
NEW TECHNIQUES FOR DATA CLUSTERING

AND COLOR IMAGE SEGMENTATION

 By

 TRUNG HUY DUONG

 Bachelor of Technology in Mechatronics
 Hanoi University of Technology

 Hanoi, Vietnam
 2004

 Master of Science in Mechanical and Aerospace

Engineering
 Oklahoma State University

 Stillwater, Oklahoma
 2009

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 DOCTOR OF PHILOSOPHY

 May, 2013

ii

 NEW TECHNIQUES FOR DATA CLUSTERING

AND COLOR IMAGE SEGMENTATION

 Dissertation Approved:

 Dr. Lawrence L. Hoberock

 Dissertation Adviser

 Dr. Jay C. Hanan

 Dr. Gary E. Young

 Dr. Guoliang Fan

iii
Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Lawrence L. Hoberock,

Professor and Head, School of Mechanical and Aerospace Engineering, Oklahoma State

University, who has inspired and directed me in the fascinating research area of machine vision,

always encouraging me to do my best, giving me a lot of flexibility, and generously providing me

financial support. I would like to express my sincere thanks to Dr. Jay C. Hanan, Associate

Professor, Dr. Gary E. Young, Professor, School of Mechanical and Aerospace Engineering,

Oklahoma State University, and Dr. Guoliang Fan, Professor, School of Electrical and

Computer Engineering, Oklahoma State University, for serving on my Graduate Committee.

I wish to express my special thanks to School of Mechanical and Aerospace Engineering, and

New Product Development Center, Oklahoma State University for supporting a research

assistantship to complete this work. I would also thank to University of Communication and

Transport for providing me an opportunity to study in USA.

I would like to extend my thanks to my colleagues at Robotics Research Lab in Oklahoma State

University, for their valuable ideas and discussions. Finally, I would like to thank my parents Mr.

Lung H. Duong and Ms. Luc T. Vu and my relatives for their love and encouragement. I specially

express my appreciation for my wife, Ms. Ly H. Doan, for her love, understanding, and helping

me overcome difficulties. I would like to dedicate my work to my daughters, Windy Giang

Duong and Sunny Giang Duong, who are my joy, inspiration, and future.

iv

Name: TRUNG HUY DUONG

Date of Degree: DECEMBER, 2012

Title of Study: NEW TECHNIQUES FOR DATA CLUSTERING AND COLOR

IMAGE SEGMENTATION

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: The objectives of this work are twofold: (1) to create an improved automatic clustering

procedure that produces results consistent with manual clustering of data points by humans; and

(2) to find an improved technique for automatic segmentation of images. First, we developed a

clustering technique using an M-ART (Mahalanobis distance-based Adaptive Resonance Theory)

neural network. The “vigilance” ρ in the M-ART network affects the maximum size of clusters,

and consequently affects the number of clusters. Normally the “optimal” value of ρ is heavily

data dependent and therefore can only be chosen by users and adjusted by trial-and-error. We

propose a procedure to automatically adjust the value of ρ based on a pre-defined required

separation between clusters, which is data independent and can be determined beforehand.

Experiments conducted on synthetic multidimensional and texture datasets demonstrate the

effectiveness and reliability of the proposed method. Segmentation is the process of partitioning a

digital image into multiple segments or non-overlapping regions. Partitioning an image into non-

overlapping regions assures that pixels in each region share the same visual properties, such as

color or texture, while pixels in different regions exhibit significant differences in these features.

We found that M-ART works well only with convex-shaped clusters (segments) that are

sufficiently separated, which is not the case for typical real-scene images. Accordingly, we

investigated and presented developing a more advanced general purpose image segmentation

method, called the DUHO method. This DUHO algorithm contains two main steps. First, the

superpixel generating algorithm is applied to a given image to build K superpixels. Then a new

region growing algorithm iteratively groups these superpixels into appropriate regions and forms

v

the final image segmentation result. The proposed method is a type of unseeded region-based

segmentation that preserves the spatial relationship between pixels in the image, and hence

preserves the detailed edges and the image spatial structure. A quantitative evaluation method

based on square color error is introduced, and experiments with real datasets, consisting of 300

color images of natural scenes from the available data, show very good results from our DUHO

method when compared with results from the well-known segmentation methods.

vi

TABLE OF CONTENTS

PART I: DATA CLUSTERING .. 1

Chapter 1 INTRODUCTION TO DATA CLUSTERING... 1

1.1 Introduction .. 1

1.2 Previous Work ... 1

1.3 Proposed Approaches ... 2

Chapter 2 ART NEURAL NETWORK AND VARIATIONS .. 4

2.1 ART1 Network: ... 5

2.2 Euclidean Distance-based ART (E-ART) Network: .. 6

2.3 Mahalanobis Distance-based ART (M-ART) Network ... 8

Chapter 3 NEW DATA CLUSTERING METHOD .. 13

3.1 Definitions of Hyper-ellipsoid Shaped Clusters and the M-ART Clustering Procedure 13

3.2 Selecting a Good Value for ρ:.. 23

3.3 Density-based removal pre-processing .. 27

3.4 Automatic clustering procedure ... 30

Chapter 4 RESULTS OF THE PROPOSED DATA CLUSTERING TECHNIQUE 33

4.1 Test with artificial data .. 33

4.2 Case study: texture classification .. 41

vii

4.3 Case study: Texture segmentation ... 43

Chapter 5 CONCLUSTIONS FOR DATA CLUSTERING .. 46

PART II: COLOR IMAGE SEGMENTATION .. 1

Chapter 6 INTRODUCTION TO IMAGE SEGMENTATION .. 48

6.1 Introduction to image segmentation .. 48

6.2 Previous works .. 50

6.3 Proposed image segmentation method .. 53

Chapter 7 NEW IMAGE SEGMENTATION METHOD ... 55

7.1 Superpixels ... 56

7.2 Modified region growing segmentation ... 64

7.3 Our proposed DUHO segmentation method .. 72

7.4 Complexity analysis of our DUHO segmentation algorithm .. 76

7.5 Objective function and convergence of DUHO segmentation algorithm 79

Chapter 8 RESULTS AND EVALUATIONS ... 86

8.1 Dataset .. 86

8.2 Results of our DUHO algorithm ... 88

8.3 Effect of the Control Parameters:.. 90

8.4 Selecting the best unsupervised metric .. 93

8.5 Comparisons with other methods .. 101

Chapter 9 CONCLUSIONS AND RECOMENDATIONS ... 107

4.1 Conclusions .. 107

viii

4.2 Recommendations .. 110

REFERENCES .. 111

ix

LIST OF TABLES

Table Page

Table 3.1: Pseudo-code of the M-ART with Auto-adjust Vigilance Algorithm 27

Table 3.2: Pseudo-code of Density-based Removal Pre-processing .. 28

Table 3.3: Pseudo-code of Automatic Clustering Procedure ... 31

Table 4.1: Data Sets and Characteristics .. 34

Table 4.2: Summary Results of Clustering (SV=0.8) .. 36

Table 4.3: Effect of Separation Ratio on the Number of Clusters ... 39

Table 4.4: Accuracy of Texture Segmentation of Three Methods ... 45

Table 7.1: Proposed Superpixel Generating Algorithm ... 60

Table 7.2: Proposed Region Growing Algorithm .. 72

Table 8.1: Fisher’s distances between two distributions .. 100

Table 8.2: Computational times (seconds) for segmentation of images 103

Table 8.3: Evaluation of three segmentation algorithms on the dataset 103

Table 8.4: Evaluation of our DUHO segmentation and three other algorithms 105

x

LIST OF FIGURES

Figure Page

Figure 2.1: Graphical Representation of Learning Rule for 2-Dimendional Vectors 8

Figure 2.2: Mahalanobis Distance from the Point X and the Cluster Center C. 10

Figure 2.3: Difference between Mahalanobis Distance and Euclidean Distance. 11

Figure 3.1: Two clusters that are “separated enough” ... 23

Figure 3.2: Separation-factor between Two Circular Shaped Clusters. ... 25

Figure 3.3: Example of separation factors ... 26

Figure 3.4: (a) Data Set a1. (b) and (c) Results with Different Vigilance Values. 26

Figure 3.5: (a) Original Data Set t3; (b) Plot of Number of Clusters vs. kr and rr; 29

Figure 3.6: (a) Original Data Set s3; (b) Plot of Number of Clusters vs. kr and rr; 32

Figure 4.1: Graphical Representation of Data Sets .. 35

Figure 4.2: Data Set t3 in 3-D (a), and its projection in xy, xz, yz planes. 37

Figure 4.3: Clustering results of the data set t3, t4, and t5. .. 38

Figure 4.4: Original Data Set s4 Created by 15 Gaussian Clusters ... 39

Figure 4.5: Plots of Number of Clusters vs. kr and rr for Different Values of SV 41

Figure 4.6: The 26 small texture images of size 64x64 pixels from 26 categories. 43

Figure 4.7: Some Test Images for Segmentation (top row) ... 43

Figure 4.8: Effect of Initialization ... 44

Figure 7.1: RGB (left) and L*a*b* (right) color space... 57

xi

Figure 7.2: Proposed Superpixel Generating Algorithm.. 61

Figure 7.3: Superpixel Generating: Effect of � .. 62

Figure 7.4: Superpixel Generating: Effect of � and �� .. 63

Figure 7.5: The set of pixels (shown as purple squares) are 4-connected (left) 65

Figure 7.6: Proposed Region Growing Algorithm ... 71

Figure 7.7: Proposed DUHO Image Segmentation Algorithm .. 73

Figure 7.8: DUHO Segmentation Process (See text for detail). .. 75

Figure 7.9: The search space for each pixel at current step ... 77

Figure 7.10: Objective function in (b) ����	- example 1 ... 83

Figure 7.11: Objective function in (b) ����	- example 2 ... 84

Figure 7.12: Objective function in (b) ����	- example 3 ... 84

Figure 7.13: Objective function in (b) ����	- example 4 ... 85

Figure 7.14: Objective function in (b) ����	- example 5 ... 85

Figure 8.1: Some dataset’s images from [68] .. 87

Figure 8.2: Some pairs of original image (a) and manual segmentation (b) 88

Figure 8.3: Our DUHO segmentation results on some images .. 89

Figure 8.4: Results of our DUHO segmentation method ... 92

Figure 8.5: The ground-truth segmentation and a random segmentation 99

Figure 8.6: Fisher’s distances distribution corresponding to 6 metric measurements 101

Figure 8.7: Some Comparison: non-superpixel-based segmentation methods 102

Figure 8.8: Some Comparison: superpixel-based segmentation methods.................................... 106

xii

LIST OF NOTATIONS

Bold Indicates a vector or a matrix or a set

Normal Indicates a scale number

Xk The kth input vector, d-dimensional: Xk=[xk1,xk2,…, xkd]
T

xki The ith element of the input vector Xk

d dimension of input vector space

i,k The index for an input vector, 1≤i,k≤L

L The number of input vectors in a data set

S The data set S = {Xk,k=1..L}

(C,Q,R,N) An ellipsoid cluster with center vector C, covariance matrix Q, cluster size R,

number of members N.

Cj The center of the cluster (Cj, Qj, Rj,Nj), d-dimensional Cj=[cj1,cj2,…, cjd]
T

Qj The covariance matrix of the cluster (Cj, Qj, Rj,Nj), symmetric and semi-definite

positive of size d-by-d.

Rj The radius of the cluster (Cj,Rj,Nj)

Nj The number of members of the cluster (Cj,Rj,Nj)

j,k The index for a cluster, 1≤j,k≤M

J The index for the resonated clusters (closest to the current input), 1≤J≤M

M The number of current clusters in M-ART/E-ART/ART1 network

M(), T() The Match function and the Activation function

xiii

||.|| The Euclidean norm of a vector: ‖X‖=�XTX

||.||1 The 1-norm of a binary vector: ‖X‖1=∑ |xi|d
i=1

||.||A The A-norm of a vector: ‖X‖A=�XTAX

β The learning rate

ρ The vigilance of the M-ART/E-ART/ART1 network

SV The desired separation ratio

SVjk The separation ratio between cluster jth and cluster kth

1

PART I: DATA CLUSTERING

Chapter 1

INTRODUCTION TO DATA CLUSTERING

1.1 Introduction

Clustering is a principal tool for data analysis that aims to produce natural groupings, or structure,

in a given data set. Its wide application can be found in data mining, customer recommendation

system, text document, image segmentation, sequence analysis, medical imaging, and crime

analysis [2-9]. Interestingly, even though clusters in say a set of 2-D points laid out on an x-y axis

system might be intuitively identified by most observers without pre-instruction , defining

formally what constitutes a cluster is not only difficult, but may also be inaccurate. The most

acceptable definitions typically arize from examples. According to Frank at el. [3], a partition

resulting from clustering should have two properties: homogeneity within clusters (data belong to

the same cluster should be as similar as possible) and heterogeneity between clusters (data belong

to different clusters should be as different as possible).

1.2 Previous Work

 A primary concern, and perhaps the most difficult, for a given data set is determining how many

clusters are present. A second concern is to determine to which cluster a given data point belongs.

2

This second question could be relatively easily answered, once the correct number of clusters is

known. Some frequently used clustering methods such as K-mean and Fuzzy c-means shown in

Bezdek and Pal [10] require the number of clusters to be given a priori, but this is often not known.

The “optimal” number of clusters could be chosen according to some criteria, such as cluster

compactness or variation within a cluster and/or separation or isolation between clusters [11]. Cluster

compactness (variation within cluster) and/or separation (isolation between clusters) are normally

considered as major factors in forming validation indexes [10, 11]. Almost all clustering algorithms

are not parameter-free and require user supplied values for input parameters. Determining these

values is difficult, and is usually guided by trial-and-error. Moreover, the results produced could be

very sensitive to these values, producing significantly different partition results with only slightly

different parameter values [6], rendering them unusable.

Density based clustering method, such as DBSCAN [5], generally can handle arbitrary cluster shapes.

However, there are two parameters that users must feed to DBSCAN: a maximum distance between

points for which two points can be considered as neighbors and the minimum number of points

required to form a cluster, which are difficult to choose a prior. “Optimal” values of these parameters

are problem dependent, and can only be obtained by trail-and-error. In addition, the computational

time required of DBSCAN is large without an indexing structure. The worst case time complexity of

DBSCAN is O(n2) without indexing, and is O(nlogn) with spatial indexing [12], where n is the

number of data point.

1.3 Proposed Approaches

In this paper, a clustering technique is introduced using an M-ART (Mahalanobis-based Adaptive

Resonance Theory) neural network, in which Mahalanobis distance between data points is used as a

metric. Similar to Kohonen’s Learning Vector Quantization network (LVQ) and Reilly and Cooper’s

Restricted Coulomb Energy network (RCE), as in [13], M-ART uses hyper-ellipsoids to form training

patterns into classes or clusters. During training, M-ART fixes the size (maximum size) of the hyper-

3

ellipsoid, while RCE fixes the position and LVQ fixes the number of clusters [8]. The control

parameter called vigilance, ρ, in the M-ART network affects the maximum size of clusters, and

consequently affects the number of clusters. Conventionally, the “optimal” value of ρ is heavily data

dependent and therefore can only be chosen by users after trial-and-error. To overcome this

shortcoming, we propose a procedure to auto-adjust the value of ρ based on a pre-defined allowed

separation between clusters. This separation factor is data independent and can be determined

beforehand. To assist M-ART in producing improved partitions, density-based removal pre-

processing is introduced to remove noise and produce improved data separation.

In what follows, Chapter 2 presents our Mahalanobis distance-based ART algorithm (M-ART),

applied to the clustering problem, and the procedure for auto-adjustment of ρ. Chapter 3 introduces

the density-based removal pre-processing and our overall automatic clustering procedure. Chapter 5

and 6 present experimental results and conclusions, respectively.

4

Chapter 2

ART NEURAL NETWORK AND VARIATIONS

Adaptive Resonance Theory (ART), first introduced by Grossberg [14], is well known as an

unsupervised neural network for self-organized stable, fast, incremental learning to recognize

categories in response to arbitrary sequences of binary input vectors in real time. There are many

variations and extensions of the ART network, such as ART2, ARTMAP, Fuzzy ART, and

FARTMAP to deal with continuous inputs or extensions to supervised learning models [8, 14-

16]. Essentially, any network based on ART forms input vectors (patterns) into separate

categories (clusters) based on the similarity between them. The key idea is checking for similarity

between the new input vector and the representatives of categories already learned. If there is a

close enough match, the new vector is incorporated to the associated existing category.

Otherwise, the ART network creates a new category to store this new pattern. In this way,

previously learned memories are not eroded by new learning. ART directly addresses the

Stability-Plasticity dilemma: “How can a system be receptive to significant new patterns and yet

remain stable in response to irrelevant patterns?” [17].

5

2.1 ART1 Network:

The operation of the ART1 network originally introduced in [14] can be characterized by three

steps: searching, vigilance testing, and learning. ART1 works only with binary input vectors Xk

(containing element values of either 0 or 1): Xk=[xk1,xk2,…, xkd]
T, xki ∈[2], i=1..d, where k is the

index of the kth input.

In the searching step, the existing cluster in the network that is most similar to the input pattern is

found. The function that measures the similarity between two vectors (the input Xk and an

existing jth cluster center Cj) is called the activation function T(Xk,Cj) [18]:

T(��, ��) = ��� 	∩ 	����α + ����� (2.1)

where ∩ is the bitwise AND operation, such that X∩Y=(x1 AND y1, x2 AND y2,…, xd AND yd),

‖�‖� = ∑ |x�|�� � is the number of ones in the vector X (or so called Manhattan norm, or 1-norm),

and α is a small positive constant to avoid dividing by zero.

Let J denote the index that represents the cluster for which the activation is highest (highest

similarity), given by:

J = argmax� &T(��, ��)' (2.2)

A match function M(Xk,CJ) measure the likeness of input Xk to this cluster Jth, given by:

M(��, �)) = ��	 ∩ 	�)��‖�‖� (2.3)

In the vigilance testing step, the match function is compared with a dimensionless parameter

called vigilance ρ to verify the match between the input and the most similar cluster. The

condition for a good match, called the “resonance state”, is:

M(Xk,CJ) > ρ (2.4)

If (2.4) satisfied, then the input is incorporated into the Jth cluster (with highest activation).

Otherwise, a new cluster is formed as the input itself. According to (2.3), M(Xk,CJ) always lies

6

between 0 and 1, so we choose 0<ρ≤1. The value of vigilance ρ determines the “coarseness” of

the clusters created by the input vectors. With this ART1 network, a small value for ρ means

more input vectors are classified into the same cluster, resulting in a small number of clusters. On

the other hand, a large value for ρ yields a large number of clusters.

In the learning step, the Jth cluster that resonates with an input Xk is updated by:

�)*+, 	= 	β&�� 	∩ 	�)./�' 	+ 	(1−β)�)./� (2.5)

where β is the learning rate, 0≤β≤1, and �)./� and �)*+,	are respectively the center of Jth cluster

before and after adding the input Xk. The learning process with β = 1 is called “fast learning”,

which minimizes the training time, but could lead to unstable results [15, 17].

2.2 Euclidean Distance-based ART (E-ART) Network:

A Euclidean distance-based ART network (E-ART) [16, 19, 20], designed to cluster analog

pattern inputs, has several differences from ART1 discussed above. First, this network works with

continuous, rather than binary, inputs. Before being fed individually to the network, each d-

dimensional input vector Xk=[xk1,xk2,…, xkd]
T is normalized, producing Xn, such that each

element xki, i=1..d, is in the range [0,1]:

Xn = (Xk − Xmin) ./ (Xmax − Xmin) (2.6.a)

Where ./ means an element-by-element division of two vectors, Xn is the normalized vector, and

Xmin (Xmax) is a new vector in which each element is the minimum (maximum) over all

corresponding elements of all L input vectors, namely [17]:

�1�* = 2 min�5�56(x��) , min�5�56(x�7) , … , min�5�56(x��)9: (2.6.b)

�1;< = 2max�5�56(x��) , max�5�56(x�7) , … , max�5�56(x��)9: (2.6.c)

Second, similar to [20], we set both the activation function and the match function as the

Euclidean distances between the normalized input vector Xn and the center of each cluster Cj,

namely:

7

T&�*, ��' = M&�*, ��' = ��*	−	��� = =(�*	−	��):(�*	−	��)		 (2.7)

where ||a|| is the Euclidean norm of the vector a.

Third, we define the cluster J that is most similar to the normalized input Xn as the one with the

smallest Euclidean distance, given by:

J = argmin� &��*	−−−−	���' (2.8)

Fourth, define the resonance state by:

M&�*, �)' < ρ (2.9)

where vigilance ρ is a pre-defined dimensionless real number in range [0,√?]. (ρ ≤ √? because

each element of Xn and CJ is in the range [0,1] and therefore ��*	−−−−	��� ≤ √?).
Notice that (2.8) and (2.9) are used differently from (2.2) and (2.4). In (2.8) the highest similarity

is defined as the minimized activation function, rather than maximized as in (2.2). The resonance

state in (2.9) occurs when the match function is small enough (less than ρ), rather than when it is

large enough (greater than ρ) in (2.4). Accordingly, an input will be incorporated into the nearest

cluster only if the Euclidean distance from it to this cluster center is small enough. Otherwise, this

input forms a new cluster in the E-ART network. It is thus straightforward that the E-ART

network classifies input vectors into clusters with a hyper-sphere shape. Furthermore, if the

Euclidean distance from a new input vector to the nearest cluster center is larger than ρ, this input

does not belong to this cluster. In E-ART, the vigilance ρ can be considered as the maximum

allowable hyper radius of the cluster.

Because inputs are normalized before being fed to E-ART, in the rest of this study, we assume

that any vector input Xk already has its elements in the range of [0,1].

The learning rule for E-ART is the same as for ART1 as described in (2.5). As shown in Fig.2.1,

if (2.9) is satisfied (resonance occurs), the new input Xk is incorporated into the nearest cluster

8

(the Jth cluster); and the cluster center CJ is updated by moving it toward Xk. Other existing

clusters are unchanged.

With �)./�	 is the center of the Jth cluster consisting of N previously submitted patterns, then:

�)./� = 1NB��C
� � (2.10)

Figure 2.1: Graphical Representation of Learning Rule for 2-Dimendional Vectors

We update the center when adding a new pattern XN+1 such that the �)*+, becomes the center of

the new cluster containing (N+1) patterns by using:

�)*+, = 1N + 1B��CD�
� � = �CD� + N. �)./�N + 1 (2.11)

Therefore from (2.5) and (2.11), the learning rate should be:

β = 1N + 1 (2.12)

2.3 Mahalanobis Distance-based ART (M-ART) Network

As described in Section 2.2, E-ART limits output clusters to hyper-sphere shapes, which is not

sufficient to handle most real data. We propose a new Mahalanobis distance-based ART network,

9

which is an extension of the E-ART network to handle clustering with hyper-ellipsoid shaped

clusters. M-ART operates very similarly to E-ART, except that the distance metric used in M-

ART is the Mahalanobis distance [21].

The M-ART network also works with normalized continuous inputs as in (2.6). As suggested in

[22], we set both the activation function and the match function as the Mahalanobis distances,

defined in [21], between the normalized input vector Xn and the center of each cluster Cj,

employing the covariance matrix Qj of the corresponding cluster, which produces activation

T(Xn,Cj) and match M(Xn,Cj) functions given by: ‖��	−	�‖FG−H = =(��	−	�):F�−�(��	−	�)
T&�*, ��' = M&�*, ��' = ��*	−	���FGIH = =(�*	−	��):F�J�(�*	−	��)		 (2.13)

The covariance matrix Qj is a semi-definite positive matrix, which can be estimated as shown in

Chapter 3, Eqn (3.2). Notion ||.||A is a norm related to a matrix A, as in [23].

According to [23, 24] a covariance matrix Q∈ℜdxd , which is real, symmetric, and non-singular,

can be decomposed as F = KΛΛΛΛK: = ∑ λ��� � L�L�:, where U is orthornomal, (U-1 = UT), whose

each column ui is an eigenvector of Q, and ΛΛΛΛ is diagonal matrix contained eigenvalues of Q, ΛΛΛΛ=

diag(λ1, λ1,… λd). The inverse of the covariance matrix can then be computed as:

FJ� = KΛΛΛΛJ�K: =B 1
λ�

�
� � L�L�: (2.14)

The square of the Mahalanobis distance from X to the cluster center C employing the cluster

covariance matrix Q can be computed as:

‖�−−−−	�‖FIH7 = (�−−−−	�):FJ�(�−−−−	�) = (�−−−−	�): MB 1
λ�

�
� � L�L�:N (�−−−−	�) =By�7

λ�
�
� � (2.15)

where y�7 = L�:(�−	�)
We can interpret yi as a new coordinate system defined by the orthonormal vectors ui. As shown

in Fig.2.2, the Mahalanobis distance from point X to a cluster center C is equivalent to the

10

normalized (or weighted) Euclidean distance from this point to the center in the new coordinate

system defined by the orthonormal eigenvectors of the cluster covariance matrix. Along each

eigenvector direction, the distance is weighted by the inverse square root of the corresponding

eigenvalues.

Figure 2.2: Mahalanobis Distance from the Point X and the Cluster Center C.

The Mahalanobis distance is used as a similarity measurement between the point X and the center

of the cluster C, which indicates how likely this new point should belong to this cluster, a set of

known points. The Mahalanobis distance differs from Euclidean distance, which is isotropic and

does not depend on the distribution of the cluster data points. The Mahalanobis distance puts high

weights along axes with high variance (major axes) of the cluster data points, while lower weights

are placed along axes with low variance (minor axes). In other words, the Mahalanobis distance

takes into account the correlations of the data set. If the covariance matrix of the cluster data

points is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the

covariance matrix is diagonal, then the resulting distance measure is called the normalized

Euclidean distance [18, 21]. Figure 2.3 illustrates the difference between the Mahalanobis and

Euclidean distances from points X1 and X2 to the center C of a cluster. The Euclidean distances

from X1 to C and from X2 to C are equal and do not depend on the shape of the cluster. However,

u 1

u 2
y 1

x 1

x 2

y 2

C
λ 2
−1/2

λ 1
−1/2

X

11

the Mahalanobis distances from these points to C depend on the shape of cluster (or its

covariance matrix Q). If the cluster has elliptical shape, which means its covariance matrix Q is

not the identity matrix, the Mahalanobis distance from X1 to C is less than the Mahalanobis

distance from X2 to C (see Fig.2.3 b). If the cluster has a circular shape, which means its

covariance matrix Q is the identity matrix, the Mahalanobis distance is the same as the Euclidean

distance (see Fig.2.3 a).

Figure 2.3: Difference between Mahalanobis Distance and Euclidean Distance.

Define the cluster J that is most similar to the normalized input Xn as the one with the smallest

activation function, or smallest Mahalanobis distance, given by:

J = argmin� P��*	−	���FGIHQ (2.16)

Finally, define the resonance state by:

M&�*, �)' < ρ (2.17)

where vigilance ρ is a pre-defined, dimensionless, non-negative real number.

C

X2

X1

Q≡≡≡≡I

||X1−C|| = ||X2−C||

||X1−C|| = ||X2−C||
Q −1 Q −1

C X1

X2

Q ≠≠≠≠ I

||X1−C|| = ||X2−C||

||X1−C|| < ||X2−C||
Q −1 Q −1

(a): Euclidian Distance (b): Mahalanobis Distance

12

The resonance state in (2.17) occurs when the match function is small enough (less than ρ).

Accordingly an input will be incorporated into the nearest cluster only if the Mahalanobis

distance from it to this cluster center is small enough. Otherwise, this input forms a new cluster in

the M-ART network. By the nature of the Mahalanobis distance, the M-ART network classifies

input vectors into clusters with a hyper-ellipsoid shape. Furthermore, if the Mahalanobis distance

from an input vector to the nearest cluster center is larger than ρ, this input does not belong to this

cluster. Therefore, in M-ART, the vigilance ρ can be considered as the maximum allowable size

of the cluster.

The update rule for the Jth center of M-ART is the same as for E-ART as described in (2.11).

Other parameters of the Jth cluster, such as the covariance matrix and the size of this cluster, must

also be updated, and will be discussed in Chapter 3.

13

Chapter 3

NEW DATA CLUSTERING METHOD

In this chapter we introduce our formal definition of clusters as hyper-ellipsoid shapes, define the

M-ART clustering procedure, and introduce lemmas on results from applying M-ART.

3.1 Definitions of Hyper-ellipsoid Shaped Clusters and the M-ART Clustering Procedure

In what follows, we consider a cluster as a hyper-ellipsoid shape. Hyper-spheroid clusters are

treated as special cases of hyper-ellipsoid clusters.

Definition 3.1: A Hyper-ellipsoid Shaped Cluster

Let S be a data set consisting of a number L of d-dimensional vectors Xk. Xk∈S⊂ℜd,k=1..L. A

hyper ellipsoidal shaped cluster with its center C∈ℜd, covariance matrix Q∈ℜdxd, maximum

Mahalanobis distance, or cluster size, R∈ℜ+, and number of members N≤ L, denoted by

(C,Q,R,N), is defined as:

(�, F, R, N) = {�T∈U ∶ 	 ‖��	−	�‖FIH ≤ 	R	} (3.1)

where the center � = �C∑ ��C� � 		 , ��∈(�, F, R, N), k = 1. . N, is the mean of all vectors in S,

the covariance matrix Q is a semi-definite positive matrix computed by:

F	 = 	 �CJ�	∑ (�T 	−	�)C� � (�T 	−	�): ,(unbiased estimation [23]),

(3.2)

.

14

and 	‖��	−	�‖FIH 	= �(�T	−	�):FJ�(�T	−	�)		 is the Mahalanobis distance from the

vector Xk to the vector (cluster center) C employing the covariance matrix Q, where (.)-1

and (.)T are the matrix inverse and transpose operations, respectively.

Hence, it is evident that if N>N0 then ∃ Xk∈ (C,Q,R,N): ‖Xk − C‖QI1	= R (3.3)

The algorithm for M-ART is described by the following.

Definition 3.2: M-ART Clustering

1. If Xk is the first input vector to M-ART , then the network produces one cluster

(Xk,I ,0,1), where I is a d-by-d identity matrix.

2. Assume there exists M≥1 clusters (Cj, Qj, Rj,Nj), j=1..M, in an M- ART system. A new

input vector Xk as an input to this system will be classified as a member of either cluster

described in a. or b. bellow:

a. an existing cluster (CJ, QJ, RJ,NJ) if and only if the two conditions (3.4) and (3.5) are

satisfied:

	J	 = 	argmin�5�5Y P��*	−	���FG−HQ , (3.4)

��*	−	�)�FZIH 	≤ 	ρ , (3.5)

where ρ is the vigilance parameter.

If (3.4) and (3.5) are satisfied, then that Jth cluster will be updated by:

	N)*+, 	= 	 	N)./� 	+ 	1, (3.6)

�)*+, 	= 	 	�� 		+ 	N)./�. �)./�N)./� 	+ 	1 	, (3.7)

F)*+, 	= 	 	CZ\]^−�CZ\]^ F)./� 	+ 	 �CZ\]^D� (�k	−	�)./�)(�k	−	�)./�): , (3.8)

	R)*+, 	= 	max _	R)./�, ���	−	�)*+,�&FZ̀ ab'IH 	c . (3.9)

b. otherwise, a new cluster (Xk,I ,0,1).

15

Iterative updating of cluster center, covariance matrix, and inverse of covariance matrix:

Assume a cluster consists of N points: X1,X2,…, XN, whose center, CN, and covariance matrix,

QN, are defined in (3.2) and will be rewritten, with extra subscripts indicating the current number

of points, as follows:

�C = 1NB��C
� � , (3.10)

FC 	= 	 �CJ�	∑ (�T 	−	�C)C� � (�T 	−	�C):. (3.11)

Update the cluster center:

When a new point XN+1 is added to a cluster, the new cluster center will be given by:

�CD� = 1N + 1B��CD�
� � = 	 1N + 1d�CD� +B��C

� � e = 	�CD� + 	N�CN + 1 , (3.12)

which is equivalent to (3.7).

Update the cluster covariance matrix:

The new cluster covariance matrix is defined by:

FCD� 	= 	 1N	B(�T 	−	�CD�)CD�
� � (�T 	−	�CD�):

= �C	∑ (�T 	−	�CD�)C� � (�T 	−	�CD�): + �C	 (�f + 1	−	�CD�)	(�f + 1	−	�CD�):

(3.13a)

(3.13b)

We would like to express the new covariance matrix, QN+1, in term of its predecessor, QN.

Substituting the right side of (3.12) into the first term on the right of (3.13a) and (3.13b), we have:

1N	B(�T 	−	�CD�)C
� � (�T 	−	�CD�): 	= 1N	B(�T 	−	 �CD� + N�CN + 1)	(�k	−	 �CD� + N�CN + 1):C

� �

								= 1N	Bg(�T 	−	�C) + 	 1N + 1 (�C−�CD�)h	g(�T 	−	�C) + 	 1N + 1 (�C−�CD�)h
:C

� �

								= 1N	B i(�T 	−	�C)(�k	−	�C):j +	 1N	Bg 1(N + 1)7 (�C−�CD�)(�C−�CD�):h
C
� � 	

C
� � 	

(3.14a)

(3.14b)

16

																			+	 1N	Bg 1N + 1 (��	−	�C)(�C−�CD�):h
C
� � +	 1N	Bg 1N + 1 (�C−�CD�)(��	−	�C):h

C
� �

							= N−1N	 FC +	 1(N + 1)7 (�CD�−�C)(�CD�−�C):

(3.14c)

(3.14d)

Notice on the right side of (3.13c) that the first term is similar to QN, the second term is a sum of

constants, and the third and the fourth terms are both equal to d-by-d zero matrices. This is from

(3.10) we have: N�C = 	∑ ��C� � , or ∑ (��	−	�C) 	= 	k	C� � (d-by-1 vector zero), and

∑ (��	−	�C): 	= 	k:	C� � (1-by-d vector zero).

Similarly, by substituting from (3.12) into the second term on the right of (3.13b), we obtain:

1N	 (�CD�	−	�CD�)(�CD�	−	�CD�): = 1N	 (�CD�	−	 �CD� + N�CN + 1)(�CD�	−	 �CD� + N�CN + 1):

		= N(N + 1)7	 (�CD�	−	�C)(�CD�	−	�C):

(3.15a)

(3.15b)

Substituting from (3.14d) and (3.15b) for the terms on the right of (3.13b) yields:

FCD� 	= 	N−1N	 FC +	 1N + 1 (�CD�−�C)(�CD�−�C): (3.16)

Update the inversion of the cluster covariance matrix:

In Def.3.2, we must compute the Mahalanobis distance from a new point to existing cluster

centers, which involves the inversion of the covariance matrix. Therefore, it would be

computationally efficient to derive an iterative formula for this inversion matrix, so that the

inversion matrix operation need not be directly computed each time a new point is added.

The Woodbury identity, or the matrix inversion lemma, [24], is given by:

(A + UΛΛΛΛV) −1 = A−1 − A−1U (ΛΛΛΛ−1 + V A−1 U) −1 V A−1 (3.17)

where A is an n-by-n non-singular matrix, ΛΛΛΛ is a k-by-k non-singular matrix, U is an n-by-k

matrix, and V is a k-by-n matrix.

For the special case of k = 1, ΛΛΛΛ becomes a scalar λ, U becomes a column vector u, V = uT, and A

is symmetric, such that (3.17) reduces to:

17

 (A + λuuT) −1 = A−1 − A−1u (1/λ + uT A−1 u) −1 uT A−1 = A−1 − γ(A−1u) (A−1u)T (3.18)

where γ = 1/(1/λ + uT A−1 u) is a scalar because uT A−1 u is 1-by-1.

To apply (3.18) for inversion of QN+1 on the left hand side of (3.13a) and (3.13b), with

A=((N−1)/N)QN, a symmetric matrix, λ=1/(N+1), and u=(�CD� − �C), we first compute:

γ	 = 1
(N + 1) + NN−1 (�CD�−�C):FC−�(�CD�−�C) 	

= N−1
(N7−1) + N _��CD�−	�C �FHIHc7

. (3.19)

Define the dx1 vector qN by:

mC = n−�L = NN − 1FC−�(�CD� − �C) (3.20)

Then we iteratively compute the inverse of the covariance matrix by:

FCD�−� 	= 	 NN−1	 FC−�−	γmCmC: (3.21)

Given matrix Q, one can compute Q-1 without actually inverting Q by using (2.14) and avoid

dividing by-zero by setting 1/λ= κ if λ≤ ε, where ε ≪ 1	and κ ≫ 1 are pre-defined numbers, as

suggested in [12].

The following lemma addresses the size of clusters resulting from M-ART:

Lemma 3.1: Size of an Ellipsoidal Shaped Cluster

The size Rj (Def. 3.1) of any ellipsoidal cluster resulting from M-ART is always less than or equal

to the value of the vigilance, ρ:

Rj ≤ ρ, j=1..M (3.22)

Proof:

Consider an arbitrary cluster (Cj,Qj,Rj,Nj), 1≤j≤M, resulting from M-ART, where M is the current

number of clusters. From Def.3.2, if Nj=1 then Rj= 0. From (3.9), if an input vector is

18

incorporated into this cluster, the cluster size is greater than or equal its old value: R�*+, ≥ 	R�./�.

Therefore, from (3.5), this cluster of the M-ART have size less than or equal to ρ:

R�./� 	≤ ρ		, ∀j = 1. . M (3.23)

Now consider the two remaining cases:

Case 1: Input Xk forms a new cluster:

According to Def.3.2, the (M+1)th cluster of the M-ART is (Xk,I ,0,1) having radius RM+1

= 0 < ρ.

Case 2: Input Xk becomes a new member of the “nearest” existing cluster J, 1≤J≤M

For this case, we note (3.4) and (3.5) must be satisfied, yielding:

���	−	�)./��_FZ\]^cIH7 = 	(��−	�)./�):&F)./�'J�(��−	�)./�) 	≤ 	 ρ7 . (3.24)

The square of new Mahalanobis distance from Xk to the new cluster center �)*+,,

employing the new cluster covariance matrix F)*+,, is:

 ���	−	�)*+,�&FZ̀ ab'IH7 	= 	(��	−	�)*+,):&F)*+,'J�(��	−	�)*+,) . (3.25)

Substitute expressions for �)*+, and &F)*+,'J� in (3.12) and (3.21) into the right side of

(3.25) and following the form of the left hand side of (3.24), we obtain:

���	−	�)*+,�&FZ̀ ab'IH7 	= 	(��−�� +	N)�)./�N) + 1): t N)N)−1	 &F)./�'J�−	γmCmC: u (��−�� +	N)�)
./�

N) + 1) (3.25a)

= 	v N)N) + 1	w
7 N)N)−1	 (��−	�)./�):&F)./�'J�(��−	�)./�)−	γv N)N) + 1	w

7 (�� − �)./�):mCmC: (��
− �)./�)	

(3.25b)

= 	 N)xN)x + N)7−N)−1	 ���	−	�)./��_FZ\]^cIH7
−	γv N)N) + 1	w

7 (�� − �)./�):mCmC: (�� − �)./�)	, (3.25c)

where γ > 0 is defined in (3.19) and qN is defined in (3.20).

We note that the second term in (3.25c) contains a quadratic term, namely:

19

(�� − �)./�):mCmC: (�� − �)./�) 	= 	 i(�� − �)./�):mCji(�� − �)./�):mCj: ≥ 	0. (3.26)

Moreover, in the first term of (3.25c), the quantity NJ
3/(NJ

3+NJ
2−NJ−1) is less than 1, because

NJ
2
−NJ−1{0,	∀NJ≥ 2,NJ ∈ ℕ. Accordingly, we can conclude that:

‖Xk − CJ
new‖&QJ

new'-12 <�Xk − CJ
old�_QJ

oldc-1

2
≤ ρ2 . (3.27)

From (3.9), (3.23), and (3.27), the new value of this cluster size is:

 RJ
new = max_ RJ

old, ‖Xk − CJ
new‖&QJ

new'-1c 	≤	ρ (3.28)

Hence, Lemma 3.1 is proven.

The following two lemmas address the existence of the M-ART network that produces the correct

number of clusters in the event that the data set contains only one and two clusters.

Lemma 3.2: Existence of the M-ART for 1 cluster

Assume a data set S contains only one cluster (C,Q,R,N). Then

a. M-ART clustering with

ρ ≥ 2 R, (3.29)

will always result in 1 cluster.

b. M-ART clustering with

ρ <R (3.30)

will result in M > 1 (unpredictable) clusters, depending on the order of feeding data to

M-ART.

Proof of Lemma 3.2a:

From Def.3.2, M-ART forms at least 1 cluster. We now prove that the M-ART cannot create any

new cluster after the first one. Assume that there is one cluster (C(M), Q(M),R(M),N(M)) consisting of

N(M) < N input vectors XXXXm(M), m=1..N(M), in M-ART, and a new input vector Xk will not belong to

this cluster. (The superscript (M) indicates the cluster is formed by M-ART, differentiating from

the true cluster in the given data set). From Def.3.2, this means that:

20

�Xk − CJ
(M)�

Q-1=�Xk −
1

N(M) B Xm
(M)

N(M)

m=1

�
Q-1

 > ρ (3.31)

For simplicity, we now assume that Q(M) = Q. This is reasonable, because Q(M)→ Q when N(M) →

N.

Multiplying both sides of (31) with N(M) >0, and applying the subadditivity property (or triangle

inequality) of the norm to the left side yields:

�Xk − X1
(M)�

Q-1+�Xk − X2
(M)�

Q-1+…+�Xk − X
N(M)
(M) �

Q-1 ≥�N(M)Xk−−−−B Xm
(M)

N(M)

m=1

�
Q-1
	>	N(M)ρ (3.32)

From (3.32) and given ρ ≥ 2R, there exists 1≤q≤N(M) such that

�Xk − Xq
(M)�

Q-1	>	2R (3.33)

On the other hand, from Def.3.1, the distance between any two vectors in the same cluster cannot

be greater than twice its size. However Xk and Xq(M) belong to the true cluster (C,Q,R,N). It is

evident from (3.1) and the subadditivity property of the norm that:

�Xk − Xq
(M)�

Q-1	=�(Xk−−−− C)+&C	−	Xq
(M)'�

Q-1	 ≤ ‖Xk −−−− C‖
Q-1+�Xq

(E)				−−−−				C�
Q-1 ≤ 2R	, (3.34)

which contradicts (3.33). Thus any new vector inputs to M-ART will become a new member of

only one cluster (C(M), Q(M),,R(M),N(M)) which proves Lemma 3.2a.

Proof of Lemma 3.2b: Assume there is only one cluster (C(M), Q(M),R(M),N(M)) resulting from M-

ART, or:

Xk ∈ (C(M), Q(M),R(M),N(M)) for ∀ Xk ∈ (C,Q,R,N) (3.35)

According to (3.7) and (3.8), C(M) and Q(M)created by M-ART are the mean and the covariance

matrix of all vectors belong to this cluster, respectively, or:

C(M) = C and Q(M) = Q (3.36)

By Def.3.1, there exists Xm such that:

‖Xm−−−−				C‖Q-1		=	‖Xm−−−−				C(M)‖Q-1		=	R (3.37)

21

Following (3.30), we have

‖Xm−−−−				C(M)‖Q-1	=	R	{	ρ (3.38)

Hence, Xm does not satisfy (3.4) and (3.5), or does not belong to the cluster (C(M), Q(M),R(M),N(M)),

which contradicts our assumption. Hence, M-ART will produce more than one cluster, which

proves Lemma 3.2b.

Lemma 3.3: Existence of M-ART for 2 clusters

Assume a data set S contains only two clusters (C1, Q1,R1,N1) and (C2,Q2,R2,N2) with R1 ≥ R2.

 Define:

∆min = min
1≤j≤N1;1≤k≤N2

P�X j
(1)
− Xk

(2)�
Q1

-1; �X j
(1)
− Xk

(2)�
Q2

-1Q (3.39)

 where Xj
(1) ∈ (C1, Q1,R1,N1) and Xk

(2) ∈ (C2,Q2,R2,N2).
 Then M-ART clustering with

2R1 ≤ ρ < ∆min (3.40)

will always result in 2 clusters.

Proof:

Let X i
(1), X j

(1) ∈ (C1, Q1,R1,N1) ,∀i,j = 1..N1, and Xk
(2), Xn

(2) ∈ (C2,Q2,R2,N2),∀k,n = 1..N2

From Def.3.1, the “intra-class” distance, ∆ij or ∆kn, of any two points belonging to the same

cluster satisfies:

 ∆ij =�X i
(1)
− X j

(1)�
Q1

-1≤ 2R1 , ∀i, j=1..N1

															∆kn =�Xk(2)
− Xn

(2)�
Q2

-1≤ 2R2≤ 2R1 , ∀k, n=1..N2

(3.41)

Assume that the first input vector feed to the M-ART network is X j
(1) ∈ (C1,Q1,R1,N1). According

to Def.3.2, M-ART forms the first cluster, (C 1
(E)= Xj

(1), Q 1
(E)= IIII, R1

(E)=0, N1
(E)=1), to contain this

input vector.

22

Assume the second input vector fed to the M-ART is 				Xk
(2) ∈ (C2,Q1,R2,N2). From (3.39) and

(3.40), we have: �Xk
(2)
− C1

(E)�
Q1

-1 ≥ ∆min >ρ. The condition (3.5) of Def.3.2 is NOT satisfied.

Therefore, M-ART creates a new cluster, (C 2
(E)= Xk

(2), Q 2
(E)= IIII, R2

(E)=0, N2(E)=1), to contain this

input.

Consider any third input fed to the M-ART network, for which there are two cases:

Case 1: The third input is X i
(1) , which actually belongs to the first cluster: X i

(1) ∈ (C1, Q1,R1,N1)

From (3.39), (3.40), and (3.41), we obtain:

�X i
(1)
− C1

(E)�
Q1

-1		≤ 2R1 ≤ ρ

�X i
(1)
− C2

(E)�
Q2

-1		≥ ∆min >ρ

(3.42)

In other words, this input X i
(1) will be classified by M-ART into the first cluster,

(C1
(E),Q1

(E),R1
(E),N1

(E)).

Case 2: The third input is Xn
(2) , which actually belongs to the second cluster:

Xn
(2) ∈ (C2,Q2,R2,N2)

As before, from (3.39), (3.40), and (3.41), we obtain:

�Xn
(2)− C1

(E)�
Q1

-1			≥ ∆min >ρ

�Xn
(2)− C2

(E)�
Q2

-1		≤ 2R1 ≤ ρ
(3.43)

So this input Xn
(2) will be classified by M-ART into the second cluster,

(C2
(E),Q2

(E),R2
(E),N2

(E)).

Hence, M-ART does not create a new cluster, which proves Lemma 3.3.

Special case Q1 = Q2 = I:

Lemma 3.3 states that if two clusters are “separated enough”, there exist certain values of

vigilance ρ so that M-ART produces the correct two clusters. We can easily visualize conditions

23

(3.39) and (3.40) in the special case when Q1 = Q2 = I , and in 2 dimensions, the clusters are

circular shaped. Assume that for two clusters, with centers C1 and C2, we have the center-to-

center distance D12 given by:

D12 = ‖C1−−−−				C2‖Q-1 = ‖C1−−−−				C2‖ ≥ 3(R1+ R2) (3.44)

Then, (3.40) becomes:

∆min = min
1≤j≤N1

_�X j
(1)
− C2�

Q-1c 	= min
1≤k≤N2

_�Xk(2)
− C1�Q-1c 	≥ 2(R1+ R2) (3.45)

Fig.3.1 illustrates the case of two circular shaped clusters, Q1=Q2=I , that are “separated enough”

so that M-ART with any ρ satisfying (3.40) will produce the correct 2 clusters.

Figure 3.1: Two clusters, with Q1=Q2=I , with circular shapes, are “separated enough” so that M-
ART with any ρ satisfying (3.40) will produce the correct 2 clusters.

3.2 Selecting a Good Value for ρρρρ:

There exist values of ρ in a certain range such that M-ART produces the “correct number” (as

would be determined by humans) of clusters in a particular data set, but the appropriate value of ρ

depends heavily on the distribution of patterns in the data set, which is normally unknown a

priori. The principal remaining concern is determination of a good value for ρ. Small values of ρ

24

produce small clusters, such that the number of clusters is large, and large values produce larger

clusters, such that the number of clusters is small. Conventionally, a trial-and-error approach is

used to tune the value of ρ for each input data set. We propose an automatic procedure that could

be applied for any input data set in what follows. We first introduce another definition:

Definition 3.3: Separation Factor

The separation factor SVjk of two clusters (Cj,Qj,Rj,Nj) and (Ck,Qk,Rk,Nk) is a positive real

number defined by:

SV�� = 	���−	���FGIH +	���−	���F�IH2&R� + R�' (3.46)

These two clusters are said to be “separated enough” if SVik ≥ SV for some pre-defined number

SV, or to be “too close” otherwise.

Note that for Q1=Q2=I ,(spheroidal shaped clusters) (3.46) becomes:

SV�� = 	���−	���R� + R� (3.47)

Recall that the Mahalanobis distance (M-distance) is used as a similarity measurement between a

point X and a center of the cluster C, which indicates how likely this new point should belong to

this cluster. M-distance differs from Euclidean distance (E-distance), which is isotropic and does

not depend on the distribution of the cluster data points. M-distance puts high weights along axes

with high variance (major axes) of the cluster data points, while the direction with low variance

of cluster data points (minor axes) is weighted lower. If the covariance matrix of the cluster data

points is the identity matrix, the M-distance becomes the E-distance. If the covariance matrix

is diagonal, then the resulting distance measure is called the normalized E-distance. The

separation factor in (3.46) represents how much separation or “overlap” exists between any two

clusters. As SVjk increases from 0, the jth and kth clusters move from maximum overlap to

maximum separation.

25

Some examples of two circular shaped clusters that have separation factors equal to 0.5, 1, and

1.1 are shown in Fig.3.2. Figure 3.3 illustrates other examples of separation factors between two

clusters, circular or ellipsoidal shaped. In Fig.3.3, each number beside a cluster (represented by a

blue circle or blue ellipse) indicates the separation factor between this cluster and the cluster

represented by the red ellipse with light-cyan filled color.

 Figure 3.2: (a) Separation-factor between Two Circular Shaped Clusters.
(b): Some examples with: (upper) SV=0.5, (middle) SV=1.0, (bottom) SV=1.1

The idea for auto-adjustment of ρ is to use M-ART with small ρ, producing clusters that are

excessively close together, or heavily overlapped, and then graduately increasing ρ until all

clusters are “sufficiently” separated or less heavily overlapped. This process is equivalent to

merging clusters that are deemed excessively close together into larger ones.

Figure 3.4 (a) shows a sample data set (data a2 in Chapter 4) with 35 natural clusters (as

determined by humans). A very small value of ρ=0.06 produces from M-ART 86 clusters that are

excessively close, Fig.3.4 (b). With a larger value of ρ=0.11, M-ART produces 35 clusters that

are sufficiently separated, Fig.3.4 (c), and in line with what most humans would produce.

Discussion on selecting a value for SV is given in Chapter 4, Eqn (4.6), and Table 4.3, and

Fig.4.5.

26

Figure 3.3: Example of separation factors between circular shaped and ellipsoidal shaped clusters.
Each number beside a cluster (represented by a blue circle or blue ellipse) indicates the separation

factor between this cluster and the cluster represented by the red ellipse with light-cyan filled
color.

(a) (b) (c)

Figure 3.4: (a) Data Set a1. (b) and (c) Clustering Results with Different Vigilance Values.

The pseudo-code for M-ART with auto adjustment of vigilance ρ is shown in Table 3.1. The auto

adjustment process starts with an arbitrarily small value of vigilance ρ. The first Repeat-Until

loop in Table 3.1 reduces the value of ρ to guarantee that there are at least two clusters resulting

from M-ART, which will produce clusters that are excessively close (Def.3.3). The second

Repeat-Until loop in Table 3.1 gradually increases the value of ρ to guarantee that all clusters

-8 -6 -4 -2 0 2 4 6 8 10

-4

-2

0

2

4

6

8

10

1.5

12

3

3.58

2.58

3 4 3

2

1

1
2

3
2.581.29

1.5

3.16
2.58

3.162

1

27

resulting from the M-ART are sufficiently separated according to Def.3.3 and a user-selected

value of SV.

Table 3.1: Pseudo-code of the M-ART with Auto-adjust Vigilance Algorithm

Choose a desired separation factor SV

Initialize an arbitrarily small value vigilance ρ

Kdown = 0.1

Kup = 1.1

Repeat

 ρnew = Kdown.ρold

 Run M-ART with ρnew for entire data set

						D��	 = 0.5(���−	���FGIH +	���−	���F�IH)			, 1≤j≠k≤M

Until Djk ≤ SV(Rj+Rk), for some j and k, 1≤j≠k≤M

Repeat

 ρnew = Kup.ρold

 Run M-ART with ρnew for entire data set

						D��	 = 0.5(���−	���FGIH +	���−	���F�IH)			, 1≤j≠k≤M

 Until min�,� _ �G���D��c 	{ 	��		

3.3 Density-based removal pre-processing

M-ART is essentially distance-based clustering, which means M-ART considers dense or sparse

input vectors equally. That is why M-ART often produces spurious clusters consisting of vectors

that lie in the outlying regions of these clusters. By itself, M-ART does not mimic well our eye-

brain system for identifying clusters. From observation, it is believed that the first step in human

selection of 2-D clusters involves detecting high-density areas of points, which they label as

28

cluster centers. The second step in human cluster detection would then be seeking “gaps”

between clusters to define the outliers. In this paper, we propose pre-processing of data by

removing points from an input data set that lie in areas of low point density before feeding to the

M-ART network. The idea is to remove some outlying vectors such that the cluster structure

(number of clusters and cluster centers) of the remaining data will not likely change significantly

(if at all) from those of the original data set. Removing some points in areas on the margins of

clusters may render remaining points more easily identifiable as part of a distinct cluster and

easier to identify by M-ART.

Table 3.2: Pseudo-code of Density-based Removal Pre-processing

Input data set S =[X1,X2,…,XL] consisting of total L input vectors

Select a keeping ratio, 0<kr≤1, and ranking ratio 0<rr≤1

n1 = round(Lkr)

n2 = round(Lrr)

For each input vector X i

 Compute pair-wise distance to all other vectors ∆��	= =(��	−−−−	��):(��	−	��)		, j = 1. . L
 Rank all L values of ∆ij, j=1..L, from smallest to largest

 Compute the density at the point X i: �� = 1/ _ ��H∑ ∆���H� � c
End

Find rcut as the n2
th

 smallest value of ri array (i=1..L).

Remove any pattern that is in a low density region

Sremaining = S – {X i such that ri ≤ rcut} = { X i such that ri > rcut}

The density-based removal pre-processing algorithm is given in Table 3.2. We define the point

density near a point in the feature space as the total number of input vectors that are inside the

unit hyper-sphere surrounding this point. Therefore, the density at the point X i, called ri, could be

29

approximated by one divided by the average of distances between X i and a specific number of its

nearest input vectors. Small average distances produce larger values for ri, which means that

neighbors of X i are close. In other words, such a point should be near the center of a true cluster.

In contrast, larger average distances produce small value for ri, which means that X i should be

near the boundaries of a true cluster. Thus, we remove some input vectors X i with small values of

ri (low density).

Figure 3.5: (a): Original Data Set t3;

(b) Result of Directly Applying the M-ART Clustering with Many Spurious Clusters
(c) Sremaining with Five Clusters Easily Identified by the M-ART Clustering

(d) Final Partition of the Original Set with These Five Centers Retained from (c)

Figure 3.5 (a) shows the data set t3 (Chapter 4). M-ART clustering produces a total of 18 clusters

using SV=0.8, ρ=0.21 shown in Fig.3.5 (b). Most humans would quickly conclude that there are

only 5 clusters. After pre-processing by density-based removal, described in Table 3.2, the

30

remaining data is fed to M-ART clustering, which easily identifies five separated clusters shown

in Fig.3.5 (c), with the same values of SV and ρ. These five cluster centers are retained to decide

which is the closest center to which each input vector of the original data set should belong

Fig.3.5 (d). Results showed in Fig.3.5 were obtained from the best choice of SV=0.8 after

experimented with difference values of SV as described more detail later in Chapter 4.

3.4 Automatic clustering procedure

Using density-based removal pre-processing could benefit the M-ART process in locating

clusters. However, it is evident that insufficient removal would not provide sufficient help to M-

ART, while excessive removal could lead to a spurious cluster structure. We define two

parameters that affect removal pre-processing: keeping ratio kr and ranking ratio rr. It is not trivial

to select suitable combinations of these parameter values. Keeping ratio affects the number of

nearest neighbors to approximate the density at a given point, such that it presents local

information. Ideally, the number of nearest neighbors should approximate the number of input

vectors of a cluster, so we define kr by:

kr = (total number of input vectors)/ (number of true clusters) (3.48)

 which assumes that clusters are somewhat equal in their number of members. However, the

number of true clusters is unknown. By experiments with a number of sample data sets (given in

Chapter 4), we suggest a rule of thumb:

0.01 ≤ kr ≤ 0.10 (3.49)

For example if the number of total input vector (patterns) is several thousand, the number of

counting neighbors of each point should be several hundred or less. If we select kr > 0.1, the

cluster structure may become distorted.

Ranking ratio, similar to global thresholding of hierarchical clustering methods, is a parameter

used to determine when to ignore low densities of a pattern. It directly affects how many vectors

31

or patterns will be removed in pre-processing. Again, from experience with data sets given in

Chapter 4, we propose the rule of thumb:

0.10 ≤ rr ≤ 0.40 (3.50)

For example, if rr = 0.10, then data points with densities ranking in the lowest 10% of all point

densities will be removed.

Table 3.3: Pseudo-code of Automatic Clustering Procedure

Use density-based removal pre-processing, varying kr and rr

Use M-ART with auto-adjust vigilance algorithm for each remaining data set

Plot the number of clusters vs. kr and rr

Select a pair of kr and rr that produce the same number of clusters (fall on a plateau of the

plot). When multiple values for kr and rr exist on the plateau, select the smallest values.

Save cluster centers corresponding to the same number of clusters on the plateau

Assign each pattern of the original data set to the closest (M-distance) cluster

Table 3.3 illustrates the automatic clustering procedure. The goal of this is to automatically select

the proper values of kr and rr of density-based removal pre-processing to clean the data set before

feeding it to M-ART with the auto-adjustment of vigilance, discussed above. While varying

values of kr and rr in a certain range, for example using (3.49) and (3.50), apply removal pre-

processing to an original data set for each pair of kr and rr. Then, use M-ART with auto-

adjustment of vigilance for each remaining data set corresponding to each pair of kr and rr. Plot

the number of clusters vs. kr and rr in a 3-D plot. Experiments and observations with data sets in

Section 5 suggest that clustering that agrees with human clustering occurs when the number of

clusters is relatively insensitive to small changes in kr and rr. This will happen in regions of the

plot of cluster numbers vs. kr and rr where a plateau (or flat) occurs. Therefore, a pair of kr and rr

lying on this plateau is selected. Cluster centers for M-ART for the remaining data set with

selected values of kr and rr are retained to cluster the original data set. Then the task of finding

32

which cluster that a given pattern of the original data set should belong to becomes trivial, by

finding the nearest distances from that pattern to cluster centers.

(a)

(c)

(b)

(d)
Figure 3.6: (a) Original Data Set s3; (b) Plot of Number of Clusters vs. kr and rr;

(c) Clustering after Removing with kr=0.01, rr=0.40;
(d) Final Partition of the Original Set with 15 Clusters

Figure 3.6 illustrates the process of clustering for the 2-D data set s3 (a). Appling the process

given in Table 3.3 with 0.01≤ kr ≤0.30 and 0.01≤ rr ≤1.00 (which are larger than range of kr and rr

given in (3.49) and (3.50)), we produce the plot of number of cluster vs. kr and rr, Fig.3.6 (b),

with SV=0.8, ρ=0.12. Select the smallest value of kr and rr in the plateau region of the plot,

namely kr=0.01, rr=0.40. The result of removal pre-processing with these values of kr and rr is

given in Fig.3.6 (c), showing 15 clusters, using SV=0.8, ρ=0.12. Using these cluster centers to

decide the closest center (M-distance) that each input vector of the original data set should belong

is straightforward, with results given in Fig.3.6 (d). Again, these results are consistent with what a

human would produce.

0

0.01

0.02

0.03

00.20.40.60.81
5

10

15

20

25

30

35

40

45

KeepingRanking

o

f
cl

u
st

er
s

33

Chapter 4

RESULTS OF THE PROPOSED DATA CLUSTERING TECHNIQUE

4.1 Test with artificial data

The 21 data sets used in this study to obtain results are described in Table 4, and the fifteen 2-D

data sets are depicted graphically in Figure 4.1. Data sets labeled a1 to a3 and s1 to s4 are taken

from http://cs.joensuu.fi/sipu/datasets/. Data sets a1 to a3 are synthetic 2-D data with varying

numbers of clusters. Data sets s1 to s4 are synthetic 2-D data with 5000 vectors and 15 Gaussian

clusters with different degrees of cluster separation. Data sets s1m1, s2m1, s2m2, s3m1, and

s4m1 are modified sets taken from original data sets s1, s2, s3, and s4, respectively, by manually

removing some ellipsoidal-shaped clusters. Data sets t1 to t8 are synthetic 2-D, 3-D, 4-D, 5-D,

and 10-D data with the number of Gaussian clusters described in Table 4.1, prepared by the

authors. By applying the automatic clustering procedure described in Section 4, all data sets

whose clusters are reasonably separated, such as 2-D data sets a1, a2, a3, s1, s1m1, s1m2, s2,

s2m1, s2m2, s3, s3m1, t2, and t3, yield the number of clusters identical with the number actually

generated and what most human observers would detect. For higher dimensional data sets, the

results (number of clusters determined by M-ART for each data set) agree with what were

generated.

34

Table 4.1: Data Sets and Characteristics

Data set
Data

Dimension

Vectors

Clusters

Data

set

Data

Dimension
Vectors

Clusters

a1 2-D 3000 20 s3m1 2-D 4634 14

a2 2-D 5250 35 s4m1 2-D 3903 13

a3 2-D 7500 50 t1 2-D 1500 5

s1 2-D 5000 15 t2 2-D 2500 10

s2 2-D 5000 15 t3 3-D 1200 8

s3 2-D 5000 15 t4 3-D 1500 10

s4 2-D 5000 15 t5 3-D 1500 10

s1m1 2-D 4685 14 t6 4-D 1500 5

s1m2 2-D 4356 13 t7 5-D 1500 5

s2m1 2-D 4356 13 t8 10-D 1500 5

s2m2 2-D 4326 12

Results are tabulated in Table 4.2, together with computational time for automatic clustering

using a PC Pentium dual 3.0GHz, 2GB Ram, Window XP and Matlab-R2009a. Parameters used

in the program to generate the data in Table 4.2 are:

Separation ratio: SV = 0.8 (4.1)

Range of kr: kr = 0.010 to 0.055, increment by 0.005 (4.2)

Range of rr: rr = 0.1 to 1.0, increment by 0.1 (4.3)

Initial vigilance: ρstart = 0.05 (4.4)

Scale factor for increasing/decreasing vigilance (see Table 1):

 Kup = 1.1; Kdown = 0.1 (4.5)

35

Data set a1 Data set a2 Data set a3

Data set s1 Data set s1m1 Data set s1m2

Data set s2 Data set s2m1 Data set s2m2

Data set s3 Data set s3m1 Data set s4

Data set s4m1 Data set t1 Data set t2

Figure 4.1: Graphical Representation of Data Sets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

36

Table 4.2: Summary Results of Clustering (SV=0.8)

Data sets
Data

Dimension

No. clusters

used to

generate data

No. clusters

from

automatic

clustering

Computational

time (sec)
kr r r

a1 2-D 20 20 433.9 0.010 0.300

a2 2-D 35 35 1540.9 0.010 0.300

a3 2-D 50 50 3316.9 0.010 0.300

s1 2-D 15 15 1148.4 0.010 0.200

s1m1 2-D 14 14 1033.6 0.010 0.200

s1m2 2-D 13 13 1608.4 0.010 0.200

s2 2-D 15 15 1414.5 0.010 0.200

s2m1 2-D 13 13 1153.8 0.010 0.100

s2m2 2-D 12 12 1017.3 0.010 0.100

s3 2-D 15 15 1694.2 0.010 0.200

s3m1 2-D 14 14 1564.0 0.010 0.100

s4 2-D 15 14 1727.1 0.025 0.400

s4m1 2-D 13 11 1239.5 0.010 0.100

t1 2-D 5 5 23.0 0.010 0.100

t2 2-D 10 10 28.4 0.010 0.100

t3 3-D 8 8 21.6 0.010 0.200

t4 3-D 10 10 25.3 0.010 0.200

t5 3-D 10 10 25.1 0.010 0.100

t6 4-D 5 5 26.4 0.010 0.200

t7 5-D 5 5 27.6 0.020 0.200

t8 10-D 5 5 26.9 0.010 0.200

37

The kr and rr were chosen as the smallest values corresponding to the “largest” plateau region of

the plot of the number of clusters vs. kr and rr.

Note that the clusters in data set s3 and s3m1 are very close (small separation), yet the algorithm

still produces “correct” cluster counts. For data set s4 and s4m1, the algorithm produces results

different from those used to generate the clusters. However, clusters of those data sets have very

small separation, such that different humans often produce different numbers of clusters.

 (a) (b)

 (c) (d) (e)

Figure 4.2: Data Set t3 in 3-D (a), and its projection in xy, xz, yz planes (c,d, and e- respectively).
Clustering result is shown in (b) with 8 clusters selected by M-ART.

-0.5

0

0.5

1

0

0.5

1
-0.5

0

0.5

1

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Feature 1

F
ea

tu
re

 3

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

F
ea

tu
re

 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Feature 2

F
ea

tu
re

 3

38

Figure 4.2 presents the original data set t4 in three dimensional space xyz (a), and its projection in

xy, xz, yz planes in (c), (d), and (e), respectively. The clustering results is shown in (b) with 8

clusters selected by M-ART, with SV=0.8.

 (Data set t3) (Data set t4) (Data set t5)
 Figure 4.3: Clustering results of the data set t3, t4, and t5.

Figure 4.3 illustrates the clustering results of our method for the data set t3 (2-D), the data set t4

(3-D), and the data set t5 (3-D), with SV=0.8.

(a)

(c)

39

(b)

(d)

Figure 4.4: (a) Original Data Set s4 Created by 15 Gaussian Clusters; (b) Clustering after
Removing with kr=0.01 and rr=0.50; (c) Plot of Number of Clusters vs. kr and rr;

(d) Final Partition with “Incorrect” 14 Clusters.

Figure 4.4 illustrates details on the process of clustering for data set s4 (Fig.4.4 (a)), with SV=0.8.

Appling the process that discussed in Table 3.3, we obtain the plot of number of cluster vs. kr and

rr (Fig.4.4 (b)). Select the pair of smallest values of kr and rr in the “largest” plateau region of this

plot: kr=0.025, rr=0.40. The result of clustering after removal pre-processing with these values of

kr and rr is shown in Fig.4.4 (c). This process produces 14 clusters, while the “correct” answer,

according to what was generated, is 15 clusters. Some points belong to a true cluster (as

generated) on the top, left-most of Fig.4.4 (a), showing low point density, and were removed by

pre-processing, which reduced the number of detected clusters by 1, to 14. However, if those data

points were retained, the clusters after cleaning would not be separated enough for M-ART and

the auto-adjust vigilance algorithm to select the correct number of clusters. This is an example in

which pre-processing removal does not help M-ART to deal with sparse clusters. In this case,

pre-processing removal changes the structure of the data set, or does not produce a cleaned data

set with separated clusters.

Table 4.3: Effect of Separation Ratio on the Number of Clusters

0.01
0.02

0.03
0.04

0.05
0.06

0

0.5

1
0

5

10

15

20

25

Keeping ratioRanking ratio

o

f
cl

u
st

er
s

40

 Data
 Set
SV

a1 a2 a3 s1 s1m1 s1m2 s2 s2m1 s2m2 s3 s3m1

 0.5 or 0.6 20 35 50 15 14 13 15 13 12 15 14

0.6, 0.7, 0.8,
or 0.9

20 35 50 15 14 13 15 13 12 15 14

1.0 or 1.1 20 17(35) 50 15 14 13 15 13 12 15 14

 Data
 Set

SV
s4 s4m1 t1 t2 t3 t4 t5 t6 t7 t8

 0.5 or 0.6 14(15) 11(13) 5 10 8 10 10 5 5 5

0.6, 0.7, 0.8,
or 0.9

14(15) 11(13) 5 10 8 10 10 5 5 5

1.0 or 1.1 14(15) 11(13) 5 10 8 10 10 5 4(5) 3(5)

Table 4.3 illustrates the effect of separation ratio SV on the number of clusters resulting from

automatic clustering. In this experiment, all parameters were kept the same as given in (4.2) to

(4.5), except that SV was varied from 0.5 to 1.1, incremented by 0.1. In Table 4.3, numbers in

bold underlined font-style represent the results that are different from those used to generate the

clusters (“correct” numbers given in parentheses), while the normal font-style indicates the results

are consistent with those used to generate the data. The numbers of clusters for all data sets are

consistent while SV changes from 0.6 to 0.9. Results for data set a2, t7, and t8 are “incorrect” for

SV=1.0 and 1.1. For all tested values of SV, data set s4 and s4m1 are “incorrect”.

 SV=0.5 SV=0.6 SV=0.7

 SV=0.8 SV=0.9 SV=1.0

0.01 0.02 0.03 0.04 0.05
0.5

1

10

20

KrRr

cl

us
te

rs

0.01 0.02 0.03 0.04 0.05
0.5

1

10

20

KrRr

cl

us
te

rs

0.01 0.02 0.03 0.04 0.05
0.5

1

10

20

KrRr

cl

us
te

rs

0.01
0.02

0.03 0.04
0.05

0.2
0.4

0.6
0.8

10

20

KrRr

cl

us
te

rs

0.01 0.02 0.03 0.04 0.05
0.5

1

10

20

KrRr

cl

us
te

rs

0.01 0.02 0.03 0.04 0.05
0.5

1

10

20

KrRr

cl

us
te

rs

41

 SV=1.1
Figure 4.5: Plots of Number of Clusters vs. kr and rr for Different Values of SV

(from 0.5 to 1.1 as labeled in each plot) for data set a1.

Figure 4.5 illustrates the effect of separation ratio on the size and shape of the plateau region of

the plot of number of clusters vs. kr and rr for data set a1. Even though the plateaus of these plots

occur at the same height, so that the clustering algorithms can select the correct number of

clusters as 20, the plateau regions for SV=1 and SV=1.1 are smaller in size comparing with

others.

From experience, we propose the rule of thumb:
0.6 ≤ SV ≤ 1.0 (4.6)

4.2 Case study: texture classification

In this section, we test our proposed clustering method on a real world application of texture

classification. Texture is a phenomenon that is widespread, easy to recognize and hard to define.

In order to analyze and/or classify texture, we need a mechanism to represent texture accurately

so that each texture image will correspond to a point in high dimensional feature vector space.

The fundamental assumption is that this representation is matched (or at least most likely

matched) with human visual assessment. In other word, textures whose represented feature

vectors are similar should be visually similar. Commonly, it suggests representing textures in

terms of the response of a collection of filters (such as a Laplacian Pyramid or Gabor filter bank

[25, 26]), in which each filter would recover a pattern of the texture, such as a spot or bar (with

different sizes and orientations). To summarize the filtered output images, a set of statistics, such

as mean, variance, kurtosis, and skewness, is commonly involved.

0.01 0.02 0.03 0.04 0.050.5

1
5

10

15

20

25

Kr

OV = 1.1

Rr

cl

us
te

rs

42

The 59 texture images used in this experiment were extracted from the Brodatz texture image

library [27]. Because the available texture image library is limited in number, we manually divide

each original texture image, 640x640 pixels, into small 100 blocks of size 64x64 pixels each, and

manually label these 5900 small images into 26 categories based on their visual appearance.

Figure 4.6 shows 26 small texture images, each from different categories. For each small image, a

Gabor filter bank with 4 scales and 6 orientations (24 totally different Gabor filters) are

convolved with this image to produce 24 filtered images. We note that the filtered images have

large intensity values (strong responses) at locations where the structure of the original image

matches well with the structure defined in the corresponding filters. We then summarize each of

the 24 filtered output images by a statistics measurement, namely variance. Hence, each texture

image of size 64x64 pixels corresponds to a point in 24 dimensional space and will be classified

in this space. These 5900 vectors in 24 dimensional space, each corresponding to a small texture

image, were fed into the automatic clustering procedure described in Table 3.3, with the same

parameter settings given in (4.1) to (4.5), except that we used SV = 0.6.

Our proposed clustering method correctly produced 26 clusters with an accuracy of 88.5%.

However, in order to fairly compare our method with the K-means method, which requires

knowing the number of clusters and is sensitive to initialization, we randomly selected 780

feature vectors corresponding to 260 small texture images (30 images from each of 26 categories)

to initialize 26 cluster centers, and we forced M-ART to create no new clusters. The remained

5120 small texture images were classified by M-AT and the K-means method. M-ART produced

94.7% accuracy, compared with 91.2% accuracy from the K-means method.

43

Figure 4.6: The 26 small texture images of size 64x64 pixels from 26 categories.

4.3 Case study: Texture segmentation

In this section, we test our proposed clustering method on a real world application of texture

segmentation. The data set includes 50 mosaic images of size 256x256 pixels created by

composing 3-6 different gray-scaled textures (chosen randomly from [26]) into designed regions.

Figure 4.7 shows five mosaic images and their ground truth maps (in pseudo color).

Figure 4.7: Some Test Images for Segmentation (top row)

and Their Ground Truth Maps (bottom row)

For each pixel of a given image, the corresponding 24x1 dimension feature vector was extracted

by convolving a Gabor filter bank [27-29] with 4 scales and 6 orientations (24 totally different

Gabor filters) with this image. These 65536 vectors in 24 dimensional space, each corresponding

44

to a pixel in the original image, were fed into the automatic clustering procedure described in

Table III, with the same parameter settings given above except that we used SV = 0.7. The order

of feeding input vectors to our M-ART was randomly selected.

Figure 4.8: Effect of Initialization. (a) the Test Image; (b) the Ground Truth Map; (c), (d), and (e)
the Results of K-means, EM, and Our Method, respectively, with a Good Initialization; (f), (g),

and (h) the Results of These 3 Methods with a Bad Initialization.

Results were compared with those from the well-known K-means and Expectation Maximization

(EM) [30] methods and tabulated in Table VI. Note that K-means and EM both require knowing

the number of segments a priori, but our method does not. However, all three methods were given

the same initialization for fair comparisons. Segmented images resulting from the three methods

were compared pixel-by-pixel with corresponding ground truth maps to determine accuracy.

In Table 4.4, good/bad initialization means each cluster center was given as a pixel inside the

correct/incorrect segments of the original image. Figure 4.8 visually illustrates the effect of

initialization on the three methods. Notice that the K-means and EM methods are severely

affected by bad initialization. Our method is superior in both accuracy and insensitivity to

initialization.

45

Table 4.4: Accuracy of Texture Segmentation of Three Methods

 K-means EM Our method

Good initialization 87.2% 91.4% 97.5%

Bad initialization 55.8% 62.6% 85.2%

Average of 100 random
initializations

68.5% 72.3% 89.8%

46

Chapter 5

CONCLUSTIONS FOR DATA CLUSTERING

In previous chapters, an automatic clustering procedure is proposed. The first step is density-

based removal pre-processing, which tends to produce more distinct clusters in most cases. This

process is equivalent to removing input vectors near the boundaries of each cluster, which in

many cases does not change the data structure or the number of “correct” clusters in the data. The

next step is to employ the M-ART neural network to group similar input vectors into clusters.

The vigilance ρ in the M-ART network determines the maximum size of clusters, and

consequently affects the number of clusters. Conventionally, a trial-and-error approach is used to

tune this value of ρ. In this paper, a procedure to auto-adjust the value of ρ based on a user-

selected allowable separation between clusters is proposed. Even though one must still select the

value of a parameter, choosing the allowed separation factor is intuitively easier than selecting the

value of ρ. The appropriate value of ρ is strongly dependent upon on the specific data set, and is

therefore very difficult to select a-priori. On the other hand, the allowed separation factor value

simply represents how much separation between adjoining clusters a user is willing to accept.

Accordingly, the separation factor could be chosen for multiple data sets before running the

algorithm.

47

The “optimal” number of clusters could be chosen according to some criteria, such as cluster

compactness or variation within a cluster and/or separation or isolation between clusters [11].

Cluster compactness (variation within cluster) and/or separation (isolation between clusters) are

normally considered as major factors in forming validation indexes [10, 11]. Almost all clustering

algorithms are not parameter-free and require user supplied values for input parameters.

Determining these values is difficult, and is usually guided by trial-and-error. Moreover, the

results produced could be very sensitive to these values, producing significantly different

partition results with only slightly different parameter values [6], rendering them unusable.

Experiments conducted on different synthetic 2-D, 3-D, 4-D, 5-D, and 10-D Gaussian data sets,

some published and some generated by the authors, with varying numbers of vectors, numbers of

clusters, and different degrees of separation between clusters, demonstrate the effectiveness and

reliability of the proposed clustering method. Two case studies of texture classification and

texture segmentation are also presented, showing very good results when compared with those

from the well-known K-means method.

We would like to investigate and solve the segmentation problem for general, real scene color

images. In applying our automatic clustering technique presented herein to this problem, we

represent each image pixel as a vector in high dimensional feature space, which are usually based

on color, texture, and xy-coordinators in the image plane. Then these vectors are grouped into

clusters, which is equivalent to dividing image pixels into corresponding segments. However, our

method works well only with convex-shaped (ellipsoid-shaped) clusters that are sufficiently

separated, which is normally not the case with general, real scene images. Accordingly, in the

next chapters, we investigate and propose a more advanced technique for color image

segmentation.

48

PART II: IMAGE SEGMENTATION

Chapter 6

INTRODUCTION TO IMAGE SEGMENTATION

6.1 Introduction to image segmentation

Image segmentation is a process in computer vision that partitions a digital image into multiple

segments or non-overlapping regions. Partitioning an image into non-overlapping regions assures

that pixels in each region share the same visual characteristics, such as color or texture, while

pixels in different regions exhibit significant differences in these features. In other words,

segmentation can be viewed as the process of labeling all pixels of the input image such that

pixels with the same label are connected and share certain visual properties. Moreover, pixels in

adjacent regions with different labels are significantly different in the same criteria. The result of

this process is a set of non-overlapping segments whose union forms the whole input image.

Segmentation is one of typical methods to separate the foreground from the background and to

locate objects (and their boundaries) of the input image. It is a first step to simplify and represent

an input image into a form that is more meaningful and easier to analyze. Then, properties of

objects resulting from the segmentation process can be determined (such as size, shape, color

distribution) for purposes of recognition, classification, and forming higher knowledge.

49

Therefore, segmentation serves as a fundamental step in extracting knowledge from the image,

and can be widely applied in many fields, such as classification, object recognition, object

tracking, content-based image retrieval, surveillance, and medical imaging, among others [31-34].

Some of the practical applications of image segmentation are: medical imaging (including

locating tumors and other pathologies, measuring tissue volumes, and computer-guided surgery

[34]), locating and measuring objects in satellite images (roads, forests, etc.) [35], face

recognition [36], iris recognition [37], fingerprint recognition [38], recognition in traffic control

systems [39], and crop disease detection [40].

Several general-purpose algorithms and techniques have been developed for image segmentation.

Since there is no general solution to the image segmentation problem, these techniques often must

be combined with domain knowledge in order to effectively solve an image segmentation

problem for a specific problem domain. Most algorithms work well with specific, well-known

scene images or images under well controlled lighting condition, but fail with general scene

images [35-37, 39-40]. A general-purpose segmentation technique is needed that provides

acceptable and reliable results on a wide variety of real, general scene images without excessive

computational cost. Another challenge in segmentation problems is how to quantitatively evaluate

a given image segmentation method, of which there are many approaches [39, 41-47].What

constitutes good segmentation is a problem similar to what constitutes good clustering, mainly

because of the lack of a precise definition of “good” clustering results or segmentation results

[47-48]. Accordingly, it is difficult to compare two given segmentation techniques. Normally,

results of a segmentation method are compared with manually segmented result by humans on a

set of test images (ground truth segments). However, it is very time consuming and tedious to

construct such a ground truth database. Even worse, different persons often provide significantly

different segmentation results on the same image.

50

6.2 Previous work

6.2.1 Histogram-based methods

In histogram-based methods, the characteristics of the intensity, or color, histogram of all image

pixels, such as peaks and valleys, are used to separate clusters in the histogram, and therefore

separate the corresponding segments in the image [49]. Since each pixel is addressed only once in

each application, these methods are efficient comparing with other segmentation methods.

Improvements in these techniques include applying the histogram-seeking method recursively to

segments in the image in order to divide them into smaller segments. Specified stopping criteria

are applied to terminate the repetition when no more segments are formed [49, 50]. However,

there are several drawbacks of histogram-based methods. For example, the peaks and valleys in

the histogram of the image can be difficult to identify due to natural noise in pixel assesment.

Poor segmentation results might be expected from inappropriate detection of peaks and valleys.

Even worse, small changes in these peak and valley positions could produce significantly

different segmentation results. Another disadvantage of this method is that small objects (that

might be important in the image) might not show up in the histogram, and therefore will be

ignored in segmentation results [50].

6.2.2 Feature-space- based methods

Similar to histogram-based techniques, feature-space-based clustering approaches ignore spatial

information in the image. These methods represent each image pixel as a vector in high

dimensional feature space, which is usually based on color or texture. Then a clustering

algorithm, such as our M-ART [51] discussed in Part I of this dissertation, is employed to

separate these vectors into clusters. Image segmentation is essentially a clustering process in

which each pixel in the image corresponding to a vector in the high-dimensional feature space is

grouped into an appropriate class or cluster. A distance between two vectors in this feature space

51

is defined to represent similarity in a visual characteristic, such as color or local information, of

two corresponding pixels. Then vectors or pixels can be partitioned into clusters such that those in

the same cluster share similar characteristics, while those in difference clusters exhibit

significantly differences in these characteristics.

Some well-known and simple clustering techniques, such as K-means [52] and mean shift [53],

are often used for segmentation of a simple image which contains an object that is significantly

different from the background. The K-means algorithm is an iterative technique consisting of the

following steps: (1) Initialize K cluster centers (randomly or based on some heuristic); (2) Assign

each vector to the closest cluster center (based on a predefined distance metric, such as Euclidean

distance); (3) Re-assign the cluster centers by averaging all of the vectors that belong to the

cluster; (4) Repeat the assigning and re-assigning steps until some stopping criteria are met (e.g.

no pixels change clusters). Both K-means and mean shift algorithms are guaranteed to converge,

but they may not return the optimal solution. The quality of the solution depends on the initial set

of clusters and the value of K. The main drawback of these algorithms is that the number of

clusters K is an input parameter, which is almost always unknown. An inappropriate choice of K

may yield poor results. Furthermore, in this approach, the image spatial structures, such as edges,

are not preserved, and pixels from disconnected image regions can be placed in the same group.

One approach to avoid the effect of the number of clusters K is employed in our M-ART

algorithm (presented in Part I). However, all three techniques (K-means, mean-shift, and M-ART)

work only for convex-shaped clusters.

6.2.3 Graph partitioning methods

An image can be modeled as a weighted, undirected graph, in which a pixel or a group of pixels

is associated with nodes of the graph, and the similarity or dissimilarity measure (in some visual

characteristics such as color and texture) between the neighborhood pixels or groups of pixels is

associated with weights of edges in the graph (The terminology “edge” in the graph theory means

52

the connection between two nodes of a graph; and should not be confused with edges/boundaries

of objects in an image). Then various graph partition techniques, such as normalized cuts [54],

minimum cut [55] and minimum spanning tree partitioning [56], can be employed for segmenting

images of interest. Each segment in the image corresponds to a partition of the nodes in the graph

produced from these algorithms. The graph partitioning results, and hence the image

segmentation results, are dependent upon how these techniques define a "good" cluster (of

nodes). Often a global, fixed, and predefined threshold is needed. Unfortunately, the results might

change significantly due to small change in this threshold [54-56].

6.2.4 Region-growing methods

Region-growing methods, e.g. seeded region growing [57], initialize a set of “seeds” or pixel

locations of the input image such that these seeds are considered as regions or objects to be

segmented. Then at each step, an unallocated neighboring pixel to a region is grouped into an

appropriate region according to some criteria. One simple approach uses the difference between

the region's mean and the pixel's intensity value as a measure of similarity. The region with the

smallest difference measured is the region into which the pixel is grouped. This iterative process

is done only after all image pixels are visited. Since seeded region growing requires the user to

provide the seeds, segmentation results very dependent upon seed choices. Noise in the image can

cause the seeds to be poorly placed [58, 59].

Improvements, called unseeded region growing [60], do not require explicit initial seeds. This

algorithm starts with random seeds. At each step, a neighboring pixel is either grouped into the

appropriate region as in seeded region growing, or a new region is formed. One simple approach

is predefining a threshold to decide whether or not to form a new region. If the smallest difference

between the neighboring pixel’s intensity value and an existing region’s mean is greater than the

predefined threshold, a new region is created with this pixel. A more advanced unseeded region

growing technique, introduced in the work herein, will be discussed in Chapter 7.

53

6.2.5 Watershed-based methods

The watershed algorithm can be viewed as a special type of region-based segmentation [61, 62].

In this algorithm, the gradient magnitude of pixel intensity in an image is considered as a

topographic surface. The technique envisions that water placed on any pixel enclosed by a

common watershed line flows downhill to a common local intensity minimum. Then, a catch

basin formed from pixels draining to a common minimum presents a segment. The main

drawback of watershed-based methods is that they often produce over-segmentation of the image,

in which many small basins are produced due to many local minima in the real-scene input image

[61].

6.3 Proposed image segmentation method

In this work, we introduce a general-purpose segmentation method that works for a large variety

of natural scene images in color, with reasonable computational times. The proposed method is a

type of unseeded region-based segmentation technique that preserves the spatial relationship

between pixels in the image, and hence preserves the detailed edges and the image spatial

structure. There are number of important modifications made in our proposed method. First, our

method operates at a “superpixel” [63] level, rather than at the image pixel level. The original

region growing techniques that operate directly at the pixel level often produce undesirable small,

but quasi-homogeneous, regions and are computational expensive [63]. By utilizing superpixels,

the proposed method avoids both issues. Second, the proposed method works for both color and

gray images rather than for only gray scale images as used in the original techniques [57-60]. Our

similarity measurement is defined based on statistics, mainly interquartile range, of pixel color (in

L*a*b color space [64]) in regions and neighboring superpixels. Third, the decision of grouping

an adjacent superpixel to an existing region is dynamically depended upon the statistics, or

“shape and size” of this region. The segmentation results show significant improvements when

compared with using a fixed, global threshold as used in the original techniques.

54

The reminder of this report is organized as follows. In Chapter 7, we introduce the process of

creating superpixels and our modified region growing technique. In Chapter 8, we demonstrate

the results of the proposed method on a large number and variety of colored natural scene images.

Evaluation and comparing the performance of the proposed method with existing methods are

presented in Chapter 9, and Chapter 10 presents conclusions and recommendations.

55

Chapter 7

NEW IMAGE SEGMENTATION METHOD

In this chapter, we introduce a new general purpose segmentation method that works for a large

variety of colored natural scene images with reasonable computational times. Our method

consists of two main steps: (1) Over-segment an input image into many small segments (called

superpixels); (2) Then apply a modified version of unseeded region-growing on these superpixels

to obtain the final segmentation. There are a number of advantages to employ the region-growing

technique at the superpixel level, rather than at the image pixel level. For example, it is more

computationally efficient because of reducing the complexity of images from hundreds of

thousands of pixels to only a few hundred superpixels. The superpixels are also perceptually

meaningful in such a way that each superpixel is a consistent unit consisting of pixels most likely

uniform in color and texture. More importantly, in the process of generating superpixels, most

structures in the image, such as edges, are conserved.

The superpixel formulation is introduced in Section 7.1. The modified region-growing technique

is provided in Section 7.2, and Section 7.3 summarizes our proposed image segmentation method.

56

7.1 Superpixels

Superpixels are becoming increasingly popular for use in computer vision applications [33, 39,

41]. Our superpixel algorithm, based on the idea of SLIC (Simple Linear Iterative Clustering

[63]) that produces a desired (predefined) number of regular, compact superpixels with low

computational overhead. The superpixels preserve the detail edges and the spatial structure of an

input image, and hence prevent pixels from disconnected regions of the image from being

grouped together. Our approach generates superpixels by clustering pixels based on their color

similarity and proximity in the image plane. This is done in the five-dimensional (L*a*b*xy)

space, where (L*a*b*) is the pixel color in CIE-LAB [65] color space, and (xy) is the pixel

coordination in the image plane (pixel location).

The first coordinate of the CIE-LAB represents the lightness of the color (L* = 0 yields black and

L* = 100 indicates diffuse white). The last two coordinates represent the relative colors, where a*

indicates color between magenta and green (a* = -128 indicates green and a* = +127 indicates

magenta); and b* indicates color between yellow and blue (b* = -128 indicates blue and b* =

+127 indicates yellow). The asterisks (*) after L , a and b are part of the full name, (L* , a* and

b*), to distinguish them from Hunter's L , a, and b [65]. The nonlinear relations for L* , a*, and

b* are intended to mimic the nonlinear response of the eye. Furthermore, uniform changes of

components in the L*a*b* color space aim to correspond to uniform changes in perceived color,

so the relative perceptual differences between any two colors in L*a*b* can be approximated by

taking the Euclidean distance between two corresponding points in this three dimensional color

space. The L*a*b* color space is widely considered as perceptually uniform for small color

distances. Figure 7.1 illustrates the RGB and L*a*b* color space representation.

57

Figure 7.1: RGB (left) and L*a*b* (right) color space. Pictures from [66]

Notice that, in Matlab’s unsigned 8-bit integer representation, the L* coordinate ranges from 0 to

100, while a* and b* coordinates range from 0 to 255. The conversion between RGB and

L*a*b* color space normally takes an intermediate conversion through CIE-XYZ [65] color

space. Equation (7.1) shows the linear relationship between RGB and XYZ color space [64]:

�XYZ� =
10.17697 � 0.49 0.31 0.200.17697 0.81240 0.010630.00 0.01 0.99 � �RGB� (7.1)

Equation (7.2) shows the conversion from XYZ to L*a*b* color space:

L∗ = 116f(Y Y*⁄) − 	16

a∗ = 500&g(X X*⁄) − g(Y Y*⁄)'
b∗ = 200&g(Y Y*⁄) − g(Z Z*⁄)'

(7.2)

where g(t) = ¥ t�/x if	t { (6/29)x
_7¦§ c7 ẍ+ ©7¦ otherwise

and Xn, Yn and Zn are the CIE-XYZ tri-stimulus values of the reference white point (the subscript

n suggests "normalized", and the white point value is dependent upon the hardware device used to

display color images).

Our superpixel generating algorithm is essentially a K-mean based clustering in 5D (L*a*b*xy)

space. The idea of utilizing K-mean clustering for superpixel generation was first introduced in

Magenta

58

SLIC (Simple Linear Iterative Clustering) by R. Achanta, 2010 [63]. In our work herein, the

distance calculation measuring the similarity between two points in the 5D space is generalized.

Note that five coordinates in this space represent different properties of a pixel: L* for light

intensity, a* and b* for color, and x and y for spatial coordinates in the image plane. While the

maximum possible distance between two color points in the CIE-LAB space is limited, the spatial

distance in the xy plane depends on the image size. It is not possible to simply use the Euclidean

distance in this 5D space (L*a*b*xy) without normalizations. Each 5D point (or vector)	¯T =
i°T , ±T , ²T , ³T , ´Tjµ, 1 ≤ ¶ ≤ ·in L*a*b*xy space, corresponds to a pixel in the given image,

where the upper-script (.):means the vector/matrix transpose operation. Each such point is then

normalized, producing ̄T¸̧¸̧ , such that each element	l�, a�, b�, x�, y� is in the range [0,1]:

¯T¸̧¸̧ = (¯T − ¯º��)./(¯º»¼ − ¯º��) (7.3)

where (./) means an element-by-element division of two vectors, and p1�* (p1;<) is a new vector

in which each element is the minimum (maximum) over all corresponding elements of all N input

vectors, namely [66]:

¯º��= 2min
1≤k≤N

(°T) , min
1≤k≤N(±T) , min1≤k≤N(²T) , min1≤k≤N(³T) , min1≤k≤N(´T)9: (7.4a)

¯º»¼= 2max
1≤k≤N

(°T) , max
1≤k≤N(±T) , max1≤k≤N(²T) , max1≤k≤N(³T) , max1≤k≤N(´T)9: (7.4b)

To simplify the notation, from now on, we omit the upper bar from a vector ¯T remembering that

all five elements of this vector have been normalized in range [0,1].

After normalization, in order to cluster pixels in L*a*b*xy space, we introduce a generalized

weighted Euclidean distance d�� between two points (or vectors) ¯� = i°� , ±� , ²�, ³�, ´� , jµ and

¯T = i°T , ±T , ²T, ³T, ´T , jµin this 5D space as follows:

?�T7 = �µ(¯� − ¯T)7
							= ¿À(°� − °T)7 +¿»(±� − ±T)7 +¿Á(²� − ²T)7 +¿¼(³� − ³T)7 +¿Â(´� − ´T)7 (7.5)

59

where Ã = Ä¿À , ¿» , ¿Á , ¿¼ , ¿ÂÅµ is a predefined weight vector. Normally, ¿» = ¿Á, and

¿¼ = ¿Â, since there is no specific reason to weight a* and b* color as well as x and y spatial

coordinates differently.

As a K-mean approach, our algorithm consists of four main steps: (1) Select K cluster centers

(detailed below), with each cluster forming a superpixel; (2) Assign each pixel in the image to the

cluster (or superpixel) that minimizes the generalized weighted Euclidean distance between the

pixel and the superpixel center; (3) Re-compute the superpixel centers by averaging the xy

coordinates of all the pixels in the superpixel; (4) Repeat the assigning and re-computing steps

until a stopping criteria is achieved (detailed below). Notice that a desired number of

approximately equally-sized superpixels, K, is assumed known as an input of our algorithm. For

an image with N pixels, the approximate size of each superpixel is therefore N/K pixels. For

roughly equally sized superpixels there would be a superpixel center at every grid interval

� = �·/�. Notice that the size of each superpixel represents the area (in pixels) of the smallest

image region that will be differentiated after the process. We call this area “the smallest feature

size SF”. After superpixel generation, any region that is smaller than SF is averaged or

“smoothed” out. In order to retain image details or to produce fine segmentation, one should

select a small value of SF. Coarse segmentations are obtained with large values of SF. Users can

select the “appropriate” value of SF depending upon the input image characteristic and the level

of coarse or fine segmentation they would like to obtain. With the user-defined smallest feature

size SF, the number of superpixels K can be calculated as:

 � = fÆÇ (7.6)

The default values of SF (in the event the user does not select) and K in our program are:

��ÈÉÊ»ËÀÌ =	 ·30 × 30

�ÈÉÊ»ËÀÌ =
fÆÇÎÏÐÑÒÓÔ = 900

(7.7)

60

In this case, any image feature that is smaller than a region of 30 pixels image width by 30 pixels

image height will be ignored.

Table 7.1: Proposed Superpixel Generating Algorithm

- Input the smallest feature size �� and the weight vector W. For our work herein � = i1,1,1,0.2,0.2jµ.

- Normalize all vectors in 5D space (L*a*b*xy) corresponding to all image pixel as in

(7.3).

- Initialize � = ·/�� superpixel centers ÕT , 1 ≤ ¶ ≤ �	by sampling pixels at regular

grid size � = �· �⁄ , where N is the number pixels of the given image.

- Assignment step: The i th pixel̄ �, 1≤i≤N, will be assigned to the “nearest” superpixel

according to the minimum weighted Euclidean distance measurement as in (7.7).

- Update step: Compute new superpixel centers and number of pixels changing into

different superpixels compared with previous iteration.

- Repeat Assignment step until stopping criteria is met.

The details of these four steps are:

• Initialization step:

We first initialize K superpixel cluster centers, as vectors ÕT = i°T , ±T , ²T , ³T , ´Tjµin L*a*b*xy

space and 1 ≤ ¶ ≤ �. These centers are initialized at regular grid intervals of S on the given

image, and each center vector ÕT is a mean of 5D vectors corresponding to all pixels that belong

to the ¶ÌÖ superpixel:

ÕT=
1·TB¯�

f×
i=1

 (7.8)

where ̄ � = i°�, ±� , ²�, ³�, ´� , jµ and ·T is the number of pixels that belong to the ¶ÌÖ superpixel.

• Assignment step:

At each iteration, every pixel ̄� will be assigned to the closest superpixel, called the ØÌÖ

superpixel, by the weighted Euclidean distance ?�T defined in (7.5).

J= arg min
1≤k≤K

&?�T' = 	 arg min
1≤k≤K

�µ(¯� − ÕT)7 (7.9)

61

Figure 7.2: Proposed Superpixel Generating Algorithm

Normalize all 5D vectors in

(L*a*b*xy)

Initialize K superpixel centers by

sampling pixels at regular grid

Assign every pixel to the “nearest”

superpixel.

Re-compute the superpixel centers.

(c ≥ 1-α) OR
(iter ≥β)

Compute c = percent of pixels change
into different superpixels.

iter = iter + 1

End

yes

no

Input ��; iter=1; α=2; β=10;

	� = i1,1,1,0.2,0.2jÙ

62

• Update step:

At the end of each iteration, after re-assigning all pixels, every superpixel cluster centers will be

updated as in (7.8).

• Stopping criteria:

It is shown in [60] that given enough iterations, the K-mean algorithm will converge to a local

minimum. Accordingly, we propose that our algorithm stops when no more than α percent of all

pixels change to a different superpixel (compared with the previous iteration), or when maximum

of β iterations is reached, whichever occurs first. In what follows, we select α = 2 and β = 10. Our

superpixel generating algorithm is summarized in Table 7.1 and Figure 7.2.

Figure 7.3: Superpixel Generating: Effect of �
Original Image (top-left) and superpixel results with: � = i1,1,1,0.04,0.04jµ (top-right); � = i1,1,1,0.2,0.2jµ (bottom-left); and � = i1,1,1,1,1jµ (bottom-right) in which the boundaries

(in black) of superpixels are overlaid onto the original image.
(For all results: �=200 or �� ≅ 32x32)

63

Figure 7.3 presents an example of superpixel generation with different weight vectors � =
Ä¿À , ¿» , ¿Á , ¿¼ , ¿ÂÅµ. Choosing these weights allows us to control the effect of each pixel

properties, e.g. intensity, color, and spatial location, and hence control the compactness of a

superpixel. The greater the value of w< and wÚ the more spatial proximity is emphasized, and the

more compact is the superpixel, and vice versa. By selecting appropriate weights, we enforce

color similarity as well as pixel proximity in this 5D space, such that the expected superpixel

sizes and their spatial extent are approximately equal. We choose	� = i1,1,1,0.2,0.2jµ, or

¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2, for all the results in this paper. This roughly matches the

empirical maximum perceptually meaningful CIELAB distance, and offers a good balance

between color similarity and spatial proximity.

Figure 7.4: Superpixel Generating: Effect of � and ��

Original Image (top-left) and superpixel results with K = 100, SF = 2000 ≅ 45x45 (top-right);
K=500, SF = 400 = 20x20 (bottom-left); and K = 1000, SF = 200 ≅ 14x14 (bottom-right) in

which the boundaries (in black) of superpixels are overlaid onto the original image.
(For all results: � = i1,1,1,0.2,0.2jµ)

64

Figure 7.4 presents an example of superpixel generation with different desired numbers of

superpixels K. Notice that after superpixel generation, any region that is smaller than SF is

averaged or “smoothed” out. The parameters SF and K affect the coarseness or fineness of

superpixels.

Notice that these superpixels are approximately equal in size (e.g. consist of a similar number of

image pixels). Also notice that edges and spatial and color information are well preserved by

superpixels. Each superpixel consists of connected pixels that are quite uniform in color and

intensity, as expected. However some superpixels are quite similar and should be grouped into the

same segment to form a more meaningful representation of “objects” appearing in the image. The

next section on our region-growing technique handles this problem.

7.2 Modified region growing segmentation

Region-growing is a simple region-based image segmentation method. It was first introduced as a

pixel-based image segmentation method, and it involved the selection of initial seed points. The

basic formulation for region-based segmentation satisfies five conditions, as follows [57]:

Condition 1: Û	� = 	�
� �

 (7.10)

where each region 	�, 1 ≤ i ≤ n, is a set of pixels: 	� = {¯T}, 1 ≤ ¶ ≤ ·�; ·� is number of pixels

belong to this region 	�, and n is the number of regions (note that ∑ ·��� � = ·, where N is the

total number of pixels in the input image); 	 is the entire image region. In other words, condition

(2.8) means that the segmentation must be complete such that every pixel is in a region.

Condition 2: ¯T and ̄ À are “connected”, ∀	¯T , ¯À ∈ 		� , 1 ≤ Ü ≤ Ý (7.11)

where ̄ T and ̄ À are “connected” if there exists a sequence of pixels ̄ º, … , ¯� such that:

(2.11a): ̄ º, … , ¯� 	 ∈ 		�, all pixels in the sequence are in the set 	�
(2.11b): and every 2 pixels that are adjacent in the sequence are "neighbors".

65

Normally, pixels are considered neighbors if they are 4-connected or 8-connected. For example,

in terms of pixel coordinates, every pixel that has the coordinates (x ± 1, y) or (x, y ± 1) is 4-

connected to the pixel at (x, y). The 8-connected relation includes the 4-connected and in

addition, every pixel that has the coordinates (x ± 1, y ± 1) or (x±, y ∓ 1) is 8-connected to the

pixel at (x, y).

Figure 7.5: The set of pixels (shown as purple squares) are 4-connected (left)
and 8-connected (right).

This condition means that every region R� is a connected region or connected component.

Condition 3: 	� ∩ 	� = 	∅, 1 ≤ Ü ≠ â ≤ Ý (7.12)

where ∅ is the null set. This condition indicates that the regions must be disjoint.

Condition 4: ã(�) = Ùäåæ, 1 ≤ Ü ≤ Ý (7.13)

Condition 5: ã&	� ∪ 	�' = �èé�æ, 	� 	±Ý?		� 	±�ê	"±?â±ìêÝ�", 1 ≤ Ü ≠ â ≤ Ý (7.14)

where f(�) is a logical predicate (or Boolean-value function) defined over the set 	�, and two

regions are adjacent if there exists at least one pixel in each region that are neighbors. Conditions

(2.11) and (2.12) suggest that pixels in the same region share the same properties, while pixels in

different regions differ in these properties. For example all pixels of a region have a similar gray

level.

Different region-growing techniques differ mainly in how the pixel connections are defined and

how to specify the ã() function in (7.13) and (7.14). Our modified region-growing method with

new connectivity definition and ã() function is described at the end of this section.

66

Seeded region growing:

The first region-growing method introduced in the literature was seeded region growing [57].

This method uses the 4-connected neighbor definition and initializes a set of “seeds” or pixel

location of the input image such that these seeds are considered as regions or objects to be

segmented. This algorithm starts with n seeds, either by random or heuristic placement. Then at

each step, an unallocated neighboring pixel to the regions is grouped into an appropriate region

according to some criteria. One simple approach is used the difference between the region's mean

and the pixel's intensity value as a measure of similarity. The region with the smallest difference

measured is the respective region where the pixel is grouped into. This iterative process is done

only after all image pixels are visited. This method uses following f() function:

Define Ø = ±�íîÜÝ∀�ïð(¯T) − îê±Ý&ð(�)'ï, �·(¯T, 	�) = Ùäåæ

ã&	ñ' = Ùäåæ

	ñ ← ó	ñ , ¯Tô
(7.15)

where I(.) returns the intensity or gray level of pixel(s) and the notation “A ← B” means that the

value of B is assigned to A. �·(¯T , 	�) = Ùäåæ if pixel ¯T and region 	�are connected,

otherwise �·(¯T , 	�) = �èé�æ. Note that in this case, there always exists the region J, 1 ≤ J ≤
n that has the mean intensity closet to the intensity of the neighbor pixel ̄T, or ã&	ñ' = Ùäåæ,
1 ≤ Ø ≤ Ý. The pixel ̄ T is, then, included in the region 	ñ. The number of regions n is

unchanged through the growing process.

Since seeded region growing requires the user to provide the seeds, segmentation results very

dependent upon seed choices (e.g., number of seeds and their locations). For example, in the

extreme case, where there is only one seed, n =1, the entire image will be grouped into a single

region. The location of seeds also affects the growing results, and noise in the image can cause

the seeds to be poorly placed [54, 55].

Unseeded region growing:

67

Unseeded region-growing [59] is a modified version of seeded region-growing that does not

require explicit initial seeds. This algorithm starts with n random seeds. At each step, the

neighboring pixel ̄Tis either grouped into the appropriate region as in seeded region-growing, or

a new region is formed. One simple approach is predefining a threshold Ù to decide whether or

not to form a new region. If the smallest difference between the neighboring pixel’s intensity

value and an existing regions’ mean is greater than the predefined threshold, a new region is

created with this pixel. This method uses the same pixel connectivity definitions as in the seeded

region growing method. The ã() function used in this method is defined as [59]:

Üã	 PØ = ±�íîÜÝ�5�5� ?T� 	Q è·ö _îÜÝ�5�5� ?T� 	 ≤ Ùc è·ö	(�·(¯T, 	�) = Ùäåæ)
�ℎêÝ	ã&	ñ' = Ùäåæ, 	ñ ← ó	ñ , ¯Tô
ê°�ê	Ø ← Ý + 1, Ý ← Ø, 	ñ ← {¯T}, ã&	ñ' = Ùäåæ						

(7.16)

where ?T� = ïð(øT) −îê±Ý&ð(�)'ï is the intensity value difference between the neighboring

pixel p� and the mean of existing regions 	�, 1 ≤ Ü ≤ Ý, and Ù is the predefined threshold. We

note that the order of execution in (7.14) is very important for proper processing. In this case, the

number of regions might change through the growing process (e.g., increase by one whenever a

new region is formed).

New proposed region growing:

We proposed a region-growing method based on the unseeded region growing technique, with a

number of important modifications. First, our method operates at a “superpixel” level, rather than

at the image pixel level. By utilizing superpixels, the proposed method avoids both issues of

computational expense and excessively small regions while providing quasi-homogeneous

regions similar to those of other existing region-growing techniques [56-59]. However, a new

definition of connectivity at the superpixel level is needed. Each region 	� is now a set of

superpixels, and Condition 2 in (7.11), is modified as follows:

New Condition 2: ùT and ùÀ are “connected”, ∀	ùT , ùÀ ∈ 	ä� , 1 ≤ Ü ≤ Ý (7.17)

68

where ùT and ùÀ are the ¶ÌÖ and �ÌÖ superpixel, 1 ≤ ¶ ≠ ° ≤ �, � is the total number of

superpixels, and Ý is total number of regions. We note that each superpixel itself is a set of

connected pixels as discussed in Section 2.1. The connectivity at the pixel level remains

conventional (e.g., the 4-connected neighbors). Two superpixels �T and �À are “connected” if

there exists a sequence of superpixels ùº, … , ù� such that:

ùº, … , ù� 	 ∈ 		�, all superpixels in the sequence are in the set 	�
and every 2 superpixels that are adjacent in the sequence are connected.

(7.17a)

(7.17b)

Any two superpixels ùº and ù� are "neighbors" or “connected” if there exists a pixel ¯º ∈ 	ùº

and another pixel ̄� ∈ 	ù� such that ̄º and ̄ � are 4-connected.

A superpixel ùºis said to be a “neighbor” of, or “connected” to, a region 	�, �·(ùT , 	�) =
Ùäåæ, if there exists a superpixel ù� ∈ 		� such that two superpixels ùº and ù� are connected.

A second modification in our proposed method is that it works for color images, rather than for

gray scale images as used in the original techniques. Therefore, our similarity measurement is

defined based on statistics, mainly the interquartile range, of pixel color (in L*a*b color space) in

regions and neighboring superpixels. (Our proposed method works for gray scale images, in

which the similarity measurement is based on the interquartile range of pixel intensity).

Finally a third modification in our method is that the decision of grouping an adjacent superpixel

to an existing region is dynamically depended upon the statistics, or “shape and size”, of this

region.

Let ùT be the investigating superpixel that is a neighbor of an existed region 	�. For notational

simplification, let ùúT also denote the 3D vector consisting of the mean value of L* , a*, and b* of

all image pixels belong to this superpixel (e.g., ùúT = Ä°T̅ , ±̧T , ²̧TÅµ).

Note that region 	�, 1 ≤ Ü ≤ Ý, is a set of superpixels: 	� = {ùº}, 1 ≤ î ≤ ·�; ·� is number of

superpixels belong to this region ä�; and Ý is the number of regions (note that ∑ ·��� � = �,

69

where K is the total number of superpixels in the input image). Let 	ú� be the 3D vector consisting

of the mean value of L* , a*, and b* of all superpixels belong to this region:

	ú�= 1·�Bùúº
fü

m=1

 (7.18)

Assume that the superpixel �T belongs to the region 	�. We use statistical outlier detection to

determine if ùT is not the outlier. Let ?º� be the weighted Euclidean distance between the region

mean 	ú� and a superpixel ùº belong to this region (vector ùúº):

?º� = ‖ùúº − 	ú�‖�ý

= =¿À&°�̅ − °º̅'7 + ¿»(±̧� − ±̧º)7 + ¿Á&²̧� − ²̧º'7	, 1 ≤ î ≤ ·� (7.19)

where �x = i¿À , ¿» , ¿Ájµis the weight vector (e.g. �x = i1,1,1jµ as the first three components

of the weight vector � in (2.5)); ùúº = Ä°º̅, ±̧º, ²̧ºÅµand 	ú� = Ä°�̅, ±̧�, ²̧�Åµ .
For a group of ·� numbers ?º�,	1 ≤ î ≤ ·�, we use the standard statistic outlier test to verify

whether a number is an outlier or not. Define þ�� , þ7� , and þx� respectively the first, second, and

third quartiles (or equivalently, the 25%, 50%, and 75%) of this data. (Note that þ7� is also the

median of these ·� numbers). There are 25%, 50%, and 75% of the numbers that are less than þ�� ,
þ7� , and þx� , respectively. Let ðþä� = þx� − þ�� be the interquartile range of this data. A number

?T� is considered an outlier of this data if it is different from the median more than � times the

interquartile range.

?T� is not an outlier, if 	þ�� − �	ðþä� ≤ 	?T� ≤ þx� + �	ðþä�
 is an outlier, otherwise.

(7.20)

In this work, we use � = 1.5 as normal. Hence, if ?T� is an outlier, the superpixel ùT should not

belong to the region 	�. Otherwise, this superpixel �T belongs to the region 	�.
With the connectivity between superpixels, and between superpixels and regions as defined in

(2.17), and the test to verify that a superpixel should belong to an existing region, the ã()
function used in our method is defined as:

70

Üã	 PØ = argmin�5�5� ?T� 	Q è·ö&þ�� − �	ðþä� ≤ 	?T� ≤ þx� + �	ðþä�'	è·ö	(�·(ùT , 	�) = Ùäåæ)
�ℎêÝ	ã&	ñ' = Ùäåæ, 	ñ ← ó	ñ , ùTô
ê°�ê	Ø ← Ý + 1, Ý ← Ø, 	ñ ← {ùT}, ã&	ñ' = Ùäåæ						

(7.21)

At each iteration, a current superpixel ùT is considered belonging to the “closest” existing regions

that are connected to it. The “closest” measurement is in sense of the weighted Euclidean distance

between this superpixel and a region mean in the 3D L*a*b* color space. Note that we use 3D

color space instead of the 5D L*a*b*xy space used in the superpixel generating process (Section

7.1), because the spatial information (xy coordinates) is already enforced by the connectivity

definition. For example, a region may consists two connected superpixels that are far away in the

image plane (large difference in xy coordinates), but similar in color. If the investigated

superpixel ùT is not an outlier of the closest region 	ñ, based on the statistical outlier test, then it

will be grouped into this region. Otherwise, a new region, which consists of this superpixel ùT, is

created. The process is repeated until all superpixels in the given image are visited. The algorithm

is illustrated Fig. 7.6, and also as a pseudo code in Table 7.2.

71

Figure 7.6: Proposed Region Growing Algorithm

Update � ← �−	{ù¶}

Randomly chose ùT ∈ �

End

yes

�x = i1,1,1jµ , � = 2

List of “unvisited” � = [1]

List of regions ä = ∅, Ý = 0

å

å ≠ ∅

no

	 = ∅

Find the “closest” existed region 	ñ
that is connected to ùT.

ùT is an outlier

of 	ñ
Form a new region	Ý ← Ý + 1,	� = {ù¶} 	 ← 	 ∪ 	�

	ñ ← 	ñ ∪ {ù¶}
Group ùT into 	ñ

yes

no

no yes

72

Table 7.2: Proposed Region Growing Algorithm

- Given the list of unvisited superpixels � = [1] as the result of our algorithm in Table

7.1. For our work herein, z=2 and �x = i1,1,1jµ.

- Randomly chose a superpixel ùT ∈ �.

- Find the “closest” existed region 	ñ that is connected (as defined in (7.15)) to ùT

based on the weighted Euclidean distance to regions’ centers as in (7.17).

- Validate that ùT is not an outlier of 	ñ as in (7.18) and (7.19). Include the superpixel

ùT to this region 	ñ.
- Otherwise, create a new region to contain this superpixel ùT.

- Remove �T from the list of unvisited superpixels � ← �−	{ùT}.
- Repeat to choose another superpixel in the list � until all superpixels have been

visited (and grouped into appropriate regions).

Note that when we compute interquartile the range for a group having only one data point, for

example a region 	ñ containing only one superpixel (e.g., a new formed region), and an

investigated superpixel ùT, the interquartile range is simply set equal to the distance ?Tñ, (e.g.

þ�� = 0, þx� = ?Tñ, ðþä� = ?Tñ). Therefore the condition (2.20) (þ�� − �	ðþä� ≤ ?T� ≤ þx� +
�	ðþä�), which equivalent to &−1.5?Tñ ≤ ?Tñ ≤ 2.5?Tñ', is always true, or ?Tñ is always not an

outlier. In other words, if the investigated superpixel ùT is closest to a neighboring existing region

that is newly formed (contains only one superpixel), then ùT is always grouped into this region.

7.3 Our proposed DUHO segmentation method

Our new image segmentation algorithm, which we designate the DUHO method, illustrated in

Figure 7.7, is the combination of the two algorithms discussed in previous sections, the superpixel

generating algorithm in Section 7.1 and the modified region-growing algorithm in Section 7.2.

First, the superpixel generating algorithm is applied to a given image to build K superpixels. Then

73

the new region growing algorithm iteratively groups these superpixels into appropriate regions

and forms the final image segmentation result.

Figure 7.7: Proposed DUHO Image Segmentation Algorithm

Control Parameter:

Our superpixel generating algorithm has two control parameters, the desired number of

superpixels	� and the 5D weight vector �. Since this is an intermediate step, and the superpixels

will be grouped or merged in the next step, the final segmentation results are sensitive to the

Segmentation label
(map)

� = i1,1,1,0.2,0.2jµ 	� = 1.5

Input SF

Color image

(RGB)

Convert color space from (RGB)

to (L*a*b*)

Superpixel Generating

Algorithm (Section 7.1)

Region Growing Algorithm

(Section 7.2)

74

value selected for �. However, an excessively small value of � might lead to a poor “under-

segmentation” result, while an excessively large value of � results in excessive computational

time and might produce undesired “over-segmentation”. The weight vector � controls the effect

of the properties of each pixel, e.g. intensity, color, and spatial location, and hence controls the

compactness of a superpixel. In the work herein, these parameters’ values are selected manually

based on experiments, e.g. � = i1,1,1,0.2,0.2jµ, or ¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2,

��ÈÉÊ»ËÀÌ =	 fx�×x�, �ÈÉÊ»ËÀÌ =
fÆÇÎÏÐÑÒÓÔ = 900 , · is number of pixel in the input image (in

most test images · = 481 × 321 = 154,401, hence ��ÈÉÊ»ËÀÌ ≅ 	171 ≅ 13 × 13; see Section

7.1). This roughly matches the empirical maximum perceptually meaningful CIELAB distance

and offers a good balance between color similarity and spatial proximity. The final number of

superpixels provides a good balance between reasonable visual effect of segmentation and

practical computational time.

Our region growing has two parameters, namely the 3D weight vector �x and the outlier range �.
The weight parameter controls the emphasis of each component, intensity and color, in the

(L*a*b*) space. However, there is no specific reason to select different values of �x from the

first three components of � used in the superpixel generating algorithm. Moreover, since all data

in (L*a*b*) space is computed from (RGB) color space and has been normalized in the range

[0,1], we advise selecting ¿À = ¿» = ¿Á = 1. The outlier range � affects the test to accept a

superpixel belonging to (and hence to be grouped within) a region. Therefore it controls the

sensitivity of segmentation results. A small value of � means that only a superpixel that has very

similar color and intensity properties to those of the region’s mean will be accepted to join that

region, such that a large number of small regions are produced(“over-segmentation”). In contrast,

a large of value of � tends to produce a small number of large regions (“under-segmentation”). In

this work, the value � = 1.5 was selected to produce a reasonable balance. In summary, only two

parameters in the first step, the superpixel generating algorithm, need to be selected.

75

Figure 7.8: DUHO Segmentation Process (See text for detail).

A B

C D

E F

G H

76

Figure 7.8 illustrates our segmentation process for an image: (A) the input color image, (B)

results from our superpixel generating algorithm;(C) mean value of each superpixel; (D,E,and F)

three regions after applying our region growing algorithm; (G) the segmentation map, in which

each region is shown in a different color; and (H) segments’ boundaries (in purple) overlaid on

the original image. Note how this new method preserves the spatial relationship between pixels in

the image, and hence preserves the detail edges and the image spatial structure.

7.4 Complexity analysis of our DUHO segmentation algorithm

7.4.1 Complexity of our superpixel generating algorithm

Our superpixel generating algorithm, presented in Section 7.1, includes the following:

Step 1

Input SF and W. Normalize all vectors in 5D space. Initialize � = ·/��

superpixel centers ÕT , 1 ≤ ¶ ≤ �	at regular grid size � = �· �⁄

Step 2 Find the nearest superpixel to each pixel ¯�, 1≤i≤N

Step 3 Update new superpixel centers.

Compute the stopping criteria (number of pixels changed)

Step 4 Repeat Steps 2-3 until stopping criteria is met.

We use the standard “big O” notation for analyzing the complexity of the algorithm,

characterized by computation time, in the worst case scenario and as a function of · (number of

pixels of the input image) when · → ∞. Therefore, higher computation times indicate higher

complexity. Computational complexity for Step 1 is Ù� = Ο(1), or the computation time

complexity of this step does not depend on ·.

At Step 2, for each pixel, we compute its distance (Euclidean distance in 5D space) to all �

superpixel centers. Therefore, the naïve implementation (such as in the original K-means

algorithm) has a computational time cost Ù7 = Ο(�·) = Ο(·7), � = ·/��, where SF is a

constant. However, we take advantage of the fact that in our algorithm all superpixels are

adjusted and compact because the spatial information (xy-coordinators) of pixels is restrained. A

77

superpixel should contain only pixels that are not very far away from its center. In other words,

there is no need to compute the distance from a given pixel to every superpixels center but only to

those that are in the 2S-by-2S proximity to this pixel. (Normally, there are 4 superpixels in this

range). Accordingly, the computational time for Step 2 is significantly reduced: Ù7 = Ο(ì�·) =
Ο(·), ì� = 4. Figure 7.9 illustrates that the search space of our algorithm is significantly reduced

from that of the original K-means algorithm. This is the reason for the fast speed of our

segmentation procedure.

(a) Our algorithm searches a space of 2S-by-2S
pixels (A superpixel is roughly S-by-S pixels)

(b) K-means searches the whole image

Figure 7.9: The search space for each pixel at current step
for our superpixel generating (a) and the original K-means (b)

Computational time for the Steps 3 and 4 are Ùx = Ù© = Ο(1).
For the worst case, the algorithm terminates only after the maximum number of iterations

(= 10) is reached. Hence, the computational time for our superpixel generating algorithm is:

ÙÜîê1 = 	Ù1 + 		(Ù2 + Ù3 + Ù4)
 = Ο(1) + 		(ì�Ο(·) + Ο(1) + Ο(1))
 = 	ì�Ο(·)

(7.22)

7.4.2 Complexity of our region growing algorithm

Our region growing algorithm, presented in Table 7.2, Section 7.2, includes following steps:

Step 1 Given å = [1], z=2 and �x = i1,1,1jµ

78

Step 2 Randomly chose a superpixel ùT ∈ �

Step 3 Find the “closest” existed region 	ñ that is connected to ùT.

Step 4 Validate that �T is not an outlier of 	ñ. Include the superpixel ùT to this region 	ñ.
Otherwise, create a new region to contain this superpixel ùT.

Remove �T from the list of unvisited superpixels � ← �−	{ùT}.
Step 5 Repeat Step 2 until all superpixels have been visited.

The computational times of all steps except the Step 3 of this algorithm are independent of ·:

Ù� = Ù7 = Ù© = Ù
 = Ο(1).
In Step 3, we must compute the distance (weighted Euclidean distance in 3D space) from a given

superpixel to existing regions that are connected to this superpixel. The distance computing and

connectivity check task are both independent of ·. In the worst case, the number of existing

regions that are connected to a superpixel is n (the total number of regions in the image). Hence,

the computational time for this step is Ùx = Ο(Ý7).
This algorithm always terminates after K iterations (K is the number of superpixels). Therefore,

the computational time for our region growing algorithm is:

 ÙÜîê2 = 	Ù1 + 	�(Ù2 + Ù3 + Ù4 + Ù5)
 = Ο(1) + 	�(Ο(1) + Ο(Ý7) + Ο(1) + Ο(1))
 = �Ο(Ý7)

(7.23)

7.4.3 Complexity of our DUHO segmentation algorithm:

Our DUHO segmentation algorithm is a combination of the two above algorithms. Hence, the

total computational time is:

ÙÜîê = 	ÙÜîê� + ÙÜîê7
 = 	ì�Ο(·) + 	�Ο(Ý7) (7.24a)

However, since Ý ≪ ·, the term Ο(Ý7) is very small, and since 	, ì� and � are constant

parameter given by users, we can simplify (7.24a) to read

ÙÜîê = 	Ο(·) (7.24b)

So, our DUHO segmentation computation time varies linearly with the input image size ·.

79

7.5 Objective function and convergence of DUHO segmentation algorithm

7.5.1 Objective function of our superpixel generating algorithm

For our superpixel generating algorithm, which is essentially based on K-means clustering with

modifications in similarity measurement and a time-reducing implementation, we consider an

objective function similar to the original K-means algorithm. The superpixel generating problem

can be viewed as finding the “best” way (according to the objective function defined later) to

divide a finite set of · pixels (represented by a 5 dimensional vector) ¯� , 1 ≤ Ü ≤ · into �

disjoint superpixels ùT , 1 ≤ ¶ ≤ � among all possible way of distributing, in which � is given.

Our superpixel generating algorithm can be mathematically presented as:

Input: Finite set � = {¯�} ⊂ ℝ
, |	�| = ·; integer � (7.25)

Output: Finite set ù = {ùT} such as |	ù| = �,⋃ ùT = ��T � and ùT ∩
ùº�T = ∅

(7.26)

Goal: Minimize ����(ù) = ∑ ∑ ‖¯� − ùúT‖7¯ü∈ù×�T � (7.27)

where |. | is the cardinal (or size) of a set, and other notations as introduced earlier.

It has been proved that during K-means iterations, the cost monotonically decreases with each

iteration [51]. Hence, this would also hold for our superpixel algorithm given in Section 7.1.

Therefore our superpixel generating algorithm converges to a local minimum of its objective

function ����(ù) in (7.27).

7.5.2 Objective function of our region growing algorithm

In similar fashion, the segmentation problem can be viewed as finding the “best” way (according

to some objective function, defined later) to divide a finite set of � superpixels ùT , 1 ≤ ¶ ≤ �

into Ý disjoint regions 	�, 1 ≤ â ≤ Ý among all possible ways of distributing. Note that Ý being

unknown presents a much more difficult problem compared with the problem in Section 7.5.1, in

80

which the number of groups is given. Our region growing algorithm can be mathematically

presented as:

Input: Finite set � = {ùT} ⊂ ℝ
, |	�| = � (7.28)

Output: Finite set 	 = ó	�, 1 ≤ â ≤ Ýô such as 	⋃ 	� = ��� � and 	� ∩
	º�� = ∅

(7.29)

Goal: Minimize ����() = �����() +	����7() (7.30)

We propose the objective function consist of two parts. The first part, ����1(), is to minimize

the variation within each region or the intra-region relationship, which serves the same purpose as

in K-means algorithm, given by:

�����() =B B �ùT − ���7ù×∈	�
�
� � (7.31)

where �� is the representative vector of the region 	�. The second part of the objective function,

����2(), takes into account the inter-region relationship between regions that are neighbors,

given by:

����7() =BM B �	ú� − 	úº�7
�f(�,	�) µ���	

N�
� � (7.32)

where 	ú� is the mean of the region 	� as defined in (7.18). �·(�,	º) = Ùäåæ only if the

regions 	� and 	º are connected.

Combining (7.30), (7.31), and (7.32) gives the objective function of our region growing algorithm

as:

����() = MB B �ùT − ���7ù×∈	�
�
� � N +BM B �	ú� − 	úº�7

�f(�,	�) µ���	
N�

� � (7.33)

81

7.5.3 Discussion of proof of convergence:

We would like to prove the convergence of our region growing algorithm presented in Section 7.2

by showing that during the iteration in of the algorithm, the cost monotonically decreases with

each iteration. However, because of the complexity of the problem, we can only analytically

prove that the first part, ����1(), monotonically decreases with each iteration in the algorithm

(i.e., based on k-means proved convergence). However, for ����2() , note that even for a fix

number of subsets Ý, there are enormously large combinations of ways to distribute a set of �

elements into Ý subsets, (� { Ý). For example with � = 100 and Ý	 = 2, the task is to divide 100

elements into 2 subsets. There are _ 1100c = 100	ways to distribute 1 element into the first subset

and 99 elements into the second subset. (The “binomial coefficient” notation _Ý�c, often read as

“chose Ý from �”, can be computed as: _Ý�c = �!�!(�J�)!, where Ý! = Ý × (Ý − 1) × …× 2 × 1

denotes the factorial of Ý, and 0! = 1). There are _ 2100c = 4950 ways to distribute into 2 subsets

of 2 and 98 elements, respectively. There are _ 3100c = 16170 ways to distribute into 2 subsets of

3 and 97 elements respectively, and so on. Hence, even if Ý	 = 2 is given (and small), the total

number of ways to distribute � elements into Ý subsets is very large. And this number of ways

grows exponentially with increasing values of Ý.

If Ý is unknown, this process must be repeated for every possible value of Ý, 1 ≤ Ý ≤ �. In this

general case, the total number of ways to distribute � elements into Ý subsets is exceedingly

large, so that it is intractable for a brute-force approach to find the global optimum of ����2()
among all possibilities.

Another difficulty in proof of convergence is that the “connectivity” condition in ì���2() is

difficult to represent mathematically. At each iteration of our region growing algorithm, a random

82

superpixel is considered either to be grouped into the (closest) existing region or to form a new

region. Hence, it appears analytically intractable to represent the connectivity between regions.

Lemma 7.1: Optimal solution for ����1() for a single region (� = �)

The optimal solution for a single region 	 is when the representative � is the same as the mean 	ú

of this region. Then we have:

�����(; �) = ∑ ‖ùT − �‖7ù×∈	 → îÜÝ when � = 	 (7.34)

The new notation ����1(; �) is used to emphasize that vector(s) after the semi-colon is(are) the

representative(s) to calculate the cost.

In addition, if � ≠ 	 is chosen, then the cost will be increased by:

ì����(; �) = 	 ì����(;	ú) + |	|(‖	�− 	ú‖7) (7.35)

The proof of Lemma 1 is quite straight forward and can be found in [51].

Lemma 7.2: Part of the objective function for multiple regions

The �����() monotonically decreases during the course of our region growing algorithm.

Proof:

Let 	�(Ì)and 	ú�(Ì), 1 ≤ â ≤ Ý, be, respectively, a region (a set of superpixels) and its center (a 3D

vector mean) at the start of the �ÌÖ iteration of our algorithm. At first, our algorithm assigns each

superpixel to its closest center. Herein, for simplicity, we ignore the connectivity and outlier test

between the current superpixel and the region into which it will be grouped. Assume that a

superpixel is added into the 	�(Ì) region, such that this region will change to 	�(ÌD�), but its

representative is still 	ú�(Ì) and is not its center. Therefore we have:

�����&	�(ÌD�);	ú�(Ì),1 ≤ â ≤ Ý' ≤ 	�����&	�(Ì);	ú�(Ì), 1 ≤ â ≤ Ý' (7.36)

Next, each region center is updated to the current region mean denoted as 	�(ÌD�), such that by

Lemma 7.1 we have:

�����&	�(ÌD�);	ú�(ÌD�),1 ≤ â ≤ Ý' ≤ 	�����&	�(ÌD�);	ú�(Ì),1 ≤ â ≤ Ý' (7.37)

Combine (7.36) and (7.37) to obtain:

83

�����&	�(ÌD�);	ú�(ÌD�),1 ≤ â ≤ Ý' ≤ 	�����&	�(Ì);	ú�(Ì), 1 ≤ â ≤ Ý'
or in shortened notation: �����&	(ÌD�)' ≤ �����&	(Ì)' (7.38)

Accordingly, we proved that the first part of the objective function����1() monotonically

decreases with each iteration during the course of our region growing algorithm. As mentioned

above, due to its complexity, we were unable to prove that the second part of the objective

function ����2() also monotonically decreases during the course of our region growing

algorithm. Such proof, if it exists, is left for future work.

Figure 7.10(b) shows an example of the objective function ����() as in (7.30) of a single run

our DUHO segmentation on the image in Fig. 7.10(a). Since there are 500 superpixels in the

image, the DUHO algorithm terminates after 500 iterations.

(a) (b)

Figure 7.10: Objective function in (b) ����() of a single run our DUHO segmentation for the
image in (a)

Four other examples of convergence are shown in Figure 7.11-7.14. During the course of our

studies with 300 original different image, we found that ����() always decreased with

iterations up to the maximum of K iterations.

84

(a) (b)

Figure 7.11: Objective function in (b) ����() of a single run our DUHO segmentation for the
image in (a)

(a) (b)

Figure 7.12: Objective function in (b) ����() of a single run our DUHO segmentation for the
image in (a)

85

(a) (b)

Figure 7.13: Objective function in (b) ����() of a single run our DUHO segmentation for the
image in (a)

(a) (b)

Figure 7.14: Objective function in (b) ����() of a single run our DUHO segmentation for the
image in (a)

86

Chapter 8

RESULTS AND EVALUATIONS

In this chapter, we present segmentation results of our new DUHO method discussed in Chapter 7

on a set of a large variety of natural scene images in color, which is published and available in the

literature. A number of evaluation metrics for segmentation are discussed and we propose a

framework to select the best metric. We also compare the results from our DUHO method with

other state-of-art segmentation techniques.

8.1 Dataset

The dataset used in our test is the public Berkeley Segmentation Dataset and Benchmark (BSDB)

[68]. It consists of 300 color images of natural scenes, some of which are shown in Figure 8.1.

Note that some images contain one or two “stand-out” objects that are fairly easily detected from

the background, such as images with name/ID number: 8068, 106025 and 135069 (see Fig.8.1).

Other images have multiple objects with many details, such that different human observers might

segment them differently. The dataset in [68] also contains hand-implemented segmentations for

each image as shown in Figure 8.2.

87

Figure 8.1: Some dataset’s images from [68]

88

 (a) (b)

 (a) (b)

Figure 8.2: Some pairs of original image (a) and manual-implemented segmentation (b), which
served as ground truths

8.2 Results of our DUHO algorithm

Sample results of our DUHO segmentation algorithm, discussed in Chapter 7, are shown in

Figure 8.3. The first column (a) of Fig.8.3 contains the original images, while the second column

(b) shows segmentation results in which the boundaries of segments identified by DUHO in

purple are overlaid onto the original image, and the last column (c) shows the same segmentation

results in which each DUHO segment is presented in a distinct color.

89

(a) (b) (c)
Figure 8.3: Our DUHO segmentation results on some images

90

Note that our DUHO segmentation algorithm preserves well the detailed edges/boundaries of

“true” segments or objects and the image spatial structure. Compared with human segmentation,

our algorithm normally produces smaller segments. In our algorithm, different segments differ

from each other in color and location. Humans often take advantage of prior knowledge to

combine into a larger segment some different regions (that are connected but distinguishable in

color), about which he or she has prior knowledge that these should belong to the same object.

This type of information must be learned, and is beyond the information contained in a single

image. Also, human observers often easily ignore noise, and focus only on “salient” objects in a

given image, despite the fact that detecting objects from the background and detecting salient

object are difficult tasks themselves.

As indicated in Section 8.3, the parameter values we used for the above results are: � =
i1,1,1,0.2,0.2jµ (or ¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2), ��ÈÉÊ»ËÀÌ = 	 fx�×x�, �ÈÉÊ»ËÀÌ =

fÆÇÎÏÐÑÒÓÔ = 900, where · is number of pixels in the input image. For example, a given image of

size 481-by-381 pixels has · = 481 × 321 = 154,401, such that ��ÈÉÊ»ËÀÌ ≅ 	171 ≅ 13 × 13.

8.3 Effect of the Control Parameters:

Figure 8.4 illustrates the results of our proposed segmentation method applied to an original input

image (a). Fig.8.4 (b1 and b2) shows the superpixel generating results with two different

parameter choices: � = 500, �� = 400= 20x20 (b1); and � =1000, �� = 200 ≅ 14x14 (b2). Figs

c1 and d1 correspond to segmentation in Fig a1, and Figs c2 and d2 correspond to segmentation

in Fig a2. Fig.8.4 (c1 and c2) show the segmentation results from these two parameter sets, in

which each segment is presented in a distinct color. Fig.8.4 (d1 and d2) show the same

segmentation results in which the boundaries of segments in purple are overlaid onto the original

image. As we expected, when the smallest feature size value (SF) is larger (equivalent to smaller

number of superpixels �), our segmentation algorithm produces a small number of large

91

segments/regions. In other words, the algorithm returns coarser segmentation in which any

feature that is smaller than �� will be smoothed out, such that some details of the original image

might be ignored (see Fig.3.4.c1). In contrast, with a smaller value of �� (larger value of �), our

algorithm produces a large number of small segments/regions and more detail from the original

image is retained (see Fig.8.4.c2). In short, the control parameter �� is a means for users to

control the coarseness or fineness of the segmentation results. The “optimal” value of �� is

dependent on the image features, together with the purpose or application of the segmentation

process. With a given input image to be segmented, a user can select the appropriate value of ��

based on the smallest feature size (e.g. the number of pixels) in this image that he or she would

like to capture. If the segmentation results are too fine or over-segmented (e.g. many smaller

segments than expected), one can increase �� and re-run the algorithm, and vice versa.

92

(a)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Figure 8.4: Results of our DUHO segmentation method with ù� =20x20 (left) and ù�

=40x40(right). See text for more detail.

93

8.4 Selecting the best unsupervised metric

In this section, we present six unsupervised metrics in the literature that are commonly used to

evaluate segmentation results. Then we propose a framework to find the best comparison metric

in the sense that this metric is the most consistent with the ground-truth provided by manual

segmentation and, at the same time, is the most sensitive to random segmentation results. We

believe a “good” metric should produce a high score on the ground-truth segmentation as well as

produce a low score on random segmentation. As discussed earlier, the fundamental difficulty

with evaluation of segmentation is that there is no objective, clear definition of good or bad

segmentation. Moreover, different observers often do not agree on how to segment the same

given image. The issue of variation in the scales of error in ground-truths from human

segmentation results will be discussed in the Section 8.5.

8.4.1 Discrepancy evaluation technique (�−metric)

This technique, introduced by Weska and Rosenfeld [70], is a simple technique based on the

discrepancy measure (ö-metric) between the original and the segmented images. Precisely,

discrepancy is computed by the sum of the squares of specified differences between the original

image and the segmented image. This measure ö is given by:

ö =BB&�(Ü, â) − é(Ü, â)'7�

� �
�Ö
� � (8.1)

where ðÖ and ð 	are, respectively, the height and width of the image; �(Ü, â) and é(Ü, â) are the

grayscale of the pixel (Ü, â) of the input image and the segmented image, respectively. Note that in

the segmented image, pixels of the same segment have the same value (grayscale or color) that is

the average of pixel values (grayscale or color) that belongs to this segment in the original image.

In other words, the ö-metric is related to the total variation of grayscale in the original image

corresponding to all segments. For a good segmentation result, the metric ö should be close to

zero.

94

8.4.2 The intra/inter-region visual error (!− metric)

An unsupervised evaluation technique based on the visible color difference [71] is employed to

evaluate image segmentation algorithms. Define “intra-region visual error” æ��Ì"» as:

æ��Ì"» = 1·B #(êT7 − �ℎ)�
T � (8.2)

where #(±) is a step function, given by

#(±) = $1 ± { 00 ��ℎê�¿Ü�ê (8.3)

and êT7 is the square of the color error in the äT image region computed in L*a*b color space

(1 ≤ Ü ≤ Ý; where Ý is number of segments), given by

êT7 = B‖¯ − 	T¸̧ ¸̧ ‖7
%∈�×

 (8.4)

where ̄ = i°, ±, ²jµ is the 3D vector corresponding to the pixel ¯; 	T¸̧ ¸̧ = Ä°T̅ , ±̧T , ²̧TÅµis the mean

vector of the region 	T; ‖ ‖ is the standard Euclidean norm; · is number of pixels in the input

image; �ℎ denotes the threshold for visible color difference, with �ℎ = 0.36 according to [62].

The intra-region visual error is designed to measure the visible color difference within the

segmented regions. This measure can be used to estimate the degree of under-segmentation.

Intuitively, a properly segmented region should contain as few visible color errors as possible. In

other words, the smaller the value of æ��Ì"», the better is the segmentation.

On the other hand, another measurement named inter-region visual error is designed to measure

the invisible color difference between every adjacent pair of segmented regions. This measure can

be used to estimate the degree of over-segmentation. Define “inter-region visual error” æ��ÌÉ" as:

95

æ��ÌÉ" = 1·B B éT�éTé� 	# _�ℎ − �	T¸̧ ¸̧ − 	&¸̧ ¸�7c
�

� �,��T
�
T � (8.5)

where éT and é� are the boundary length (in pixels) of regions 	T and 	�, respectively. éT� is the

“joined length” (or number of pixels in the “shared” boundaries) between the image regions 	T

and 	�. é�� = 0 if 	T and 	� are disjoined. Given a segmentation result, we take into account

these boundary pixels with “invisible” color difference (no difference in color) across the

boundary. Intuitively, these pixels should not be treated as boundaries. Hence, the smaller the

value of E�*¨+(, the better is the segmentation.

Based on these two measures, a score or metric æ to measure how good is a given segmentation,

may be defined by:

 æ = �7 (æ��Ì"» + æ��ÌÉ") (8.6)

Note that, for a segmented image, a large value of intra-region visual error means numerous

pixels may be mistakenly merged, such that this image could have been under-segmented. On the

other hand, a large value of inter-region visual error means numerous boundary pixels may be

mistakenly generated, such that the image could have been over-segmented. Moreover, there is a

reciprocal relationship between intra-region error and inter-region error. As we adjust the

controlling parameters of a segmentation algorithm to merge more regions together, the inter-

region error decreases, while the intra-region error increases. On the contrary, as we segment an

image into more regions, the intra-region error decreases while the inter-region error increases.

Also note that all pixel color values are normalized to range of [0,1]. Normally Ý (number of

regions) ≪ ·(number of image pixels), such that æ��Ì"», æ��ÌÉ" and æ will all lie in the range

[0,1]. For a good segmentation result, the metric æ should be close to zero.

8.4.3 Average squared color error ()− metric)

This metric is empirically defined by Borsotti at el. [72] as:

96

þ = 1¶·√ÝBt ê	×71 + log èT + PÝTèTQ
7u�

T � (8.7)

where ¶ = 10©is an empirical number and a normalization factor that takes the size of the image

into account, N is the total number of pixels in the image, n is the number of segments, ê�T7 is the

square of the color error in the segment 	T as in (8.4), è¶ is the area of the segment 	T , and Ý¶
is the number of segments that have the area in the range from 0.98è¶ to 1.02è¶.
Note that the √n term penalizes segmentation results having too many regions; the ê	×7 term

penalizes results having non-homogeneous regions. The square of the color error will be

significantly higher for a large region, such that the adjusted term (1 + logèT) is applied.

Experiments show that the number of large regions that have a similar area is small, while the

number of small regions that have a similar area may be large [42]. Therefore, the þ measure

also penalizes the segmentation result having too many small regions that are similar in size. For

a good segmentation result, the metric þ should be close to zero.

8.4.4 Entropy based metric (* − metric)

Zhang et al. [73] proposed another unsupervised evaluation metric based on the “region” entropy

and the “layout” entropy. Define the entropy for each segment 	T by:

+(T) = − B éT(î)èT log éT(î)èTº∈,×
 (8.8)

where �T is the set of all possible grayscale values of pixels in the region 	T of the original

image, éT(î) is the number of pixels in this region 	T 	of the original image that have the

grayscale value of m.

Define the region entropy +" of entire image as the sum of entropy across all regions weighted by

their areas, given by:

+" = √ÝBèT·
�
T � 	+(T) (8.9)

97

where n, N, èT, and +(T)	are defined as before. Note that N is the total number of pixels of the

image or the “area” of the image. The first term √n penalizes segmentation result having too

many regions. Now define the layout entropy +À by:

+À = −BèT· logèT·
�
T � (8.10)

The H-metric measuring the effectiveness of a segmentation method is the addition of the two

entropies, given by:

+ = +" + +À (8.11)

For a given dataset, the H-metric can be normalized to a range [0,1], in which a small value of H

(close to zero) indicates good segmentation.

8.4.5 Spatial color contrast along the boundaries of segments (Õ − metric)

This metric introduced in [74] considers the internal and external contrast of the neighbors of

each pixel in all segments. Define Ã(¯) as the set of pixels that are the 8 neighbors of the pixel

¯. For each segment 	T, define the internal contrast ðT and external contrast æTas:

ðT = 1èT B max(‖¯ − -‖, ∀- ∈ Ã(¯) ∩ 	T)¯∈	×
 (8.12)

æT = 1°T B max _‖¯ − -‖, ∀	&- ∈ Ã(¯)'è·ö	(- ∉ 	T)c¯∈	×
 (8.13)

where ̄ and - are the 3D vectors corresponding to the pixel ¯ and -, respectively; ‖ ‖ is the

standard Euclidean norm; and è¶ and °T are the area and the boundary length of the segment 	T,

respectively.

The contrast �(T) of the segment 	T is given by:

�(T) = 	 /ðT/æT Üã	ðT ≤ æTæT/ðT ��ℎê�¿Ü�ê (8.10)

The global contrast, which is used as the measure the effectiveness of segmentation, is defined

by:

98

� = 1·BèT�(T)�
T � (8.11)

For a given dataset, the C-metric can be normalized to a range [0,1], in which a small value of C

(close to zero) indicates good segmentation

8.4.6 Global intra-region homogeneity and inter-region disparity (��−metric)

Rosenberger and Chehdi [75] proposed a metric for segmentation evaluation based on the global

intra-region homogeneity and the global inter-region disparity of segments. This metric employs

only grayscale levels of image pixels. The global intra-region homogeneity ö� of segments is the

weighted average of the pixel intensity variation of all segments:

where �(¯)	is the grayscale level or intensity of the pixel ¯; �(¶)¸̧ ¸̧ ¸̧ ¸̧ ¸ is the average grayscale level

of all pixels belong to the segment 	T; and other notations are as defined earlier.

Define the disparity of two segments 	T and 	º as:

?(T, 	º) = ï�(T)¸̧ ¸̧ ¸̧ ¸̧ − �(º)¸̧ ¸̧ ¸̧ ¸̧ ¸ï·0 (8.13)

where ·� is the number of gray levels of all pixels in the entire image. Then, the global inter-

region disparity ö7 is defined as the average of all the disparity between any two segments, given

by:

ö7 = 1Ý7BB ?(T , 	º)�
º �

�
T � (8.14)

Notations in (8.14) are as defined earlier. The metric öö used as a quantitative measure of a

segmentation is:

öö = ö� − ö72 (8.15)

For a given dataset, the DD-metric can be normalized to a range [0,1], in which a small value of

DD (close to zero) indicates good segmentation.

ö� = 1·BèT B&�(¯) − �(T)¸̧ ¸̧ ¸̧ ¸̧ '7¯∈	×
�
T � (8.12)

99

8.4.7 Selecting the best unsupervised metric

The key idea of selecting the best evaluation metric out of six metrics introduced above is that a

better metric should produce a better score on the ground-truth segmentation (produced by human

observers) and produce a worse score on random segmentations at the same time. The 300

ground-truth segmentation results are available together with the DSDB database introduced in

Section 8.1. We generated 300 random segmentation results to help evaluate the various metrics.

To create a random segmentation, we first generated a bitmap image having the same size as the

image to be segmented (e.g. 480 pixels x320 pixels) and employed a random integer number n,

1 ≤ Ý ≤ 150. Next, we randomly initialized n segment “centers” (n pairs of xy-coordinators for n

points in the image plane). Then, we employed a K-means clustering technique to divide the

bitmap image into n regions, which served as a random segmentation map consisted of random n

segments with random size, shape, and location. Figure 8.5 presents an example of a random

segmentation of an original image.

(a) (b) (c)

Figure 8.5: The ground-truth segmentation (b) and a random segmentation (c) of an original
image (a)

For the ith evaluation metric, 1 ≤ Ü ≤ 6, we calculate its 300 metric values (normalized to be in

the range from 0 to 1) for the 300 ground-truth segmentations. Call the distribution of these 300

values the ã�0 distribution, and compute its mean #�0and standard deviation 1�0. Similarly, we

calculated these metric values for 300 random segmentations to form the distributionã�� with

#��mean and 1�� standard deviation. Since we expect for the “good” evaluation metric, the

100

ã0distribution will be close to zero, and the ã�distribution will be close to one, the Fisher’s

distance [76], was used to measure the dissimilarity or the “distance” between two distributions.

The Fisher distance ��then become our quantitative measurement of the goodness of an

evaluation metric, with �� given by:

 �� = 7_2ü3J2ü4c5&6ü3'5D&6ü4'5 (8.15)

Table 8.1: Fisher’s distances between the ã�0 distribution on the set of ground-truth segmentations
and ã�� on a single set of random segmentations

Metric score

distribution

Method 1

D−metric

[70]

Method 2

E−metric

[71]

Method 3

Q−metric

[72]

Method 4

H−metric

[73]

Method 5

C−metric

[74]

Method 6

DD−metric

[75]

Human ground-

truth segmentation

#�0= 0.32 0.14 0.2 0.28 0.18 0.29

1�0= 0.14 0.08 0.17 0.11 0.12 0.16

A single set of 300

random

segmentations

#��= 0.64 0.71 0.75 0.67 0.63 0.65

1��=0.13 0.15 0.12 0.18 0.17 0.14

Fisher’s distance

between the two

distributions

�� = 5.61 22.48 13.97 6.84 9.35 5.73

The larger the value of the Fisher distance, the more separation there is between the two

distributions (ground-truth and random segmentations), and therefore the better is the metric.

Note that the distributions of metric values corresponding to ground-truth segmentations are

fixed, while the distributions of metric values corresponding to random segmentations vary, due

to a different set of 300 random segmentation is generated each time a metric evaluation is

computed. Accordingly, we ran the Fisher distance procedure for each metric 50 times (each time

with a different set of 300 random segmentations) to obtain reliable statistical measures. Table 8.1

101

shows an sample result of a single run, in which the E-metric provides the best separation

between the two distributions.

The boxplot of Fisher distance distributions corresponding to the 6 metrics after 50 runs is

provided in Figure 8.5. In each box, the central mark (in red) is the median, the edges of the box

(in blue) are the 25th and 75th percentiles, the whiskers extend to the most extreme data points

not considered outliers, and outliers, if present, are plotted individually as red crosses. The larger

the Fisher’s distance, the better is the metric measurement. The results clearly show that E-metric

is the best among the six metrics presented herein. Accordingly, it will be used in comparisons

that follow.

Figure 8.6: Fisher’s distances distribution corresponding to 6 metric measurements

after 50 randomization runs

8.5 Comparisons with other methods

8.5.1 Comparisons with non-superpixel-based and superpixel-based methods

102

Figure 8.7 (b)-(d) shows results obtained from the mean-shift [47] with window size ¿� =
2Ö�
�× �

�9; normalized cut method [54], and our DUHO segmentation algorithm, where ℎÜ and ¿Ü
are the height and width of the input image in pixels. Both the mean-shift and normalized cut

algorithms segment directly at the pixel level and employ a similarity measurement based on

pixel color and spatial information.

 a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

 (a) (b) (c) (d) (e)

Figure 8.7: Some Comparison: (a) original image; (b, c, and d) segmentation results from mean-
shift, normalized cut, and our method, respectively; (e) human hand-label

We observe that the mean-shift method tends to produce over-segmentation, and its results are

heavily dependent on the window size [22,46]. The normalized cut algorithm, working at the

pixel level, might not preserve the detail edges of the input image, and hence might lead to

misclassification of pixels into “incorrect” segments. Both these two methods have high storage

requirements and are computationally time consuming. For example total computation times for

the results in Fig 8.7, using a PC with Intel dual core 2.2 GHz CPU, 2GB RAM, Matlab©2010b,

and Image Processing Toolbox Version 7.1, were as given in Table 8.1. Our DUHO algorithm

103

performs with significantly lower computation times than the mean-shift and normalized cut

algorithms.

Table 8.2: Computational times (seconds) for segmentation of images in Fig 8.7
(Intel dual core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, and Image Processing Toolbox

version 7.1)

 Image

Method

a1

(sec)

a2

(sec)

a3

(sec)

Mean-shift 135 128 117

Normalized-cut 142 140 132

DUHO method 95 92 87

The E-metric evaluation, selected in Section 8.4 as the best, was applied for 300 segmentation

results on images from the Berkeley segmentation dataset and benchmark [68] for each of these 3

algorithms. Table 8.3 presents the evaluation results.

Table 8.3: Evaluation of three segmentation algorithms on the dataset

Segmentation algorithm Mean-shift Normalized-cut DUHO method

Performance metric æ (small is better):
mean ± std

0.31 ± 0.11 0.36 ± 0.24 0.26 ± 0.12

We see that our DUHO algorithm performs significantly better than the mean-shift and

normalized cut algorithms.

8.5.2 Comparisons with superpixel-based methods

In this section, the segmentation results from our DUHO algorithm will be compared with 3

recently published, unsupervised color segmentation algorithms based on superpixels, namely:

PSEG, GSEG, and JSEG. The main idea of the PSEG [77] is to scan through a hierarchy of image

partitions, from a highly over-segmentation to a highly under-segmentation partition, to find the

best partition that maximizes a predefined goodness function. In the PSEG, the pixel colors in

RGB color space are used directly. The GSEG [60] is based on the unseeded region growing

104

technique, in which the initial seeds are found using the color gradient information (in CIE

L*a*b* color space). After the region growing process, regions with similar characteristics are

blended by the multi-resolution region merging to form the final segmentation. During the

merging process, new seeds might be added or old seeds discarded .The JSEG [78] includes 2

stages, quantization and spatial segmentation. First, pixel colors (in CIE L*u*v* color space),

smoothness of the local area, and texture orientations are quantized into a small number of

predefined values. Then, these values are formed into a representation vector of a local region

that will be clustered into different groups.

Figure 8.8 presents some segmentation results from our DUHO method and these three methods.

Visually, results from all four methods appear close to human segmentation. However, our

proposed segmentation process produces finer details.

The E-metric unsupervised evaluation was applied for 300 segmentation results on images from

the DBSB dataset [68]. In addition, we employ supervised evaluation techniques, called the

boundary recall [63] and boundary precision [79] measurement to evaluate the segmentation

results. Boundary recall is the percent of the ground-truth edge pixels that are within two pixels

distance from a region boundary. We can express this as:

7�8Ý?±�´	�êì±°° = é("hit"	groundtruth	edge)é(groundtruth	edge) (8.16)

where L(.) is the length in pixels; “hit” means that the current pixel in the ground-truth edge is in

the range of 2 pixels from a pixel in a region’s boundary of the segmentation result. Boundary

precision is the percent of the region edge pixels (resulted from a segmentation method) that are

within two pixels distance from a ground-truth edge boundary. We can express boundary

presision as:

7�8Ý?±�´	ø�êìÜ�Ü�Ý = é("hit"	segmentation	edge)é(segmentation	edge) (8.16)

Notice that é("hit"	segmentation	edge) = é("hit"	segmentation	edge) is the number of

“mutual”- or within 2 pixels along the boundary of the ground-truth edge and the segmentation

105

result edge. Boundary recall and precision measure the matching degree between the ground-truth

and the segmentation results. High recall value indicates that most of the “correct” boundaries are

discovered in the segmentation results; while high precision value indicates that the segmentation

results are more accurate or most of the segmentation boundaries are the “correct” boundaries.

For a good segmentation, both of boundary recall and boundary precision values are expected to

be high (near 1). Table 8.4 summarizes the evaluation results.

Table 8.4: Evaluation of our DUHO segmentation and three other algorithms on the dataset [68]

Segmentation algorithm
Human

hand-label
PSEG[77] GSEG[60] JSEG[78]

Proposed

DUHO

Unsupervised performance

metric æ (small is better)
0.14 0.31 0.29 0.31 0.26

Boundary recall (higher is

better)
-- 0.82 0.86 0.77 0.89

Boundary precision (higher is

better)
-- 0.81 0.76 0.72 0.79

Average computational time

(sec)
-- 232.4 162.7 145.1 93.3

We see that our DUHO algorithm performs better than the JSEG, GSEG, and PSEG algorithms,

based on both the unsupervised metric E and the supervised boundary recall measurement. And

our algorithm is the second best (and comparable with the best) among these four algorithms

based on the boundary precision measurement. The values of boundary precision in Table 8.4 are

not very high due to the fact that hand-label segmentation usually ignores details in the image and

hence produces coarser results comparing with results from all four segmentation methods

presented herein. The computation times in Table 8.4 were derived using a PC with Intel dual

106

core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, and Image Processing Toolbox Version 7.1. Our

DUHO algorithm performs significantly faster than the JSEG, GSEG, and PSEG algorithms.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.8: Some Comparison: row (a): original image; (b) segmentation results from human
hand-label, (c) PSEG, (d) GSEG, (e) JSEG, and (f) DUHO.

107

Chapter 9

CONCLUSIONS AND RECOMENDATIONS

4.1 Conclusions

The principal original contributions of this work are threefold:

(1) A new automatic data clustering method for convex data sets called M-ART

(2) A new method for evaluating image segmentation metrics, which was used to

identify the best available metric, namely the æ-metric.

(3) A new algorithm, called the DUHO method, for segmenting color images, which

outperforms existing segmentation methods, as measured by the æ-metric, and

requires substantially less computation time the existing methods.

This work contains two parts, in which new methods for data clustering and image segmentation

are presented. In the first part, Chapter 1 to Chapter 5, an automatic data clustering procedure is

proposed. First, a pre-processing process, named density-based removal, is applied to produce

more distinct clusters. This pre-process is equivalent to removing input vectors near the

boundaries of each cluster, which in many cases does not change the data structure or the number

of “correct” clusters in the data. Then, we employ the M-ART neural network clustering

technique to group similar input vectors into clusters. In the M-ART network, the vigilance ρ

108

determines the maximum size of clusters, and consequently affects the number of clusters.

Conventionally, a trial-and-error approach is used to tune this value of ρ.

109

We propose a framework to auto-adjust the value of ρ based on a user-selected allowable

separation between clusters. Even though one must still select the value of a parameter, choosing

the allowed separation factor is intuitively easier than selecting the value of ρ. The appropriate

value of ρ is strongly dependent upon on the specific data set, and is therefore very difficult to

select a-priori. On the other hand, the allowed separation factor value simply represents how

much separation between adjoining clusters a user is willing to accept. Accordingly, the

separation factor could be chosen for multiple data sets before running the algorithm.

Experiments conducted on different synthetic 2-D, 3-D, 4-D, 5-D, and 10-D Gaussian data sets,

some published and some generated by the authors, with varying numbers of vectors, numbers of

clusters, and different degrees of separation between clusters, demonstrate the effectiveness and

reliability of the proposed clustering method. Two case studies of texture classification and

texture segmentation are also presented, showing very good results when compared with those

from the well-known K-means method. While the M-ART clustering method is an original

contribution of this research, it applies only to convex data sets. As such, it was unsuccessful in

applications to image segmentation, a goal of this study. Accordingly, we investigated a different

approach to this area in Part II of this work.

In the second part of this dissertation, we introduce a general-purpose segmentation method,

which we call the DUHO method, which works for a large variety of natural scene images in

color. This DUHO algorithm contains two main steps. First, a superpixel generating algorithm is

applied to a given image to build K superpixels. Then a new region growing algorithm iteratively

groups these superpixels into appropriate regions and forms the final image segmentation result.

The proposed method is a type of unseeded region-based segmentation technique that preserves

the spatial relationship between pixels in the image, and hence preserves the detailed edges and

the image spatial structure. Our DUHO algorithm has three main advantages compared with other

region-growing-based segmentation techniques [57-60]. First, it operates at a “superpixel” level,

110

rather than at the image pixel level, to reduce computational time and depress noise. Second, the

proposed method works for color images rather than gray scale image as in [57-60]. Third, the

decision of grouping an adjacent superpixel to an existing region is dynamically dependent upon

the statistics, or “shape and size”, of this region. The segmentation results show significant

improvements when compared with results from existing methods using a fixed, global threshold.

The control parameter ��, the smallest feature size, in our DUHO algorithm controls the

coarseness or fineness of the segmentation results. The “optimal” value of �� is dependent upon

the image features and the purpose or application of the segmentation process, and it should be

appropriately selected by users or follow the rules of thumb suggested in Chapter 7. A

quantitative evaluation method based on square color error is introduced, and experiments with

real datasets shows very good results when compared with those from other published, state-of-

art segmentation methods, as well as requiring substantially less computational time.

4.2 Recommendations

Recommendations for future work are:

(1) Finding means to automatically tune parameters in the segmentation algorithm, such

as � and ��, which must currently be established manually using trial and error. A

classical optimization procedure (iterative-based or gradient-based) might be

employed to find the optimal control parameters values to maximize the overall

segmentation performance based on some score index.

(2) Proving the convergence of the proposed algorithm to the minimum of the

performance function.

111

REFERENCES

[1] M. Ball and S. G. W. H., Analyzing visual data. Newbury Park, CA: Sage Publications,

1992.

[2] H. Frank, et al., Fuzzy Cluster Analysis, Methods for Classification, Data Analysis and

Image Recognition. NY: John Wiley & Sons Ltd, 1999.

[3] A. D. Gordon, Classification, 2 ed.: Chapman & Hall/CRC, 1999.

[4] E. Martin, et al., "Density-based clustering in spatial databases: the algorithm

GDBSCAN and its application," Data Mining and Knowledge Discovery, vol. 2, pp. 169–

194, 1998.

[5] A. Mihael, et al., "OPTICS: Ordering points to identify the clustering structure," in Proc.

ACM SIGMOID’99 Int. Conf. on Management of Data, Philadelphia PA, 1999.

[6] M. Markou and S. Singh, "Novelty detection: a review—part 1: statistical," Signal

Processing vol. 83, pp. 2481 – 2498, 2003.

[7] M. Markou and S. Singh, "Novelty detection: a review—part 2: neural network based

approaches," Signal Processing vol. 83, pp. 2499 – 2521, 2003.

[8] H.-P. Kriegel, et al., "Clustering high-dimensional data: A survey on subspace clustering,

pattern-based clustering, and correlation clustering," ACM Trans. Knowl. Discov. Data,

vol. 3, pp. 1-58, 2009.

[9] J. C. Bezdek and N. R. Pal, "Some new indexes of cluster validity," IEEE Trans. Systems

Man Cybernet. B Cybernet, vol. 28, pp. 301-315, 1998.

112

[10] D. W. Kim, et al., "On cluster validity index for estimation of the optimal number of

fuzzy clusters," Pattern Recognition, vol. 37, pp. 2009 – 2025, 2004.

[11] C. Böhm, et al., "Computing Clusters of Correlation Connected Objects " in In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004.

[12] D. L. Reilly, et al., "The use of multiple measurements in taxonomic problems," Annu.

Eugenics, vol. 45, pp. 35–41, 1982.

[13] S. Grossberg, "Competitive learning: From interactive activation to adaptive resonance,"

Cognitive Science, vol. 11, pp. 23-63, 1987.

[14] G. A. Carpenter and S. Grossberg, Adaptive Resonance Theory, the Handbook of Brain

Theory and Neural Networks, 2 ed.: Cambridge, MA: MIT Press, 2003.

[15] C. J. Lakhmi, et al., Innovations in ART neural networks. NY: Physica- Verlag

Heidelberg, 2000.

[16] M. T. Hagan, et al., Neural Network Design: PWS Publishing, Massachusetts, 2002.

[17] H. Xu, "Mahalanobis Distance-Based ARTMAP Networks," Master, Computer

Science, San Diego State University, 2003.

[18] K. Giyadh and C. C. Ka, "Euclidean ART neural network," in Proceeding of the World

Congress on Engineering and Computer Science, San Francisco, USA, 2008.

[19] K. Giyadh and C. C. Ka, "Euclidean ART neural network," Proc. of the World Congress

on Engineering and Computer Science 2008, October 22-24, 2008 2008.

[20] P. C. Mahalanobis, "On the generalised distance in statistics," Proceedings of the

National Institute of Sciences of India, vol. 2, pp. 49–55, 1936.

[21] M. I. Vuskovic, et al., "Simplified ARTMAP Network Based on Mahalanobis distance,"

in Proceeding of the 2002 International Conference on Mathematics and Engineering

Techniques in Medicine and Biological Science, Las Vegas, Nevada, 2002.

[22] D. S. Watkins, Fundamentals of matrix computations: John Wiley& Sons, Inc., 1991.

113

[23] G. Golub and C. Van Loan, Matrix computations (3rd ed.): Johns Hopkins University

Press, 1996.

[24] D. J. Field, "Relations between the statistics of natural images and the response properties

of cortical cells " Journal of The Optical Society of America A, vol. 4, pp. 2379--2394,

1987.

[25] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach: Prentice Hall, 2002.

[26] R. W. Picard, et al., "Real-time recognition with the entire Brodatz texture database," in

Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, New York, 1993,

pp. 638-639.

[27] D. J. Field, "Relations between the statistics of natural images the response properties of

cortical cells " Journal of The Optical Society of America A, vol. 4, pp. 2379--2394, 1987.

[28] R. W. Picard, et al., "Real-time recognition with the entire Brodatz texture database," in

Proc. of the IEEE Conf. on CVPR, New York, 1993, pp. 638-639.

[29] A. K. Jain, F. Farrokhnia, "Unsupervised texture segmentation using Gabor

filters,"Pattern Recognition, vol. 24, no. 12, pp.1167-1186, 1991.

[30] A. Dempster, N. Laird and D. Rubin, “Maximum Likelihood from Incomplete Data via

the EM Algorithm,” J. Royal Statistical Soc., Ser. B, vol. 39, no. 1, pp. 1-38, 1977.

[31] Mori, G. Guiding model search using segmentation. in Computer Vision, 2005. ICCV

2005. Tenth IEEE International Conference on. 2005.

[32] Felzenszwalb, P.F. and D.P. Huttenlocher, Efficient Graph-Based Image Segmentation.

Int. J. Comput. Vision, 2004. 59(2): p. 167-181.

[33] Stockman, G. and L.G. Shapiro, Computer Vision2001: Prentice Hall PTR. 608.

[34] Pham, D.L., C. Xu, and J.L. Prince, Current methods in medical image segmentation.

Annual Review of Biomedical Engineering, 2000. 2(1): p. 315-337.

114

[35] Mueller, M., K. Segl, and H. Kaufmann, Edge- and region-based segmentation technique

for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern

Recognition, 2004. 37(8): p. 1619-1628.

[36] Segundo, M.P., et al., Automatic Face Segmentation and Facial Landmark Detection in

Range Images. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, 2010. 40(5): p. 1319-1330.

[37] Proen, x00E, and H. a, Iris Recognition: On the Segmentation of Degraded Images

Acquired in the Visible Wavelength. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 2010. 32(8): p. 1502-1516.

[38] Akram, M.U., et al. Improved fingerprint image segmentation using new modified

gradient based technique. in Electrical and Computer Engineering, 2008. CCECE 2008.

Canadian Conference on. 2008.

[39] Raut, S., et al. Image Segmentation – A State-Of-Art Survey for Prediction. in

Advanced Computer Control, 2009. ICACC '09. International Conference on. 2009.

[40] Camargo, A. and J.S. Smith, An image-processing based algorithm to automatically

identify plant disease visual symptoms. Biosystems Engineering, 2009. 102(1): p. 9-21.

[41] Zhang, H., J.E. Fritts, and S.A. Goldman, Image segmentation evaluation: A survey of

unsupervised methods. Computer Vision and Image Understanding, 2008. 110(2): p. 260-

280.

[42] Byoung-Ki, J., J. Yun-Beom, and H. Ki-Sang. Image Segmentation by Unsupervised

Sparse Clustering. in Application of Computer Vision, 2005. WACV/MOTIONS '05

Volume 1. Seventh IEEE Workshops on. 2005.

[43] Heiler, M. and C. Schnorr. Natural image statistics for natural image segmentation. in

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. 2003.

[44] Islam, M., J. Yearwood, and P. Vamplew, Unsupervised Color Textured Image

Segmentation Using Cluster Ensembles and MRF Model Advances in Computer and

115

Information Sciences and Engineering, T. Sobh, Editor 2008, Springer Netherlands. p.

323-328.

[45] Lucchi, A., et al., A Fully Automated Approach to Segmentation of Irregularly Shaped

Cellular Structures in EM Images Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2010, T. Jiang, et al., Editors. 2010, Springer Berlin / Heidelberg.

p. 463-471.

[46] Martínez-Usó, A., F. Pla, and P. García-Sevilla, Unsupervised colour image

segmentation by low-level perceptual grouping. Pattern Analysis & Applications, 2011:

p. 1-14.

[47] Polak, M., H. Zhang, and M. Pi, An evaluation metric for image segmentation of multiple

objects. Image and Vision Computing, 2009. 27(8): p. 1223-1227.

[48] Senthilkumaran, N. and R. Rajesh. Image Segmentation - A Survey of Soft Computing

Approaches. in Advances in Recent Technologies in Communication and Computing,

2009. ARTCom '09. International Conference on. 2009.

[49] Ni, K., et al., Local Histogram Based Segmentation Using the Wasserstein Distance.

International Journal of Computer Vision, 2009. 84(1): p. 97-111.

[50] Gonc, et al., HAIRIS: A Method for Automatic Image Registration Through Histogram-

Based Image Segmentation. Image Processing, IEEE Transactions on, 2011. 20(3): p.

776-789.

[51] Hartigan, J.A., Clustering Algorithms1975: John Wiley \\& Sons, Inc. 351.

[52] Yizong, C., Mean shift, mode seeking, and clustering. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 1995. 17(8): p. 790-799.

[53] Lindeberg, T. and M.-X. Li, Segmentation and Classification of Edges Using Minimum

Description Length Approximation and Complementary Junction Cues. Computer Vision

and Image Understanding, 1997. 67(1): p. 88-98.

116

[54] Jianbo, S. and J. Malik, Normalized cuts and image segmentation. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 2000. 22(8): p. 888-905.

[55] Miranda, P. and A. Falcão, Links Between Image Segmentation Based on Optimum-Path

Forest and Minimum Cut in Graph. Journal of Mathematical Imaging and Vision, 2009.

35(2): p. 128-142.

[56] Jingdong, W., et al. Normalized tree partitioning for image segmentation. in Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. 2008.

[57] Adams, R. and L. Bischof, Seeded region growing. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 1994. 16(6): p. 641-647.

[58] Shah, B.N., S.K. Shah, and Y.P. Kosta. A seeded region growing algorithm for spot

detection in medical image segmentation. in Image Information Processing (ICIIP), 2011

International Conference on. 2011.

[59] Shih, F.Y. and S. Cheng, Automatic seeded region growing for color image

segmentation. Image and Vision Computing, 2005. 23(10): p. 877-886.

[60] Garcia Ugarriza, L., et al., Automatic Image Segmentation by Dynamic Region Growth

and Multiresolution Merging. Image Processing, IEEE Transactions on, 2009. 18(10): p.

2275-2288.

[61] Bleau, A. and L.J. Leon, Watershed-Based Segmentation and Region Merging. Computer

Vision and Image Understanding, 2000. 77(3): p. 317-370.

[62] Lolla, S.V.G. and Hoberock L.L.. Improved Unsupervised Clustering over Watershed-

Based Clustering. in Machine Learning and Applications (ICMLA), 2010 Ninth

International Conference on. 2010.

[63] Radhakrishna, A., et al., SLIC Superpixels ⋆, 2010.

[64] Ohta, Y.-I., T. Kanade, and T. Sakai, Color information for region segmentation.

Computer Graphics and Image Processing, 1980. 13(3): p. 222-241.

[65] Fairchild, M.D., Color and Image Appearance Models2005: John Wiley and Sons.

117

[66] Jain, A.K., Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010.

31(8): p. 651-666.

[67] [69] Felzenszwalb, P. and D. Huttenlocher, Efficient Graph-Based Image

Segmentation. International Journal of Computer Vision, 2004. 59(2): p. 167-181.

[68] Martin, D., et al. A database of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecological statistics. in Computer

Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. 2001.

 [69] Hsin-Chia, C. and W. Sheng-Jyh. The use of visible color difference in the quantitative

evaluation of color image segmentation. in Acoustics, Speech, and Signal Processing,

2004. Proceedings. (ICASSP '04). IEEE International Conference on. 2004.

[70] Weszka, J. S. Threshold Evaluation Techniques, University of Maryland, College Park,

1998.

[71] Hsin-Chia, C. and W. Sheng-Jyh (2004). The use of visible color difference in the

quantitative evaluation of color image segmentation. Acoustics, Speech, and Signal

Processing, (ICASSP '04). IEEE International Conference, 2004.

[72] Borsotti M., Campadelli P., and Schettini R., "Quantitative evaluation of color image

segmentation results," Pattern Recognition Letters, vol. 19, pp. 741-747, 1998

[73] Zhang, H., Fritts, J. E., & Goldman, S. A. An entropy-based objective evaluation method

for image segmentation. SPIE, 5307, 38-49. (2005)

[74] Chabrier, S., B. Emile, H. Laurent, C. Rosenberger, and P. Marche. "Unsupervised

evaluation of image segmentation application to multi-spectral images." In Pattern

Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol.

1, pp. 576-579. IEEE, 2004.

[75] Rosenberger, C., and K. Chehdi. "Genetic fusion: application to multi-components image

segmentation." Acoustics, Speech, and Signal Processing, 2000. ICASSP'00.

Proceedings. 2000 IEEE International Conference on. Vol. 6. IEEE, 2000.

118

[76] Johson, R., Wichem, D. Applied multivariate statistical analysis. Princeton Hall, 1992.

[77] Martínez-Usó, Adolfo, Filiberto Pla, and Pedro García-Sevilla. "Unsupervised colour

image segmentation by low-level perceptual grouping." Pattern Analysis &

Applications (2011): 1-14.

[78] Deng, Yining, and B. S. Manjunath. "Unsupervised segmentation of color-texture regions

in images and video." Pattern Analysis and Machine Intelligence, IEEE Transactions

on 23.8 (2001): 800-810.

[79] Powers, David M W (2007/2011). "Evaluation: From Precision, Recall and F-Factor to

ROC, Informedness, Markedness & Correlation". Journal of Machine Learning

Technologies 2 (1): 37–63.

VITA

Trung Huy Duong

Candidate for the Degree of

Doctor of Philosophy

NEW TECHNIQUES FOR DATA CLUSTERING
AND COLOR IMAGE SEGMENTATION

Major Field: Mechanical and Aerospace Engineering

Biographical:

Personal Data: Born in Amthuong, Phutho Province, Vietnam, on December
10th, 1981, the second son of Duong Huy Lung and Vu Thi Luc.
Married to Doan Huong Ly.

Education: Graduated from Vinhphuc Talented High School, Vinhphuc,

Vietnam, in 1999. Received a Bachelor degree in Mechatronics,
Mechanical Engineering from Talented Engineers Training Program,
Center for Talent Training, Hanoi University of Technology, Vietnam,
in Jun 2004. Received a Master of Science degree in Mechanical and
Aerospace Engineering at Oklahoma State University, Stillwater,
Oklahoma in May, 2009. Completed the requirements for the Doctor of
Philosophy in Mechanical and Aerospace Engineering at Oklahoma
State University, Stillwater, Oklahoma in May, 2013

Experience: Lecture Assistant, Department of Mechanical Engineering,

University of Communication and Transports, Vietnam, from 2004 to
2007. Graduate Research Assistant and Research Associate, Department
of Mechanical and Aerospace Engineering, Oklahoma State University
from January 2008 to Dec 2013.

