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Date of Degree: DECEMBER, 2012 
  
Title of Study: NEW TECHNIQUES FOR DATA CLUSTERING AND COLOR 

IMAGE SEGMENTATION 
 
Major Field: MECHANICAL AND AEROSPACE ENGINEERING 
 
Abstract: The objectives of this work are twofold: (1) to create an improved automatic clustering 

procedure that produces results consistent with manual clustering of data points by humans; and 

(2) to find an improved technique for automatic segmentation of images. First, we developed a 

clustering technique using an M-ART (Mahalanobis distance-based Adaptive Resonance Theory) 

neural network. The “vigilance” ρ in the M-ART network affects the maximum size of clusters, 

and consequently affects the number of clusters. Normally the “optimal” value of ρ is heavily 

data dependent and therefore can only be chosen by users and adjusted by trial-and-error. We 

propose a procedure to automatically adjust the value of ρ based on a pre-defined required 

separation between clusters, which is data independent and can be determined beforehand. 

Experiments conducted on synthetic multidimensional and texture datasets demonstrate the 

effectiveness and reliability of the proposed method. Segmentation is the process of partitioning a 

digital image into multiple segments or non-overlapping regions. Partitioning an image into non-

overlapping regions assures that pixels in each region share the same visual properties, such as 

color or texture, while pixels in different regions exhibit significant differences in these features. 

We found that M-ART works well only with convex-shaped clusters (segments) that are 

sufficiently separated, which is not the case for typical real-scene images. Accordingly, we 

investigated and presented developing a more advanced general purpose image segmentation 

method, called the DUHO method. This DUHO algorithm contains two main steps. First, the 

superpixel generating algorithm is applied to a given image to build K superpixels. Then a new 

region growing algorithm iteratively groups these superpixels into appropriate regions and forms 
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the final image segmentation result. The proposed method is a type of unseeded region-based 

segmentation that preserves the spatial relationship between pixels in the image, and hence 

preserves the detailed edges and the image spatial structure. A quantitative evaluation method 

based on square color error is introduced, and experiments with real datasets, consisting of 300 

color images of natural scenes from the available data, show very good results from our DUHO 

method when compared with results from the well-known segmentation methods. 
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PART I:  DATA  CLUSTERING 

Chapter 1  

 

INTRODUCTION TO DATA CLUSTERING 

 

 

1.1 Introduction 

Clustering is a principal tool for data analysis that aims to produce natural groupings, or structure, 

in a given data set. Its wide application can be found in data mining, customer recommendation 

system, text document, image segmentation, sequence analysis, medical imaging, and crime 

analysis [2-9]. Interestingly, even though clusters in say a set of 2-D points laid out on an x-y axis 

system might be intuitively identified by most observers without pre-instruction , defining 

formally what constitutes a cluster is not only difficult, but may also be inaccurate. The most 

acceptable definitions typically arize from examples. According to Frank at el. [3], a partition 

resulting from clustering should have two properties: homogeneity within clusters (data belong to 

the same cluster should be as similar as possible) and heterogeneity between clusters (data belong 

to different clusters should be as different as possible).  

1.2 Previous Work 

 A primary concern, and perhaps the most difficult, for a given data set is determining how many 

clusters are present. A second concern is to determine to which cluster a given data point belongs.  
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This second question could be relatively easily answered, once the correct number of clusters is 

known. Some frequently used clustering methods such as K-mean and Fuzzy c-means shown in 

Bezdek and Pal [10] require the number of clusters to be given a priori, but this is often not known. 

The “optimal” number of clusters could be chosen according to some criteria, such as cluster 

compactness or variation within a cluster and/or separation or isolation between clusters [11]. Cluster 

compactness (variation within cluster) and/or separation (isolation between clusters) are normally 

considered as major factors in forming validation indexes [10, 11]. Almost all clustering algorithms 

are not parameter-free and require user supplied values for input parameters. Determining these 

values is difficult, and is usually guided by trial-and-error. Moreover, the results produced could be 

very sensitive to these values, producing significantly different partition results with only slightly 

different parameter values [6], rendering them unusable.  

Density based clustering method, such as DBSCAN [5], generally can handle arbitrary cluster shapes. 

However, there are two parameters that users must feed to DBSCAN: a maximum distance between 

points for which two points can be considered as neighbors and the minimum number of points 

required to form a cluster, which are difficult to choose a prior. “Optimal” values of these parameters 

are problem dependent, and can only be obtained by trail-and-error.  In addition, the computational 

time required of DBSCAN is large without an indexing structure. The worst case time complexity of 

DBSCAN is O(n2) without indexing, and is O(nlogn) with spatial indexing [12], where n is the 

number of data point.  

1.3 Proposed Approaches 

In this paper, a clustering technique is introduced using an M-ART (Mahalanobis-based Adaptive 

Resonance Theory) neural network, in which Mahalanobis distance between data points is used as a 

metric. Similar to Kohonen’s Learning Vector Quantization network (LVQ) and Reilly and Cooper’s 

Restricted Coulomb Energy network (RCE), as in [13], M-ART uses hyper-ellipsoids to form training 

patterns into classes or clusters. During training, M-ART fixes the size (maximum size) of the hyper- 
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ellipsoid, while RCE fixes the position and LVQ fixes the number of clusters [8]. The control 

parameter called vigilance, ρ, in the M-ART network affects the maximum size of clusters, and 

consequently affects the number of clusters. Conventionally, the “optimal” value of ρ is heavily data 

dependent and therefore can only be chosen by users after trial-and-error. To overcome this 

shortcoming, we propose a procedure to auto-adjust the value of ρ based on a pre-defined allowed 

separation between clusters. This separation factor is data independent and can be determined 

beforehand. To assist M-ART in producing improved partitions, density-based removal pre-

processing is introduced to remove noise and produce improved data separation. 

In what follows, Chapter 2 presents our Mahalanobis distance-based ART algorithm (M-ART), 

applied to the clustering problem, and the procedure for auto-adjustment of ρ. Chapter 3 introduces 

the density-based removal pre-processing and our overall automatic clustering procedure. Chapter 5 

and 6 present experimental results and conclusions, respectively.   
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Chapter 2  

 

ART NEURAL NETWORK AND VARIATIONS  

 

 

Adaptive Resonance Theory (ART), first introduced by Grossberg [14], is well known as an 

unsupervised neural network for self-organized stable, fast, incremental learning to recognize 

categories in response to arbitrary sequences of binary input vectors in real time. There are many 

variations and extensions of the ART network, such as ART2, ARTMAP, Fuzzy ART, and 

FARTMAP to deal with continuous inputs or extensions to supervised learning models [8, 14-

16]. Essentially, any network based on ART forms input vectors (patterns) into separate 

categories (clusters) based on the similarity between them. The key idea is checking for similarity 

between the new input vector and the representatives of categories already learned. If there is a 

close enough match, the new vector is incorporated to the associated existing category. 

Otherwise, the ART network creates a new category to store this new pattern. In this way, 

previously learned memories are not eroded by new learning. ART directly addresses the 

Stability-Plasticity dilemma: “How can a system be receptive to significant new patterns and yet 

remain stable in response to irrelevant patterns?” [17].  
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2.1 ART1 Network: 

The operation of the ART1 network originally introduced in [14] can be characterized by three 

steps: searching, vigilance testing, and learning. ART1 works only with binary input vectors Xk 

(containing element values of either 0 or 1): Xk=[xk1,xk2,…, xkd]
T, xki ∈[2], i=1..d, where k is the 

index of the kth input. 

In the searching step, the existing cluster in the network that is most similar to the input pattern is 

found. The function that measures the similarity between two vectors (the input Xk and an 

existing jth cluster center Cj) is called the activation function T(Xk,Cj) [18]: 

T(��, ��) = ��� 	∩ 	����α + �����  (2.1) 

where  ∩ is the bitwise AND operation, such that X∩Y=(x1 AND y1, x2 AND y2,…, xd AND yd), 

‖�‖� = ∑ |x�|�� �  is the number of ones in the vector X (or so called Manhattan norm, or 1-norm), 

and α is a small positive constant to avoid dividing by zero.  

Let J denote the index that represents the cluster for which the activation is highest (highest 

similarity), given by:  

J = argmax� &T(��, ��)' (2.2) 

A match function M(Xk,CJ) measure the likeness of input Xk to this cluster Jth, given by: 

M(��, �)) = ��	 ∩ 	�)��‖�‖�  (2.3) 

In the vigilance testing step, the match function is compared with a dimensionless parameter 

called vigilance ρ to verify the match between the input and the most similar cluster. The 

condition for a good match, called the “resonance state”, is: 

M(Xk,CJ) > ρ (2.4) 

If (2.4) satisfied, then the input is incorporated into the Jth cluster (with highest activation). 

Otherwise, a new cluster is formed as the input itself. According to (2.3), M(Xk,CJ) always lies 
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between 0 and 1, so we choose 0<ρ≤1. The value of vigilance ρ determines the “coarseness” of 

the clusters created by the input vectors. With this ART1 network, a small value for ρ means 

more input vectors are classified into the same cluster, resulting in a small number of clusters. On 

the other hand, a large value for ρ yields a large number of clusters.  

In the learning step, the Jth cluster that resonates with an input Xk is updated by: 

�)*+, 	= 	β&�� 	∩ 	�)./�' 	+ 	(1−β)�)./� (2.5) 

where β is the learning rate, 0≤β≤1, and �)./� and �)*+,	are respectively the center of Jth cluster 

before and after adding the input Xk. The learning process with β = 1 is called “fast learning”, 

which minimizes the training time, but could lead to unstable results [15, 17]. 

2.2 Euclidean Distance-based ART (E-ART) Network: 

A Euclidean distance-based ART network (E-ART) [16, 19, 20], designed to cluster analog 

pattern inputs, has several differences from ART1 discussed above. First, this network works with 

continuous, rather than binary, inputs. Before being fed individually to the network, each d-

dimensional input vector Xk=[xk1,xk2,…, xkd]
T is normalized, producing Xn, such that each 

element xki, i=1..d, is in the range [0,1]:  

Xn = (Xk − Xmin) ./ (Xmax − Xmin) (2.6.a) 

Where ./ means an element-by-element division of two vectors, Xn is the normalized vector, and  

Xmin (Xmax) is a new vector in which each element is the minimum (maximum) over all 

corresponding elements of all L input vectors, namely [17]:  

�1�* = 2 min�5�56(x��) , min�5�56(x�7) , … , min�5�56(x��)9: (2.6.b) 

�1;< = 2max�5�56(x��) , max�5�56(x�7) , … , max�5�56(x��)9: (2.6.c) 

Second, similar to [20], we set both the activation function and the match function as the 

Euclidean distances between the normalized input vector Xn and the center of each cluster Cj, 

namely: 
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T&�*, ��' = M&�*, ��' = ��*	−	��� = =(�*	−	��):(�*	−	��)		 (2.7) 

where ||a|| is the Euclidean norm of the vector a.   

Third, we define the cluster J that is most similar to the normalized input Xn as the one with the 

smallest Euclidean distance, given by: 

J = argmin� &��*	−−−−	���' (2.8) 

Fourth, define the resonance state by: 

M&�*, �)' < ρ (2.9) 

where vigilance ρ is a pre-defined dimensionless real number in range [0,√?]. (ρ ≤ √? because 

each element of Xn and CJ is in the range [0,1] and therefore ��*	−−−−	��� ≤ √?	). 
Notice that (2.8) and (2.9) are used differently from (2.2) and (2.4). In (2.8) the highest similarity 

is defined as the minimized activation function, rather than maximized as in (2.2). The resonance 

state in (2.9) occurs when the match function is small enough (less than ρ), rather than when it is 

large enough (greater than ρ) in (2.4). Accordingly, an input will be incorporated into the nearest 

cluster only if the Euclidean distance from it to this cluster center is small enough. Otherwise, this 

input forms a new cluster in the E-ART network. It is thus straightforward that the E-ART 

network classifies input vectors into clusters with a hyper-sphere shape. Furthermore, if the 

Euclidean distance from a new input vector to the nearest cluster center is larger than ρ, this input 

does not belong to this cluster. In E-ART, the vigilance ρ can be considered as the maximum 

allowable hyper radius of the cluster.    

Because inputs are normalized before being fed to E-ART, in the rest of this study, we assume 

that any vector input Xk already has its elements in the range of [0,1]. 

The learning rule for E-ART is the same as for ART1 as described in (2.5). As shown in Fig.2.1, 

if (2.9) is satisfied (resonance occurs), the new input Xk is incorporated into the nearest cluster 
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(the Jth cluster); and the cluster center CJ is updated by moving it toward Xk. Other existing 

clusters are unchanged. 

With �)./�	 is the center of the Jth cluster consisting of N previously submitted patterns, then:  

�)./� = 1NB��C
� �  (2.10) 

 
Figure 2.1: Graphical Representation of Learning Rule for 2-Dimendional Vectors 

We update the center when adding a new pattern XN+1 such that the �)*+, becomes the center of 

the new cluster containing (N+1) patterns by using: 

�)*+, = 1N + 1B��CD�
� � = �CD� + N. �)./�N + 1  (2.11) 

Therefore from (2.5) and (2.11), the learning rate should be: 

β = 1N + 1 (2.12) 

2.3 Mahalanobis Distance-based ART (M-ART) Network 

As described in Section 2.2, E-ART limits output clusters to hyper-sphere shapes, which is not 

sufficient to handle most real data. We propose a new Mahalanobis distance-based ART network, 
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which is an extension of the E-ART network to handle clustering with hyper-ellipsoid shaped 

clusters. M-ART operates very similarly to E-ART, except that the distance metric used in M-

ART is the Mahalanobis distance [21].     

The M-ART network also works with normalized continuous inputs as in (2.6). As suggested in 

[22], we set both the activation function and the match function as the Mahalanobis distances, 

defined in [21],  between the normalized input vector Xn and the center of each cluster Cj, 

employing the covariance matrix Qj of the corresponding cluster, which produces activation 

T(Xn,Cj) and match M(Xn,Cj) functions given by: ‖��	−	�‖FG−H = =(��	−	�):F�−�(��	−	�) 
T&�*, ��' = M&�*, ��' = ��*	−	���FGIH = =(�*	−	��):F�J�(�*	−	��)		 (2.13) 

The covariance matrix Qj is a semi-definite positive matrix, which can be estimated as shown in 

Chapter 3, Eqn (3.2). Notion ||.||A is a norm related to a matrix A, as in [23]. 

According to [23, 24] a covariance matrix Q∈ℜdxd , which is real, symmetric, and non-singular, 

can be decomposed as F = KΛΛΛΛK: = ∑ λ��� � L�L�:, where U is orthornomal, (U-1 = UT), whose 

each column ui is an eigenvector of Q, and ΛΛΛΛ is diagonal matrix contained eigenvalues of Q, ΛΛΛΛ= 

diag(λ1, λ1,… λd). The inverse of the covariance matrix can then be computed as: 

FJ� = KΛΛΛΛJ�K: =B 1
λ�

�
� � L�L�: (2.14) 

The square of the Mahalanobis distance from X to the cluster center C employing the cluster 

covariance matrix Q can be computed as: 

‖�−−−−	�‖FIH7 = (�−−−−	�):FJ�(�−−−−	�) = (�−−−−	�): MB 1
λ�

�
� � L�L�:N (�−−−−	�) =By�7

λ�
�
� �  (2.15) 

where y�7 = L�:(�−	�) 
We can interpret yi as a new coordinate system defined by the orthonormal vectors ui. As shown 

in Fig.2.2, the Mahalanobis distance from point X to a cluster center C is equivalent to the 
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normalized (or weighted) Euclidean distance from this point to the center in the new coordinate 

system defined by the orthonormal eigenvectors of the cluster covariance matrix. Along each 

eigenvector direction, the distance is weighted by the inverse square root of the corresponding 

eigenvalues.        

 
Figure 2.2: Mahalanobis Distance from the Point X and the Cluster Center C. 

The Mahalanobis distance is used as a similarity measurement between the point X and the center 

of the cluster C, which indicates how likely this new point should belong to this cluster, a set of 

known points. The Mahalanobis distance differs from Euclidean distance, which is isotropic and 

does not depend on the distribution of the cluster data points. The Mahalanobis distance puts high 

weights along axes with high variance (major axes) of the cluster data points, while lower weights 

are placed along axes with low variance (minor axes).  In other words, the Mahalanobis distance 

takes into account the correlations of the data set. If the covariance matrix of the cluster data 

points is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the 

covariance matrix is diagonal, then the resulting distance measure is called the normalized 

Euclidean distance [18, 21]. Figure 2.3 illustrates the difference between the Mahalanobis and 

Euclidean distances from points X1 and X2 to the center C of a cluster. The Euclidean distances 

from X1 to C and from X2 to C are equal and do not depend on the shape of the cluster. However, 

u 1 

u 2 
y 1 

x 1 

x 2 

y 2 

C 
λ 2 
−1/2 

λ 1 
−1/2 

X 
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the Mahalanobis distances from these points to C depend on the shape of cluster (or its 

covariance matrix Q). If the cluster has elliptical shape, which means its covariance matrix Q is 

not the identity matrix, the Mahalanobis distance from X1 to C is less than the Mahalanobis 

distance from X2 to C (see Fig.2.3 b). If the cluster has a circular shape, which means its 

covariance matrix Q is the identity matrix, the Mahalanobis distance is the same as the Euclidean 

distance (see Fig.2.3 a). 

 

Figure 2.3: Difference between Mahalanobis Distance and Euclidean Distance.   

Define the cluster J that is most similar to the normalized input Xn as the one with the smallest 

activation function, or smallest Mahalanobis distance, given by: 

J = argmin� P��*	−	���FGIHQ (2.16) 

Finally, define the resonance state by: 

M&�*, �)' < ρ (2.17) 

where vigilance ρ is a pre-defined, dimensionless, non-negative real number. 

C 

X2 

X1 

Q≡≡≡≡I  

||X1−C|| = ||X2−C|| 

||X1−C||    = ||X2−C|| 
Q −1 Q −1 

C X1 

X2 

Q ≠≠≠≠ I 

||X1−C|| = ||X2−C|| 

||X1−C||    < ||X2−C|| 
Q −1 Q −1 

(a): Euclidian Distance (b): Mahalanobis Distance 
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The resonance state in (2.17) occurs when the match function is small enough (less than ρ). 

Accordingly an input will be incorporated into the nearest cluster only if the Mahalanobis 

distance from it to this cluster center is small enough. Otherwise, this input forms a new cluster in 

the M-ART network. By the nature of the Mahalanobis distance, the M-ART network classifies 

input vectors into clusters with a hyper-ellipsoid shape. Furthermore, if the Mahalanobis distance 

from an input vector to the nearest cluster center is larger than ρ, this input does not belong to this 

cluster. Therefore, in M-ART, the vigilance ρ can be considered as the maximum allowable size 

of the cluster.    

The update rule for the Jth center of M-ART is the same as for E-ART as described in (2.11). 

Other parameters of the Jth cluster, such as the covariance matrix and the size of this cluster, must 

also be updated, and will be discussed in Chapter 3. 
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Chapter 3  

 

NEW DATA CLUSTERING METHOD   

 

 

In this chapter we introduce our formal definition of clusters as hyper-ellipsoid shapes, define the 

M-ART clustering procedure, and introduce lemmas on results from applying M-ART.  

3.1 Definitions of Hyper-ellipsoid Shaped Clusters and the M-ART Clustering Procedure  

In what follows, we consider a cluster as a hyper-ellipsoid shape. Hyper-spheroid clusters are 

treated as special cases of hyper-ellipsoid clusters.  

Definition 3.1: A Hyper-ellipsoid Shaped Cluster 

Let S be a data set consisting of a number L of d-dimensional vectors Xk. Xk∈S⊂ℜd,k=1..L. A 

hyper ellipsoidal shaped cluster with its center C∈ℜd, covariance matrix Q∈ℜdxd,  maximum 

Mahalanobis distance, or cluster size, R∈ℜ+, and number of members N≤ L, denoted by 

(C,Q,R,N), is defined as: 

(�, F, R, N) = {�T∈U ∶ 	 ‖��	−	�‖FIH ≤ 	R	} (3.1) 

where the center � = �C∑ ��C� � 		 , ��∈(�, F, R, N), k = 1. . N, is the  mean of all vectors in S, 

the covariance matrix Q is a semi-definite positive matrix computed by: 

F	 = 	 �CJ�	∑ (�T 	−	�)C� � (�T 	−	�): ,(unbiased estimation [23]), 

(3.2) 

 

. 
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and 	‖��	−	�‖FIH 	= �(�T	−	�):FJ�(�T	−	�)		 is the Mahalanobis distance from the  

vector Xk  to the vector (cluster center) C employing the covariance matrix Q, where (.)-1 

and (.)T are the matrix inverse and transpose operations, respectively. 

Hence, it is evident that if N>N0 then  ∃ Xk∈ (C,Q,R,N): ‖Xk − C‖QI1	= R (3.3) 

The algorithm for M-ART is described by the following. 

Definition 3.2: M-ART Clustering 

1. If Xk is  the first input vector to M-ART , then the network produces one cluster 

(Xk,I ,0,1), where I  is a d-by-d identity matrix.   

2. Assume there exists M≥1 clusters (Cj, Qj, Rj,Nj), j=1..M, in an M- ART system. A new 

input vector Xk as an input to this system will be classified as a member of either cluster 

described in a. or b. bellow: 

a. an existing cluster  (CJ, QJ, RJ,NJ) if and only if the two conditions (3.4) and (3.5) are 

satisfied: 

	J	 = 	argmin�5�5Y P��*	−	���FG−HQ , (3.4) 

��*	−	�)�FZIH 	≤ 	ρ , (3.5) 

where ρ is the vigilance parameter.  

If (3.4) and (3.5) are satisfied, then that Jth cluster will be updated by: 

	N)*+, 	= 	 	N)./� 	+ 	1, (3.6) 

�)*+, 	= 	 	�� 		+ 	N)./�. �)./�N)./� 	+ 	1 	, (3.7) 

F)*+, 	= 	 	CZ\]^−�CZ\]^ F)./� 	+ 	 �CZ\]^D� (�k	−	�)./�)(�k	−	�)./�): , (3.8) 

	R)*+, 	= 	max _	R)./�, ���	−	�)*+,�&FZ̀ ab'IH 	c . (3.9) 

b. otherwise, a new cluster (Xk,I ,0,1). 
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Iterative updating of cluster center, covariance matrix, and inverse of covariance matrix: 

Assume a cluster consists of N points: X1,X2,…, XN, whose center, CN, and covariance matrix, 

QN, are defined in (3.2) and will be rewritten, with extra subscripts indicating the current number 

of points, as follows: 

�C = 1NB��C
� � , (3.10) 

FC 	= 	 �CJ�	∑ (�T 	−	�C)C� � (�T 	−	�C):. (3.11) 

Update the cluster center: 

When a new point XN+1 is added to a cluster, the new cluster center will be given by: 

�CD� = 1N + 1B��CD�
� � = 	 1N + 1d�CD� +B��C

� � e = 	�CD� + 	N�CN + 1 , (3.12) 

which is equivalent to (3.7). 

Update the cluster covariance matrix: 

The new cluster covariance matrix is defined by: 

FCD� 	= 	 1N	B(�T 	−	�CD�)CD�
� � (�T 	−	�CD�): 

= �C	∑ (�T 	−	�CD�)C� � (�T 	−	�CD�): + �C	 (�f + 1	−	�CD�)	(�f + 1	−	�CD�):          

(3.13a) 

 

(3.13b) 

We would like to express the new covariance matrix, QN+1, in term of its predecessor, QN. 

Substituting the right side of (3.12) into the first term on the right of (3.13a) and (3.13b), we have: 

1N	B(�T 	−	�CD�)C
� � (�T 	−	�CD�): 	= 1N	B(�T 	−	 �CD� + N�CN + 1 )	(�k	−	 �CD� + N�CN + 1 ):C

� �  

								= 1N	Bg(�T 	−	�C) + 	 1N + 1 (�C−�CD�)h	g(�T 	−	�C) + 	 1N + 1 (�C−�CD�)h
:C

� �  

								= 1N	B i(�T 	−	�C)(�k	−	�C):j +	 1N	Bg 1(N + 1)7 (�C−�CD�)(�C−�CD�):h
C
� � 	

C
� � 	 

 

(3.14a) 

 

(3.14b) 
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																			+	 1N	Bg 1N + 1 (��	−	�C)(�C−�CD�):h
C
� � +	 1N	Bg 1N + 1 (�C−�CD�)(��	−	�C):h

C
� �  

							= N−1N	 FC +	 1(N + 1)7 (�CD�−�C)(�CD�−�C): 

(3.14c) 

 

(3.14d) 

Notice on the right side of (3.13c) that the first term is similar to QN, the second term is a sum of 

constants, and the third and the fourth terms are both equal to d-by-d zero matrices. This is from 

(3.10) we have: N�C = 	∑ ��C� �  , or ∑ (��	−	�C) 	= 	k	C� �  (d-by-1 vector zero), and 

∑ (��	−	�C): 	= 	k:	C� �  (1-by-d vector zero). 

Similarly, by substituting from (3.12) into the second term on the right of (3.13b), we obtain: 

1N	 (�CD�	−	�CD�)(�CD�	−	�CD�): = 1N	 (�CD�	−	 �CD� + N�CN + 1 )(�CD�	−	 �CD� + N�CN + 1 ): 

		= N(N + 1)7	 (�CD�	−	�C)(�CD�	−	�C): 

(3.15a) 

(3.15b) 

Substituting from (3.14d) and (3.15b) for the terms on the right of (3.13b) yields: 

FCD� 	= 	N−1N	 FC +	 1N + 1 (�CD�−�C)(�CD�−�C): (3.16) 

 

Update the inversion of the cluster covariance matrix:  

In Def.3.2, we must compute the Mahalanobis distance from a new point to existing cluster 

centers, which involves the inversion of the covariance matrix. Therefore, it would be 

computationally efficient to derive an iterative formula for this inversion matrix, so that the 

inversion matrix operation need not be directly computed each time a new point is added.     

The Woodbury identity, or the matrix inversion lemma, [24], is given by: 

(A + UΛΛΛΛV) −1 = A−1 − A−1U (ΛΛΛΛ−1 + V A−1 U) −1 V A−1 (3.17) 

where A is an n-by-n non-singular matrix, ΛΛΛΛ is a k-by-k non-singular matrix, U is an n-by-k 

matrix, and V is a k-by-n matrix.  

For the special case of k = 1, ΛΛΛΛ becomes a scalar λ, U becomes a column vector u, V = uT, and A 

is symmetric, such that (3.17) reduces to: 
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 (A + λuuT) −1 = A−1 − A−1u (1/λ + uT A−1 u) −1 uT A−1 = A−1 − γ(A−1u) (A−1u)T (3.18) 

where γ = 1/(1/λ + uT A−1 u) is a scalar because uT A−1 u is 1-by-1. 

To apply (3.18) for inversion of QN+1 on the left hand side of (3.13a) and (3.13b), with 

A=((N−1)/N)QN, a symmetric matrix, λ=1/(N+1), and u=(�CD� − �C), we first compute: 

γ	 = 1
(N + 1) + NN−1 (�CD�−�C):FC−�(�CD�−�C) 	

= N−1
(N7−1) + N _��CD�−	�C �FHIHc7

. (3.19) 

Define the dx1 vector qN by: 

mC = n−�L = NN − 1FC−�(�CD� − �C) (3.20) 

Then we iteratively compute the inverse of the covariance matrix by: 

FCD�−� 	= 	 NN−1	 FC−�−	γmCmC:  (3.21) 

 

Given matrix Q, one can compute Q-1 without actually inverting Q by using (2.14) and avoid 

dividing by-zero by setting 1/λ= κ if  λ≤ ε, where  ε ≪ 1	and κ ≫ 1 are pre-defined numbers, as 

suggested in [12].  

The following lemma addresses the size of clusters resulting from M-ART: 

Lemma 3.1: Size of an Ellipsoidal Shaped Cluster 

The size Rj (Def. 3.1) of any ellipsoidal cluster resulting from M-ART is always less than or equal 

to the value of the vigilance, ρ: 

Rj  ≤ ρ, j=1..M (3.22) 

Proof:  

Consider an arbitrary cluster (Cj,Qj,Rj,Nj), 1≤j≤M, resulting from M-ART, where M is the current 

number of clusters. From Def.3.2, if Nj=1 then Rj= 0. From (3.9), if an input vector is 
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incorporated into this cluster, the cluster size is greater than or equal its old value: R�*+, ≥ 	R�./�. 

Therefore, from (3.5), this cluster of the M-ART have size less than or equal to ρ: 

R�./� 	≤ ρ		, ∀j = 1. . M (3.23) 

Now consider the two remaining cases:  

Case 1: Input Xk forms a new cluster:  

According to Def.3.2, the (M+1)th cluster of the M-ART is (Xk,I ,0,1) having radius RM+1 

= 0 < ρ.  

Case 2: Input Xk becomes a new member of the “nearest” existing cluster J, 1≤J≤M 

For this case, we note (3.4) and (3.5) must be satisfied, yielding: 

���	−	�)./��_FZ\]^cIH7 = 	(��−	�)./�):&F)./�'J�(��−	�)./�) 	≤ 	 ρ7 . (3.24) 

The square of new Mahalanobis distance from Xk to the new cluster center �)*+,, 

employing the new cluster covariance matrix F)*+,, is: 

 ���	−	�)*+,�&FZ̀ ab'IH7 	= 	(��	−	�)*+,):&F)*+,'J�(��	−	�)*+,) . (3.25) 

Substitute expressions for �)*+, and &F)*+,'J� in (3.12) and (3.21) into the right side of 

(3.25) and following the form of the left hand side of (3.24), we obtain: 

���	−	�)*+,�&FZ̀ ab'IH7 	= 	(��−�� +	N)�)./�N) + 1 ): t N)N)−1	 &F)./�'J�−	γmCmC: u (��−�� +	N)�)
./�

N) + 1 ) (3.25a) 

= 	v N)N) + 1	w
7 N)N)−1	 (��−	�)./�):&F)./�'J�(��−	�)./�)−	γv N)N) + 1	w

7 (�� − �)./�):mCmC: (��
− �)./�)	 

(3.25b) 

= 	 N)xN)x + N)7−N)−1	 ���	−	�)./��_FZ\]^cIH7
−	γv N)N) + 1	w

7 (�� − �)./�):mCmC: (�� − �)./�)	, (3.25c) 

where γ > 0 is defined in (3.19) and qN is defined in (3.20).  

We note that the second term in (3.25c) contains a quadratic term, namely: 
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(�� − �)./�):mCmC: (�� − �)./�) 	= 	 i(�� − �)./�):mCji(�� − �)./�):mCj: ≥ 	0. (3.26) 

Moreover, in the first term of (3.25c), the quantity NJ
3/(NJ

3+NJ
2−NJ−1 ) is less than 1, because 

NJ
2
−NJ−1{0,	∀NJ≥ 2,NJ ∈ ℕ. Accordingly, we can conclude that:  

‖Xk − CJ
new‖&QJ

new'-12  <�Xk − CJ
old�_QJ

oldc-1

2
≤ ρ2 . (3.27) 

From (3.9), (3.23), and (3.27), the new value of this cluster size is: 

 RJ
new = max_ RJ

old, ‖Xk − CJ
new‖&QJ

new'-1c 	≤	ρ (3.28) 

Hence, Lemma 3.1 is proven.  

The following two lemmas address the existence of the M-ART network that produces the correct 

number of clusters in the event that the data set contains only one and two clusters. 

Lemma 3.2: Existence of the M-ART for 1 cluster 

Assume a data set S contains only one cluster (C,Q,R,N). Then 

a. M-ART clustering with 

ρ ≥ 2 R,   (3.29) 

will always result in 1 cluster. 

b. M-ART clustering with  

ρ <R (3.30) 

will result in M > 1 (unpredictable) clusters, depending on the order of feeding data to 

M-ART. 

Proof of Lemma 3.2a:   

From Def.3.2, M-ART forms at least 1 cluster. We now prove that the M-ART cannot create any 

new cluster after the first one. Assume that there is one cluster (C(M), Q(M),R(M),N(M)) consisting of 

N(M) < N input vectors XXXXm(M), m=1..N(M), in M-ART, and a new input vector Xk will not belong to 

this cluster. (The superscript (M) indicates the cluster is formed by M-ART, differentiating from 

the true cluster in the given data set). From Def.3.2, this means that: 
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�Xk − CJ
(M)�

Q-1=�Xk −
1

N(M) B Xm
(M)

N(M)

m=1

�
Q-1

 > ρ  (3.31) 

For simplicity, we now assume that Q(M) = Q. This is reasonable, because Q(M)→ Q when N(M) → 

N.  

Multiplying both sides of (31) with N(M) >0, and applying the subadditivity property (or triangle 

inequality) of the norm to the left side yields: 

�Xk − X1
(M)�

Q-1+�Xk − X2
(M)�

Q-1+…+�Xk − X
N(M)
(M) �

Q-1 ≥�N(M)Xk−−−−B Xm
(M)

N(M)

m=1

�
Q-1
	>	N(M)ρ  (3.32) 

From (3.32) and given ρ ≥ 2R, there exists 1≤q≤N(M) such that 

�Xk − Xq
(M)�

Q-1	>	2R  (3.33) 

On the other hand, from Def.3.1, the distance between any two vectors in the same cluster cannot 

be greater than twice its size. However Xk and Xq(M) belong to the true cluster (C,Q,R,N). It is 

evident from (3.1) and the subadditivity property of the norm that: 

�Xk − Xq
(M)�

Q-1	=�(Xk−−−− C)+&C	−	Xq
(M)'�

Q-1	 ≤ ‖Xk −−−− C‖
Q-1+�Xq

(E)				−−−−				C�
Q-1 ≤ 2R	, (3.34) 

which contradicts (3.33). Thus any new vector inputs to M-ART will become a new member of 

only one cluster (C(M), Q(M),,R(M),N(M)) which proves Lemma 3.2a. 

 
Proof of Lemma 3.2b: Assume there is only one cluster (C(M), Q(M),R(M),N(M)) resulting from M-

ART, or: 

Xk ∈ (C(M), Q(M),R(M),N(M)) for ∀ Xk ∈ (C,Q,R,N) (3.35) 

According to (3.7) and (3.8), C(M) and Q(M)created by M-ART are the mean and the covariance 

matrix of all vectors belong to this cluster, respectively, or:  

C(M) = C and Q(M) = Q (3.36) 

By Def.3.1, there exists Xm such that: 

‖Xm−−−−				C‖Q-1		=	‖Xm−−−−				C(M)‖Q-1		=	R  (3.37) 
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Following (3.30), we have 

‖Xm−−−−				C(M)‖Q-1	=	R	{	ρ  (3.38) 

Hence, Xm does not satisfy (3.4) and (3.5), or does not belong to the cluster (C(M), Q(M),R(M),N(M)), 

which contradicts our assumption. Hence, M-ART will produce more than one cluster, which 

proves Lemma 3.2b. 

Lemma 3.3: Existence of M-ART for 2 clusters 

Assume a data set S contains only two clusters (C1, Q1,R1,N1) and (C2,Q2,R2,N2) with R1  ≥ R2. 

 Define: 

∆min = min
1≤j≤N1;1≤k≤N2

P�X j
(1)
− Xk

(2)�
Q1

-1; �X j
(1)
− Xk

(2)�
Q2

-1Q (3.39) 

           where  Xj
(1) ∈ (C1, Q1,R1,N1) and  Xk

(2) ∈ (C2,Q2,R2,N2). 
 Then M-ART clustering with  

2R1 ≤ ρ < ∆min  (3.40) 

will always result in 2 clusters. 

Proof:  

Let X i
(1), X j

(1) ∈ (C1, Q1,R1,N1) ,∀i,j = 1..N1, and Xk
(2), Xn

(2) ∈ (C2,Q2,R2,N2),∀k,n = 1..N2    

From Def.3.1, the “intra-class” distance, ∆ij or ∆kn, of any two points belonging to the same 

cluster satisfies: 

 ∆ij =�X i
(1)
− X j

(1)�
Q1

-1≤ 2R1  , ∀i, j=1..N1 

															∆kn =�Xk(2)
− Xn

(2)�
Q2

-1≤ 2R2≤ 2R1  , ∀k, n=1..N2 

(3.41) 

Assume that the first input vector feed to the M-ART network is X j
(1) ∈ (C1,Q1,R1,N1). According 

to Def.3.2, M-ART forms the first cluster, (C 1
(E)= Xj

(1), Q 1
(E)= IIII, R1

(E)=0, N1
(E)=1),  to contain this 

input vector.  
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Assume the second input vector fed to the M-ART is 				Xk
(2) ∈ (C2,Q1,R2,N2). From (3.39) and 

(3.40), we have: �Xk
(2)
− C1

(E)�
Q1

-1 ≥ ∆min  >ρ. The condition (3.5) of Def.3.2 is NOT satisfied. 

Therefore, M-ART creates a new cluster, (C 2
(E)= Xk

(2), Q 2
(E)= IIII, R2

(E)=0, N2(E)=1), to contain this 

input. 

Consider any third input fed to the M-ART network, for which there are two cases: 

Case 1: The third input is X i
(1) , which actually belongs to the first cluster: X i

(1) ∈ (C1, Q1,R1,N1)  

From (3.39), (3.40), and (3.41), we obtain: 

�X i
(1)
− C1

(E)�
Q1

-1		≤ 2R1 ≤ ρ 

�X i
(1)
− C2

(E)�
Q2

-1		≥ ∆min >ρ 

(3.42) 

In other words, this input X i
(1) will be classified by M-ART into the first cluster, 

(C1
(E),Q1

(E),R1
(E),N1

(E)). 

Case 2: The third input is Xn
(2) , which actually belongs to the second cluster: 

Xn
(2) ∈ (C2,Q2,R2,N2) 

As before, from (3.39), (3.40), and (3.41), we obtain: 

�Xn
(2)− C1

(E)�
Q1

-1			≥ ∆min >ρ 

�Xn
(2)− C2

(E)�
Q2

-1		≤ 2R1 ≤ ρ 
(3.43) 

So this input Xn
(2) will be classified by M-ART into the second cluster, 

(C2
(E),Q2

(E),R2
(E),N2

(E)). 

Hence, M-ART does not create a new cluster, which proves Lemma 3.3. 

 

Special case Q1 = Q2 = I: 

Lemma 3.3 states that if two clusters are “separated enough”, there exist certain values of 

vigilance ρ so that M-ART produces the correct two clusters. We can easily visualize conditions 



23 
 

(3.39) and (3.40) in the special case when Q1 = Q2 = I , and in 2 dimensions, the clusters are 

circular shaped. Assume that for two clusters, with centers C1 and C2, we have the center-to-

center distance D12 given by: 

D12 = ‖C1−−−−				C2‖Q-1 = ‖C1−−−−				C2‖ ≥ 3(R1+ R2) (3.44) 

Then, (3.40) becomes: 

∆min = min
1≤j≤N1

_�X j
(1)
− C2�

Q-1c 	= min
1≤k≤N2

_�Xk(2)
− C1�Q-1c 	≥ 2(R1+ R2) (3.45) 

Fig.3.1 illustrates the case of two circular shaped clusters, Q1=Q2=I , that are “separated enough” 

so that M-ART with any ρ satisfying (3.40) will produce the correct 2 clusters. 

 

Figure 3.1: Two clusters, with Q1=Q2=I , with circular shapes, are “separated enough” so that M-
ART with any ρ satisfying (3.40) will produce the correct 2 clusters. 

 

3.2 Selecting a Good Value for ρρρρ: 

There exist values of ρ in a certain range such that M-ART produces the “correct number” (as 

would be determined by humans) of clusters in a particular data set, but the appropriate value of ρ 

depends heavily on the distribution of patterns in the data set, which is normally unknown a 

priori. The principal remaining concern is determination of a good value for ρ. Small values of ρ 
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produce small clusters, such that the number of clusters is large, and large values produce larger 

clusters, such that the number of clusters is small. Conventionally, a trial-and-error approach is 

used to tune the value of ρ for each input data set. We propose an automatic procedure that could 

be applied for any input data set in what follows. We first introduce another definition: 

Definition 3.3: Separation Factor 

The separation factor SVjk of two clusters (Cj,Qj,Rj,Nj) and (Ck,Qk,Rk,Nk) is a positive real 

number defined by: 

SV�� = 	���−	���FGIH +	���−	���F�IH2&R� + R�'  (3.46) 

These two clusters are said to be “separated enough” if SVik ≥ SV for some pre-defined number 

SV, or to be “too close” otherwise. 

Note that for Q1=Q2=I ,(spheroidal shaped clusters) (3.46) becomes: 

SV�� = 	���−	���R� + R�  (3.47) 

Recall that the Mahalanobis distance (M-distance) is used as a similarity measurement between a 

point X and a center of the cluster C, which indicates how likely this new point should belong to 

this cluster. M-distance differs from Euclidean distance (E-distance), which is isotropic and does 

not depend on the distribution of the cluster data points. M-distance puts high weights along axes 

with high variance (major axes) of the cluster data points, while the direction with low variance 

of cluster data points (minor axes) is weighted lower.  If the covariance matrix of the cluster data 

points is the identity matrix, the M-distance becomes the E-distance. If the covariance matrix 

is diagonal, then the resulting distance measure is called the normalized E-distance. The 

separation factor in (3.46) represents how much separation or “overlap” exists between any two 

clusters. As SVjk increases from 0, the jth and kth clusters move from maximum overlap to 

maximum separation. 



25 
 

Some examples of two circular shaped clusters that have separation factors equal to 0.5, 1, and 

1.1 are shown in Fig.3.2. Figure 3.3 illustrates other examples of separation factors between two 

clusters, circular or ellipsoidal shaped. In Fig.3.3, each number beside a cluster (represented by a 

blue circle or blue ellipse) indicates the separation factor between this cluster and the cluster 

represented by the red ellipse with light-cyan filled color.  

 

  Figure 3.2: (a) Separation-factor between Two Circular Shaped Clusters.  
(b): Some examples with: (upper) SV=0.5, (middle) SV=1.0, (bottom) SV=1.1 

The idea for auto-adjustment of ρ is to use M-ART with small ρ, producing clusters that are 

excessively close together, or heavily overlapped, and then graduately increasing ρ until all 

clusters are “sufficiently” separated or less heavily overlapped. This process is equivalent to 

merging clusters that are deemed excessively close together into larger ones. 
 

Figure 3.4 (a) shows a sample data set (data a2 in Chapter 4) with 35 natural clusters (as 

determined by humans). A very small value of ρ=0.06 produces from M-ART 86 clusters that are 

excessively close, Fig.3.4 (b). With a larger value of ρ=0.11, M-ART produces 35 clusters that 

are sufficiently separated, Fig.3.4 (c), and in line with what most humans would produce. 

Discussion on selecting a value for SV is given in Chapter 4, Eqn (4.6), and Table 4.3, and 

Fig.4.5. 
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Figure 3.3: Example of separation factors between circular shaped and ellipsoidal shaped clusters. 
Each number beside a cluster (represented by a blue circle or blue ellipse) indicates the separation 

factor between this cluster and the cluster represented by the red ellipse with light-cyan filled 
color.  

 
(a)                                     (b)                                                (c) 

Figure 3.4: (a) Data Set a1. (b) and (c) Clustering Results with Different Vigilance Values.  

The pseudo-code for M-ART with auto adjustment of vigilance ρ is shown in Table 3.1. The auto 

adjustment process starts with an arbitrarily small value of vigilance ρ. The first Repeat-Until 

loop in Table 3.1 reduces the value of ρ to guarantee that there are at least two clusters resulting 

from M-ART, which will produce clusters that are excessively close (Def.3.3). The second 

Repeat-Until loop in Table 3.1 gradually increases the value of ρ to guarantee that all clusters 
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resulting from the M-ART are sufficiently separated according to Def.3.3 and a user-selected 

value of SV.  

Table 3.1: Pseudo-code of the M-ART with Auto-adjust Vigilance Algorithm 

Choose a desired separation factor SV 

Initialize an arbitrarily small value vigilance ρ 

Kdown = 0.1 

Kup = 1.1 

Repeat 

     ρnew = Kdown.ρold 

     Run M-ART with ρnew for entire data set 

						D��	 = 0.5(���−	���FGIH +	���−	���F�IH)			, 1≤j≠k≤M  

Until  Djk ≤ SV(Rj+Rk), for some j and k, 1≤j≠k≤M  

Repeat 

     ρnew = Kup.ρold 

     Run M-ART with ρnew for entire data set 

						D��	 = 0.5(���−	���FGIH +	���−	���F�IH)			, 1≤j≠k≤M  

 Until  min�,� _ �G���D��c 	{ 	��		 
 

3.3 Density-based removal pre-processing 

M-ART is essentially distance-based clustering, which means M-ART considers dense or sparse 

input vectors equally. That is why M-ART often produces spurious clusters consisting of vectors 

that lie in the outlying regions of these clusters. By itself, M-ART does not mimic well our eye-

brain system for identifying clusters. From observation, it is believed that the first step in human 

selection of 2-D clusters involves detecting high-density areas of points, which they label as 
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cluster centers. The second step in human cluster detection would then be seeking “gaps” 

between clusters to define the outliers. In this paper, we propose pre-processing of data by 

removing points from an input data set that lie in areas of low point density before feeding to the 

M-ART network. The idea is to remove some outlying vectors such that the cluster structure 

(number of clusters and cluster centers) of the remaining data will not likely change significantly 

(if at all) from those of the original data set. Removing some points in areas on the margins of 

clusters may render remaining points more easily identifiable as part of a distinct cluster and 

easier to identify by M-ART.  

Table 3.2: Pseudo-code of Density-based Removal Pre-processing 

Input data set S =[X1,X2,…,XL] consisting of total L input vectors 

Select a keeping ratio, 0<kr≤1, and ranking ratio 0<rr≤1 

n1 = round(Lkr)             

n2 = round(Lrr)              

For each input vector X i  

     Compute pair-wise distance to all other vectors  ∆��	= =(��	−−−−	��):(��	−	��)		, j = 1. . L 
     Rank all L values of ∆ij, j=1..L, from smallest to largest 

     Compute the density at the point X i: �� = 1/ _ ��H∑ ∆���H� � c 
End  

Find rcut as the n2
th

 smallest value of ri array (i=1..L). 

Remove any pattern that is in a low density region 

Sremaining = S – {X i such that ri ≤ rcut} = { X i such that ri > rcut} 

 

The density-based removal pre-processing algorithm is given in Table 3.2. We define the point 

density near a point in the feature space as the total number of input vectors that are inside the 

unit hyper-sphere surrounding this point. Therefore, the density at the point X i, called ri, could be 
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approximated by one divided by the average of distances between X i and a specific number of its 

nearest input vectors. Small average distances produce larger values for ri, which means that 

neighbors of X i are close. In other words, such a point should be near the center of a true cluster. 

In contrast, larger average distances produce small value for ri, which means that X i should be 

near the boundaries of a true cluster. Thus, we remove some input vectors X i with small values of 

ri (low density). 

 
Figure 3.5: (a): Original Data Set t3; 

(b) Result of Directly Applying the M-ART Clustering with Many Spurious Clusters 
(c) Sremaining with Five Clusters Easily Identified by the M-ART Clustering 

(d) Final Partition of the Original Set with These Five Centers Retained from (c) 

Figure 3.5 (a) shows the data set t3 (Chapter 4). M-ART clustering produces a total of 18 clusters 

using SV=0.8, ρ=0.21 shown in Fig.3.5 (b). Most humans would quickly conclude that there are 

only 5 clusters. After pre-processing by density-based removal, described in Table 3.2, the 
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remaining data is fed to M-ART clustering, which easily identifies five separated clusters shown 

in Fig.3.5 (c), with the same values of SV and ρ. These five cluster centers are retained to decide 

which is the closest center to which each input vector of the original data set should belong 

Fig.3.5 (d). Results showed in Fig.3.5 were obtained from the best choice of SV=0.8 after 

experimented with difference values of SV as described more detail later in Chapter 4. 

3.4 Automatic clustering procedure 

Using density-based removal pre-processing could benefit the M-ART process in locating 

clusters. However, it is evident that insufficient removal would not provide sufficient help to M-

ART, while excessive removal could lead to a spurious cluster structure. We define two 

parameters that affect removal pre-processing: keeping ratio kr and ranking ratio rr. It is not trivial 

to select suitable combinations of these parameter values. Keeping ratio affects the number of 

nearest neighbors to approximate the density at a given point, such that it presents local 

information. Ideally, the number of nearest neighbors should approximate the number of input 

vectors of a cluster, so we define kr by: 

kr = (total number of input vectors)/ (number of true clusters) (3.48) 

 which assumes that clusters are somewhat equal in their number of members. However, the 

number of true clusters is unknown. By experiments with a number of sample data sets (given in 

Chapter 4), we suggest a rule of thumb:  

0.01 ≤ kr ≤ 0.10 (3.49) 

For example if the number of total input vector (patterns) is several thousand, the number of 

counting neighbors of each point should be several hundred or less. If we select kr > 0.1, the 

cluster structure may become distorted. 

Ranking ratio, similar to global thresholding of hierarchical clustering methods, is a parameter 

used to determine when to ignore low densities of a pattern. It directly affects how many vectors 
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or patterns will be removed in pre-processing. Again, from experience with data sets given in 

Chapter 4, we propose the rule of thumb: 

0.10 ≤ rr ≤ 0.40 (3.50) 

For example, if rr = 0.10, then data points with densities ranking in the lowest 10% of all point 

densities will be removed. 

Table 3.3: Pseudo-code of Automatic Clustering Procedure 

Use density-based removal pre-processing, varying kr and rr 

Use M-ART with auto-adjust vigilance algorithm for each remaining data set 

Plot the number of clusters vs. kr and rr 

Select a pair of kr and rr that produce the same number of clusters (fall on a plateau of the 

plot). When multiple values for kr and rr exist on the plateau, select the smallest values. 

Save cluster centers corresponding to the same number of clusters on the plateau 

Assign each pattern of the original data set to the closest (M-distance) cluster 

 

Table 3.3 illustrates the automatic clustering procedure. The goal of this is to automatically select 

the proper values of kr and rr of density-based removal pre-processing to clean the data set before 

feeding it to M-ART with the auto-adjustment of vigilance, discussed above. While varying 

values of kr and rr in a certain range, for example using (3.49) and (3.50), apply removal pre-

processing to an original data set for each pair of kr and rr. Then, use M-ART with auto-

adjustment of vigilance for each remaining data set corresponding to each pair of kr and rr. Plot 

the number of clusters vs. kr and rr in a 3-D plot. Experiments and observations with data sets in 

Section 5 suggest that clustering that agrees with human clustering occurs when the number of 

clusters is relatively insensitive to small changes in kr and rr. This will happen in regions of the 

plot of cluster numbers vs. kr and rr where a plateau (or flat) occurs. Therefore, a pair of kr and rr 

lying on this plateau is selected. Cluster centers for M-ART for the remaining data set with 

selected values of kr and rr are retained to cluster the original data set. Then the task of finding 
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which cluster that a given pattern of the original data set should belong to becomes trivial, by 

finding the nearest distances from that pattern to cluster centers.   

 
(a) 

 
(c) 

 
(b)  

(d) 
Figure 3.6: (a) Original Data Set s3; (b) Plot of Number of Clusters vs. kr and rr;  

(c) Clustering after Removing with kr=0.01, rr=0.40; 
(d) Final Partition of the Original Set with 15 Clusters 

Figure 3.6 illustrates the process of clustering for the 2-D data set s3 (a). Appling the process 

given in Table 3.3 with 0.01≤ kr ≤0.30 and 0.01≤ rr ≤1.00 (which are larger than range of kr and rr 

given in (3.49) and (3.50)), we produce the plot of number of cluster vs. kr and rr, Fig.3.6 (b), 

with SV=0.8, ρ=0.12. Select the smallest value of kr and rr in the plateau region of the plot, 

namely kr=0.01, rr=0.40. The result of removal pre-processing with these values of kr and rr is 

given in Fig.3.6 (c), showing 15 clusters, using SV=0.8, ρ=0.12. Using these cluster centers to 

decide the closest center (M-distance) that each input vector of the original data set should belong 

is straightforward, with results given in Fig.3.6 (d). Again, these results are consistent with what a 

human would produce. 
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Chapter 4  

 

RESULTS OF THE PROPOSED DATA CLUSTERING TECHNIQUE  

 

 

4.1 Test with artificial data 

The 21 data sets used in this study to obtain results are described in Table 4, and the fifteen 2-D 

data sets are depicted graphically in Figure 4.1. Data sets labeled a1 to a3 and s1 to s4 are taken 

from http://cs.joensuu.fi/sipu/datasets/. Data sets a1 to a3 are synthetic 2-D data with varying 

numbers of clusters. Data sets s1 to s4 are synthetic 2-D data with 5000 vectors and 15 Gaussian 

clusters with different degrees of cluster separation. Data sets s1m1, s2m1, s2m2, s3m1, and 

s4m1 are modified sets taken from original data sets s1, s2, s3, and s4, respectively, by manually 

removing some ellipsoidal-shaped clusters. Data sets t1 to t8 are synthetic 2-D, 3-D, 4-D, 5-D, 

and 10-D data with the number of Gaussian clusters described in Table 4.1, prepared by the 

authors. By applying the automatic clustering procedure described in Section 4, all data sets 

whose clusters are reasonably separated, such as 2-D data sets a1, a2, a3, s1, s1m1, s1m2, s2, 

s2m1, s2m2, s3, s3m1, t2, and t3, yield the number of clusters identical with the number actually 

generated and what most human observers would detect. For higher dimensional data sets, the 

results (number of clusters determined by M-ART for each data set) agree with what were 

generated. 
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Table 4.1: Data Sets and Characteristics 

Data set 
Data 

Dimension 

# 

Vectors 

# 

Clusters 

Data 

set 

Data 

Dimension 
# Vectors 

# 

Clusters 

a1 2-D 3000 20 s3m1 2-D 4634 14 

a2 2-D 5250 35 s4m1 2-D 3903 13 

a3 2-D 7500 50 t1 2-D 1500 5 

s1 2-D 5000 15 t2 2-D 2500 10 

s2 2-D 5000 15 t3 3-D 1200 8 

s3 2-D 5000 15 t4 3-D 1500 10 

s4 2-D 5000 15 t5 3-D 1500 10 

s1m1 2-D 4685 14 t6 4-D 1500 5 

s1m2 2-D 4356 13 t7 5-D 1500 5 

s2m1 2-D 4356 13 t8 10-D 1500 5 

s2m2 2-D 4326 12     

 

Results are tabulated in Table 4.2, together with computational time for automatic clustering 

using a PC Pentium dual 3.0GHz, 2GB Ram, Window XP and Matlab-R2009a. Parameters used 

in the program to generate the data in Table 4.2 are: 

Separation ratio:  SV = 0.8     (4.1) 

Range of kr:  kr = 0.010 to 0.055, increment by 0.005   (4.2) 

Range of rr:  rr = 0.1 to 1.0, increment by 0.1    (4.3) 

Initial vigilance:  ρstart = 0.05      (4.4) 

Scale factor for increasing/decreasing vigilance (see Table 1): 

   Kup = 1.1; Kdown = 0.1     (4.5) 
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Data set a1 Data set a2 Data set a3 

 

Data set s1 Data set s1m1 Data set s1m2 

 

Data set s2 Data set s2m1 Data set s2m2 

 

Data set s3 Data set s3m1 Data set s4 

   
Data set s4m1 Data set t1 Data set t2 

Figure 4.1: Graphical Representation of Data Sets 
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Table 4.2: Summary Results of Clustering (SV=0.8) 

Data sets 
Data 

Dimension 

No. clusters 

used to 

generate data 

No. clusters 

from 

automatic 

clustering 

Computational 

time (sec) 
kr  r r 

a1 2-D 20 20 433.9    0.010    0.300 

a2 2-D 35 35 1540.9    0.010    0.300 

a3 2-D 50 50 3316.9    0.010    0.300 

s1 2-D 15 15 1148.4    0.010    0.200 

s1m1 2-D 14 14 1033.6    0.010    0.200 

s1m2 2-D 13 13 1608.4    0.010    0.200 

s2 2-D 15 15 1414.5    0.010    0.200 

s2m1 2-D 13 13 1153.8    0.010    0.100 

s2m2 2-D 12 12 1017.3    0.010    0.100 

s3 2-D 15 15 1694.2    0.010    0.200 

s3m1 2-D 14 14 1564.0    0.010    0.100 

s4 2-D 15 14 1727.1    0.025    0.400 

s4m1 2-D 13 11 1239.5    0.010    0.100 

t1 2-D 5 5 23.0    0.010    0.100 

t2 2-D 10 10 28.4    0.010    0.100 

t3 3-D 8 8 21.6 0.010    0.200 

t4 3-D 10 10 25.3 0.010    0.200 

t5 3-D 10 10 25.1 0.010    0.100 

t6 4-D 5 5 26.4 0.010    0.200 

t7 5-D 5 5 27.6 0.020    0.200 

t8 10-D 5 5 26.9 0.010    0.200 
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The kr and rr were chosen as the smallest values corresponding to the “largest” plateau region of 

the plot of the number of clusters vs. kr and rr. 

Note that the clusters in data set s3 and s3m1 are very close (small separation), yet the algorithm 

still produces “correct” cluster counts. For data set s4 and s4m1, the algorithm produces results 

different from those used to generate the clusters. However, clusters of those data sets have very 

small separation, such that different humans often produce different numbers of clusters. 

 

 

                                              (a)                                                             (b) 

 

                       (c)                                            (d)                                           (e) 

Figure 4.2: Data Set t3 in 3-D (a), and its projection in xy, xz, yz planes (c,d, and e- respectively). 
Clustering result is shown in (b) with 8 clusters selected by M-ART. 
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Figure 4.2 presents the original data set t4 in three dimensional space xyz (a), and its projection in 

xy, xz, yz planes in (c), (d), and (e), respectively. The clustering results is shown in (b) with 8 

clusters selected by M-ART, with SV=0.8. 

 

                        (Data set t3)      (Data set t4)                            (Data set t5) 
 Figure 4.3: Clustering results of the data set t3, t4, and t5. 

Figure 4.3 illustrates the clustering results of our method for the data set t3 (2-D), the data set t4 

(3-D), and the data set t5 (3-D), with SV=0.8. 

 
(a) 

 
(c) 
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(b) 

 
(d) 

Figure 4.4: (a) Original Data Set s4 Created by 15 Gaussian Clusters; (b) Clustering after 
Removing with kr=0.01 and rr=0.50; (c) Plot of Number of Clusters vs. kr and rr; 

(d) Final Partition with “Incorrect” 14 Clusters. 

Figure 4.4 illustrates details on the process of clustering for data set s4 (Fig.4.4 (a)), with SV=0.8. 

Appling the process that discussed in Table 3.3, we obtain the plot of number of cluster vs. kr and 

rr (Fig.4.4 (b)). Select the pair of smallest values of kr and rr in the “largest” plateau region of this 

plot: kr=0.025, rr=0.40. The result of clustering after removal pre-processing with these values of 

kr and rr is shown in Fig.4.4 (c). This process produces 14 clusters, while the “correct” answer, 

according to what was generated, is 15 clusters. Some points belong to a true cluster (as 

generated) on the top, left-most of Fig.4.4 (a), showing low point density, and were removed by 

pre-processing, which reduced the number of detected clusters by 1, to 14. However, if those data 

points were retained, the clusters after cleaning would not be separated enough for M-ART and 

the auto-adjust vigilance algorithm to select the correct number of clusters. This is an example in 

which pre-processing removal does not help M-ART to deal with sparse clusters. In this case, 

pre-processing removal changes the structure of the data set, or does not produce a cleaned data 

set with separated clusters. 

Table 4.3: Effect of Separation Ratio on the Number of Clusters 
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          Data 
               Set 
SV 

a1 a2 a3 s1 s1m1 s1m2 s2 s2m1 s2m2 s3 s3m1 

 0.5 or 0.6 20 35 50 15 14 13 15 13 12 15 14 

0.6, 0.7, 0.8, 
or 0.9 

20 35 50 15 14 13 15 13 12 15 14 

1.0 or 1.1 20 17(35) 50 15 14 13 15 13 12 15 14 

          Data 
               Set 

SV 
s4 s4m1 t1 t2 t3 t4 t5 t6 t7 t8 

 0.5 or 0.6 14(15) 11(13) 5 10 8 10 10 5 5 5 

0.6, 0.7, 0.8, 
or 0.9 

14(15) 11(13) 5 10 8 10 10 5 5 5 

1.0 or 1.1 14(15) 11(13) 5 10 8 10 10 5 4(5) 3(5) 

 

Table 4.3 illustrates the effect of separation ratio SV on the number of clusters resulting from 

automatic clustering. In this experiment, all parameters were kept the same as given in (4.2) to 

(4.5), except that SV was varied from 0.5 to 1.1, incremented by 0.1. In Table 4.3, numbers in 

bold underlined font-style represent the results that are different from those used to generate the 

clusters (“correct” numbers given in parentheses), while the normal font-style indicates the results 

are consistent with those used to generate the data. The numbers of clusters for all data sets are 

consistent while SV changes from 0.6 to 0.9. Results for data set a2, t7, and t8 are “incorrect” for 

SV=1.0 and 1.1. For all tested values of SV, data set s4 and s4m1 are “incorrect”.  
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  SV=1.1     
Figure 4.5: Plots of Number of Clusters vs. kr and rr for Different Values of SV 

(from 0.5 to 1.1 as labeled in each plot) for data set a1.  

Figure 4.5 illustrates the effect of separation ratio on the size and shape of the plateau region of 

the plot of number of clusters vs. kr and rr for data set a1. Even though the plateaus of these plots 

occur at the same height, so that the clustering algorithms can select the correct number of 

clusters as 20, the plateau regions for SV=1 and SV=1.1 are smaller in size comparing with 

others.    

From experience, we propose the rule of thumb: 
0.6 ≤ SV ≤ 1.0 (4.6) 

 

4.2 Case study: texture classification 

In this section, we test our proposed clustering method on a real world application of texture 

classification. Texture is a phenomenon that is widespread, easy to recognize and hard to define. 

In order to analyze and/or classify texture, we need a mechanism to represent texture accurately 

so that each texture image will correspond to a point in high dimensional feature vector space. 

The fundamental assumption is that this representation is matched (or at least most likely 

matched) with human visual assessment. In other word, textures whose represented feature 

vectors are similar should be visually similar. Commonly, it suggests representing textures in 

terms of the response of a collection of filters (such as a Laplacian Pyramid or Gabor filter bank 

[25, 26]), in which each filter would recover a pattern of the texture, such as a spot or bar (with 

different sizes and orientations). To summarize the filtered output images, a set of statistics, such 

as mean, variance, kurtosis, and skewness, is commonly involved.  
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The 59 texture images used in this experiment were extracted from the Brodatz texture image 

library [27]. Because the available texture image library is limited in number, we manually divide 

each original texture image, 640x640 pixels, into small 100 blocks of size 64x64 pixels each, and 

manually label these 5900 small images into 26 categories based on their visual appearance. 

Figure 4.6 shows 26 small texture images, each from different categories. For each small image, a 

Gabor filter bank with 4 scales and 6 orientations (24 totally different Gabor filters) are 

convolved with this image to produce 24 filtered images. We note that the filtered images have 

large intensity values (strong responses) at locations where the structure of the original image 

matches well with the structure defined in the corresponding filters. We then summarize each of 

the 24 filtered output images by a statistics measurement, namely variance. Hence, each texture 

image of size 64x64 pixels corresponds to a point in 24 dimensional space and will be classified 

in this space. These 5900 vectors in 24 dimensional space, each corresponding to a small texture 

image, were fed into the automatic clustering procedure described in Table 3.3, with the same 

parameter settings given in (4.1) to (4.5), except that we used SV = 0.6. 

Our proposed clustering method correctly produced 26 clusters with an accuracy of 88.5%. 

However, in order to fairly compare our method with the K-means method, which requires 

knowing the number of clusters and is sensitive to initialization, we randomly selected 780 

feature vectors corresponding to 260 small texture images (30 images from each of 26 categories) 

to initialize 26 cluster centers, and we forced M-ART to create no new clusters. The remained 

5120 small texture images were classified by M-AT and the K-means method. M-ART produced 

94.7% accuracy, compared with 91.2% accuracy from the K-means method. 
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Figure 4.6: The 26 small texture images of size 64x64 pixels from 26 categories.  

4.3 Case study: Texture segmentation 

In this section, we test our proposed clustering method on a real world application of texture 

segmentation. The data set includes 50 mosaic images of size 256x256 pixels created by 

composing 3-6 different gray-scaled textures (chosen randomly from [26]) into designed regions. 

Figure 4.7 shows five mosaic images and their ground truth maps (in pseudo color).  

 
Figure 4.7: Some Test Images for Segmentation (top row)  

and Their Ground Truth Maps (bottom row) 

For each pixel of a given image, the corresponding 24x1 dimension feature vector was extracted 

by convolving a Gabor filter bank [27-29] with 4 scales and 6 orientations (24 totally different 

Gabor filters) with this image. These 65536 vectors in 24 dimensional space, each corresponding 
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to a pixel in the original image, were fed into the automatic clustering procedure described in 

Table III, with the same parameter settings given above except that we used SV = 0.7. The order 

of feeding input vectors to our M-ART was randomly selected. 

 
Figure 4.8: Effect of Initialization. (a) the Test Image; (b) the Ground Truth Map; (c), (d), and (e) 
the Results of K-means, EM, and Our Method, respectively, with a Good Initialization; (f), (g), 

and (h) the Results of These 3 Methods with a Bad Initialization. 

Results were compared with those from the well-known K-means and Expectation Maximization 

(EM) [30] methods and tabulated in Table VI. Note that K-means and EM both require knowing 

the number of segments a priori, but our method does not. However, all three methods were given 

the same initialization for fair comparisons. Segmented images resulting from the three methods 

were compared pixel-by-pixel with corresponding ground truth maps to determine accuracy. 

In Table 4.4, good/bad initialization means each cluster center was given as a pixel inside the 

correct/incorrect segments of the original image. Figure 4.8 visually illustrates the effect of 

initialization on the three methods. Notice that the K-means and EM methods are severely 

affected by bad initialization. Our method is superior in both accuracy and insensitivity to 

initialization.   
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Table 4.4: Accuracy of Texture Segmentation of Three Methods 

 K-means EM Our method 

Good initialization 87.2% 91.4% 97.5% 

Bad initialization 55.8% 62.6% 85.2% 

Average of 100 random 
initializations 

68.5% 72.3% 89.8% 
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Chapter 5  

 

CONCLUSTIONS FOR DATA CLUSTERING 

 

 

In previous chapters, an automatic clustering procedure is proposed. The first step is density-

based removal pre-processing, which tends to produce more distinct clusters in most cases. This 

process is equivalent to removing input vectors near the boundaries of each cluster, which in 

many cases does not change the data structure or the number of “correct” clusters in the data. The 

next step is to employ the M-ART neural network to group similar input vectors into clusters.  

The vigilance ρ in the M-ART network determines the maximum size of clusters, and 

consequently affects the number of clusters. Conventionally, a trial-and-error approach is used to 

tune this value of ρ. In this paper, a procedure to auto-adjust the value of ρ based on a user-

selected allowable separation between clusters is proposed. Even though one must still select the 

value of a parameter, choosing the allowed separation factor is intuitively easier than selecting the 

value of ρ. The appropriate value of ρ is strongly dependent upon on the specific data set, and is 

therefore very difficult to select a-priori. On the other hand, the allowed separation factor value 

simply represents how much separation between adjoining clusters a user is willing to accept. 

Accordingly, the separation factor could be chosen for multiple data sets before running the 

algorithm. 
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The “optimal” number of clusters could be chosen according to some criteria, such as cluster 

compactness or variation within a cluster and/or separation or isolation between clusters [11]. 

Cluster compactness (variation within cluster) and/or separation (isolation between clusters) are 

normally considered as major factors in forming validation indexes [10, 11]. Almost all clustering 

algorithms are not parameter-free and require user supplied values for input parameters. 

Determining these values is difficult, and is usually guided by trial-and-error. Moreover, the 

results produced could be very sensitive to these values, producing significantly different 

partition results with only slightly different parameter values [6], rendering them unusable.  

Experiments conducted on different synthetic 2-D, 3-D, 4-D, 5-D, and 10-D Gaussian data sets, 

some published and some generated by the authors, with varying numbers of vectors, numbers of 

clusters, and different degrees of separation between clusters, demonstrate the effectiveness and 

reliability of the proposed clustering method. Two case studies of texture classification and 

texture segmentation are also presented, showing very good results when compared with those 

from the well-known K-means method. 

We would like to investigate and solve the segmentation problem for general, real scene color 

images. In applying our automatic clustering technique presented herein to this problem, we 

represent each image pixel as a vector in high dimensional feature space, which are usually based 

on color, texture, and xy-coordinators in the image plane. Then these vectors are grouped into 

clusters, which is equivalent to dividing image pixels into corresponding segments. However, our 

method works well only with convex-shaped (ellipsoid-shaped) clusters that are sufficiently 

separated, which is normally not the case with general, real scene images. Accordingly, in the 

next chapters, we investigate and propose a more advanced technique for color image 

segmentation.      
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PART II:  IMAGE  SEGMENTATION 

Chapter 6  

 

INTRODUCTION TO IMAGE SEGMENTATION 

 

 

6.1 Introduction to image segmentation  

Image segmentation is a process in computer vision that partitions a digital image into multiple 

segments or non-overlapping regions. Partitioning an image into non-overlapping regions assures 

that pixels in each region share the same visual characteristics, such as color or texture, while 

pixels in different regions exhibit significant differences in these features. In other words, 

segmentation can be viewed as the process of labeling all pixels of the input image such that 

pixels with the same label are connected and share certain visual properties. Moreover, pixels in 

adjacent regions with different labels are significantly different in the same criteria. The result of 

this process is a set of non-overlapping segments whose union forms the whole input image. 

Segmentation is one of typical methods to separate the foreground from the background and to 

locate objects (and their boundaries) of the input image. It is a first step to simplify and represent 

an input image into a form that is more meaningful and easier to analyze. Then, properties of 

objects resulting from the segmentation process can be determined (such as size, shape, color 

distribution) for purposes of recognition, classification, and forming higher knowledge.  
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Therefore, segmentation serves as a fundamental step in extracting knowledge from the image, 

and can be widely applied in many fields, such as classification, object recognition, object 

tracking, content-based image retrieval, surveillance, and medical imaging, among others [31-34]. 

Some of the practical applications of image segmentation are: medical imaging (including 

locating tumors and other pathologies, measuring tissue volumes, and computer-guided surgery 

[34]), locating and measuring objects in satellite images (roads, forests, etc.) [35], face 

recognition [36], iris recognition [37], fingerprint recognition [38], recognition in traffic control 

systems [39], and crop disease detection [40].     

Several general-purpose algorithms and techniques have been developed for image segmentation. 

Since there is no general solution to the image segmentation problem, these techniques often must 

be combined with domain knowledge in order to effectively solve an image segmentation 

problem for a specific problem domain. Most algorithms work well with specific, well-known 

scene images or images under well controlled lighting condition, but fail with general scene 

images [35-37, 39-40]. A general-purpose segmentation technique is needed that provides 

acceptable and reliable results on a wide variety of real, general scene images without excessive 

computational cost. Another challenge in segmentation problems is how to quantitatively evaluate 

a given image segmentation method, of which there are many approaches [39, 41-47].What 

constitutes good segmentation is a problem similar to what constitutes good clustering, mainly 

because of the lack of a precise definition of “good” clustering results or segmentation results 

[47-48]. Accordingly, it is difficult to compare two given segmentation techniques. Normally, 

results of a segmentation method are compared with manually segmented result by humans on a 

set of test images (ground truth segments). However, it is very time consuming and tedious to 

construct such a ground truth database. Even worse, different persons often provide significantly 

different segmentation results on the same image. 
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6.2 Previous work 

6.2.1 Histogram-based methods 

In histogram-based methods, the characteristics of the intensity, or color, histogram of all image 

pixels, such as peaks and valleys, are used to separate clusters in the histogram, and therefore 

separate the corresponding segments in the image [49]. Since each pixel is addressed only once in 

each application, these methods are efficient comparing with other segmentation methods.   

Improvements in these techniques include applying the histogram-seeking method recursively to 

segments in the image in order to divide them into smaller segments. Specified stopping criteria 

are applied to terminate the repetition when no more segments are formed [49, 50]. However, 

there are several drawbacks of histogram-based methods. For example, the peaks and valleys in 

the histogram of the image can be difficult to identify due to natural noise in pixel assesment. 

Poor segmentation results might be expected from inappropriate detection of peaks and valleys. 

Even worse, small changes in these peak and valley positions could produce significantly 

different segmentation results. Another disadvantage of this method is that small objects (that 

might be important in the image) might not show up in the histogram, and therefore will be 

ignored in segmentation results [50].   

6.2.2 Feature-space- based methods 

Similar to histogram-based techniques, feature-space-based clustering approaches ignore spatial 

information in the image. These methods represent each image pixel as a vector in high 

dimensional feature space, which is usually based on color or texture. Then a clustering 

algorithm, such as our M-ART [51] discussed in Part I of this dissertation, is employed to 

separate these vectors into clusters. Image segmentation is essentially a clustering process in 

which each pixel in the image corresponding to a vector in the high-dimensional feature space is 

grouped into an appropriate class or cluster. A distance between two vectors in this feature space 
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is defined to represent similarity in a visual characteristic, such as color or local information, of 

two corresponding pixels. Then vectors or pixels can be partitioned into clusters such that those in 

the same cluster share similar characteristics, while those in difference clusters exhibit 

significantly differences in these characteristics.  

Some well-known and simple clustering techniques, such as K-means [52] and mean shift [53], 

are often used for segmentation of a simple image which contains an object that is significantly 

different from the background. The K-means algorithm is an iterative technique consisting of the 

following steps: (1) Initialize K cluster centers (randomly or based on some heuristic); (2) Assign 

each vector to the closest cluster center (based on a predefined distance metric, such as Euclidean 

distance); (3) Re-assign the cluster centers by averaging all of the vectors that belong to the 

cluster; (4) Repeat the assigning and re-assigning steps until some stopping criteria are met (e.g. 

no pixels change clusters). Both K-means and mean shift algorithms are guaranteed to converge, 

but they may not return the optimal solution. The quality of the solution depends on the initial set 

of clusters and the value of K. The main drawback of these algorithms is that the number of 

clusters K is an input parameter, which is almost always unknown. An inappropriate choice of K 

may yield poor results. Furthermore, in this approach, the image spatial structures, such as edges, 

are not preserved, and pixels from disconnected image regions can be placed in the same group. 

One approach to avoid the effect of the number of clusters K is employed in our M-ART 

algorithm (presented in Part I). However, all three techniques (K-means, mean-shift, and M-ART) 

work only for convex-shaped clusters.   

6.2.3 Graph partitioning methods 

An image can be modeled as a weighted, undirected graph, in which a pixel or a group of pixels 

is associated with nodes of the graph, and the similarity or dissimilarity measure (in some visual 

characteristics such as color and texture) between the neighborhood pixels or groups of pixels is 

associated with weights of edges in the graph (The terminology “edge” in the graph theory means 
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the connection between two nodes of a graph; and should not be confused with edges/boundaries 

of objects in an image). Then various graph partition techniques, such as normalized cuts [54], 

minimum cut [55] and minimum spanning tree partitioning [56], can be employed for segmenting 

images of interest. Each segment in the image corresponds to a partition of the nodes in the graph 

produced from these algorithms. The graph partitioning results, and hence the image 

segmentation results, are dependent upon how these techniques define a "good" cluster (of 

nodes). Often a global, fixed, and predefined threshold is needed. Unfortunately, the results might 

change significantly due to small change in this threshold [54-56]. 

6.2.4 Region-growing methods 

Region-growing methods, e.g. seeded region growing [57], initialize a set of “seeds” or pixel 

locations of the input image such that these seeds are considered as regions or objects to be 

segmented. Then at each step, an unallocated neighboring pixel to a region is grouped into an 

appropriate region according to some criteria. One simple approach uses the difference between 

the region's mean and the pixel's intensity value as a measure of similarity. The region with the 

smallest difference measured is the region into which the pixel is grouped. This iterative process 

is done only after all image pixels are visited. Since seeded region growing requires the user to 

provide the seeds, segmentation results very dependent upon seed choices. Noise in the image can 

cause the seeds to be poorly placed [58, 59].  

Improvements, called unseeded region growing [60], do not require explicit initial seeds. This 

algorithm starts with random seeds. At each step, a neighboring pixel is either grouped into the 

appropriate region as in seeded region growing, or a new region is formed. One simple approach 

is predefining a threshold to decide whether or not to form a new region. If the smallest difference 

between the neighboring pixel’s intensity value and an existing region’s mean is greater than the 

predefined threshold, a new region is created with this pixel. A more advanced unseeded region 

growing technique, introduced in the work herein, will be discussed in Chapter 7.  
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6.2.5 Watershed-based methods 

The watershed algorithm can be viewed as a special type of region-based segmentation [61, 62]. 

In this algorithm, the gradient magnitude of pixel intensity in an image is considered as a 

topographic surface. The technique envisions that water placed on any pixel enclosed by a 

common watershed line flows downhill to a common local intensity minimum. Then, a catch 

basin formed from pixels draining to a common minimum presents a segment. The main 

drawback of watershed-based methods is that they often produce over-segmentation of the image, 

in which many small basins are produced due to many local minima in the real-scene input image 

[61].  

6.3 Proposed image segmentation method 

In this work, we introduce a general-purpose segmentation method that works for a large variety 

of natural scene images in color, with reasonable computational times. The proposed method is a 

type of unseeded region-based segmentation technique that preserves the spatial relationship 

between pixels in the image, and hence preserves the detailed edges and the image spatial 

structure. There are number of important modifications made in our proposed method. First, our 

method operates at a “superpixel” [63] level, rather than at the image pixel level. The original 

region growing techniques that operate directly at the pixel level often produce undesirable small, 

but quasi-homogeneous, regions and are computational expensive [63]. By utilizing superpixels, 

the proposed method avoids both issues. Second, the proposed method works for both color  and 

gray images rather than for only gray scale images as used in the original techniques [57-60]. Our 

similarity measurement is defined based on statistics, mainly interquartile range, of pixel color (in 

L*a*b  color space [64]) in regions and neighboring superpixels. Third, the decision of grouping 

an adjacent superpixel to an existing region is dynamically depended upon the statistics, or 

“shape and size” of this region. The segmentation results show significant improvements when 

compared with using a fixed, global threshold as used in the original techniques. 
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The reminder of this report is organized as follows. In Chapter 7, we introduce the process of 

creating superpixels and our modified region growing technique. In Chapter 8, we demonstrate 

the results of the proposed method on a large number and variety of colored natural scene images. 

Evaluation and comparing the performance of the proposed method with existing methods are 

presented in Chapter 9, and Chapter 10 presents conclusions and recommendations. 



55 
 

Chapter 7  

 

NEW IMAGE SEGMENTATION METHOD 

 

 

In this chapter, we introduce a new general purpose segmentation method that works for a large 

variety of colored natural scene images with reasonable computational times.  Our method 

consists of two main steps: (1) Over-segment an input image into many small segments (called 

superpixels); (2) Then apply a modified version of unseeded region-growing on these superpixels 

to obtain the final segmentation. There are a number of advantages to employ the region-growing 

technique at the superpixel level, rather than at the image pixel level. For example, it is more 

computationally efficient because of reducing the complexity of images from hundreds of 

thousands of pixels to only a few hundred superpixels. The superpixels are also perceptually 

meaningful in such a way that each superpixel is a consistent unit consisting of pixels most likely 

uniform in color and texture. More importantly, in the process of generating superpixels, most 

structures in the image, such as edges, are conserved.  

The superpixel formulation is introduced in Section 7.1. The modified region-growing technique 

is provided in Section 7.2, and Section 7.3 summarizes our proposed image segmentation method.   
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7.1 Superpixels 

Superpixels are becoming increasingly popular for use in computer vision applications [33, 39, 

41]. Our superpixel algorithm, based on the idea of SLIC (Simple Linear Iterative Clustering 

[63]) that produces a desired (predefined) number of regular, compact superpixels with low 

computational overhead. The superpixels preserve the detail edges and the spatial structure of an 

input image, and hence prevent pixels from disconnected regions of the image from being 

grouped together. Our approach generates superpixels by clustering pixels based on their color 

similarity and proximity in the image plane. This is done in the five-dimensional (L*a*b*xy ) 

space, where (L*a*b* ) is the pixel color in CIE-LAB [65] color space, and (xy) is the pixel 

coordination in the image plane (pixel location).  

The first coordinate of the CIE-LAB represents the lightness of the color (L*  = 0 yields black and 

L*  = 100 indicates diffuse white). The last two coordinates represent the relative colors, where a* 

indicates color between magenta and green (a* = -128 indicates green and a* = +127 indicates 

magenta); and b*  indicates color between yellow and blue (b*  = -128 indicates blue and b*  = 

+127 indicates yellow). The asterisks (*) after L , a and b are part of the full name, (L* , a* and 

b* ), to distinguish them from Hunter's L , a, and b [65]. The nonlinear relations for L* , a*, and 

b*  are intended to mimic the nonlinear response of the eye. Furthermore, uniform changes of 

components in the L*a*b*  color space aim to correspond to uniform changes in perceived color, 

so the relative perceptual differences between any two colors in L*a*b*  can be approximated by 

taking the Euclidean distance between two corresponding points in this three dimensional color 

space.  The L*a*b*  color space is widely considered as perceptually uniform for small color 

distances. Figure 7.1 illustrates the RGB and L*a*b*  color space representation. 
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Figure 7.1: RGB (left) and L*a*b*  (right) color space. Pictures from [66] 

Notice that, in Matlab’s unsigned 8-bit integer representation, the L*  coordinate ranges from 0 to 

100, while a* and b*  coordinates range from 0 to 255. The conversion between RGB and 

L*a*b*  color space normally takes an intermediate conversion through CIE-XYZ [65] color 

space. Equation (7.1) shows the linear relationship between RGB and XYZ  color space [64]: 

�XYZ� =
10.17697 � 0.49 0.31 0.200.17697 0.81240 0.010630.00 0.01 0.99 � �RGB� (7.1) 

Equation (7.2) shows the conversion from XYZ  to L*a*b*  color space: 

L∗ = 116f(Y Y*⁄ ) − 	16 

a∗ = 500&g(X X*⁄ ) − g(Y Y*⁄ )' 
b∗ = 200&g(Y Y*⁄ ) − g(Z Z*⁄ )' 

(7.2) 

where g(t) = ¥ t�/x if	t { (6/29)x
_7¦§ c7 ẍ+ ©7¦ otherwise    

and Xn, Yn and Zn are the CIE-XYZ tri-stimulus values of the reference white point (the subscript 

n suggests "normalized", and the white point value is dependent upon the hardware device used to 

display color images).  

Our superpixel generating algorithm is essentially a K-mean based clustering in 5D (L*a*b*xy ) 

space. The idea of utilizing K-mean clustering for superpixel generation was first introduced in 

Magenta 
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SLIC (Simple Linear Iterative Clustering) by R. Achanta, 2010 [63]. In our work herein, the 

distance calculation measuring the similarity between two points in the 5D space is generalized. 

Note that five coordinates in this space represent different properties of a pixel: L*  for light 

intensity, a* and b*  for color, and x and y for spatial coordinates in the image plane. While the 

maximum possible distance between two color points in the CIE-LAB space is limited, the spatial 

distance in the xy plane depends on the image size. It is not possible to simply use the Euclidean 

distance in this 5D space (L*a*b*xy ) without normalizations. Each 5D point (or vector)	¯T =
i°T , ±T , ²T , ³T , ´Tjµ, 1 ≤ ¶ ≤ ·in L*a*b*xy  space, corresponds to a pixel in the given image, 

where the upper-script (. ):means the vector/matrix transpose operation. Each such point is then 

normalized, producing ̄T¸̧¸̧ , such that each element	l�, a�, b�, x�, y� is in the range [0,1]:  

¯T¸̧¸̧ = (¯T − ¯º��)./(¯º»¼ − ¯º��) (7.3) 

where (./) means an element-by-element division of two vectors, and  p1�* (p1;<) is a new vector 

in which each element is the minimum (maximum) over all corresponding elements of all N input 

vectors, namely [66]:  

¯º��= 2min
1≤k≤N

(°T) , min
1≤k≤N(±T) , min1≤k≤N(²T) , min1≤k≤N(³T) , min1≤k≤N(´T)9: (7.4a) 

¯º»¼= 2max
1≤k≤N

(°T) , max
1≤k≤N(±T) , max1≤k≤N(²T) , max1≤k≤N(³T) , max1≤k≤N(´T)9: (7.4b) 

To simplify the notation, from now on, we omit the upper bar from a vector ¯T remembering that 

all five elements of this vector have been normalized in range [0,1].    

After normalization, in order to cluster pixels in L*a*b*xy  space, we introduce a generalized 

weighted Euclidean distance d�� between two points (or vectors) ¯� = i°� , ±� , ²�, ³�, ´� , jµ and 

¯T = i°T , ±T , ²T, ³T, ´T , jµin this 5D space as follows: 

?�T7 = �µ(¯� − ¯T)7 
							= ¿À(°� − °T)7 +¿»(±� − ±T)7 +¿Á(²� − ²T)7 +¿¼(³� − ³T)7 +¿Â(´� − ´T)7    (7.5) 
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where Ã = Ä¿À , ¿» , ¿Á , ¿¼ , ¿ÂÅµ is a predefined weight vector. Normally, ¿» = ¿Á, and 

¿¼ = ¿Â, since there is no specific reason to weight a* and b*  color as well as x and y spatial 

coordinates differently.  

As a K-mean approach, our algorithm consists of four main steps: (1) Select K cluster centers 

(detailed below), with each cluster forming a superpixel; (2) Assign each pixel in the image to the 

cluster (or superpixel) that minimizes the generalized weighted Euclidean distance between the 

pixel and the superpixel center; (3) Re-compute the superpixel centers by averaging the xy 

coordinates of all the pixels in the superpixel; (4) Repeat the assigning and re-computing steps 

until a stopping criteria is achieved (detailed below). Notice that a desired number of 

approximately equally-sized superpixels, K, is assumed known as an input of our algorithm. For 

an image with N pixels, the approximate size of each superpixel is therefore N/K pixels. For 

roughly equally sized superpixels there would be a superpixel center at every grid interval 

� = �·/�. Notice that the size of each superpixel represents the area (in pixels) of the smallest 

image region that will be differentiated after the process. We call this area “the smallest feature 

size SF”. After superpixel generation, any region that is smaller than SF is averaged or 

“smoothed” out. In order to retain image details or to produce fine segmentation, one should 

select a small value of SF. Coarse segmentations are obtained with large values of SF. Users can 

select the “appropriate” value of SF depending upon the input image characteristic and the level 

of coarse or fine segmentation they would like to obtain. With the user-defined smallest feature 

size SF, the number of superpixels K can be calculated as: 

   � = fÆÇ (7.6) 

The default values of SF (in the event the user does not select) and K in our program are: 

��ÈÉÊ»ËÀÌ =	 ·30 × 30 

�ÈÉÊ»ËÀÌ = 
fÆÇÎÏÐÑÒÓÔ = 900 

(7.7) 
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In this case, any image feature that is smaller than a region of 30 pixels image width by 30 pixels 

image height will be ignored.   

Table 7.1: Proposed Superpixel Generating Algorithm 

- Input the smallest feature size �� and the weight vector W. For our work herein � = i1,1,1,0.2,0.2jµ. 

- Normalize all vectors in 5D space (L*a*b*xy ) corresponding to all image pixel as in 

(7.3). 

- Initialize � = ·/�� superpixel centers ÕT , 1 ≤ ¶ ≤ �	by sampling pixels at regular 

grid size � = �· �⁄ , where N is the number pixels of the given image. 

- Assignment step:  The i th pixel̄ �, 1≤i≤N, will be assigned to the “nearest” superpixel 

according to the minimum weighted Euclidean distance measurement as in (7.7). 

- Update step: Compute new superpixel centers and number of pixels changing into 

different superpixels compared with previous iteration. 

- Repeat Assignment step until stopping criteria is met. 

The details of these four steps are: 

• Initialization step:  

We first initialize K superpixel cluster centers, as vectors ÕT = i°T , ±T , ²T , ³T , ´Tjµin L*a*b*xy 

space and 1 ≤ ¶ ≤ �. These centers are initialized at regular grid intervals of S on the given 

image, and each center vector ÕT is a mean of 5D vectors corresponding to all pixels that belong 

to the ¶ÌÖ superpixel:   

ÕT=
1·TB¯�

f×
i=1

 (7.8) 

where ̄ � = i°�, ±� , ²�, ³�, ´� , jµ and ·T is the number of pixels that belong to the ¶ÌÖ superpixel.  

• Assignment step:   

At each iteration, every pixel ̄� will be assigned to the closest superpixel, called the ØÌÖ 

superpixel, by the weighted Euclidean distance ?�T defined in (7.5).  

J=  arg min
1≤k≤K

&?�T' = 	  arg min
1≤k≤K

�µ(¯� − ÕT)7 (7.9) 
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Figure 7.2: Proposed Superpixel Generating Algorithm 

Normalize all 5D vectors in 

(L*a*b*xy ) 

Initialize K superpixel centers by 

sampling pixels at regular grid 

Assign every pixel to the “nearest” 

superpixel. 

Re-compute the superpixel centers. 

(c ≥ 1-α) OR 
(iter ≥β) 

Compute c = percent of pixels change 
into different superpixels. 

iter = iter + 1 

End 

yes 

no 

Input ��; iter=1; α=2; β=10; 

	� = i1,1,1,0.2,0.2jÙ 
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• Update step:  

At the end of each iteration, after re-assigning all pixels, every superpixel cluster centers will be 

updated as in (7.8). 

• Stopping criteria: 

It is shown in [60] that given enough iterations, the K-mean algorithm will converge to a local 

minimum. Accordingly, we propose that our algorithm stops when no more than α percent of all 

pixels change to a different superpixel (compared with the previous iteration), or when maximum 

of β iterations is reached, whichever occurs first. In what follows, we select α = 2 and β = 10. Our 

superpixel generating algorithm is summarized in Table 7.1 and Figure 7.2. 

 

Figure 7.3: Superpixel Generating: Effect of � 
Original Image (top-left) and superpixel results with: � = i1,1,1,0.04,0.04jµ (top-right); � = i1,1,1,0.2,0.2jµ (bottom-left); and � = i1,1,1,1,1jµ (bottom-right) in which the boundaries 

(in black) of superpixels are overlaid onto the original image.  
(For all results: �=200 or �� ≅ 32x32 )  
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Figure 7.3 presents an example of superpixel generation with different weight vectors � =
Ä¿À , ¿» , ¿Á , ¿¼ , ¿ÂÅµ. Choosing these weights allows us to control the effect of each pixel 

properties, e.g. intensity, color, and spatial location, and hence control the compactness of a 

superpixel. The greater the value of w< and wÚ the more spatial proximity is emphasized, and the 

more compact is the superpixel, and vice versa. By selecting appropriate weights, we enforce 

color similarity as well as pixel proximity in this 5D space, such that the expected superpixel 

sizes and their spatial extent are approximately equal. We choose	� = i1,1,1,0.2,0.2jµ, or 

¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2, for all the results in this paper. This roughly matches the 

empirical maximum perceptually meaningful CIELAB distance, and offers a good balance 

between color similarity and spatial proximity. 

  
Figure 7.4: Superpixel Generating: Effect of � and �� 

Original Image (top-left) and superpixel results with K = 100, SF = 2000 ≅ 45x45 (top-right); 
K=500, SF = 400 = 20x20  (bottom-left); and K = 1000, SF = 200 ≅ 14x14  (bottom-right) in 

which the boundaries (in black) of superpixels are overlaid onto the original image.  
(For all results: � = i1,1,1,0.2,0.2jµ) 
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Figure 7.4 presents an example of superpixel generation with different desired numbers of 

superpixels K. Notice that after superpixel generation, any region that is smaller than SF is 

averaged or “smoothed” out. The parameters SF and K affect the coarseness or fineness of 

superpixels.  

Notice that these superpixels are approximately equal in size (e.g. consist of a similar number of 

image pixels). Also notice that edges and spatial and color information are well preserved by 

superpixels. Each superpixel consists of connected pixels that are quite uniform in color and 

intensity, as expected. However some superpixels are quite similar and should be grouped into the 

same segment to form a more meaningful representation of “objects” appearing in the image. The 

next section on our region-growing technique handles this problem. 

7.2 Modified region growing segmentation 

Region-growing is a simple region-based image segmentation method. It was first introduced as a 

pixel-based image segmentation method, and it involved the selection of initial seed points. The 

basic formulation for region-based segmentation satisfies five conditions, as follows [57]: 

Condition 1: Û	� = 	�
� �

 (7.10) 

where each region 	�, 1 ≤ i ≤ n, is a set of pixels: 	� = {¯T}, 1 ≤ ¶ ≤ ·�; ·� is number of pixels 

belong to this region 	�, and n is the number of regions (note that ∑ ·��� � = ·, where N is the 

total number of pixels in the input image); 	 is the entire image region. In other words, condition 

(2.8) means that the segmentation must be complete such that every pixel is in a region. 

Condition 2: ¯T and ̄ À are “connected”, ∀	¯T , ¯À ∈ 		� , 1 ≤ Ü ≤ Ý    (7.11) 

where ̄ T and ̄ À are “connected” if there exists a sequence of pixels ̄ º, … , ¯� such that:  

(2.11a): ̄ º, … , ¯� 	 ∈ 		�, all pixels in the sequence are in the set 	�  
(2.11b): and every 2 pixels that are adjacent in the sequence are "neighbors". 
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Normally, pixels are considered neighbors if they are 4-connected or 8-connected. For example, 

in terms of pixel coordinates, every pixel that has the coordinates (x ± 1, y) or (x, y ± 1) is 4-

connected to the pixel at (x, y). The 8-connected relation includes the 4-connected and in 

addition, every pixel that has the coordinates (x ± 1, y ± 1) or (x±, y ∓ 1) is 8-connected to the 

pixel at (x, y). 

                     

Figure 7.5: The set of pixels (shown as purple squares) are 4-connected (left)  
and 8-connected (right).  

This condition means that every region R� is a connected region or connected component.  

Condition 3: 	� ∩ 	� = 	∅, 1 ≤ Ü ≠ â ≤ Ý    (7.12) 

where ∅ is the null set. This condition indicates that the regions must be disjoint. 

Condition 4: ã(	�) = Ùäåæ, 1 ≤ Ü ≤ Ý    (7.13) 

Condition 5: ã&	� ∪ 	�' = �èé�æ, 	� 	±Ý?		� 	±�ê	"±?â±ìêÝ�", 1 ≤ Ü ≠ â ≤ Ý    (7.14) 

where f(	�) is a logical predicate (or Boolean-value function) defined over the set 	�, and two 

regions are adjacent if there exists at least one pixel in each region that are neighbors. Conditions 

(2.11) and (2.12) suggest that pixels in the same region share the same properties, while pixels in 

different regions differ in these properties. For example all pixels of a region have a similar gray 

level.  

Different region-growing techniques differ mainly in how the pixel connections are defined and 

how to specify the ã( ) function in (7.13) and (7.14). Our modified region-growing method with 

new connectivity definition and ã( ) function is described at the end of this section. 
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Seeded region growing:  

The first region-growing method introduced in the literature was seeded region growing [57]. 

This method uses the 4-connected neighbor definition and initializes a set of “seeds” or pixel 

location of the input image such that these seeds are considered as regions or objects to be 

segmented. This algorithm starts with n seeds, either by random or heuristic placement. Then at 

each step, an unallocated neighboring pixel to the regions is grouped into an appropriate region 

according to some criteria. One simple approach is used the difference between the region's mean 

and the pixel's intensity value as a measure of similarity. The region with the smallest difference 

measured is the respective region where the pixel is grouped into. This iterative process is done 

only after all image pixels are visited. This method uses following f( ) function: 

Define Ø = ±�íîÜÝ∀�ïð(¯T) − îê±Ý&ð(	�)'ï, �·(¯T, 	�) = Ùäåæ 

ã&	ñ' = Ùäåæ 

	ñ ← ó	ñ , ¯Tô 
(7.15) 

where I(. ) returns the intensity or gray level of pixel(s) and the notation “A ← B” means that the 

value of B is assigned to A. �·(¯T , 	�) = Ùäåæ if pixel ¯T and region 	�are connected, 

otherwise �·(¯T , 	�) = �èé�æ. Note that in this case, there always exists the region J, 1 ≤ J ≤
n  that has the mean intensity closet to the intensity of the neighbor pixel ̄T, or ã&	ñ' = Ùäåæ,
1 ≤ Ø ≤ Ý. The pixel ̄ T is, then, included in the region 	ñ. The number of regions n is 

unchanged through the growing process.  

Since seeded region growing requires the user to provide the seeds, segmentation results very 

dependent upon seed choices (e.g., number of seeds and their locations). For example, in the 

extreme case, where there is only one seed, n =1, the entire image will be grouped into a single 

region. The location of seeds also affects the growing results, and noise in the image can cause 

the seeds to be poorly placed [54, 55].  

Unseeded region growing: 
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Unseeded region-growing [59] is a modified version of seeded region-growing that does not 

require explicit initial seeds. This algorithm starts with n random seeds. At each step, the 

neighboring pixel ̄Tis either grouped into the appropriate region as in seeded region-growing, or 

a new region is formed. One simple approach is predefining a threshold Ù to decide whether or 

not to form a new region. If the smallest difference between the neighboring pixel’s intensity 

value and an existing regions’ mean is greater than the predefined threshold, a new region is 

created with this pixel. This method uses the same pixel connectivity definitions as in the seeded 

region growing method.  The ã( ) function used in this method is defined as [59]: 

Üã	 PØ = ±�íîÜÝ�5�5� ?T� 	Q è·ö _îÜÝ�5�5� ?T� 	 ≤ Ùc è·ö	(�·(¯T, 	�) = Ùäåæ) 
�ℎêÝ	ã&	ñ' = Ùäåæ, 	ñ ← ó	ñ , ¯Tô 
ê°�ê	Ø ← Ý + 1, Ý ← Ø, 	ñ ← {¯T}, ã&	ñ' = Ùäåæ						 

(7.16) 

where ?T� = ïð(øT) −îê±Ý&ð(	�)'ï is the intensity value difference between the neighboring 

pixel p� and the mean of existing regions 	�, 1 ≤ Ü ≤ Ý, and Ù is the predefined threshold. We 

note that the order of execution in (7.14) is very important for proper processing. In this case, the 

number of regions might change through the growing process (e.g., increase by one whenever a 

new region is formed).  

New proposed region growing: 

We proposed a region-growing method based on the unseeded region growing technique, with a 

number of important modifications. First, our method operates at a “superpixel” level, rather than 

at the image pixel level. By utilizing superpixels, the proposed method avoids both issues of 

computational expense and excessively small regions while providing quasi-homogeneous 

regions similar to those of other existing region-growing techniques [56-59]. However, a new 

definition of connectivity at the superpixel level is needed. Each region 	� is now a set of 

superpixels, and Condition 2 in (7.11), is modified as follows: 

New Condition 2: ùT and ùÀ are “connected”, ∀	ùT , ùÀ ∈ 	ä� , 1 ≤ Ü ≤ Ý    (7.17) 
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where ùT and ùÀ are the ¶ÌÖ and �ÌÖ superpixel, 1 ≤ ¶ ≠ ° ≤ �, � is the total number of 

superpixels, and Ý is total number of regions. We note that each superpixel itself is a set of 

connected pixels as discussed in Section 2.1. The connectivity at the pixel level remains 

conventional (e.g., the 4-connected neighbors). Two superpixels �T and �À are “connected” if 

there exists a sequence of superpixels ùº, … , ù� such that:  

 
ùº, … , ù� 	 ∈ 		�, all superpixels in the sequence are in the set 	�  
and every 2 superpixels that are adjacent in the sequence are connected. 

(7.17a) 

(7.17b) 

Any two superpixels ùº and ù� are "neighbors" or “connected” if there exists a pixel ¯º ∈ 	ùº 

and another pixel ̄� ∈ 	ù� such that ̄º and ̄ � are 4-connected. 

A superpixel ùºis said to be a “neighbor” of, or “connected” to, a region 	�, �·(ùT , 	�) =
Ùäåæ, if there exists a superpixel ù� ∈ 		� such that two superpixels ùº and ù� are connected. 

A second modification in our proposed method is that it works for color images, rather than for 

gray scale images as used in the original techniques. Therefore, our similarity measurement is 

defined based on statistics, mainly the interquartile range, of pixel color (in L*a*b  color space) in 

regions and neighboring superpixels. (Our proposed method works for gray scale images, in 

which the similarity measurement is based on the interquartile range of pixel intensity).    

Finally a third modification in our method is that the decision of grouping an adjacent superpixel 

to an existing region is dynamically depended upon the statistics, or “shape and size”, of this 

region.  

Let ùT be the investigating superpixel that is a neighbor of an existed region 	�. For notational 

simplification, let ùúT also denote the 3D vector consisting of the mean value of L* , a*, and b*  of 

all image pixels belong to this superpixel (e.g., ùúT = Ä°T̅ , ±̧T , ²̧TÅµ).  

Note that region 	�, 1 ≤ Ü ≤ Ý, is a set of superpixels: 	� = {ùº}, 1 ≤ î ≤ ·�; ·� is number of 

superpixels belong to this region ä�; and Ý is the number of regions (note that ∑ ·��� � = �, 
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where K is the total number of superpixels in the input image). Let 	ú� be the 3D vector consisting 

of the mean value of L* , a*, and b*  of all superpixels belong to this region: 

	ú�= 1·�Bùúº
fü

m=1

 (7.18) 

Assume that the superpixel �T belongs to the region 	�. We use statistical outlier detection to 

determine if ùT is not the outlier. Let ?º� be the weighted Euclidean distance between the region 

mean 	ú� and a superpixel ùº  belong to this region (vector ùúº): 

?º� = ‖ùúº − 	ú�‖�ý 

= =¿À&°�̅ − °º̅'7 + ¿»(±̧� − ±̧º)7 + ¿Á&²̧� − ²̧º'7	, 1 ≤ î ≤ ·� (7.19) 

where �x = i¿À , ¿» , ¿Ájµis the weight vector (e.g. �x = i1,1,1jµ as the first three components 

of the weight vector � in (2.5)); ùúº = Ä°º̅, ±̧º, ²̧ºÅµand 	ú� = Ä°�̅, ±̧�, ²̧�Åµ . 
For a group of ·� numbers ?º�,	1 ≤ î ≤ ·�, we use the standard statistic outlier test to verify 

whether a number is an outlier or not. Define þ�� , þ7� , and þx�  respectively the first, second, and 

third quartiles (or equivalently, the 25%, 50%, and 75%) of this data. (Note that þ7�  is also the 

median of these ·� numbers). There are 25%, 50%, and 75% of the numbers that are less than þ�� , 
þ7� , and þx� , respectively. Let ðþä� = þx� − þ��  be the interquartile range of this data. A number 

?T� is considered an outlier of this data if it is different from the median more than � times the 

interquartile range.  

?T� is not an outlier, if  	þ�� − �	ðþä� ≤ 	?T� ≤ þx� + �	ðþä�       
       is an outlier, otherwise. 

(7.20) 

In this work, we use � = 1.5 as normal. Hence, if ?T� is an outlier, the superpixel ùT should not 

belong to the region 	�. Otherwise, this superpixel �T belongs to the region 	�. 
With the connectivity between superpixels, and between superpixels and regions as defined in 

(2.17), and the test to verify that a superpixel should belong to an existing region, the ã( ) 
function used in our method is defined as: 
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Üã	 PØ = argmin�5�5� ?T� 	Q è·ö&þ�� − �	ðþä� ≤ 	?T� ≤ þx� + �	ðþä�'	è·ö	(�·(ùT , 	�) = Ùäåæ) 
�ℎêÝ	ã&	ñ' = Ùäåæ, 	ñ ← ó	ñ , ùTô 
ê°�ê	Ø ← Ý + 1, Ý ← Ø, 	ñ ← {ùT}, ã&	ñ' = Ùäåæ						 

(7.21) 

At each iteration, a current superpixel ùT is considered belonging to the “closest” existing regions 

that are connected to it. The “closest” measurement is in sense of the weighted Euclidean distance 

between this superpixel and a region mean in the 3D L*a*b*  color space. Note that we use 3D 

color space instead of the 5D L*a*b*xy  space used in the superpixel generating process (Section 

7.1), because the spatial information (xy coordinates) is already enforced by the connectivity 

definition. For example, a region may consists two connected superpixels that are far away in the 

image plane (large difference in xy coordinates), but similar in color. If the investigated 

superpixel ùT is not an outlier of the closest region 	ñ, based on the statistical outlier test, then it 

will be grouped into this region. Otherwise, a new region, which consists of this superpixel ùT, is 

created. The process is repeated until all superpixels in the given image are visited. The algorithm 

is illustrated Fig. 7.6, and also as a pseudo code in Table 7.2. 
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Figure 7.6: Proposed Region Growing Algorithm 
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Table 7.2: Proposed Region Growing Algorithm 

- Given the list of unvisited superpixels � = [1] as the result of our algorithm in Table 

7.1. For our work herein, z=2 and �x = i1,1,1jµ. 

- Randomly chose a superpixel ùT ∈ �. 

- Find the “closest” existed region 	ñ that is connected (as defined in (7.15)) to ùT 

based on the weighted Euclidean distance to regions’ centers as in (7.17). 

- Validate that ùT is not an outlier of 	ñ as in (7.18) and (7.19). Include the superpixel 

ùT to this region 	ñ. 
- Otherwise, create a new region to contain this superpixel ùT. 

- Remove �T from the list of unvisited superpixels � ← �−	{ùT}. 
- Repeat to choose another superpixel in the list � until all superpixels have been 

visited (and grouped into appropriate regions). 

  

Note that when we compute interquartile the range for a group having only one data point, for 

example a region 	ñ containing only one superpixel (e.g., a new formed region), and an 

investigated superpixel ùT, the interquartile range is simply set equal to the distance ?Tñ, (e.g. 

þ�� = 0, þx� = ?Tñ, ðþä� = ?Tñ). Therefore the condition (2.20) (þ�� − �	ðþä� ≤ ?T� ≤ þx� +
�	ðþä�), which equivalent to &−1.5?Tñ ≤ ?Tñ ≤ 2.5?Tñ', is always true, or ?Tñ is always not an 

outlier. In other words, if the investigated superpixel ùT is closest to a neighboring existing region 

that is newly formed (contains only one superpixel), then ùT is always grouped into this region.  

7.3  Our proposed DUHO segmentation method 

Our new image segmentation algorithm, which we designate the DUHO method, illustrated in 

Figure 7.7, is the combination of the two algorithms discussed in previous sections, the superpixel 

generating algorithm in Section 7.1 and the modified region-growing algorithm in Section 7.2. 

First, the superpixel generating algorithm is applied to a given image to build K superpixels. Then 



73 
 

the new region growing algorithm iteratively groups these superpixels into appropriate regions 

and forms the final image segmentation result.  

 

Figure 7.7: Proposed DUHO Image Segmentation Algorithm 

 

Control Parameter:  

Our superpixel generating algorithm has two control parameters, the desired number of 

superpixels	� and the 5D weight vector �. Since this is an intermediate step, and the superpixels 

will be grouped or merged in the next step, the final segmentation results are sensitive to the 
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value selected for �. However, an excessively small value of � might lead to a poor “under-

segmentation” result, while an excessively large value of � results in excessive computational 

time and might produce undesired “over-segmentation”. The weight vector � controls the effect 

of the properties of each pixel, e.g. intensity, color, and spatial location, and hence controls the 

compactness of a superpixel. In the work herein, these parameters’ values are selected manually 

based on experiments, e.g. � = i1,1,1,0.2,0.2jµ, or ¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2, 

��ÈÉÊ»ËÀÌ =	 fx�×x�, �ÈÉÊ»ËÀÌ = 
fÆÇÎÏÐÑÒÓÔ = 900 , · is number of pixel in the input image (in 

most test images · = 481 × 321 = 154,401, hence ��ÈÉÊ»ËÀÌ ≅ 	171 ≅ 13 × 13;  see Section 

7.1). This roughly matches the empirical maximum perceptually meaningful CIELAB distance 

and offers a good balance between color similarity and spatial proximity. The final number of 

superpixels provides a good balance between reasonable visual effect of segmentation and 

practical computational time. 

Our region growing has two parameters, namely the 3D weight vector �x and the outlier range �. 
The weight parameter controls the emphasis of each component,  intensity and color, in the 

(L*a*b* ) space. However, there is no specific reason to select different values of �x from the 

first three components of � used in the superpixel generating algorithm. Moreover, since all data 

in (L*a*b* ) space is computed from (RGB) color space and has been normalized in the range 

[0,1], we advise selecting ¿À = ¿» = ¿Á = 1. The outlier range � affects the test to accept a 

superpixel belonging to (and hence to be grouped within) a region. Therefore it controls the 

sensitivity of segmentation results. A small value of � means that only a superpixel that has very 

similar color and intensity properties to those of the region’s mean will be accepted to join that 

region, such that a large number of small regions are produced(“over-segmentation”). In contrast, 

a large of value of � tends to produce a small number of large regions (“under-segmentation”). In 

this work, the value  � = 1.5 was selected to produce a reasonable balance. In summary, only two 

parameters in the first step, the superpixel generating algorithm, need to be selected.    
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Figure 7.8: DUHO Segmentation Process (See text for detail). 
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Figure 7.8 illustrates our segmentation process for an image: (A) the input color image, (B) 

results from our superpixel generating algorithm;(C) mean value of each superpixel; (D,E,and F) 

three regions after applying our region growing algorithm; (G) the segmentation map, in which 

each region is shown in a different color; and (H) segments’ boundaries (in purple) overlaid on 

the original image. Note how this new method preserves the spatial relationship between pixels in 

the image, and hence preserves the detail edges and the image spatial structure. 

7.4 Complexity analysis of our DUHO segmentation algorithm  

7.4.1 Complexity of our superpixel generating algorithm 

Our superpixel generating algorithm, presented in Section 7.1, includes the following: 

Step 1 

 

Input SF and W. Normalize all vectors in 5D space. Initialize � = ·/�� 

superpixel centers ÕT , 1 ≤ ¶ ≤ �	at regular grid size � = �· �⁄  

Step 2 Find the nearest superpixel to each pixel ¯�, 1≤i≤N 

Step 3 Update new superpixel centers. 

Compute the stopping criteria (number of pixels changed) 

Step 4 Repeat Steps 2-3 until stopping criteria is met. 

We use the standard “big O” notation for analyzing the complexity of the algorithm, 

characterized by computation time, in the worst case scenario and as a function of · (number of 

pixels of the input image) when · → ∞. Therefore, higher computation times indicate higher 

complexity. Computational complexity for Step 1 is Ù� = Ο(1), or the computation time 

complexity of this step does not depend on ·. 

At Step 2, for each pixel, we compute its distance (Euclidean distance in 5D space) to all � 

superpixel centers. Therefore, the naïve implementation (such as in the original K-means 

algorithm) has a computational time cost Ù7 = Ο(�·) = Ο(·7), � = ·/��, where SF is a 

constant. However, we take advantage of the fact that in our algorithm all superpixels are 

adjusted and compact because the spatial information (xy-coordinators) of pixels is restrained. A 
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superpixel should contain only pixels that are not very far away from its center. In other words, 

there is no need to compute the distance from a given pixel to every superpixels center but only to 

those that are in the 2S-by-2S proximity to this pixel. (Normally, there are 4 superpixels in this 

range). Accordingly, the computational time for Step 2 is significantly reduced:  Ù7 = Ο(ì�·) =
Ο(·), ì� = 4. Figure 7.9 illustrates that the search space of our algorithm is significantly reduced 

from that of the original K-means algorithm. This is the reason for the fast speed of our 

segmentation procedure.  

 

(a) Our algorithm searches a space of 2S-by-2S 
pixels (A superpixel is roughly S-by-S pixels) 

(b) K-means searches the whole image 

Figure 7.9: The search space for each pixel at current step  
for our superpixel generating (a) and the original K-means (b)     

Computational time for the Steps 3 and 4 are Ùx = Ù© = Ο(1). 
For the worst case, the algorithm terminates only after the maximum number of iterations 

(	 = 10) is reached. Hence, the computational time for our superpixel generating algorithm is: 

ÙÜîê1 = 	Ù1 + 		(Ù2 + Ù3 + Ù4) 
            = Ο(1) + 		(ì�Ο(·) + Ο(1) + Ο(1)) 
            = 	ì�Ο(·)  

(7.22) 

7.4.2 Complexity of our region growing algorithm 

Our region growing algorithm, presented in Table 7.2, Section 7.2, includes following steps: 

Step 1 Given å = [1], z=2 and �x = i1,1,1jµ 
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Step 2 Randomly chose a superpixel ùT ∈ � 

Step 3 Find the “closest” existed region 	ñ that is connected to ùT.  

Step 4 Validate that �T is not an outlier of 	ñ. Include the superpixel ùT to this region 	ñ. 
Otherwise, create a new region to contain this superpixel ùT. 

Remove �T from the list of unvisited superpixels � ← �−	{ùT}. 
Step 5 Repeat Step 2 until  all superpixels have been visited. 

The computational times of all steps except the Step 3 of this algorithm are independent of ·: 

Ù� = Ù7 = Ù© = Ù
 = Ο(1). 
In Step 3, we must compute the distance (weighted Euclidean distance in 3D space) from a given 

superpixel to existing regions that are connected to this superpixel. The distance computing and 

connectivity check task are both independent of ·. In the worst case, the number of existing 

regions that are connected to a superpixel is n (the total number of regions in the image). Hence, 

the computational time for this step is  Ùx = Ο(Ý7). 
This algorithm always terminates after K iterations (K is the number of superpixels). Therefore, 

the computational time for our region growing algorithm is: 

 ÙÜîê2 = 	Ù1 + 	�(Ù2 + Ù3 + Ù4 + Ù5) 
            = Ο(1) + 	�(Ο(1) + Ο(Ý7) + Ο(1) + Ο(1)) 
            = �Ο(Ý7)  

(7.23) 

7.4.3 Complexity of our DUHO segmentation algorithm: 

Our DUHO segmentation algorithm is a combination of the two above algorithms. Hence, the 

total computational time is:   

ÙÜîê = 	ÙÜîê� + ÙÜîê7 
            = 	ì�Ο(·) + 	�Ο(Ý7)          (7.24a) 

However, since Ý ≪ ·, the term Ο(Ý7) is very small, and since 	, ì� and  � are constant 

parameter given by users, we can simplify (7.24a) to read 

ÙÜîê = 	Ο(·)                      (7.24b) 

So, our DUHO segmentation computation time varies linearly with the input image size ·. 
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7.5 Objective function and convergence of DUHO segmentation algorithm 

7.5.1 Objective function of our superpixel generating algorithm 

For our superpixel generating algorithm, which is essentially based on K-means clustering with 

modifications in similarity measurement and a time-reducing implementation, we consider an 

objective function similar to the original K-means algorithm. The superpixel generating problem 

can be viewed as finding the “best” way (according to the objective function defined later) to 

divide a finite set of · pixels (represented by a 5 dimensional vector)  ¯� , 1 ≤ Ü ≤ · into � 

disjoint superpixels ùT , 1 ≤ ¶ ≤ � among all possible way of distributing, in which � is given. 

Our superpixel generating algorithm can be mathematically presented as: 

Input: Finite set � = {¯�} ⊂ ℝ
, |	�| = ·; integer �  (7.25) 

Output: Finite set ù = {ùT} such as |	ù| = �,⋃ ùT = ��T �  and ùT ∩
ùº�T = ∅  

(7.26) 

Goal: Minimize ����(ù) = ∑ ∑ ‖¯� − ùúT‖7¯ü∈ù×�T �  (7.27) 

where |. | is the cardinal (or size) of a set, and other notations as introduced earlier.  

It has been proved that during K-means iterations, the cost monotonically decreases with each 

iteration [51]. Hence, this would also hold for our superpixel algorithm given in Section 7.1. 

Therefore our superpixel generating algorithm converges to a local minimum of its objective 

function ����(ù) in (7.27). 

7.5.2 Objective function of our region growing algorithm 

In similar fashion, the segmentation problem can be viewed as finding the “best” way (according 

to some objective function, defined later) to divide a finite set of � superpixels  ùT , 1 ≤ ¶ ≤ � 

into Ý disjoint regions 	�, 1 ≤ â ≤ Ý among all possible ways of distributing. Note that Ý being 

unknown presents a much more difficult problem compared with the problem in Section 7.5.1, in 
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which the number of groups is given. Our region growing algorithm can be mathematically 

presented as: 

Input: Finite set � = {ùT} ⊂ ℝ
, |	�| = �  (7.28) 

Output: Finite set 	 = ó	�, 1 ≤ â ≤ Ýô such as 	⋃ 	� = ��� �  and 	� ∩
	º�� = ∅  

(7.29) 

Goal: Minimize ����(	) = �����(	) +	����7(	)  (7.30) 

We propose the objective function consist of two parts. The first part, ����1(	), is to minimize 

the variation within each region or the intra-region relationship, which serves the same purpose as 

in K-means algorithm, given by:      

�����(	) =B B �ùT − ���7ù×∈	�
�
� �  (7.31) 

where �� is the representative vector of the region 	�. The second part of the objective function, 

����2(	), takes into account the inter-region relationship between regions that are neighbors, 

given by:  

����7(	) =BM B �	ú� − 	úº�7
�f(	�,	�) µ���	

N�
� �  (7.32) 

where 	ú� is the mean of the region 	� as defined in (7.18). �·(	�,	º) = Ùäåæ only if the 

regions 	� and 	º are connected. 

Combining (7.30), (7.31), and (7.32) gives the objective function of our region growing algorithm 

as: 

����(	) = MB B �ùT − ���7ù×∈	�
�
� � N +BM B �	ú� − 	úº�7

�f(	�,	�) µ���	
N�

� �  (7.33) 
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7.5.3 Discussion of proof of convergence:  

We would like to prove the convergence of our region growing algorithm presented in Section 7.2 

by showing that during the iteration in of the algorithm, the cost monotonically decreases with 

each iteration. However, because of the complexity of the problem, we can only analytically 

prove that the first part, ����1(	), monotonically decreases with each iteration in the algorithm 

(i.e., based on k-means proved convergence). However, for ����2(	) , note that even for a fix 

number of subsets Ý, there are enormously large combinations of ways to distribute a set of � 

elements into Ý subsets, (� { Ý). For example with � = 100 and Ý	 = 2, the task is to divide 100 

elements into 2 subsets. There are _ 1100c = 100	ways to distribute 1 element into the first subset 

and 99 elements into the second subset. (The “binomial coefficient” notation _Ý�c, often read as 

“chose Ý from �”, can be computed as: _Ý�c = �!�!(�J�)!, where Ý! = Ý × (Ý − 1) × …× 2 × 1  

denotes the factorial of Ý, and 0! = 1). There are  _ 2100c = 4950 ways to distribute into 2 subsets 

of 2 and 98 elements, respectively. There are _ 3100c = 16170 ways to distribute into 2 subsets of 

3 and 97 elements respectively, and so on. Hence, even if  Ý	 = 2 is given (and small), the total 

number of ways to distribute � elements into Ý subsets is very large. And this number of ways 

grows exponentially with increasing values of Ý. 

If Ý is unknown, this process must be repeated for every possible value of Ý, 1 ≤ Ý ≤ �. In this 

general case, the total number of ways to distribute � elements into Ý subsets is exceedingly 

large, so that it is intractable for a brute-force approach to find the global optimum of ����2(	) 
among all possibilities.  

Another difficulty in proof of convergence is that the “connectivity” condition in ì���2(	) is 

difficult to represent mathematically. At each iteration of our region growing algorithm, a random 
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superpixel is considered either to be grouped into the (closest) existing region or to form a new 

region. Hence, it appears analytically intractable to represent the connectivity between regions. 

Lemma 7.1: Optimal solution for ����1(	) for a single region (� = �)       

The optimal solution for a single region 	 is when the representative � is the same as the mean 	ú 

of this region. Then we have: 

�����(	; �) = ∑ ‖ùT − �‖7ù×∈	 → îÜÝ    when � = 	 (7.34) 

The new notation ����1(	; �) is used to emphasize that vector(s) after the semi-colon is(are) the 

representative(s) to calculate the cost.  

In addition, if � ≠ 	 is chosen, then the cost will be increased by: 

ì����(	; �) = 	 ì����(	;	ú) + |	|(‖	�− 	ú‖7)    (7.35) 

The proof of Lemma 1 is quite straight forward and can be found in [51].  

Lemma 7.2: Part of the objective function for multiple regions 

The �����(	) monotonically decreases during the course of our region growing algorithm.   

Proof: 

Let 	�(Ì)and 	ú�(Ì), 1 ≤ â ≤ Ý, be, respectively, a region (a set of superpixels) and its center (a 3D 

vector mean) at the start of the �ÌÖ iteration of our algorithm. At first, our algorithm assigns each 

superpixel to its closest center. Herein, for simplicity, we ignore the connectivity and outlier test 

between the current superpixel and the region into which it will be grouped. Assume that a 

superpixel is added into the 	�(Ì) region, such that this region will change to 	�(ÌD�), but its 

representative is still 	ú�(Ì) and is not its center. Therefore we have: 

�����&	�(ÌD�);	ú�(Ì),1 ≤ â ≤ Ý' ≤ 	�����&	�(Ì);	ú�(Ì), 1 ≤ â ≤ Ý'    (7.36) 

Next, each region center is updated to the current region mean denoted as 	�(ÌD�), such that by 

Lemma 7.1 we have: 

�����&	�(ÌD�);	ú�(ÌD�),1 ≤ â ≤ Ý' ≤ 	�����&	�(ÌD�);	ú�(Ì),1 ≤ â ≤ Ý'    (7.37) 

Combine (7.36) and (7.37) to obtain: 
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�����&	�(ÌD�);	ú�(ÌD�),1 ≤ â ≤ Ý' ≤ 	�����&	�(Ì);	ú�(Ì), 1 ≤ â ≤ Ý'    
or in shortened notation: �����&	(ÌD�)' ≤ �����&	(Ì)' (7.38) 

Accordingly, we proved that the first part of the objective function����1(	)  monotonically 

decreases with each iteration during the course of our region growing algorithm. As mentioned 

above, due to its complexity, we were unable to prove that the second part of the objective 

function ����2(	) also monotonically decreases during the course of our region growing 

algorithm. Such proof, if it exists, is left for future work. 

Figure 7.10(b) shows an example of the objective function  ����(	) as in (7.30) of a single run 

our DUHO segmentation on the image in Fig. 7.10(a). Since there are 500 superpixels in the 

image, the DUHO algorithm terminates after 500 iterations.   

 

 

(a) (b) 

Figure 7.10: Objective function in (b) ����(	) of a single run our DUHO segmentation for the 
image in (a) 

Four other examples of convergence are shown in Figure 7.11-7.14. During the course of our 

studies with 300 original different image, we found that ����(	) always decreased with 

iterations up to the maximum of K iterations. 
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(a) (b) 

Figure 7.11: Objective function in (b) ����(	) of a single run our DUHO segmentation for the 
image in (a) 

 

 

(a) (b) 

Figure 7.12: Objective function in (b) ����(	) of a single run our DUHO segmentation for the 
image in (a) 
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(a) (b) 

Figure 7.13: Objective function in (b) ����(	) of a single run our DUHO segmentation for the 
image in (a) 

 

 

(a) (b) 

Figure 7.14: Objective function in (b) ����(	) of a single run our DUHO segmentation for the 
image in (a) 
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Chapter 8  

 

RESULTS AND EVALUATIONS 

 

 

In this chapter, we present segmentation results of our new DUHO method discussed in Chapter 7 

on a set of a large variety of natural scene images in color, which is published and available in the 

literature. A number of evaluation metrics for segmentation are discussed and we propose a 

framework to select the best metric. We also compare the results from our DUHO method with 

other state-of-art segmentation techniques.    

8.1 Dataset 

The dataset used in our test is the public Berkeley Segmentation Dataset and Benchmark (BSDB) 

[68]. It consists of 300 color images of natural scenes, some of which are shown in Figure 8.1. 

Note that some images contain one or two “stand-out” objects that are fairly easily detected from 

the background, such as images with name/ID number: 8068, 106025 and 135069 (see Fig.8.1). 

Other images have multiple objects with many details, such that different human observers might 

segment them differently. The dataset in [68] also contains hand-implemented segmentations for 

each image as shown in Figure 8.2.  

 



87 
 

 

Figure 8.1: Some dataset’s images from [68] 
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                 (a)                          (b) 

    

                 (a)                           (b) 

Figure 8.2: Some pairs of original image (a) and manual-implemented segmentation (b), which 
served as ground truths 

8.2 Results of our DUHO algorithm 

Sample results of our DUHO segmentation algorithm, discussed in Chapter 7, are shown in 

Figure 8.3. The first column (a) of Fig.8.3 contains the original images, while the second column 

(b) shows segmentation results in which the boundaries of segments identified by DUHO in 

purple are overlaid onto the original image, and the last column (c) shows the same segmentation 

results in which each DUHO segment is presented in a distinct color. 
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(a) (b) (c) 
Figure 8.3: Our DUHO segmentation results on some images 
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Note that our DUHO segmentation algorithm preserves well the detailed edges/boundaries of 

“true” segments or objects and the image spatial structure. Compared with human segmentation, 

our algorithm normally produces smaller segments. In our algorithm, different segments differ 

from each other in color and location. Humans often take advantage of prior knowledge to 

combine into a larger segment some different regions (that are connected but distinguishable in 

color), about which he or she has prior knowledge that these should belong to the same object. 

This type of information must be learned, and is beyond the information contained in a single 

image. Also, human observers often easily ignore noise, and focus only on “salient” objects in a 

given image, despite the fact that detecting objects from the background and detecting salient 

object are difficult tasks themselves.      

As indicated in Section 8.3, the parameter values we used for the above results are: � =
i1,1,1,0.2,0.2jµ (or ¿À = ¿» = ¿Á = 1 and ¿¼ = ¿Â = 0.2), ��ÈÉÊ»ËÀÌ = 	 fx�×x�, �ÈÉÊ»ËÀÌ = 

fÆÇÎÏÐÑÒÓÔ = 900, where · is number of pixels in the input image. For example, a given image of 

size 481-by-381 pixels has · = 481 × 321 = 154,401, such that ��ÈÉÊ»ËÀÌ ≅ 	171 ≅ 13 × 13. 

8.3 Effect of the Control Parameters: 

Figure 8.4 illustrates the results of our proposed segmentation method applied to an original input 

image (a). Fig.8.4 (b1 and b2) shows the superpixel generating results with two different 

parameter choices: � = 500, �� = 400= 20x20 (b1); and � =1000, �� = 200 ≅ 14x14 (b2). Figs 

c1 and d1 correspond to segmentation in Fig a1, and Figs c2 and d2 correspond to segmentation 

in Fig a2.  Fig.8.4 (c1 and c2) show the segmentation results from these two parameter sets, in 

which each segment is presented in a distinct color. Fig.8.4 (d1 and d2) show the same 

segmentation results in which the boundaries of segments in purple are overlaid onto the original 

image. As we expected, when the smallest feature size value (SF) is larger (equivalent to smaller 

number of superpixels �), our segmentation algorithm produces a small number of large 
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segments/regions. In other words, the algorithm returns coarser segmentation in which any 

feature that is smaller than �� will be smoothed out, such that some details of the original image 

might be ignored (see Fig.3.4.c1). In contrast, with a smaller value of �� (larger value of �), our 

algorithm produces a large number of small segments/regions and more detail from the original 

image is retained (see Fig.8.4.c2). In short, the control parameter �� is a means for users to 

control the coarseness or fineness of the segmentation results. The “optimal” value of �� is 

dependent on the image features, together with the purpose or application of the segmentation 

process. With a given input image to be segmented, a user can select the appropriate value of �� 

based on the smallest feature size (e.g. the number of pixels) in this image that he or she would 

like to capture. If the segmentation results are too fine or over-segmented (e.g. many smaller 

segments than expected), one can increase �� and re-run the algorithm, and vice versa.  
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(a) 

(b1) (b2) 

(c1) (c2) 

(d1) (d2) 

 

  
Figure 8.4: Results of our DUHO segmentation method with ù� =20x20 (left) and ù� 

=40x40(right). See text for more detail. 
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8.4 Selecting the best  unsupervised metric 

In this section, we present six unsupervised metrics in the literature that are commonly used to 

evaluate segmentation results. Then we propose a framework to find the best comparison metric 

in the sense that this metric is the most consistent with the ground-truth provided by manual 

segmentation and, at the same time, is the most sensitive to random segmentation results. We 

believe a “good” metric should produce a high score on the ground-truth segmentation as well as 

produce a low score on random segmentation. As discussed earlier, the fundamental difficulty 

with evaluation of segmentation is that there is no objective, clear definition of good or bad 

segmentation. Moreover, different observers often do not agree on how to segment the same 

given image. The issue of variation in the scales of error in ground-truths from human 

segmentation results will be discussed in the Section 8.5.    

8.4.1 Discrepancy evaluation technique (�−metric) 

This technique, introduced by Weska and Rosenfeld [70], is a simple technique based on the 

discrepancy measure (ö-metric) between the original and the segmented images. Precisely, 

discrepancy is computed by the sum of the squares of specified differences between the original 

image and the segmented image. This measure ö is given by: 

ö =BB&�(Ü, â) − é(Ü, â)'7� 

� �
�Ö
� �  (8.1) 

where ðÖ and ð 	are, respectively, the height and width of the image; �(Ü, â) and é(Ü, â) are the 

grayscale of the pixel (Ü, â) of the input image and the segmented image, respectively. Note that in 

the segmented image, pixels of the same segment have the same value (grayscale or color) that is 

the average of pixel values (grayscale or color) that belongs to this segment in the original image. 

In other words, the ö-metric is related to the total variation of grayscale in the original image 

corresponding to all segments.  For a good segmentation result, the metric ö should be close to 

zero.  
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8.4.2 The intra/inter-region visual error (!− metric) 

An unsupervised evaluation technique based on the visible color difference [71] is employed to 

evaluate image segmentation algorithms. Define “intra-region visual error” æ��Ì"» as: 

æ��Ì"» = 1·B #(êT7 − �ℎ)�
T �  (8.2) 

 

where #(±) is a step function, given by 

#(±) = $1 ± { 00 ��ℎê�¿Ü�ê (8.3) 

 

and êT7 is the square of the color error in the äT image region computed in L*a*b  color space 

(1 ≤ Ü ≤ Ý; where Ý is number of segments), given by  

êT7 = B‖¯ − 	T¸̧ ¸̧ ‖7
%∈�×

 (8.4) 

where ̄ = i°, ±, ²jµ is the 3D vector corresponding to the pixel ¯; 	T¸̧ ¸̧ = Ä°T̅ , ±̧T , ²̧TÅµis the mean 

vector of the region 	T; ‖ ‖ is the standard Euclidean norm; · is number of pixels in the input 

image; �ℎ denotes the threshold for visible color difference, with �ℎ = 0.36 according to [62]. 

The intra-region visual error is designed to measure the visible color difference within the 

segmented regions. This measure can be used to estimate the degree of under-segmentation. 

Intuitively, a properly segmented region should contain as few visible color errors as possible. In 

other words, the smaller the value of æ��Ì"», the better is the segmentation. 

On the other hand, another measurement named inter-region visual error is designed to measure 

the invisible color difference between every adjacent pair of segmented regions. This measure can 

be used to estimate the degree of over-segmentation. Define “inter-region visual error” æ��ÌÉ" as: 
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æ��ÌÉ" = 1·B B éT�éTé� 	# _�ℎ − �	T¸̧ ¸̧ − 	&¸̧ ¸�7c
�

� �,��T
�
T �  (8.5) 

where éT and é� are the boundary length (in pixels) of regions 	T and 	�, respectively. éT� is the 

“joined length” (or number of pixels in the “shared” boundaries) between the image regions 	T 

and 	�.  é�� = 0 if 	T and 	� are disjoined. Given a segmentation result, we take into account 

these boundary pixels with “invisible” color difference (no difference in color) across the 

boundary. Intuitively, these pixels should not be treated as boundaries. Hence, the smaller the 

value of E�*¨+(, the better is the segmentation. 

Based on these two measures, a score or metric æ to measure how good is a given segmentation, 

may be defined by: 

 æ = �7 (æ��Ì"» + æ��ÌÉ") (8.6) 

Note that, for a segmented image, a large value of intra-region visual error means numerous 

pixels may be mistakenly merged, such that this image could have been under-segmented. On the 

other hand, a large value of inter-region visual error means numerous boundary pixels may be 

mistakenly generated, such that the image could have been over-segmented. Moreover, there is a 

reciprocal relationship between intra-region error and inter-region error. As we adjust the 

controlling parameters of a segmentation algorithm to merge more regions together, the inter-

region error decreases, while the intra-region error increases. On the contrary, as we segment an 

image into more regions, the intra-region error decreases while the inter-region error increases. 

Also note that all pixel color values are normalized to range of [0,1]. Normally Ý (number of 

regions) ≪ ·(number of image pixels), such that æ��Ì"», æ��ÌÉ" and æ will all lie in the range 

[0,1]. For a good segmentation result, the metric æ should be close to zero. 

8.4.3 Average squared color error ()− metric) 

This metric is empirically defined by Borsotti at el. [72] as: 
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þ = 1¶·√ÝBt ê	×71 + log èT + PÝTèTQ
7u�

T �  (8.7) 

where ¶ = 10©is an empirical number and a normalization factor that takes the size of the image 

into account, N is the total number of pixels in the image, n is the number of segments, ê�T7  is the 

square of the color error in the segment 	T as in (8.4), è¶ is the area of the segment 	T , and Ý¶ 
is the number of segments that have the area in the range from 0.98è¶ to 1.02è¶. 
Note that the √n term penalizes segmentation results having too many regions; the ê	×7  term 

penalizes results having non-homogeneous regions. The square of the color error will be 

significantly higher for a large region, such that the adjusted term (1 + logèT) is applied. 

Experiments show that the number of large regions that have a similar area is small, while the 

number of small regions that have a similar area may be large [42].  Therefore, the þ measure 

also penalizes the segmentation result having too many small regions that are similar in size. For 

a good segmentation result, the metric þ should be close to zero. 

8.4.4 Entropy based metric (* − metric) 

Zhang et al. [73] proposed another unsupervised evaluation metric based on the “region” entropy 

and the “layout” entropy. Define the entropy for each segment 	T by: 

+(	T) = − B éT(î)èT log éT(î)èTº∈,×
 (8.8) 

where �T is the set of all possible grayscale values of pixels in the region 	T of the original 

image, éT(î) is the number of pixels in this region 	T 	of the original image that have the 

grayscale value of m. 

Define the region entropy +" of entire image as the sum of entropy across all regions weighted by 

their areas, given by:  

+" = √ÝBèT·
�
T � 	+(	T) (8.9) 
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where n, N,  èT, and +(	T)	are defined as before. Note that N is the total number of pixels of the 

image or the “area” of the image. The first term √n penalizes segmentation result having too 

many regions. Now define the layout entropy +À by: 

+À = −BèT· logèT·
�
T �  (8.10) 

The H-metric measuring the effectiveness of a segmentation method is the addition of the two 

entropies, given by: 

+ = +" + +À (8.11) 

For a given dataset, the H-metric can be normalized to a range [0,1], in which a small value of H 

(close to zero) indicates good segmentation.   

8.4.5 Spatial color contrast along the boundaries of segments (Õ − metric) 

This metric introduced in [74] considers the internal and external contrast of the neighbors of 

each pixel in all segments. Define Ã(¯) as the set of pixels that are the 8 neighbors of the pixel 

¯. For each segment 	T, define the internal contrast ðT and external contrast æTas: 

ðT = 1èT B max(‖¯ − -‖, ∀- ∈ Ã(¯) ∩ 	T)¯∈	×
 (8.12) 

æT = 1°T B max _‖¯ − -‖, ∀	&- ∈ Ã(¯)'è·ö	(- ∉ 	T)c¯∈	×
 (8.13) 

where ̄  and - are the 3D vectors corresponding to the pixel ¯ and -, respectively; ‖ ‖ is the 

standard Euclidean norm; and è¶ and °T are the area and the boundary length of the segment 	T, 

respectively. 

The contrast �(	T) of the segment 	T is given by: 

�(	T) = 	 /ðT/æT Üã	ðT ≤ æTæT/ðT ��ℎê�¿Ü�ê  (8.10) 

The global contrast, which is used as the measure the effectiveness of segmentation, is defined 

by: 
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� = 1·BèT�(	T)�
T �  (8.11) 

For a given dataset, the C-metric can be normalized to a range [0,1], in which a small value of C 

(close to zero) indicates good segmentation 

8.4.6 Global intra-region homogeneity and inter-region disparity (��−metric) 

Rosenberger and Chehdi [75] proposed a metric for segmentation evaluation based on the global 

intra-region homogeneity and the global inter-region disparity of segments. This metric employs 

only grayscale levels of image pixels. The global intra-region homogeneity ö� of segments is the 

weighted average of the pixel intensity variation of all segments:   

 

where �(¯)	is the grayscale level or intensity of the pixel ¯; �(	¶)¸̧ ¸̧ ¸̧ ¸̧ ¸ is the average grayscale level 

of all pixels belong to the segment 	T; and other notations are as defined earlier. 

Define the disparity of two segments 	T and 	º as: 

?(	T, 	º) = ï�(	T)¸̧ ¸̧ ¸̧ ¸̧ − �(	º)¸̧ ¸̧ ¸̧ ¸̧ ¸ï·0  (8.13) 

where ·� is the number of gray levels of all pixels in the entire image. Then, the global inter-

region disparity ö7 is defined as the average of all the disparity between any two segments, given 

by: 

ö7 = 1Ý7BB ?(	T , 	º)�
º �

�
T �  (8.14) 

Notations in (8.14) are  as defined earlier. The metric öö used as a quantitative measure of a 

segmentation is: 

öö = ö� − ö72  (8.15) 

For a given dataset, the DD-metric can be normalized to a range [0,1], in which a small value of 

DD (close to zero) indicates good segmentation.   

ö� = 1·BèT B&�(¯) − �(	T)¸̧ ¸̧ ¸̧ ¸̧ '7¯∈	×
�
T �  (8.12) 
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8.4.7 Selecting the best unsupervised metric 

The key idea of selecting the best evaluation metric out of six metrics introduced above is that a 

better metric should produce a better score on the ground-truth segmentation (produced by human 

observers) and produce a worse score on random segmentations at the same time. The 300 

ground-truth segmentation results are available together with the DSDB database introduced in 

Section 8.1. We generated 300 random segmentation results to help evaluate the various metrics. 

To create a random segmentation, we first generated a bitmap image having the same size as the 

image to be segmented (e.g. 480 pixels x320 pixels) and employed a random integer number n, 

1 ≤ Ý ≤ 150. Next, we randomly initialized n segment “centers” (n pairs of xy-coordinators for n 

points in the image plane). Then, we employed a K-means clustering technique to divide the 

bitmap image into n regions, which served as a random segmentation map consisted of random n 

segments with random size, shape, and location. Figure 8.5 presents an example of a random 

segmentation of an original image. 

(a) (b) (c) 

Figure 8.5: The ground-truth segmentation (b) and a random segmentation (c) of an original 
image (a) 

For the ith evaluation metric, 1 ≤ Ü ≤ 6, we calculate its 300 metric values (normalized to be in 

the range from 0 to 1) for the 300 ground-truth segmentations. Call the distribution of these 300 

values the ã�0 distribution, and compute its mean #�0and standard deviation 1�0. Similarly, we 

calculated these metric values for 300 random segmentations to form the distributionã��  with 

#��mean and 1�� standard deviation. Since we expect for the “good” evaluation metric, the 
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ã0distribution will be close to zero, and the ã�distribution will be close to one, the Fisher’s 

distance [76], was used to measure the dissimilarity or the “distance” between two distributions. 

The Fisher distance ��then become our quantitative measurement of the goodness of an 

evaluation metric, with �� given by: 

  �� = 7_2ü3J2ü4c5&6ü3'5D&6ü4'5 (8.15) 

Table 8.1: Fisher’s distances between the ã�0 distribution on the set of ground-truth segmentations 
and ã�� on a single set of random segmentations 

Metric score 

distribution 

Method 1 

D−metric 

[70] 

Method 2 

E−metric 

[71] 

Method 3 

Q−metric 

[72] 

Method 4 

H−metric 

[73] 

Method 5 

C−metric 

[74] 

Method 6 

DD−metric 

[75] 

Human ground- 

truth segmentation 

#�0= 0.32 0.14 0.2 0.28 0.18 0.29 

1�0= 0.14 0.08 0.17 0.11 0.12 0.16 

A single set of 300 

random 

segmentations 

#��= 0.64 0.71 0.75 0.67 0.63 0.65 

1��=0.13 0.15 0.12 0.18 0.17 0.14 

Fisher’s distance 

between the two 

distributions 

�� = 5.61 22.48 13.97 6.84 9.35 5.73 

The larger the value of the Fisher distance, the more separation there is between the two 

distributions (ground-truth and random segmentations), and therefore the better is the metric. 

Note that the distributions of metric values corresponding to ground-truth segmentations are 

fixed, while the distributions of metric values corresponding to random segmentations vary, due 

to a different set of 300 random segmentation is generated each time a metric evaluation is 

computed. Accordingly, we ran the Fisher distance procedure for each metric 50 times (each time 

with a different set of 300 random segmentations) to obtain reliable statistical measures. Table 8.1 
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shows an sample result of a single run, in which the E-metric provides the best separation 

between the two distributions. 

The boxplot of Fisher distance distributions corresponding to the 6 metrics after 50 runs is 

provided in Figure 8.5. In each box, the central mark (in red) is the median, the edges of the box 

(in blue) are the 25th and 75th percentiles, the whiskers extend to the most extreme data points 

not considered outliers, and outliers, if present, are plotted individually as red crosses. The larger 

the Fisher’s distance, the better is the metric measurement. The results clearly show that E-metric 

is the best among the six metrics presented herein. Accordingly, it will be used in comparisons 

that follow. 

 

Figure 8.6: Fisher’s distances distribution corresponding to 6 metric measurements 

after 50 randomization runs 

8.5 Comparisons with other methods 

8.5.1 Comparisons with non-superpixel-based and superpixel-based methods 
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Figure 8.7 (b)-(d) shows results obtained from the mean-shift [47] with window size ¿� =
2Ö�
�×  �


�9; normalized cut method [54], and our DUHO segmentation algorithm, where ℎÜ and ¿Ü 
are the height and width of the input image in pixels. Both the mean-shift and normalized cut 

algorithms segment directly at the pixel level and employ a similarity measurement based on 

pixel color and spatial information.    

  a1 b1 c1 d1 e1 

a2 b2 c2 d2 e2 

a3 b3 c3 d3 e3 

          (a)                       (b)                    (c)                       (d)                         (e)       

Figure 8.7: Some Comparison: (a) original image; (b, c, and d) segmentation results from mean-
shift, normalized cut, and our method, respectively; (e) human hand-label 

We observe that the mean-shift method tends to produce over-segmentation, and its results are 

heavily dependent on the window size [22,46]. The normalized cut algorithm, working at the 

pixel level, might not preserve the detail edges of the input image, and hence might lead to 

misclassification of pixels into “incorrect” segments. Both these two methods have high storage 

requirements and are computationally time consuming. For example total computation times for 

the results in Fig 8.7, using a PC with Intel dual core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, 

and Image Processing Toolbox Version 7.1, were as given in Table 8.1. Our DUHO algorithm 
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performs with significantly lower computation times  than the mean-shift and normalized cut 

algorithms. 

Table 8.2: Computational times (seconds) for segmentation of images in Fig 8.7  
(Intel dual core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, and Image Processing Toolbox 

version 7.1) 

        Image 

Method 

a1 

(sec) 

a2 

(sec) 

a3 

(sec) 

Mean-shift 135 128 117 

Normalized-cut 142 140 132 

DUHO method 95 92 87 

The E-metric evaluation, selected in Section 8.4 as the best, was applied for 300 segmentation 

results on images from the Berkeley segmentation dataset and benchmark [68] for each of these 3 

algorithms. Table 8.3 presents the evaluation results. 

Table 8.3: Evaluation of three segmentation algorithms on the dataset 

Segmentation algorithm Mean-shift Normalized-cut DUHO method 

Performance metric æ (small is better): 
mean ± std 

0.31 ± 0.11 0.36 ± 0.24 0.26 ± 0.12 

We see that our DUHO algorithm performs significantly better than the mean-shift and 

normalized cut algorithms. 

8.5.2 Comparisons with superpixel-based methods 

In this section, the segmentation results from our DUHO algorithm will be compared with 3 

recently published, unsupervised color segmentation algorithms based on superpixels, namely: 

PSEG, GSEG, and JSEG. The main idea of the PSEG [77] is to scan through a hierarchy of image 

partitions, from a highly over-segmentation to a highly under-segmentation partition, to find the 

best partition that maximizes a predefined goodness function. In the PSEG, the pixel colors in 

RGB color space are used directly. The GSEG [60] is based on the unseeded region growing 
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technique, in which the initial seeds are found using the color gradient information (in CIE 

L*a*b*  color space). After the region growing process, regions with similar characteristics are 

blended by the multi-resolution region merging to form the final segmentation. During the 

merging process, new seeds might be added or old seeds discarded .The JSEG [78] includes 2 

stages, quantization and spatial segmentation. First, pixel colors (in CIE L*u*v* color space), 

smoothness of the local area, and texture orientations are quantized into a small number of 

predefined values. Then, these values are formed into a representation vector of a local region 

that will be clustered into different groups.  

Figure 8.8 presents some segmentation results from our DUHO method and these three methods. 

Visually, results from all four methods appear close to human segmentation. However, our 

proposed segmentation process produces finer details.  

The E-metric unsupervised evaluation was applied for 300 segmentation results on images from 

the DBSB dataset [68]. In addition, we employ supervised evaluation techniques, called the 

boundary recall [63] and boundary precision [79] measurement to evaluate the segmentation 

results. Boundary recall is the percent of the ground-truth edge pixels that are within two pixels 

distance from a region boundary. We can express this as: 

7�8Ý?±�´	�êì±°° = é("hit"	groundtruth	edge)é(groundtruth	edge)  (8.16) 

where L(.) is the length in pixels; “hit” means that the current pixel in the ground-truth edge is in 

the range of 2 pixels from a pixel in a region’s boundary of the segmentation result. Boundary 

precision is the percent of the region edge pixels (resulted from a segmentation method) that are 

within two pixels distance from a ground-truth edge boundary. We can express boundary 

presision as: 

7�8Ý?±�´	ø�êìÜ�Ü�Ý = é("hit"	segmentation	edge)é(segmentation	edge)  (8.16) 

Notice that é("hit"	segmentation	edge) = é("hit"	segmentation	edge) is the number of 

“mutual”- or within 2 pixels along the boundary of the ground-truth edge and the segmentation 
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result edge. Boundary recall and precision measure the matching degree between the ground-truth 

and the segmentation results. High recall value indicates that most of the “correct” boundaries are 

discovered in the segmentation results; while high precision value indicates that the segmentation 

results are more accurate or most of the segmentation boundaries are the “correct” boundaries. 

For a good segmentation, both of boundary recall and boundary precision values are expected to 

be high (near 1). Table 8.4 summarizes the evaluation results. 

Table 8.4: Evaluation of our DUHO segmentation and three other algorithms on the dataset [68] 

Segmentation algorithm 
Human 

hand-label 
PSEG[77] GSEG[60] JSEG[78] 

Proposed 

DUHO 

Unsupervised performance 

metric æ (small is better) 
0.14 0.31  0.29  0.31  0.26  

Boundary recall (higher is 

better) 
-- 0.82 0.86 0.77 0.89 

Boundary precision (higher is 

better) 
-- 0.81 0.76 0.72 0.79 

Average computational time 

(sec) 
-- 232.4 162.7 145.1 93.3 

 

We see that our DUHO algorithm performs better than the JSEG, GSEG, and PSEG algorithms, 

based on both the unsupervised metric E and the supervised boundary recall measurement. And 

our algorithm is the second best (and comparable with the best) among these four algorithms 

based on the boundary precision measurement. The values of boundary precision in Table 8.4 are 

not very high due to the fact that hand-label segmentation usually ignores details in the image and 

hence produces coarser results comparing with results from all four segmentation methods 

presented herein. The computation times in Table 8.4 were derived using a PC with Intel dual 



106 
 

core 2.2 GHz CPU, 2GB RAM, Matlab©2010b, and Image Processing Toolbox Version 7.1. Our 

DUHO algorithm performs significantly faster than the JSEG, GSEG, and PSEG algorithms.  

(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 8.8: Some Comparison: row (a): original image; (b) segmentation results from human 
hand-label, (c) PSEG, (d) GSEG, (e) JSEG, and (f) DUHO. 
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Chapter 9  

 

CONCLUSIONS AND RECOMENDATIONS 

 

 

4.1 Conclusions 

The principal original contributions of this work are threefold: 

(1) A new automatic data clustering method for convex data sets called M-ART 

(2) A new method for evaluating image segmentation metrics, which was used to 

identify the best available metric, namely the æ-metric. 

(3) A new algorithm, called the DUHO method, for segmenting color images, which 

outperforms existing segmentation methods, as measured by the æ-metric, and 

requires substantially less computation time the existing methods. 

This work contains two parts, in which new methods for data clustering and image segmentation 

are presented. In the first part, Chapter 1 to Chapter 5, an automatic data clustering procedure is 

proposed. First, a pre-processing process, named density-based removal, is applied to produce 

more distinct clusters. This pre-process is equivalent to removing input vectors near the 

boundaries of each cluster, which in many cases does not change the data structure or the number 

of “correct” clusters in the data. Then, we employ the M-ART neural network clustering 

technique to group similar input vectors into clusters. In the M-ART network, the vigilance ρ  
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determines the maximum size of clusters, and consequently affects the number of clusters. 

Conventionally, a trial-and-error approach is used to tune this value of ρ. 
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We propose a framework to auto-adjust the value of ρ based on a user-selected allowable 

separation between clusters. Even though one must still select the value of a parameter, choosing 

the allowed separation factor is intuitively easier than selecting the value of ρ. The appropriate 

value of ρ is strongly dependent upon on the specific data set, and is therefore very difficult to 

select a-priori. On the other hand, the allowed separation factor value simply represents how 

much separation between adjoining clusters a user is willing to accept. Accordingly, the 

separation factor could be chosen for multiple data sets before running the algorithm. 

Experiments conducted on different synthetic 2-D, 3-D, 4-D, 5-D, and 10-D Gaussian data sets, 

some published and some generated by the authors, with varying numbers of vectors, numbers of 

clusters, and different degrees of separation between clusters, demonstrate the effectiveness and 

reliability of the proposed clustering method. Two case studies of texture classification and 

texture segmentation are also presented, showing very good results when compared with those 

from the well-known K-means method. While the M-ART clustering method is an original 

contribution of this research, it applies only to convex data sets. As such, it was unsuccessful in 

applications to image segmentation, a goal of this study. Accordingly, we investigated a different 

approach to this area in Part II of this work. 

In the second part of this dissertation, we introduce a general-purpose segmentation method, 

which we call the DUHO method, which works for a large variety of natural scene images in 

color. This DUHO algorithm contains two main steps. First, a superpixel generating algorithm is 

applied to a given image to build K superpixels. Then a new region growing algorithm iteratively 

groups these superpixels into appropriate regions and forms the final image segmentation result. 

The proposed method is a type of unseeded region-based segmentation technique that preserves 

the spatial relationship between pixels in the image, and hence preserves the detailed edges and 

the image spatial structure. Our DUHO algorithm has three main advantages compared with other 

region-growing-based segmentation techniques [57-60]. First, it operates at a “superpixel” level, 
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rather than at the image pixel level, to reduce computational time and depress noise. Second, the 

proposed method works for color images rather than gray scale image as in [57-60]. Third, the 

decision of grouping an adjacent superpixel to an existing region is dynamically dependent upon 

the statistics, or “shape and size”, of this region. The segmentation results show significant 

improvements when compared with results from existing methods using a fixed, global threshold. 

The control parameter ��, the smallest feature size, in our DUHO algorithm controls the 

coarseness or fineness of the segmentation results. The “optimal” value of �� is dependent upon 

the image features and the purpose or application of the segmentation process, and it should be 

appropriately selected by users or follow the rules of thumb suggested in Chapter 7. A 

quantitative evaluation method based on square color error is introduced, and experiments with 

real datasets shows very good results when compared with those from other published, state-of-

art segmentation methods, as well as requiring substantially less computational time.    

4.2 Recommendations 

Recommendations for future work are: 

(1) Finding means to automatically tune parameters in the segmentation algorithm, such 

as � and ��, which must currently be established manually using trial and error. A 

classical optimization procedure (iterative-based or gradient-based) might be 

employed to find the optimal control parameters values to maximize the overall 

segmentation performance based on some score index.  

(2) Proving the convergence of the proposed algorithm to the minimum of the 

performance function.   
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