conditions. These major signaling pathways are the heat shock response (HSR) pathway, the 

endoplasmic reticulum associated degradation (ERAD) pathway, the unfolded protein response 

(UPR) pathway, and the ubiquitin-proteasome system (UPS). These signaling pathways maintain 

proteostasis in distinct sub-cellular compartments. A wide variety of heat shock proteins are key 

components of these pathways, and help to regulate proteostasis by ensuring proper protein folding, 

by preventing aggregation of misfolded proteins and sending misfolded proteins for degradation [58, 

59]. 

The Heat Shock Response (HSR) 

         The heat shock response (HSR) is a proteostasis signaling pathway activated upon heat stress. It 

protects living cells from heat stress or proteotoxic stress by inducing the expression of heat shock 
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proteins. Accumulation of unfolded proteins in a stressed cell prompts activation of the HSR. The 

HSR is regulated by heat shock factor 1 (Hsf1). Hsf1 is a transcription factor. According to one 

model, the activity of HSF1 is regulated by the Hsp90 chaperone complex. As per this model, Hsf11 

exists in an inactive state under non-stress conditions. The Hsp90 chaperone complex binds to Hsf1 

and keeps it in an inactive state. In its inactive state, Hsf1 is prevented from binding to genomic 

DNA. When unfolded proteins accumulate, they titrate Hsp90 from binding to Hsf1. As a result, 

Hsp90-bound inactive Hsf1 is released from Hsp90 and gets activated [60-62]. Activated Hsf1 then 

acts as a transcription factor to regulate the expression of a wide variety of genes, including Hsp 

genes [63]. Increased Hsp then regulates proteostasis by folding denatured proteins, by preventing 

aggregation of unfolded proteins, or by sending the unfolded proteins for degradation. Alternatively, 

Hsp90 inhibition leads to the activation of Hsf1, a topic discussed in detail in other sections of the 

thesis. 

The unfolded protein response (UPR) 

   The unfolded protein response (UPR) is another major stress response pathway that is activated by 

the ER stress. ER is the organelle where secretory and membrane proteins are synthesized and folded 

into their native conformations. Protein folding in ER is mediated by ER chaperones GRP78, GRP94, 

calnexin and calreticulin, and Hsp47. Any compromise in protein folding in the ER (e.g. defects in 

glycosylation, excessive protein folding burdens caused by stress, or chaperone inhibition, or 

alterations in disulfide bond formation) results in ER stress.  

      Living cells have signaling networks to detect ER stress and respond accordingly. These signaling 

networks collectively control the UPR. During UPR, protein synthesis in the ER is temporarily halted 

and expression of the ER chaperones is increased to cope with the protein folding burdens. 

      The UPR is regulated by three ER transmembrane proteins. They are PKR- like endoplasmic 

reticulum kinase (PERK), activating transcription factor (ATF6), and inositol-requiring protein 1 

(IRE1) [64]. The role of the PERK branch of the UPR is to regulate translation during accumulation 
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of unfolded proteins. The role of the ATF6 branch of the UPR is to up-regulate pro-survival genes in 

response to stress. IRE1 plays an essential role in UPR by transducing pro-survival and pro-apoptotic 

signals. 

   The activity of PERK, ATF6 and IRE1 are regulated by ER chaperone Grp78. Under normal 

conditions Grp78 binds to PERK, ATF6 and IRE1 and prevents them from being active. 

Accumulation of misfolded proteins in the ER leads to the dissociation of Grp78 from PERK, ATF6, 

and IRE1. Grp78 dissociates from PERK, ATF6, and IRE1 in order to bind the exposed hydrophobic 

residues on the unfolded proteins and to fold them back to their native conformations. Once released 

from Grp78, PERK, ATF6, and IRE1 become activated [64].  

 

Endoplasmic reticulum associated degradation (ERAD) 

  The endoplasmic reticulum associated degradation pathway (ERAD) is a major quality control 

program in the endoplasmic reticulum (ER). ERAD is a response to overburden in the ER. During 

stress, unfolded proteins accumulate in the ER. These unfolded proteins can be refolded into their 

native conformations by the ER chaperones, or, they can be degraded via the ERAD pathway based 

on the status of “mannose trimming” [65]. Mannose trimmed proteins are subjected to degradation via 

the ERAD pathway. Degradation of misfolded proteins by the ERAD pathway is accomplished in 

three steps: (i) recognition of the misfolded proteins in the ER; (ii) transport of the misfolded proteins 

to the cytoplasm; and (iii) degradation of the proteins by the ubiquitin dependent proteasome system 

in the cytoplasm.  Alternatively, an imbalance between folding capability and the protein folding 

burden in the ER can activate the unfolded protein response [64]. 

 

The ubiquitin proteasome system (UPS) 

   Ubiquitination is a protein post-translational modification by which proteins are tagged with a small 

protein called ubiquitin. Ubiquitination of proteins takes place in the following steps: (i) activation of 
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ubiquitin by an E1 ubiquitin activating enzyme; (ii) transfer of activated ubiquitin to an E2 ubiquitin 

conjugating enzyme, and finally, (iii) tagging of the target protein with ubiquitin (where a bond is 

formed between the C-terminal glycine of ubiquitin and lysine of a protein) which is mediated by the 

E3 ubiquitin ligases. Proteins can be ubiquitinated on a single lysine by one ubiquitin (mono-

ubiquitination) or by several ubiquitins (poly-ubiquitination), or they can be ubiquitinated on several 

lysines (multi-ubiquitination). The ubiquitination pattern ultimately decides the fate of the substrates, 

with poly-ubiquitination serving as a tag for protein degradation (discussed below). 

  The ubiquitin proteasome system (UPS) is another mechanism for regulating proteostasis. When 

unfolded proteins accumulate in the cell, the UPS helps regulate homeostasis by subjecting these 

proteins to degradation. Protein are degraded via UPS in two steps: (i) proteins are tagged with 

multiple molecules of ubiquitin to form polyubiquitin chains, and; (ii) poly-ubiquitinated proteins are 

degraded by the 26S proteasome machinery [66]. 

        Ubiquitinated proteins are degraded by the 26S proteasome. The 26 S proteasome is a large 

molecular machine made up of multiple subunits. It consists of a core complex (the 20S proteasome) 

which is capped on both sides by the 19S regulatory complexes. The regulatory complexes recognize 

and unfold the ubiquitinated proteins, and translocate them to the core of the complex for degradation. 

The proteolytic core complex degrades the ubiquitinated proteins [67]. 

 

Translational control of proteostasis 

   “Nascent polypeptide associated complex” (NAC) helps maintain proteostasis by regulating 

translation. NAC is a ribosome associated chaperone complex [68]. NAC folds ribosomal proteins 

and helps to regulate translation during normal conditions. When unfolded proteins accumulate in the 

cells, NAC dissociates from the ribosomes and prevents the aggregation of misfolded proteins by 

acting as a molecular chaperone. However when NAC is no longer associated with ribosomes, 
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translation is halted. Thus, NAC acts as a stress sensor, and helps to regulate translation during 

protein folding burdens [69]. 

 

Hsp90 inhibitors and activation of proteostasis pathways 

    Proteostasis pathways are activated by Hsp90 inhibitors. HSR is activated by the Hsp90 inhibitors 

17-AAG and radicicol through HSF1 mediated up-regulation of Hsps [50]. Similarly, HSR is induced 

by another Hsp90 inhibitor AUY922 through activation of the HSF1 pathway [51]. Apart from the 

HSR, the UPR is also activated by Hsp90 inhibitors. IRE1 mediated UPR is activated by 

geldanamycin [70]. The ATF6 branch of UPR is activated by 17-AAG and radicicol [71, 72] .  ER 

stress mediated UPR is also activated by Hsp90 inhibitors. GA and 17-AAG inhibit Grp94 (ER 

homologue of cytoplasmic Hsp90) and cause ER stress [73]. 17-AAG and PU-H71 induce the up-

regulation of ER chaperones GRP78 and GRP94 [71, 74]. PU-H71 also generates ER stress and 

results in UPR in different human cancer cell lines [74].  

 

Other agents that activate the proteostasis signaling pathways 

 

 

Tunicamycin  

 

     Tunicamycin induces ER stress and activates the UPR. Tunicamycin is produced by several 

bacteria from the Streptomyces family. Tunicamycin inhibits N-acetyl glucosamine transferases. This 

compromises N-linked glycosylation of proteins in the ER. These proteins cannot be properly 

processed and secreted, and thus they accumulate in ER. This results in protein folding burden, and 

leads to the activation of the UPR signaling pathway. 

    Tunicamycin induces the expression of ER chaperones. In mouse models and SILAC-based 

quantitative analysis, TM activates the UPR by up-regulating ER chaperone Grp78 [75]. Additionally 

SILAC-based studies also showed that tunicamycin up-regulates other ER chaperones cyclophilins B, 
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DnaJ homolog subfamily B member 11, endoplasmin, hypoxia up-regulated protein 1, protein 

disulfide isomerase, and protein disulfide isomerase A4 [76]. 

   Tunicamycin does not induce the expression of Hsp70. Although tunicamycin induces the 

expression of the ER chaperones GRP78 and GRP94, the expression of Hsp70 is unaltered by 

tunicamycin [77] . Since Hsp70 induction is a hallmark of HSR activation, this suggests that 

tunicamycin specifically activates the UPR but not the HSR. These results are consistent with 

previous findings that the expression of Hsp70 is not altered during the activation of the UPR by 

tunicamycin [77, 78] . This is an example of strict compartamentalization of the proteostasis 

pathways.           

L-Azetadine-2-carboxylic acid (AZC) 

   L-Azetadine-2-carboxylic acid (AZC) is a protein folding antagonist. AZC is a plant product found 

in members of Ruscaceae and Fabaceae. It is an analog of proline. However, it differs from proline, in 

that AZC has four-membered ring instead of proline’s five-membered ring. During protein synthesis, 

AZC can be incorporated into proteins instead of proline. This interferes with folding of those 

proteins [79]. As a result, unfolded proteins accumulate in the cell, thus leading to protein folding 

burdens. 

     The protein folding burdens caused by AZC leads to the activation of proteostasis signaling 

pathways. Although AZC’s activation of proteostasis signaling pathways is not well explored, some 

studies suggest its role in activating these pathways. Compromise of protein folding by AZC  

incorporation in S. cerevesiae leads to the activation of the Hsf1-mediated HSR and results in 27-fold 

induction in the expression of several HSF-regulated Hsp genes [80]. In addition, AZC induces ER 

stress and activates UPR in human HepG2 cells as evidenced by the induction of asparagine 

synthetase, a marker for UPR activation [81]. AZC also activates IRE1thus triggering kinases 

involved in ER signaling [82]. 
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Mass spectrometry and proteomics 

Role of mass spectrometry and proteomics in systems biology 

    Systems biology is a discipline that deals with understanding the biology of living cells at the 

systems level. Systems biology gives insights on the cellular networks and their integrated roles in 

living cells. In order to understand how living systems work as a whole at the protein level, it is 

important to understand changes in protein expression under different conditions. Proteomics is a 

branch of systems biology that deals with studying the whole set of proteins under different 

conditions. Mass spectrometry is a technique used to perform large scale proteomics. With the 

advancement of instrumentation, separation techniques and software available to analyze the data, 

mass spectrometry has been a powerful tool to study systems-level changes in the expression of 

proteins under different conditions. 

Targeted proteomics 

    Targeted proteomics deals with studying a selected list of proteins rather than studying all proteins 

in the whole sample. In targeted proteomics, specific peptides from a selected protein are monitored 

by the mass spectrometer. Triple quad mass spectrometers are routinely used for targeted proteomics. 

In the first quadrupole ions of specific mass are selected for fragmentation and in the third 

quadrupole, ions of specific mass are selected for detection. This process in which selected ions are 

monitored is called selected reaction monitoring (SRM) or multiple reaction monitoring (MRM). 

 

Top-down and bottom-up proteomics 

     Proteomics experiments can be performed by two approaches: top-down or bottom-up. In top-

down proteomics, mass spectrometry is performed on intact proteins. The top-down approach starts 

with the separation of proteins, followed by their fragmentation and measurement of the masses of the 

precursor ion (intact peptide before fragmentation) and the fragment ions (ions resulting from the 

fragmentation of the precursor ions).  
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    In the bottom-up approach, purified proteins or complex mixture of proteins are enzymatically 

digested into peptides, the masses of the peptides are measured by mass spectrometry, and proteins 

are identified from the MS information obtained.  

 

Principles and instrumentation of mass spectrometry 

Ionization techniques 

       Mass spectrometers measure the masses of ionized molecules in a gas phase. The basic 

components of a mass spectrometer are the ion-source, the mass analyzer and the detector. For 

mass spectrometry analysis, molecules are ionized. Mass spectrometers work by using electric or 

magnetic fields to exert forces on ionized molecules. Therefore, for mass spectrometry analysis, 

molecules must be ionized (charged).  

  In proteomics, two soft ionization techniques are used to prevent fragmentation: Electrospray 

ionization (ESI) [83] and Matrix Assisted Laser Desorption and Ionization (MALDI) [84]. 

Electrospray ionization is used for ionization of the samples in liquid phase, and is thus is typically 

coupled to liquid chromatography (LC-MS). In MALDI, samples are embedded in a crystalline 

matrix, hence “off line”. 

  Electrospray ionization works by converting the liquid carrying the analytes of interest to a fine 

aerosol and ionizing the molecules by solvent evaporation. To facilitate solvent evaporation and thus 

ionization, volatile compounds like acetonitrile are used in the solvents. Organic acids like formic 

acid or acetic acid are added to the solvents to increase the conductivity and reduce the size of the 

initial droplet. Organic acids also donate protons and facilitate the ionization process. 

 

Mass analyzers 

   The mass analyzer is the heart of a mass spectrometer. Mass analyzers measure the mass-to-charge 

ratios (m/z) of ionized sample molecules. The key features of a mass analyzer are sensitivity (the 
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ability to detect low abundant molecules), resolution (ability to pack ions into tight ion packets), and 

accuracy (difference between the measured mass of an ionized sample molecule versus its actual 

mass). The accuracy of a mass analyzer depends on its resolving power. The higher the resolving 

power of a mass analyzer, the higher is its mass accuracy. 

    Different types of mass analyzers are utilized for different proteomics experiments. The most 

popular are quadrupole, ion-trap, Orbitrap, time-of-flight (TOF), and Fourier transform ion cyclotron 

(FT-MS) mass analyzers. The Quadrupole mass analyzers are made up of four cylindrical rods 

arranged opposite to one another. The opposing rod pairs are electrically connected and voltage is 

applied to the each pair of rods in alternating fashion. Varying the applied voltage filters which ions 

in a continuous stream hit the detector. Quadrupole mass analyzers are very fast, but have relatively 

low mass accuracy. 

     Ion-trap mass analyzers are similar to quadrupole mass analyzers, but are capped at each end with 

electrodes to trap ions in stable trajectories (“electrostatic bottle”). Increasing voltage in the trapping 

field results in the ejection of these ions through a hole, and the ions hit the detector. Ion-trap mass 

analyzers are different from quadrupole mass analyzers in that they fill and filter ions rather than just 

filtering ions. The advantages of the ion-trap mass analyzers are their robustness, sensitivity and 

inexpensiveness. The main limitation of ion traps is that ions smaller than 1/3
rd

 of the parent ion are 

lost during MS/MS. Another disadvantage of ion-trap mass analyzers is low mass accuracy relative to 

Orbitrap and TOF mass analyzers.  

   The Orbitrap is another mass analyzer. It was invented by Makarov [85]. The Orbitrap mass 

analyzer consists of a central spindle electrode and outer barrel electrode. The Orbitrap mass analyzer 

determines the m/z values of ions based on the frequencies of the oscillations of the orbitally trapped 

ions in the electric field. The main strengths of the Orbitrap mass analyzer are its high mass resolution 

(up to 150 000), high mass accuracy (2-5ppm), and high dynamic range (greater than 10
3
) [85]. 

However the limitation of the Orbitrap mass analyzer is it is very slow. 
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      TOF mass analyzers measure the m/z by measuring the time it takes for ions to reach the detector 

from the ion source. The advantages of TOF mass analyzers are their very high speed and accuracy.  

    In Fourier transform ion cyclotron (FT-MS) mass analyzers, ions are trapped in an electromagnetic 

field. Applying an external magnetic field makes the ions move in circular orbits. The frequency with 

which the ions move is called the cyclotron frequency.  In FT-ICR, ion masses are obtained from their 

respective cyclotron frequencies. The advantages of FT-MS analyzers are their low femtomole 

sensitivity, high resolving power (800,000) and high mass accuracy. FT-ICR mass analyzers are good 

for top-down proteomics. 

Tandem mass spectrometry (MS/MS) 

   In tandem mass spectrometry (MS/MS), the m/z measurements are done in two sectors. In the first 

MS sector a precursor ion of specific m/z is selected from a mixture of ions. The selected precursor 

ion is subsequently fragmented by collision with neutral gas to generate product ions. In the second 

MS sector, the m/z values of the product ions are measured. In triple quadrupole mass spectrometers, 

all the above steps are sequentially performed in two physical sectors which are separated in space 

(“tandem in space” mass spectrometry). Whereas in ion trap mass spectrometers, all the above steps 

are sequentially performed, but in the same physical sector of the instrument (“tandem in time” mass 

spectrometry).  

 

Fragmentation techniques  

     In proteomics, proteins are identified based on the amino acid sequence information obtained by 

protein or peptide fragmentation. Depending on the site of cleavage of the peptide backbone, the ions 

generated are classified as a, b and c ions (if the ions contain the N-terminus of the peptide), or x, y 

and z ions (if the ions contain the C-terminus of the peptide). Three fragmentation techniques are 

commonly used for peptide fragmentation. They are the collision induced dissociation (CID), the 

electron capture dissociation (ECD) and the electron transfer dissociation (ETD). In the CID 
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fragmentation, the peptide ions are fragmented by acceleration to a high energy state and collision 

with molecules of a neutral gas like helium, nitrogen or argon. CID fragmentation favors the most 

labile bond, typically the peptide amide bond (C-N) to generate b and y ions. These can then be used 

for sequence determination and protein identification. In the ECD fragmentation, peptides are 

fragmented following capture of an electron by a multiply protonated peptide ion. The ECD 

fragmentation cleaves the backbone N–Cα bond and results in c and z ions. In the ETD 

fragmentation, peptides are fragmented in gas phase following transfer of an electron from anthracene 

or fluoranthene to a multiply protonated peptide ion. ETD fragmentation, similar to the ECD 

fragmentation cleaves the backbone N–Cα bond and yields c and z ions [86]. 

     In top-down proteomics, ions can be fragmented by ECD or ETD fragmentation. In ECD or ETD 

fragmentation, fragmentation of ions is random. This helps for good sequence coverage. Additionally 

in ECD/ETD fragmentation, post-translational modifications are not lost. Therefore top-down 

proteomics is good for identifying post-translational modifications. 

     In bottom-up proteomics, ions can be fragmented by CID fragmentation or by HCD 

fragmentation. In CID and HCD fragmentation, the fragmentation is biased to weakest bonds. As a 

result, post translational modifications are lost. Therefore, collisional dissociation is not suited for 

identifying post-translational modifications. Nevertheless, the bottom-up approach is routinely used 

for protein identification and quantitation. 

 

Quantitative proteomics techniques 

     Quantitative proteomics deals with quantitation of proteins in complex protein mixtures. 

Quantitative proteomics can be divided into two types: relative quantitative proteomics techniques 

and absolute quantitative proteomics techniques. In relative quantitative proteomics techniques, the 

relative abundance of proteins across two different samples is measured. There are two approaches 

for quantitation in relative quantitative proteomics. They are label-free and label-based. In label-free 
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approaches, isotope-labeled amino acids are not used, and samples from the two different 

experimental categories are analyzed separately. Two types of label-free approaches are used in label-

free quantitation: (i) ion intensity measurement and (ii) spectrum counting. In the ion intensity 

approach, MS peak areas from the chromatograms of two samples are compared. Using this 

information, differences in relative abundance of peptides between two samples is determined. In the 

spectrum counting approach, the abundance of proteins in the samples is assessed by counting 

number of MS/MS spectra associated with peptides from each protein. An increase in the number of 

MS/MS spectra from a given protein indicates more abundance of that protein and vice versa. 

      In label-based quantitative proteomics approaches, samples from two different experimental 

groups are labeled with stable isotopes that share exactly the same chemical properties, but differ by 

mass. Isotopic labeling can be done in-vitro by chemical labeling or in-vivo by metabolic labeling. 

Examples of  chemical labeling approaches are isotope coded affinity tags (ICAT) [87] and isobaric 

tags for relative and absolute quantitation (ITRAQ) [88]. ICAT labeling reagents have: (i) a reactive 

group that labels the thiol groups of cysteine, (ii) a linker that can be isotopically tagged and (iii) an 

affinity tag (biotin) which facilitates affinity purification. In ICAT, protein mixtures from two 

different experimental groups are tagged with light and heavy ICAT reagents, samples are mixed, 

digested, affinity purified, and then difference in protein expression across the experimental groups is 

quantified. In ITRAQ approach, peptides from different experimental samples are labeled with tags of 

different masses. The samples are then pooled and quantitative differences in protein expression 

across the groups are identified. Currently ITRAQ supports analyzing protein expression changes 

across 8 experimental groups (8-plex). 

     In the metabolic labeling approach, non-isotopic or isotopic lysine and arginine are metabolically 

incorporated into all proteins, (e.g. stable isotope labeling with amino acids in cell culture (SILAC)) 

by growing the cells in media supplemented with isotopic or non-isotopic amino acids [89]. The 

differentially tagged samples are then pooled, digested, chromatographically fractionated, and 

analyzed by mass spectrometry. In this approach, two populations of cells are grown in media 
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supplemented with the same components, except that one medium contains heavy isotopic amino 

acids and the other medium contains light isotopic amino acids. Cells grown in heavy and light media 

are used for studying proteins in two different conditions. For protein identification and quantitation, 

protein samples from both the cell populations are extracted, mixed and analyzed by mass 

spectrometry. Quantitation is performed by measuring the relative peak areas of heavy/light peptide 

pairs. SILAC offers several advantages over the label-free approaches: because different experimental 

samples are pooled and processed in the same way, there is less technical variability across 

experiments , and the time required to analyze the samples is reduced [90]. 

 

Bioinformatics tools for protein identification and quantitation 

    Several database search engines are available for identifying proteins from mass spectrometry data. 

Some commonly used search engines are SEQUEST, Mascot, OMSSA, X! Tandem and Andromeda. 

All these search engines work in a similar manner. They match theoretical versus experimental m/z’s 

and generate scores for each spectrum to find peptide or protein matches. These scores represent the 

strength of the match between observed and predicted MS/MS spectra. Most search engines use 

probabilistic scoring approaches. The probabilistic approach calculates the probability that the match 

between experimental data and each peptide/protein sequence occurs by chance. Mascot is a 

proteomics search engine that uses probabilistic approach for protein identifications [91]. X! 

TANDEM is an open source search engine [92]. It is used as a search engine by Scaffold. Andromeda 

is another search engine that uses probabilistic scoring model [93]. It is used as a search engine by 

MaxQuant. 

    Scaffold is another proteomics tool. In proteomics, there is a high probability of reporting false 

identifications. Scaffold validates the proteins identified by other database search engines. Scaffold 

employs Peptide Prophet and Protein Peptide algorithms to statistically validate results obtained from 

the search engines. These algorithms analyze populations of search engine scores. By comparing the 
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results obtained from the X! Tandem and other search engines, Scaffold gives increased confidence in 

the proteins identified in large datasets [94]. Scaffold Q+S is new version of Scaffold for quantitative 

analysis of SILAC data. It performs data normalization, quantitation, and statistical analysis of 

SILAC output data obtained from MaxQuant (discussed below).  

     MaxQuant is proteomics software developed by Cox and Mann at the Max-Planck Institute. It is 

used for the analysis of high resolution, quantitative mass spectrometry data obtained from SILAC 

experiments. MaxQuant quantifies thousands of SILAC peptide pairs by using a series of algorithms 

for peak detection, isotope cluster detection and SILAC pair detection. To accomplish this, MaxQuant 

uses correlation analysis and graph theory. For peak detection and quantification, MaxQuant uses 

mass and intensity of the peptide peaks. In order to do this, MaxQuant fits the points in each MS scan 

using Gaussian curve and thus identifies the 2D peaks in each MS scan. From the 2D peaks 

MaxQuant then assembles 3D hills. 3D hills are generated over m/z axis. Using centroid masses, 

MaxQuant then estimates 3D peak volume. Using this information, MaxQuant identifies and 

quantifies thousands of proteins [95].  

 

Bioinformatics programs for statistical analysis and processing of proteomics data 

Perseus 

     Perseus is a program used for analyzing quantitative proteomics data obtained from MaxQuant. It 

can be used for common functions such as data normalizations, calculations (log transformations, 

ratios, means, medians and other common calculations) and enrichments. It can also be used for 

creating plots and for small range of statistical analysis. One limitation of Perseus is that its code is 

not open and algorithms are not well described.
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CHAPTER II 
 

Proteomics fingerprint of Hsp90 N-terminal inhibitors AUY922, 17-DMAG and 

radicicol using the spectrum counting approach 

 

Introduction 

    Although pharmacological compounds are designed to have specificity for a particular target 

protein, it is highly possible that they can target other proteins. These phenomena are called off-

target inhibitor effects. Targeting proteins other than the target protein may result in harmful side 

effects, or may prove to be beneficial in some cases. Also, structurally distinct inhibitors that are 

all designed to target a specific protein might have different phenotypic effects resulting from 

differences in their targets. Mechanisms of inhibitor action can be inferred from the phenotypic 

effects (reporters) that the inhibitor causes. 

    Several structurally distinct small molecule inhibitors bind to the Hsp90 N-terminus and inhibit 

its function. All these Hsp90 N-terminal binding agents lead to the indirect depletion of a wide 

variety of Hsp90-dependent proteins in vitro. However, in cultured cells how much of the anti-

proliferative effects of these N-terminal binding agents are specifically due to Hsp90 inhibition is 

not well known.  

     We wanted to address this question by studying the proteome-wide effects of structurally 

distinct Hsp90 N-terminal binding agents in cultured cancer cells and comparing their proteomics 

fingerprints. By doing so, we would expect to see conserved inhibitors effects if all these 
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inhibitors inhibit cell proliferation by inhibiting Hsp90. However, if a given inhibitor acts by off 

target effects we would expect to see proteome alterations unique to each inhibitor.  

    Dr. Brain Blagg’s laboratory at the University of Kansas has synthesized several small 

inhibitors that bind to the Hsp90 C-terminus and inhibit its function (hereafter called Hsp90 C-

terminal binding agents).These C-terminal binding agents bind Hsp90 C-terminal domain in vitro. 

Additionally, these C-terminal binding agents exhibit anti-proliferative effects in a wide variety 

of cancer cell lines and deplete several known Hsp90 clients. However, proteome-wide changes 

induced by the C-terminal binding agents are not reported. 

     Long term goals of our laboratory are to validate Hsp90 C-terminal binding agents using 

proteomics approaches. Identifying proteomics fingerprints of Hsp90 N-terminal binding agents 

will allow us to compare their effects to the effects of C-terminal binding agents. This will give 

insights into the mechanisms of action of the two classes of inhibitors and whether their 

mechanisms of action are conserved. Additionally, biomarkers of Hsp90 N-terminal binding 

agents identified in this study can be used to validate Hsp90 N-terminal binding agents in the 

clinic, and will also help to characterize novel Hsp90 N-terminal binding agents. 

       In this study, we characterized the effects of three structurally distinct Hsp90 N-terminal 

inhibitors AUY922, 17-DMAG and radicicol on the proteome of Jurkat leukemia cells. We 

quantified changes in protein expression by spectrum counting using a bottom-up proteomics 

approach. We present the proteomic fingerprints of three Hsp90 N-terminal binding agents and 

identify a small assortment of biomarkers for Hsp90 N-terminal inhibition. We also explore the 

limitations of the spectrum counting technique, and thus highlight the need for using superior 

quantitative proteomics techniques to validate the changes identified. 
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Materials and Methods 

Reagents 

     Jurkat leukemia cell line E6.1 was obtained from American Type Culture Collection. SILAC 

RPMI medium was purchased from Thermo Scientific (Catalog number 89984). Amino acids L-

lysine-2Hcl (Catalog number 89987), L-aarginine-Hcl (Catalog number 89989) and 13C6 15N4 

L-aarginine (Catalog number 89990) were purchased from Thermo Scientific. Amino acid 13C6 

15N2 L-llysine (Catalog number 291-0.25) was purchased from Cambridge Isotopic Laboratories, 

Inc. Dialyzed fetal bovine serum (Catalog Number 89984) was purchased from Thermo 

Scientific. 17-DMAG, radicicol and AUY922 were obtained from LC Laboratories (Catalog 

Number D3440), Cayman Chemicals (Catalog Number 13089) and Selleck Chemicals (Catalog 

Number S1069), respectively. Hybri-Max DMSO (Catalog Number D2650) was obtained from 

Sigma. Inhibitors were dissolved in DMSO. L-azetadine-2-carboxylic acid (AZC) was obtained 

from Sigma (Catalog Number A0760) and dissolved in water. CellTiter Aqueous One Solution 

Cell Proliferation Assay (MTS) reagent was obtained from Promega (Catalog Number G3581). 

PVDF membrane was obtained from Bio-Rad. Mouse monoclonal anti-human β-actin antibodies 

were obtained from Sigma (Catalog number A5441). Rabbit polyclonal anti-human Poly-ADP 

ribose polymerase (PARP) antibodies were obtained from Cell Signaling Technology (Catalog 

Number 9542). Rabbit monoclonal anti-human Cdk6 (Catalog Number 3524-1), Cdk1(Catalog 

Number 3787-1), Dnmt1(Catalog Number 2788-1) and DDX5 antibodies (Catalog Number-5567-

1) were obtained from Epitomics, goat polyclonal anti-human UNR antibodies (Catalog Number 

sc-79293), rabbit polyclonal anti-human MCM7 antibodies (Catalog Number sc-22782) and 

mouse monoclonal anti-human UHRF1 antibodies (Catalog Number sc-166898) from Santa Cruz 

Biotechnology Inc., rabbit polyclonal anti-human eIF4A1 antibodies from Abcam (Catalog 

Number ab31217). SuperSignal West Pico Chemiluminiscent substrate (Catalog Number 34077) 
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was purchased from Thermo Scientific. 4-20% Mini-PROTEAN TGX precast gels were 

purchased from Bio-Rad (Catalog number 456-1094).L-Dithiothreotol (DTT) (Catalog number 

43819-1G) and Iodoacetamide (IAA) (Catalog number 16125-5G) were purchased from Sigma. 

General cell culture, cell proliferation assays and inhibitors treatments 

   Jurkat cells were cultured in RPMI media supplemented with 10% dialyzed fetal bovine serum, 

200 mM/ litre L-glutamine, light isotopic lysine (50 mg/ 500 ml) and arginine (50 mg/ 500 ml) 

amino acids, streptomycin (500 µg/ mL), penicillin (100 units/ mL). Cells were cultured at 37°C 

in a humidified 5% CO2 incubator. 

      For cell proliferation assays, cells were seeded in 96 well plates at a density of 10,000 cells/ 

100 µl/ well. After twenty four hours, cells were treated with a dilution series of each of the 

inhibitors 17-DMAG (1.6, 4.9, 14.8, 44.0, 133, 400, 1200, 3600 and 10,800 nM) , radicicol (0.8, 

2.3, 7, 21, 62, 185, 555, 1670 and 5000 nM) or NVP-AUY922 (1, 3.5, 11.5, 35, 100, 300 and 900 

nM). For control experiments, cells were treated with DMSO (solvent in which all the three 

inhibitors are dissolved). Following inhibitor treatment, cells were incubated at 37°C in a CO2 

incubator. Cell viability was determined  using Cell Titer Aqueous One Solution Cell 

Proliferation Assay(MTS) reagent from Promega (Inhibitors doses and duration are described for 

individual experiments). Twenty microliters of MTS reagent was added to the inhibitor treated or 

DMSO treated wells and the plates were incubated at 37°C in the CO2 incubator for 4 hours. 

Absorbance of the 96 well plates at 490nm was recorded using Molecular Devices Versamax 

plate reader. All experiments were performed in three biological replicates. 

     For determining the IC50 values for Cdk6 depletion, cells were seeded in 10 mL in T-25 cm
2
 

flasks. After twenty four hours, cells were treated with a dilution series of each of the 

inhibitors17-DMAG, radicicol or AUY922 (dilution series of each inhibitors used for IC50 

determinations are mentioned in the later sections of this chapter). For control experiments, cells 
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were treated with DMSO. Twenty four hours following inhibitor treatments, cells were harvested 

and lysates were prepared for Western blotting.  

Preparation of cell lysates and determination of protein concentration 

    Following inhibitor treatments, cells were harvested by 5 minute centrifugation at 1700rpm. 

Cell pellets were washed twice with phosphate buffered saline, pH 7.4. After washing, the cell 

pellets were lysed with radio immuno precipitation (RIPA) lysis buffer containing 20 mM sodium 

phosphate, 50 mM glycerophosphate, 100 mM sodium chloride, 0.1% SDS, 2% NP40, 0.75% 

deoxycholate, 5 mM EDTA, 5 mM EGTA, and 2 mM sodium orthovanadate, 10 mM NaF, 0.1 

mg/ml PMSF, 1 X Sigma protease inhibitor cocktail and 1mM DTT, at 4°C on a rocker. 

Following lysis, the lysates were clarified at 12,000 x g for 10 minutes. Protein concentrations in 

the lysates were determined by Bradford reagent using BSA as a standard. 

Determination of IC50 values for Cdk6 depletion 

   Twenty micrograms of untreated, DMSO treated, and inhibitor-treated cell lysates were boiled 

in SDS-PAGE buffer containing 100 mg/ ml DTT, and loaded onto an 8% polyacrylamide gel. 

Proteins were separated by running the gels at 25 mA. Post gel run, proteins were transferred onto 

a PVDF membrane and the membranes were probed with anti-Cdk6 antibodies. After incubation 

with secondary antibodies, the membranes were developed using standard chemiluminiscent 

techniques. All experiments were done in three biological replicates. IC50  values were determined 

using GraphPad Prism software. Data were fit using non-linear regression analysis (least squares 

fit, no weighting, and no constraints). Error bars are SEM. 
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Sample preparation for mass spectrometry 

    For LC-MS/MS analysis, proteins in the cell lysates were TCA/ acetone precipitated. Resulting 

protein  pellets were dissolved in buffered urea solution containing 8 M urea, 100 mM Tris-Hcl, 

pH 8.5 and reducing agent TCEP (tris (2-carboxyethyl)phosphine) at room temperature for 20 

minutes and alkylated with one tenth volume of 100 mM IAA (iodoacetamide) in dark, at room 

temperature for 15 minutes. Samples were further reduced with one twentieth volume of 100 mM 

DTT in the dark at room temperature for 5 minutes. Then the samples were diluted with 100 mM 

Tris-Hcl, and digested with a final concentration of 4 µg/ml trypsin for overnight at 37 degrees C. 

Trypsin digested samples were acidified with 2 µl of 100%TFA and desalted by using C18 

affinity tips (OMIX). Desalted samples were vacuum dried and stored at -80°C for subsequent 

LC-MS/MS analysis. 

LC-MS/MS analysis  

    LC-MS/MS analysis was done by running samples on Thermo Fisher Scientific hybrid LTQ-

Orbitrap mass spectrometer. A New Objective PV-550 nanoelectrospray ion source was used for 

electrospray ionization.  An Eksigent NanoLC-2D liquid chromatography system was used for 

separation of the peptides. Peptides were first trapped on a 2.5 cm pre-column with a vented 

column configuration (5-μm Magic C18 AQ). Trapping was done at high flow rates and was used 

to remove residual salts in the sample. Salts were disposed through waste and only peptides were 

allowed to flow though the analytical column. Trapped peptides were then separated on a 75 μm 

ID 15-cm fused silica column (5-μm Magic C18 AQ) terminated with an integral fused silica 

emitter. Peptides were eluted by using a 2.5-28% ACN/0.1% formic acid gradient over 116 min at 

a flow rate of 300 nL/min. Each biological sample was run on LTQ-Orbitrap in four technical 

replicates. 
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Eluted peptide samples were ionized by nanospray. Instrument was operated in a data dependent 

scanning mode. Data dependent scanning mode allows for an automated choice for selecting 

specific ions for further MS/MS analysis. Full scan MS spectra for ions 360-1400 m/z were 

acquired in the Orbitrap with a nominal resolution of 60,000 FWHM. Full range lock-mass FT-

MS scan was enabled for real time calibration and for high accuracy measurements. The six most 

abundant peptides (top six) were selected for further fragmentation in the ion trap by using CID 

(collision induced dissociation) fragmentation. For MS/MS analysis, only intense ions (with ion-

intensity counts greater than 8,000) were chosen. To save instrument time and duty cycle only 

mono-isotopic precursors were selected for MS/MS analysis. Parent ions with unassigned charges 

were not chosen for further MS/MS analysis because the m/z values cannot be determined for 

these ions. Ions previously identified as contaminants and ions already selected for MS/MS 

analysis (dynamic exclusion at 150% of the observed chromatographic peak width) were also not 

chosen for further MS/MS analysis.  

Data analysis 

    MS spectra from the parent ions and MS/MS spectra (tandem spectrum) of the resulting 

daughter fragments were acquired and stored. Extract_msn_.exe utility from Bioworks 3.3.1 was 

used to extract the tandem mass spectra by converting the raw files into peak list files. Extracted 

MS/MS spectra were searched against a database which has tandem spectra of all known human 

proteins generated by in-silico digestion. Tandem mass spectra were searched against 

IPI.HUMAN.v3.87 database (91,464 protein entries) using Mascot (Matrix Science, London, UK; 

version 2.2.04) and X! Tandem (The GPM, thegpm.org; version 2007.0.1.01.1) with the 

assumption that trypsin was the enzyme used for in-silico digestion of the human proteins. 

Parameters used for Mascot and X! Tandem search were: fragment ion mass tolerance of 0.60 Da 

(i.e. the difference between observed mass and theoretical mass should be 0.6 Da) and parent ion 
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tolerance of 5.0 PPM, variable modifications specified were S-carbamoylmethylcysteine 

cyclization, n-Formylation of the N-terminus, acetylation of the N-terminus and iodoacetamide 

derivative of cysteine (telling the program there could be mass difference due to these 

modifications). 

Criteria used for protein identification 

   Scaffold version 3.6.5 (Proteome Software) was used to validate peptide and protein 

identifications using Scaffold’s Peptide prophet and protein prophet algorithms  and high mass 

accuracy scoring option. Protein identifications were based on 99% protein probability, 2 

minimum peptides, and 50% minimum peptide identification probability. Proteins that shared 

similar peptides but could not be differentiated based on MS/MS analysis alone were grouped to 

satisfy the principles of parsimony (i.e. reporting the minimum set of protein sequences that 

adequately account for all observed peptides). Databases searches also included searches against 

decoy database (database with reverse sequences) to estimate the incorrect protein identifications, 

i.e. false discovery rates (FDR). 

    The spectrum counting approach was used for quantitative analysis of changes in protein 

expression. Analysis was done by normalizing the data. Normalization was done assuming 

unequal sample load and/or variations in the sample processing. Scaffold’s normalization works 

by multiplying some fractional amount across samples so that the total spectra are same within 

each category and also across categories. Statistical analysis was done by using Student’s T-test. 
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Results 

     Before characterizing AUY922’s effects on the Jurkat cell proteome, we wanted to first 

establish the concentrations of AUY922 that inhibited 50% of the proliferation of Jurkat cultures 

(IC50). To accomplish this, we treated Jurkat cultures with the indicated doses of AUY922 and 

measured the effects on cell proliferation. Results showed that AUY922 caused anti-proliferative 

effects starting from 3.5 nM to 11.5 nM, inhibiting the proliferation of 25% of the cells. Beyond 

35 nM doses, AUY922 completely inhibited the proliferation of Jurkat cultures. At the 35 nM - 

900 nM dose range, cells maintained densities that were used during seeding. Therefore it was 

concluded that AUY922 exhibits cytostatic rather than cytotoxic effects.  We also identified that 

AUY922 inhibits the proliferation of Jurkat cultures at low nano-molar doses, with calculated 

IC50’s of 10.27 nM, 7.2 nM and 8.6 nM after 24 hours, 48 hours and 72 hour respectively (Fig 

2.1). This suggested that AUY922’s effects were stronger at 48 and 72 hours. Our results were 

consistent with previous reports that AUY922 inhibits the proliferation of several cancer cell lines 

at low nano-molar doses [26, 96, 97]  and exhibits cytostatic effects [24]. 

   Before characterizing the effects of Hsp90 inhibitors on Jurkat proteome, we wanted to identify 

a strong Hsp90 dependent reporter protein that can be best used to identify appropriate Hsp90 

inhibitor concentrations. Previous reports [98, 99] , and unpublished results from our lab, showed 

Cdk6 to be rapidly depleted and easily detectable upon Hsp90 inhibition. Therefore, we chose to 

test if Cdk6 is a sensitive reporter of Hsp90 inhibition. To accomplish this, we treated Jurkat 

cultures with classic Hsp90 inhibitor 17-DMAG and assayed the inhibitors’ effects on Cdk6 

depletion. Results showed the rapid depletion of Cdk6 after 8 hour treatment with 150 nM 17-

DMAG (Fig 2.2). Thus, we concluded that Cdk6 was sensitive marker for Hsp90 inhibition.  

 

 



32 
 

                                    

 

Figure 2.1: Effects of AUY922 on Jurkat cell proliferation. 

Jurkat cultures were incubated for 24, 48 or 72 hours with indicated concentrations of AUY922 

and cell proliferation was measured as described in methods. Each data point represents % 

proliferation relative to control. Error bars are the SEM (N=3). For the curve fits shown, the R
2 

values were 0.8957, 0.9801 and 0.9966 for 24, 48 or 72 hour respectively. 
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Figure 2.2: Time course of Cdk6 depletion upon treatment with 150 nM 17-DMAG. 

Jurkat cultures were treated with 150 nM 17-DMAG and after 0, 2, 4 or 8 hours of treatment, 

Cdk6 levels were assayed by Western blotting. Actin was used as a lane loading control. 
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      After establishing Cdk6 as a sensitive reporter for Hsp90 inhibition, Cdk6 was used as a 

marker to identify the appropriate concentration of AUY922 that depletes Hsp90 dependent client 

proteins in cultured Jurkat cells. To accomplish this, Jurkat cells were treated for 24 hours with 

the indicated doses of AUY922 and assayed the inhibitor’s effects on Cdk6 levels. Results 

demonstrated a dose-dependent depletion of Cdk6 by AUY922 as shown in Figure 2.3A. Thus, 

we concluded that AUY922 lead to the depletion of Cdk6 with a calculated IC50 of 11 nM as 

shown in Figure 2.3B. For AUY922, the IC50 doses for Cdk6 depletion (11 nM) closely matched 

with the IC-50 doses for cell proliferation (10 nM). Our results were also consistent with previous 

reports showing Cdk6 depletion by AUY922 at 10 nM concentration in human gastric cancer cell 

line NCI-N87 [25].  

    To characterize the effects of AUY922 and other Hsp90 inhibitors on the Jurkat proteome, we 

first wanted to treat Jurkat cultures with appropriate doses of AUY922, but without grossly 

compromising cell viability. Thus, PARP cleavage was used as a marker for apoptosis. During 

apoptosis PARP is cleaved by caspases to yield two fragments of molecular weights 89 kDa and 

24 kDa [100, 101]. Therefore, Jurkat cultures were treated for 24 hours with the indicated doses 

of AUY922, and the inhibitor’s impacts on PARP cleavage were assessed. Results showed that at 

doses ranging from 1- 16 nM, AUY922 had negligible effects on PARP cleavage. At higher 

doses, AUY922 induced some PARP cleavage (Fig 2.4). Therefore, we conclude that the effects 

of AUY922 were largely sub-apoptotic at doses ranging below 1- 128 nM. 

      Before comparing AUY922’s effects on the Jurkat proteome to the effects caused by other 

Hsp90 inhibitors 17-DMAG and radicicol, we wanted to identify the appropriate doses of DMAG 

and radicicol for cell proliferation. We accomplished this, using the same approaches as described 

for AUY922 in the above sections. Results showed that 17-DMAG, similar to AUY922, exhibited 

cytostatic effects at high doses but had a less steep dose response curve compared to AUY922.  

However, radicicol unlike AUY922 and 17-DMAG, exhibited cytotoxic rather than 
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               A. 

                         

              B. 

                                           

    

 

Figure 2.3: Dose-dependent depletion of Hsp90 dependent client protein Cdk6 by 

AUY922.  

Panel A: Jurkat cultures were incubated for 24 hours with indicated concentrations of AUY922 

and Cdk6 depletion was assessed by western blotting. Actin was used as a lane-loading control. 

Panel B: IC50 values for Cdk6 depletion were estimated by performing densitometry on 

independent biological experiments (N=3). Data were curve-fitted as described in methods. The 

R
2 
value was 0.8570. 
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Figure 2.4: Apoptotic effects of AUY922 as assessed by PARP cleavage.  

Jurkat cultures were treated for 24 hours with the indicated doses of AUY922. After 24 hours, 

PARP cleavage was assessed by western blotting. Actin served as a lane-loading control. 
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cytostatic effects and the dose response curve was less steep compared to AUY922 and 17-

DMAG (Fig 2.5, Panel B). 17-DMAG and radicicol inhibit the proliferation of Jurkat cells with 

IC50 values as shown in the Table 2.1 below. Therefore, we conclude that both 17-DMAG and 

radicicol inhibit the proliferation of Jurkat cultures, but with less potency compared to AUY922. 

   Similarly, we determined the IC50 values for 17-DMAG and radicicol for Cdk6 depletion as 

described for AUY922 in the above sections. Results showed a dose-dependent depletion of Cdk6 

by both inhibitors (Fig 2.6, Panel A & Fig 2.7, Panel A), with calculated IC50 values of  30 nM for 

17-DMAG (Fig 2.6, Panel B) and 60 nM for radicicol (Fig 2.7, Panel B). 
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                             A. 

 

                                  B. 

 

 

Figure 2.5: Effects of 17-DMAG (5a) and radicicol (5b) on Jurkat cell proliferation. 

Jurkat cultures were incubated for 24, 48 or 72 hours with the indicated concentrations of 

17-DMAG (Panel A) and radicicol (Panel B), after which cell proliferation was measured 

as described in methods. Each data point represents proliferation relative to control. Error 

bars are the SEM (N=3). For the curve fits shown, the R
2

 values for 17-DMAG were 

0.9575, 0.9685 and 0.9690 for 24, 48 and 72 hours respectively, and the R
2

 values for 

radicicol were 0.9031, 0.9566 and 0.9560 for 24, 48 and 72 hours, respectively. 
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Table 2.1: IC50 values for cell proliferation for AUY922, 17-DMAG and radicicol.  

 

 
AUY-922 17-DMAG Radicicol 

IC-50 

values 

24 hours- 11.2 ± 4.47 nM 

48 hours- 7.44 ± 1.67nM 

72 hours- 8.77 ± 1.24 nM 

 

24 hours- 211 ± 120 nM 

48 hours- 138 ± 37.2 nM 

72 hours- 146 ± 35.3 nM 

24 hours - 922 ± 388 nM 

48 hours - 504 ± 261 nM 

72 hours - 1320 ± 967 nM 
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           A. 

            

            B. 

                             

                                                                 

 

 

Figure 2.6: Dose-dependent depletion of the Hsp90 dependent client protein Cdk6 by 

17-DMAG.  

Panel A: Representative western blot of Cdk6 depletion as described in Figure 2.3. Panel B: 

Densitometry analysis of Cdk6 depletion from three biological replicates. R
2 
value was 0.8552. 
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              A. 

                             

               B. 

                                       

 

 

 

Figure 2.7: Dose dependent depletion of Hsp90 dependent client protein Cdk6 by 

radicicol. 

Panel A: Representative western blot of Cdk6 depletion as described in Figure 2. 3. Panel B: 

Densitometry analysis of Cdk6 depletion from three biological replicates. R
2 
value was 0.6116. 
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Apoptotic effects of 17-DMAG and radicicol were assessed in the same way as described for 

AUY922 (Fig 2.8, Panels A & B respectively). Results indicated that the effects of 17-DMAG 

were largely sub-apoptotic at doses ranging from 1- 133 nM, and the effects of radicicol were 

largely sub-apoptotic at doses ranging from 1-185 nM. Doses above the mentioned concentrations 

for both inhibitors begin to show PARP cleavage indicating that those doses induce cell death.                          

      After characterizing dose-curve responses of all the three Hsp90 inhibitors in Jurkat cells, we 

chose to study their effects on the Jurkat proteome by using 5-7x the IC50 doses for Cdk6 

depletion. Before doing so, I wanted to test the effects of these dosages on cell viability. To 

accomplish this, Jurkat cultures were treated for 24 hours with 75 nM AUY922, 150 nM 17-

DMAG and 300 nM radicicol. Then cell viability was determined by the Trypan blue dye 

exclusion assay. Results showed that more than 80% of the cells were viable after treatment with 

the indicated doses of all three inhibitors (Fig 2.9). Thus we concluded that the 5-7x doses of the 

three inhibitors did not grossly compromise cell viability. 

      After confirming that these doses did not grossly affect cell viability, we treated Jurkat 

cultures for 24 hours with these doses of each inhibitor to study their effects on Jurkat proteome. 

After treatment, cellular proteins were analyzed using the “bottom-up” proteomics approach as 

described in Methods.  
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                        A. 

 

                            B. 

 

 

 

 

Figures 2.8: Apoptotic effects of 17-DMAG and radicicol as assessed by PARP 

cleavage.  

Panel A: Representative western blot for 17-DMAG. Panel B: Representative western blot for 

radicicol. Apoptotic effects were assessed as described in Figure 2.4. 
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Figure 2.9: Effects of 5-7x IC50 doses of AUY922, 17-DMAG and radicicol on Jurkat 

cell viability as assessed by Trypan blue counting. 

Cells were incubated for 24 hours with 5-7x IC50 concentrations of AUY922, radicicol or 17-

DMAG. Live and dead cell counts were performed before and after inhibitor treatments. Results 

shown were from three individual biological replicates. 
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      Using the protein identification criteria as described in Methods,  931 proteins were identified 

in cells treated with AUY (FDR of 0.5%), 921 proteins were identified in cells treated with 

DMAG (FDR of 0.5%)  and, 900 proteins were identified in cells treated with radicicol (FDR of 

0.4%). Inhibitor-induced changes in protein expression were analyzed by the spectrum counting 

technique. Upon statistical analysis, 9.7% of the total proteins identified were found to be 

significantly altered by AUY922 (P< 0.05), 8.9% of the total proteins identified were found to be 

altered by 17-DMAG (P<0.05) and 7.6% of the total proteins identified were found to be altered 

by radicicol (P<0.05) (Supplemental excel sheet 1). Among the significant changes in protein 

expression across the 9 experiments (3 inhibitors x 3 biological replicates), 178 proteins showed 

altered expression. Among these 178 proteins, 92 proteins (51.6%) were found to be down-

regulated and 85 proteins (47.6%) were found to be up-regulated. 

       A wide variety of proteins involved in various biological processes were found to be altered 

in amount by all three inhibitors. Among the proteins up-regulated were heat shock protein family 

proteins (large Hsps, small Hsps and chaperonins), Hsp90 co-chaperones, transport proteins, 

RNA processing proteins (especially hnRNPs), tRNA synthetases (glycyl and tyrosyl), a few 

metabolic enzymes (phosphoglycerate dehydrogenase and phosphoserine aminotransferase) and 

proteins involved in ubiquitination and protein turnover. Among the list of down-regulated 

proteins were kinases, helicases, ribosomal proteins, DNA damage/repair proteins, MCM proteins 

and a few metabolic enzymes.  

      Among the significant changes in protein expression across the 9 experiments (3 inhibitors x 

3 biological replicates), 17.4% of the protein expression changes were common to all three 

inhibitors, 23.6% changes were common to at least 2 inhibitors and 44% changes were unique to  

each inhibitor (Fig 2.10).  A summary of protein expression changes common to all three 

inhibitors (Supplemental Table-2.2), at least two inhibitors and (Supplemental Table-2.3) to one 

inhibitor (Supplemental Table-2.4) is provided. 
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Figure 2.10: Venn diagram representing protein alterations common and unique to 

AUY922, 17-DMAG and radicicol. 
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  Proteins expression changes observed with all three inhibitors, or with just two inhibitors, 

showed consistency in expression patterns. Among the list of proteins, proteins down-regulated 

by one inhibitor were down-regulated by the other two inhibitors and proteins up-regulated by 

one inhibitor were up-regulated by the other two inhibitors. Similarly proteins changes common 

to any two inhibitors followed the same trend (with just three exceptions - RPL13A, RAN and 

HNRPDL).  

   From the inhibitor-induced changes identified from LS-MS/MS experiments, seven proteins 

were chosen for confirmation by Western blotting. All of the seven selected proteins were 

depleted by the inhibitors in a dose-dependent manner (Fig 2.11).  
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Figure 2.11: Western blotting to confirm inhibitor induced changes in protein 

expression identified from LC-MS/MS experiments. 

Jurkat cultures were treated for 24 hours with various concentrations of indicated inhibitors. 

Changes in each protein’s expression were analyzed by Western blotting. Actin served as a lane-

loading control. 
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Discussion 

       In this study, the effects of the new Hsp90 inhibitor AUY922 on Jurkat proteome were 

determined using a label-free LC-MS/MS approach. The effects were also compared to those 

caused by flagship Hsp90 inhibitors 17-DMAG and radicicol. For this comparison, equi-potent 

doses of the each inhibitor were used. Appropriate doses of all three inhibitors were identified 

based on their IC50 doses for depletion of a known Hsp90 client protein Cdk6 (Fig 2.3a, 2.6a & 

2.7a). The IC50 doses for Cdk6 depletion for AUY922, 17-DMAG and radicicol were 12 nM, 27 

nM and 60 nM respectively. Of the three drugs, AUY922 was the most potent.  

      For proteomics assays, 5x to 7x the IC50 concentrations of each inhibitor were used. It was 

also confirmed that these 5-7X doses were largely sub-apoptotic, based on their effects on cell 

viability (Fig 2.9) and PARP cleavage (Fig 2.4, 2.8a &2.8b). Decision to work with these doses 

(75 nM AUY922, 150 nM 17-DMAG and 300 nM radicicol) sets this work apart from  two 

recently published SILAC-based Hsp90 inhibition studies [56, 57] , wherein high micro-molar 

doses of Hsp90 inhibitors (50 µM 17-DMAG and 10 µM GA respectively) were used. These high 

doses of Hsp90 inhibitors cause death of 50% of the cells. Therefore, many of the responses that 

Sharma et al., and Wu et al., observed could be due to the cellular response to apoptosis. 

      All of the three inhibitors generated conserved proteomics fingerprints (Fig 2.10). This 

indicates a conserved mechanism of action, namely Hsp90 inhibition. The most robust, conserved 

responses seen in the proteome were a set of 31 protein expression changes that included  

induction of chaperones Hsp90 alpha, Hsp70, Hsp105, Serpin H1, Spectrin, DnaJ and the T-

complex proteins,  and depletion of Hsp90 clients such as EEF2, Dnmt1, DDX5, CAD protein, 

and the kinases Cdk1, Cdk6. Moreover, these conserved changes showed consistency in 

expression pattern: proteins up-regulated by one inhibitor were found to be up-regulated by the 

other two inhibitors. Similarly, proteins down-regulated by one inhibitor were found to be down-

regulated by the other two inhibitors. This identification of conservation of proteomics 
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fingerprints across three distinct Hsp90 inhibitors strongly validates our mass spectrometry assays 

of Hsp90 inhibition. 

      The proteome-wide changes induced by AUY922, 17-DMAG, and radicicol were consistent 

with the two known hallmarks of Hsp90 inhibition. Traditional Western blotting techniques have 

demonstrated : (i) the induction of a small number of chaperones, especially Hsp70 and (ii) the 

depletion of proteins known to be Hsp90-dependent [41] . In this study, all three inhibitors induce 

a wide variety of chaperones, suggesting the activation of Hsf1 [102]. Additionally, all three 

inhibitors deplete several known Hsp90-client proteins. Demonstrating that all three inhibitors 

display traditional hallmarks of Hsp90 inhibition using mass spectrometry assays supports the 

validity of our mass spectrometry assays. 

      Other observations validate the results from this work. Seven of the protein expression 

changes that were identified by mass spectrometry assays were confirmed using western blotting, 

(Fig 2.11). Not only these inhibitor-induced changes were confirmed, but they were also shown to 

be dose-dependent (Fig 2.11). Additionally, most of the proteins identified as inhibitor-responsive 

in this study have been previously reported to be interact physically or functionally with Hsp90 

[15] . Many of the inhibitor responses that were observed in leukemia cells have also been 

observed in other cancer cell lines treated with Hsp90 inhibitors [56, 57] . All these arguments 

support the validity of the results obtained from mass spectrometry assays. 

    While the above findings indicate the power of mass spectrometry to study Hsp90 inhibitor-

induced changes in protein expression, the technique had certain limitations. Apart from the 

conserved changes in protein expression mentioned above, some changes in protein expression 

were statistically significant in cells treated with two inhibitor treatments, but not in cells treated 

with the third inhibitor (Fig 2.10). For instance, the expression changes for 12 proteins were 

statistically significant in cells treated with AUY922 and 17-DMAG, but not in cells treated with 
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radicicol. Similarly, expression changes for 19 proteins were statistically significant in cells 

treated with AUY922 and radicicol, but not in cells treated with 17-DMAG (Fig 2.10). Moreover, 

there were 11 proteins whose expression changes were statistically significant in cells treated 

with 17-DMAG and radicicol, but not in cells treated with AUY922.  

    We offer for the protein expression changes observed in cells treated with two inhibitors, but 

not identified as statistically significant in cells treated with the third inhibitor: (i) The protein 

expression not identified as significant in only one out of the three assays might be a real change, 

but did not survive the statistical analysis (false negatives, or “type-II errors”), (ii) the protein 

expression changes identified in cells treated with two inhibitors might not be real changes, but 

appeared as significant none the less (false positives, or “type-I errors”) or, (iii) the assays might 

be detecting true, inhibitor-specific changes. Our favorite explanation is that the third drug is also 

altering the expression of these outlier proteins, but they are not being identified as statistically 

significant, due to the weakness of the spectrum counting assays. Thus, we believe that these 

changes fail to survive statistical tests and are thus misinterpreted as false negatives in cells 

treated with the third inhibitor. 

     Similarly, some changes in protein expression appeared unique to cells treated with one of the 

inhibitors, but not for cells treated with the other two inhibitors. Specifically, 35 protein 

expression changes were unique to cells treated with AUY922, 28 protein expression changes 

were unique to cells treated with 17-DMAG and 17 protein expression changes were unique to 

cells treated with radicicol. We offer similar possible explanations for these apparent inhibitor-

specific effects: (i) The inhibitor-specific protein expression changes might not be real (false 

positives) or, (ii) the expression of these proteins might have been significantly altered in cells 

treated with the other two inhibitors, but did not survive the statistical tests (false negatives). 

Again, these assays might be detecting real changes, specific to a single Hsp90 inhibitor. These 

changes could be a combination of type I and type II errors. 
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   Deeper bio-informatics analysis of this data was not performed. It was not well justified to do 

deeper bioinformatics and make big conclusions about the processes altered by these Hsp90 

inhibitors based on the few conserved changes that were identified in this study. 

 

     These data raise several other interesting questions. Are there really only 31 conserved protein 

responses to Hsp90 inhibitors? Does this shortlist of 31 proteins adequately represent the 

proteomics fingerprint of Hsp90 inhibition? Do any of the inhibitors have true drug specific 

effects?  

     Given the nature of the spectrum counting technique, a stronger quantitative proteomics 

technique is required to address the questions raised above. In Chapter IV, these questions will be 

addressed using stable isotope labeling with amino acids in cell culture (SILAC) -proteomics 

approach. 
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CHAPTER III 
 

 

Evaluation of the raw SILAC data and choice of a statistical test for validating 

drug-induced changes in protein expression 

Introduction 

   Before performing a deeper analysis of SILAC data, there was a need to assess the quality of 

the raw data generated from MaxQuant searches to identify potential defects in the data and to 

assess reproducibility across the biological replicates. It was also important to choose appropriate 

statistical tests to validate changes in protein expression caused by the Hsp90 inhibitors. Thus, in 

this chapter, the quality of raw SILAC data from the proteomes of Jurkat cells treated with 75 nM 

AUY922 (AUY922 dataset) were analyzed. Similarly, the quality of the raw SILAC data from the 

proteomes of Jurkat cells treated with 150 nM 17-DMAG (17-DMAG dataset) were also 

analyzed. The quality of raw SILAC data from this study were also compared to the quality of the 

raw SILAC data from two recently published papers describing the proteome-wide effects of two 

other Hsp90 inhibitors. Subsequently, these SILAC data were analyzed using various statistical 

tests. Results from these comparisons will guide the choice of statistical tests that will be used to 

analyze AUY922 and 17-DMAG SILAC data. 
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 Materials and Methods 

Materials  

96-well TARGA C18 macrospin plates were purchased from Nest group (Catalog number SNS 

SS18R) 

General cell culture and inhibitor treatments 

   To prepare SILAC “light” fractions, Jurkat cells were cultured in SILAC RPMI media 

containing 10% dialyzed FBS and supplemented with light isotopic lysine (C6H14N2O2) and 

arginine (C6H14N4O2) amino acids. For preparing “heavy” SILAC fractions, Jurkat cells were 

cultured in SILAC RPMI media supplemented with heavy isotopic lysine (13C6H14 15N2O2) and 

arginine (13C6H14 15N4O2) amino acids. Conditions for culturing cells were otherwise the same as 

described in Chapter II.   To assess the impacts of Hsp90 inhibitors on the Jurkat proteome, cells 

growing in SILAC light media were treated with DMSO, while cells growing in SILAC heavy 

media were treated either with 75 nM AUY922 or 150 nM 17-DMAG. After 24 hour incubation 

cells were harvested and lysed as described in Chapter II. Protein concentrations in the lysates 

were estimated by Bradford assays. 

Sample preparation for mass spectrometry 

    Fifty micrograms of untreated (light) Jurkat lysate were mixed with fifty micrograms of 

inhibitors-treated (heavy) lysate. Samples were then precipitated with TCA/acetone using the 

protocol described in Chapter II. Protein pellets were resolubilized in 2x SDS sample buffer, and 

proteins were reduced by 10 mM DTT and alkylated with 50 mM IAA. Proteins were then 

fractionated on precast mini-gradient gels (4-20% Bio-Rad). Each lane was excised with a razor 

blade to produce ten fractions. Gel bands in each fraction were sliced into small pieces. Slices 

were then washed with 25 mM ammonium bicarbonate / 50% acetonitrile and dehydrated with 
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ACN. Gel slices were briefly air dried, then rehydrated with 25 mM ammonium bicarbonate 

containing 8 µg/ml trypsin. Digestion was performed overnight at 37° C. Peptides in each fraction 

were then extracted with 60 µl of 0.5% TFA. Salts in the peptide samples were cleaned using 

Nest group’s TARGA C18 96 well plates.  Peptides were vacuum dried and analyzed by LC-

MS/MS. 

LC-MS/MS analysis  

    LC-MS/MS analysis was performed on a Thermo Fisher Scientific hybrid LTQ-Orbitrap XL 

mass spectrometer. A New Objective PV-550 nanoelectrospray ion source was used for 

electrospray ionization. An Eksigent 1-D UPLC system was used to separate the peptides. 

Peptides were first trapped on a trapping column in a vented column configuration (5 cm of 3 μm 

Magic C18 AQ). Trapped peptides were then separated on a 75 μm ID 40-cm fused silica column 

(3-μm Magic C18 AQ), terminated with an integral fused silica emitter. Peptides were eluted by 

using a 0-37% ACN/0.1% formic acid gradient over 220 min at a flow rate of 250 nL/min.  

    Eluted peptides were analyzed using a data dependent scanning mode, automatically selecting 

specific ions for MS/MS analysis. The full scan MS spectra for ions 360-1400 m/z were acquired 

in the Orbitrap sector, providing a nominal resolution of 60,000 FWHM. Lock-mass was enabled 

for internal calibration on the polysiloxane [C12H3706 ]
+1 

ion (m/z 445.1200). For MS/MS, the six 

most abundant peptides were selected for further fragmentation in the ion trap by the CID 

(collision induced dissociation). For MS/MS analysis, only ions with intensities greater than 

8,000 were chosen. To optimize the instrument duty cycle, only mono-isotopic precursors were 

selected for MS/MS. Parent ions with unassigned charges were not chosen for further MS/MS 

analysis (because their m/z values cannot be determined). Ions previously identified as 

contaminants, and ions already selected for MS/MS analysis (using dynamic exclusion at 150% 

of the observed chromatographic peak width), were also excluded from further MS/MS analysis.  
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  Figure 3.1: Summary of experimental design (SILAC) 
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Data analysis 

     Raw LC-MS/MS data were processed using MaxQuant (Version 1.3.0.5). The Andromeda 

search engine was used for database searches. Database searches were done against 

Uniprot_human database (Released on 2013_03) containing 87,656 sequences. Additionally 

database searches included known contaminants as well as reverse protein sequences. Searches 

also included hypothetical peptides with variable modifications oxidation (M), acetyl (protein N-

term), carbamidomethyl (C), Gln to pyro-Glu and Glu to pyro-Glu. Trypsin was specified as the 

digestion enzyme allowing up to two missed cleavages. Minimum peptide length for 

identification was set to 7 amino acids. Search thresholds utilized a peptide and protein false 

discovery rate (FDR) of 0.01. Fragment ion mass tolerance was set to 0.5 Da. MaxQuant 

determines the parent ion mass tolerance on the basis of mass accuracy achieved and hence was 

not specified. 

Data normalization 

    Data in each biological replicate were normalized using a global normalization approach. 

Treated (Heavy, H) and untreated samples (Light, L) are hereafter referred to as separate 

channels. Normalization for each channel was done separately. The normalization factor for each 

protein in each channel of each biological replicate was calculated by dividing the raw intensity 

of that protein in that channel of that bio-rep by average raw intensity of that protein across all of 

the bio-reps.  

 (Normalization factor for a protein (X) in L or H channel = Raw intensity of X in L or H 

channel in a bio-rep / average intensity of X in L or H channels in all 5 bio-reps). 
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    Using the normalization factors for all in each L/H channel of a bioreps, an average 

normalization factor for whole L/H channel in that bio-rep was obtained by averaging the 

normalization factors  of all the proteins in that bio-rep.  

  (Normalization factor for each bio-rep = Median of normalization factors of all proteins in 

that bio-rep). 

   This generated an average normalized factor for each H/L biorep. Subsequently the intensities 

of each protein in that bio-rep were normalized by dividing their raw intensities by the channel-

specific normalization factor. 

Statistical analysis 

      The distribution of the heavy and light populations was identified using the Shapiro-Wilk test 

using the code in the R-program. Variances across the light and heavy populations were 

determined using the F-distribution function in Microsoft Excel. Student’s T-tests were 

performed using functions in Microsoft Excel. One sample T-tests were performed using software 

package Perseus. Benjamini-Hochberg (B-H) FDR correction [103] of the one sample T-test p-

values were performed using the code in R . Storey FDR [104] correction  of the one sample T-

test p-values were performed using the code in the R-program. 

 

 

 

 

 



59 
 

Results 

Evaluation of raw SILAC data from Jurkat cells treated with Hsp90 inhibitor 

AUY922 

Reproducibility across five biological replicates 

   In order to assess the reproducibility of our SILAC data, we compared data from all of our five 

biological replicates of Jurkat cells treated with AUY922 (AUY922 is an Hsp90 inhibitor). For 

each of the proteins quantified, ratios of protein expression in treated cells (H) vs. control cells 

(L) (Heavy/Light ratios) from one biological replicate were log2 transformed, and plotted against 

the protein expression changes observed for each of the other 4 biological replicates (Fig 3.2). 

Each of the individual scatterplots can be divided into four quadrants through its log2 equals zero 

values (no change in expression) on both the X and Y axes. Proteins (dots) represented in the 

lower left-hand quadrant indicate proteins down-regulated in both the biological replicates. 

Proteins (dots) represented in the upper right hand quadrant indicate proteins up-regulated in both 

the biological replicates. Proteins (dots) represented in the other two quadrants indicate proteins 

up-regulated in one biological replicate, but down-regulated in the other biological replicate. The 

majority of the proteins were distributed in the lower left quadrant and the upper right quadrant in 

all the scatterplots, and there were very few proteins in the lower right hand quadrant and in the 

upper left hand quadrant. This indicated that down-regulation and up-regulation were consistent 

across the biological replicates. That is, there were relatively few proteins that appeared to be up-  
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Figure 3.2: Reproducibility across biological replicates in AUY922. 

Each dot represents protein expression changes (Log2 ratio H/L) from one biological replicate 

analyzed against protein expression changes from each of the other 4 biological replicates. The 

X-axis and the Y-axis represent fold changes in protein expression. AUY denotes cells treated 

with AUY922, and BR denotes the individual biological replicate. 

 

 

 



61 
 

regulated in one bio-rep but down-regulated in the other bio-reps. The degree of agreement 

between biological replicates is indicated by coefficient of variance (R
2
, calculated using a linear 

fit),
 
which is presented on the top left corner of each scatterplot. The R

2
 values for the 

comparisons across different biological replicates ranged from 0.771 to 0.844. The strength of the  

R
2 
values across different comparisons indicated good experimental reproducibility. Based on the 

distributions of proteins on the scatterplots, and the generally strong R
2
 values, we concluded that 

our assays were highly reproducible across the five biological replicates. 

      In order to further assess the quality of our data, we similarly analyzed the raw data (Fig 3.3) 

from Sharma et al. [56] characterizing the proteomes of HeLa cells treated with 50 µM 

geldanamycin. Their R
2 
values ranged from 0.54 to 0.701. Additionally, their data showed more 

outliers (points that deviate from best fit line) than those observed in our data (c.f. Fig 3.2 vs. Fig 

3.3). Based on the comparison of their R
2
 values to our R

2
 values, our reproducibility across our 

five biological replicates was as good/better compared to data from Sharma et al. However, it 

should be noted that the number of proteins they assayed (7,056 proteins) was much higher 

compared to our assays (3,146 proteins). This would make their outliers more visible, when 

visually compared to our data (c.f. Fig 3.2 vs. Fig 3.3).  

Data normalization 

    For SILAC analysis, heavy-labeled and light-labeled samples should be mixed ideally in an 

equal mass to mass ratio. Here, it will referred to as channel-level normalization. Similarly, 

artifactual differences in the intensities of heavy and light ions caused by errors in sample-level 

mixing will be referred to as imperfect channel-level normalization.  

There are two possible sources for imperfect channel-level normalization. The first source could 

be imperfect protein quantification of the individual light and heavy lysates (e.g., imperfect 
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Figure 3.3: Reproducibility across biological replicates in data from Sharma et al. [56]. 

Reproducibility of data from Sharma et al. [56], was assessed by comparing protein expression 

changes as described for Figure 3.1. 
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Bradford assays). A second source could be imperfect pipetting of the light and heavy lysates 

during mixing. 

A different source of artifactual variability in SILAC data is potential changes in ionization 

efficiency as the spray tip ages, and/or aging of the instrument’s electron multipliers. This is 

relevant, because our SILAC datasets were run 24 hrs. / day, 7 days / week, for 60 days. Thus,  

either or both of these sources can distort the comparison of raw peptide ion intensities across 

different biological replicates.  

    Therefore it is important to assess potential normalization defects prior to statistical analysis of 

the data. To do this, we log2 transformed each “protein raw intensity” (values calculated by 

MaxQuant, representing individual protein abundances) in each channel (H or L) across the five 

biological replicates, and plotted the distributions of these values as histograms. We also 

transformed the raw H/L ratios, and similarly plotted their distributions. To compare the 

reproducibility among the five biological replicates, we overlaid histograms of all 5 bioreps (Fig 

3.4). 

    For the raw intensities, this overlay did not reveal major issues. However, a similar analysis of 

ratios showed that there were normalization problems between biological replicates. H/L ratios 

from biological replicates 2, 3 and 4 were very similar (Fig 3.4). In contrast, biological replicates 

1 and 5 showed lower H/L ratios (Fig 3.4). Based on these observations, we concluded that there 

were channel-level normalization defects across the five biological replicates, and we concluded 

that our data needed to be normalized. 
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                      A.                                                                                                                  

 

 

                                                                         
                          B. 

 

 

 

 

                         C. 

 

 

 

                                                                      
                                                                          
                                                                         

Figure 3.4: Assessment of the quality of raw intensities and raw ratios in AUY922 data. 

The frequencies of raw light and heavy protein intensities (Panels A & B, respectively), and raw 

H/L ratios (Panel C) from the 5 bio-reps were plotted as distributions (histograms). The X-axis 

represents arbitrary binning of proteins based on intensity. The Y-axis represents the respective 

bins. Resulting distributions from the 5 bio-reps were overlaid to assess reproducibility. 
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    We extended our examination of the quality of the raw data by plotting each protein’s raw H/L 

ratio versus its raw protein intensity (Fig 3.5). In biological replicates 2, 3 and 4, the majority of 

the proteins on the graph were nearly centered on log2 0 on the X-axis (Fig 3.5, panels B, C, D), 

indicating good normalization of the treated and control samples. In contrast, in biological 

replicates 1 and 5 the majority of the proteins showed a larger offset from the log2 0 on the X-axis 

(Fig 3.5, panels A & F). These observations reinforced our conclusion that the biological 

replicates 2, 3 and 4 were well normalized at the channel level, but that the biological replicates 1 

and 5 were imperfectly normalized. 

    Because there were normalization defects across the five biological replicates, we performed a 

global normalization of the protein intensities in the control and treated samples. To accomplish 

this, we normalized each protein’s raw intensity using the normalization approach described in 

the Materials and Methods section for this chapter. After normalization, the reproducibility across 

the five biological replicates was enhanced, as evident by a more uniform distribution of H/L 

ratios among bioreps (Fig 3.6C). Thus, our normalization strategy successfully minimized 

variability across the five biological replicates (c.f. Fig 3.6C vs. Fig 3.4C). 
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Biological replicate 1             Biological replicate 2           Biological replicate 3    

                                         

                             Biological replicate 4                   Biological replicate 5           

Figure 3.5: AUY922 raw data before normalization –Ratio versus intensity plots 

Protein expression changes (log2 ratio H/L) from each biological replicate were plotted against 

the protein abundance to assess normalization defects. The X-axis represents the protein 

expression and is expressed in log2 scale. The Y-axis represents the protein abundance. Each spot 

on the scatterplot represents an individual protein. 
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A.                                                                        B. 

 

 

 

 

         

             C.                                                                                                  

 

 

                        

                                                                   

Figure 3.6: Global normalization minimized reproducibility issues across the five 

biological replicates in AUY922. 

Normalized light and heavy intensities (Panels A & B), or normalized ratios (Panel C), from the 

five biological replicates were plotted as described for Figure 3.4.  
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We extended our analysis by visualizing the effects of normalization using ratio versus intensity 

plots. The log-transformed normalized H/L ratios vs. intensities from all the five biological 

replicates were reproducibly oriented with regards on the log2 of the X-axis (Fig 3.7). This 

visualization confirmed that our normalization strategy minimized variability across the five 

biological replicates (c.f. Fig 3.7 vs. Fig 3.5). 

 

Does normalization affect the data quality? 

     To assess if our normalization strategy compromised the H/L ratios, we compared 

distributions of H/L ratios before and after normalization. To do this, we averaged the raw H/L 

ratios and normalized H/L ratios from 5 biological replicates and plotted these distributions as a 

histogram. Mean histogram of H/L population distribution before normalization and after 

normalization were nearly identical (c.f. 3.8A vs. 3.8B). This indicated that the normalization did 

not grossly distort the protein expression ratios. In contrast, comparison of the individual raw vs. 

normalized histograms showed the correction of channel level mis-normalization (Fig 3.9).  
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  Biological replicate 1                Biological replicate 2              Biological replicate 3      
 
 
                                                                       
 
 

                          
 

                              Biological replicate 4                                 Biological replicate 5 

 

 

 

 

 

Figure 3.7: AUY922 raw data after normalization –Ratio versus intensity plots. 

Protein expression changes (log2 ratio H/L) from each biological replicate were plotted as 

described in Figure 3.5.  
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    A.                                                                         B. 

                                                             

 

Figure 3.8: Histograms of average protein expression of all five biological replicates in 

AUY922 before and after normalization. 

Log 2 of the ratios of H/L intensities from all the five biological replicates were averaged and 

plotted as histograms before (Panel A) and after normalization (Panel B). The X-axis represents 

binning of proteins based on abundance. The Y-axis represents the number of proteins in each 

bin.    
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    A.                                                                  B. 

            

                                                                                                                            

Figure 3.9: Histograms of protein expression from individual biological replicates in 

AUY922 before and after normalization. 

Protein intensities from control and treated samples of AUY922 dataset were normalized using 

global normalization approach as described in the text. Protein expression across the five 

biological replicates were plotted before (Panel A) and after normalization (Panel B) as described 

in Figure 3.8. 

   

  



72 
 

 Results from Western blotting assays in our spectrum counting work consistently showed that 

actin expression was unaltered even after treating cells with a high dose of Hsp90 inhibitors (Fig 

2.11, Chapter II). Therefore, we assessed the expression (H/L ratios) of actin and other house-

keeping genes before and after normalization (Table 3.1). Results showed that average H/L ratios 

for house-keeping genes before and after normalization were almost identical indicating that our 

normalization did not distort the data (consistent with Fig 3.8). Moreover, the average 

normalization factor values across the biological replicates were all nearly the same after 

normalization indicating that our normalization minimized variability across the biological 

replicates (consistent with Fig 3.6c). 

 

Comparison of our data with two recently published SILAC based studies on Hsp90 

inhibition. 

      Two recent publications utilized SILAC approaches to report the effects of Hsp90 inhibitors 

on cellular proteomes. The publication from Sharma et al. [56]  reported proteome-wide changes 

in HeLa cells treated with 50 µM 17-DMAG [56]. The publication from Wu et al [57] , reported 

the effects of 5 µM to 10 µM geldanamycin on the proteomes of MDAMB231, K562, Colon205 

and Cal27 cell lines [57]. 

    We compared our data to the raw SILAC data from these two studies. To accomplish this, we 

plotted histograms representing the raw protein expression ratios from the 5 biological replicates 

of HeLa cells treated with 17-DMAG [56]  and from the 3 biological replicates of MDAMB231 

and Colon205 cells treated with geldanamycin [57]. The data from Sharma et al. showed protein 

expression ratios centered below the zero ordinate of log2 on the X-axis, with minor  
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Table 3.1: H/L ratios of house-keeping proteins across five biological replicates in 

AUY922 before and after normalization 

The H/L ratios of house-keeping genes from all five bioreps were calculated and tabulated before 

and after global normalization. Additionally, the average ratios before and after normalization, 

and the average normalizer ratios were also tabulated. 

 

 

Protein 

names 

Ratio H/L  BR1  

 

Ratio H/L  BR2  Ratio H/L  BR3  Ratio H/L  BR4  Ratio H/L  BR5 Average of 5 

BRs 

 Before After Before After Before After Before After Before After Before After 

Actin, 

alpha  

0.89 1.04 1.04 0.99 1.13 1.03 1.16 1.03 0.95 1.05 1.03 1.03 

Actin, 

cytoplas

mic 2 

0.89 1.04 1.07 1.00 1.13 1.05 1.17 1.04 0.96 1.06 1.04 1.04 

Tubulin 

alpha-1A 

chain 

0.87 1.02 1.04 1.00 1.03 0.95 1.19 1.06 0.91 1.00 1.01 1.01 

Tubulin 

alpha-1C 

chain  

0.80 0.93 0.94 0.89 0.99 0.91 1.05 0.94 0.90 1.00 0.94 0.93 

Tubulin 

beta 

chain 

 

0.77 0.90 0.95 0.90 1.02 0.94 1.04 0.92 0.81 0.90 0.92 0.91 

Tubulin 

beta-4A 

chain 

 

0.86 1.00 0.92 0.87 0.95 0.88 0.92 0.82 0.80 0.88 0.89 0.89 

Tubulin 

beta-4B 

chain 

0.78 0.91 0.98 0.93 1.01 0.93 1.06 0.94 0.85 0.94 0.94 0.93 

Tubulin 

beta-8 

chain 

0.76 0.89 0.93 0.88 0.98 0.90 1.02 0.91 0.82 0.91 0.90 0.90 

Average 

normaliz

ed ratio 

0.83 0.97 0.98 0.93 1.03 0.95 1.08 0.96 0.88 0.97   
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normalization defects apparent across their biological replicates. Their normalization defects were 

similar to those observed in our data (c.f. Fig 3.10 vs. Fig 3.9). Based on these observations, we 

concluded that their normalization defects were comparable to those that we experienced. We 

also concluded that the majority of their proteome was down-regulated upon Hsp90 inhibition, 

similar to the down-regulation apparent in our data.  

    In contrast, raw data of Wu et al. representing the proteomes of MDAMB231 cells treated with 

5 µM geldanamycin appeared perfectly reproducible across the three biological replicates (Fig 

3.10, Panel B). Their raw H/L ratios were greater than 0, but not less than 0 implying up-

regulation of majority of the proteome (Fig 3.10, Panel B).   Despite raw ratios from cells treated 

with MDAMB231 implying up-regulation, after variance stabilization normalization (VSN), Wu 

et al. concluded that there were more down-regulated proteins (247 proteins) than the up-

regulated proteins (232 proteins).  By analyzing MDAMB231 dataset from Wu et al. and noting a 

discrepancy from their conclusion that more proteins are down-regulated versus their actual raw 

data indicating up-regulation, we felt that the quality of their raw data was weaker than our raw 

data. Both our raw data and statistical analysis of the data, agreed with each other, by indicating 

down-regulation of the proteome. 

    However, their raw data from their Colon205 cells treated with 10 µM geldanamycin were very 

different across the biological replicates (Fig 3.10, Panel C). Moreover, in their Colon 205 raw 

data, one biorep implied up-regulation whereas the other two implied down-regulation (Fig 3.10, 

Panel C), whereas our raw data had consistent down-regulation across all five bioreps (Fig 3.9, 

Panel A). I note that their sample level normalization was done by mixing treated and untreated 

cells directly, rather than lysates. Moreover, at 10 µM dose of geldanamycin 50% of their cells 

were dead (Supplementary Figure S1 from Wu et al. [57]). This raises questions about their 

normalization at the cell level, rather than the protein level. Thus, based on these comparisons we 

concluded that our raw data was better than the data from Wu et al. 
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A.                                                    B.                                           C.  

                                    

 
                                                                              

Figure 3.10: Assessment of the quality of raw data from Sharma et al. and Wu et al. 

H/L protein expression ratios from references [56] (Panel 10A) & [57]  (Panel 10B & 10C) were 

plotted as histograms as described in Figure 3.8.  
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Analysis of our raw data from cells treated with 150 nM 17-DMAG 

 

   In preceding sections, we discussed the analysis of raw data from cells treated with AUY922, 

and compared that data to data from other studies. Here, we similarly analyze our SILAC dataset 

from cells treated with a second Hsp90 inhibitor namely, 17-DMAG (Fig 3.11, 3.12 and 3.13). 

Results showed a good degree of reproducibility across the five biological replicates (Fig  3.11), 

evident by R
2
 values ranging from 0.791 – 0.835 and by the clustering of the data in upper right 

hand quadrant or lower left hand quadrant of scatterplots of protein intensities among 

experiments (Fig 3.11).  

      Additionally, our data from cells treated with 17-DMAG reinforced our conclusions that a 

large portion of the proteome was down-regulated in cells treated with Hsp90 inhibitors (Fig 3. 

16). Minor normalization problems (Fig 3.12 & 3.13) prompted us to normalize the data using the 

same approach as described for proteomes isolated from cells treated with AUY922. As we 

described for AUY922 dataset, this normalization minimized the variation and enhanced 

reproducibility across the five biological replicates (Fig 3.14, 3.15 & 3.16), but without distorting 

mean expression ratios (Fig 3.17). 
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Figure 3.11: Reproducibility across biological replicates in cells treated with 17-

DMAG. 

Protein expression changes (Log2 ratio H/L) were plotted across the five biological replicates as 

described in Figure 3.2. 
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Figure 3.12: Assessment of the raw ratios in cells treated with 17-DMAG. 

The frequencies of raw ratios from the 5 biological replicates were plotted as histograms as 

described in Figure 3.4. 
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Biological replicate 1            Biological replicate 2          Biological replicate 3    

                        

                              Biological replicate 4            Biological replicate 5    

 

Figures 3.13: 17-DMAG raw data before normalization. 

Protein expression changes (log2 ratio H/L) from each biological replicate were plotted against 

the protein abundance to assess for normalization defects as described in Figure 3.5. 
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Figure 3.14: Global normalization minimized reproducibility issues across the five 

biological replicates in 17-DMAG. 

Normalized ratios from the five biological replicates were plotted as described in Figure 3.6.  
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                  Biological replicate 1                           Biological replicate 2 

                             

                  Biological replicate 3                             Biological replicate 4 

                                         

                                                    Biological replicate 5        

Figure 3.15: 17-DMAG data after normalization –Ratio versus intensity plots. 

Protein expression changes (log2 ratio H/L) from each biological replicate were plotted as 

described in Figure 3.7.  
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A.                                                                            B. 

                              

                          

Figure 3.16: Histograms of protein expression from individual biological replicates in 

17-DMAG before and after normalization. 

Protein intensities from control and treated samples of 17-DMAG dataset were normalized using 

global normalization approach as described in the text. Protein expression across the five 

biological replicates were plotted before (Panel A) and after normalization (Panel B) as described 

in Figure 3.9. 
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A.                                                                      B.          

               
 

 

 

Figure 3.17: Histograms of average protein expression of all five biological replicates 

in 17-DMAG before and after normalization. 

Ratios of H/L intensities from all the five biological replicates were averaged and plotted as 

histograms before (Panel A) and after  normalization (Panel B). The X-axis represents binning of 

proteins based on intensity. The Y-axis represents the number of proteins in each bin. 
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Assessment of the population distribution of protein intensities in our AUY922 

dataset 

    To decide which statistical tests were most appropriate for our data, we first determined 

whether our data followed a normal distribution. To do this, we pooled all protein intensities from 

all 5 bio-reps, and applied the Shapiro-Wilk test to determine if the data followed normal 

distribution. Results showed that the p-values for our dataset were greater than the chosen alpha 

level (Light Stat: 0.89, Light p-value: 0.19 Heavy Stat: 0.85, Heavy p-value: 0.19). This indicated 

that our data followed a normal distribution. This normal distribution was also evident in visual 

representation of the data populations (Fig 3.18). Thus, we concluded that Student’s T-test might 

be an appropriate choice to validate significant changes in protein expression among treated 

versus un-treated cells.  

  To perform a Student’s T-test, we had to decide whether to use statements of equal variance vs. 

un-equal variance between protein intensities from 5 treated samples and 5 untreated samples. 

Thus, we analyzed treated and control populations using the F-distribution function in Microsoft 

Excel. Results showed that the F-ratio was higher than the critical F-value (FINV) at the 90% 

confidence interval (Table 3.2).Thus, we concluded with 90% confidence that the two 

populations did not have equal variances. Thus, we concluded that T-test, two-sided (since we do 

not know the direction of the change), with unequal variance would be appropriate test for 

identifying significant drug-induced changes in protein expression. 

  After identifying Student’s T-test as an appropriate test, this test was used to analyze AUY 922 

data (two sided with statements of unequal variance). Very few protein changes out of the total 

proteins altered were identified as significant using this test (13%). Applying the B-H FDR  
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 A. 

                    

     B. 

 
 

 

Figure 3.18: Assessment of the distribution of light and heavy intensities in AUY922. 

 
The populations of light intensities and heavy intensities were plotted as histograms to assess the 

distribution (Panel A & B respectively). The X-axis represents binning of proteins based on their 

intensities and the Y-axis represents the number of proteins in the each bin. 
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Table 3.2: F-distribution test to determine if treated versus control populations have   

equal or unequal variance in AUY92 data. 

 Light 

(Control) 

Heavy 

(Treated) 

VARP 

(Variance of the population) 

1.96E+18 

 

2.84E+18 

 

Total count 15370 

 

15370 

 

F ratio (VARP Heavy/VARP Light) 1.444877023 

Confidence 90% 

Significance 10% 

FINV 

=(Confidence, Total count heavy-1,Total count light-1) 

0.979536857 

 

Variance for the light and the heavy populations in AUY922 were calculated using VARP 

(variance of the population) function. Ratio was calculated by dividing VARP Heavy by VARP 

light. The critical F value was calculated using FINV function. 
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correction the number of significant proteins reduced this to 3%. Adding a third filter to require 

1.5 fold change further reduced the number of significant changes down to 2%. 

      Similarly we analyzed raw data from Wu et al. representing MDAMB231 cells treated with 5 

µM geldanamycin [57]. After Student’s T-test and B-H FDR correction, very few proteins from 

the total proteins were identified as significant. Furthermore, with B-H FDR correction and the 

1.5 fold threshold, none of the proteins were identified as significantly altered in their data (Table 

3.3). 

   In contrast, my analysis of each protein’s average expression ratio in treated versus un-treated 

cells suggested that the majority of the cellular proteome was down-regulated upon Hsp90 

inhibition (Fig  3.7, 3.8 & 3.9). In 5/5 experiments, the majority of the protein ratios 

(treated/untreated) were represented on the left side of the log2 scale, as opposed to being 

distributed uniformly on the left and right sides of the log2 scale. (Fig 3.8A & 3.8B).This 

indicated that much of the proteome was being reproducibly down-regulated upon Hsp90 

inhibition. This contrasts with the results from Student’s T test above, where only 2% of the 

proteome changes were identified as significant. This suggested that Student’s T-test with B-H 

FDR correction and 1.5 fold change criteria probably understate the significant changes in protein 

expression caused by drug treatment. Thus, we concluded that Student’s T-test is not an 

appropriate test for reporting significant drug-induced changes in protein expression. 

     In order to assess other statistical methods that might be used to validate changes in protein 

expression, we assessed our data, data from Sharma et al. [56], and the data from Wu et al. [57]  

using the one sample T-test used by Sharma et al. [56]. However, Sharma et al. did not describe 

their statistical analysis in their publication [56] . Therefore, we de-constructed their statistical 

analysis. For this, we analyzed their normalized H/L ratios from all the five biological replicates 

using the “One sample T-test” function embedded in their software package Perseus. Their  



88 
 

Table 3.3: Comparison of the effects of statistical tests on 3 Hsp90 inhibited proteomes 

 Statistical analyses were performed as described in the text. 

 

 

Test 

 

 

Variation of the 

test 

       Datasets- % of proteins responding to Hsp90 inhibition 

Our AUY922 dataset 

(5 bio-reps)-in-house 

normalized 

Wu et.al (MDAMB431) Sharma et.al 

MaxQuant 

normalized 

data 

   Un-normalized Normalized 

(by our 

method) 

 

One sample 

T-test 

embedded 

in Perseus 

software 

package 

(T-test of 

ratios) 

used by 

Sharma 

et.al 

T-test p values 

(p<0.05) 

 

 

 

 

With BH FDR 

correction(FDR < 

0.05) 

 

 

 

 

 

BH correction plus 

1.5 fold cutoff 

 

 

 

 

 

With Storey FDR 

correction (FDR < 

0.05) 

 

Storey FDR 

correction plus 1.5 

fold cutoff 

 

 

54%  

 

 

 

 

 

52%  

 

 

 

 

 

 

 

13%  

 

 

 

 

 

 

50%  

 

 

 

12% 

 

 43%  

 

 

 

 

 

25 %  

 

 

 

 

 

 

 

15% 

 

 

 

 

 

 

ND 

 

 

 

ND 

44% 

 

 

 

 

 

24%  

 

 

 

 

 

 

 

14% 

 

 

 

 

 

 

24%  

 

 

 

14% 

41%  

 

 

 

 

 

30%  

 

 

 

 

 

 

 

14% 

 

 

 

 

 

 

30% 

 

 

 

14% 

Standard T-

test 

(Two tails 

Unequal 

variance) 

 

 

 

 

 

 

 

 

 

 

 

T-test p values 

 (p<0.05) 

 

With BH FDR 

correction 

(FDR<0.05) 

 

BH correction plus 

1.5 fold cutoff 

13% 

 

 

3% 

 

 

 

2% 

 

          ND 

 

 

 

          ND 

5%  

 

 

 

Zero  

Not done 

because raw 

intensities 

were not 

available 
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treated/untreated ratios were presumably normalized by MaxQuant during peptide peak detection, 

capture and collection into protein intensities. Using this test, we identified 2,861 changes in 

protein expression in their dataset with T-test p values < 0.05 (out of the 7,028 total proteins 

assayed). However, their final list of up-regulated and down-regulated proteins contained only 

2,107 proteins whose expression was altered. In order to reconcile these two numbers, we applied 

the B-H FDR correction embedded in their software package Perseus (B-H = 0.05 FDR) to their 

T-test p values. This correction invalidated proteins with a t-test p value ≤ 0.015. This allowed us 

to exactly duplicate their list of significantly altered proteins and their p values (Fig 3.19). 

    Using this approach, we analyzed normalized data from Wu et al. (MDAMB231 cells treated 

with 5 µM geldanamycin using the one sample T-test used by Sharma et al. Using this test, 43% 

of the total proteins altered were identified as significant. The number of significantly altered 

proteins reduced to a 24% by applying a B-H FDR correction.  

   Applying 1.5 fold threshold along with B-H FDR correction further reduced the number of 

significant proteins to 14% (Table 3.4). Thus, we concluded that the number of proteins identified 

as significantly altered in data from Wu et al. were reduced to similar extent relative to data from 

Sharma et al. 

   Subsequently we analyzed our normalized AUY922 data using the one sample t-test. We 

identified 57% of the total proteins as being significantly altered. The B-H FDR corrections 

further reduced the number of significantly altered proteins to 51%. Applying 1.5 fold threshold 

further reduced the number of significantly altered to 12%. Thus, we concluded that the number 

of significantly altered proteins in our AUY922 dataset was reduced to by applying both B-H 

FDR correction and 1.5 fold threshold and that this reduction was similar to the reduction 

observed in data from Sharma et al. and Wu et al. 
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    A.                                                                  B. 

               

Figure 3.19: Comparison of deconstructed data from Sharma et al. to their actual data. 

Statistical analysis from Sharma et al. was de-constructed using one sample T test embedded in 

their software package Perseus, and results were compared by plotting the –log (p values) from 

published data of Sharma et al. versus my de-constructed –log (p values). Panel A: Comparison 

of p values for significantly up-regulated proteins and Panel B:  Comparison of p values for 

significantly down-regulated proteins. 
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   The B-H FDR test is a test for multiple corrections. It is designed to validate only a few 

significant differences in a large dataset. However, when there are many significant differences in 

a large dataset, the Storey FDR test is a more appropriate test. Similar to B-H FDR test, Storey 

FDR test is a false discovery correction test that validates larger p-values than the B-H FDR test. 

This helps to validate more positives in datasets that have large numbers of differences. 

Our AUY922 dataset suggested that the majority of the proteome was down- regulated by Hsp90 

inhibition. Similarly, we had many proteins with significant one sample T test p values. Thus, the 

Storey FDR test was more appropriate than the BH- FDR test for our data. Therefore, we applied 

the Storey FDR to the p values from our T-test and identified 10% more proteins as significantly 

altered, than those we identified using B-H FDR correction. After applying 1.5 fold threshold, the 

number of proteins identified as significantly altered reduced to 14%, thus suggesting that 1.5 

fold threshold is very rigorous and eliminates more than half of the proteins. Thus, we identify a 

short list of protein expression changes with high confidence. 

    We similarly re-analyzed normalized data from Sharma et al and Wu et al. using a Storey FDR 

correction and 1.5-fold threshold (Results shown in Table 3.1). The number of proteins identified 

as having significant alterations in protein expression using B-H FDR test and Storey FDR test 

were the same for the data from Sharma et al. Similarly, in data from Wu et al, Storey and B-H 

FDR tests identified the same number of proteins with significant alterations in protein 

expression. Applying an additional 1.5 fold threshold to both the datasets (Sharma and Wu) 

reduced the total number of proteins with significant changes in protein expression to about 14%. 

  Thus, we concluded that one sample T-test with Storey FDR correction and 1.5 fold change 

threshold criterion is an appropriate approach to report highly confident changes in protein 

expression from our data showing large drug-induced changes in the proteome. 
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Discussion 

 

     In summary, analyzing our raw SILAC data representing the proteomes of Jurkat cells treated 

with AUY922, we noted minor normalization problems across the 5 biological replicates (Fig 3.4 

& 3.5). By comparing the quality of our raw data to the raw SILAC data of other cell lines treated 

with Hsp90 inhibitors we concluded that  our raw data were as good as data from Matthias 

Mann’s lab [56] , (c.f. Fig 3.2 vs. Fig 3.3), and perhaps superior to the data from David Kuster’s 

lab [57], (c.f. Fig 3.2 vs. Fig  3.10B & 3.10C).  

  To address our minor normalization defects, we developed a global normalization strategy. Our 

strategy minimizes variation across the biological replicates (Fig 3.6 & 3.7), but does not distort 

the data (Fig 3.8 & 3.9).  

   We demonstrate that while the Student’s T-test might be appropriate for validating our data, we 

show that the one sample T test used by Manns’group is more appropriate test for identifying 

significant changes in protein expression (c.f. Table 3.3 vs. Fig  3.8 & 3.9). 

  Therefore our final choice was to include a 1.5 fold change threshold criterion but with the 

Storey FDR correction of one sample T-test to generate a short-list of proteins in which we have 

high confidence, rather than reporting a larger list of changes which we are not confident. We will 

go on to use these criteria to analyze 5 other SILAC datasets collected in subsequent experiments 

in this study. 
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CHAPTER IV 
 

 

The proteomics fingerprints of AUY922 and 17-DMAG are largely similar in Jurkat 

leukemia cells, indicating common mechanisms of action for Hsp90 inhibitors. 

 

 

Introduction 

     In Chapter II, we quantified the changes in protein expression induced by anti-cancer drug 

candidate, AUY922 in Jurkat leukemia cells using the spectrum counting approach. We compared 

AUY922-induced changes to the expression changes induced by classical Hsp90 inhibitors 17-

DMAG and radicicol. Using this approach, we identified around 180 proteins showing significant 

changes in expression. Although we identified 31 protein expression changes that were common 

to all three inhibitors, we also identified changes that were not universal. Thus, we were faced 

with questions about which of these changes were real.  

   To address these questions, and also to identify more protein expression changes induced by 

Hsp90 inhibitors, a better quantitative proteomics approach was needed. In this chapter, the stable 

isotope labeling with amino acids in cell culture (SILAC) approach was used to compare the 

proteomic fingerprints of AUY922 and 17-DMAG. Results from this study were anticipated to 

validate findings from our spectrum assays. It was also anticipated that SILAC would allow 

identifying more inhibitor-induced protein expression changes so that a stronger and deeper 
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proteomics fingerprint of Hsp90 inhibition could be established. The proteins thus identified in 

this study would serve as candidate biomarkers for Hsp90 N-terminal inhibitors. Identification of 

the proteomics fingerprint of Hsp90 C-terminal inhibitors is one of the long term goals of our 

laboratory. Therefore the proteomics fingerprint of Hsp90 N-terminal inhibitors identified in this 

study could be compared to the fingerprint of Hsp90 C-terminal inhibitors. This would give 

insights into the mechanism of action of both classes of inhibitors and would reveal if they have 

similar or different mechanisms of action. 

Materials and Methods 

    All the materials and methods and statistical testing used in this study were the same as 

described in Chapter III. A summary of the experimental design was described in Chapter III. In 

order to identify the significant alterations in protein expression, normalized H/L ratios were 

validated by one sample T-test, with multiple tests correction using the Storey FDR test. The final 

list of proteins with significant alterations in expression consisted of proteins with greater than 

1.5 fold changes in expression and Storey FDR values less than 0.05.  

Drug treatments and LC-MS/MS analysis 

    Jurkat cultures adapted to SILAC heavy media were treated for 24 hours with 75nM or 150nM 

of AUY922 or 17-DMAG respectively. These doses represent 5-7X IC50 doses for Cdk6 

depletion (See Fig 2.3 & 2.6 from Chapter II). As controls, Jurkat cultures adapted to SILAC light 

media were treated with DMSO. All the experiments were performed in five biological replicates. 

Protein in the cell lysates from drug-treated and control samples were quantified, mixed in a 1:1 

ratio (50 ug of treated lysate + 50 ug of untreated lysate), precipitated with TCA/acetone and 

fractionated by SDS-PAGE. Following fractionation, samples were trypsinolyzed and processed 

as described in the Materials and Methods section of Chapter III. Resulting trypsinolytic peptides 
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were analyzed by LC-MS/MS analysis using a Thermo LTQ-Orbitrap XL mass spectrometer. 

Protein identification and quantification was performed using MaxQuant (v 1.3.0.5). 

GO analysis 

   Proteins with significant changes in expression were categorized for biological process, 

molecular function and cellular component using the DAVID bioinformatics program [105]. To 

gain insights into the functional categories represented, functionally related GO terms were 

grouped using web server REVIGO [106] with the following default settings : Allowed 

similarity- medium (0.7), number associated to GO categories are – p-values, database with GO 

term sizes –whole Uniprot, semantic similarity measure to use -SimRel. For REVIGO analysis 

only GO terms whose BH- corrected p values were less than < 0.05 were used. 
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Results 

      In this study, impacts that two distinct Hsp90 inhibitors, namely AUY922 and 17-DMAG, 

have on the proteome of Jurkat leukemia cells were assessed using a SILAC approach. To 

identify how reproducible the biological replicates in the AUY922 dataset were, we compared the 

total number of proteins identified in all the 5 biological replicates. Results indicated that 

majority of the proteins identified (2,400) were observed in all the 5 biological replicates (Fig 

4.1). Thus, we concluded that there was a high degree of reproducibility across the 5 biological 

replicates in AUY922 dataset. Similarly, we compared the reproducibility across the 5 biological 

replicates in 17-DMAG dataset using the same approach as described for AUY922. Results 

indicated that similar to AUY922, 17-DMAG dataset also displayed a high degree of 

reproducibility with majority of the proteins identified (2193) being observed across the 5 

biological replicates (Fig 4.1). 

  To identify how similar the AUY922 and 17-DMAG datasets were, we compared the total 

number of proteins identified across the 5 biological replicates in both the datasets. Results 

showed that the size of both the datasets were similar as indicated by the total number of proteins 

identified in all the 5 biological replicates (Fig 4.1). Thus, we concluded that both the datasets 

were highly similar to each other in terms of the number of proteins identified. 

    Prior to determining how conserved the protein expression changes between AUY 922 or 17-

DMAG treated Jurkat proteomes were, changes in protein expression  induced by the drugs were 

validated using one sample T-test. Results showed that the one sample T-test yielded nearly a 

similar number of protein expression changes with p < 0.05 in both AUY922 and 17-DMAG 

datasets and suggested that 50% of the proteome was being altered by both drugs (Fig 4.2A). 

Thus, we concluded that the one sample T-test had similar effects on both AUY922 and 17-

DMAG datasets, and that the changes in protein expression induced by both drugs were highly  
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Figure 4.1: Total number of proteins detected across biological replicates in the 

proteomes of Jurkat cultures treated with AUY922 and DMAG. 

The total number of proteins detected across the five biological replicates in the proteomes of 

Jurkat cultures treated with AUY922 and 17-DMAG are represented. N represents the number of 

biological replicates. The N = 5 circle represents the number of proteins identified in 5/5 

experiments. The N = 4 crescent represents the difference between the number of proteins 

identified in 5/5 experiments vs. the number of proteins identified in 4/5 experiments (and so on 

for N = 3, N = 2, N = 1). 
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similar. This was highly consistent with our raw data that suggested that the majority of the 

proteome was being down-regulated upon Hsp90 inhibition (Fig  3.7 and 3.18, chapter III).  

   To minimize reporting false positive changes in protein expression and to avoid missing any 

true changes, we then performed multiple test correction of the T-test p-values from both 

AUY922 and 17-DMAG datasets using the Storey FDR test setting the FDR < 0.05. This slightly 

reduced the total number of protein expression changes identified as significantly altered in both 

AUY922 and 17-DMAG datasets (c.f. Fig 4.2A vs. Fig 4.2B). After this Storey FDR correction, 

59% of the total identified proteins showed significant changes in expression that were common 

between both drugs (Fig 4.2B). The large degree of overlap in the number of significantly altered 

proteins among the two drugs reinforced our conclusion that their effects were largely similar.  

    In order to report only the protein expression changes which we had high confidence in, we 

applied a 1.5-fold change criterion in conjunction with the Storey FDR correction. Among the 

total proteins with expression changes ≥ 1.5-fold in both the drugs, 49% of them were the same 

between both drugs (Fig 4.2C). We then compiled the total number of proteins that pass both 

criteria (Storey corrected values < 0.05 and fold change ≥ 1.5) in both the AUY922 and 17-

DMAG datasets. Applying these two criteria greatly reduced the number of proteins identified as 

significantly altered in both AUY922 and 17-DMAG datasets (Fig 4.2D). Of both the criteria, 

1.5-fold change criteria were more stringent and resulted in invalidating the majority of the 

protein expression changes. We concluded that applying both criteria to validate changes in 

protein expression was very rigorous and eliminated several proteins from being reported as 

significantly altered. Thus, these criteria allowed us to report only high confidence changes in 

protein expression.  
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    A.                                                              B. 

                            

         C.                                                              D. 

                                     

 

 

Figure 4.2: Venn analysis of the effects of statistical criteria on evaluating protein 

expression changes in Jurkat cultures treated with AUY922 vs. 17-DMAG. 

Statistical analysis was performed as described in text. Panel A:  Total number of proteins with 

one-sample T-test p values < 0.05. Panel B: Total number of proteins with Storey FDR corrected 

p-value thresholds of< 0.05. Panel C: Total number of proteins with changes in expression ≥ 1.5 

fold. Panel D: Total number of proteins with changes in expression equal to or greater than 1.5 

fold, and having Storey FDR corrected p-value thresholds of< 0.05. 
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 Failure to see selective enrichment of proteins in the unions between the drugs after each 

statistical step suggested that there could be many protein expression changes that were drug-

specific but did not pass the statistical criteria for both the drugs. Therefore, subjecting the data to 

all the statistical tests may have resulted in discarding true protein expression changes. However, 

our raw data suggested that the majority of the proteome is being altered by both inhibitors. 

Nevertheless, we decided to use the more stringent criteria in order to report only high confidence 

changes in protein expression. 

     We next assessed consistency in the direction of the protein expression changes for the 

proteins that pass both criteria in both AUY922 and 17-DMAG datasets. Direction here refers to 

up-regulated or down-regulated. To accomplish this, we divided the proteins showing significant 

alterations in expression from both datasets into up-regulated and down-regulated proteins, and 

then compared the AUY922 and 17-DMAG datasets to look for consistency in expression 

patterns (Fig 4.3). Among the proteins that were identified as significantly altered, the majority 

were down-regulated, as opposed to being up-regulated. This was consistent with our raw 

histograms that indicated that the majority of the proteome is down-regulated by Hsp90 inhibition 

(Fig 3.7 & 3.18, Chapter III). Among 476 proteins down-regulated by either AUY922 or 17-

DMAG, 48% of the responses were common to both inhibitors. Among the 69 proteins up-

regulated by either inhibitor, 46% of the responses were common to both inhibitors (Fig 4.3). 

Thus, we concluded that Hsp90 inhibition leads to more down-regulation than up-regulation. 

Moreover, the direction of the changes was highly similar among drugs, with the majority of the 

proteins down-regulated in the proteome of one drug treated cells also being down-regulated in 

the proteome of cells treated with the other drug. This was also the case for up-regulated proteins. 

This commonality gives high confidence in the validity of protein expression changes that we 

identified. 
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Figure 4.3: Comparison of down-regulated and up-regulated proteins expression changes in 

Jurkat cells treated with AUY922 and 17-DMAG 

Panel A: Total number of proteins down-regulated by AUY922 and/or 17-DMAG.  Panel B: 

Total number of proteins up-regulated by AUY922 and/or 17-DMAG. 
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 In order to visualize the direction and magnitude of the changes induced by AUY922 and 17-

DMAG, the magnitude of changes induced by AUY922 were plotted versus the magnitude of 

changers induced by 17-DMAG. The majority of the protein changes (both significant and non-

significant) were well centered on the diagonal of this plot generating an R
2
 value of 0.681 (Fig 

4.4). This suggested that the protein expression patterns were similar in the Jurkat cells treated 

with either drug.  Moreover, in both AUY922 and 17-DMAG datasets, the majority of the 

significant changes (crosses) were distributed in the lower left hand quadrant of the scatterplot 

(Fig 4.4), suggesting that the majority of the proteins were being down-regulated by both  

inhibitors. 

   There were some significant changes in the upper right hand quadrant in both the datasets, 

indicating proteins that were up-regulated by both the inhibitors. In contrast, there were very few 

changes that were distributed in the lower right hand quadrant and the upper left hand quadrant in 

both the datasets. This suggested that there were very few proteins that were up-regulated by one 

inhibitor but down-regulated by the other inhibitor, and vice versa. In summary, these results 

suggested that: (i) that the inhibitors generated similar effects; and (iii) both the inhibitors cause 

more down-regulation of the proteome than up-regulation. 
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Figure 4.4: Comparison of changes in protein expression induced by AUY922, 17-DMAG and 

both AUY922 & 17-DMAG.  

The X-axis represents the log2 values of H/L ratios for individual proteins in the proteomes of 

Jurkat cultures treated with AUY922. The Y-axis represents the log2 values of H/L ratios for 

individual proteins in the proteomes of Jurkat cultures treated with 17-DMAG. The red crosses 

represent the union of AUY922-induced changes & 17-DMAG-induced changes. The grey 

crosses represent the proteins that did not pass both the Storey FDR values < 0.05 and fold 

change criteria in either drug.  
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   To further visualize the inhibitor-specific effects we again plotted the magnitude of changes 

induced by AUY922 versus the magnitude of changes induced by 17-DMAG, but highlighted the 

significant changes induced by AUY922 only (Fig 4.5A). Similarly we plotted 17-DMAG 

induced changes only (Fig 4.5B). Both the plots were largely indistinguishable suggesting that the 

drugs largely shared similar effects. However, there were some changes that appeared to have 

significant alterations in protein expression unique to each drug but failed to survive the rigorous 

statistical tests. This suggested that although the expression changes of these proteins are similar 

between both inhibitors, rigorous statistical tests invalidate them from being detected in both. We 

also plotted the changes induced by both inhibitors (Fig 4.5C). The total number of protein 

changes that are common between both drugs is reduced (c.f. Fig 4.5A, 4.5B vs. 4.5C). This 

reinforced our opinion that the rigorous statistical tests eliminated many proteins with altered 

protein expression. 

   We similarly plotted changes induced by AUY922 versus 17-DMAG after removing all the 

proteins that were not significantly altered by either inhibitor (Fig 4.6A to 4.6C) or that were not 

altered by both inhibitors (Fig 4.7). Eliminating those proteins that were not significantly altered 

improved the R
2 
values from 0.681 to 0.838. Eliminating proteins that were not altered by both 

the drugs improved the R
2
 values from 0.838 to 0.95.  

 

 

 

 

 



105 
 

A.                                                                  B. 

     

                                        C. 

        
 

Figure 4.5: Comparison of the changes in protein expression caused by either AUY922 or 17-

DMAG or both. 

Analysis as described for Figure 4.4. A:  Red crosses are those proteins that are significant in 

AUY922 only. B: Red crosses are the proteins that are significant in 17-DMAG only. C: Red 

crosses are those proteins that are significant in both AUY922 and 17-DMAG. 
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A.                                                                            B.  

            

                                          

                                        C. 

 
                                                                                                                           

                                

Figure 4.6: Comparison of the changes in protein expression caused by AUY922 vs. 17-DMAG 

after deleting proteins not significant in either or both drugs. 

Analysis as described for Figure 4.4. A: Red crosses represent AUY922 induced changes. B: Red 

crosses represent 17-DMAG induced changes. C: Red crosses represent changes common to both 

AUY922 and 17-DMAG.  
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Figure 4.7: Comparison of the changes in protein expression caused by AUY922 & 17-DMAG 

only 

Analysis as described for  Figure 4.4. These plots were constructed after removing those proteins 

that did not pass both criteria in either AUY922 or 17-DMAG or both. Red crosses are drug-

induced changes common to both AUY922 and with 17-DMAG.  
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Eliminating proteins whose expression changes were not significant improved the R
2 
fits. This 

suggested that there was high degree of agreement between these proteins altered by both the 

inhibitors, thus indicating that the two inhibitors share common effects. Results also showed that 

the total number of proteins that pass both criteria in both drugs is smaller than the total number 

of proteins that pass both criteria in individual drugs (Fig 4.6B, 4.6C vs. Fig 4.6D and 4.7). Thus, 

we concluded that criteria we used for reporting the proteins with significant alterations in protein 

expression were very stringent and eliminate many drug-specific changes in protein expression. 

Comparison of the number of proteins identified in 5 bioreps versus 3 bioreps 

    To test the effects of the number of biological replicates on our ability to validate protein 

expression changes, we identified the total number of significant protein expression changes in 3 

biological replicate datasets and compared them to the total number of changes identified in 5 

biological datasets by using both ≥ 1.5 fold change and Storey FDR corrected p-value thresholds 

of < 0.05.The total number of changes identified in 3 biological replicate datasets were almost 

45% less than those identified in 5 biological replicate datasets for both AUY922 and 17-DMAG 

datasets (Table 4.1).  

 

 

 

 

 

 

 



109 
 

Table 4.1: Number of significant protein expression changes identified in 5 biological replicate 

datasets versus 3 biological replicate datasets 

Number of 

biological 

replicates (N) 

Number of significant 

protein expression 

changes identified in 

AUY922 treated cells 

Number of significant 

protein expression 

changes identified in 

17-DMAG treated 

cells 

Number of significant 

protein expression 

changes common to 

both drugs 

N =5 399 405 260 

N =3 209 252 158 

% Difference 47.7% 37.8% 39%  
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These results indicated that using more biological replicates in SILAC experiments allows for the 

identification of a higher number of significant protein expression changes. The total number of 

protein expression changes we identified in 5 biological replicate datasets were nearly 50% 

higher than the number of protein expression changes identified in 3 biological replicate datasets 

in both AUY922 and 17-DMAG datasets. Thus we concluded that, more the number of biological 

replicates, the greater the power to identify more expression changes and thus more discovery. 

GO analysis 

     To gain insights into the biological processes affected by the AUY922 and 17-DMAG, we 

performed gene ontology (GO) analysis of the proteins that passed both criteria (Storey FDR 

corrected p-value thresholds of< 0.05, and ≥ 1.5 fold change) for each drug. Only the GO terms 

whose B-H corrected values < 0.05 were considered. Both AUY922 and 17-DMAG affected a 

wide variety of functional categories (Tables 4.2 & 4.3). Several processes were down-regulated 

by both AUY922 and 17-DMAG (Table 4.2).Similarly up-regulated categories were also 

common between both the inhibitors (Table 4.3). Indistinguishable GO profiles of AUY922 and 

17-DMAG suggested that the inhibitors have similar mechanism of action in cultured cells. 
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Table 4.2: Major functional categories down-regulated by either AUY922 or 17-

DMAG. 

GO Term  Function BH 

corrected 

values 

AUY922 

BH corrected 

values  

17-DMAG 

GO:0004672 Protein kinase activity 5.0E-12 2.2E-10 

GO:0005524 ATP binding 3.6E-10 1.5E-07 

GO:0032559 Adenyl ribonucleotide binding 6E-10 2.3E-07 

GO:0004674 Protein serine/threonine kinase activity 4.3E-09 3E-06 

GO:0030554 Adenyl nucleotide binding 9E-09 1.95E-06 

GO:0001882 Nucleoside binding 8.2E9 7.5E7 

GO:0001883 Purine nucleoside binding 2.3E8 1.9E6 

GO:0032553 Ribonucleotide binding 8.2E8 1.1E5 

GO:0032555 Purine ribonucleotide binding 8.2E8 1.1E5 

GO:0006468 Protein amino acid phosphorylation 5.4E9 3.2E7 

GO:0017076 Purine nucleotide binding 7.1E7 6E5 

GO:0022403 Cell cycle phase 9.1E8 10E9 

GO:0004693 Cyclin-dependent protein kinase activity 5.4E6 7.1E5 

GO:0016310 Phosphorylation 4.9E7 2.1E5 

GO:0005694 Chromosome 1.8E8 2E6 

GO:0051301 Cell division 7.2E7 4.9E7 

GO:0044427 Chromosomal part 1.1E6 2.1E6 

GO:0004386 Helicase activity 4.2E5 5.71E4 

GO:0007049 Cell cycle 5.4E6 1.6E7 

GO:0006796 Phosphate metabolic process 7.1E6 6.8E5 

GO:0006793 Phosphorus metabolic process 7.1E6 6.8E5 

GO:0005654 Nucleoplasm 1.9E5 1.4E5 

GO:0007067 Mitosis 2.2E5 1.9E4 

GO:0000280 Nuclear division 2.2e5 1.6E4 
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GO:0000279 M phase 2E5 1.3E5 

GO:0031981 Nuclear lumen 7E5 4.7E6 

GO:0000087 M phase of mitotic cell cycle 3.3E5 2.6E4 

GO:0048285 Organelle fission 4E5 3.1E4 

GO:0000166 Nucleotide binding 2.3E4 - 

GO:0022402 Cell cycle process 1.3E4 8.2E6 

GO:0000278 Mitotic cell cycle 1.4E4 6.6E5 

GO:0000775 Chromosome, centromeric region 4.2E4 0.002 

GO:0003677 DNA binding 8.1E4 - 

GO:0006259 DNA metabolic process 2.8E4 - 

GO:0005657 Replication fork 9.3E4 - 

GO:0005643 Nuclear pore 8E4 8.3E4 

GO:0051329 Interphase of mitotic cell cycle 3.9E4 1.9E4 

GO:0051325 Interphase 3.9E4 1.9E4 

GO:0000776 Kinetochore 0.002 - 

GO:0000793 Condensed chromosome - 3.3E5 

GO:0000779 Condensed chromosome, centromeric 

region 

- 9.2E4 

GO:0000777 Condensed chromosome kinetochore - 6.4E4 

GO:0044451 Nucleoplasm part - 9E4 

GO:0000796 Condensin complex - 0.001 

GO:0046930 Pore complex - 0.002 
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Table 4.3: Major functional categories up-regulated by either AUY922 or 17-DMAG.  

GO Term  Function BH corrected 

values AUY922 

BH corrected values 

17-DMAG 

GO:0006986 response to unfolded protein 2.4E9 1.4E11 

GO:0051789 response to protein stimulus 5.3E9 4.1E11 

GO:0051082 unfolded protein binding 3.5E5 1.5E7 

GO:0010033 response to organic substance 8.2E5 1.8E5 

GO:0006457 protein folding - 7.1E6 
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Discussion 

    In this study, we use the SILAC approach to compare the proteome-wide changes induced by 

two structurally distinct Hsp90 inhibitors, AUY922 and 17-DMAG, in Jurkat leukemia cells.    

AUY922 and 17-DMAG generated conserved proteomics fingerprints with 1190 protein 

expression changes regulated by both the inhibitors. Moreover, nearly all proteins up-regulated by 

one inhibitor were up-regulated by the other inhibitor, and proteins down-regulated by one 

inhibitor were down-regulated by the other inhibitor (with one exception (discussed below)). 

These similar effects indicate a common mechanism of action. 

     The classic cellular responses of Hsp90 inhibition are the degradation of Hsp90-dependent 

client proteins and the induction of chaperones. In our SILAC assays, both AUY922 and 17-

DMAG down-regulated several known Hsp90 clients (kinases, helicases and transcription 

factors). Both the inhibitors up-regulated several members of heat shock protein family. Display 

of classic hallmarks of Hsp90 inhibition by both AUY922 and 17-DMAG in our SILAC data 

strongly validate our mass spectrometry assays.  

    Hsp90 inhibition leads to more down-regulation of the proteome, rather than up-regulation. 

This was evident in both AUY922 and 17-DMAG raw data (Chapter III, Fig 3.8a & 3.9a, and Fig 

3.18a & 3.19a) and after statistical analysis (Fig 4.3). This is also consistent with two recent 

published SILAC studies of Hsp90 inhibition [56, 57].  

    Our results are consistent with previous reports that Hsp90-inhibition mainly down-regulates 

kinases [56, 57] . Both AUY922 and 17-DMAG altered the expression of 30 kinases involved in 

different biological processes. Among the kinases with altered expression, almost all of them 

(except Tyrosine-protein kinase Blk ) were down-regulated by both the inhibitors. Tyrosine-

protein kinase Blk was up-regulated by both AUY922 and 17-DMAG. Thus, the down-regulation 

of several kinases by both the inhibitors strongly validates our mass spectrometry assays. 
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   We report several candidate biomarkers for Hsp90 inhibition in leukemia cells by identifying 

highly confident protein expression changes common to both AUY922 and 17-DMAG. AUY922 

is a drug candidate currently in Phase II clinical trials for the treatment of a wide variety of 

cancers. Thus, these candidate biomarkers can be used to validate the biological activity of 

AUY922 in clinical trials. However, whether the changes we observe in cultured cancer cells are 

preserved in vivo needs to be determined. 

   Additionally, these candidate biomarkers can also be used to validate novel Hsp90 inhibitors. 

Long term goals of our laboratory are to determine whether Hsp90 C-terminal binding agents 

inhibit Hsp90 in vitro in cultured cancer cells. Thus, these biomarkers can be compared to the 

fingerprint of C-terminal binding agents and can be used determine if both classes of inhibitors 

have similar of different mechanisms of action.  

          Our results confirm that MaxQuant is a very reliable proteomics software for analyzing 

SILAC data. The expression changes we identified using MaxQuant were highly similar between 

both Hsp90 inhibitors. Moreover, they were also previously identified in our lab using the label-

free proteomics techniques of spectrum counting. Thus, all these validations give us high 

confidence in the quality of the outcome provided by MaxQuant.  

   However, we did encounter that MaxQuant has certain limitations. It was difficult to compare 

MaxQuant outputs from two different drug treatment experiments, since MaxQuant provides 

slightly different lists of identifiers to the proteins in the two experiments searched in two 

different MaxQuant runs. In the output, MaxQuant provides all the protein identifications that a 

peptide might belong to. The protein identifications that MaxQuant provides along with the major 

protein identification differ for each experiment searched in different MaxQuant searches. 

Therefore, it is difficult to compare two experiments searched in different MaxQuant runs.  
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      As one solution, running all of these files from different experiments in one MaxQuant run 

allows to overcome this problem. However, this approach compromises downstream statistical 

analysis. This results in the reduction of R
2 
values (as shown for AUY922, Table 4.4), thus mis- 

representing reproducibility.  

      To compare our SILAC based studies of Hsp90 inhibition to two recently published SILAC 

based studies of Hsp90 inhibition [56, 57], we attempted to cross reference our list of significant 

protein expression changes to those identified in these two studies. As discussed above, 

MaxQuant output provides multiple accession numbers to the proteins and genes, but this output 

for protein identity is not consistent, and does not exactly match across the different searches / 

studies. By using bio-informatics tools (courtesy of Tyler Warwick, Oklahoma State University) 

to combine protein lists form two different experiments we were only able to match 1/3rd of the 

total proteins from two different experiments. Thus, it was difficult to compare the results from 

the three studies, particularly in light of the large lists of protein expression changes identified. 

Instead, we compared results at the GO level. 

  Comparing GO analysis results from our study to those of Mann [56] and Kuster [57], we 

conclude that the effects of structurally diverse Hsp90 inhibitors are highly conserved across 

different cell lines and among the inhibitors. These conclusions are based on the observation that 

the processes affected in all the three studies were nearly indistinguishable despite the differences 

in the inhibitors, doses, cell lines, and experimental designs used (Tables 4.5 & 4.6). In contrast to 

these two SILAC studies, we did not observe a significant enrichment of GO terms associated 

with DNA repair and damage and proteasome core complex. We speculate that this might be due 

to the high micro-molar concentration of Hsp90 inhibitors used in those studies as opposed to the 

low nano-concentrations used in our study. We speculate that use of high doses of Hsp90 

inhibitors results in apoptosis, thus leading to the up-regulation of proteasomal machinery. Down-  
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Table 4.4:  Comparison of the R
2 

values across the biological replicates in AUY922 

data, by searching AUY922 data alone in MaxQuant versus searching AUY922 data 

along with 17-DMAG data in MaxQuant. 

AUY922 R
2
 values-When searched individually 

in MaxQuant 

 

R
2
 values-When searched 

along with 17-DMAG data 

in MaxQuant 

BR1 vs. BR5 0.772 0.535 

BR1 vs. BR4 0.771 0.614 

BR1 vs. BR3 0.833 0.622 

BR1 vs. BR2 0.834 0.653 

BR2 vs. BR5 0.804 0.641 

BR2 vs. BR4 0.844 0.651 

BR2 vs. BR3 0.843 0.668 

BR3 vs. BR5 0.806 0.646 

BR3 vs. BR4 0.842 0.670 

BR4 vs. BR5 0.828 0.661 
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regulation of DNA damage and DNA repair proteins might also be a cellular consequence of 

apoptosis.   

     We also observed that some of the GO terms from Kuster’s lab data had very high p-values 

compared to p-values from our data and the data from Mann’s lab (Table 4.6). We speculate that 

this might be because, we and Mann’s lab used a 1.5 fold cut off whereas Kuster’s lab did not. 

Using a 1.5 fold change criterion might result in the elimination of several proteins that are 

functionally related, thus resulting in the reduction of GO p-values. 
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Table 4.5: Comparison of the GO terms enriched in our study to the GO terms 

enriched in HeLa cells treated with 50 µM 17-DMAG. 

GO term Function Hela cells 

treated with 

50 µM 17-

DMAG  

Jurkat cells 

treated with 

AUY922 

Jurkat cells 

treated with 

17-DMAG 

GO:0006259 DNA metabolic 

process 

1E15 2.8E4 - 

GO:0006986 Response to 

unfolded protein 

8E12 2E9 1.38E11 

GO:0016310 phosphorylation 3E9 4.9E7 2.2E5 

GO:0006796 phosphate metabolic 

process 

2E8 7.1E6 6.8E5 

GO:0006793 phosphorus 

metabolic process 

2E8 7.1E6 6.8E5 

GO:0051789 response to protein 

stimulus 

2E6 5.3E9 4.1E11 

GO:0006468 protein amino acid 

autophosphorlylation 

5E5 5.4E9 3.2E7 

GO:0005694 chromosome 2E4 1.8E6 2E6 

GO:0004672 protein kinase 

activity 

5E13 5E12 2.2E10 

GO:0003677 DNA binding 3E11 8.1E4 - 

GO:0004674 protein serine-

threonine kinase 

activity 

1E9 4.3E9 3E6 

 

Only GO terms common to both the studies were shown. The numbers represent the B-H 

corrected p-values for the selected GO terms.  
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Table 4.6: Comparison of the GO terms enriched in our study to the GO terms 

enriched in the SILAC study where four different cell lines were treated with 5-10 µM 

geldanamycin. 

GO Term Function Jurkat 

cells 

treated 

with 

AUY92

2 

Jurkat 

cells 

treated 

with 17-

DMAG 

 

Four different cancer cell lines treated with 

geldanamycin [57] 

    Cal27 Colo205 K562 MDAMB231 

GO:0004672 Protein 

kinase 

activity 

5.0E-12 2.2E-10 6.5E21 2E7 4.5E19 5E11 

GO:0005524 ATP 

binding 

3.6E-10 1.5E-07 2.4E38 1.1E28 1.2E29 1.8E21 

GO:0032559 Adenyl 

ribonucleot

ide binding 

6E-10 2.3E-07 2.5E38 1.7E28 1.6E29 2E21 

GO:0004674 Protein 

serine/threo

nine kinase 

activity 

4.3E-09 3E-06 1E13 0.002 9.5E15 7.1E8 

GO:0030554 Adenyl 

nucleotide 

binding 

9E-09 1.95E-06 1.4E35 1.4E28 8.2E29 1.3E21 

GO:0001882 Nucleoside 

binding 

8.2E9 7.5E7 5.9E35 3.1E28 1.1E28 1.3E21 

GO:0001883 Purine 

nucleoside 

binding 

2.3E8 1.9E6 7.9E35 1.6E28 4.2E28 1.7E21 

GO:0032553 Ribonucleo

tide 

binding 

8.2E8 1.1E5 1.5E39 1.3E28 3.9E32 3E20 

GO:0032555 Purine 

ribonucleot

ide binding 

8.2E8 1.1E5 1.5E39 1.3E28 3.9E32 3E20 

GO:0006468 Protein 

amino acid 

phosphoryl

ation 

5.4E9 3.2E7 6.4E17 

 

3.2E5 3.2E13 4.6E9 

GO:0017076 Purine 

nucleotide 

binding 

7.1E7 6E5 2.3E37 1E28 1.4E31 5.5E21 

GO:0022403 Cell cycle 

phase 

9.1E8 10E9 2.1E6 0.07 2E12 0.02 

GO:0016310 Phosphoryl

ation 

4.9E7 2.1E5 1.4E16 1.9E5 8E14 2.6E8 

GO:0004386 Helicase 

activity 

4.2E5 5.71E4 4.2E4 0.0003 0.004 - 
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GO:0007049 Cell cycle 5.4E6 1.6E7 5.9E13 5.5E7 8.4E16 2.6E6 

GO:0006796 Phosphate 

metabolic 

process 

7.1E6 6.8E5 3.7E14 3.9E5 5.8E12 5.3E8 

GO:0006793 Phosphorus 

metabolic 

process 

7.1E6 6.8E5 3.7E14 3.9E5 5.8E12 5.3E8 

GO:0005654 Nucleoplas

m 

1.9E5 1.4E5 8.4E7 0.0003 5.1E8 0.01 

GO:0031981 Nuclear 

lumen 

7E5 4.7E6 1.4E8 0.0001 4.3E8 0.03 

GO:0000166 Nucleotide 

binding 

2.3E4 - 1.9E38 1.3E32 4.4E36 1.5E19 

GO:0022402 Cell cycle 

process 

1.3E4 8.2E6 7.3E7 6.5E5 2E16 0.0003 

GO:0000278 Mitotic cell 

cycle 

1.4E4 6.6E5 4E7 4.8E5 1E16 0.002 

GO:0005643 Nuclear 

pore 

8E4 8.3E4 2E4 0.0008 0.0003 0.002 

 

Only GO terms common to both the studies were shown. The numbers represent the B-H 

corrected p-values for the selected GO terms. P values of the GO terms for the data from Wu et 

al. were obtained from supplemental GO analysis excel sheet provided along with their 

publication. 
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     To validate the Hsp90 inhibitor-induced changes in protein expression identified in our 

spectrum assays, we compared them to the protein expression changes identified in our SILAC 

assays (Fig 4.8). The majority (87%) of the union of the sets of AUY-induced and 17-DMAG-

induced protein expression changes identified in our spectrum counting assays were also 

identified in our SILAC assays (Fig 4.8). However, in our SILAC assays we identified 1148 

additional changes that were not apparent in the spectrum counting assays (Fig 4.8). Because 

these expression changes were conserved between both Hsp90 inhibitors used for the SILAC 

assays, we are confident that they are real. Failure to detect them by spectrum counting reflects 

the weakness of the spectrum counting technique. In the summary, high degree of similarity 

between spectrum counting results vs. the SILAC results gives us confidence in both the assays. 

However, in terms of the number of significant protein expression changes identified, SILAC is 

superior to spectrum counting. 
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Figure 4.8: Comparison of the significant protein expression changes identified from spectrum 

counting assays to the significant protein expression changes identified from SILAC assays. 

Proteins identified as significantly altered by both AUY922 and 17-DMAG (Student’s T-test p 

values < 0.05) in spectrum counting assays were compared to the proteins identified as 

significantly altered by both AUY922 & 17-DMAG in SILAC assays (One sample T-test 

followed by Storey FDR correction). For this comparison, we selected the proteins with T-test p 

values < 0.05 in spectrum counting assays and the proteins with Storey corrected values < 0.05 in 

SILAC assays. Neither set was truncated by a fold change threshold.
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CHAPTER V 
 

Protein folding antagonist AZC potentiates the anti-proliferative effects of AUY922 

in Jurkat leukemia cells. 

Introduction 

    In our spectrum counting and SILAC assays, several chaperones were found to be up-regulated 

by Hsp90 inhibitor AUY922, with a magnitude greater than that of the down-regulated proteins. 

These results suggested that AUY922 causes protein folding burdens. Therefore, we speculated 

the protein folding burdens caused by AUY922 can be enhanced by combinatorial treatments 

with other protein folding antagonists.  

   Thus, we tested the anti-proliferative effects of AUY922 in Jurkat leukemia cells by 

combinatorial treatment with a protein folding antagonist L-azetadine-2-carboxylic acid (AZC). 

AZC is a proline analog that gets incorporated into newly synthesized proteins and leads to 

protein folding burdens by destabilizing proteins [107-110]. We also tested the anti-proliferative 

effects of AUY922 in the presence of another protein folding antagonist, namely tunicamycin. 

Tunicamycin inhibits N-glycosylation of proteins in the endoplasmic reticulum, and causes ER 

protein folding burdens. We further tested whether AUY922, AZC, and tunicamycin share 

conserved mechanisms, by comparing the proteomic fingerprints of cells treated with either of 

these drugs, or combination of AUY922 and AZC, using the Stable Isotope Labeling with Amino 

acids in Cell culture (SILAC) approach.  
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Materials and Methods 

   Materials used in this study were the same as described in Chapter II and chapter III. Conditions 

used to culture Jurkat cells were described in Chapter II. 

AUY922 and AZC combinatorial drug treatments 

    For treatment with two different drugs, cells were seeded in 96 well plates at a density of 

10,000 cells/100ul/well. After twenty four hours, cells were treated with indicated concentrations 

of the 1
st
 drug or with DMSO. Following drug treatment, cells were incubated at 37°C in a CO2 

incubator. After ten hours of incubation, cells were treated with indicated concentrations of the 

second drug or DMSO. After 38 hours of incubation with 2
nd

 drug, cell viability was determined 

using Cell Titer Aqueous One Solution Cell Proliferation Assay (MTS) reagent as described in 

Chapter II. All experiments were performed in three biological replicates. 

SILAC labeling, drug treatments and preparation of samples for LC-MS/MS analysis 

   Jurkat cultures adapted to SILAC heavy media were treated with IC50 concentrations of either 

AUY922 (15 nM), or AZC (1 mM) or tunicamycin (130 ng/ml) for 48 hours. For control 

experiments Jurkat cultures adapted to SILAC light media were treated with DMSO. After 48 

hours of treatment with drugs or DMSO, cultures were harvested,  lysates from each drug 

treatment were mixed in 1:1 ratio (50 µg of treated and 50 µg of control) and samples were 

prepared for mass spectrometry using methods as described in Chapter III. For AZC and 

AUY922 combinatorial drug treatments, heavy labeled Jurkat cultures were pre-treated with IC50 

concentration of AZC (1 mM), and after 10 hours of AZC treatment, cultures were treated with 

IC50 concentration of AUY922. For control experiments Jurkat cultures adapted to SILAC light 

media were treated with DMSO. After 38 hours of AUY922 treatment cultures were harvested 

and samples were prepared for mass spectrometry using methods as described in Chapter III. 
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MaxQuant searches and statistical analysis 

  Raw MS/MS files from low dose AUY922, AZC, AUY-AZC data were all searched in one 

MaxQuant run. Tunicamycin was searched alone in a separate MaxQuant run. Statistical analysis 

was performed on only the proteins that had intensities in both control and treated samples in all 

three biological replicates. Statistical tests and criteria used were the same as described in Chapter 

IV. 

Results 

    The induction of chaperones and chaperonins (T-complex proteins) identified in our spectrum 

counting assays and SILAC assays suggested that part of the cytotoxic effects of Hsp90 inhibitors 

could be due to a global protein folding burden caused by these inhibitors. Thus, we hypothesized 

that the cytotoxicity of Hsp90 inhibitors could be enhanced by using them in combination with 

other protein folding antagonists.  

         L-Azetadine-2-carboxylic acid (AZC) is a four carbon ring analog of proline (Fig 5.1). 

Incorporation of AZC instead of proline into newly synthesized proteins compromises protein 

folding and induces the synthesis of Hsps in cytoplasm and ER [80, 111] . Thus, we tested the 

anti-proliferative effects of AUY922 in the presence and absence of AZC. The IC50 value for 

AZC for Jurkat cell proliferation was approximately 1 mM (not shown). Pre-treatment of Jurkat 

cells with AZC, followed by treatment with AUY922 reduced cell proliferation when compared 

to either drug alone (Fig 5.2). At high doses of AZC (1.6 mM and above), AZC dominated the 

response. At intermediate doses (0.71 to 1.1 mM), AZC potentiated the effects of AUY922. 

However, at low doses of AZC (0.2 mM – 0.47 mM) both drugs appeared to have synergistic 

effects. This conclusion was based on the observation that at low doses AZC by itself has no 

effects on cell proliferation, AUY922 inhibits proliferation of 20 % of the cells, whereas AZC 

and AUY together inhibit the proliferation of 40 % of the cells. If the drugs had additive effects 

then the percent of cells whose proliferation is inhibited should have been between 0 & 20 %.   
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                                 Proline                                              L-Azetadine-2-carboxylic acid 

Figure 5.1  (Images from Wikipedia commons) 
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Figure 5.2-Pretreatment with AZC increases the anti-proliferative effects of AUY922 in 

Jurkat cells. 

Jurkat cultures were pre-treated with indicated concentrations of AZC, followed by AUY922. 

Cell proliferation was measured as described in Methods. One star, T-test p value ≤ 0.05; two 

stars, p ≤ 0.01; three stars, p ≤ 0.001. 
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This indicated that pre-treatment with AZC sensitized Jurkat cells to subsequent treatment with 

Hsp90 inhibitor. This suggests that AZC treatment results in decreased protein stability in the 

cell. As a result, AZC treated cells depend extensively on Hsp90 to support these compromised 

proteins. Inhibiting Hsp90 therefore compromises the proteostasis thus leading to reduced cellular 

proliferation. 

      However, reversing the order of addition of the two drugs (AUY922 treatment followed by 

AZC treatment) did not reduce cellular proliferation as compared to either drug alone (Fig 5.3). 

We speculate that pretreatment with AUY922 results in chaperone induction which offers 

protective response from subsequent unfolded protein burdens induced by AZC treatment. 

      We similarly tested the antiproliferative effects of AUY922 in the presence and absence of 

another protein folding antagonist, tunicamycin. Tunicamycin (Fig 5.4) inhibits glycosylation in 

the endoplasmic reticulum and results in the accumulation of under-glycosylated proteins. This 

leads to ER stress. 

    The IC50 value of tunicamycin for Jurkat cell proliferation was approximately 130 ng/ml (not 

shown). Tunicamycin exhibited a steeper dose curve when compared to AUY, and was similar to 

AUY922 by being cytostatic at higher doses. The percent of cells whose proliferation was 

inhibited by pretreatment of Jurkat cells with tunicamycin, followed by treatment with AUY were 

the same as the percent of cells whose proliferation was inhibited by either drug alone (Fig 5.5). 

Even though both drugs appeared to have slightly additive effects at low doses, these effects were 

not statistically significant. This suggests that tunicamycin compromises ER protein folding but 

not protein folding in the cytoplasm. Therefore pre-treatment with tunicamycin does not cause the 

cells to depend on cytoplasmic Hsp90 to fold these unfolded proteins. Therefore, subsequent 

compromise of Hsp90 function does not grossly reduce the cell proliferation. 
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Figure 5.3: Pretreatment with AUY922  does not increase the anti-proliferative effects 

of AZC in Jurkat cells. 

Jurkat cultures were pre-treated with indicated concentrations of AUY922, followed by AZC. 

Cell proliferation was measured as described in Methods.  
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Figure 5.4. Tunicamycin (Image from Wikipedia commons) 
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Figure 5.5: Pretreatment with TM does not increase the anti-proliferative effects of 

AUY922 in Jurkat cells. 

Jurkat cultures were pre-treated with indicated concentrations of TM, followed by AUY922. Cell 

proliferation was measured as described in Methods.  
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   To compare the proteome-wide changes induced by AUY922, AZC, a combination of AUY922 

and AZC, or tunicamycin, SILAC equilibrated Jurkat cultures were treated with IC50 doses of 

each drug (See methods). For AZC and AUY922 combinatorial treatments, Jurkat cultures were 

pre-treated with IC50 dose of AZC followed by treatment with IC50 dose of AUY922 after 10 

hours of AZC pre-treatment. 

   To facilitate the bioinformatics comparison of the proteomic fingerprints of all four drug 

treatments, LC-MS/MS files from the AUY922, AZC, and AZC & AUY922 combination 

experiments were searched in a single MaxQuant search, as opposed to searching them in 

individual MaxQuant searches. However, LC-MS/MS raw files from tunicamycin experiment 

were searched individually. Our initial analysis indicated that tunicamycin induced very few 

protein expression changes and therefore, we decided to manually compare tunicamycin induced 

changes to the changes induced by the other three drugs. 

      Before analyzing the effects of the four drugs on Jurkat proteome, we assessed the quality of 

the raw data from all these drug treatments using the same approach as described in Chapter III. 

In all the drug treatments except tunicamycin, reproducibility across the three biological 

replicates was moderate (Table 5.1). The  R
2
 values for AUY922 across the three biological 

replicates ranged from 0.479 to 0.532 (Fig 5.6). The R
2
 values for AZC across the three biological 

replicates ranged from 0.309 to 0.345 (Fig 5.7). The R
2
 values for AZC and AUY922 

combinatorial treatments across the three biological replicates ranged from 0.478 – 0.553 (Fig 

5.8).  
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Table 5.1:  Comparison of the R
2 
values across the biological replicates in AZC data, by 

searching AZC data alone in MaxQuant versus searching AZC data along with other data in 

MaxQuant. 

AZC R
2
 values-When searched individually 

in MaxQuant 

 

R
2
 values-When searched 

along with other 

experiments 

in MaxQuant 

BR1 vs. BR2 0.592 0.345 

BR1 vs. BR3 0.592                    0.309 

BR2 vs. BR3 0.667                    0.391 

 

    

      



135 
 

 
 

 

 

 

 

Figure 5.6: Reproducibility across the three biological replicates in Jurkat cultures 

treated with 15 nM AUY922. 

Protein expression changes (Log2 ratio H/L) were plotted across the three biological replicates. 

The X-axis and the Y-axis represent fold changes in protein expression. In this figure, AY 

denotes cells treated with AUY922, and BR denotes the individual biological replicate. 
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Figure 5.7: Reproducibility across the three biological replicates in Jurkat cultures 

treated with 1 mM AZC. 

Protein expression changes (Log2 ratio H/L) were plotted across the three biological replicates as 

described in Figure 5.6,  
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Figure 5.8: Reproducibility across the three biological replicates in Jurkat cultures 

treated with 1 mM AZC followed by 15 nM AUY922. 

Protein expression changes (Log2 ratio H/L) were plotted across the three biological replicates as 

described in Figure 5.6. 
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To examine the reasons for these moderate R
2 
values observed across the biological replicates in 

AUY922, AZC, and AZC plus AUY922 combinatorial treatment experiments, the R
2
 values in all 

three experiments obtained from individual MaxQuant searches of each drug treatment 

experiment we compared versus the R
2
 values obtained by searching all three experiments in a 

single MaxQuant search. This revealed that searching the files from all three experiments in one 

MaxQuant search reduced the R
2
 values (Example AZC -Table 5.1). Thus, we concluded that 

moderate R
2 
values observed in AUY922, AZC and combinations of AUY and AZC were not due 

to problems with reproducibility, but because of searching all files in one MaxQuant search. 

  Reproducibility across the three biological replicates in tunicamycin dataset was also low, with 

R
2 
values ranging from 0.215 to 0.278 (Fig 5.9), even though, the Tunicamycin files were 

searched as an individual set in MaxQuant. We speculated that these low R
2 
values were due to 

the drug inducing relatively minor changes in the proteome. 

    Data from all the experiments was normalized using the normalization approach described in 

Chapter III. Normalization minimized variability across the biological replicates (not shown) in 

data from all the drugs, but without compromising the quality of the data (Fig 5.10-5.13).  
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Figure 5.9: Reproducibility across the three biological replicates in Jurkat cultures 

treated with 130 ng/ml tunicamycin. 

Protein expression changes (Log2 ratio H/L) were plotted across the three biological replicates as 

described in Figure 5.6. 
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        A.                                                                    B. 

 

 
 

                                                                                                                 
 

 

 

 

Figure 5.10: Histograms of average protein expression of all three biological replicates 

in cells treated with AUY922 before and after experiment-level normalization. 

Ratios of H/L intensities from all the three biological replicates were averaged and plotted as 

histograms before (Panel A) and after (Panel B) normalization. The X-axis represents binning of 

proteins based on intensity. The Y-axis represents the number of proteins in each bin.    
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 A.                                                                    B. 

 

 
 
 

 

 

 

Figure 5.11: Histograms of average protein expression of all three biological replicates 

in cells treated with AZC before and after experiment-level normalization. 

Ratios of H/L intensities from all the three biological replicates were averaged and plotted as 

histograms before (Panel A) and after (Panel B) normalization as described in Figure 5.10. 
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     A.                                                                    B. 

 

 
 

                                           

 

 

Figure 5. 12: Histograms of average protein expression of all three biological 

replicates in AUY 922 and AZC combinatorial treatments before and after experiment-

level normalization. 

Ratios of H/L intensities from all the three biological replicates were averaged and plotted as 

histograms before (Panel A) and after (Panel B) normalization as described in Figure 5.10. 
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 A.                                                                    B. 

 

 
 

 

 

 

 

Figure 5.13: Histograms of average protein expression of all three biological replicates 

in tunicamycin dataset before and after experiment-level normalization. 

Ratios of H/L intensities from all the three biological replicates were averaged and plotted as 

histograms before (Panel A) and after (Panel B) normalization as described in Figure 5.10. 
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   By analyzing H/L ratio histograms from all the four experiments, our raw SILAC ratios implied 

down-regulation across all the proteome (e.g., Fig 5.10). Therefore, we wanted to ensure that the 

heavy and light lysates were mixed in a 1:1 ratio (50 µg of lysate from treated cells & 50 µg from 

control cells). To test this, we averaged all of the light protein intensities and all of the heavy 

protein intensities from each bio-replicate, and compared them (Table 5.2). Results showed that 

the average H/L ratios in AUY922 and tunicamycin experiments were close to 1.0 indicating 

there were no gross problems during the mixing of control and treated samples. Therefore, we 

concluded that the down-regulation bias in AUY922 and tunicamycin experiments was not due to 

improper mixing of heavy and light lysates, and instead reflected large real changes in the Jurkat 

proteome. We also confirmed that the down-regulation bias was not due to improper mixing by 

comparing H/L ratios for a selected list of house-keeping proteins in AUY922 and tunicamycin 

experiments (Table 5.3). The average housekeeping H/L ratios were close to 1.0 in both the 

AUY922 and tunicamycin experiments (Table 5.3). Thus, these results reinforced our conclusions 

that the down-regulation bias was not due to improper mixing. 

 

  However, the average H/L ratios in the AZC and in the AUY922-AZC combinatorial treatment 

experiments implied problems during the mixing of control and treated lysates (Table 5.2). This 

was also evident in the H/L ratios of the actin and several other house-keeping proteins (Table 

5.3) in both experiments.  
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Table 5.2: Ratios of the average light and heavy protein intensities from AUY, AZC, AUY and 

AZC combinatorial treatment and tunicamycin experiments. 

 

 Average of light 

(control) 

intensities 

Average of 

heavy 

(treated)  

intensities 

Ratio H/L 

intensities 

AUY Low Dose   Biorep-1 

                             Biorep-2 

                             Biorep-3              

1.8e9 

1.5e9 

3.1e9 

1.8e9 

1.5e9 

3.3e9 

0.99 

0.97 

1.06 

Tunicamycin       Biorep-1 

                             Biorep-2 

                             Biorep-3              

1.66e9 

2.24e9 

3.78e9 

1.59e9 

2.13e9 

3.8e9 

0.96 

0.95 

1.01 

AZC                     Biorep-1 

                             Biorep-2 

                             Biorep-3              

1.2e9 

1.5e9 

1.1e9 

1e9 

1.2e9 

9.8e8 

0.85 

0.79 

0.87 

AUYplusAZC     Biorep-1 

                             Biorep-2 

                             Biorep-3              

1.97e9 

1.94e9 

1.53e9 

1.78e9 

1.78e9 

1.5e9 

0.90 

0.90 

0.97 
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 Table 5.3: Comparison of H/L ratios of house-keeping proteins low dose AUY922, AZC, AUY 

& AZC combinatorial treatment and tunicamycin.  

 

 

 

Protein name 

 

AUY Low dose 

 

Tunicamycin 

 

AZC 

 

AUYplusAZC 

 Ratio 

H/L 

BR1 

Ratio 

H/L 

BR2 

Ratio 

H/L 

BR3 

Ratio 

H/L 

BR1 

Ratio 

H/L 

BR2 

Ratio 

H/L 

BR3 

Ratio 

H/L 

BR1 

Ratio 

H/L 

BR2 

Ratio 

H/L 

BR3 

Ratio 

H/L 

BR1 

Ratio 

H/L 

BR2 

Ratio 

H/L 

BR3 

Actin, alpha  0.92 0.96 1.1 1.0 1.0 1.08 0.81 0.74 0.94 0.84 0.79 0.78 

Actin, 
cytoplasmic 2 

0.96 0.99 1.1 1.06 1.07 1.13 1.0 0.84 1.1 0.88 0.90 0.95 

Tubulin 

alpha-1A 

chain 

0.85 0.87 1.01 - - - 0.64 0.51 0.68 0.59 0.57 0.63 

Tubulin 
alpha-1C 

chain  

0.81 0.83 0.95 0.81 0.83 0.87 0.54 0.62 0.70 0.64 0.65 0.72 

Tubulin beta 
chain 

0.88 0.91 0.97 0.90 1.02 1.02 0.65 0.68 0.74 0.65 0.77 0.79 

Tubulin beta-

4A chain 

0.76 0.85 0.87 0.81 0.88 0.94 0.69 0.63 0.70 0.68 0.75 0.65 

Tubulin beta-

4B chain 

0.92 0.89 0.95 0.90 1.0 1.01 0.64 0.68 0.75 0.73 0.71 0.74 

Average of all 
house-

keeping 

proteins 

0.87 0.90 0.99 0.91 0.97 1.0 0.71 0.67 0.80 0.72 0.73 0.75 

 

H/L ratios of the house keeping proteins were shown.  BR represents biological replicate. 
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    To assess whether the down-regulation we observed is due to real changes or due to improper 

mixing of light and heavy lysates, we first speculated that the down-regulation bias observed 

in AZC and AUY and AZC combinatorial treatments might be due to: not identifying 

proteins with AZC containing peptides in the treated samples. To address this, we re-

analyzed the protein expression ratios in AZC-treated cells using MaxQuant, but 

specifying proline to AZC as a variable modification (- 14.00 Da). Out of the total 58,494 

peptides identified, only 1805 peptides had AZC as a modification and the AZC peptides 

were not specific to Heavy samples. However, the majority of the proteome was down-

regulated. Subsequently, we speculated that MaxQuant might not be able to properly 

identify AZC-modified peptides. To address this question, we searched one LC-MS/MS 

file from the AZC experiment using a different search engine (Mascot), specifying AZC 

as a variable modification. We then validated the Mascot results using Scaffold. Of the 

total peptides that Mascot identified, 28 putative AZC peptides were identified. Close 

inspection of each peptide’s MS/MS spectra showed that very few major ion fragments 

could be assigned to contiguous series (ladder) of hypothetical b & y ions. These results 

were consistent with the results obtained from MaxQuant, suggesting that AZC peptides 

were not being detected. Moreover the AZC peptides detected were not specific to treated 

samples. This strongly suggested that AZC peptides were not being identified. Thus, 

because AZC has been shown to be readily incorporated into proteins in cultured cells, 

we concluded that the AZC peptides were not identifiable on the basis of their MS/MS 

fragmentation patterns. 

   Since we were not able to identify AZC peptides by specifying AZC as a variable modification, 

we re-analyzed the protein expression ratios in AZC treated cells using MaxQuant, but by 

specifying proline to AZC as a fixed modification instead of variable modification to effectively 
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eliminate proline containing peptides from the database. Out of the 1818 peptides subsequently 

identified by MaxQuant, only 26 peptides contain proline (as an AZC modification). However, 

the ratios of H/L intensities still implied that the samples were not properly normalized. Thus, we 

concluded that problem is not just due to failure to identify AZC-peptides. 

    Because we could not correct the apparent H vs. L ratio defects by any of the methods above, 

we normalized the results from experiments using cells treated with AZC alone or with the AUY-

AZC combination. To do this, the 3 light channels and the 3 heavy channels were first normalized 

using the experiment-level normalization approach described in Materials and Methods of 

Chapter III (Light intensities were normalized to average light intensities, heavy intensities were 

normalized to average heavy intensities). Following this experiment-level normalization, the light 

intensities and the heavy intensities were normalized to each other as shown below. 

     After performing this correction, the average of ratio of H/L intensities in each of the 

experiments involving AZC was 1.0. This was also evident in the histograms plotted before and 

after H/L ratio correction (Fig  5.14 & 5.15). 
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Correction factor Light intensities = Average intensities (L- channel) / Average intensities (H+L- channel) 

 

Correction factor Heavy intensities = Average intensities (H- channel) / Average intensities (H+L- channel) 

 

Corrected intensity of a protein L-channel = Intensity of a protein L-channel / Correction factor Light 

intensities 

 

Corrected intensity of a protein H-channel = Intensity of a protein H-channel / Correction factor Heavy 

intensities 
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A.                                                                        B. 

       

Figure 5.14: Ratio H/L intensity histograms of all three biological replicates in AZC before 

and after H/L ratio correction. 

Ratios of H/L intensities from all the three bio-reps were plotted before (Panel A) and after (Panel 

B) correcting the H/L ratios . 
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A.                                                                        B. 

                   

 

Figure 5.15: Ratio H/L intensity histograms of all three biological replicates in AUY & 

AZC combinatorial treatments before and after H/L ratio correction. 

Ratios of H/L intensities from all the three bio-reps were plotted before (Panel A) and after (Panel 

B) correcting the H/L ratios . 
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    In this work, our main objective was to determine the biological basis of the combinatorial 

effects of AUY922 and AZC. We also wanted to determine the biological basis for the absence of 

similar combinatorial effects between AUY922 and tunicamycin. To accomplish this, heavy label 

SILAC-equilibrated individual Jurkat cultures were treated with one of four conditions:  (i) 

AUY922 IC50 dose (15 nM),  hereafter referred to as  “low dose AUY” or “LD AUY922”, (ii)  

AZC at its IC50 dose (1 mM), hereafter referred to as “AZC”, (iii) tunicamycin at its IC50 dose  

(130 ng/ml) hereafter referred to as “tunicamycin” and (iv) a combination of AUY922 at its IC50 

dose (15 nM) plus AZC at its IC50 dose (1 mM) , hereafter referred to as “AUY-AZC”. 

Combinatorial treatments of Jurkat cultures with AUY922 and tunicamycin were not assayed. 

Following drug treatments, proteins were harvested, subjected to  LC-MS/MS, and analyzed by 

MaxQuant software. 

   We wanted to compare the protein expression changes induced by the drugs described above to 

each other,  but  it is difficult to compare data obtained from individual MaxQuant searches (see 

Discussion, Chapter IV). To faciliate drug vs. drug comparisons, the datasets above (the 4 drug 

treatments x 3 biological replicates each) were searched  in a single MaxQuant build. As noted 

below, tunicamycin was omitted. Additionally, three LCMS/MS data files from cells treated with 

high doses of AUY922   (75 nM, representing 5-7X  the IC50, and  hereafter referred to as “high 

dose AUY922” or “HD AUY922”) were analyzed, as were three data files from cells treated with 

high doses of 17-DMAG (150 nM, representing the 5-7X the IC50, hereafter referrred to as “high 

dose 17-DMAG or “HD 17-DMAG”). The later two treatments served as a benchmark for drugs 

sharing a common mechanism of action. Since our preliminary analysis indicated that 

tunicamycin-induced few protein expression changes, tunicamycin data files were searched as a 

separate MaxQuant build (because the small number of changes could be compared manually). 

   To determine if these data sets could be compared to each other, we analyzed the total number 

of protein expression changes identifed in each experiment. Results sohwed that the number of 
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proteins identified in each data set were nearly similar (Fig 5.16). Thus, we concluded that the 

data from the experiments could be compared. 

    Protein expression changes were validated using the statistical tests as described in Materials 

and Methods, using  Storey FDR corrected p-value thresholds of < 0.05 and  fold-change 

threshold of   ≥ 1.5. Protein expression changes that passed both criteria were considered to be 

significant changes. These criteria  identified 200-400 significant changes in cells treated with LD 

AUY, AZC, AUY-AZC , HD AUY and  HD 17-DMAG (Table 5.4). In contrast, tunicamycin 

treated cells showed only 58 significant  protein expression changes (Table 5.4).  

 To define the proteomics fingerprint characterestic of a common drug mechanism, we compared 

proteomes of cells treated with HD AUY922 vs. proteomes of cells treated with HD 17-DMAG. 

For this comparison, three out of five biological replicates from HD AUY and HD 17-DMAG 

were used. A total of 76 % of the changes identified in HD AUY922 treated cells were also 

observed in cells treated with HD 17-DMAG (Fig 5.17, Panel A). Similarly 63% of the changes 

identified in HD 17-DMAG treated cells were conserved in HD AUY treatments (Fig 5.17, Panel 

A). Moreover, the magnitude and direction (up-regulation or down-regulation) of their protein 

expression changes were also conserved  (Fig 5.17, Panel B), generating an R
2
 value of 0.814. 

The majority of the changes were represented in the upper right hand or lower left hand quadrants 

of the scatterplot, and there were few changes in lower right hand quadrant or the upper left hand 

quadrant of the plot comparing changes among both drugs. (Fig 5.17, Panel B). These 

observations defined the characterstics of a proteomics fingerprint for drugs sharing a common 

mechanism, using just three bio-replicates 
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Figure 5.16: Total number of proteins detected across 3 biological replicates in the 

proteomes of drug-treated Jurkat cultures. 

The number of biological replicates is denoted by “n”. The n = 3 circle represents the number of 

proteins identified in 3/3 experiments. The n = 2 crescent represents the difference between the 

number of proteins identified in 3/3 experiments vs. the number of proteins identified in 2/3 

experiments. The n = 1 crescent represents the difference between the number of proteins 

identified in 3/3 experiments vs. the number of proteins identified in 1/3 experiments. 
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Table 5.4: Effects of statistical tests and criteria for validating protein expression 

changes among 6 different drug treatments. 

 

 

 
Test and/or criteria LD 

AUY922   

AZC 

 

LD AUY 

plus & 

AZC 

 

Tunicamycin HD 

AUY922  

HD 

DMAG  

Proteins quantified 

(all 3 bio-reps) 

2854 2429 2569 2807 2596 2397 

One sample T-test 

(P < 0.05) 

1115 839 1318 874 1235 1165 

Storey FDR 

correction of one 

sample T-test p 

values (< 0.05) 

1431 1013 1925 991 1775 1670 

Fold change ≥ 1.5 287 338 414 97 299 304 

Storey FDR 

corrected p-value 

thresholds of< 0.05 

and fold change ≥ 

1.5 

250 265 402 58 288 291 
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                                           A. 

 
                      B. 

 

 

Figure 5.17: Comparison of the significant changes induced by HD AUY922 vs. HD 

17-DMAG. 

Panel A: Venn analysis of protein expression changes induced by HD AUY922 vs. HD 17-

DMAG. Panel B: Comparison of magnitude of changes induced by both inhibitors. The X –axis 

represents log 2 treated/control (H/L) ratios of proteins in AUY, and the Y-axis represent log 2 

H/L ratios of proteins in 17-DMAG. Red crosses represent significant changes caused by both 

inhibitors, while grey crosses represent insignificant changes in both the inhibitors. 
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   Results from  AUY922 and AZC combinatorial treatments indicated that inhibition of cellular 

proliferation was higher in AUY-AZC treated cells compared to cells treated with each drug 

alone. Thus, we predicted that both drugs have similar effects on the proteome.  Therefore, we 

compared the significant changes identified in each drug. Of the total changes identifed in cells 

treated with LD AUY922, 34% of them were also observed in cells treated with AZC. Of the 

changes identified in cells treated with AZC, 27% of the changes were also observed in cells 

treated with LD AUY922 (Fig 5.18, Panel A). We also plotted the protein expression changes to 

demonstrate their magnitude and direction (up or down-regulation) in both drugs (Fig 5.18, Panel 

B). The R
2 
value for this comparison was 0.298. Moreover, all the proteins showing significant 

changes in both drugs were represented in the upper right hand quadrant or lower left hand 

quadrant. None of the significant changes conserved to both drugs were represented in lower right 

hand quadrant or the upper left hand quadrant. Since 30% of the  protein expression changes were 

conserved between  both drugs, we concluded that the drugs shared similar but not identical 

mechanisms.  

   Because  the inhibition of cell proliferation was higher in Jurkat cells treated with a 

combinations of AUY922 and AZC compared to either drug alone, we predicted that there would 

be more protein expression changes in AUY922-AZC combinatorial treatments compared to 

individual drug treatments. To test this, we compared the changes common to LD AUY- treated 

cells to those observed in cells treated with AUY-AZC. We saw an increase in protein expression 

changes (256 proteins) in cells treated with AUY-AZC compared to cells treated with each drug 

alone. The total changes common to cells treated AUY922-AZC and cells treated with LD 

AUY922 also increased (Fig 5.19, Panel A). We similarly compared changes common to AZC to 

the changes induced by AUY-AZC . The total significant changes common to cells treated with 

AUY-AZC and AZC were also higher (Fig 5.19, Panel B). 
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                        A. 

 

                            B. 

 
 
 

Figure 5.18: Comparison of the significant changes induced by LD AUY922 vs. AZC. 

Panel A: Venn analysis of protein expression changes induced by LD AUY922 vs. AZC. Panel 

B: Comparison of magnitude of changes induced by both inhibitors. The X –axis represents log 2 

treated/control (H/L) ratios of proteins in LD AUY922, and the Y-axis represent log 2 H/L ratios 

of proteins in AZC. Red crosses represent significant changes caused by both inhibitors, while 

grey crosses represent insignificant changes in both the inhibitors. 
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                             A. 

 
 

                            B. 

 

 
 

 

 

 
Figure 5.19: Comparison of the significant changes in LD AUY922 vs. LD AUY922 plus AZC, 

and AZC vs. LD AUY922 plus AZC. 

Panel A: Venn analysis of the significant changes induced by LD AUY922 vs. AZC. Panel B: 

Venn analysis of the significant changes induced by LD AUY922 vs. LD AUY922 plus AZC. 
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Enrichment of protein expression changes in the combinatorial treatments suggested  that some 

protein expression changes were similarly altered by both AUY922 and AZC (c.f. Fig 5.18, Panel 

A vs Fig 5.19, Panels A& B). 

   Since LD AUY922 and AZC appeared to have similar effects on some protein expression 

changes, we speculated that the down-regulated proteins will be more down-regulated in the 

combinatorial treatment compared to the individual drug treatments. Similarly, we speculated that 

the up-regulated chaperones will be more up-regulated in combinatorial treatments, than each 

drug treatment alone, since both the drugs cause protein folding burdens. 

         To test if our speculation was correct, we divided the significant protein expression changes 

into up-regulated and down-regulated. Then we averaged the H/L ratios of all these proteins in 

each drug treatment (LD AUY, AZC, and AUY- AZC combinatorial treatment). Results indicated 

that average H/L ratios for the down-regulated proteins from LD AUY and AUY-AZC were not 

significantly different from each other (Fig 5.20, Panel A). Similarly, the average H/L ratios for 

the up-regulated proteins from AUY922 and AUY- AZC were also not significantly different 

from each other (Fig 5.20, Panel B). Since the average H/L ratios of the down-regulated 

expression changes in LD AUY vs. AUY- AZC were not much different, we concluded that the 

magnitude of down-regulated protein expression changes was not higher in cells treated with 

combinations of AUY922 and AZC relative to those observed in cells treated with LD AUY 

alone.   

Out of all the up-regulated proteins, four proteins showed statistically significant changes in LD 

AUY treated cells vs. AUY-AZC treated cells (Table 5.5). Among these four proteins, three of 

them were more up-regulated in cells treated with LD AUY compared to cells treated with AUY-

AZC. In contrast, the magnitude of up-regulation of Serpin was higher in cells treated with LD 

AUY-AZC when compared to cells treated with LD AUY922. Surprisingly, these results  
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A. 

 
 

                   B. 

 
                                                   

Figure 5.20: Comparison of the average H/L ratios of significant protein expression 

changes in LD AUY922 vs. LD AUY922 plus AZC. 

H/L ratios of the significant protein expression changes in each drug treatment were averaged and 

compared to each other. Panel A: Comparison of the down-regulated expression changes. 

Panel B: Comparison of the up-regulated protein expression changes. 
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 Table 5.5: Comparison of the H/L ratios of proteins up-regulated in LD AUY922 treated cells  

vs. AUY plus AZC treated cells. 

  LD AUY922 H/L ratio  LD AUY922 plus AZC   

Protein names BR1 BR2 BR3 Average BR1 BR2 BR3 Average 

T-test 

P-values  

Bone marrow stromal 

antigen 2 1.96 2.04 2.22 2.07 1.09 1.47 1.51 1.36 0.017 

Serpin H1 8.55 5.75 4.99 6.43 10.8 12 12.54 11.8 0.023 

Heat shock 70 kDa 

protein 1A/1B 7.3 7.01 7.86 7.39 3.84 4.11 4.30 4.08 0.001 

Docking protein 2 7.89 11.6 9.79 9.76 1.99 1.39 15.98 6.45 0.562 

Heat shock protein 

HSP 90-beta 1.76 1.49 1.53 1.59 1.51 1.5 1.48 1.49 0.367 

Tyrosine-protein 

kinase Blk 2.25 1.8 1.89 1.98 1.4 1.57 1.33 1.43 0.04 

Heat shock protein 

HSP 90-alpha 2.49 2 2.1 2.2 1.69 1.7 1.67 1.69 0.075 

DnaJ homolog 

subfamily B member 

1 4.28 3.45 3.5 3.74 4.37 4.2 4.06 4.21 0.215 

                          

Average 4.56 4.39 4.24 4.4 3.34 3.49 5.36 4.06 

  

Statistical analysis was performed using Student’s T-test, two tailed, unequal variance. P values < 

0.05 were considered significant. 
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suggested a different model for the combinatorial effects of AUY922 and AZC (see Discussion). 

    Our assays of AUY922 and tunicamycin combinatorial treatments suggested that both drugs 

did not have additive effects on Jurkat cell proliferation (Fig 5.5, Chapter V). Thus, we  predicted 

that the drugs might not share conserved effects on the proteome. To test our prediction, we 

compared the changes induced by LD AUY to the changes induced by tunicamycin to determine 

if the protein expression changes induced by both drugs were conserved. Of the significant 

changes induced by LD AUY, only 3.9% of the changes were observed in cells treated with 

tunicamycin. Among the tunicamycin induced changes, only 12% of the changes were observed 

in cells treated with LD AUY (Fig 5.21). Since only 7 out of total 223 protein expression changes 

were observed between both drugs, we concluded that both the drugs do not have common 

effects. Moreover, these changes might be false discoveries, based on our FDR threshold of 0.05 

(7 out of 172 is 0.04). We did not compare the magnitude of expression changes between both 

drugs because they were searched separately in MaxQaunt, and thus could not be readily 

combined for generating scatterplots. 

   To validate tunicamycin-induced protein expression changes identified in our study, we 

compared them to tunicamycin-induced changes identified by Bull et al [76]. Only changes 

common to both studies were shown (Table 5.6). Up-regulation of ER chaperones in our study is 

consistent with the changes observed by Bull et al [76]. Thus, these results validate our mass 

spectrometry assays. 
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Figure 5.21: Comparison of the significant changes in LD AUY922 vs. tunicamycin. 

Venn analysis of the significant changes induced by LD AUY922 vs. significant changes induced 

by tunicamycin. 
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Table 5.6: Tunicamycin-induced protein expression changes common between our study and 

study from Bull et al. 

 

 
Protein  Ratio of H/L 

intensities- Our study 

Ratio of H/L intensities 

(Bull et al. 2012 ) 

Note: H is control and L 

is treated 

78 kDa glucose-

regulated protein 

2.64 0.34 

Endoplasmin 2.30  0.50 

Protein disulfide-

isomerase A3 

1.73  0.85  

Protein disulfide-

isomerase A4 

2.03 0.47  

Protein disulfide-

isomerase A6 

1.79  0.86  

Transferrin receptor 

protein 1 

0.66 1.46  

Thymidylate 

synthase 

0.62 1.43  

Protein transport 

protein Sec61 

subunit beta 

1.72 subunit alpha was up-

regulated (0.78) 

Lysosome-

associated 

membrane 

glycoprotein 1 

0.64  1.46 

Integrin beta-1 0.48  1.56  

 

 
Important Note: Bull et al. used light labeled cells for tunicamycin treatment and heavy labeled 

for control. Therefore H/L ratio > 1 means down-regulated and < 1 means up-regulated.  

 

Bull et.al studied the changes induced by 10 µM tunicamycin in human neuroblastoma cells [76]. 

Values in the right hand column are from Bull et al., Table 1 and supplemental Table 1 and are 

represented for comparison only. 

 

 

 

 

 

 



166 
 

Discussion 

 

 
    In this study, AZC potentiates the anti-proliferative effects of AUY922 in cultured Jurkat 

leukemia cells (Fig 5.2). At higher doses, AUY922-AZC combinatorial treatments appear to have 

simple additive effects on cell proliferation. At lower doses, neither drug inhibits cell 

proliferation, but combinations of these doses of AZC and AUY922 inhibit the proliferation of 

cells (Fig 5.2). This hints of drug synergy at low doses. In contrast to AZC, tunicamycin does not 

potentiate AUY922’s anti-proliferative effects (Fig 5.2). 

      AZC, AUY922, and tunicamycin compromise protein folding in different cellular 

compartments, and by different mechanisms. AZC is a proline analog. AZC causes global protein 

folding burdens by getting incorporated into the newly synthesized proteins and destabilizing 

them [107-109].  The Hsp90 inhibitor AUY922 destabilizes client proteins by compromising 

Hsp90 function. Although Hsp90 inhibitors GA , 17AAG and PU-H71  induce ER stress and up-

regulate ER chaperones [73, 74], reports from fluorescence polarization assays indicate that 

AUY922 binds weakly to ER chaperone GRP94 when compared to cytosolic Hsp90 [22]. This 

suggests that AUY922 might be causing protein folding burdens in cytoplasm but not in 

endoplasmic reticulum (ER). Tunicamycin is a bacterial antibiotic that inhibits N-glycosylation of 

proteins in the ER and results in the accumulation of unfolded proteins in the ER.  

      We hypothesize a model for the combinatorial effects of AUY922 and AZC. Both AZC and 

Hsp90 inhibitors destabilize proteins. When cells are treated with both inhibitors, there is large 

destabilization of the cellular proteome. This results in additive or synergistic effects of both 

drugs. 

     We also hypothesize a model for the absence of combinatorial effects between AUY922 and 

tunicamycin. In this model, we hypothesize that the protein folding burdens caused by 

tunicamycin are largely confined to the ER. Whereas results from our SILAC assays and from the 

literature [22], indicate that AUY922 does not significantly induce ER chaperones. This suggests 
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that AUY922 does not cause ER protein folding burdens. Therefore, the absence for 

combinatorial effects of AUY922 and tunicamycin might largely be due to compartmentalization 

of their effects. AUY922 effects might largely be confined to cytoplasm. Whereas tunicamycin 

effects might largely be confined to ER. 

     Results from our SILAC assays were consistent with this model. AUY922 and AZC shared 

some protein targets that were common (Fig 5.18, Panel A). Among these common targets, 

proteins down-regulated by one drug were down-regulated by the other drug and proteins up-

regulated by one drug were up-regulated by the other drug (Fig 5.18, Panel B), thus indicating 

similar effects. Moreover, we see an enrichment of protein expression changes in the 

combinatorial drug treatments, when compared to either drug alone (Fig 5.19 Panels A & B). 

These results are consistent with our model that both AUY922 and AZC compromise protein 

folding and both cause down-regulation of some common proteins. Also consistent with our 

model, tunicamycin and AUY922 do not have combinatorial effects, due to compartmentalization 

of their effects. Similarly, very few protein expression changes were common to AUY922 and 

tunicamycin (Fig 5.21). 

       Based on the model we hypothesized, we expected to see a higher magnitude of down-

regulation of the protein targets common to AUY922 and AZC in cells treated with AUY-AZC 

compared to cells treated with each drug alone. Instead we observed that the magnitude of the 

down-regulation of the common targets was not higher in combinatorial treatments (Fig 5.20, 

Panel A). 

    We also expected to see a higher magnitude of chaperone induction in cells treated with AUY-

AZC compared to cells treated with each drug alone. However, we did not see more chaperone 

induction in the cells treated with AUY-AZC like we expected (Fig 5.20, Panel B). Rather, we 

see that the magnitude of chaperone induction was lower in cells treated with combinations of 

AUY922 and AZC (Fig 5.20, Panel B & Table 5.4). Thus, these results suggested an alternate 

model for the combinatorial effects of AUY922 and AZC. 
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     In this new model, combinatorial effects of AUY-AZC on Jurkat cell proliferation are largely 

due to suppression of chaperone induction, thus depriving cells of chaperone protection. This was 

evident in our assays where most chaperones are less upregulated (with the exception of Serpin 

H1) in the dual drug treatment. This suggests that AZC either destabilizes the chaperones or 

compromises the transcription of these chaperones by compromising the stability of Hsf1. Thus, 

we conclude that the reason for combinatorial effects of AUY922 and AZC are because of a 

compromise in the magnitude of chaperone induction.  

   However, one other possibility exists for the down-regulation of chaperones in AZC treated 

cells. It should be worth noting that in the AZC treated cells, the misfolded proteins (including 

chaperones) might be forming aggregates. These aggregated proteins might be lost in the 

insoluble fractions, thus resulting in low abundance of the aggregated protein in AZC treated 

samples compared to untreated samples. This speculation needs to be further tested to see if 

chaperone down-regulation is due to their destabilization and degradation caused by AZC or due 

to them being lost as insoluble aggregates in AZC treated samples. 

     However, as described above, the magnitude of up-regulation of one chaperone (Serpin H1), 

was higher in cells treated with AUY922 and AZC. SerpinH1 is collagen specific molecular 

chaperone. It is localized in the ER. It is regulated by Hsf1 [112]. Its expression is induced by 

heat shock [113] . It is also up-regulated upon Hsp90 inhibition. Up-regulation of Serpin H1 is 

implicated in the synthesis of collagens [114, 115]. We speculate that the upregulation of 

SerpinH1 in AUY&AZC dual treatments might be to fold the AZC-destabilized-collagen. 

However, this needs to be further explored.  

      Summarizing our results, AZC potentiates AUY922’s effects by decreasing the magnitude of 

chaperone induction. This approach is similar to the use of Hsp90 inhibitors in combinations with 

other inhibitors that compromise chaperone induction. Reikvam et al. [116] showed that Hsp90 

inhibitors in combination with Hsp70 inhibitors have increased anti-proliferative activity in acute 

myeloid leukemia cells [116]. Similarly Matokanovic et al. have shown that the effects of Hsp90 
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inhibitors can be enhanced by using them in combination with siRNA  that silences Hsp70 [117]. 

Thus the results from our study suggest combinatorial approaches for enhancing AUY922’s 

activity in combination with agents compromising chaperone induction. 

 

Future Directions 

 

   By analyzing all the work and experimentation we did to study the  proteomics of Hsp90 

inhibition, we offer some thoughts on the experimental strategies we used, spectrum counting vs. 

SILAC, limitations of MaxQuant, experiments that should have been done and future directions. 

    After using spectrum counting and SILAC, we strongly recommend the use of SILAC, 

although it is expensive compared to spectrum counting. Spectrum counting is a relatively weaker 

technique and allows to identify only few hundred drug-induced changes. It is therefore difficult 

to predict the mechanisms of drug action based on these few changes. Whereas, SILAC offers 

better quantitation and allows identification of several thousands of proteins. Thus, by using 

SILAC we can gain insights into drug mechanisms. 

  We also strongly recommend the use of 5 biological replicates instead of three for SILAC 

experiments. Use of 5 biological replicates allows more protein identifications. 

   For comparing protein expression changes, we recommend using one sample T-test offered by 

Perseus, because it is more permissive than other tests and allows for identifying more protein 

expression changes. For multiple tests correction we recommend using BH test if there are no 

massive changes in the proteome. However, if the drug induces massive changes in the proteome, 

we recommend using Storey FDR test. We also suggest that using 1.5 fold change threshold for 

validating protein expression changes eliminates a lot of true protein expression changes and 

should only be used, when wanting to report only highly confident protein expression changes. 

      We also think that a bio-informatics program is needed to combine files generated from two 

different MaxQuant searches. This will be very helpful for comparing the proteomic fingerprints 

of different drugs. This will eliminate the need for searching all the files in a single MaxQuant 
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search, which otherwise compromises the quality of the data. Alternatively, MaxQuant programs 

might be written such that they generate a single protein ID for each protein, so that files from 

different MaxQuant searches can be easily combined. 

        We think that our work would have been better by including some experiments. Our studies 

should have included SILAC comparisons of low-dose 17-DMAG vs. low dose AUY922. Such 

low dose AUY922 vs. low dose 17-DMAG comparisons would have served as a better positive 

control for fingerprints of drugs sharing common mechanisms, rather than high dose AUY922 vs. 

high dose 17-DMAG comparisons. We should also have done proteomics of tunicamycin and 

AUY922 combinatorial treatments. 
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Supplemental Table 2.2 (Chapter II): Significant protein expression changes common 

to AUY922, 17-DMAG and radicicol based on spectrum counting assays. 

 
S.No IPI number Gene name Protein name Up/Down 

1 IPI00186290 EEF2 Elongation factor 2 D 

2 IPI00218993 HSPH1 Isoform Beta of Heat shock protein 

105 kDa 

U 

3 IPI00293464 DDB1 DNA damage-binding protein 1 D 

4 IPI00304925 HSPA1A Heat shock 70 kDa protein 1A/1B U 

5 IPI00027493 SLC3A2 Isoform 2 of 4F2 cell-surface antigen 

heavy chain 

U 

6 IPI00011200 PHGDH D-3-phosphoglycerate dehydrogenase U 

7 IPI00031519 DNMT1 Isoform 1 of DNA (cytosine-5)-

methyltransferase 1 

D 

8 IPI00023529 CDK6 Cyclin-dependent kinase 6 D 

9 IPI00015947 DNAJB1 DnaJ homolog subfamily B member 1 U 

10 IPI00026689 CDK1 Cyclin-dependent kinase 1 D 

11 IPI00005614 SPTBN1 Isoform Long of Spectrin beta chain, 

brain 1 

U 

12 IPI00032140 SERPINH1 Serpin H1 U 

13 IPI00377261 FUBP3 Isoform 1 of Far upstream element-

binding protein 3 

U 

14 IPI00002214 KPNA2 Importin subunit alpha-2 D 

15 IPI00382470 HSP90AA1 Isoform 2 of Heat shock protein HSP 

90-alpha 

U 

16 IPI00017617 DDX5 Probable ATP-dependent RNA 

helicase DDX5 

D 

17 IPI00301263 CAD CAD protein D 

18 IPI00010720 CCT5 T-complex protein 1 subunit epsilon U 

19 IPI00329789 ZAP70 Isoform 1 of Tyrosine-protein kinase 

ZAP-70 

D 

20 IPI00797279 UHRF1 E3 ubiquitin-protein ligase UHRF1 

isoform 2 

D 

21 IPI00003865 HSPA8 Isoform 1 of Heat shock cognate 71 

kDa protein 

U 

22 IPI00008524 PABPC1 Isoform 1 of Polyadenylate-binding 

protein 1 

D 

23 IPI00746165 WDR1 Isoform 1 of WD repeat-containing 

protein 1 

U 

24 IPI00550021 RPL3 60S ribosomal protein L3 D 

25 IPI00219005 FKBP4 Peptidyl-prolyl cis-trans isomerase 

FKBP4 

U 

26 IPI00553185 CCT3 T-complex protein 1 subunit gamma U 

27 IPI00220362 HSPE1 10 kDa heat shock protein, 

mitochondrial 

U 

28 IPI00396370 EIF3B Isoform 1 of Eukaryotic translation 

initiation factor 3 subunit B 

D 

29 IPI00020127 RPA1 Replication protein A 70 kDa DNA-

binding subunit 

D 

30 IPI00217975 LMNB1 Lamin-B1 U 

31 IPI00470891 CSDE1 Isoform Long of Cold shock domain-

containing protein E1 

D 

32 IPI00008475 HMGCS1 Hydroxymethylglutaryl-CoA synthase, 

cytoplasmic 

D 
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33 IPI00007764 HN1 Isoform 1 of Hematological and 

neurological expressed 1 protein 

D 

 

 

 

Supplemental Table 2.3  (Chapter II): Significant protein expression changes common 

to any two inhibitors based on spectrum counting assays. 

 

 
S.N

o 

IPI number Gene name Protein name Inhibitors Up/Down 

1 IPI00396435 DHX15 Putative pre-mRNA-splicing factor 

ATP-dependent RNA helicase 

DHX15 

DMAG, 

Radicicol 

D 

2 IPI00290566 TCP1 T-complex protein 1 subunit alpha AUY, 

Radicicol 

U 

3 IPI00001734 PSAT1 Phosphoserine aminotransferase AUY, 

Radicicol 

U 

4 IPI00783097 GARS Glycyl-tRNA synthetase DMAG, 

Radicicol 

U 

5 IPI00013894 STIP1 Stress-induced-phosphoprotein 1 AUY, 

Radicicol 

U 

6 IPI00291097 PML Isoform PML-13 of Protein PML DMAG, 

Radicicol 

U 

7 IPI00456887 HNRNPUL2 Heterogeneous nuclear 

ribonucleoprotein U-like protein 2 

DMAG, AUY U 

8 IPI00456969 DYNC1H1 Cytoplasmic dynein 1 heavy chain 1 DMAG, 

Radicicol 

U 

9 IPI00002459 ANXA6 Annexin A6 AUY, 

Radicicol 

U 

10 IPI00295857 COPA Isoform 1 of Coatomer subunit 

alpha 

DMAG, 

Radicicol 

U 

11 IPI00219446 PEBP1 Phosphatidylethanolamine-binding 

protein 1 

DMAG, AUY D 

12 IPI00455134 HNRNPA3 Isoform 2 of Heterogeneous nuclear 

ribonucleoprotein A3 

AUY, 

Radicicol 

U 

13 IPI00165949 ERAP1 Isoform 2 of Endoplasmic reticulum 

aminopeptidase 1 

AUY, 

Radicicol 

U 

14 IPI00002966 HSPA4 Heat shock 70 kDa protein 4 DMAG, AUY U 

15 IPI00171903 HNRNPM Isoform 1 of Heterogeneous nuclear 

ribonucleoprotein M 

DMAG, AUY U 

16 IPI00465439 ALDOA Fructose-bisphosphate aldolase A DMAG, 

Radicicol 

D 

17 IPI00302927 CCT4 T-complex protein 1 subunit delta DMAG, AUY U 

18 IPI00016910 EIF3C Eukaryotic translation initiation 

factor 3 subunit C 

DMAG, AUY D 

19 IPI00299524 NCAPD2 Condensin complex subunit 1 DMAG, 

Radicicol 

D 

20 IPI00019848 HCFC1 Isoform 1 of Host cell factor 1 DMAG, 

Radicicol 

D 

21 IPI00010471 LCP1 Plastin-2 AUY, 

Radicicol 

U 

22 IPI00000874 PRDX1 Peroxiredoxin-1 AUY, U 
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Radicicol 

23 IPI00025491 EIF4A1 Eukaryotic initiation factor 4A-I AUY, 

Radicicol 

D 

24 IPI00642238 HP1BP3 Isoform 1 of Heterochromatin 

protein 1-binding protein 3 

DMAG, 

Radicicol 

U 

25 IPI00219156 RPL30 60S ribosomal protein L30 DMAG, AUY D 

26 IPI00304612 RPL13A 60S ribosomal protein L13a DMAG, 

Radicicol 

D 

(DMAG) 

U 

(Radicicol 

27 IPI00395568 PHF6 Isoform 1 of PHD finger protein 6 DMAG, 

Radicicol 

U 

28 IPI00009342 IQGAP1 Ras GTPase-activating-like protein 

IQGAP1 

DMAG, AUY U 

29 IPI00012341  Isoform SRP40-1 of 

Serine/arginine-rich splicing factor 

5 

DMAG, AUY U 

30 IPI00411559 SMC4 Isoform 1 of Structural maintenance 

of chromosomes protein 4 

DMAG, AUY D 

31 IPI00643041 RAN GTP-binding nuclear protein Ran AUY, 

Radicicol 

D 

(Radicicol) 

U (AUY) 

 

32 IPI00215637 DDX3X ATP-dependent RNA helicase 

DDX3X 

AUY, 

Radicicol 

D 

33 IPI00012066 PCBP2 poly(rC)-binding protein 2 isoform 

b (hnRNPE2) 

AUY, 

Radicicol 

D 

34 IPI00790342 RPL6 60S ribosomal protein L6 AUY, 

Radicicol 

D 

35 IPI00221088 RPS9 40S ribosomal protein S9 AUY, 

Radicicol 

D 

36 IPI00013174 RBM14 Isoform 1 of RNA-binding protein 

14 

AUY, 

Radicicol 

D 

37 IPI00219913 BAP1 Ubiquitin carboxyl-terminal 

hydrolase 14 

AUY, 

Radicicol 

U 

38 IPI00011274 HNRPDL Isoform 1 of Heterogeneous nuclear 

ribonucleoprotein D-like 

AUY, 

Radicicol 

D 

(Radicicol) 

U (AUY) 

39 IPI00011913 HNRNPA0 Heterogeneous nuclear 

ribonucleoprotein A0 

AUY, 

Radicicol 

U 

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

Supplemental Table 2.4 (Chapter II): Significant protein expression changes in just one 

inhibitors based on spectrum counting assays. 

 
S.No IPI number Gene name Protein name Inhibitors Up/Down 

1 IPI00027626 CCT6A T-complex protein 1 subunit zeta AUY U 

2 IPI00296337 PRKDC Isoform 1 of DNA-dependent 

protein kinase catalytic subunit 

AUY D 

3 IPI00026781 FASN Fatty acid synthase AUY D 

4 IPI00030706 AHSA1 Activator of 90 kDa heat shock 

protein ATPase homolog 1 

AUY U 

5 IPI00023530 CDK5 Cyclin-dependent kinase 5 AUY D 

6 IPI00184533 USP11 Ubiquitin carboxyl-terminal 

hydrolase 11 

Radicicol U 

7 IPI00000846 CHD4 Isoform 1 of Chromodomain-

helicase-DNA-binding protein 4 

AUY D 

8 IPI00007673 CHCHD2 Coiled-coil-helix-coiled-coil-helix 

domain-containing protein 2, 

mitochondrial 

AUY D 

9 IPI00515097 LCK Isoform 3 of Tyrosine-protein 

kinase Lck 

AUY D 

10 IPI00305833 SMU1 WD40 repeat-containing protein 

SMU1 

DMAG D 

11 IPI00376219 APBB1IP Amyloid beta A4 precursor protein-

binding family B member 1-

interacting protein 

DMAG D 

12 IPI00292894 TSR1 Pre-rRNA-processing protein TSR1 

homolog 

Radicicol D 

13 IPI00479262 EIF4G1 eukaryotic translation initiation 

factor 4 gamma 1 isoform 1 

AUY D 

14 IPI00221108 TYMS Thymidylate synthase AUY D 

15 IPI00012462 EIF2A Eukaryotic translation initiation 

factor 2A 

AUY D 

16 IPI00218245 EVL Isoform 1 of Ena/VASP-like protein Radicicol U 

17 IPI00011696 VAV1 Proto-oncogene vav Radicicol U 

18 IPI00465044 RCC2 Protein RCC2 AUY D 

19 IPI00007928 PRPF8 Pre-mRNA-processing-splicing 

factor 8 

AUY D 

20 IPI00027834 HNRNPL Heterogeneous nuclear 

ribonucleoprotein L 

AUY U 

21 IPI00376317 EDC4 Isoform 1 of Enhancer of mRNA-

decapping protein 4 

AUY D 

22 IPI00007765 HSPA9 Stress-70 protein, mitochondrial DMAG U 

23 IPI00013485 RPS2 40S ribosomal protein S2 DMAG D 

24 IPI00018465 CCT7 T-complex protein 1 subunit eta DMAG U 

25 IPI00257508 DPYSL2 Dihydropyrimidinase-related 

protein 2 

DMAG U 

26 IPI00007074 YARS Tyrosyl-tRNA synthetase, 

cytoplasmic 

DMAG U 

27 IPI00218342 MTHFD1 C-1-tetrahydrofolate synthase, 

cytoplasmic 

Radicicol D 

28 IPI00022462 TFRC Transferrin receptor protein 1 Radicicol D 

29 IPI00299904 MCM7 Isoform 1 of DNA replication 

licensing factor MCM7 

Radicicol D 

30 IPI00784154 HSPD1 60 kDa heat shock protein, AUY U 
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mitochondrial 

31 IPI00027230 HSP90B1 Endoplasmin AUY U 

32 IPI00449049 PARP1 Poly [ADP-ribose] polymerase 1 AUY U 

33 IPI00221354 FUS Isoform Short of RNA-binding 

protein FUS 

DMAG U 

34 IPI00299573 RPL7A 60S ribosomal protein L7a DMAG D 

35 IPI00104050 THRAP3 Thyroid hormone receptor-

associated protein 3 

DMAG U 

36 IPI00291755 NUP210 Isoform 1 of Nuclear pore 

membrane glycoprotein 210 

DMAG U 

37 IPI00025874 DDOST Dolichyl-

diphosphooligosaccharide--protein 

glycosyltransferase subunit 1 

precursor 

AUY U 

38 IPI00215719 RPL18 60S ribosomal protein L18 AUY D 

39 IPI00007797 FABP5 Fatty acid-binding protein, 

epidermal 

DMAG D 

40 IPI00514053 ARCN1 Coatomer subunit delta DMAG U 

41 IPI00177728 CNDP2 Isoform 1 of Cytosolic non-specific 

dipeptidase 

DMAG D 

42 IPI00002520 SHMT2 Serine hydroxymethyltransferase, 

mitochondrial 

DMAG D 

43 IPI00376798 RPL11 Isoform 1 of 60S ribosomal protein 

L11 

DMAG D 

44 IPI00182757 KIAA1967 Isoform 1 of Protein KIAA1967 

(DBC) 

AUY D 

45 IPI00329791 DDX46 Probable ATP-dependent RNA 

helicase DDX46 

AUY D 

46 IPI00007927 SMC2 Isoform 1 of Structural maintenance 

of chromosomes protein 2 

AUY D 

47 IPI00456359 ATXN2L Isoform 1 of Ataxin-2-like protein AUY D 

48 IPI00306043 YTHDF2 Isoform 1 of YTH domain family 

protein 2 

AUY D 

49 IPI00013495 ABCF1 Isoform 2 of ATP-binding cassette 

sub-family F member 1 

AUY D 

50 IPI00293434 SRP14 Signal recognition particle 14 kDa 

protein 

DMAG U 

51 IPI00008986 SLC7A5 Large neutral amino acids 

transporter small subunit 1 

DMAG U 

52 IPI00005198 ILF2 Interleukin enhancer-binding factor 

2 

DMAG U 

53 IPI00012772 RPL8 60S ribosomal protein L8 AUY D 

54 IPI00021290  ATP-citrate synthase DMAG D 

55 IPI00010133 CORO1A Coronin-1A DMAG U 

56 IPI00299000 PA2G4 Proliferation-associated protein 2G4 DMAG D 

57 IPI00012535 DNAJA1 DnaJ homolog subfamily A 

member 1 

Radicicol U 

58 IPI00375441 FUBP1 Isoform 1 of Far upstream element-

binding protein 1 

Radicicol U 

59 IPI00013788 HTATSF1 HIV Tat-specific factor 1 Radicicol U 

60 IPI00396378 HNRNPA2B1 Isoform B1 of Heterogeneous 

nuclear ribonucleoproteins A2/B1 

AUY U 

61 IPI00010740 SFPQ Isoform Long of Splicing factor, 

proline- and glutamine-rich 

AUY U 
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62 IPI00025091 RPS11 40S ribosomal protein S11 AUY D 

63 IPI00295851 COPB1 Coatomer subunit beta AUY U 

64 IPI00030131  Isoform Beta of Lamina-associated 

polypeptide 2, isoforms 

beta/gamma 

DMAG U 

65 IPI00294879 RANGAP1 Ran GTPase-activating protein 1 DMAG U 

66 IPI00022648 EIF5 Eukaryotic translation initiation 

factor 5 

DMAG U 

67 IPI00012079 EIF4B Eukaryotic translation initiation 

factor 4B 

Radicicol U 

68 IPI00746004 RPS27L 40S ribosomal protein S27-like Radicicol D 

69 IPI00022202  Isoform A of Phosphate carrier 

protein, mitochondrial 

Radicicol U 

70 IPI00024364 TNPO1 Isoform 1 of Transportin-1 Radicicol U 

71 IPI00297579 CBX3 Chromobox protein homolog 3 Radicicol U 

72 IPI00020356  Uncharacterized protein Radicicol U 

73 IPI00027107 TUFM elongation factor Tu, mitochondrial 

precursor 

AUY U 

74 IPI00012074 HNRNPR Isoform 1 of Heterogeneous nuclear 

ribonucleoprotein R 

AUY U 

75 IPI00008529 RPLP2 60S acidic ribosomal protein P2 AUY U 

76 IPI00301503 TRA2B Isoform 1 of Transformer-2 protein 

homolog beta 

AUY U 

77 IPI00554723  60S ribosomal protein L10 Radicicol U 
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APENDIX A 

 
     Abbreviations 

     

     GA-               Geldanamycin 

     Hsp-              Heat shock protein 

     17-DMAG-   17-Dimethylaminoethylamino-17-demethoxygeldanamycin 

     MCM-           Mini chromosome maintenance proteins 

     UPR-             Unfolded protein response 

     HSR-             Heat shock response 

     ERAD-          Endoplasmic reticulum associated protein degradation 

     CID-             Collision induced dissociation 

     ECD-            Electron capture dissociation 

     ETD-            Electron capture dissociation 

     ICAT-           Isotope coded affinity tags 

     IAA-             Iodoacetamide 

     TCEP-          (tris (2-carboxyethyl) phosphine)  

     DTT-            Dithiothreotol 

     ACN-           Acetonitrile 

     TFA-            Trifluoro acetic acid 

     DMSO-        Dimethyl sulfoxide 

     Cdk6-           Cyclin dependent kinase 6 

     IC50-            50% inhibitory concentration 

     SC-              Spectrum counting 

     SILAC-        Stable isotope labeling with amino acids in cell culture 

     H-                Heavy or treated samples 

     L-                 Light or control (DMSO) samples 

     MQ-             MaxQuant 

     FDR-            False discovery rate 

     B-H-            Benjamini Hochberg 

     AZC-           L-azetadine-2-carboxylic acid 

     TM-             Tunicamycin 

     FWHM-       Full width at half maximum height 

     GO-             Gene Ontology     

     Biorep-        Biological replicate 
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APPENDIX B 
 
  Supplemental excel sheets 

  Supplemental excel sheet 1 - Raw intensities of all drugs in separate tabs of the excel sheet. 

Supplemental excel sheet 2 - Treated/ control ratios of normalized intensities, one sample 

T-test p-values, and Storey FDR corrected values of T-test p-values for all drugs in 

separate tabs of the excel sheet.   
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