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Abstract: Cognitive radio is viewed as a novel approach for improving the utilization
of the spectrum as it utilizes the under-utilized spectrum bands of the primary users.
Cognitive radio is aware of its environment and can modify its transmission configu-
ration accordingly. Spectrum sensing is the most important component of a cognitive
radio network. Various types of security threats like incumbent emulation attacks and
Byzantine attacks are present in the cognitive radio environment. In this thesis, we
mainly concentrate on Byzantine attacks. We consider an energy detection scheme
which is used to detect primary users, and the decision fusion rule to obtain a decision
regarding the primary user at the fusion center. Byzantine attacker strategies and
reputation based schemes to counter the attackers have been proposed. Analysis of
the model is performed to assess the game between attackers and the fusion center
with the help of simulations.

Byzantine attackers and the fusion center are aware of strategies of each other. The
aim of the attackers is to cause maximum damage to the system and the aim of the
fusion center is to eliminate the attackers from the system and improve the system
performance. Based on the performance metrics chosen, when attackers are being
eliminated from the system, they tend to decrease the rate of isolation by attack-
ing with lower probabilities such that they cannot be identified and can cause more
damage to the system. At the same time, the fusion center wants to eliminate more
attackers, so it tries to change the reputation threshold and time windows accord-
ingly. The proposed algorithm is verified by conducting experiments with the help of
simulations in Matlab.
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CHAPTER 1

INTRODUCTION

The demand for radio spectrum (which is a limited resource), is an emerging problem

because of enormous increase in the field of wireless devices and applications. Earlier,

the usage of the spectrum is given to the licensed users. However, recent studies show

that the fixed spectrum assignment policy enforced today results in poor spectrum

utilization, as great portion of licensed spectrum is not effectively utilized.

1.1 Dynamic Spectrum Access

The Federal Communications Commission(FCC) [1] in order to counter this spectrum

requirement problem, opted for efficient use and better utilization of the spectrum by

opening up the licensed bands to unlicensed operations. When the spectrum is not

occupied by the licensed users, the unlicensed operations can be done in the available

spectrum on a non interference basis. Under this scheme two types of users exist.

They are Primary users(PU) and Secondary users(SU) [2]. Incumbent users who have

a license to transmit are known as the primary users and those who use the spectrum

for unlicensed operations are known as the secondary users.

The spectrum consists of dormant bands or gaps which are known as white spaces

or spectrum holes. As defined in [3], Spectrum hole, is a band of frequencies assigned

to a particular user, but, at a particular time and geographic location, the band is

not being utilized by the user. These spectrum holes can be used by the unlicensed

users on an opportunistic basis without interfering the licensed users. This method of

1



sharing is often called Dynamic Spectrum Access (DSA) [4]. However, during DSA,

the FCC prescribes that no modification should be done to the primary network to

accommodate the opportunistic use of spectrum by the secondary users [5]. If the in-

cumbent users require the channel, then the secondary users must immediately vacate

to another channel without causing any interference. In order to combat this salient

necessity, Cognitive radio technology [6] has been proposed as the means to promote

the efficient use of the spectrum by exploiting the spectrum holes.

1.2 Cognitive Radio

As defined in [3], Cognitive radio(CR) is an intelligent wireless communication sys-

tem that is aware of its surrounding environment (i.e., outside world), and uses the

methodology of understanding-by-building to learn from the environment and adapt

its internal states to statistical variations in the incoming RF stimuli by making cor-

responding changes in certain operating parameters (e.g., transmit-power, carrier fre-

quency, and modulation strategy) in real-time.

Unlike conventional radio technology that operates in fixed channels, cognitive ra-

dio networks have the capability to sense and understand its environment and change

its mode of operation based on the requirement. The primary objectives of CR in-

clude:

1. highly reliable communications whenever and wherever needed;

2. efficient utilization of the radio spectrum.

One of the key functions of the CRs is spectrum sensing [7]. In CR, identification of

the available spectrum and prevention of interference between secondary users with

primary users are achieved through spectrum sensing. So, cognitive radio networks

should target on these idle bands to check the availability of the spectrum. Cognitive
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radios need to carry on spectrum sensing and its management in the wireless envi-

ronment without interfering the licensed users. Cognitive radio networks incorporate

mechanisms like cooperative spectrum sensing and self coexistence, to sense the cur-

rent band and utilize the spectrum efficiently.

In spatially distributed CRs, they generally experience the problem of fading and

receiver uncertainty. This problem can be overcome by cooperating during detec-

tion. Cooperative spectrum sensing can significantly improve the spectrum sensing

accuracy than the individual spectrum sensing [8]. The main idea of cooperative

sensing is to enhance the sensing performance and detection reliability by exploiting

the spatial diversity in the observations of spatially located CR users. By coopera-

tion, CR users can share their sensing information for making a combined decision

more accurately than the individual decisions. Cognitive radios compete to use the

underutilized spectrum and carry on data transmissions in the available bands. As

mentioned in [9], this competition for spectrum results in misuse of the spectrum, as

they experience contention in attempt to use the available bands. This can be mini-

mized by incorporating self coexistence mechanism in CRs. In areas with significantly

more licensed users, open channels will be a commodity of demand. Therefore, it is

important that interference between CRs is avoided. Self coexistence mechanism is

needed in overlapping coverage areas of CR networks. So that, CRs can significantly

foster better spectrum utilization without any interference.

In this thesis, we consider a centralized cooperative spectrum sensing method as

shown in Fig1.1 [8]. It consists of a fusion center (FC) which is the central identity

in the network. First, FC selects a band of interest where it instructs all the CRs in

the network to perform individual sensing. Second, all the CRs report their sensing

decisions via a dedicated communication channel. Based on the local decisions from
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all the CRs, a final global decision is taken at FC regarding the presence of the pri-

mary user and this decision is sent back to the CRs for the spectrum utilization if

available.

Figure 1.1: Centralized cooperative sensing

Primary user detection is the major part in DSA. There are many techniques that can

be used for PU detection like energy detection, matched filter and Cyclostationary

feature detections [15]. The most common technique that is employed in many coop-

erative sensing techniques is energy detection due to its simplicity and no requirement

of prior knowledge of primary user signal. Energy detection is a non-coherent detec-

tion method that detects the PU signal based on the sensed energy. Matched filter

is a linear filter designed to maximize the output signal to noise ratio for a given

input signal. This technique requires the prior knowledge of primary users. If this

information is not accurate, it delivers a poor performance. Cyclostationary feature

detection exploits periodicity in the received primary signal to identify the primary

users and also requires the prior knowledge of primary users. In this thesis, we adopt

the energy detection technique. CRs are equipped with energy detectors to obtain a
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decision about the presence of primary user. These decisions are then forwarded to

FC. Various decision making techniques can be employed at FC to obtain a global

decision about PU in the frequency band.

After PU detection at the CRs, we need to obtain a global decision at FC. Tech-

niques like decision fusion, Neyman-Pearson test, Bayesian detection, SPRT (Se-

quential Probability Ratio Test) can be used to obtain the global decision at FC. In

this thesis, we consider decision fusion rule which is the most simple and common

technique. Decision fusion is a process of fusing all the local decisions together for

hypothesis testing. There are different methods of decision fusion methods like soft

fusion, hard fusion and quantized soft combining.

(i) Soft Combining [16]: CR users can transmit the entire local sensing samples or

the complete local test statistics for soft decision fusion.

(ii) Quantized Soft Combining [17]: CR users can quantize the local sensing results

and send only the quantized data for soft combining to alleviate control channel com-

munication overhead.

(iii) Hard Combining [18]: CR users make local decisions and transmit the one-bit

decisions for hard combining.

In this thesis, we use the one bit hard decision fusion method which requires less

communication overhead and bandwidth requirement. These decisions are fused at

FC to obtain a global decision. Many techniques were proposed for the global decision

making. In this thesis, we consider the k-out-of-N rule. OR and AND rule are easy

and simple logics to implement which are mainly considered as special cases that are

derived from the k-out-of-N rule [18] where k = 1, N respectively.
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1.3 Security in Spectrum Sensing

CRs are highly reconfigurable due to their software based air interface. So there are

many security issues and different kinds of attacks on these CRs. If a few CRs in

the network send unreliable data or falsified sensing information, then they can eas-

ily influence the decision at the FC. These malfunctioning users or malicious users

may intentionally send false information in order to use the limited spectrum band

or cause some interference to the incumbent users. These types of attacks are speci-

fied in [11], [4] which are known as the Primary User Emulation (PUE) attacks and

the Spectrum Sensing Data Falsification (SSDF) attacks. It is challenging for the

fusion center to validate the integrity of the sensing reports mainly because of two

reasons [10]:

1. lack of coordination between PUs and SUs;

2. unpredictability in wireless channel signal propagation.

So, more efficient and robust techniques are to be employed at FC.

In this thesis, we mainly concentrate on SSDF attacks where the attackers try to

induce false sensing information into the process leading to the disruption of the

entire network and low network efficiency. These data falsification attackers are gen-

erally referred as Byzantines attacker [12]-[14]. CRs (both honest and Byzantine)

forward their decisions to FC, to obtain a decision about PU as shown in Fig 1.2 [5].

To address the data falsification problem, existing cooperative sensing schemes aim

to detect the anomaly in the reported sensing data and establish a mechanism to

distinguish the malicious users from the authentic ones such that malicious users can

be excluded from the cooperation to ensure the integrity of the sensing decisions and

secure the operations in the system.

In SSDF attacks, the compromised CRs may attack individually or collaborate among
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Figure 1.2: Cognitive model showing PU transmission and CRs (both honest and

Byzantine) sending their decisions to FC

themselves to degrade the overall performance or reduce spectrum utilization. So to

overcome these attacks, additional mechanisms are to be employed at the FC to ob-

tain reliable data.

Assumptions in this thesis are that FC is not compromised and will receive the

decisions from all the CRs through dedicated communication channels. We also as-

sume that FC does not know which node is Byzantine but it knows the percentage

of attackers in the network. The main aim of the FC is to decrease the probability of

error in sensing by eliminating the Byzantine attackers and improve the system per-

formance. At the same time, the Byzantine attackers try to undermine the network

capability, i.e., the fusion center’s ability of detecting a primary signal.

Byzantine attackers can make the fusion center incapable of making a decision by

completely blinding the system. In this case, the fusion center will be unable to

decide on a particular decision and the performance at the fusion center can be no

better than just a random guess of the state of channel. A critical value of 50% of

Byzantine attackers can completely blind the FC [5].
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In order to further counter these Byzantine attacks, we propose a reputation metric

based detection scheme at the FC, by counting the number of mismatches between

the global and local decisions over few sensing periods. Based on the reputation fac-

tor we obtain the probability with which Byzantine attackers can be isolated from

the decision process and eliminated from the system. Byzantine attackers will change

their probability of attack, so that, they can still exist in the system without being

eliminated while FC tries to increase the elimination of Byzantine attackers. This

results in a game between Byzantine attackers and FC.
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1.4 Thesis Outline

The thesis is organized as follows:

Chapter 1: Introduction discusses briefly about the necessity for cognitive radio net-

works and spectrum sensing. It also includes various types of security threats on

cognitive radio networks and decision fusion rules at FC.

Chapter 2: Literature Review: This chapter gives a synopsis of existing techniques to

detect the primary user transmission. It covers various cooperative sensing techniques

and methods to counter the attackers. It also surveys various defense mechanisms

that have been proposed in literature.

Chapter 3: System Model and Problem Formulation: This chapter explains about

the type of system, attacks and methods to counter the attackers.

Chapter 4: Analysis: This chapter discusses on the optimal strategies with which

the Byzantine attackers and Fusion center make up a game between them.

Chapter 5: Simulation and Results: This chapter consists of few experiments based

on simulated data to validate our strategies proposed in literature.

Chapter 6: Conclusions and Future work: This chapter summarizes the results

achieved and scope for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Spectrum Sensing Techniques

Spectrum Sensing is the key function in DSA. Many mechanisms have been pro-

posed for sensing primary users by cognitive radio networks. These techniques can

be classified into Matched Filter, Energy Detection and Cyclostationary Feature De-

tection [15].

2.1.1 Matched Filter

Matched filter is a linear filter designed to maximize the output signal to noise ratio

for a given input signal [19]. Block diagram of matched filter is shown in Fig 2.1 [21].

This technique is applied when secondary users has a prior information about the

primary user signal, e.g., the packet length, the modulation type, pulse shaping.

Matched filter detection requires less detection time. When prior information about

primary signal is known, then matched filter detection is the optimal detection. How-

ever, the drawback is that cognitive radio will be required to store a lot of information

about primary users and also cognitive radio would need a dedicated receiver for ev-

ery primary user [20].
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Figure 2.1: Block diagram of matched filter

2.1.2 Energy Detector

It is a non-coherent detection method that detects the primary signal based on the

sensed energy. It is the most popular sensing technique, due to its simplicity and non

requirement of prior knowledge of primary signal. Block diagram of energy detector

is shown in Fig 2.2 [22]. The working of an energy detector is similar to that of a

spectrum analyzer where the received signal is first sampled, then converted to the

frequency domain by taking the fast Fourier transform (FFT) followed by squaring

the coefficients and then taking the average. This value is then compared to a pre-

determined threshold to check for the presence of a PU [23]. The whole process is

outlined in Fig 2.2.

Energy detector is a blind signal detector as it ignores the structure of a signal.

Presence or absence of a signal is estimated by comparing the energy received with a

known threshold. The threshold value can be fixed or variable based on the channel

conditions.

Figure 2.2: Block diagram of energy detector
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2.1.3 Cyclostationary Feature Detection

Cyclostationary feature detection exploits the periodicity in the received primary sig-

nal to identify the presence of primary users. The periodicity is commonly embedded

in sine waves, cyclic codes, pilot signals and/or hopping sequences of primary signals.

This property can be used for signal detection of a particular type in the presence of

random noise and other signals. Block diagram of cyclostationary feature detection

is shown in Fig 2.3 [27]. It require the prior knowledge of primary signals and is

able to distinguish between CR transmissions from various types of PU signals. Thus

cyclostationary feature detection is robust to noise uncertainties and performs better

than energy detections in low SNR regions [25].

Implementation of cyclostationary feature detection is as shown in Fig. 2.3. From the

figure we can see that the cyclostationary feature detection is similar to the energy

detector except that it has an added block which does the correlation. This method

requires long sensing time and high computational complexity. So, this detection

technique is less commonly used than energy detection [27].

Figure 2.3: Block diagram of cyclostationary feature detector

2.2 Types of Cooperative Sensing

In cognitive radio networks, the high sensitivity requirements can be reduced if

multiple cognitive radios participate in spectrum sensing cooperating each other.

This cooperative spectrum sensing is classified into three types, centralized[28]-[29],
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distributed[30] and relay assisted [31]-[32] as shon in Fig 2.4 [8]

Figure 2.4: Classification of cooperative sensing: (a) centralized, (b) distributed, and

(c) relay-assisted

2.2.1 Centralized Cooperative Sensing

In such networks, CR detects the presence or absence of a primary user and then

informs to a the fusion center which controls the cooperative sensing. FC notifies all

the CRs to sense the frequency band of interest. CRs sense and send their decisions

to the FC via a control channel, where it combines the decisions and take the final

decision about PU.

2.2.2 Distributed Cooperative Sensing

In such networks, CRs build up a network without FC. They communicate among

themselves and obtain a unified decision about the presence or absence of PU. Various

algorithms have been proposed for decentralized techniques where CRs form into

clusters, auto coordinating themselves.
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2.2.3 Relay-assisted Cooperative Sensing

In such networks, each user independently senses the network. As the reporting

channels and sensing channels are not perfect, a CR observing weak sensing channel

and strong report channel and a CR with strong sensing channel and weak report

channel can cooperate with each other to improve the performance. The results are

forwarded to the intended CR or FC by multiple hops, where all the intermediate

hops are relays.

2.3 Security Issues

Security is an important issue as potential malicious users attempt to disrupt the net-

work and diminish its capability. Data falsification attacks are those attacks which

send false information to the FC to disrupt the global inference process [33]. Until

recently, security issues in cognitive radio network have not been fully addressed.

Existing solutions to combat against the SSDF attacks are specified in the following

papers where different techniques have been employed.

The onion peeling approach [34] has been proposed based on Bayesian statistics.

All the nodes were assigned suspicion levels. If this suspicion level exceeds certain

threshold, it is considered as a malicious user and immediately removed from decision

making process. However, they also assume that the fusion center has prior knowl-

edge about the activities of the attackers and if thresholds are approximated without

such information, it will result in false detections of attackers.

Another method is proposed by Chen et al. [11] which combines weight and the

sequential probability radio test to identify the malicious users known as weighted

sequential probability radio test (WSPRT). However, this mechanism assigns weights

based on the threshold parameters. If honest CRs sense false information, they also

14



can be eliminated from the system which results in much havoc. Apart from these

weight based methods, Chen et al. also proposed a new technique to identify the

Byzantine attackers. The Outlier factor has been proposed to identify the attackers

in the network.

In [35], pre-filtering of the sensing data is done for removing the malicious users

where upper and lower bounds are calculated to identify the extreme outliers and

eliminate them. The chance of eliminating honest CRs is also present. After that,

trust factors are assigned to the remaining CRs through which the decision about PU

is considered. This mechanism works on ‘always yes’ or ‘always no’ scenarios. This

sort of mechanism cannot counter intelligent Byzantine attackers as they cannot be

identified when they attack with arbitrary probability.

Praveen et al. [36] have established a robust fusion center decision algorithm to over-

come the elimination of honest CRs. The compiled set of reports from the secondary

users are analyzed using bi-weight location estimate and bi-weight scale estimate

instead of mean and standard deviation, as they are not robust and can be easily

manipulated by the malicious users. Bi-weight estimate calculates a weighted mean

with lower weightage being given to the observations away from the estimate and

Bi-weight scale is sensitive to the data points that are at a moderate distance and

ignores data from extreme data points. These parameters have the magnitudes that

are compared to the thresholds given by the system. However, this method may

result in failure to detect the primary signal, increases the misdetection when using

incorrect thresholds and inaccuracy of the secondary user elimination.

The K-neighborhood distance algorithm is another approach presented to detect

the malicious users [37]. This approach does not need any prior knowledge of the

15



attacker distribution. This mechanism exposes the attackers in multiple sensing pe-

riods. However, the system can be easily evaded when attackers have the knowledge

about secondary user’s data and collaborate with each other.

In summary, many methods have been proposed on eliminating the attackers from

the network by assigning few parameters like suspicion levels, weights to the local

decisions of the CRs. These proposed methods may not be robust or reliable.
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2.4 Objective of the study

In this work, our main objective is to observe the game between the fusion center

and Byzantine attackers. We propose a parallel fusion network to obtain a decision

about the presence or absence of primary user. Byzantine attackers and the fusion

center in the network are aware of each other and their strategies. So, when decisions

about the PU are considered at FC, attackers try to disrupt the system by sending

false information. As the attackers want to degrade the network, they do not want

to get eliminated easily. So they attack with different probabilities. Fusion center

aware of the attackers strategy tries to induce a reputation based algorithm in the

network to eliminate the Byzantine attackers. Byzantine attackers in order to exist

in the system try to attack with optimal probabilities. When the threshold at the FC

is varied, this optimal attacking strategies can also be countered.
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CHAPTER 3

SYSTEM MODEL

The entire system is modeled into a parallel network. The distributed network con-

sists of N CRs and a fusion center trying to detect the primary user. The CRs sense

the available spectrum in periodic slots and forward the results to the FC. Each sec-

ondary user uses an energy detection scheme for making its decision because of its

computational and implementation simplicity.

In essence, this primary user detection process is a hypotheses testing problem and

all the detections by the CRs are assumed conditionally independent of each other.

Consider a binary hypotheses testing problem with two hypotheses H0 and H1. Prior

probabilities of the two hypotheses are given by P0 and P1, P0 + P1 = 1.

H0: Represents the absence of primary user

H1: Represents the presence of primary user

Let Y [n] denote the nth received sample at each CR, W [n] be the noise, X[n] be the

primary user signal and assumed to be an independent and identically distributed

random process of zero mean and variance of σ2
s . The hypothesis testing for the

network is given by:

H0 : Y [n] = W [n], n = 1, 2, 3.......M ; (3.1)

H1 : Y [n] = X[n] +W [n], n = 1, 2, 3.......M ; (3.2)
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Noise corrupts the signal strength measurements of a secondary user, where the noise

is assumed to be additive white Gaussian(AWGN) with zero mean and variance σ2
w.

The energy detector at the CR calculates the energy of the M accumulated samples

by Z =
M∑
n=1

| Y [n] |2 . Consider the ith CR. CRi compares the statistic Zi with local

decision threshold δi to make a binary local decision about the PU and transmit the

decision to the FC.

Ui = 1, if Zi ≥ δi, (3.3)

Ui = 0, otherwise. (3.4)

The fusion center then compares the system threshold with the sum of received deci-

sions and makes a final decision whether the primary user is present or absent.

Figure 3.1: Parallel topology with a fusion center

Since CRi denotes the ith CR under consideration in the network, ui represents the

channel usage information observed (decision of the CR about the primary user based

on the energy detection) and this is sent through the control channel which is assumed

to be perfect. vi is the information received at the fusion center. If the node is hon-
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est, then it forwards a decision correctly, i.e., ui = vi. If it is a Byzantine attacker, in

order to degrade the performance of the system, it may alter its decisions. So ui may

not be the same as vi.

We define the following probabilities for honest and Byzantine CRs.

Honest CRs:

PH
1,1 = 1− PH

0,1 = PH(vi = 1|ui = 1) = 1 (3.5)

PH
1,0 = 1− PH

0,0 = PH(vi = 1|ui = 0) = 0 (3.6)

Byzantine CRs:

PB
1,1 = 1− PB

0,1 = PB(vi = 1|ui = 1) = 1− P (3.7)

PB
1,0 = 1− PH

0,0 = PB(vi = 1|ui = 0) = P (3.8)

Typically Byzantine attackers attack with these probabilities when they are unaware

of the fusion center strategies. When attackers have a knowledge of the FC strategies,

they vary their probability of attacking based on their requirement.

In spectrum sensing, hypotheses testing is typically performed to obtain a decision

about the presence of PU. Several decision fusion techniques can be incorporated in

the system which consists of different strategies such as

Bayesian detection : This strategy requires the knowledge of prior probabilities of

Hi’s when Hi is zero or one. Each decision situation will be associated with a cost,

i.e., any of the situations when ui is decided as 1/0 while Hi is actually 1/0. The

total cost can be minimized using Bayesian detection.

Neyman-Pearson test : This strategy does not rely on the knowledge of any cost

associated with each decision situation. It requires that the maximum acceptable

probability of false alarm (i.e., ui is decided as one when Hi is actually zero) be de-

fined. The Neyman-Pearson test guarantees that the probability of miss detection
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(i.e., ui is decided as zero when Hi is actually one) is minimized while the false alarm

probability remains acceptable.

Sequential test : Sequential Test, or Sequential Probability Ratio Test (SPRT), takes

a variable number of observation samples as inputs based on need. Given the knowl-

edge of a priori probabilities of Hi’s when Hi is zero or one and given the maximum

acceptable false alarm probability and miss detection probability, SPRT minimizes

the number of observations.

In this thesis, due to its frequent utilization and implementation simplicity, we focus

on the k-out-of-N fusion rule where FC decides that the primary user is present when

k or more received local decisions are in support of the presence of the primary user,

else the FC announces that the primary user is absent and cognitive users can use

the relevant band. If k = 1, the fusion rule becomes the OR-fusion rule and if k =

N it becomes the AND-fusion rule. Local binary sensing decision of the ith cognitive

radio is given by, ui = 0 for absence of primary user and ui = 1 for presence. Thus the

resulting k-out-of-N hypothesis testing at the fusion center is given by I =
N∑
i=1

vi < k

for deciding H0 and I =
N∑
i=1

vi ≥ k for deciding H1.

Figure 3.2: Spectrum sensing using the k-out-of-N rule.
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Let P be the probability that a byzantine attacker sends false information and α be

the percentage of attackers present in the network. Let Pf and Pd denote the proba-

bilities of false alarm and detection respectively of local spectrum sensing, where Pf

represents the probability that PU is actually absent when a CR declaring that PU is

present and Pd represents that CR declares that PU is present when indeed the spec-

trum is actually occupied by PU. Another important probability parameter is called

missed-detection probability Pm when the energy detector indicates the primary user

is absent while actually is present, and Pm = 1 - Pd.

The overall probabilities of the secondary users at the ith cognitive radio and fu-

sion center are given as follows:

Probability of Byzantine attackers is given by:

P (vi = 1|H1) = PB
d = P (1− Pd) + (1− P )Pd (3.9)

P (vi = 1|H0) = PB
f = P (1− Pf ) + (1− P )Pf (3.10)

Probability of honest users is given by:

P (vi = 1|H1) = PH
d = Pd (3.11)

P (vi = 1|H0) = PH
f = Pf (3.12)

where PH
d and PH

f are the probabilities of detection and false alarm if the ith CR is

honest.

Based on the decision fusion model discussed above, global decisions are made by

comparing the summation of all local decisions sent by the fusion members in the

network with threshold k at the FC, the false alarm rate is given in eq(3.14).

Probabilities at the fusion center without considering the attackers are given by:

Qd =
N∑
i=k

(
N

i

)
Pd

i(1− Pd)
N−i (3.13)
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Qf =
N∑
i=k

(
N

i

)
Pf

i(1− Pf )
N−i (3.14)

where k represents the threshold.

According to the De Moivre-Laplace theorem, when N is large enough, Qf can be

calculated approximately as[38]

Qf ≃ Q


k −

N∑
i=1

Pf√
N∑
i=1

Pf (1− Pf )

 (3.15)

where Q(.) is the complementary cumulative distributed function(CCDF) of a stan-

dard normal distribution; that is,

Q(x) =
1√
2π

∫ ∞

δ

e−t2/2 dt (3.16)

Similarly, Qd can also be calculated as

Qd ≃ Q


k −

N∑
i=1

Pd√
N∑
i=1

Pd(1− Pd)

 (3.17)

Qm is calculated by Qm = 1 - Qd as follows,

Qm ≃ Φ


k −

N∑
i=1

Pd√
N∑
i=1

Pd(1− Pd)

 (3.18)

where Φ(x) is the cumulative distribution function (CDF) of a standard normal dis-

tribution.

According to the Bayesian detection condition of minimum system detection cost as

given in [39], we have the costs for deciding on Hi, when Hj is true as Mij|i, j ∈ {0, 1}.
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By considering P0 = P1 = 0.5, M00 = M11 = 0 and M01 = M10 = 1, we can get the

condition of minimum system detection cost as: Qf = Qm

Q


k −

N∑
i=1

Pf√
N∑
i=1

Pf (1− Pf )

 = Φ


k −

N∑
i=1

Pd√
N∑
i=1

Pd(1− Pd)

 (3.19)

Since Q(.) is the complementary cumulative distributed function of standard normal

distribution, we have Q(−x) = 1 − Q(x) and Q(x) = 1 − Φ(x). By integrating the

above equations we can find threshold k∗

k∗ =
Np0.

√
p1(1− p1) +Np1.

√
p0(1− p0)√

p0(1− p0) +
√

p1(1− p1)
(3.20)

where p1 and p0 is average of detection and false alarm probabilities respectively of

all fusion members. Here, p1 = Pd and p0 = Pf since all CRs have the same local

probabilities.

From the entire set of decisions that are observed at the fusion center, i.e.,

ui, i ∈ [1, 2, 3, ......N ]

V0 =
N∑
i=1

vi > k∗, decide on H1 (3.21)

V0 =
N∑
i=1

vi < k∗, decide on H0 (3.22)
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CHAPTER 4

ANALYSIS

Optimal Byzantine and fusion center strategies: Game between attack-

ers and fusion center

Byzantine attackers try to degrade the network in such a way that it results in max-

imum damage of the entire system by making the fusion center blind. At the same

time, the fusion center tries to defend its network by minimizing the damage caused

by the Byzantine attackers by introducing defense mechanism and eliminating the

Byzantine attackers from the system. So, this leads to a game between the attackers

and the fusion center in the network. Consider Byzantine attackers and FC aware of

each other strategies.

Byzantine attackers try to send the false decisions to the FC by flipping their de-

cisions and interrupting the efficient utilization of the spectrum. In the extreme

attack, Byzantines try to flip their decisions with P = 1, i.e., vi = 0 when ui = 1

and vi = 1 when ui = 0. If Byzantines continuously send false information with a

probability P = 1, then FC can eliminate these attackers with simple performance

metrics by counting number of mismatches between the local and global decision.

Byzantines implement few strategies in attacking so that they are not eliminated

easily and continue disrupting the system.
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4.1 Possible Attack Strategies of Byzantines

Malicious users that are present in the network try to degrade the system by modi-

fying their decisions about the primary user and sending false information. This can

be done in three different strategies:

Case1: In this strategy, the Byzantine attackers continuously report false informa-

tion i.e., with probability P = 1. Continuously attacking with this probability leads

to exposure and attackers can be identified easily after a few sensing periods using

different detection schemes.

Case2: In this strategy, the Byzantine attackers report false data with an arbitrary

probability P ∈ (0, 1) which represents that they are not continuously sending false

data. Here the attackers may not be identified easily.

Case3: In this strategy, the Byzantine attackers introduce attack with a probability

that changes after each sensing period based on the previous probability of attacking

information.

Pn = Pn−1 +△1y −△2(1− y) (4.1)

where Pn represents the attacking probability in the nth sensing periods and Pn−1

represents the probability in the (n− 1)th sensing period. y is a Bernoulli random

variable that is equal to ‘1’ with probability Px, and △1 and △2 are increment and

decrement steps respectively, where △1,△2 ∈ [0, 1].

4.2 Fusion Center Strategies

FC is aware of Byzantine attackers in the network and their attempt to send false

information. We propose a strategy that can be employed at the fusion center to

counter the Byzantine attackers from the decision fusion process. We divide the SS

process into T sensing periods. Over T sensing windows, the local decisions forwarded
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by the ith CR can be represented by vi = [vi[1], vi[2], ......, vi[T ]]. For the same time

windows, the final decisions of FC are V0 = [V0[1], V0[2], ......, V0[T ]]. So, the fusion

center allocates a reputation measure ni to each CR representing how many times its

final decision is different from the local decision during T time windows. So, larger

the value of ni, the less reliable is the CR.

Inconsistency of an observation received from a CR with final decisions can be ex-

pressed as hi[t] = I(vi[t] ̸= V0[t]), where I is the indicator function representing

(vi[t] ̸= V0[t]).

Now P (hi[t]) = P (I(vi[t] ̸= V0[t])) is given by

P (hi[t] = 1|Hj) = P (vi[t] = 0|Hj)P (V0[t] = 1|vi[t] = 0, Hj)

+ P (vi[t] = 1|Hj)P (V0[t] = 0|vi[t] = 1, Hj) (4.2)

where j ∈ {0, 1}.

The reputation of the ith CR is given by

ni =
T∑
t=1

I(vi[t] ̸= V0[t]) (4.3)

Generally, if a random variable O follows the binomial distribution with parameters

λ and p (i.e., O ∼ B(λ,p)), the probability of getting exactly o success in λ trails is

given by

P (O = o) = f(o;λ, p) =

(
λ

o

)
po(1− p)λ−o (4.4)

The total number of CRs in our system is N , where we consider L honest CRs and

M Byzantine attackers in them, i.e., N = L + M . By using the k-out-of-N rule at

the FC in a given time window, the relevant probabilities for honest and Byzantine

CRs are given as follows.

27



For honest CRs

P (V0[t] = 0|vi[t] = 1, H1) = 1−
N−1∑
l=k−1

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d ) (4.5)

where a = max(0, k − L+ 1) and b = min(k,M)

P (V0[t] = 1|vi[t] = 0, H1) =
N−1∑
l=k

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d ) (4.6)

P (V0[t] = 0|vi[t] = 1, H0) = 1−
N−1∑
l=k−1

b∑
j=a

f(j;M,PB
f )f(l − j;L− 1, PH

f ) (4.7)

P (V0[t] = 1|vi[t] = 0, H0) =
N−1∑
l=k

b∑
j=a

f(j;M,PB
f )f(l − j;L− 1, PH

f ) (4.8)

For Byzantine CRs

P (V0[t] = 0|vi[t] = 1, H1) = 1−
N−1∑
l=k−1

b∑
j=a

f(j;M − 1, PB
d )f(l − j;L, PH

d ) (4.9)

where a = max(0, l − L) and b = min(k,M -1)

P (V0[t] = 1|vi[t] = 0, H1) =
N−1∑
l=k

b∑
j=a

f(j;M − 1, PB
d )f(l − j;L, PH

d ) (4.10)

P (V0[t] = 0|vi[t] = 1, H0) = 1−
N−1∑
l=k−1

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f ) (4.11)

P (V0[t] = 1|vi[t] = 0, H0) =
N−1∑
l=k

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f ) (4.12)

Let PB and PH be the P (I(vi[t] ̸= V0[t])) for Byzantine and honest CRs respectively.

PB and PH can be calculated using the above equations (4.2), (4.5)-(4.12).

For P (hi[t] = 1|H1)

P 1
B = PB

f · (
N−1∑
l=k−1

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f ))

+ PB
d · (1−

N−1∑
l=k

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f )) (4.13)
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P 1
H = PH

f · (
N−1∑
l=k

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d ))

+ PH
d · (1−

N−1∑
l=k−1

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d )) (4.14)

For P (hi[t] = 1|H0)

P 0
B = PB

d · (
N−1∑
l=k−1

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f ))

+ PB
f · (1−

N−1∑
l=k

b∑
j=a

f(j;M − 1, PB
f )f(l − j;L, PH

f )) (4.15)

P 0
H = PH

d · (
N−1∑
l=k

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d ))

+ PH
f · (1−

N−1∑
l=k−1

b∑
j=a

f(j;M,PB
d )f(l − j;L− 1, PH

d )) (4.16)

PB = P0P
0
B + P1P

1
B (4.17)

PH = P0P
0
H + P1P

1
H (4.18)

In this thesis, this reputation metric is used to counter the Byzantine attackers by

isolating them from the network when its reputation metric ηi exceeds a particular

threshold η where η < T . For further analysis of PB
iso and PH

iso, the Gaussian approx-

imation is employed on the Binomial distribution. The reputation metric for both

Byzantine and honest CRs are distributed as:

PB
iso = P (ni > η) = Q

(
η − T · PB√
T · PB(1− PB)

)
(4.19)

PH
iso = P (ni > η) = Q

(
η − T · PH√

T · PH(1− PH)

)
(4.20)

where Q(.) is the complementary cumulative distribution function of standard Gaus-

sian random variable. The cutoff probability of honest CRs and Byzantine attackers
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can be constrained by selecting the threshold η with targeted false alarm constraint

w.

η = (
√

T · PH(1− PH))Q
−1(w) + T · PH (4.21)

The Byzantines detection performance can be influenced by w and T , where w is

a constant ranging between [0, 1]. For small value of w, the probability of honest

CRs being cut off from the system will be very low. But, decreasing w will result in

increase of η which results in decreased value of PB
iso. So, there is a trade off while

selecting w. Also a larger sensing period T with a suitable w can provide a better

detection performance. However, larger T leads to delay resulting in more damage

to the network. If the Byzantine attackers are aware of these strategies at the fusion

center, then they try to deceive the network by changing their probabilities of attack-

ing.

The global false alarm probability Qf and detection probability Qd by considering

the attackers are given by

QD =
N∑
i=k

(
N

i

)
PD

i(1− PD)
N−i (4.22)

QF =
N∑
i=k

(
N

i

)
PF

i(1− PF )
N−i (4.23)

where PD and PF are the overall detection probability and false alarm probability

respectively. Specifically, PD and PF can be calculated as

PD = α(PB
d ) + (1− α)PH

d (4.24)

PF = α(PB
f ) + (1− α)PH

f (4.25)

Hence, based on these equations the probability of error QE is given by

QE = P0QF + P1(1−QD) (4.26)
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4.3 Optimal Byzantine attack strategies

Byzantine attackers try to degrade the network performance by attacking indepen-

dently relying on its own observation and decision based on the parameters α and P .

PB
iso is the probability that a byzantine attacker is detected by the defense mechanism

and eliminated from the system. So, based on the tradeoff values between w and T ,

FC derives threshold η such that only the Byzantine attackers will be removed and

the honest CRs remain in the network.

We employ the Kullback-Leibler divergence as a network performance metric that

characterizes the detection performance. The KLD between the distributions q =

P (ui = j|H0) and r = P (ui = j|H1) is given by

D(r ∥ q) =
∑
j

P (ui = j|H1) log
P (ui = j|H1)

P (ui = j|H0)
(4.27)

where j ∈ {0, 1}.

Byzantine attackers want to make maximum damage to the spectrum sensing process

as possible by sending falsified data as many times as possible. This can be achieved

by reducing KLD between probability density function(pdfs) resulting in more deci-

sion errors. So minimizing the KLD between two hypotheses at the fusion center is

D(P (ui|H1) ∥ P (ui|H0)) = 0 or equivalently P (ui|H1) ≡ P (ui|H0). The KLD under

the data falsification attack can be given as [5]:

D(r ∥ q) = (1− αP − Pd(1− 2αP )) log
1− αP − Pd(1− 2αP )

1− αP − Pf (1− 2αP )

+ (αP − Pd(1− 2αP )) log
αP + Pd(1− 2αP )

αP + Pf (1− 2αP )
(4.28)

We discuss KLD as a function of flipping probability P . Fig 5.4, illustrates that KLD

is a monotonically increasing function of t = (1− 2αP )2 when Pd = 0.6, Pf = 0.2.
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Lemma 1:Let t = (1 − 2αP )2 or αP = 1±
√
t

2
. KLD is a monotonically increasing

function of t for any Pd > 0.5 and Pf < 0.5,

Proof. : When αP = 1−
√
t

2
,

D(r ∥ q) =
(1 +√

t

2
− Pd

√
t
)
log

1 +
√
t− 2Pd

√
t

1 +
√
t− 2Pf

√
t

+
(1−√

t

2
+ Pd

√
t
)
log

1−
√
t+ 2Pd

√
t

1−
√
t+ 2Pf

√
t

(4.29)

dD

dt
=

2Pd − 1

4
√
t

[(
1− 1 +

√
t(2Pd − 1)

1 +
√
t(2Pf − 1)

2Pf − 1

2Pd − 1
+ log

(1 +√
t(2Pd − 1)

1 +
√
t(2Pf − 1)

))
−
(
1− 1−

√
t(2Pd − 1)

1−
√
t(2Pf − 1)

2Pf − 1

2Pd − 1
+ log

(1−√
t(2Pd − 1)

1−
√
t(2Pf − 1)

))]
=

2Pd − 1

4
√
t

[
log
(1 +√

t(2Pd − 1)

1 +
√
t(2Pf − 1)

)
− log

(1−√
t(2Pd − 1)

1−
√
t(2Pf − 1)

)]
+

2Pf − 1

4
√
t

[1−√
t(2Pd − 1)

1−
√
t(2Pf − 1)

− 1 +
√
t(2Pd − 1)

1 +
√
t(2Pf − 1)

]
(4.30)

Therefore, when αP = 1−
√
t

2
, we have

D(r ∥ q) =

(
1−

√
t

2
+ Pd

√
t

)
log

1−
√
t+ 2Pd

√
t

1−
√
t+ 2Pf

√
t
+

(
1 +

√
t

2
− Pd

√
t

)
log

1 +
√
t− 2Pd

√
t

1 +
√
t− 2Pf

√
t

(4.31)

Now, to prove that D(r ∥ q) is monotonically increasing, we need to prove that

dD
dt

> 0. To prove that we need to show that
2Pf−1

4
√
t

[
1−

√
t(2Pd−1)

1−
√
t(2Pf−1)

− 1+
√
t(2Pd−1)

1+
√
t(2Pf−1)

]
> 0

which is equivalent to show that ,

2Pf − 1

4
√
t

< 0 (4.32)

and [
1−

√
t(2Pd − 1)

1−
√
t(2Pf − 1)

− 1 +
√
t(2Pd − 1)

1 +
√
t(2Pf − 1)

]
< 0 (4.33)

To show that this is true, we use the fact that (1+a)
(1+b)

> (1−a)
(1−b)

iff a > b where a, b < 1.

As 0.5 < Pd < 1 and 0 < Pf < 0.5 implies that Pd > Pf and above inequality is
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true. Now, we show that 2Pd−1

4
√
t

[
log
(

1+
√
t(2Pd−1)

1+
√
t(2Pf−1)

)
− log

(
1−

√
t(2Pd−1)

1−
√
t(2Pf−1)

)]
> 0 which is

equivalent to,

2Pd − 1

4
√
t

> 0 (4.34)

and (
log

1 +
√
t(2Pd − 1)

1 +
√
t(2Pf − 1)

)
>

(
log

1−
√
t(2Pd − 1)

1−
√
t(2Pf − 1)

)
< 0 (4.35)

Based on the above inequalities from (4.23), (4.24) is is clear that dD
dt

> 0, which

completes the proof.

Optimization of attack by Byzantines is given by minimizing (1− 2αP )2.

Case1: When α ≤ 0.5 : Attackers try to decrease PB
iso, such that, they cannot be

identified immediately. So, based on the Byzantine attackers can vary their probabil-

ity of attack P .

Case2:When α > 0.5 : The optimal flipping probability for the attackers is P = 1
2α

as KLD = 0.

When the Byzantine attackers are trying to degrade the network by choosing the

optimal probabilities, the fusion center also try to minimize their attacks by changing

the threshold η.
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CHAPTER 5

Simulations and Results

In this chapter, we present simulation results that illustrate the performance of the

proposed method. We assume the cognitive radios are detecting the presence or

absence of primary user. Fig 5.1, Fig 5.2 shows the effect of Byzantines on the prob-

ability of detection and probability of false alarm.

Figure 5.1: Effect of Byzantines on probability of detection
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Figure 5.2: Effect of Byzantines on probability of false alarm

As we can see from both figures fraction of Byzantines affects the performance of the

network. Also, as the number of Byzantines increases we can observe the degradation

in the probability of detection, i.e., as number of Byzantines increase Pd decreases.

In Figure 5.3, we plot the CDF for Pn, i.e., third strategy. It can be seen that

Pn is spread over wide range of values.

Figure 5.4 illustrates the result that KLD is a monotonically increasing function of

t = (1− 2αP )2 when Pd = 0.6 and Pf = 0.2.
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Figure 5.3: Possible attack strategies of Byzantines

5.1 Effect of Byzantines

Now we consider, probability of detection Pd = 0.8 and probability of false alarm Pf

= 0.2. Further we assume that probability of detection and false alarm for honest

and Byzantine CR’s, i.e., PH
d = 0.8, PH

f = 0.2. Prior probabilities of the hypotheses

are assumed to be equal, P0 = P1 = 0.5. The Fusion center observes local decisions

of the nodes over a time window T = 20. Reputation threshold η has been chosen

such that probability of honest being removed from the process at the end of time

window is low i.e., w = 0.3. Toatal number of nodes N = 100.

In Figure 5.5 , we plot the achievable (PB
iso) as a function of flipping probability

P . It can be observed that probability of Byzantines being isolated from the process

increases with increasing of P .
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Figure 5.4: KLD as a function of parameter t

In Figure 5.6, we plot (PB
iso) as a function of flipping probability P = 1

2α
. It

can be observed that (PB
iso) increases slowly with decrease in number of attackers.

Figure 5.7, we plot (PB
iso) as a function of reputation threshold η and time win-

dow T . We choose the value of w such that the probability of an honest CR being

isolated from the system is very low, i.e., w = 0.3. In this plot the time window varies.

As a result the reputation threshold also varies. Decreasing w will result in increase

of η, which leads to a decrease in the value of (PB
iso). So, there is a trade off while

selecting the value of w. Increasing the value of η will result in decrease of (PB
iso).

So, FC need to choose a suitable w and relatively small for T such that, Byzantine

elimination can be done quickly.
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Figure 5.5: (PB
iso) as a function of flipping probability P

5.2 Game between Attackers and Fusion center

In this section, based on the simulated data, we validate our analysis between at-

tackers and Fusion center. The main aim of an attacker is to degrade the system

performance and the aim of Fusion Center(FC) is to improve the performance of the

system by eliminating the attackers. So, a game is formulated between attackers and

FC based on the probabilities of attack strategies and the performance metric ‘repu-

tation threshold η’.

(PB
iso) and (PH

iso) are the two important factors, which denote the the probabilities

of detecting a CR byzantine and isolating them from the system. As per the results

in Fig 5.7, we need to choose w = 0.3 to reduce the isolation of honest CR’s by con-

sidering them as Byzantines.
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Figure 5.6: (PB
iso) as a function of flipping probability P = 1

2α

In Figure 5.8, we plot (PB
iso), (P

H
iso) and QE (before eliminating CRs from the sys-

tem) as a function of α. Consider if more number of attackers attack the system.

We show that as α, i.e., fraction of Byzantine attackers varies, (PB
iso) and (PH

iso) also

varies accordingly. As α approaches 0.5, i.e., ‘blinding region‘ we can observe that

value of (PB
iso) decreases and on the other hand value of (PH

iso) increases. So, this

leads to increase of probability of error QE. At α = 0.5 we have QE = 0.5, indi-

cating that if number of attackers in the system exceeds by more than 50% then FC

will be incapable of making a decision. So, the decision will purely be a random guess.

In our simulations, we consider M i.e., number of attackers = 40 (α = 0.4) as

attackers will be incapable of making FC blind. k = N/2, i.e., the number of CR’s

required to obtain a decision about the presence or absence of a PU. In Figure 5.9,
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Figure 5.7: (PB
iso) as a function of η and T

Figure 5.10 we plot the differences in (PB
iso), (P

H
iso) and QE as a function of probability

of attack P at α = 0.4 and α = 0.5. We show that, when α < 0.5, QE, (P
H
iso) will be

low and (PB
iso) will be high. We have shown that at α = 0.5 we have (PB

iso) = (PH
iso),

which represents that KLD = 0 i.e., (PB
iso) - (P

H
iso) = 0.

Now the attackers, wants to remain in the system without being eliminated, so they

want to reduce the value of (PB
iso). Whereas, FC wants to eliminate these attackers

so that it can improve the performance of the system. By changing the values of

probability of attack P , attackers can reduce (PB
iso) and by changing the values η and

T , FC can increase the value of (PB
iso). So, according to FC there will be a trade off

while selecting the values such that, (PB
iso) will be high. T should not be very high

because there will be a delay in decision making and attackers causing more damage
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Figure 5.8: (PB
iso),(P

H
iso) and QE as a function of α

to the system before they are eliminated.

In Figure 5.11, we show that the value of (PB
iso) decreases as P decreases, and (PB

iso)

= 0 as η increases to T = 15.

Now we plot QD,QF and QE based on various parameters.

In Figure 5.12, we plot QD,QF and QE (before eliminating CRs from the system) as

a function of number of attackers. As the number of attackers increase in the system,

we know that the value of QD decreases and value of QF increases, leading to an

increase in the value of QE.

In Figure 5.13, we plot QD,QF and QE (before eliminating CRs from the sys-

tem) as a function of attacking probability P . As P increases, attackers attack with
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Figure 5.9: (PB
iso),(P

H
iso) and QE as a function of P when α = 0.4

higher probabilities, so value of QF increases. As a result, (PB
iso) also increases which

leads to more elimination of the attackers from the system thus reducing the value of

QE.

In Figure 5.14, we plot QD,QF and QE (after eliminating CRs from the system)

as a function of detection probability PD. As more number of Byzantines are elimi-

nated from the system, it results in a decrease in the value of QF and as PD reaches

1 we can observe that the false alarm and probability of error QE reaches 0.
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Figure 5.10: (PB
iso),(P

H
iso) and QE as a function of P when α = 0.5

Figure 5.11: (PB
iso) as a function of P and η
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Figure 5.12: QE,QD and QF w.r.t the number of Attackers

Figure 5.13: QE,QD and QF w.r.t P
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Figure 5.14: QE,QD and QF w.r.t Pd
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CHAPTER 6

Conclusions and Future work

In summary, we have analyzed several issues related to CRs in the presence of Byzan-

tine attackers. We have considered, the optimal fusion rule at FC to identify the

attackers. First we considered energy detection at each CR and based on k out of N

rule we obtained the threshold at FC to fuse the decisions of all CRs. Next we con-

sidered the possible attack strategies for the Byzantine attackers in order to escape

the identification as an attacker.

In CR networks with binary hypotheses, we found the optimal values at which at-

tackers blind FC and KLD becomes zero. From the FC perspective, we presented an

easy, efficient reputation metric scheme to eliminate the attackers by counting the

mismatches between local and global decisions. We have shown that the proposed

scheme was successful in eliminating the Byzantine attackers from the system. These

countermeasures need to be incorporated by the attackers to overcome FC strategies.

We modeled the game between attackers and FC, under the assumption that the

attacker and FC are aware of each other strategies. When the Byzantines are identi-

fied and eliminated from the system, the attackers want to remain so that they can

degrade the network performance. So, they try to decrease PB
iso by changing their

probability of attack and similarly when FC identifies that attackers decreasing their

probability of attack it needs to change the reputation threshold η such that the

value of PB
iso increases. We also considered the problem of optimizing the strategies
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of attackers and FC to achieve their goals.

There are still many interesting questions that remain to be explored in future work

which can be conducted on collaboration of the Byzantine attackers to bring down the

network, Byzantine attackers forming into small groups, where Byzantine attackers

can control the thresholds for making local decisions and deceiving the FC and the

counter measures that needs to be incorporated at the FC to overcome these sort of

attack strategies. Also it will be interesting if attackers can overhear the honest users

and take decisions accordingly.
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