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Abstract The objectives of this work are twofold: (1) t@ate an improved automatic clustering
procedure that produces results consistent withuadaciustering of data points by humans; and
(2) to find an improved technique for automaticreegtation of images. First, we developed a
clustering technique using an M-ART (Mahalanobsatce-based Adaptive Resonance Theory)
neural network. The “vigilancep in the M-ART network affects the maximum size afsters,
and consequently affects the number of clustersmidlly the “optimal” value ofp is heavily
data dependent and therefore can only be chosersdrg and adjusted by trial-and-error. We
propose a procedure to automatically adjust theevalf p based on a pre-defined required
separation between clusters, which is data indepgndnd can be determined beforehand.
Experiments conducted on synthetic multidimensioaatl texture datasets demonstrate the
effectiveness and reliability of the proposed mdti®egmentation is the process of partitioning a
digital image into multiple segments or non-ovepliag regions. Partitioning an image into non-
overlapping regions assures that pixels in eactomeghare the same visual properties, such as
color or texture, while pixels in different regioaghibit significant differences in these features.
We found that M-ART works well only with convex-giea clusters (segments) that are
sufficiently separated, which is not the case fgidal real-scene images. Accordingly, we
investigated and presented developing a more addageneral purpose image segmentation
method, called the DUHO method. This DUHO algoritbontains two main steps. First, the
superpixel generating algorithm is applied to aegivmage to build K superpixels. Then a new

region growing algorithm iteratively groups thesperpixels into appropriate regions and forms



the final image segmentation result. The proposethad is a type of unseeded region-based
segmentation that preserves the spatial relatipnbbiween pixels in the image, and hence
preserves the detailed edges and the image spatiature. A quantitative evaluation method
based on square color error is introduced, andrewrpets with real datasets, consisting of 300
color images of natural scenes from the availabta,dshow very good results from our DUHO

method when compared with results from the wellin@egmentation methods.



TABLE OF CONTENTS

PART |: DATA CLUSTERING ...ttt e e et e eaeeeees 1
Chapter 1 INTRODUCTION TO DATA CLUSTERING......cccoiiiiiiiiiiieeeeee 1
11 INEFOTUCTION ...t e et e e e e e 1
1.2 PreVIOUS WOTK ....coiiiiiiiiitt et 1
1.3 0] 0 [0 LT I N o] o] {0 T= T o =P 2
Chapter 2 ART NEURAL NETWORK AND VARIATIONS ... 4
2.1 ARTL NEIWOIK: ..ottt ettt ne e e e 5
2.2 Euclidean Distance-based ART (E-ART) NetWOrK:...........ccccovvvvviiiiiiiiiiiiiieeiiiiennd 6
2.3 Mahalanobis Distance-based ART (M-ART) Netwatk....................... 8...
Chapter 3 NEW DATA CLUSTERING METHOD ... 13

3.1 Definitions of Hyper-ellipsoid Shaped Clustar&l the M-ART Clustering Procedurel13

3.2  Selecting @ GO0 ValUe fPI.......uiiiiiiiiiiiiii et 23
3.3 Density-based removal Pre-proCeSSING .....eeueerrrrrriumrimmmriiieerssssssee s s sssssennnes 27
3.4  Automatic ClUSTENNG PrOCEAUIE ... ... i cceeeeeeentiieei e e e e eeeeennnennnnnnes 30
Chapter 4 RESULTS OF THE PROPOSED DATA CLUSTERINEBCHNIQUE.................... 33
4.1  Testwith artificial data .............ccoueeeiiiiiiii e 33
4.2 Casestudy: texture classification .........ceeieiciiiic e e 41

Vi



4.3  Case study: Texture Segmentation ...........cccevvvviviiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee e 43

Chapter 5 CONCLUSTIONS FOR DATA CLUSTERING ...cccccoo it 4B
PART Il: COLOR IMAGE SEGMENTATION ... .ot 1
Chapter 6 INTRODUCTION TO IMAGE SEGMENTATION ..ot 48
6.1 Introduction to image SegMENtatioN..............ciiiiiiiiiiiee e 48
6.2 PreVIOUS WOTKS .....oiiiiiiiiiii e 50
6.3  Proposed image segmentation Method. ...........uviiiiiiiiiiiiiiieee e 53
Chapter 7 NEW IMAGE SEGMENTATION METHOD ....coooiiiiiiiiieeeeee 55.
20 R S 0 T= T D= £ P 56
7.2 Modified region growing segmentation...............ccceeeieeiiiiieeeee e 64
7.3 Our proposed DUHO segmentation method ..........cccoooiiioiiiiiii s 72
7.4 Complexity analysis of our DUHO segméataalgorithm.............cccceveeiieiniiieenee 76
7.5 Objective function and convergence ofHJsegmentation algorithm ..................... 79
Chapter 8 RESULTS AND EVALUATIONS ......coiiiimmre et ettt s e 86
8.1 )2 1= 1S =] PP 86
8.2 Results of our DUHO algorithim ... 88
8.3 Effect of the COoNtrol Parameters: cm  uveiieiiiiie e 90
8.4 Selecting the best unsupervised MEeLIC............vvvvveviiiiiiieiiiiriierrree e 93
8.5 Comparisons with other Methods. ....cccc.vueeiiiiii e 101
Chapter 9 CONCLUSIONS AND RECOMENDATIONS .....iiiiiiiiiiiieieienineinniennnnnnnnnnnnnnes 107
4.1 CONCIUSIONS ... 107

Vi



4.2 (R LEToT0 ] 0 a1 a =] Lo F= 1A T0] 1S3 TPT

REFERENCES

viii



Table

Table 3.1;

Table 3.2:

Table 3.3;

Table 4.1:

Table 4.2;

Table 4.3:

Table 4.4:

Table 7.1;

Table 7.2:

Table 8.1;

Table 8.2:

Table 8.3:

Table 8.4:

LIST OF TABLES

Page
Pseudo-code of the M-ART with Auto-atiMigiilance Algorithm........................ 27
Pseudo-code of Density-based RemovgbIERSSING ... ..cvvveeeeriiiiiiiiiiiieeeeeeeeae 28
Pseudo-code of Automatic Clustering @1ace.................oovvvevvvviiiiiiiiiiiiicceeeeeeen, 31
Data Sets and CharaCteriStiCS. .....cuuuuiiiiiiiiiiiiiiiee e 34
Summary Results of Clustering (SV=0.8)............uuuururuimmmminiiiiiiisssnrennennnnns 36
Effect of Separation Ratio on the NUNGIECIUSIErS ..........oooiiiiiiiiiiie e 39
Accuracy of Texture Segmentation of EHvEthodS...........cccciviiiiiiies 45
Proposed Superpixel Generating Algorithm..................coeeee 60
Proposed Region Growing AlQOrithm ccccec.....eeeiee s 72
Fisher’s distances between two diSHDISE . ...............cccoviiiiiiiiiiiee s iceeeeee e 100
Computational times (seconds) for segat@m of IMages ............occcvvvrveeerreeamen 103
Evaluation of three segmentation alporg on the dataset ..............cccvvvvvvieeeens 103
Evaluation of our DUHO segmentation #mide other algorithms.................... 105



LIST OF FIGURES

Figure Page
Figure 2.1: Graphical Representation of LearninteRor 2-Dimendional Vectors................. 8...
Figure 2.2: Mahalanobis Distance from the P&irgnd the Cluster Cent€X. ............cccvvvvvvnnnes 10
Figure 2.3: Difference between Mahalanobis Distaaroe Euclidean Distance. ................... 11..
Figure 3.1: Two clusters that are “separated enbUGN..............uuviiiiiiiiiii e e 23
Figure 3.2: Separation-factor between Two Circ&laaped Clusters............ccccceveeiiiiiiiinns 25
Figure 3.3: Example of separation factors ............cccoee e 26
Figure 3.4: (a) Data Set al. (b) and (c) Resulth ifferent Vigilance Values. .................... 26
Figure 3.5: (a) Original Data Set t3; (b) Plot aiber of Clusters vs,Rnd f; ..........cccvveeeeeee. 29
Figure 3.6: (a) Original Data Set s3; (b) Plot afmhber of Clusters vs,nd f;........................ 32
Figure 4.1: Graphical Representation of Data SetS...........cccccoiiiiiiiiiiiiiiicee e 35
Figure 4.2: Data Set t3 in 3-D (a), and its pro@ctin xy, Xz, yz planes. .................c.cceewm.... 37
Figure 4.3: Clustering results of the data setd3and t5.............ccvviiiiiieiiiii e 38
Figure 4.4: Original Data Set s4 Created by 15 GansCIUSIErS ...........ccevvieiiiiiiiiiiiieennnnns 39
Figure 4.5: Plots of Number of Clusters visakd ¢ for Different Values of SV ................... 41
Figure 4.6: The 26 small texture images of size6@4pixels from 26 categories. ................. 43
Figure 4.7: Some Test Images for Segmentationrfd..........cccooeeevveeeiieii e, 43
Figure 4.8: Effect of Initialization ... 44
Figure 7.1RGB (left) andL*a*b* (right) COlOr SPACE..........ovvviiiiiiiiiitcmmcemeeeeee e 57



Figure 7.2: Proposed Superpixel Generating Algorith....................cccc e, 61
Figure 7.3: Superpixel Generating: EffeCUBi..............ccoooeiiiiiiiieee e 62
Figure 7.4: Superpixel Generating: EffeCtRORNASE ...........ciiiiiiiieiieee e 63

Figure 7.5: The set of pixels (shown as purple szg)aare 4-connected (left)................ .65

Figure 7.6: Proposed Region Growing AlgOrthm ... ... e 71
Figure 7.7: Proposed DUHO Image Segmentation AgTi................coooeeiiiiieeeees 73

Figure 7.8: DUHO Segmentation Process (See texddt@il). ...........cccovveeiiiiiiiiiiis 75

Figure 7.9: The search space for each pixel aBOUBLEP .........cevvvvvviiiiiiiiiiiiiiiiiiiieeeans 77
Figure 7.10: Objective function in (IBpstR-example L........ccccoiiiiiiiiiiiiiiieeee e 83
Figure 7.11: Objective function in (IBpStR- eXample 2..........coovviviiiiiiiiiiiiiiiieeee e 84
Figure 7.12: Objective function in (IBpstR-example 3. 84
Figure 7.13: Objective function in (IBpStR- eXample 4..........coovvvvviiiiiiiiiiiiiiiceee e, 85
Figure 7.14: Objective function in (IBpstR- eXample 5........ccoovvviiiiiiiiiiiiiiieeee e, 85
Figure 8.1: Some dataset’s images from [68] ceeeeevvvvviiiiiiiiiiiiieieee e 87

Figure 8.2: Some pairs of original image (a) andhuah segmentation (b)...............cceeeee e 88

Figure 8.3: Our DUHO segmentation results on SOTBES ...........cccevvvieeeeeeeiiiiiiee e 89
Figure 8.4: Results of our DUHO segmentation method................evvvvviiiivviiviiiiiiieeeeeneeeen. 92
Figure 8.5: The ground-truth segmentation and daamsegmentation ..............ccccceveeeerimmmms Q9
Figure 8.6: Fisher’s distances distribution coroggping to 6 metric measurements ............ 01.1
Figure 8.7: Some Comparison: non-superpixel-basgthentation methods ......................... 210
Figure 8.8: Some Comparison: superpixel-based segtnen methods............ccccceeevvinnne 106

Xi



Bold

LIST OF NOTATIONS

Indicates a vector or a matrix or a set

Normal Indicates a scale number

Xk

Xki

(C.Q.RN)

MO, TO

The K" input vector, d-dimensionaX,=[Xx1,Xk2, .-, xkd]T

The I" element of the input vectt;

dimension of input vector space

The index for an input vectorgik<L

The number of input vectors in a data set

The data se$ = {X,k=1..L}

An ellipsoid cluster with center vect@, covariance matrixQ, cluster size R,
number of members N.

The center of the cluste€( Q;, R,N;), d-dimensionaC;=[c;1,Gp, ., Gd]"

The covariance matrix of the clust&;,(Q;, R,N;), symmetric and semi-definite
positive of size d-by-d.

The radius of the clusteZ{(R;,N;)

The number of members of the clus@y;R;,N;)

The index for a cluster<,k<M

The index for the resonated clusters (close$ta@urrent input), 4<M

The number of current clusters in M-ART/E-ART/ARnetwork

The Match function and the Activation fuiron

Xii



-1 The Euclidean norm of a vectpx||=yv XX

-4 The 1-norm of a binary vectdtX||,= Zid:llxil

[I.1h TheA-norm of a vectorI|X||A=\/m

B The learning rate

p The vigilance of the M-ART/E-ART/ART1 network
SV The desired separation ratio

SV The separation ratio between clusteaqd cluster R

Xiii



PART I: DATA CLUSTERING

Chapter 1

INTRODUCTION TO DATA CLUSTERING

1.1 Introduction

Clustering is a principal tool for data analysiatthims to produce natural groupings, or structure,
in a given data set. Its wide application can henfbin data mining, customer recommendation
system, text document, image segmentation, sequanakysis, medical imaging, and crime
analysis [2-9]. Interestingly, even though clusiarsay a set of 2-D points laid out on an x-y axis
system might be intuitively identified by most obsas without pre-instruction , defining
formally what constitutes a cluster is not onlyfidiflt, but may also be inaccurate. The most
acceptable definitions typically arize from exanspldccording to Frank at el. [3], a partition
resulting from clustering should have two propeattisomogeneity within clusters (data belong to
the same cluster should be as similar as possihbheterogeneity between clusters (data belong

to different clusters should be as different asitbs).

1.2 Previous Work

A primary concern, and perhaps the most diffidialt,a given data set is determining how many

clusters are present. A second concern is to daetertm which cluster a given data point belongs.



This second question could be relatively easilywamed, once the correct number of clusters is
known. Some frequently used clustering methods sgliK-mean and Fuzzy c-means shown in
Bezdek and Pal [10] require the number of cludierse given a priori, but this is often not known.
The “optimal” number of clusters could be choseroading to some criteria, such as cluster
compactness or variation within a cluster and/pas&tion or isolation between clusters [11]. Cluste
compactness (variation within cluster) and/or safan (isolation between clusters) are normally
considered as major factors in forming validatinodexes [10, 11]. Almost all clustering algorithms
are not parameter-free and require user supplidgesafor input parameters. Determining these
values is difficult, and is usually guided by tréald-error. Moreover, the results produced could be
very sensitive to these values, producing sigmifilyadifferent partition results with only slightly
different parameter values [6], rendering them abies

Density based clustering method, such as DBSCANg&jerally can handle arbitrary cluster shapes.
However, there are two parameters that users readttbh DBSCAN: a maximum distance between
points for which two points can be considered aghtmrs and the minimum number of points
required to form a cluster, which are difficultdboose a prior. “Optimal” values of these paranseter
are problem dependent, and can only be obtainddailyand-error. In addition, the computational
time required of DBSCAN is large without an indexistructure. The worst case time complexity of
DBSCAN is O(f) without indexing, and is O(nlogn) with spatialdéxing [12], where n is the

number of data point.

1.3 Proposed Approaches

In this paper, a clustering technique is introduasithg an M-ART (Mahalanobis-based Adaptive
Resonance Theory) neural network, in which Mahdendistance between data points is used as a
metric. Similar to Kohonen’s Learning Vector Quaation network (LVQ) and Reilly and Cooper’s
Restricted Coulomb Energy network (RCE), as in [MJART uses hyper-ellipsoids to form training

patterns into classes or clusters. During trainMeART fixes the size (maximum size) of the hyper-

2



ellipsoid, while RCE fixes the position and LVQ dix the number of clusters [8]. The control
parameter called vigilance, in the M-ART network affects the maximum size abfisters, and
consequently affects the number of clusters. Cainmaally, the “optimal” value op is heavily data
dependent and therefore can only be chosen by s trial-and-error. To overcome this
shortcoming, we propose a procedure to auto-adiasialue ofp based on a pre-defined allowed
separation between clusters. This separation fastatata independent and can be determined
beforehand. To assist M-ART in producing improvedrtiions, density-based removal pre-
processing is introduced to remove noise and pmduproved data separation.

In what follows, Chapter 2 presents our Mahalanabifgance-based ART algorithm (M-ART),
applied to the clustering problem, and the procedar auto-adjustment qd. Chapter 3 introduces
the density-based removal pre-processing and cemathautomatic clustering procedure. Chapter 5

and 6 present experimental results and conclusieapgctively.



Chapter 2

ART NEURAL NETWORK AND VARIATIONS

Adaptive Resonance Theory (ART), first introduced ®rossberg [14], is well known as an

unsupervised neural network for self-organized lstatast, incremental learning to recognize
categories in response to arbitrary sequencesafypinput vectors in real time. There are many
variations and extensions of the ART network, sashART2, ARTMAP, Fuzzy ART, and

FARTMAP to deal with continuous inputs or extensido supervised learning models [8, 14-
16]. Essentially, any network based on ART formguinvectors (patterns) into separate
categories (clusters) based on the similarity betnstbem. The key idea is checking for similarity
between the new input vector and the represenstatifeategories already learned. If there is a
close enough match, the new vector is incorpordatedhe associated existing category.
Otherwise, the ART network creates a new categorgtbre this new pattern. In this way,

previously learned memories are not eroded by neavning. ART directly addresses the
Stability-Plasticity dilemma: “How can a system fieeeptive to significant new patterns and yet

remain stable in response to irrelevant patterfisr’



2.1 ART1 Network:

The operation of the ART1 network originally intrgzed in [14] can be characterized by three
steps: searching, vigilance testing, and learmtRjT1 works only with binary input vectobs,
(containing element values of either 0 or X)=[Xi1,Xizr-.., Xl '» X O[2], i=1..d, where k is the
index of the K input.

In the searching step, the existing cluster inndtsvork that is most similar to the input pattesn i
found. The function that measures the similaritywlaen two vectors (the inpd, and an
existing [" cluster cente€)) is called the activation function X¢,C;) [18]:

% 0 G,

TXy, C) = ——+—
e &) == e,

(2.1)

where n is the bitwise AND operation, such that Y=(x; AND y1, X, AND y5,..., Xy AND yy),

1X]l, = Zf‘:llxil is the number of ones in the veck¥o or so called Manhattan norm, or 1-norm),
anda is a small positive constant to avoid dividingZgyo.
Let J denote the index that represents the cldstewhich the activation is highest (highest
similarity), given by:

J=arg jmax(T(Xk. c)) 2.2)

A match function MK,,C;) measure the likeness of inpit to this cluster™, given by:

X 0 Gl

= 2.3
X1, @3

M(Xy, C)) =

In the vigilance testing step, the match functiencompared with a dimensionless parameter
called vigilancep to verify the match between the input and the nsstilar cluster. The
condition for a good match, called the “resonaratey is:

M(X,Cy) >p (2.4)
If (2.4) satisfied, then the input is incorporatistio the J' cluster (with highest activation).

Otherwise, a new cluster is formed as the inpetfité\ccording to (2.3), MX,,C;) always lies

5



between 0 and 1, so we choosg@fk The value of vigilance determines the “coarseness” of
the clusters created by the input vectors. Witk #hRT1 network, a small value f@r means
more input vectors are classified into the samstehuresulting in a small number of clusters. On
the other hand, a large value foyields a large number of clusters.
In the learning step, th& &luster that resonates with an inpltis updated by:

Y = B(Xk N ¢ + (1-B)CP (2.5)
wheref is the learning rate,<(3<1, andC]0101 and " are respectively the center df dluster
before and after adding the inpit. The learning process wifh = 1 is called “fast learning”,

which minimizes the training time, but could leadunstable results [15, 17].

2.2 Euclidean Distance-based ART (E-ART) Network:

A Euclidean distance-based ART network (E-ART) [1®, 20], designed to cluster analog
pattern inputs, has several differences from ARiBtussed above. First, this network works with
continuous, rather than binary, inputs. Before ¢pdied individually to the network, each d-
dimensional input vectoX,=[Xx1,Xk2,- .-, xkd]T is normalized, producing,, such that each
element ¥, i=1..d, is in the range [0,1]:
Xn = XKk = Xmin) -/ Kmax = Xmin) (2.6.a)

Where ./ means an element-by-element division ofwectors X, is the normalized vector, and
Xmin Xmay) 1S @ new vector in which each element is the mum (maximum) over all

corresponding elements of all L input vectors, nisrier]:

T
. : ; 2.6.b
Xumin = | min Gia) , min (52), ., min ()| (2:6.0)
T
= 2.6.c
Xmax = [ max (x1a), max (xie), -, max (xia) | (2:6.c)

Second, similar to [20], we set both the activationction and the match function as the
Euclidean distances between the normalized inpatioveX, and the center of each clustey

namely:



T(Xn, G) = M(X,, G;) = || X0 - €| = J(xn - C)T(X, - C)) (2.7)
where H|| is the Euclidean norm of the vector
Third, we define the cluster J that is most simitathe normalized inpuX,, as the one with the
smallest Euclidean distance, given by:

)= argjmin(llxn -Gl (2.8)
Fourth, define the resonance state by:

M(X,, C)) <p (2.9)
where vigilancep is a pre-defined dimensionless real number inegdfg/d]. (p < Vd because
each element o, andC; is in the range [0,1] and therefd[¥, - G;|| < Vd).

Notice that (2.8) and (2.9) are used differentbnir(2.2) and (2.4). In (2.8) the highest similarity
is defined as the minimized activation functiorthes than maximized as in (2.2). The resonance
state in (2.9) occurs when the match function ialsenough (less thap), rather than when it is
large enough (greater thahin (2.4). Accordingly, an input will be incorpdeal into the nearest
cluster only if the Euclidean distance from it listcluster center is small enough. Otherwise, this
input forms a new cluster in the E-ART network.idtthus straightforward that the E-ART
network classifies input vectors into clusters wihhyper-sphere shape. Furthermore, if the
Euclidean distance from a new input vector to tharest cluster center is larger thanhis input
does not belong to this cluster. In E-ART, the laigtep can be considered as the maximum
allowable hyper radius of the cluster.

Because inputs are normalized before being fed-#dRE, in the rest of this study, we assume
that any vector inpuX already has its elements in the range of [0,1].

The learning rule for E-ART is the same as for AREBldescribed in (2.5). As shown in Fig.2.1,

if (2.9) is satisfied (resonance occurs), the nepui X is incorporated into the nearest cluster



(the ' cluster); and the cluster cent€s is updated by moving it towar¥,. Other existing

clusters are unchanged.

With Cf’ld is the center of thé"Eluster consisting of N previously submitted paitse then:

N

1
co = Nz X, (2.10)

k=1

Xz h

Xy
~
~
N C;new
C;old
0 -
Xt

Figure 2.1: Graphical Representation of LearninteRor 2-Dimendional Vectors

We update the center when adding a new paXqrn such that th€*" becomes the center of

the new cluster containing (N+1) patterns by using:

1 Xni4q + N.CPM
cev = z X, = N+1N — J (2.11)

p=—— (2.12)
2.3 Mahalanobis Distance-based ART (M-ART) Network

As described in Section 2.2, E-ART limits outputisters to hyper-sphere shapes, which is not

sufficient to handle most real data. We proposewa kahalanobis distance-based ART network,

8



which is an extension of the E-ART network to handlustering with hyper-ellipsoid shaped

clusters. M-ART operates very similarly to E-ARTxcept that the distance metric used in M-
ART is the Mahalanobis distance [21].

The M-ART network also works with normalized coniius inputs as in (2.6). As suggested in
[22], we set both the activation function and thateh function as the Mahalanobis distances,
defined in [21], between the normalized input wecX, and the center of each clusgy,

employing the covariance matri®; of the corresponding cluster, which produces attwm

T(Xn,Cj) and match MX,,C;) functions given by}|Xy — C||Q;1 = J(Xk - C)TQ]-‘1 Xx-0)

T(Xn, G) = M(Xp, G;) = [|Xs - c,-||Qj_1 = J(xn -C)TQ (Xn - C) (2.13)
The covariance matri®; is a semi-definite positive matrix, which can Istireated as shown in
Chapter 3, Egn (3.2). Notion J.i¢ a norm related to a matr as in [23].
According to [23, 24] a covariance mat@OJO® , which is real, symmetric, and non-singular,
can be decomposed @s= UAUT = Zf‘:l A wyul, whereU is orthornomal, ™ = UT), whose
each columny; is an eigenvector d@, andA is diagonal matrix contained eigenvalueSoiA=

diag@\1, A1,... Ag). The inverse of the covariance matrix can thendseputed as:
S
Ql=UuAUT = Zk_uiu? (2.14)
i=1 i

The square of the Mahalanobis distance foénto the cluster cente€ employing the cluster

covariance matrix) can be computed as:

| —
<

(2.15)

d 2
[1X- C”é—l = (X- C)TQ_I(X_ 0 =X~ C)T (Z i.

i=1

) “i“?) X-0) = Zd:

i=1

>
>

wherey? = u] (X- C)
We can interpret;yas a new coordinate system defined by the ortmoalovectoray;. As shown

in Fig.2.2, the Mahalanobis distance from poxitto a cluster cente€ is equivalent to the



normalized (or weighted) Euclidean distance from goint to the center in the new coordinate
system defined by the orthonormal eigenvectorshef dluster covariance matrix. Along each
eigenvector direction, the distance is weightedHsy inverse square root of the corresponding

eigenvalues.

-1/
A2

Figure 2.2: Mahalanobis Distance from the P&iregnd the Cluster Centéx.

The Mahalanobis distance is used as a similaritgsmnement between the poXitand the center

of the clustelC, which indicates how likely this new point shodlelong to this cluster, a set of
known points. The Mahalanobis distance differs fieatlidean distance, which is isotropic and
does not depend on the distribution of the cludéa points. The Mahalanobis distance puts high
weights along axes with high variance (major axéshe cluster data points, while lower weights
are placed along axes with low variance (minor axés other words, the Mahalanobis distance
takes into account the correlations of the dataléehe covariance matrix of the cluster data
points is the identity matrix, the Mahalanobis digte reduces to the Euclidean distance. If the
covariance matrix is diagonal, then the resultingtasthce measure is called the normalized
Euclidean distance [18, 21]. Figure 2.3 illustraties difference between the Mahalanobis and
Euclidean distances from points and X, to the centeC of a cluster. The Euclidean distances

from X; to C and fromX, to C are equal and do not depend on the shape ofubtecl However,

10



the Mahalanobis distances from these pointsCtalepend on the shape of cluster (or its
covariance matrixQ). If the cluster has elliptical shape, which meass<ovariance matrix is
not the identity matrix, the Mahalanobis distanoent X; to C is less than the Mahalanobis
distance fromX, to C (see Fig.2.3 b). If the cluster has a circularpshavhich means its

covariance matrixQ is the identity matrix, the Mahalanobis distare¢hie same as the Euclidean

distance (see Fig.2.3 a).

O
F
b4
D S
x
Q)
7
y
-
x

~

~ -
~ -

___________

|IXe=Cl| = [X~Cl]| [IXe=Cl| = [X~Cl]
Q=l Q#I
[IX2=Cllq- = |1>2=Cll,- IXe=Cll - < 1I>2=Cll,-
(a): Euclidian Distance (b): Mahalanobis Distance

Figure 2.3: Difference between Mahalanobis Distaartd Euclidean Distance.

Define the cluster J that is most similar to thenmalized inputX, as the one with the smallest
activation function, or smallest Mahalanobis dis&mgiven by:
j = argmin (|[X, — G ) (2.16)
j j

Finally, define the resonance state by:
M(X,,C)) <p (2.17)

where vigilancep is a pre-defined, dimensionless, non-negativemeaiber.
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The resonance state in (2.17) occurs when the nfatottion is small enough (less thah
Accordingly an input will be incorporated into theearest cluster only if the Mahalanobis
distance from it to this cluster center is smabwgh. Otherwise, this input forms a new cluster in
the M-ART network. By the nature of the Mahalanatlistance, the M-ART network classifies
input vectors into clusters with a hyper-ellipsstthpe. Furthermore, if the Mahalanobis distance
from an input vector to the nearest cluster cestiarger tharp, this input does not belong to this
cluster. Therefore, in M-ART, the vigilan@ecan be considered as the maximum allowable size
of the cluster.

The update rule for thé"Xenter of M-ART is the same as for E-ART as désttiin (2.11).
Other parameters of th® dluster, such as the covariance matrix and thedfithis cluster, must

also be updated, and will be discussed in Chapter 3
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Chapter 3

NEW DATA CLUSTERING METHOD

In this chapter we introduce our formal definitiohclusters as hyper-ellipsoid shapes, define the

M-ART clustering procedure, and introduce lemmasesults from applying M-ART.

3.1 Definitions of Hyper-ellipsoid Shaped Clusters andhe M-ART Clustering Procedure

In what follows, we consider a cluster as a hypigpsoid shape. Hyper-spheroid clusters are
treated as special cases of hyper-ellipsoid clsister
Definition 3.1: A Hyper-ellipsoid Shaped Cluster
Let S be a data set consisting of a humibeof d-dimensional vectorXy. X, O0SO0%k=1..L. A
hyper ellipsoidal shaped cluster with its cen@r0® covariance matripxQOO™, maximum
Mahalanobis distance, or cluster sizROO", and number of membem< L, denoted by
(C,Q,R,N), is defined as:
(C.QRN) = {X;eS: |IXx—Cllg-1 < R} (3.1)
where the centek = %Zﬁzl Xy ,Xxe(C,Q,R,N),k =1..N, is the mean of all vectors &
the covariance matriQ is a semi-definite positive matrix computed by: 42

Q = ﬁZ{Ll(Xk -C) (X, —O)T ,(unbiased estimation [23]),

13



and ||Xk—C||Q—1 = \/(Xk—C)TQ—l(Xk—C) is the Mahalanobis distance from the

vectorX, to the vector (cluster cente€) employing the covariance mati@, where(.)*
and(.)" are the matrix inverse and transpose operatioaspectively.
Hence, it is evident that if N3Nhen OX, O (C,Q,R,N): || X, — C||Q_1 =R (3.3)
The algorithm for M-ART is described by the followi.
Definition 3.2: M-ART Clustering

1. If Xy is the first input vector to M-ART , then thewmtk produces one cluster
(X l1,0,1),wherel is a d-by-d identity matrix.

2. Assume there exisM>1 clusters(C;, Q;, R,N;), j=1..M, in an M- ART system. A new
input vectorXy as an input to this system will be classified aneanber of either cluster
described in a. or b. bellow:

a. an existing cluster(C;, Q,, R;,N;) if and only if the two conditions (3.4) and (325

satisfied:
J = argmin,zion (%, - Gl,.). (3.4
X = Cyflya < o (3.5)

wherepis the vigilance parameter.

If (3.4) and (3.5) are satisfied, then thitcluster will be updated by:

Nfew = NP 41, (3.6)
1d 1d
grew = X NP, ¢ a7
1d ’ '
N]0 +1
Qnew — Nfld_l Qold + 1 (Xk _ Cold)(Xk _ Cold)T (3 8)
] - N]old ] N]old_'_1 ] ] ’ .
R?ew = max ( R?ld' ”Xk - C]neW”(Q}‘leW)_l ) . (39)

b. otherwise, a new clusték,,l,0,1).
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Iterative updating of cluster center, covariance m#ix, and inverse of covariance matrix:
Assume a cluster consists of N pointg;Xs,..., Xy, whose centerCy, and covariance matrix,
Qn, are defined in (3.2) and will be rewritten, wéktra subscripts indicating the current number

of points, as follows:

N
1
_ Nz Xy, (3.10)
k=1
Qv = 57 I (Xi — C) (i = C)T (3.12)

Update the cluster center:

When a new poinKy.;is added to a cluster, the new cluster centerbgilijiven by:

N+1

Xn+1 + NCy

SN TN 3.12
Crvea = N+1Z N+1<XN+1+kZXk> N+1 (3.12)

which is equivalent to (3.7).
Update the cluster covariance matrix:

The new cluster covariance matrix is defined by:

N+1

1
Qs = 1D K= Cen) (K — i)' (3.133)
k=1

. - ] (3.13b)
= FZk:l(Xk —Cns1) X —Cnyr) + N Xy +1-Cyny1) Xy +1-Cnyq)

We would like to express the new covariance matQy,, in term of its predecessoQy.

Substituting the right side of (3.12) into the ffitsrm on the right of (3.13a) and (3.13b), we have

N
! xN+1 + NCN XN+1 + NCN
ﬁkzzl(Xk —Cns1) Xi —Cni)T = N Z( KT TNT —) Xk - N—+1)T (3.14a)
1
N Z [(Xk CN) + (CN XN+1)] [(Xk CN) + — N+l (CN XN+1)] (314b)

N N
1 1 1
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N N
kZ N_+1(Xk CN)(CN—XN+1)T] kZ N—H(CN ~Xn+1) Xk~ Cy) ] (3.14c)

N-1 1 (3.14d)

=N Qn + N+ 1)?2 (Xn+1=Cn) Kn1—Cn)”

Notice on the right side of (3.13c) that the fiestm is similar taQy, the second term is a sum of
constants, and the third and the fourth terms atle équal to d-by-d zero matrices. This is from
(3.10) we have:NCy= YR Xy, , or YN (Xx—Cy) = 0 (d-by-1 vector zero), and
YN Xk - C)T = 0T (1-by-d vector zero).

Similarly, by substituting from (3.12) into the s&cd term on the right of (3.13b), we obtain:

Xn+1 + NCy Xn+1 + NCy ¢

1 1
N (Xn+1— Cnr1) Kns1 — Cne)T = E(XN+1 T TNTI ) (Xnt1 — TNT1 (3.15a)

N
ST (Xn+1 — Cn) KXnsr — C)T (3.15b)

Substituting from (3.14d) and (3.15b) for the tensthe right of (3.13b) yields:

N-1

1
—Qn + N+l Xn+1—Cn) Ky 1—C)T (3.16)

Qs+t = N

Update the inversion of the cluster covariance maix:

In Def.3.2, we must compute the Mahalanobis digafntom a new point to existing cluster
centers, which involves the inversion of the comace matrix. Therefore, it would be
computationally efficient to derive an iterativerfaula for this inversion matrix, so that the
inversion matrix operation need not be directly pated each time a new point is added.

The Woodbury identity, or the matrix inversion lemn24], is given by:

(A+UAV) T=A-AUAT+VATTU) TV AT (3.17)
where A is an n-by-n non-singular matri®y is a k-by-k non-singular matrix) is an n-by-k
matrix, andV is a k-by-n matrix.

For the special case of k =/ ,becomes a scalar U becomes a column vectoyV = u’, andA

is symmetric, such that (3.17) reduces to:
16



A+Auu) T=AT-ATu @A +uT AT TUTATT = AT -y AT U) (A7) (3.18)
wherey = 1/(1A +u’ A™ u) is a scalar becausé A u is 1-by-1.
To apply (3.18) for inversion ofQy.; on the left hand side of (3.13a) and (3.13b), with

A=((N-1)/N)Qn, a symmetric matrixA=1/(N+1), andu=(Xy+1 — Cy), we first compute:

1
y = N —
(N+ 1) + 57 Kn+1-C0) Q' Xn+1—Cn)
(3.19)
_ N-1
= -
(N2-1) + N ([ Xy 1= C [l4)
Define the dx1 vectayy by:
gn=A"u= Q' (Xn+1 — Cy) (3.20)

N-1

Then we iteratively compute the inverse of the ciawvee matrix by:

-1

N
N+1 = mQﬁl—YQN‘ﬂ (3.21)

Given matrixQ, one can comput®™* without actually invertingQ by using (2.14) and avoid
dividing by-zero by setting A# k if A<¢g, where ¢ < 1andk > 1 are pre-defined numbers, as
suggested in [12].
The following lemma addresses the size of clusesslting from M-ART:
Lemma 3.1: Size of an Ellipsoidal Shaped Cluster
The sizeR; (Def. 3.1)of any ellipsoidal cluster resulting from M-ARTaisvays less than or equal
to the value of the vigilance;

R <p, j=1.M (3.22)

Proof;

Consider an arbitrary cluste€i(Q;,R;,N;), 1<j<M, resulting from M-ART, where M is the current

number of clusters. From Def.3.2, ifi#41 then R= 0. From (3.9), if an input vector is
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incorporated into this cluster, the cluster sizgrisater than or equal its old valkg™*" > Rg’ld.
Therefore, from (3.5), this cluster of the M-ARTvassize less than or equaldp
RO <p,vj=1.M (3.23)

Now consider the two remaining cases:
Case 1:Input X, forms a new cluster:

According to Def.3.2, the (M+1)cluster of the M-ART isX,!,0,1) having radius R+

=0<p.
Case 2:Input X, becomes a new member of the “nearest” existingtetul, £<M

For this case, we note (3.4) and (3.5) must befei yielding:
= € oy = O EPT(QP) ™ X €1 < 2. (3:24)

The square of new Mahalanobis distance frEamto the new cluster centeﬂ?ew,

employing the new cluster covariance ma@", is:
= €7 ey = i €PIT(Q) ™ (Kie= G (3.25)
Substitute expressions f@f'*" and (Q}“e"")_1 in (3.12) and (3.21) into the right side of

(3.25) and following the form of the left hand swofg(3.24), we obtain:

X, + Ny¢e
Ny +1

X, + Nj¢
Ny +1

= €67 ey = (i ) (3.253)

N _
)T [N] _]1 Q') - quqﬁ] Xi—

NJ )2 NJ -1 NJ ’ 1d
= —— (Xe— CPDT(QPY)  (Xi— €' D—y Xk — "D Tqngn (X
(NI +1) N1 Ny+1 (3.25b)

_ C]old)

3
3 2
NP + NZ-N-1

N 2
= 6P = () 06— PV et = 6, (3250

wherey > 0 is defined in (3.19) argl, is defined in (3.20).

We note that the second term in (3.25c) contaisaaratic term, namely:
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(X — ) Tanah X — €' = [(Xy — O ][ — CPDTqulT= 0. (3.26)
Moreover, in the first term of (3.25c), the quanti3/(N3+N3-N;-1) is less than 1, because
N%—NJ—1>O, VN; = 2,N; € N. Accordingly, we can conclude that:

2
Xy - ca‘eWqugew).l <X, — 39 (o p?. (3.27)

From (3.9), (3.23), and (3.27), the new value &f thuster size is:

Rye" = max( RSY, IPXi - C5* (3.28)

o) =P
Hence, Lemma 3.1 is proven.
The following two lemmas address the existencdi®M-ART network that produces the correct
number of clusters in the event that the data@&ms only one and two clusters.
Lemma 3.2: Existence of the M-ART for 1 cluster
Assume a data s8tcontains only one clusté€,Q,R,N). Then
a. M-ART clustering with
p>2R, (3.29)
will always result in 1 cluster.
b. M-ART clustering with
o <R (3.30)
will result in M > 1 (unpredictable) clusters, depending on the ordefeeding data to
M-ART.

Proof of Lemma 3.2a:

From Def.3.2, M-ART forms at least 1 cluster. Wevnarove that the M-ART cannot create any

new cluster after the first one. Assume that tieane cluster@™, Q™ R™ N™)) consisting of

N™ < N input vectorX®™, m=1..N"), in M-ART, and a new input vecto#, will not belong to
this cluster. (The superscript (M) indicates thestdr is formed by M-ART, differentiating from

the true cluster in the given data set). From D2f.is means that:
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NM)

1
m=1

I~ 5Vl =

ot
For simplicity, we now assume th@t" = Q. This is reasonable, becau@®’ - Q when N _,
N.

Multiplying both sides of (31) with f >0, and applying theubadditivityproperty (ortriangle

inequality) of the norm to the left side yields:

NM)
0= X8 gt = X8 gt ot X=X | =[N > x| >N (3.32)
Q m=1 Q'l
From (3.32) and givep > 2R, there existsstg<N™ such that
1= X§" ] 42 > 2R (3.33)

On the other hand, from Def.3.1, the distance betvany two vectors in the same cluster cannot
be greater than twice its size. Howev&randng) belong to the true cluste€(Q,R,N). It is
evident from (3.1) and theubadditivityproperty of the norm that:

X=X s =i (€ =X g = IXi=Cll X P ~Cllu= 2R, (@)
which contradicts (3.33). Thus any new vector ispgot M-ART will become a new member of

only one cluster™ Q™ R™ N™) which proves Lemma 3.2a.

Proof of Lemma 3.2b: Assume there is only one elu@™, Q™ R™ N™) resulting from M-

ART, or:

X O (€™, Q™ RM N™) for O X, O (C,Q,R,N) (3.35)
According to (3.7) and (3.85™ andQ™created by M-ART are the mean and the covariance
matrix of all vectors belong to this cluster, regpely, or:

c™=candQ™ =0Q (3.36)
By Def.3.1, there exist&, such that:

[Xa= Cllg1 = IXm- C™llg1 =R (3.37)
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Following (3.30), we have

[IXp= C™ll g1 =R >p (3.38)
Hence X, does not satisfy (3.4) and (3.5), or does notrizgto the clusterg™, Q™ R™ N™),
which contradicts our assumption. Hence, M-ART witbduce more than one cluster, which
proves Lemma 3.2b.
Lemma 3.3: Existence of M-ART for 2 clusters
Assume a data s8tcontains only two cluste(€;, Q1,R;,N;) and(C,,Q2,Rx,Ny) with R; > R».

Define;

A= min (IO X2) s X=X ) (3.39)

where Xj(l) € (Cy, Qu,Ry,Ny) and X(kz) € (C2,Q2RxNy).
Then M-ART clustering with
2R; < p < Anin (3.40)
will always result in 2 clusters.
Proof:
Let X, X € (C1, QuRLNY) Dij = 1..Ny, andX?, X&) € (C2QzRaN2),0k,n = 1.N
From Def.3.1, the “intra-class” distanc#; or A, of any two points belonging to the same
cluster satisfies:
Ay =[x - xj(l)||Q,lls 2R, Vi, j=1.N;
(3.41)
Ay =||XP- x32)||Q.21§ 2R< 2R, , vk, n=1..N,
Assume that the first input vector feed to the MIARetwork isxj(l) € (C1,Q1,R1,Ny). According

to Def.3.2, M-ART forms the first cIusterC((lE)z Xj(l), Q (lE)z I, R(lE)zo, N(lE)zl), to contain this

input vector.
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Assume the second input vector fed to the M-ARD(ig) € (C5,Q1,R:,N,). From (3.39) and

(3.40), we have:”X(kz)— C(lE)”Q_lemin >p. The condition (3.5) of Def.3.2 is NOT satisfied.
1

Therefore, M-ART creates a new clust@,('f)z X(Z), Q (ZE)z I, R(ZE)zo, I\éE)zl), to contain this
input.
Consider any third input fed to the M-ART netwdide, which there are two cases:
Case 1 The third input is)(i(l) , which actually belongs to the first clustxf.l) € (Cyq, Q1,R1,Ny)
From (3.39), (3.40), and (3.41), we obtain:
X~ Ol <2Ri<p

(3.42)
”Xi(l)_ C(ZE)”Q’zl 2 Amin >p

In other words, this inpuKi(l) will be classified by M-ART into the first cluster
E) A(E) () N(E
c®,Q® RE NEY.
Case 2 The third input is Xﬁz) , which actually belongs to the second cluster:
ng) € (C2,Q2,RzNy)
As before, from (3.39), (3.40), and (3.41), we obta
[x@- (:(1E)||Q>11 > Amin >p

(3.43)
|x@- C(ZE)||Q_21 < 2R <p

So this input X will be classified by M-ART into the second cluste
E) AE) oE) n(E
(P .QF.RENE).

Hence, M-ART does not create a new cluster, whiokgs Lemma 3.3.

Special case Q=Q,=1:
Lemma 3.3 states that if two clusters are “sepdraieough”, there exist certain values of
vigilancep so that M-ART produces the correct two clusterg. &dn easily visualize conditions
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(3.39) and (3.40) in the special case wiign= Q, =1, and in 2 dimensions, the clusters are
circular shaped. Assume that for two clusters, witntersC, and C,, we have the center-to-
center distance pgiven by:

D12=IC— Call g2 = [IC1— Call = 3(Ri + Ry) (3.44)

Then, (3.40) becomes:

Arin = min (I~ cz||Q_l) = min. (Ix@- clllQ.l) = 2(Ri+Ry) (3.45)

Fig.3.1 illustrates the case of two circular shapledtersQ,=Q,=I, that are “separated enough”

so that M-ART with any satisfying (3.40) will produce the correct 2 chrst

.-ﬂ'nij—“xilri Xf’]i!|~£2R| i (2]
) Ao = || XM= XY = 2R, + Ra)

F Y
v

D> = ||C—C;| = 3(Ry ~ Ra)

Figure 3.1: Two clusters, wit®;=Q.=I, with circular shapes, are “separated enoughhabM-
ART with anyp satisfying (3.40) will produce the correct 2 cérst

3.2 Selecting a Good Value fop:

There exist values gf in a certain range such that M-ART produces tharact number” (as
would be determined by humans) of clusters in iqudar data set, but the appropriate value of
depends heavily on the distribution of patternghe data set, which is normally unknown a

priori. The principal remaining concern is deteration of a good value fqv. Small values op
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produce small clusters, such that the number aftetsa is large, and large values produce larger
clusters, such that the number of clusters is sr@ahventionally, a trial-and-error approach is
used to tune the value pffor each input data set. We propose an automedegure that could
be applied for any input data set in what folloWé& first introduce another definition:

Definition 3.3: Separation Factor

The separation facto6Vj of two clusters(C;,Q;,R;,N;) and (Cy,Q«,R«,Ny) is a positive real
number defined by:

e e ]

(3.46)
2(R; + Ry)

Sij =

These two clusters are said to be “separated enbiigBVj > SV for some pre-defined number
SV, or to be “too close” otherwise.

Note that forQ;=Q.=I,(spheroidal shaped clusterd.46)becomes:

16— Gl
SV = ——=
TR+ Ry

(3.47)
Recall that the Mahalanobis distance (M-distansejsied as a similarity measurement between a
point X and a center of the clustér which indicates how likely this new point shotlelong to

this cluster. M-distance differs from Euclideantdige (E-distance), which is isotropic and does
not depend on the distribution of the cluster ghatimts. M-distance puts high weights along axes
with high variance (major axes) of the cluster dadants, while the direction with low variance
of cluster data points (minor axes) is weighteddawlf the covariance matrix of the cluster data
points is the identity matrix, the M-distance beesnthe E-distance. If the covariance matrix
is diagonal, then the resulting distance measurealéed the normalized E-distance. The
separation factor in (3.46) represents how muclarséion or “overlap” exists between any two

clusters. As Sy increases from 0O, thé" jand K' clusters move from maximum overlap to

maximum separation.
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Some examples of two circular shaped clustersttheé separation factors equal to 0.5, 1, and
1.1 are shown in Fig.3.2. Figure 3.3 illustratdseotexamples of separation factors between two
clusters, circular or ellipsoidal shaped. In Fig,2ach number beside a cluster (represented by a
blue circle or blue ellipse) indicates the separafiactor between this cluster and the cluster

represented by the red ellipse with light-cyaredlicolor.

S5V=05

SV=1

|

I

| 1€ — G| :
D g SV=1.1

SVi=[|C) — C4f| / (Ri+Rz)

Figure 3.2: (a) Separation-factor between Twe@ar Shaped Clusters.
(b): Some examples with: (upper) SV=0.5, (midd¥$.0, (bottom) SV=1.1

r

The idea for auto-adjustment pfis to use M-ART with smalp, producing clusters that are
excessively close together, or heavily overlappmd] then graduately increasipguntil all
clusters are “sufficiently” separated or less higaeverlapped. This process is equivalent to
merging clusters that are deemed excessively tbggther into larger ones.

Figure 3.4 (a) shows a sample data set (data a2hapter 4) with 35 natural clusters (as
determined by humans). A very small valuge0.06 produces from M-ART 86 clusters that are
excessively close, Fig.3.4 (b). With a larger vabigg=0.11, M-ART produces 35 clusters that
are sufficiently separated, Fig.3.4 (c), and ie kmith what most humans would produce.
Discussion on selecting a value for SV is giverCimapter 4, Eqn (4.6), and Table 4.3, and

Fig.4.5.
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-8 -6 -4 2 0 2 4 6 8 10
Figure 3.3: Example of separation factors betweéenlar shaped and ellipsoidal shaped clusters.
Each number beside a cluster (represented by achbtile or blue ellipse) indicates the separation
factor between this cluster and the cluster reptesieby the red ellipse with light-cyan filled
color.

Raw data 86 clusters, p= 0.06 35 clusters, p=0.11

. o o 5
5 a:‘u"‘ ,.:'. g 7
5 - - T .
i 3 5
L TR
¥ » & e g
. 5

(a) ) (b)
Figure 3.4: (a) Data Set al. (b) and (c) ClusteRegults with Different Vigilance Values.

The pseudo-code for M-ART with auto adjustmentigflancep is shown in Table 3.1. The auto
adjustment process starts with an arbitrarily smalle of vigilancep. The first Repeat-Until
loop in Table 3.1 reduces the valuepatfo guarantee that there are at least two cluststdting
from M-ART, which will produce clusters that arecessively close (Def.3.3). The second
Repeat-Untilloop in Table 3.1 gradually increases the valu@ ¢d guarantee that all clusters
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resulting from the M-ART are sufficiently separatadcording to Def.3.3 and a user-selected
value of SV.

Table 3.1: Pseudo-code of the M-ART with Auto-atiMigiilance Algorithm

Choose a desired separation factor SV
Initialize an arbitrarily small value vigilange
Kgown= 0.1
Kyp= 1.1
Repeat

Prew = KdownPold

Run M-ART withpye, fOr entire data set

Djx = 0.5(]|¢;- ck||Qj_1 + ||Ck— C"”le) , 1<j#k<M
Until Dy < SV(R+Ry), for some j and k,gj#k<M
Repeat

Prew = Kup-Pold

Run M-ART withpney for entire data set

. ) D]'k
Until min;y (Rj+Rk) > SV

3.3 Density-based removal pre-processing

M-ART is essentially distance-based clustering,cvhineans M-ART considers dense or sparse
input vectors equally. That is why M-ART often puogs spurious clusters consisting of vectors
that lie in the outlying regions of these clust@g.itself, M-ART does not mimic well our eye-
brain system for identifying clusters. From obsénorg it is believed that the first step in human

selection of 2-D clusters involves detecting higimsity areas of points, which they label as
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cluster centers. The second step in human clusgction would then be seeking “gaps”
between clusters to define the outliers. In thipgpawe propose pre-processing of data by
removing points from an input data set that li@iaas of low point density before feeding to the
M-ART network. The idea is to remove some outlyiwggtors such that the cluster structure
(number of clusters and cluster centers) of theareimg data will not likely change significantly
(if at all) from those of the original data set.nR®&ving some points in areas on the margins of
clusters may render remaining points more easiytiflable as part of a distinct cluster and
easier to identify by M-ART.

Table 3.2: Pseudo-code of Density-based Removagpiessing

Input data se® =[X1,X5,,...,X.] consisting of total L input vectors
Select a keeping ratio, O<i, and ranking ratio Ogfrl

n; = round(Lk)

n, = round(L¥)

For each input vectax;

Compute pair-wise distance to all other vextyy = \/(Xi -X)TXi-X)) ,j=1..L
Rank all L values dhj, j=1..L, from smallest to largest
Compute the density at the potr; = 1/ (niZ?;lAij)

1

End
Find 1., as the g"smallest value of array (i=1..L).
Remove any pattern that is in a low density region

Seemaining= S — {Xj such that;< re,¢ = { Xi such thatir> re.¢

The density-based removal pre-processing algorithgiven in Table 3.2. We define tip@int
densitynear a point in the feature space as the totabeurof input vectors that are inside the

unit hyper-sphere surrounding this point. Thereftine density at the poitx;, called f, could be
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approximated by one divided by the average of desta betweelX; and a specific number of its
nearest input vectors. Small average distancesupeothrger values for, rwhich means that
neighbors ofX; are close. In other words, such a point shouldda the center of a true cluster.
In contrast, larger average distances produce srahle for 1, which means thaX; should be

near the boundaries of a true cluster. Thus, w@versome input vectobs; with small values of

r, (low density).

(a) (c)

R

(b) (d)

Figure 3.5: (a): Original Data Set t3;
(b) Result of Directly Applying the M-ART Clustegrwith Many Spurious Clusters
(€) SemainingWith Five Clusters Easily Identified by the M-AROIustering
(d) Final Partition of the Original Set with TheflSwe Centers Retained from (c)

Figure 3.5 (a) shows the data set t3 (Chapter 4\RM clustering produces a total of 18 clusters
using SV=0.8p=0.21 shown in Fig.3.5 (b). Most humans would glyidonclude that there are

only 5 clusters. After pre-processing by densitgdsh removal, described in Table 3.2, the
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remaining data is fed to M-ART clustering, whiclsidaidentifies five separated clusters shown
in Fig.3.5 (c), with the same values of SV gnd hese five cluster centers are retained to decide
which is the closest center to which each inputtareof the original data set should belong
Fig.3.5 (d). Results showed in Fig.3.5 were obtifi®m the best choice of SV=0.8 after

experimented with difference values of SV as desdimore detail later in Chapter 4.

3.4 Automatic clustering procedure

Using density-based removal pre-processing couldefitethe M-ART process in locating

clusters. However, it is evident that insufficieatmoval would not provide sufficient help to M-
ART, while excessive removal could lead to a spsgicluster structure. We define two
parameters that affect removal pre-processing:ikgeptio k and ranking ratio,rIt is not trivial

to select suitable combinations of these parametkres. Keeping ratio affects the number of
nearest neighbors to approximate the density aivangpoint, such that it presents local
information. Ideally, the number of nearest neigbshould approximate the number of input
vectors of a cluster, so we defingdly:

k; = (total number of input vectors)/ (number of talesters) (3.48)
which assumes that clusters are somewhat equilein number of members. However, the
number of true clusters is unknown. By experimavith a number of sample data sets (given in
Chapter 4), we suggest a rule of thumb:

0.01<k <0.10 (3.49)

For example if the number of total input vectort{pans) is several thousand, the number of
counting neighbors of each point should be sevenadred or less. If we select ¥ 0.1, the
cluster structure may become distorted.

Ranking ratio, similar to global thresholding ottarchical clustering methods, is a parameter

used to determine when to ignore low densities phtéern. It directly affects how many vectors

30



or patterns will be removed in pre-processing. Agéiiom experience with data sets given in
Chapter 4, we propose the rule of thumb:

0.10<r,<0.40 (3.50)
For example, if r= 0.10, then data points with densities rankinghm lowest 10% of all point
densities will be removed.

Table 3.3: Pseudo-code of Automatic Clustering €doace

Use density-based removal pre-processing, varyiagdk

Use M-ART with auto-adjust vigilance algorithm feach remaining data set
Plot the number of clusters vs.dnd ¢

Select a pair of kand f that produce the same number of clusters (fall prateau of the
plot). When multiple values for, land r exist on the plateau, select the smallest values.
Save cluster centers corresponding to the sameemumhiclusters on the plateau

Assign each pattern of the original data set tactbsest (M-distance) cluster

Table 3.3 illustrates the automatic clustering ptze. The goal of this is to automatically select
the proper values of, land ¢ of density-based removal pre-processing to cleardata set before
feeding it to M-ART with the auto-adjustment of Namce, discussed above. While varying
values of kand rin a certain range, for example using (3.49) a&h8Q), apply removal pre-
processing to an original data set for each paik.odnd y. Then, use M-ART with auto-
adjustment of vigilance for each remaining dataceetesponding to each pair afdnd f. Plot
the number of clusters vs. &nd r in a 3-D plot. Experiments and observations wiltadsets in
Section 5 suggest that clustering that agrees mithan clustering occurs when the number of
clusters is relatively insensitive to small changeg; and r. This will happen in regions of the
plot of cluster numbers vs, &nd r where a plateau (or flat) occurs. Therefore, a plk. and ¢
lying on this plateau is selected. Cluster centersM-ART for the remaining data set with

selected values of; land  are retained to cluster the original data set.nTihe task of finding
31



which cluster that a given pattern of the origidata set should belong to becomes trivial, by

finding the nearest distances from that pattewiuster centers.

# of clusters

Keeping

Ranking
(b) (d)
Figure 3.6: (a) Original Data Set s3; (b) Plot afmber of Clusters vs, land ;

(c) Clustering after Removing with40.01, y=0.40;

(d) Final Partition of the Original Set with 15 Gtars
Figure 3.6 illustrates the process of clusteringtfe 2-D data set s3 (a). Appling the process
given in Table 3.3 witl®.01< k,<0.30 and 0.04 r, <1.00 (which are larger than range pfikd f
given in (3.49) and (3.50)), we produce the plonhomber of cluster vs..land y, Fig.3.6 (b),
with SV=0.8,p=0.12. Select the smallest value ofand r in the plateau region of the plot,
namely k=0.01, r=0.40. The result of removal pre-processing witbsthvalues of kand ¢ is
given in Fig.3.6 (c), showing 15 clusters, using=B\8, p=0.12. Using these cluster centers to
decide the closest center (M-distance) that egulit imector of the original data set should belong

is straightforward, with results given in Fig.3d.(Again, these results are consistent with what a

human would produce.
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Chapter 4

RESULTS OF THE PROPOSED DATA CLUSTERING TECHNIQUE

4.1 Test with artificial data

The 21 data sets used in this study to obtaintesnt described in Table 4, and the fifteen 2-D
data sets are depicted graphically in Figure 4dtaBets labeled al to a3 and sl to s4 are taken

from http://cs.joensuu.fi/sipu/datasetflata sets al to a3 are synthetic 2-D data witlyirvg

numbers of clusters. Data sets s1 to s4 are syn@w data with 5000 vectors and 15 Gaussian
clusters with different degrees of cluster sepamatData sets slml, s2ml, s2m2, s3ml, and
s4ml are modified sets taken from original data s&t s2, s3, and s4, respectively, by manually
removing some ellipsoidal-shaped clusters. Dats tdeto t8 are synthetic 2-D, 3-D, 4-D, 5-D,
and 10-D data with the number of Gaussian clusiescribed in Table 4.1, prepared by the
authors. By applying the automatic clustering pdoce described in Section 4, all data sets
whose clusters are reasonably separated, suclDada®a sets al, a2, a3, s1, slml, s1lm2, s2,
s2ml, s2m2, s3, s3ml, t2, and t3, yield the nurabelusters identical with the number actually
generated and what most human observers wouldtd&echigher dimensional data sets, the
results (number of clusters determined by M-ART &arch data set) agree with what were

generated.
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Table 4.1: Data Sets and Characteristics

Data set pata # # pata pata # Vectors #
Dimension | Vectors | Clusters| set Dimension Clusters
al 2-D 3000 20 s3ml 2-D 4634 14
a2 2-D 5250 35 s4ml 2-D 3903 13
a3 2-D 7500 50 tl 2-D 1500 5
sl 2-D 5000 15 t2 2-D 2500 10
s2 2-D 5000 15 t3 3-D 1200 8
s3 2-D 5000 15 t4 3-D 1500 10
s4 2-D 5000 15 t5 3-D 1500 10
siml 2-D 4685 14 t6 4-D 1500 5
silm2 2-D 4356 13 t7 5-D 1500 5
s2ml 2-D 4356 13 t8 10-D 1500 5
s2m2 2-D 4326 12

Results are tabulated in Table 4.2, together withhputational time for automatic clustering

using a PC Pentium dual 3.0GHz, 2GB Ram, WindowaxXB Matlab-R2009a. Parameters used

in the program to generate the data in Table 42 ar

Separation ratio:
Range of k
Range of ¢

Initial vigilance:

k. = 0.010 to 0.055, increment by 0.005

Sv=0.8

r,=0.1to 1.0, increment by 0.1

Pstart= 0.05

Scale factor for increasing/decreasing vigilanee (Fable 1):

Kup = 1.1; Kyown = 0.1
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Table 4.2: Summary Results of Clustering (SV=0.8)

No. clusters
No. clusters
Data from Computational
Data sets used to K, I
Dimension automatic time (sec)
generate data
clustering
al 2-D 20 20 433.9 0.010 0.300
a2 2-D 35 35 1540.9 0.010 0.300
a3 2-D 50 50 3316.9 0.010 0.300
sl 2-D 15 15 1148.4 0.010 0.200
siml 2-D 14 14 1033.6 0.010 0.200
sim2 2-D 13 13 1608.4 0.010 0.200
s2 2-D 15 15 1414.5 0.010 0.200
s2ml 2-D 13 13 1153.8 0.010 0.100
s2m2 2-D 12 12 1017.3 0.010 0.100
s3 2-D 15 15 1694.2 0.010 0.200
s3ml 2-D 14 14 1564.0 0.010 0.100
s4 2-D 15 14 1727.1 0.025 0.400
s4ml 2-D 13 11 1239.5 0.010 0.100
tl 2-D 5 5 23.0 0.010 0.100
t2 2-D 10 10 28.4 0.010 0.100
t3 3-D 8 8 21.6 0.010 0.200
t4 3-D 10 10 25.3 0.010 0.200
t5 3-D 10 10 25.1 0.010 0.100
t6 4-D 5 5 26.4 0.010 0.200
t7 5-D 5 5 27.6 0.020 0.200
t8 10-D 5 5 26.9 0.010 0.200
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The k and r were chosen as the smallest values corresponditiget“largest” plateau region of
the plot of the number of clusters vsakd f.

Note that the clusters in data set s3 and s3mteageclose (small separation), yet the algorithm
still produces “correct” cluster counts. For dagh $4 and s4m1, the algorithm produces results
different from those used to generate the clustdéosvever, clusters of those data sets have very

small separation, such that different humans gfteduce different numbers of clusters.
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(©) (d) (e)

Figure 4.2: Data Set t3 in 3-D (a), and its pro@tin xy, xz, yz planes (c,d, and e- respectively)
Clustering result is shown in (b) with 8 clusteetested by M-ART.
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Figure 4.2 presents the original data set t4 iegfttimensional space xyz (a), and its projection in
Xy, Xz, yz planes in (c), (d), and (e), respectivdlhe clustering results is shown in (b) with 8

clusters selected by M-ART, with SV=0.8.

(Data set t3) (Datatdg (Data set t5)
Figure 4.3: Clustering results of the data setd3and t5.

Figure 4.3 illustrates the clustering results of method for the data set t3 (2-D), the data set t4

(3-D), and the data set t5 (3-D), with SV=0.8.
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# of clusters

(d)
Figure 4.4: (a) Original Data Set s4 Created byabssian Clusters; (b) Clustering after
Removing with k=0.01 and =0.50; (c) Plot of Number of Clusters vsakd ¥,
(d) Final Partition with “Incorrect” 14 Clusters.

Figure 4.4 illustrates details on the process ustelring for data set s4 (Fig.4.4 (a)), with SV=0.8
Appling the process that discussed in Table 3.3pltain the plot of number of cluster vsakd

r. (Fig.4.4 (b)). Select the pair of smallest valogk; and in the “largest” plateau region of this
plot: k=0.025, r=0.40. The result of clustering after removal preegssing with these values of
k. and ¢ is shown in Fig.4.4 (c). This process produceslldters, while the “correct” answer,
according to what was generated, is 15 clustersneSpoints belong to a true cluster (as
generated) on the top, left-most of Fig.4.4 (apvehg low point density, and were removed by
pre-processing, which reduced the number of detetdtesters by 1, to 14. However, if those data
points were retained, the clusters after cleanioglévnot be separated enough for M-ART and
the auto-adjust vigilance algorithm to select tber@ct number of clusters. This is an example in
which pre-processing removal does not help M-ARTdéal with sparse clusters. In this case,
pre-processing removal changes the structure ofldke set, or does not produce a cleaned data
set with separated clusters.

Table 4.3: Effect of Separation Ratio on the NumidfeClusters
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Data
Sef al a2 a3 | sl|sIml|slm2| s2|s2ml| s2m2| s3 | s3ml
SV
0.50r 0.6 20 35 50 1b 14 13 15 18 12 15 14
06,0.7,0.8, 20 35 50| 15 14 13 1b 13 17 15 14
or0.9
10o0r1.1 20 | 17(35) | 50| 15 14 13 15 13 12 15 14
Data
Sef s4 s4ml | t1 | t2 t3 t4 t5 t6 t7 t8
SV
0.50r0.6 | 14(15) | 11(23)| 5 | 10 8 10 10 5 5 5
06,07, 08} 1445y 19(13)| 5 | 10| 8 | 10| 1d 5| 5 5
or0.9
1.0o0r1.1 | 14(15) | 11(13)| 5 | 10 8 10 10 5 | 45) 3(5)

Table 4.3 illustrates the effect of separationor&V on the number of clusters resulting from
automatic clustering. In this experiment, all paetens were kept the same as given in (4.2) to
(4.5), except that SV was varied from 0.5 to Intrémented by 0.1. In Table 4.3, numbers in
bold underlined font-style represent the resulé Hre different from those used to generate the
clusters (“correct” numbers given in parenthesehb)le the normal font-style indicates the results
are consistent with those used to generate the @aganumbers of clusters for all data sets are
consistent while SV changes from 0.6 to 0.9. Redult data set a2, t7, and t8 are “incorrect” for

SV=1.0 and 1.1. For all tested values of SV, dats4 and s4m1 are “incorrect”.

# clusters
# clusters
# clusters

# clusters
# clusters
# clusters
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Rr Kr
Sv=1.1
Figure 4.5: Plots of Number of Clusters vsaRkd f for Different Values of SV
(from 0.5 to 1.1 as labeled in each plot) for daghal.

Figure 4.5 illustrates the effect of separatioforan the size and shape of the plateau region of
the plot of number of clusters vs.dnd f for data set al. Even though the plateaus of thiese
occur at the same height, so that the clusteriggorithms can select the correct number of
clusters as 20, the plateau regions for SV=1 and1SV are smaller in size comparing with

others.

From experience, we propose the rule of thumb:
0.6<SV<1.0 (4.6)

4.2 Case study: texture classification

In this section, we test our proposed clusteringhoe: on a real world application of texture
classification. Texture is a phenomenon that isesflead, easy to recognize and hard to define.
In order to analyze and/or classify texture, wednaenechanism to represent texture accurately
so that each texture image will correspond to atpioi high dimensional feature vector space.
The fundamental assumption is that this representas matched (or at least most likely
matched) with human visual assessment. In othedwmmxtures whose represented feature
vectors are similar should be visually similar. Goomly, it suggests representing textures in
terms of the response of a collection of filtenscisas a Laplacian Pyramid or Gabor filter bank
[25, 26]), in which each filter would recover ateanh of the texture, such as a spot or bar (with
different sizes and orientations). To summarizefillered output images, a set of statistics, such

as mean, variance, kurtosis, and skewness, is catynimvolved.
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The 59 texture images used in this experiment w&teacted from the Brodatz texture image
library [27]. Because the available texture imdbeaty is limited in number, we manually divide
each original texture image, 640x640 pixels, int@ak 100 blocks of size 64x64 pixels each, and
manually label these 5900 small images into 26gcaies based on their visual appearance.
Figure 4.6 shows 26 small texture images, each tifierent categories. For each small image, a
Gabor filter bank with 4 scales and 6 orientatiq@4 totally different Gabor filters) are
convolved with this image to produce 24 filterecages. We note that the filtered images have
large intensity values (strong responses) at lopatiwhere the structure of the original image
matches well with the structure defined in the egponding filters. We then summarize each of
the 24 filtered output images by a statistics mesment, namely variance. Hence, each texture
image of size 64x64 pixels corresponds to a poirgdi dimensional space and will be classified
in this space. These 5900 vectors in 24 dimensigpate, each corresponding to a small texture
image, were fed into the automatic clustering pdoce described in Table 3.3, with the same
parameter settings given in (4.1) to (4.5), exteat we used SV = 0.6.

Our proposed clustering method correctly producédcRisters with an accuracy of 88.5%.
However, in order to fairly compare our method wilie K-means method, which requires
knowing the number of clusters and is sensitivanibalization, we randomly selected 780
feature vectors corresponding to 260 small textmages (30 images from each of 26 categories)
to initialize 26 cluster centers, and we forced RRJAto create no new clusters. The remained
5120 small texture images were classified by M-Al ¢he K-means method. M-ART produced

94.7% accuracy, compared with 91.2% accuracy flmrkt-means method.
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T 1 &

Figure 4.6: The 26 small texture images of size6@4pixels from 26 categories.

4.3 Case study: Texture segmentation

In this section, we test our proposed clusteringhoe: on a real world application of texture
segmentation. The data set includes 50 mosaic nafesize 256x256 pixels created by
composing 3-6 different gray-scaled textures (chas@adomly from [26]) into designed regions.

Figure 4.7 shows five mosaic images and their giidruth maps (in pseudo color).

Figure 4.7: Some Test Images for Segmentationrfie
and Their Ground Truth Maps (bottom row)

For each pixel of a given image, the correspon@ixjl dimension feature vector was extracted
by convolving a Gabor filter bank [27-29] with 4ases and 6 orientations (24 totally different

Gabor filters) with this image. These 65536 vectorg4 dimensional space, each corresponding
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to a pixel in the original image, were fed into thatomatic clustering procedure described in
Table Ill, with the same parameter settings givieova except that we used SV = 0.7. The order

of feeding input vectors to our M-ART was randorsglected.

Figure 4.8: Effect of Initialization. (a) the Tdstage; (b) the Ground Truth Map; (c), (d), and (e)
the Results of K-means, EM, and Our Method, respagt with a Good Initialization; (f), (g),
and (h) the Results of These 3 Methods with a Bédlization.

Results were compared with those from the well-kmévmeans and Expectation Maximization
(EM) [30] methods and tabulated in Table VI. NdtattK-means and EM both require knowing
the number of segments a priori, but our method da¢. However, all three methods were given
the same initialization for fair comparisons. Segted images resulting from the three methods
were compared pixel-by-pixel with correspondingugrd truth maps to determine accuracy.

In Table 4.4, good/bad initialization means eaalster center was given as a pixel inside the
correct/incorrect segments of the original imaggufe 4.8 visually illustrates the effect of
initialization on the three methods. Notice that¢ ti-means and EM methods are severely

affected by bad initialization. Our method is sugern both accuracy and insensitivity to

initialization.
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Table 4.4: Accuracy of Texture Segmentation of €hviethods

K-means EM Our method
Good initialization 87.2% 91.4% 97.%%
Bad initialization 55.8% 62.6% 85.2%

Average of 100 random
initializations 68.5% 72.3% 89.8%
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Chapter 5

CONCLUSTIONS FOR DATA CLUSTERING

In previous chapters, an automatic clustering moe is proposed. The first step is density-
based removal pre-processing, which tends to peoduare distinct clusters in most cases. This
process is equivalent to removing input vectorsr ika boundaries of each cluster, which in
many cases does not change the data structure authber of “correct” clusters in the data. The
next step is to employ the M-ART neural networlgtoup similar input vectors into clusters.

The vigilance p in the M-ART network determines the maximum size otusters, and
consequently affects the number of clusters. Camweally, a trial-and-error approach is used to
tune this value op. In this paper, a procedure to auto-adjust theevalf p based on a user-
selected allowable separation between clustersojsoged. Even though one must still select the
value of a parameter, choosing the allowed separé&dictor is intuitively easier than selecting the
value ofp. The appropriate value @fis strongly dependent upon on the specific dataasel is
therefore very difficult to select a-priori. On théher hand, the allowed separation factor value
simply represents how much separation between radgiclusters a user is willing to accept.
Accordingly, the separation factor could be chofmnmultiple data sets before running the

algorithm.
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The “optimal” number of clusters could be chosenoading to some criteria, such as cluster
compactness or variation within a cluster and/qrasation or isolation between clusters [11].
Cluster compactness (variation within cluster) andkeparation (isolation between clusters) are
normally considered as major factors in formingdation indexes [10, 11]. Almost all clustering
algorithms are not parameter-free and require ssgaplied values for input parameters.
Determining these values is difficult, and is usuguided by trial-and-error. Moreover, the
results produced could be very sensitive to thesleieg, producing significantly different
partition results with only slightly different pangter values [6], rendering them unusable.
Experiments conducted on different synthetic 2-l),34-D, 5-D, and 10-D Gaussian data sets,
some published and some generated by the authibinsyavying numbers of vectors, numbers of
clusters, and different degrees of separation latvedusters, demonstrate the effectiveness and
reliability of the proposed clustering method. Twase studies of texture classification and
texture segmentation are also presented, showinggaod results when compared with those
from the well-known K-means method.

We would like to investigate and solve the segmerigproblem for general, real scene color
images. In applying our automatic clustering teghei presented herein to this problem, we
represent each image pixel as a vector in high msioeal feature space, which are usually based
on color, texture, andy-coordinators in the image plane. Then these vedos grouped into
clusters, which is equivalent to dividing imageg&into corresponding segments. However, our
method works well only with convex-shaped (ellipsehaped) clusters that are sufficiently
separated, which is normally not the case with ggneeal scene images. Accordingly, in the
next chapters, we investigate and propose a mokanadd technique for color image

segmentation.
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PART Il: IMAGE SEGMENTATION

Chapter 6

INTRODUCTION TO IMAGE SEGMENTATION

6.1 Introduction to image segmentation

Image segmentation is a process in computer vigianpartitions a digital image into multiple
segments or non-overlapping regions. Partitionimgnzage into non-overlapping regions assures
that pixels in each region share the same visualacteristics, such as color or texture, while
pixels in different regions exhibit significant fdifences in these features. In other words,
segmentation can be viewed as the process of haball pixels of the input image such that
pixels with the same label are connected and steatain visual properties. Moreover, pixels in
adjacent regions with different labels are sigaifitty different in the same criteria. The result of
this process is a set of non-overlapping segmeiissg union forms the whole input image.
Segmentation is one of typical methods to sepdhadoreground from the background and to
locate objects (and their boundaries) of the inmatge. It is a first step to simplify and represent
an input image into a form that is more meaningfiutl easier to analyze. Then, properties of
objects resulting from the segmentation processheaetermined (such as size, shape, color

distribution) for purposes of recognition, classation, and forming higher knowledge.
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Therefore, segmentation serves as a fundamentalirstextracting knowledge from the image,
and can be widely applied in many fields, such kasstfication, object recognition, object
tracking, content-based image retrieval, surveidarand medical imaging, among others [31-34].
Some of the practical applications of image segatemt are: medical imaging (including
locating tumors and other pathologies, measurisgué volumes, and computer-guided surgery
[34]), locating and measuring objects in satellileages (roads, forests, etc.) [35], face
recognition [36], iris recognition [37], fingerptinecognition [38], recognition in traffic control
systems [39], and crop disease detection [40].

Several general-purpose algorithms and technigaes been developed for image segmentation.
Since there is no general solution to the imagensagation problem, these techniques often must
be combined with domain knowledge in order to dffety solve an image segmentation
problem for a specific problem domain. Most aldans work well with specific, well-known
scene images or images under well controlled lighttondition, but fail with general scene
images [35-37, 39-40]. A general-purpose segmeamtatechnique is needed that provides
acceptable and reliable results on a wide variéteal, general scene images without excessive
computational cost. Another challenge in segmemagtiroblems is how to quantitatively evaluate
a given image segmentation method, of which theee naany approaches [39, 41-47].What
constitutes good segmentation is a problem simdavhat constitutes good clustering, mainly
because of the lack of a precise definition of ‘@djbolustering results or segmentation results
[47-48]. Accordingly, it is difficult to compare twgiven segmentation techniques. Normally,
results of a segmentation method are comparedmathually segmented result by humans on a
set of test images (ground truth segments). Howew & very time consuming and tedious to
construct such a ground truth database. Even wdifferent persons often provide significantly

different segmentation results on the same image.
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6.2 Previous work

6.2.1 Histogram-based methods

In histogram-based methods, the characteristithenfntensity, or color, histogram of all image
pixels, such as peaks and valleys, are used taaepelusters in the histogram, and therefore
separate the corresponding segments in the im&jeJihce each pixel is addressed only once in
each application, these methods are efficient coimpavith other segmentation methods.
Improvements in these techniques include applyireghtistogram-seeking method recursively to
segments in the image in order to divide them gmaller segments. Specified stopping criteria
are applied to terminate the repetition when noarsggments are formed [49, 50]. However,
there are several drawbacks of histogram-basedotett-or example, the peaks and valleys in
the histogram of the image can be difficult to itlgndue to natural noise in pixel assesment.
Poor segmentation results might be expected frappropriate detection of peaks and valleys.
Even worse, small changes in these peak and valtesjtions could produce significantly
different segmentation results. Another disadvamtafythis method is that small objects (that
might be important in the image) might not showinpthe histogram, and therefore will be

ignored in segmentation results [50].

6.2.2 Feature-space- based methods

Similar to histogram-based techniques, featureesipased clustering approaches ignore spatial
information in the image. These methods represewh émage pixel as a vector in high
dimensional feature space, which is usually basedcalor or texture. Then a clustering
algorithm, such as our M-ART [51] discussed in Padf this dissertation, is employed to
separate these vectors into clusters. Image segtimntis essentially a clustering process in
which each pixel in the image corresponding to @arein the high-dimensional feature space is

grouped into an appropriate class or cluster. fgadie between two vectors in this feature space
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is defined to represent similarity in a visual cweristic, such as color or local information, of
two corresponding pixels. Then vectors or pixels loa partitioned into clusters such that those in
the same cluster share similar characteristics,lewthose in difference clusters exhibit
significantly differences in these characteristics.

Some well-known and simple clustering techniquashsas K-means [52] and mean shift [53],
are often used for segmentation of a simple imalgielwcontains an object that is significantly
different from the background. The K-means algonitls an iterative technique consisting of the
following steps: (1) Initialize K cluster centersufdomly or based on some heuristic); (2) Assign
each vector to the closest cluster center (basedpyadefined distance metric, such as Euclidean
distance); (3) Re-assign the cluster centers byagirg all of the vectors that belong to the
cluster; (4) Repeat the assigning and re-assigstiegs until some stopping criteria are met (e.g.
no pixels change clusters). Both K-means and medihadgorithms are guaranteed to converge,
but they may not return the optimal solution. Thldy of the solution depends on the initial set
of clusters and the value of K. The main drawbatkhese algorithms is that the number of
clusters K is an input parameter, which is almbstigs unknown. An inappropriate choice of K
may Yyield poor results. Furthermore, in this apphpdhe image spatial structures, such as edges,
are not preserved, and pixels from disconnectedeénmagions can be placed in the same group.
One approach to avoid the effect of the number lo$ters K is employed in our M-ART
algorithm (presented in Part I). However, all threehniques (K-means, mean-shift, and M-ART)

work only for convex-shaped clusters.

6.2.3 Graph partitioning methods

An image can be modeled as a weighted, undireatgghgin which a pixel or a group of pixels
is associated with nodes of the graph, and thdasityi or dissimilarity measure (in some visual
characteristics such as color and texture) betwleemeighborhood pixels or groups of pixels is

associated with weights of edges in the graph (€ainology “edge” in the graph theory means
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the connection between two nodes of a graph; aodl@gimot be confused with edges/boundaries
of objects in an image). Then various graph partitiechniques, such as normalized cuts [54],
minimum cut [55] and minimum spanning tree partiii@ [56], can be employed for segmenting
images of interest. Each segment in the image sjporels to a partition of the nodes in the graph
produced from these algorithms. The graph pariitgpnresults, and hence the image
segmentation results, are dependent upon how tteebmiques define a "good" cluster (of
nodes). Often a global, fixed, and predefined tiokesis needed. Unfortunately, the results might

change significantly due to small change in thigghold [54-56].

6.2.4 Region-growing methods

Region-growing methods, e.g. seeded region groysiid, initialize a set of “seeds” or pixel
locations of the input image such that these seeelsconsidered as regions or objects to be
segmented. Then at each step, an unallocated meiggkpixel to a region is grouped into an
appropriate region according to some criteria. @ingle approach uses the difference between
the region's mean and the pixel's intensity vali@ aneasure of similarity. The region with the
smallest difference measured is the region intackvitihe pixel is grouped. This iterative process
is done only after all image pixels are visitechc® seeded region growing requires the user to
provide the seeds, segmentation results very depemgon seed choices. Noise in the image can
cause the seeds to be poorly placed [58, 59].

Improvements, called unseeded region growing [B0]not require explicit initial seeds. This
algorithm starts with random seeds. At each stegeighboring pixel is either grouped into the
appropriate region as in seeded region growing, wew region is formed. One simple approach
is predefining a threshold to decide whether ortadbrm a new region. If the smallest difference
between the neighboring pixel’s intensity value andexisting region’s mean is greater than the
predefined threshold, a new region is created thith pixel. A more advanced unseeded region

growing technique, introduced in the work hereiiil e discussed in Chapter 7.
52



6.2.5 Water shed-based methods

The watershed algorithm can be viewed as a spgpialof region-based segmentation [61, 62].
In this algorithm, the gradient magnitude of pixetensity in an image is considered as a
topographic surface. The technique envisions thatervplaced on any pixel enclosed by a
common watershed line flows downhill to a commoaoalointensity minimum. Then, a catch

basin formed from pixels draining to a common mimim presents a segment. The main
drawback of watershed-based methods is that titey pfoduce over-segmentation of the image,
in which many small basins are produced due to nh@egt minima in the real-scene input image

[61].

6.3 Proposed image segmentation method

In this work, we introduce a general-purpose segatiam method that works for a large variety
of natural scene images in color, with reasonabiaputational times. The proposed method is a
type of unseeded region-based segmentation teahrilipat preserves the spatial relationship
between pixels in the image, and hence presenedétiled edges and the image spatial
structure. There are number of important modifaragi made in our proposed method. First, our
method operates at a “superpixel” [63] level, rattien at the image pixel level. The original
region growing techniques that operate directlghatpixel level often produce undesirable small,
but quasi-homogeneous, regions and are computhgapansive [63]. By utilizing superpixels,
the proposed method avoids both issues. Secongyrolpesed method works for both color and
gray images rather than for only gray scale imagegsed in the original techniques [57-60]. Our
similarity measurement is defined based on stegisthainly interquartile range, of pixel color (in
L*a*b color space [64]) in regions and neighboring spiefs. Third, the decision of grouping
an adjacent superpixel to an existing region isadyically depended upon the statistics, or
“shape and size” of this region. The segmentatesulis show significant improvements when

compared with using a fixed, global threshold aus the original techniques.
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The reminder of this report is organized as followmsChapter 7, we introduce the process of
creating superpixels and our modified region grgnmechnique. In Chapter 8, we demonstrate
the results of the proposed method on a large nuarimkvariety of colored natural scene images.
Evaluation and comparing the performance of theogsed method with existing methods are

presented in Chapter 9, and Chapter 10 presenttustons and recommendations.

54



Chapter 7

NEW IMAGE SEGMENTATION METHOD

In this chapter, we introduce a new general purpeggnentation method that works for a large
variety of colored natural scene images with reabten computational times. Our method
consists of two main steps: (1) Over-segment antiitpage into many small segments (called
superpixels); (2) Then apply a modified versionungeeded region-growing on these superpixels
to obtain the final segmentation. There are a nurabadvantages to employ the region-growing
technique at the superpixel level, rather tharhatitnage pixel level. For example, it is more
computationally efficient because of reducing thmmplexity of images from hundreds of
thousands of pixels to only a few hundred supelpiXx€he superpixels are also perceptually
meaningful in such a way that each superpixeldsreistent unit consisting of pixels most likely
uniform in color and texture. More importantly, tine process of generating superpixels, most
structures in the image, such as edges, are causerv

The superpixel formulation is introduced in Sectibh. The modified region-growing technique

is provided in Section 7.2, and Section 7.3 sunmaarour proposed image segmentation method.

55



7.1 Superpixels

Superpixels are becoming increasingly popular & in computer vision applications [33, 39,
41]. Our superpixel algorithm, based on the ide&SbIC (Simple Linear lterative Clustering
[63]) that produces a desired (predefined) numieregular, compact superpixels with low
computational overhead. The superpixels presewel¢tail edges and the spatial structure of an
input image, and hence prevent pixels from discomtk regions of the image from being
grouped together. Our approach generates supesfiyetlustering pixels based on their color
similarity and proximity in the image plane. Thi done in the five-dimensional*a*b*xy )
space, whereLfa*b* ) is the pixel color in CIE-LAB [65] color spacend (ky) is the pixel
coordination in the image plane (pixel location).

The first coordinate of the CIE-LAB represents ligatness of the coloiL¢ = 0 yields black and

L* = 100 indicates diffuse white). The last two cooates represent the relative colors, where a*
indicates color between magenta and gregn=(-128 indicates green amd = +127 indicates
magenta); andb* indicates color between yellow and bl = -128 indicates blue arat =
+127 indicates yellow). The asterisks (*) aftera andb are part of the full namel{, a* and
b*), to distinguish them from Huntefs a, andb [65]. The nonlinear relations far*, a*, and

b* are intended to mimic the nonlinear response efdye. Furthermore, uniform changes of
components in the*a*b* color space aim to correspond to uniform changgxerceived color,
so the relative perceptual differences betweentanycolors inL*a*b* can be approximated by
taking the Euclidean distance between two corredipgnpoints in this three dimensional color
space. Thd.*a*b* color space is widely considered as perceptualijorm for small color

distances. Figure 7.1 illustrates R&B andL*a*b* color space representation.
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Figure 7.1RGB (left) andL*a*b* (right) color space. Pictures from [66]
Notice that, in Matlab’s unsigned 8-bit integerneentation, thé* coordinate ranges from 0 to
100, while a* and b* coordinates range from 0 to 255. The conversianvéen RGB and
L*a*b* color space normally takes an intermediate comwerthrough CIE-XYZ [65] color

space. Equation (7.1) shows the linear relationsbtpreerRGB andXYZ color space [64]:

Xl [ 0.49 0.31 0.20 Rl
Y| =-——757-5]0.17697 0.81240 0.01063(|G (7.1)
Z 0.17697 0.00 0.01 0.99 B

Equation (7.2) shows the conversion frdMZ to L*a*b* color space:
L' = 116f(Y/Y,) — 16
a” = 500(g(X/Xn) — g(Y/Yn)) (7.2)
b* = 200(g(Y/Ya) — 8(Z/Zy))

t1/3 ift > (6/29)3
whereg(t) = (29

?)2 % + 24—9 otherwise
and X, Y, and Z are the CIE-XYZ tri-stimulus values of the refererwhite point (the subscript

n suggests "normalized”, and the white point vadugependent upon the hardware device used to
display color images).

Our superpixel generating algorithm is essentiallg-mean based clustering in 5D*&*b*xy )

space. The idea of utilizing K-mean clustering $aperpixel generation was first introduced in
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SLIC (Simple Linear lIterative Clustering) by R. Asfta, 2010 [63]. In our work herein, the
distance calculation measuring the similarity bemvévo points in the 5D space is generalized.
Note that five coordinates in this space represiffierent properties of a pixel.* for light
intensity,a* andb* for color, andx andy for spatial coordinates in the image plane. Witile
maximum possible distance between two color pamtke CIE-LAB space is limited, the spatial
distance in the xy plane depends on the image Kiienot possible to simply use the Euclidean
distance in this 5D spacé&*a*b*xy ) without normalizations. Each 5D point (or vecipg)=

(i, @k, b, X, vie]T, 1 < k < Nin L*a*b*xy space, corresponds to a pixel in the given image,
where the upper-scrifft)Tmeans the vector/matrix transpose operation. Each goint is then
normalized, producing,,, such that each elemdptay, by, xy, yx is in the range [0,1]:

m = (pk - pmin)-/(pmax - pmin) (73)

where (./) means an element-by-element divisiawofvectors, an®,in (Pmax) IS @ New vector
in which each element is the minimum (maximum) aalécorresponding elements of all N input

vectors, namely [66]:

T

Pmin= [Emkg}“(lk) » min (@), min (by), min (x,), fgklglgl(yk)] (7.42)
T

Pmax= [{gkégg(lk) » max(ay), max (by), max(xy), {gkzg(yk)] (7.4b)

To simplify the notation, from now on, we omit thpper bar from a vectgr, remembering that
all five elements of this vector have been nornealim range [0,1].

After normalization, in order to cluster pixels lifia*b*xy space, we introduce a generalized
weighted Euclidean distanag, between two points (or vectorg) = [I;,a;, b;, x;,v;,]7 and
Pr = [k, Q. br, X, Yi, 17in this 5D space as follows:

df. = W (pi — pi)?

=wi(l; — L)? + wa(a; — ax)?® + wy(b; — br)? + wy (x; — x3)* + wy, (i — Yi)* (7.5)
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where W = [wl,wa,wb,wx,wy]T is a predefined weight vector. Normally, = w,, and

w, = w,, since there is no specific reason to weghtandb* color as well ax andy spatial
coordinates differently.

As a K-mean approach, our algorithm consists of foain steps: (1) Seleét cluster centers
(detailed below), with each cluster forming a sppesi; (2) Assign each pixel in the image to the
cluster (or superpixel) that minimizes the geneedliweighted Euclidean distance between the
pixel and the superpixel center; (3) Re-compute ghperpixel centers by averaging tke
coordinates of all the pixels in the superpixel; Repeat the assigning and re-computing steps
until a stopping criteria is achieved (detailed w8l Notice that a desired number of
approximately equally-sized superpixdfs,is assumed known as an input of our algorithn. Fo
an image withN pixels, the approximate size of each superpixeéh&@eforeN/K pixels. For

roughly equally sized superpixels there would bsuperpixel center at every grid interval

S = \/N_/K Notice that the size of each superpixel represtmd area (in pixels) of the smallest
image region that will be differentiated after {@cess. We call this area “the smallest feature
size SF. After superpixel generation, any region that ssaller thanSF is averaged or
“smoothed” out. In order to retain image detailst@rproduce fine segmentation, one should
select a small value @F. Coarse segmentations are obtained with largeesadiSF. Users can
select the “appropriate” value 8 depending upon the input image characteristictaadevel

of coarse or fine segmentation they would like bbam. With the user-defined smallest feature

sizeSF, the number of superpixelscan be calculated as:

k=2 (7.6)

The default values @&F (in the event the user does not select) i our program are:

N
SFaefauir = 30x30
7.7)
N
Kdefault = SFderault =900
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In this case, any image feature that is smallan theegion of 30 pixels image width by 30 pixels
image height will be ignored.

Table 7.1: Proposed Superpixel Generating Algorithm

5

- Input the smallest feature si& and the weight vector W. For our work herei
w =1[1,1,1,0.2,0.2].

- Normalize all vectors in 5D spack*@*b*xy ) corresponding to all image pixel as
(7.3).

- Initialize K = N/SF superpixel center6;,1 < k < K by sampling pixels at regular

n

grid sizeS = /N /K, whereN is the number pixels of the given image.
- Assignment step: Thé& pixelp;, 1<i<N, will be assigned to the “nearest” superpixel
according to the minimum weighted Euclidean distameasurement as in (7.7).

- Update step: Compute new superpixel centers andauwf pixels changing int

=)

different superpixels compared with previous itiemt

- Repeat Assignment step until stopping criteriaés.m

The details of these four steps are:

* Initialization step:
We first initialize K superpixel cluster centers, as vectBgs= [ly, ax, by, X, Y17 in L*a*b*xy
space and < k < K. These centers are initialized at regular griervels of S on the given
image, and each center vectyr is a mean of 5D vectors corresponding to all gixkht belong

to thekt" superpixel:

1
Ck:N—kZ Di (78)

wherep; = [l;,a;, b;, x;,y;, 17 andN,, is the number of pixels that belong to #& superpixel.
» Assignment step

At each iteration, every pixep; will be assigned to the closest superpixel, calleel jt"
superpixel, by the weighted Euclidean distasigedefined in (7.5).

J= argmin(d, )= argminW’(p; — C;)? (7.9)
1<k<K 1<k<K
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Input SF; iter=1;0=2; p=10;

w =1[1,1,1,0.2,0.2]"

v

Normalize all 5D vectors in

(L*a*b*xv )

A 4

Initialize K superpixel centers by

sampling pixels at regular grid

A 4

Assign every pixel to the “nearest

A

superpixel

A 4

Re-compute the superpixel centers.

A 4
Compute ¢ = percent of pixels change

into different superpixels.
iter = iter + 1

(c>1-0) OR
(iter >p)

Figure 7.2: Proposed Superpixel Generating Algorith
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» Update step
At the end of each iteration, after re-assigningilels, every superpixel cluster centers will be
updated as in (7.8).

e Stopping criteria:
It is shown in [60] that given enough iterationse tK-mean algorithm will converge to a local
minimum. Accordingly, we propose that our algoritstops when no more thanpercent of all
pixels change to a different superpixel (comparét e previous iteration), or when maximum

of B iterations is reached, whichever occurs firstirat follows, we seleat = 2 andp = 10. Our

superpixel generating algorithm is summarized ibl#@&.1 and Figure 7.2.

Figure 7.3: Superpixel Generating: Effectf
Original Image (top-left) and superpixel resultshwW = [1,1,1,0.04,0.04]7 (top-right);
W =[1,1,1,0.2,0.2]" (bottom-left); and¥ = [1,1,1,1,1]7 (bottom-right) in which the boundaries
(in black) of superpixels are overlaid onto thegioral image.
(For all resultsK=200 orSF [132x32)
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Figure 7.3 presents an example of superpixel g@aeravith different weight vector$¥ =

[wl,wa,wb,wx,wy]T. Choosing these weights allows us to control tffece of each pixel
properties, e.g. intensity, color, and spatial fimca and hence control the compactness of a
superpixel. The greater the valuevaf andw,, the more spatial proximity is emphasized, and the
more compact is the superpixel, and vice versas@gcting appropriate weights, we enforce
color similarity as well as pixel proximity in thisD space, such that the expected superpixel
sizes and their spatial extent are approximatelyakqwe choos®# = [1,1,1,0.2,0.2]7, or
w; =w, =w, = 1 andw, = w, = 0.2, for all the results in this paper. This roughlgitahes the

empirical maximum perceptually meaningful CIELABstince, and offers a good balance

between color similarity and spatial proximity.
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Figure 7.4: Superpixel Generating: EffectkolndSF
Original Image (top-left) and superpixel resultsh¥ = 100, SF = 20007/45x45(top-right);
K=500, SF = 400= 20x20 (bottom-left); andK = 1000, SF = 200714x14 (bottom-right) in
which the boundaries (in black) of superpixels@rerlaid onto the original image.

(For all resultsW = [1,1,1,0.2,0.2]7)
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Figure 7.4 presents an example of superpixel gé&oeravith different desired numbers of
superpixelskK. Notice that after superpixel generation, any aegihat is smaller tha®F is
averaged or “smoothed” out. The paramet8isand K affect the coarseness or fineness of
superpixels.

Notice that these superpixels are approximatelakigqusize (e.g. consist of a similar number of
image pixels). Also notice that edges and spatial eolor information are well preserved by
superpixels. Each superpixel consists of conneptrels that are quite uniform in color and
intensity, as expected. However some superpixelgaite similar and should be grouped into the
same segment to form a more meaningful representati“objects” appearing in the image. The

next section on our region-growing technique hamthés problem.

7.2 Modified region growing segmentation

Region-growing is a simple region-based image segation method. It was first introduced as a
pixel-based image segmentation method, and it wagbthe selection of initial seed points. The

basic formulation for region-based segmentatioisfsas five conditions, as follows [57]:
n
Condition 1: U R, =R (7.10)
i=1

where each regioR;, 1 < i < n, is a set of pixelsR; = {p,},1 < k < N;; N; is number of pixels
belong to this regioR;, andn is the number of regions (note tBdt.; N; = N, whereN is the
total number of pixels in the input imag®);is the entire image region. In other words, caadit
(2.8) means that the segmentation must be completethat every pixel is in a region.
Condition 2: Py andp,; are “connected’y p,, ,p; € R;,,1<i<n (7.12)
wherep, andp, are “connected” if there exists a sequence ofippg, ..., p; such that:
(2.11a):py, -.,p; € Ry, all pixels in the sequence are in theRet

(2.11b): and every 2 pixels that are adjacenténsébquence are "neighbors".
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Normally, pixels are considered neighbors if theg 4connected or 8-connected. For example,
in terms of pixel coordinates, every pixel that tfas coordinategx + 1,y) or (x,y + 1) is 4-
connected to the pixel di,y). The 8-connected relation includes the 4-connected in
addition, every pixel that has the coordinates 1,y + 1) or (x+,y + 1) is 8-connected to the

pixel at(x,y).

Figure 7.5: The set of pixels (shown as purple szg)aare 4-connected (left)
and 8-connected (right).

This condition means that every regiis a connected region or connected component.
Condition 3: R,NRj =0, 1<i#j<n (7.12)
whereg is the null set. This condition indicates that tbgions must be disjoint.

Condition 4: f(R)=TRUE, 1<i<n (7.13)
Condition 5: f(R; UR,) = FALSE,R; and R; are "adjacent",1<i# j<n (7.14)
wheref(R;) is a logical predicate (or Boolean-value functiolefined over the seR;, and two
regions are adjacent if there exists at least o ;m each region that are neighbors. Conditions
(2.11) and (2.12) suggest that pixels in the saag®n share the same properties, while pixels in
different regions differ in these properties. Frample all pixels of a region have a similar gray
level.

Different region-growing techniques differ mainly how the pixel connections are defined and
how to specify th¢/( ) function in (7.13) and (7.14). Our modified regigmowing method with

new connectivity definition anfi( ) function is described at the end of this section.
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Seeded region growing:
The first region-growing method introduced in thierhture was seeded region growing [57].
This method uses the 4-connected neighbor definigiod initializes a set of “seeds” or pixel
location of the input image such that these seedscansidered as regions or objects to be
segmented. This algorithm starts witlseeds, either by random or heuristic placemengnTat
each step, an unallocated neighboring pixel torélggons is grouped into an appropriate region
according to some criteria. One simple approacisésl the difference between the region's mean
and the pixel's intensity value as a measure ofagiitly. The region with the smallest difference
measured is the respective region where the pxgtauped into. This iterative process is done
only after all image pixels are visited. This mathmses followindg( ) function:

DefineJ = argminy,|I(p;) — mean(I(R)))|, CN(py, R;) = TRUE

f(R)) = TRUE (7.15)

R, < {R;,pi}
wherel(.) returns the intensity or gray level of pixel(sgahe notation A < B” means that the
value of B is assigned tAA. CN(py, R;) = TRUE if pixel p; and regionR;are connected,
otherwiseCN (py, R;) = FALSE. Note that in this case, there always exists égion], 1 <] <
n that has the mean intensity closet to the intgmdithe neighbor pixepy, orf(R,) = TRUE,
1 <] <n. The pixelpy is, then, included in the regioR;. The number of regionsa is
unchanged through the growing process.
Since seeded region growing requires the user doige the seeds, segmentation results very
dependent upon seed choices (e.g., number of sewbsheir locations). For example, in the
extreme case, where there is only one seed, rhelgrntire image will be grouped into a single
region. The location of seeds also affects the grgwesults, and noise in the image can cause
the seeds to be poorly placed [54, 55].

Unseeded region growing:
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Unseeded region-growing [59] is a modified versanseeded region-growing that does not
require explicit initial seeds. This algorithm $samwith n random seeds. At each step, the
neighboring pixepis either grouped into the appropriate region aseieded region-growing, or

a new region is formed. One simple approach isgiieidg a threshold” to decide whether or

not to form a new region. If the smallest differerfwetween the neighboring pixel's intensity
value and an existing regions’ mean is greater thanpredefined threshold, a new region is
created with this pixel. This method uses the spixel connectivity definitions as in the seeded

region growing method. Th& ) function used in this method is defined as [59]:

if (] = argmin d; )AND (min di; < T)AND (CN(py, R;) = TRUE)

1<i<n 1<isn

then f(R,) = TRUE, R, < {R,,p;) (7.16)

else]—n+1, ne<J, R <{p}  f(R)=TRUE
wheredy; = |I(py) — mean(I(R,))| is the intensity value difference between the Iniedging
pixel py and the mean of existing regioRg, 1 < i < n, andT is the predefined threshold. We
note that the order of execution in (7.14) is vienportant for proper processing. In this case, the
number of regions might change through the growgraress (e.g., increase by one whenever a
new region is formed).
New proposed region growing:
We proposed a region-growing method based on tBeagted region growing technique, with a
number of important modifications. First, our mattaperates at a “superpixel” level, rather than
at the image pixel level. By utilizing superpixethe proposed method avoids both issues of
computational expense and excessively small regiwhde providing quasi-homogeneous
regions similar to those of other existing regisovwgng techniques [56-59]. However, a new
definition of connectivity at the superpixel levisl needed. Each regioR; is now a set of
superpixels, and Condition 2 in (7.11), is modifaedfollows:
New Condition 2 S, ands; are “connectedy S, ,S, € R;,1<i<n (7.17)
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where S, and S; are thek®™ and st" superpixel,1 <k #[ < K, K is the total number of
superpixels, andt is total number of regions. We note that each ipel itself is a set of

connected pixels as discussed in Section 2.1. Tmectivity at the pixel level remains
conventional (e.g., the 4-connected neighbors). BwperpixelsS; andS; are “connected” if

there exists aequencef superpixelss,,, ..., S; such that:

Sm, .,S; € R;, all superpixels in the sequence are in theRget (7.173)

and every 2 superpixels that are adjacent in thaesee are connected. (7.17b)
Any two superpixelss,, andS; are "neighbors" or “connected” if there existsixepp,, € S,
and another pixgd; € S; such thap,, andp; are 4-connected.
A superpixelS,,is said to be a “neighbor” of, or “connected” toregionR;, CN(S;,R;) =
TRUE, if there exists a superpixg| € R; such that two superpixess, ands; are connected.
A second modification in our proposed method ig thaorks for color images, rather than for
gray scale images as used in the original techsiqUieerefore, our similarity measurement is
defined based on statistics, mainly the intergligaréinge, of pixel color (ih*a*b color space) in
regions and neighboring superpixels. (Our propasethod works for gray scale images, in
which the similarity measurement is based on therduartile range of pixel intensity).
Finally a third modification in our method is thhe decision of grouping an adjacent superpixel
to an existing region is dynamically depended ufian statistics, or “shape and size”, of this
region.
Let S, be the investigating superpixel that is a neighdfoan existed regioR;. For notational

simplification, letS, also denote the 3D vector consisting of the medmevofL* , a*, andb* of
all image pixels belong to this superpixel (eSg.= [, ak,Bk]T).
Note that regiorR;, 1 < i < n, is a set of superpixelR; = {S,,},1 < m < N;; N; is number of

superpixels belong to this regidt); andn is the number of regions (note tHgL, N; = K,
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where K is the total number of superpixels in thauit image). LeR; be the 3D vector consisting

of the mean value df* , a*, andb* of all superpixels belong to this region:

N
Ri:_'z S (7.18)
L

Assume that the superpixg belongs to the regioR;. We use statistical outlier detection to
determine ifS, is not the outlier. Ledl,,,; be the weighted Euclidean distance between therreg
meanR; and a superpixed,, belong to this region (vectst,):

dmi = ”§m - Ril|W3
(7.19)

= \/wl(l_i — 1) + wa(@; — @p)? + wy(B; — b)) , 1 <m < N,
whereW; = [w;, w,, w,]Tis the weight vector (e.d5; = [1,1,1]" as the first three components
of the weight vectoW in (2.5));S,, = [, G, Bm]TandI_ii = [l a; Ei]T.

For a group ofV; numbersd,,;, 1 < m < N;, we use the standard statistic outlier test tafywer
whether a number is an outlier or not. Def@ﬁé Qé, andQ§ respectively the first, second, and
third quartiles (or equivalently, the 25%, 50%, af¥6) of this data. (Note th&k is also the
median of thes&; numbers). There are 25%, 50%, and 75% of the ntgrbat are less tha@f,
Q%, andQy, respectively. LefQR! = Q% — Q! be the interquartile range of this data. A number
dy; is considered an outlier of this data if it isfefent from the median more thartimes the
interquartile range.

dy; is not an outlier, if Qi — zIQR! < d; < Q% + z IQR! (7.20)

is an outlier, otherwise.

In this work, we use = 1.5 as normal. Hence, i,; is an outlier, the superpix§}, should not
belong to the regioR;. Otherwise, this superpix8), belongs to the regioR;.
With the connectivity between superpixels, and leefwsuperpixels and regions as defined in

(2.17), and the test to verify that a superpixedudth belong to an existing region, thfé )

function used in our method is defined as:
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if (] = argmin d; )AND(Q{ —2zIQR' < dy; < QL +zIQR") AND (CN(Sy, R;) = TRUE)

1<isn

then f(R,) = TRUE, R, < {R,,S;) (7.21)

else] «n+1, ne<], R <{8}  f(R)=TRUE
At each iteration, a current superpisglis considered belonging to the “closest” existiagions
that are connected to it. The “closest” measurensentsense of the weighted Euclidean distance
between this superpixel and a region mean in thé&.*2Db* color space. Note that we use 3D
color space instead of the 3Da*b*xy space used in the superpixel generating processigs
7.1), because the spatial informatioty (coordinates) is already enforced by the connegtivi
definition. For example, a region may consists t@anected superpixels that are far away in the
image plane (large difference ixy coordinates), but similar in color. If the investied
superpixelSy is not an outlier of the closest regifip, based on the statistical outlier test, then it
will be grouped into this region. Otherwise, a magion, which consists of this superpi$gl, is
created. The process is repeated until all supelgpir the given image are visited. The algorithm

is illustrated Fig. 7.6, and also as a pseudo codable 7.2.
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List of “unvisited” U = [1]
W, =[1,11]",z=2
List of regionsR = @,n =0

\!

Randomly choss, € U

Find the “closest” existed regidry

that is connected t§),.

Form a new region
n—n+1R,={SJR<RUR,

S} is an outlier

ofR]

Groupsy into R,

!

UpdateU « U — {S;}
|

J

no yes

U+0 End

Figure 7.6: Proposed Region Growing Algorithm
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Table 7.2: Proposed Region Growing Algorithm

- Given the list of unvisited superpixdls= [1] as the result of our algorithm in Table
7.1. For our work herein, z=2 aid; = [1,1,1].

- Randomly chose a superpixg) € U.

- Find the “closest” existed regiaR, that is connected (as defined in (7.15))Sjo
based on the weighted Euclidean distance to regiensers as in (7.17).

- Validate thatS,, is not an outlier oR, as in (7.18) and (7.19). Include the superp|xel
S to this regiomR,.

- Otherwise, create a new region to contain this igipe S, .

- RemovesS; from the list of unvisited superpixels— U — {S;}.

- Repeat to choose another superpixel in theliatntil all superpixels have been

visited (and grouped into appropriate regions).

Note that when we compute interquartile the rarggeafgroup having only one data point, for
example a regiorR; containing only one superpixel (e.g., a new fornredion), and an
investigated superpixed,, the interquartile range is simply set equal te distanced,;, (e.g.
Qi =0, Qi =dy;, IQR! =dy,). Therefore the condition (2.2Q)Qi — z IQR' < d;; < Q% +

z IQRY), which equivalent t§—1.5d; < dy; < 2.5dy;), is always true, oy is always not an
outlier. In other words, if the investigated supeeps,, is closest to a neighboring existing region

that is newly formed (contains only one superpix#igns,, is always grouped into this region.

7.3 Our proposed DUHO segmentation method
Our new image segmentation algorithm, which we giege the DUHO method, illustrated in
Figure 7.7, is the combination of the two algorithdiscussed in previous sections, the superpixel

generating algorithm in Section 7.1 and the modifiegion-growing algorithm in Section 7.2.

First, the superpixel generating algorithm is aguplio a given image to build K superpixels. Then
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the new region growing algorithm iteratively groupese superpixels into appropriate regions

and forms the final image segmentation result.

Color image
(RGB)
Input SF

w =[1,1,1,0.2,0.2]7
z=15

!

Convert color space frofRGB)

to (L*a*b*)

Superpixel Generating

Algorithm (Section 7.1)

v

Region Growing Algorithm

(Section 7.2)

Segmentation label
(map)

Figure 7.7: Proposed DUHO Image Segmentation Atigari

Control Parameter:

Our superpixel generating algorithm has two contparameters, the desired number of
superpixel¥ and the 5D weight vectd. Since this is an intermediate step, and the pixuds

will be grouped or merged in the next step, thalfisegmentation results are sensitive to the
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value selected foK. However, an excessively small value F6fmight lead to a poor “under-
segmentation” result, while an excessively largeieyaf K results in excessive computational
time and might produce undesired “over-segmentatibine weight vectoW controls the effect

of the properties of each pixel, e.g. intensitypocoand spatial location, and hence controls the
compactness of a superpixel. In the work hereiesehparameters’ values are selected manually

based on experiments, ed. = [1,1,1,0.2,0.2]", or w; =w, =w, =1 andw, =w, = 0.2,

N N

SFaefauir = 30530 Kaerauir = =900 , N is number of pixel in the input image (in

most test imaged/ = 481 x 321 = 154,401, henceSFyerqr = 171 = 13 X 13; see Section
7.1). This roughly matches the empirical maximumcpptually meaningful CIELAB distance
and offers a good balance between color similaxity spatial proximity. The final number of
superpixels provides a good balance between rebsonasual effect of segmentation and
practical computational time.

Our region growing has two parameters, namely thev8ight vecto; andthe outlier range.
The weight parameter controls the emphasis of eachponent, intensity and color, in the
(L*a*b* ) space. However, there is no specific reason lecsdifferent values oW ; from the
first three components & used in the superpixel generating algorithm. Mweeepsince all data

in (L*a*b* ) space is computed fronRGB) color space and has been normalized in the range
[0,1], we advise selecting; = w, = w, = 1. The outlier range affects the test to accept a
superpixel belonging to (and hence to be groupddinyi a region. Therefore it controls the
sensitivity of segmentation results. A small vatdie means that only a superpixel that has very
similar color and intensity properties to thoselef region’s mean will be accepted to join that
region, such that a large number of small regioagpeoduced(“over-segmentation”). In contrast,
a large of value of tends to produce a small number of large regitunsder-segmentation”). In
this work, the valuez = 1.5 was selected to produce a reasonable balancemimary, only two

parameters in the first step, the superpixel geimgralgorithm, need to be selected.
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Figure 7.8: DUHO Segmentation Process (See textdtail).
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Figure 7.8 illustrates our segmentation processaforimage: (A) the input color image, (B)

results from our superpixel generating algorithm;ii@an value of each superpixel; (D,E,and F)
three regions after applying our region growingoslthm; (G) the segmentation map, in which
each region is shown in a different color; and gdyments’ boundaries (in purple) overlaid on
the original image. Note how this new method presethe spatial relationship between pixels in

the image, and hence preserves the detail edgabantage spatial structure.

7.4 Complexity analysis of our DUHO segmentation gbrithm

7.4.1 Complexity of our superpixel generating algorithm

Our superpixel generating algorithm, presentedeictiSn 7.1, includes the following:

Step1 Input SF and W. Normalize all vectors in 5D space. InitialiZzé= N/SF
superpixel center§,, 1 < k < K at regular grid siz6 = \/N/K
Step 2 Find the nearest superpixel to each ppxell<i<N
Step 3  Update new superpixel centers.
Compute the stopping criteria (humber of pixelsngjea)
Step4  Repeat Steps 2-3 until stopping criterraes
We use the standard “big O” notation for analyzitige complexity of the algorithm,
characterized by computation time, in the worsecsenario and as a functionf(number of
pixels of the input image) wheN — . Therefore, higher computation times indicate argh
complexity. Computational complexity for Step 1 T$ = 0(1), or the computation time
complexity of this step does not depend\an
At Step 2, for each pixel, we compute its distafi€aclidean distance in 5D space) to &l
superpixel centers. Therefore, the naive implentiemta(such as in the original K-means
algorithm) has a computational time cdt= O(KN) = O(N?), K = N/SF, whereSF is a
constant. However, we take advantage of the faat ith our algorithm all superpixels are

adjusted and compact because the spatial informétiecoordinators) of pixels is restrained. A
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superpixel should contain only pixels that are verty far away from its center. In other words,
there is no need to compute the distance fromengpixel to every superpixels center but only to
those that are in the 2S-by-2S proximity to thisepi (Normally, there are 4 superpixels in this
range). Accordingly, the computational time forBgis significantly reducedT, = 0(¢;N) =
O(N), c; = 4. Figure 7.9 illustrates that the search spaceupftgorithm is significantly reduced
from that of the original K-means algorithm. This the reason for the fast speed of our

segmentation procedure.

(a) Our algorithm searches a space of 2S-by-2S (b) K-means searches the whole image
pixels (A superpixel is roughly S-by-S pixels)

Figure 7.9: The search space for each pixel aentistep
for our superpixel generating (a) and the origkhatheans (b)
Computational time for the Steps 3 and 4Tare= T, = 0(1).
For the worst case, the algorithm terminates oritgrahe maximum number of iterations

(B = 10) is reached. Hence, the computational time forsoyperpixel generating algorithm is:

Tim61 = T1 + IB(TZ + T3 + T4)
=0(1) + B(c;O0(N) +0(1) +0(1) (7.22)
= pc,0(N)

7.4.2 Complexity of our region growing algorithm

Our region growing algorithm, presented in Tabl Bection 7.2, includes following steps:

Step 1 GivenU =[1], z=2 andW; = [1,1,1]7
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Step 2 Randomly chose a superpixgl € U
Step 3 Find the “closest” existed regid®y that is connected t%),.
Step 4 Validate thats, is not an outlier oR;. Include the superpixsl, to this regiorR,.
Otherwise, create a hew region to contain this igie! S, .
Removes,, from the list of unvisited superpixels« U — {S}}.
Step 5 Repeat Step 2 until all superpixels haes ésited.
The computational times of all steps except the Stef this algorithm are independent /of
T1 = Tz = T4 = T5 = 0(1)
In Step 3, we must compute the distance (weightedidean distance in 3D space) from a given
superpixel to existing regions that are conneabethis superpixel. The distance computing and
connectivity check task are both independeniVofin the worst case, the number of existing
regions that are connected to a superpixel isent@ital number of regions in the image). Hence,
the computational time for this stepTs = 0(n?).
This algorithm always terminates after K iteratigisis the number of superpixels). Therefore,

the computational time for our region growing altfon is:

Timez = Tl + K(TZ + T3 + T4 + Ts)
=0(1) + K(0(1) + 0(n?) + 0(1) + 0(1)) (7.23)
= K0(n?)

7.4.3 Complexity of our DUHO segmentation algorithm:

Our DUHO segmentation algorithm is a combinationthad two above algorithms. Hence, the
total computational time is:
Time = Time, + Time,
(7.24a)
= fc,;0(N) + KO(n?)
However, sincen < N, the term0O(n?) is very small, and sincg, ¢; and K are constant
parameter given by users, we can simplify (7.2dagad

Time = O(N) (7.24b)

So, our DUHO segmentation computation time vaiiesalrly with the input image sizé.
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7.5 Objective function and convergence of DUHO segmtation algorithm

7.5.1 Objective function of our superpixe generating algorithm

For our superpixel generating algorithm, which gsemtially based on K-means clustering with
modifications in similarity measurement and a tireducing implementation, we consider an
objective function similar to the original K-meaalgorithm. The superpixel generating problem
can be viewed as finding the “best” way (accordinghe objective function defined later) to
divide a finite set ofV pixels (represented by a 5 dimensional vectpr)1 <i < N into K
disjoint superpixels,,1 < k < K among all possible way of distributing, in whighis given.

Our superpixel generating algorithm can be mathieaist presented as:

Input: Finite setl = {p;} € R%, | I| = N; integerk (7.25)

Output:  Finite setS ={S,} such as|S$| =K, U5_,S, =1 and S; n (7.26)
Sz =0

Goal: Minimize Cost(S) = YX_, Ypies|IPi — Skll? (7.27)

where|. | is the cardinal (or size) of a set, and othertimia as introduced earlier.

It has been proved that during K-means iteratitims,cost monotonically decreases with each
iteration [51]. Hence, this would also hold for cauperpixel algorithm given in Section 7.1.
Therefore our superpixel generating algorithm coges to a local minimum of its objective

functionCost(S) in (7.27).
7.5.2 Objective function of our region growing algorithm

In similar fashion, the segmentation problem cawibeed as finding the “best” way (according
to some objective function, defined later) to devid finite set oK superpixelsS;,1 <k <K
into n disjoint regionsR;, 1 < j < n among all possible ways of distributing. Note thateing

unknown presents a much more difficult problem cared with the problem in Section 7.5.1, in
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which the number of groups is given. Our regionwgng algorithm can be mathematically

presented as:

Input: Finite setl = {S,} c R%,|I| =K (7.28)

Output:  Finite setR = {R;,1<j <n} such asU}_, R; =1 and R; n (7.29)
Ry.; =0

Goal: Minimize Cost(R) = Cost;(R) + Cost,(R) (7.30)

We propose the objective function consist of twagarhe first partCost;(R), is to minimize
the variation within each region or the intra-regielationship, which serves the same purpose as

in K-means algorithm, given by:

Cost; ®) = » > |15 =] (7.31)

j=1SkER;
wheregz; is the representative vector of the regRyn The second part of the objective function,

Cost,(R), takes into account the inter-region relationshitween regions that are neighbors,

given by:

Cost,(R) = z

n

— — 2

IR; — Ryl (7.32)
j=1 \CN(Rj Rn)=TRUE
wherel_ij is the mean of the regioR; as defined in (7.18)CN(R; R,,) = TRUE only if the
regionsR; andR,, are connected.

Combining (7.30), (7.31), and (7.32) gives the ofiye function of our region growing algorithm

as:

n n
Cost® =( > > [Isi -z |+ > R -Ralf (7.33)
j=1 \CN(R; Ryn)=TRUE

j=1SkER;
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7.5.3 Discussion of proof of convergence:

We would like to prove the convergence of our ragioowing algorithm presented in Section 7.2
by showing that during the iteration in of the aljon, the cost monotonically decreases with
each iteration. However, because of the complexityhe problem, we can only analytically
prove that the first parfost;(R), monotonically decreases with each iteration i dlgorithm
(i.e., based on k-means proved convergence). HaowéseCost,(R) , note that even for a fix
number of subsets, there are enormously large combinations of waydistribute a set ok

elements intm subsets,{ > n). For example witlk = 100 andn = 2, the task is to divide 100

elements into 2 subsets. There é{éo) = 100 ways to distribute 1 element into the first subset

and 99 elements into the second subset. (The “halaroefficient” notation(z), often read as

K!

“chosen from K”, can be computed agé) = K=

wheren!=nx(n—-1) X ..x2x1

2

denotes the factorial ef, and0! = 1). There are(lo0

) = 4950 ways to distribute into 2 subsets

of 2 and 98 elements, respectively. There(ailgeo) = 16170 ways to distribute into 2 subsets of

3 and 97 elements respectively, and so on. Hewes i€ n = 2 is given (and small), the total
number of ways to distributé elements intor subsets is very large. And this number of ways
grows exponentially with increasing valuesnof

If n is unknown, this process must be repeated forygyessible value oft, 1 < n < K. In this
general case, the total number of ways to distildutelements intar subsets is exceedingly
large, so that it is intractable for a brute-foeggroach to find the global optimum 6bst,(R)
among all possibilities.

Another difficulty in proof of convergence is thiite “connectivity” condition incost,(R) is

difficult to represent mathematically. At each @&on of our region growing algorithm, a random
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superpixel is considered either to be grouped tinéo(closest) existing region or to form a new
region. Hence, it appears analytically intractableepresent the connectivity between regions.
Lemma 7.1: Optimal solution for Cost;{(R) for asingleregion (n = 1)
The optimal solution for a single regidhis wherthe representative is the same as the meRn
of this region. Then we have:

Costy(R; z) = Y5, crllSk — zl|> » min  whenz = R (7.34)
The new notatiolost(R; z) is used to emphasize that vector(s) after the seion is(are) the
representative(s) to calculate the cost.
In addition, ifz = R is chosen, then the cost will be increased by:

cost;(R; z) = cost;(R;R) + |R|(]| z— R||?) (7.35)
The proof of Lemma 1 is quite straight forward @ad be found in [51].
Lemma 7.2: Part of the objective function for multiple regions
TheCost, (R) monotonically decreases during the course of egion growing algorithm.

Proof:
Let R](t)andl_?](t), 1 <j <n, be, respectively, a region (a set of superpixahg) its center (a 3D

vector mean) at the start of thé iteration of our algorithm. At first, our algorithassigns each
superpixel to its closest center. Herein, for sinify, we ignore the connectivity and outlier test

between the current superpixel and the region witich it will be grouped. Assume that a

superpixel is added into thﬂft) region, such that this region will changeRﬁ”l), but its
representative is stil_t](t) and is not its center. Therefore we have:

Cost, (R, RV, 1< j <n) < Cost;(RP;R”,1<j <n) (7.36)

t+1)

Next, each region center is updated to the cumegibn mean denoted d}é , such that by

Lemma 7.1 we have:

Cost; (R, RV, 1 < j <n) < Cost, (R, RV, 1 <j <n) (7.37)
Combine (7.36) and (7.37) to obtain:
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Costl(R}Hl);l_?](-Hl). 1<j<n)< Costl(R](-t); l_ZJ@, 1<j<n)
(7.38)
or in shortened notatiolost, (R“*V) < Cost, (R®)

Accordingly, we proved that the first part of thbjective functiofost;(R) monotonically
decreases with each iteration during the coursauofregion growing algorithm. As mentioned
above, due to its complexity, we were unable toverthat the second part of the objective
function Cost,(R) also monotonically decreases during the courseowf region growing
algorithm. Such proof;, if it exists, is left fortfure work.

Figure 7.10(b) shows an example of the objectivetion Cost(R) as in (7.30) of a single run
our DUHO segmentation on the image in Fig. 7.10Gnce there are 500 superpixels in the

image, the DUHO algorithm terminates after 500sitiens.

1

09r B

08r b

07r B

06r B

05F

04

Objective function Cost(R)

03F

02r B

01r B

0 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
lterations

() (b)

Figure 7.10: Objective function in (Bpst(R) of a single run our DUHO segmentation for the
image in (a)

Four other examples of convergence are shown ior&ig.11-7.14. During the course of our
studies with 300 original different image, we foutitht Cost(R) always decreased with

iterations up to the maximum &fiterations.
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Figure 7.11: Objective function in (I8pst(R) of a single run our DUHO segmentation for the
image in (a)
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Figure 7.12: Objective function in (Bpst(R) of a single run our DUHO segmentation for the
image in (a)
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Objectiv e function Cost(R)
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Figure 7.13: Objective function in (Bpst(R) of a single run our DUHO segmentation for the
image in (a)
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Figure 7.14: Objective function in (Bpst(R) of a single run our DUHO segmentation for the
image in (a)
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Chapter 8

RESULTS AND EVALUATIONS

In this chapter, we present segmentation resukbsiohew DUHO method discussed in Chapter 7
on a set of a large variety of natural scene imageslor, which is published and available in the
literature. A number of evaluation metrics for segwation are discussed and we propose a
framework to select the best metric. We also complae results from our DUHO method with

other state-of-art segmentation techniques.

8.1 Dataset

The dataset used in our test is the public BerkBlEymentation Dataset and Benchmark (BSDB)
[68]. It consists of 300 color images of naturatrses, some of which are shown in Figure 8.1.
Note that some images contain one or two “stantl-ahjects that are fairly easily detected from

the background, such as images with name/ID nun@888, 106025 and 135069 (see Fig.8.1).
Other images have multiple objects with many dgtailich that different human observers might
segment them differently. The dataset in [68] @sotains hand-implemented segmentations for

each image as shown in Figure 8.2.
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Figure 8.1: Some dataset’s images from [68]
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(@) (b) @) (b)

Figure 8.2: Some pairs of original image (a) anduadimplemented segmentation (b), which
served as ground truths

8.2 Results of our DUHO algorithm

Sample results of our DUHO segmentation algoritliiscussed in Chapter 7, are shown in
Figure 8.3. The first column (a) of Fig.8.3 contathe original images, while the second column
(b) shows segmentation results in which the boueslasf segments identified by DUHO in
purple are overlaid onto the original image, aralldst column (c) shows the same segmentation

results in which each DUHO segment is presenteddistinct color.
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(b) (©)
Figure 8.3: Our DUHO segmentation results on samages
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Note that our DUHO segmentation algorithm presemvefi the detailed edges/boundaries of
“true” segments or objects and the image spatiatgire. Compared with human segmentation,
our algorithm normally produces smaller segmentsour algorithm, different segments differ
from each other in color and location. Humans ofteke advantage of prior knowledge to
combine into a larger segment some different regitimat are connected but distinguishable in
color), about which he or she has prior knowledg# these should belong to the same object.
This type of information must be learned, and igdoel the information contained in a single
image. Also, human observers often easily ignoisen@nd focus only on “salient” objects in a
given image, despite the fact that detecting objé@m the background and detecting salient
object are difficult tasks themselves.

As indicated in Section 8.3, the parameter valuesused for the above results al:=

N

[1,1,1,0.2,0.2]T (Or W =W, =Wy = 1 and W, = Wy = 02), SFdefault = m, Kdefault =

N

= = 900, whereN is number of pixels in the input image. For examal given image of
default

size 481-by-381 pixels haé = 481 x 321 = 154,401, such thabFgrqur = 171 = 13 X 13.

8.3 Effect of the Control Parameters:

Figure 8.4 illustrates the results of our proposegimentation method applied to an original input
image (a). Fig.8.4 (b1 and b2) shows the superppazierating results with two different
parameter choice® = 500,SF = 400= 20x20 (b1); and =1000,SF = 20000 14x14 (b2). Figs

cl and d1 correspond to segmentation in Fig alFagglic2 and d2 correspond to segmentation
in Fig a2. Fig.8.4 (c1 and c2) show the segmemtatesults from these two parameter sets, in
which each segment is presented in a distinct cdtig.8.4 (d1 and d2) show the same
segmentation results in which the boundaries ofngegs in purple are overlaid onto the original
image. As we expected, when the smallest featase\gilue (SF) is larger (equivalent to smaller
number of superpixel#), our segmentation algorithm produces a small rermtif large
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segments/regions. In other words, the algorithnurnst coarser segmentation in which any
feature that is smaller thai¥ will be smoothed out, such that some details efdhginal image
might be ignored (see Fig.3.4.c1). In contrasthwitsmaller value &fF (larger value oK), our
algorithm produces a large number of small segnregisns and more detail from the original
image is retained (see Fig.8.4.c2). In short, tbetrol parameteSF is a means for users to
control the coarseness or fineness of the segnmmtedsults. The “optimal” value ofF is
dependent on the image features, together witlptinpose or application of the segmentation
process. With a given input image to be segmemteter can select the appropriate valugrof
based on the smallest feature size (e.g. the nuofhgkels) in this image that he or she would
like to capture. If the segmentation results am ftoe or over-segmented (e.g. many smaller

segments than expected), one can incr8Bsand re-run the algorithm, and vice versa.

91



L

(@
(b1) (b2)
(c1) (c2)
(d1) (d2)
L2l AL | R
2 JE]] 1
= S HH
L I T |4 =
’ e == oL i T
}_‘ £
{ g O
Y g T :

TR Hag

AR S e

OfO

ur DUHO segmentation me

(]

dSF =20x20

=40x40(right). See text for more detail.

92



8.4 Selecting the best unsupervised metric

In this section, we present six unsupervised neeiricthe literature that are commonly used to
evaluate segmentation results. Then we proposangefrork to find the best comparison metric
in the sense that this metric is the most condisigétlh the ground-truth provided by manual
segmentation and, at the same time, is the mositisento random segmentation results. We
believe a “good” metric should produce a high seanréhe ground-truth segmentation as well as
produce a low score on random segmentation. Ausisd earlier, the fundamental difficulty
with evaluation of segmentation is that there isotjective, clear definition of good or bad
segmentation. Moreover, different observers oftenndt agree on how to segment the same
given image. The issue of variation in the scalésewor in ground-truths from human

segmentation results will be discussed in the 8e@ib.
8.4.1 Discrepancy evaluation technique (D —metric)

This technique, introduced by Weska and Rosenfélq, [is a simple technique based on the
discrepancy measureD{metric) between the original and the segmentedg@sa Precisely,
discrepancy is computed by the sum of the squdrepeified differences between the original

image and the segmented image. This med3usegiven by:

D= Z NEHEF)§ (8.1)

wherel, andI, are, respectively, the height and width of the imag(i,j) andL(i,j) are the
grayscale of the pix€l, j) of the input image and the segmented image, résphc Note that in
the segmented image, pixels of the same segmeatthawame value (grayscale or color) that is
the average of pixel values (grayscale or cola) belongs to this segment in the original image.
In other words, thé-metric is related to the total variation of gragiecin the original image
corresponding to all segments. For a good segiiemteesult, the metri® should be close to

zero.
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8.4.2 Theintra/inter-region visual error (E — metric)

An unsupervised evaluation technique based on itikley color difference [71] is employed to

evaluate image segmentation algorithms. Definedin¢gion visual errorEj;,;,, as:

1 n
Einera = ) #(eE = th) 5:2)
k=1

whereu(a) is a step function, given by

1 a>0

0 otherwise (8.3)

ua) ={
ande? is the square of the color error in tRg image region computed id*a*b color space

(1 < i < n; wheren is number of segments), given by
er = Z lp — RilI? (8.4)

wherep = [l,a, b]" is the 3D vector corresponding to the pipelR, = [l_k,ak,Bk]Tis the mean
vector of the regioR,; || || is the standard Euclidean nori;is number of pixels in the input
image;th denotes the threshold for visible color differensh th = 0.36 according to [62].

The intra-region visual error is designed to measie visible color difference within the
segmented regions. This measure can be used toaéstihe degree of under-segmentation.
Intuitively, a properly segmented region shouldtaanas few visible color errors as possible. In
other words, the smaller the valuerf;,,, the better is the segmentation.

On the other hand, another measurement namedréegem visual error is designed to measure
the invisible color difference between every adjagmir of segmented regions. This measure can

be used to estimate the degree of over-segment&teime “inter-region visual erroiE;, ;. as:
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n
1

Einter = N Z

k=1

whereL; andL; are the boundary length (in pixels) of regidghsandR;, respectivelyL,; is the

n
ij _ —_n2
D, o n(t- IR =R ©5)
=1,j#k

J

“joined length” (or number of pixels in the “shatdsbundaries) between the image regidhs
andR;. L;; =0 if R, andR; are disjoined. Given a segmentation result, we fato account
these boundary pixels with “invisible” color diffsrice (no difference in color) across the
boundary. Intuitively, these pixels should not beated as boundaries. Hence, the smaller the
value ofE;ter, the better is the segmentation.
Based on these two measures, a score or nietocmeasure how good is a given segmentation,
may be defined by:

E =2 (Eintra + Einter) (8.6)
Note that, for a segmented image, a large valumtod-region visual error means numerous
pixels may be mistakenly merged, such that thigeneould have been under-segmented. On the
other hand, a large value of inter-region visuabremeans numerous boundary pixels may be
mistakenly generated, such that the image coulé baen over-segmented. Moreover, there is a
reciprocal relationship between intra-region eremd inter-region error. As we adjust the
controlling parameters of a segmentation algoritbrrmerge more regions together, the inter-
region error decreases, while the intra-regionramoreases. On the contrary, as we segment an
image into more regions, the intra-region errorrelases while the inter-region error increases.
Also note that all pixel color values are normalize range of [0,1]. Normally. (number of
regions)< N(number of image pixels), such th&},;,4, Einter @andE will all lie in the range

[0,1]. For a good segmentation result, the meirghould be close to zero.
8.4.3 Average squared color error (Q — metric)

This metric is empirically defined by Borsotti &t [#2] as:
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Ng

n
1 ek, 2
Q= Wﬁkzl [1 +log Ay + (A_k>

wherek = 10%is an empirical number and a normalization fachat takes the size of the image

(8.7)

into account, N is the total number of pixels ie tmage, n is the number of segmeafs, is the
square of the color error in the segmBptas in (8.4) A, is the area of the segmeRy} , andn,,

is the number of segments that have the area iratige from 0.98, to 1.024,.

Note that theyn term penalizes segmentation results having tooymagions; thee,%k term
penalizes results having non-homogeneous regiohs. dquare of the color error will be
significantly higher for a large region, such thhe adjusted term1(+logAy) is applied.
Experiments show that the number of large regibias have a similar area is small, while the
number of small regions that have a similar areg belarge [42]. Therefore, thg measure
also penalizes the segmentation result having maynsmall regions that are similar in size. For

a good segmentation result, the me@ishould be close to zero.
8.4.4 Entropy based metric (H — metric)

Zhang et al. [73] proposed another unsupervisetliatian metric based on the “region” entropy

and the “layout” entropy. Define the entropy foclke@egmenk, by:

L,(m)_  L,(m)
HR) = — Z kAk log kAk (8.8)

meVy

whereV, is the set of all possible grayscale values oklgidn the regiorR, of the original
image, L, (m) is the number of pixels in this regidey, of the original image that have the
grayscale value of m.

Define the region entropl,. of entire image as the sum of entropy acrosseglbns weighted by

their areas, given by:

Hy= Vi Y S HRY) (8.9)
k=1
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where n, N,A,, andH(R;) are defined as before. Note that N is the totallmemof pixels of the

image or the “area” of the image. The first teym penalizes segmentation result having too

many regions. Now define the layout entrafyby:

Ay

A
Hl - — Wlogﬁ (810)

k=1

The H-metric measuring the effectiveness of a segmien method is the addition of the two
entropies, given by:

H=H, +H, (8.11)
For a given dataset, the H-metric can be normaliaedrange [0,1], in which a small value of H

(close to zero) indicates good segmentation.
8.4.5 Spatial color contrast along the boundaries of segments (C — metric)

This metric introduced in [74] considers the intdrand external contrast of the neighbors of
each pixel in all segments. Defiilé(p) as the set of pixels that are the 8 neighbors@fpixel

p. For each segmemR,, define the internal contrakt and external contrasgy,as:

1
L= . max(lp — qll,.va € W) 0 R) 8.12)
k
PERg
1
Fe=7- ) max(llp—all.v (4 € W@)AND (q € Ry)) 8.13)
kpeRk
wherep andgq are the 3D vectors corresponding to the pixeindgq, respectively]| || is the

standard Euclidean norm; adg and!, are the area and the boundary length of the segRen
respectively.

The contrast (R;,) of the segmerR,, is given by:

I /E, if I, <Ej
Ex/l, otherwise

C(R,) = { (8.10)

The global contrast, which is used as the measweffectiveness of segmentation, is defined

by:
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1 n
c =NZ A C(RY) (8.11)
k=1

For a given dataset, the C-metric can be normaliaedrange [0,1], in which a small value of C

(close to zero) indicates good segmentation
8.4.6 Global intra-region homogeneity and inter-region disparity (DD —metric)

Rosenberger and Chehdi [75] proposed a metricdgmentation evaluation based on the global
intra-region homogeneity and the global inter-regitisparity of segments. This metric employs
only grayscale levels of image pixels. The glob#ia-region homogeneity, of segments is the
weighted average of the pixel intensity variatiémlbsegments:

1 2
D=7 A Y (6@~ GRY) (8.12)

k=1 PERy

whereG (p) is the grayscale level or intensity of the pipelG(Ry,) is the average grayscale level
of all pixels belong to the segmeR; and other notations are as defined earlier.
Define the disparity of two segmerRg andR,,, as:

|G(RY) — G(R,,)|
Ng

d(Ry, Rp) = (8.13)

whereN; is the number of gray levels of all pixels in thetire image. Then, the global inter-

region disparityD, is defined as the average of all the disparityvben any two segments, given

by:
D, = izn: i d(Ry, Rr) (8.14)

Notations in (8.14) are as defined earlier. TheariméD used as a quantitative measure of a

segmentation is:

D, — D,

DD =
2

(8.15)

For a given dataset, the DD-metric can be normadlizea range [0,1], in which a small value of

DD (close to zero) indicates good segmentation.
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8.4.7 Selecting the best unsupervised metric

The key idea of selecting the best evaluation meiut of six metrics introduced above is that a
better metric should produce a better score ogithend-truth segmentation (produced by human
observers) and produce a worse score on randomesggtions at the same time. The 300
ground-truth segmentation results are availablettey with the DSDB database introduced in
Section 8.1. We generated 300 random segmentauits to help evaluate the various metrics.
To create a random segmentation, we first geneeatatmap image having the same size as the
image to be segmented (e.g. 480 pixels x320 pixald)employed a random integer number n,
1 < n < 150. Next, we randomly initialized n segment “centgrs’pairs of xy-coordinators for n
points in the image plane). Then, we employed ad&ms clustering technique to divide the
bitmap image into n regions, which served as agansegmentation map consisted of random n
segments with random size, shape, and locatiorur&i§.5 presents an example of a random

segmentation of an original image.

Rl
(a) (b) (c)

Figure 8.5: The ground-truth segmentation (b) armhdom segmentation (c) of an original
image (a)

For the " evaluation metricl < i < 6, we calculate its 300 metric values (normalizedeoin
the range from 0 to 1) for the 300 ground-truthnsegtations. Call the distribution of these 300
values thef,® distribution, and compute its meafiand standard deviatiom®. Similarly, we
calculated these metric values for 300 random satatiens to form the distributigi¥ with

uRmean andsf standard deviation. Since we expect for the “goed&luation metric, the
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deistribution will be close to zero, and tm§distribution will be close to one, the Fisher's
distance [76], was used to measure the dissimilarithe “distance” between two distributions.
The Fisher distance’then become our quantitative measurement of thedrggss of an

evaluation metric, witl¥; given by:

_ 2(ufif)’ (8.15)

LT R (68

Table 8.1: Fisher’s distances betweenfifalistribution on the set of ground-truth segmentai
andfR on a single set of random segmentations

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6
Metric score
D-metric E-metric Q-metric H-metric C-metric DD-metric
distribution
[70] [71] [72] [73] [74] [75]
G:
e e ] ui=0.32 0.14 0.2 0.28 0.18 0.29
truth tati
i segmeniation 5e-0.14 | 0.08 0.17 0.11 0.12 0.16
Asingle set of 300 uf=0.64 0.71 0.75 0.67 0.63 0.65
random
segmentations oR=0.13 0.15 0.12 0.18 0.17 0.14
Fisher’s distance
betweenthetwo | F, =5.61 22.48 13.97 6.84 9.35 5.73
distributions

The larger the value of the Fisher distance, theengeparation there is between the two
distributions (ground-truth and random segmentadioand therefore the better is the metric.
Note that the distributions of metric values copmwling to ground-truth segmentations are
fixed, while the distributions of metric values mEsponding to random segmentations vary, due
to a different set of 300 random segmentation isegeted each time a metric evaluation is
computed. Accordingly, we ran the Fisher distanoe@dure for each metric 50 times (each time

with a different set of 300 random segmentatioag)ltain reliable statistical measures. Table 8.1
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shows an sample result of a single run, in whiok EBimetric provides the best separation
between the two distributions.

The boxplot of Fisher distance distributions cqomwding to the 6 metrics after 50 runs is

provided in Figure 8.5. In each box, the centratinfmn red) is the median, the edges of the box
(in blue) are the 25th and 75th percentiles, theskens extend to the most extreme data points
not considered outliers, and outliers, if presarg, plotted individually as red crosses. The larger
the Fisher’s distance, the better is the metricsuesanent. The results clearly show that E-metric

is the best among the six metrics presented hefeicordingly, it will be used in comparisons

that follow.
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Figure 8.6: Fisher’s distances distribution coroegping to 6 metric measurements
after 50 randomization runs

8.5 Comparisons with other methods

8.5.1 Comparisons with non-super pixel-based and super pixel-based methods
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Figure 8.7 (b)-(d) shows results obtained from thean-shift [47] with window sizevs =

wi
50

[h—i X 5]; normalized cut method [54], and our DUHO segni@miaalgorithm, wheréii andwi

are the height and width of the input image in Ex&oth the mean-shift and normalized cut

algorithms segment directly at the pixel level amdploy a similarity measurement based on

pixel color and spatial information.

(@) (b) (c)

al bl cl dl el

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3
-

(d)

Figure 8.7: Some Comparison: (a) original imager(land d) segmentation results from mean-

shift, normalized cut, and our method, respectividy human hand-label

We observe that the mean-shift method tends touge@ver-segmentation, and its results are

heavily dependent on the window size [22,46]. Themalized cut algorithm, working at the

pixel level, might not preserve the detail edgeshaf input image, and hence might lead to

misclassification of pixels into “incorrect” segnienBoth these two methods have high storage

requirements and are computationally time consunfiog example total computation times for

the results in Fig 8.7, using a PC with Intel demde 2.2 GHz CPU, 2GB RAM, Matlab©2010b,

and Image Processing Toolbox Version 7.1, wereidngn Table 8.1. Our DUHO algorithm
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performs with significantly lower computation timethan the mean-shift and normalized cut
algorithms.

Table 8.2: Computational times (seconds) for segatiem of images in Fig 8.7
(Intel dual core 2.2 GHz CPU, 2GB RAM, Matlab©2018hd Image Processing Toolbox

version 7.1)

Image al a2 a3
Method (sec) (sec) (sec)
Mean-shift 135 128 117
Normalized-cut 142 140 132
DUHO method 95 92 87

The E-metric evaluation, selected in Section 8.4hasbest, was applied for 300 segmentation
results on images from the Berkeley segmentatitaisdaand benchmark [68] for each of these 3
algorithms. Table 8.3 presents the evaluation t&sul

Table 8.3: Evaluation of three segmentation alporg on the dataset

Segmentation algorithm Mean-shift Normalized-cut DUWHO method

Performance metri (small is better)

0.31+0.11 0.36 +0.24 0.26+0.12
mean * std

We see that our DUHO algorithm performs signifitanbetter than the mean-shift and

normalized cut algorithms.
8.5.2 Comparisons with super pixel-based methods

In this section, the segmentation results from BWHO algorithm will be compared with 3

recently published, unsupervised color segmentadigorithms based on superpixels, namely:
PSEG, GSEG, and JSEG. The main idea of the PSHGs[#Y scan through a hierarchy of image
partitions, from a highly over-segmentation to ghty under-segmentation partition, to find the
best partition that maximizes a predefined goodfiesstion. In the PSEG, the pixel colors in

RGB color space are used directly. The GSEG [60jaised on the unseeded region growing
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technique, in which the initial seeds are foundchgsihe color gradient information (in CIE
L*a*b* color space). After the region growing procesgjaies with similar characteristics are
blended by the multi-resolution region merging tonf the final segmentation. During the
merging process, new seeds might be added or eliksdiscarded .The JSEG [78] includes 2
stages, quantization and spatial segmentationt, fpirsel colors (in CIE L*u*v* color space),
smoothness of the local area, and texture oriemstare quantized into a small number of
predefined values. Then, these values are form@dairrepresentation vector of a local region
that will be clustered into different groups.

Figure 8.8 presents some segmentation results stonDUHO method and these three methods.
Visually, results from all four methods appear eld® human segmentation. However, our
proposed segmentation process produces finer sletail

The E-metric unsupervised evaluation was applieB8® segmentation results on images from
the DBSB dataset [68]. In addition, we employ suj@ed evaluation techniques, called the
boundary recall [63] and boundary precision [79]aswement to evaluate the segmentation
results. Boundary recall is the percent of the gdbtruth edge pixels that are within two pixels
distance from a region boundary. We can expressagi

L("hit" groundtruth edge)
L(groundtruth edge)

(8.16)

Boundary recall =

where L(.) is the length in pixels; “hit” means tliae current pixel in the ground-truth edge is in
the range of 2 pixels from a pixel in a region’subdary of the segmentation result. Boundary
precision is the percent of the region edge pikesulted from a segmentation method) that are
within two pixels distance from a ground-truth edgeundary. We can express boundary

presision as:

L("hit" segmentation edge)

(8.16)

Bound P
ounaary precision L(segmentation edge)

Notice that L("hit" segmentation edge) = L("hit" segmentation edge) is the number of

“mutual”- or within 2 pixels along the boundary ihie ground-truth edge and the segmentation
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result edge. Boundary recall and precision measigrenatching degree between the ground-truth
and the segmentation results. High recall valueatds that most of the “correct” boundaries are
discovered in the segmentation results; while lpiggtision value indicates that the segmentation
results are more accurate or most of the segmenthtbundaries are the “correct” boundaries.
For a good segmentation, both of boundary recall@undary precision values are expected to
be high (near 1). Table 8.4 summarizes the evaluatisults.

Table 8.4: Evaluation of our DUHO segmentation tmmde other algorithms on the dataset [68]

Human Proposed
Segmentation algorithm PSEJ77] | GSEJ60] JSEQ[78]
hand-label DUHO
Unsupervised performance
0.14 0.31 0.29 0.31 0.26
metricE (small is better)
Boundary recall (higher is
-- 0.82 0.86 0.77 0.89
better)
Boundary precision (higher i$
-- 0.81 0.76 0.72 0.79
better)
Average computational time
- 232.4 162.7 145.1 93.3
(sec)

We see that our DUHO algorithm performs better tthenJSEG, GSEG, and PSEG algorithms,
based on both the unsupervised meliriand the supervised boundary recall measurememt. An
our algorithm is the second best (and comparabth thie best) among these four algorithms
based on the boundary precision measurement. Thesvaf boundary precision in Table 8.4 are
not very high due to the fact that hand-label segaten usually ignores details in the image and
hence produces coarser results comparing with teegtdm all four segmentation methods

presented herein. The computation times in Tallewgre derived using a PC with Intel dual
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core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, and ImBgecessing Toolbox Version 7.1. Our

DUHO algorithm performs significantly faster thametJSEG, GSEG, and PSEG algorithms.

(b)

(©

(d)

(e)

)

P Tm—

Figure 8.8: Some Comparison: row (a): original imad) segmentation results from human
hand-label, (c) PSEG, (d) GSEG, (e) JSEG, and(fyiD.
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Chapter 9

CONCLUSIONS AND RECOMENDATIONS

4.1 Conclusions

The principal original contributions of this workeethreefold:

(1) A new automatic data clustering method for convatacets called M-ART

(2) A new method for evaluating image segmentation icgtrwhich was used to
identify the best available metric, namely fenetric.

(3) A new algorithm, called the DUHO method, for segtimen color images, which
outperforms existing segmentation methods, as meashy the E-metric, and
requires substantially less computation time thistie methods.

This work contains two parts, in which new methéatsdata clustering and image segmentation
are presented. In the first part, Chapter 1 to @hrdy an automatic data clustering procedure is
proposed. First, a pre-processing process, namesitgdased removal, is applied to produce
more distinct clusters. This pre-process is eqaivalto removing input vectors near the
boundaries of each cluster, which in many cases doechange the data structure or the number
of “correct” clusters in the data. Then, we empling M-ART neural network clustering

technique to group similar input vectors into atust In the M-ART network, the vigilange
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determines the maximum size of clusters, and camsdly affects the number of clusters.

Conventionally, a trial-and-error approach is usdd tune this value of p
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We propose a framework to auto-adjust the valueodiased on a user-selected allowable
separation between clusters. Even though one mllisetect the value of a parameter, choosing
the allowed separation factor is intuitively eadigsin selecting the value gf The appropriate
value of p is strongly dependent upon on the specific dataasel is therefore very difficult to
select a-priori. On the other hand, the allowedasson factor value simply represents how
much separation between adjoining clusters a usewiiling to accept. Accordingly, the
separation factor could be chosen for multiple da&ts before running the algorithm.
Experiments conducted on different synthetic 2-l),34-D, 5-D, and 10-D Gaussian data sets,
some published and some generated by the authibinsyavying numbers of vectors, numbers of
clusters, and different degrees of separation letvedusters, demonstrate the effectiveness and
reliability of the proposed clustering method. Twase studies of texture classification and
texture segmentation are also presented, showinggaod results when compared with those
from the well-known K-means method. While the M-ARTustering method is an original
contribution of this research, it applies only tineex data sets. As such, it was unsuccessful in
applications to image segmentation, a goal ofgtusly. Accordingly, we investigated a different
approach to this area in Part Il of this work.

In the second part of this dissertation, we intaeda general-purpose segmentation method,
which we call the DUHO method, which works for agk variety of natural scene images in
color. This DUHO algorithm contains two main stepgst, a superpixel generating algorithm is
applied to a given image to buikdsuperpixels. Then a new region growing algorittenaitively
groups these superpixels into appropriate regiodsfarms the final image segmentation result.
The proposed method is a type of unseeded regisedbsegmentation technique that preserves
the spatial relationship between pixels in the ieyaand hence preserves the detailed edges and
the image spatial structure. Our DUHO algorithm thmee main advantages compared with other

region-growing-based segmentation techniques [§7Fst, it operates at a “superpixel” level,
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rather than at the image pixel level, to reduce maational time and depress noise. Second, the
proposed method works for color images rather tay scale image as in [57-60]. Third, the
decision of grouping an adjacent superpixel toydstiag region is dynamically dependent upon
the statistics, or “shape and size”, of this regibhe segmentation results show significant
improvements when compared with results from exgsinethods using a fixed, global threshold.
The control paramete§F, the smallest feature size, in our DUHO algoritltontrols the
coarseness or fineness of the segmentation re$bks optimal” value ofSF is dependent upon
the image features and the purpose or applicatidtheosegmentation process, and it should be
appropriately selected by users or follow the rutdsthumb suggested in Chapter 7. A
guantitative evaluation method based on square eotor is introduced, and experiments with
real datasets shows very good results when compathdhose from other published, state-of-

art segmentation methods, as well as requiringtanbally less computational time.

4.2 Recommendations

Recommendations for future work are:
(1) Finding means to automatically tune parameterténsegmentation algorithm, such
asW andSF, which must currently be established manually gigiial and error. A
classical optimization procedure (iterative-based gvadient-based) might be
employed to find the optimal control parametersugal to maximize the overall
segmentation performance based on some score index.
(2) Proving the convergence of the proposed algoritumtite minimum of the

performance function.
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