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Abstract:  

 
Fluorescence Diffused Optical Tomography is an emerging non-invasive imaging technique. 

Here we have introduced an alternative approach for Fluorescence Diffuse Optical Tomography 

which optimizes the data model fit based on pairing of the source and detector such that one 

source is shared by two detectors or one detector is shared by two sources, which in comparison 

to the conventional data model fit which does not use any kind of pairing. This new 

reconstruction algorithm is called Geometric Sensitivity Difference (GSD) method which 

effectively reduces the variation of reconstruction sensitivity with respect to imaging depth. Here 

the GSD method for source sharing detector pairs is demonstrated using simulated continuous-

wave measurements in an outer circular-array imaging geometry, of which the native sensitivity 

varies strongly with respect to the depth. The results of the GSD method are compared to that of 

two methods: one is the conventional baseline method which utilizes the native sensitivity and the 

second method is depth compensation algorithm (DCA) which employs active depth adaptive 

scheme which counteracts the dependence of reconstruction sensitivity with respect to imaging 

depth. 
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CHAPTER I 
 

INTRODUCTION 
 
Prostate is the main part of the man’s reproductive system. It is a walnut sized structure which 

holds the seminal fluid. It is located behind the pelvis under the urinary bladder. The prostate 

mainly consists of three lobes: a center lobe and two side lobes. This gland which is a very 

important part of the man’s reproductive system is affected by cancer for many American men 

after the age of 40.[4] Prostate cancer is the 2
nd

 most commonly diagnosed cancer and the 2nd 

leading cause of cancer deaths in American men.[3] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. U.S Prostate cancer indices for different races.[2] 
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The prostate cancer occurs when cells in the prostate gland grow out of control. So detecting the 

prostate cancer at early stages would help in increasing the survival rate of the patient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Digital Rectal Exam, In this the doctor/nurse uses their finger to feel the 
prostate through their rectum. This is done to feel the hard spots [5] 

 
 
 
There are usually no early symptoms for prostate cancer patients, although some men might have 

urinary symptoms and discomfort. So there is a need for a good diagnosis technique for the 

treatment. 

Prostate cancer screening is recommended by use of digital rectal examination (DRE), 

measurement of serum prostate-specific antigen (PSA), and a combination of these tests.[5] The 

introduction of PSA screening test has resulted in substantially increased detection of organ-

confined prostate cancer or considerable stage migration. However, PSA is not a specific 

indicator of prostate malignancy and post-treatment tumor recurrence, except after radical 

prostatectomy. Only a clearly increased serum PSA value (>20 ng/ml) indicates the presence of a 

prostate carcinoma at a very high probability. [6] In the gray zone between 4 and 10 ng/ml the 

tissue marker PSA is frequently influenced by benign alterations, so that it is not possible—on the 

basis of the PSA value alone—to differentiate between benign and malignant cases. DRE can 

often distinguish between prostate cancer and non-cancerous conditions. DRE may also detect 
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prostate cancers having normal PSA levels. However, palpation during a DRE is subjective, 

insensitive, and more than half of all prostate cancers detected today are not palpable.[7-8] The 

onset of the prostate cancer is confined with biopsy which is the golden standard used in present 

clinical diagnosis of prostate cancer. Biopsy is generally done when the Digital Rectal Exam and 

the PCA blood Test are abnormal. To perform this biopsy the doctors need a reliable imaging 

technique so as to remove the malign tissue part of the prostate for examination. Usually, TRUS 

guided biopsy is done to help in locating the malign prostate for examination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. TRUS guided biopsy of human prostate [9] 
 
 
 
 
Prostate cancer may be identified on TRUS as a hypo-echoic lesion. However, at most 60% 

cancers appear hypo-echoic on TRUS while most of the remaining cancers appear iso-echoic with 

respect to the surrounding parenchyma.[9] There can be hypo-echoic, cancer-suspicious areas that 

may be histologically either benign or malignant. TRUS can display the needle trajectory 

accurately, but it does not differentiate a tumor reliably from normal tissues. The need for many 
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biopsy-cores for systematic, yet random, tissue sampling of the prostate may be alleviated if the 

acoustic contrast that TRUS relies on can be augmented with functional or “surrogate” markers of 

the prostate tumor.[9] The augment of a functional contrast may lead to sampling of the most 

suspicious lesions. Augmenting TRUS may also desire that such a functional imaging modality 

be non-invasive and non-ionizing as is TRUS. Optical tomography based on near-infrared (NIR) 

light could emerge as one such modality. 

 
1.1 NIR Optical Tomography  

 

 
Biological tissue is highly scattering at near-infrared (NIR) wavelengths (600-1000nm),[10] and 

it can be observed from Fig.4 [10] that in the range of 700-900nm, the absorption of water is 

much lower than that of oxygenated hemoglobin and deoxygenated hemoglobin. Both features 

ensure considerable penetration depths and possibility of the measuring tissue oxygen saturation 

level with near-infrared light. With such theoretical basis and assuming homogeneity in 

biological tissue, near-infrared optical spectroscopy has been developed to monitor the 

hemoglobin concentration and oxygen saturation in human tissue with a single source-detector 

pair.[11] Subsequently, it is demonstrated that with multiple measurements, the heterogeneities of 

the hemoglobin concentration and oxygen saturation level can actually be resolved, which 

extends the spectroscopy system to a tomography system as known as Diffused optical 

tomography (DOT). [13] 
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Figure 4. Tissue Optical Window 

 
 
 
 
This method was implemented on imaging of breast, [13] prostate tumors [16] and the analysis of 

premature infant brain activities [15] and for the imaging of small animals by functional variation 

of the biological tissue. However the scattering dominates the photon propagation inside the 

tissue for the NIR tomography so we have a relatively poor spatial resolution. 

 
The instrumentation design of NIR tomography system is determined by the system measurement 

type and light delivery/collection approaches which are described in brief below.[17,18,19,25] 

 
1. Continuous Wave: Here we use a continuous wavelength light is used in the probing 

technique in this type of instrumentation. It is used just to measure the attenuation of light 

through the tissue. This type of instrumentation is relatively very inexpensive and 

portable. The drawbacks of this type of instrumentation include the difficulty to account 

for the coupling loses in independently differentiating the effects of absorption and 

scattering.  

 
2. Time Domain: In this type of instrumentation utilizes pulsed laser sources to transmit 

light. The Temporal Point Spread Function (TPSF), is measured at the detectors, which is 

used to determine the time of flight of the photons emitted into the tissue. This can be  

 



6 
 

 
related to the absolute scattering and absorption coefficients of the tissue. The drawback 

of this system is that it is relatively expensive and the system is quite complex as Time 

Counting Single Photon Counting (TCPSC) systems and pulsed laser diodes require 

temperature and current controls. 

 
3. Frequency Domain: In this type of instrumentation the light is modulated in the range of 

50-500 MHz to produce an intensity modulated, or a frequency domain (FD), light signal. 

The attenuation of this modulated amplitude and phase shift are measured at the detector. 

These instruments are relatively cheap and are as robust as the time domain 

instrumentations in acquiring data when the measurements are taken over a large range of 

frequencies.  

 
The comparison of the time domain and frequency domain is given in Ref.25. 
 
 

1.2 Zinc as a cancer biomarker for prostate cancer  
 

 

Besides all the computational and instrumentation improvements on the diffused 

optical tomography; the implementation of this NIR DOT enhanced with fluorescence 

emitting material provides an ultimate optical contrast enhancement. 

 
The optical contrast and localization can be substantially increased by the administration of 

fluorescence emitting agent, which can be followed by trans-rectal imaging, allowing oncologists 

or urologists seeing the position and extent of the adenocarcinomas of the prostate,[48] and both 

diagnosis and the planning of surgery could be dramatically improved over the present methods. 

Zinc is actually well established as a metabolic biomarker for prostate cancer, with changes of at 

least an order of magnitude in the marker concentration accompanying adenocarcinoma of the 

prostate. The prostate gland secretes about 10 mM of zinc into prostatic fluid, which is the 

second-highest concentration found in nature. The zinc secretion of the epithelial cells is 

biologically analogous to zinc secretion by neurons, salivary cells [58] and breast epithelial cells 
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[59], with similar transporters sequestering the zinc in the secretory granules. The biological 

function of the zinc secreted by the prostate epithelial cells is, in short, controlling the time-

release of the spermatozoa from the coagulum, in vivo. It is also known that a 10-fold molar 

excess of citrate is co-secreted with the zinc, thus keeping the zinc in solution as Zn3Citrate2.[72] 

 
The fact that zinc sequestering and secretion are suppressed in adenocarcinomas was first 

suggested in 1952 and has been consistently documented in many studies since then. It is 

important to note that the average level of zinc in prostate fluid is reduced by 5- to 10-fold in 

cancer [72]. Zinc functions as a specific bio-marker to the prostate cancer.[74] 

 
1.3 Fluorescence  

 

 
The feasibility of such approach requires the specificity of the fluorescence agent to either the 

background tissue or the anomaly target. In this study, fluorescence optical tomography for 

prostate cancer detection is proposed based on a zinc- specific flurorophor under development of 

a bio-tech company NeuroBio Tex Inc. in Galveston, TX. One feature distinguishes the zinc-

specific fluorophor from the previous investigated ones is that instead of producing fluorophor 

uptake within the malignant tissue, it concentrates in the benign tissue region. [70-72] Therefore, 

the imaging scenario will be imaging a dark target within a bright ambience, which will be 

subjective to significant noise level in the measurement. 

 
By implementing trans-rectal NIR imaging of prostate cancer biomarker such as the zinc using 

fluorescence tomography (FDOT) measurement, the detection can be made much more specific. 

There are few of the fluorescent zinc indicator systems excitable in the infrared, except by multi-

photon excitation. NeuroBioTex has demonstrated zinc determination using carbonic anhydrase 

(CA)-based system using infrared two-photon excitation, but the millimeter penetration depth of 

two-photon excitation (due to pulse spreading, not absorption) as well as the poor transmission of 

the visible fluorescence will be insufficient for the centimeter-range thickness of the prostate. [73] 
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In our study we have considered using FDOT in steady state conditions to recover the optical 
 
properties of the tissue. 
 
 

1.4 Fluorescence Diffused Optical Tomography  
 
 
Fluorescent Diffused Optical Tomography is an emerging imaging technique that can spatially 
 
resolve both the fluorophore concentration and the lifetime parameters. 
 
 
For the feasibility of use of this FDOT the functional and structural prior information should be 
 
given so as to resolve the above mentioned parameters highly accurately. The functional prior 
 
information includes the absorption and scattering mapping of the investigated tissue at the 
 
excitation and emission wavelength. The structural prior information includes the boundary of 
 
small inclusions or different regions in the background. [20] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. The principle of fluorescence diffused optical tomography is shown here. The fDOT 

has two wavelengths to be considered, one being the excitation and the other being emission. 

As the result we have coupled equations where the targets named 1 and 2 emit out 

wavelengths depending on their absorption and fluorescence contrast. [20] 
    
Recently, fluorescence probe techniques have been extended to in-vivo imaging areas. 

Monitoring of drug biological processes have been very helpful in determining the disease at very 

early stages. 

Although the reconstruction of the FDOT is very similar to Diffused optical tomography (DOT), 
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but the light modeling inside the tissue is quite complex for FDOT. First the propagation of the 

excitation light should be modeled from the boundary to the fluorophore which is located deep 

inside the tissue. Then the propagation of the emitted light should be modeled from the 

fluorophore to the detectors which are at the boundary of the tissue.[22] Accordingly the 

absorption and scattering parameters at the excitation and emission wavelengths should be 

obtained prior to reconstruction of fluorescence parameters. 

 
1.5 Challenges in Fluorescence Diffused Optical Tomography 

 
It is very important to realize that the FDOT image recovery problem is inherently prone to a few 

challenges and is very difficult to solve from a mathematical or a computational point of view. 

This is primarily because the propagation of light in the tissue is non-linear, leading to the 

following challenges; [75] 

 
Non-linear: Linear changes in optical properties do not give linear changes in 

detected signal. 

Ill-posed: Smaller changes in the detected signal gives rise to large changes in the estimated 

optical properties, making the problem prone to large estimation error due to noise and 

other external conditions. 

Under-determined: The number of independent equations that we have are lesser than the 

number of properties to be determined. It is also called ill-determined. 

Depth dependent-sensitivity: The objects at a deeper depth from the boundary of the optodes 

is reconstructed at approximately the same depth of the maximum sensitivity profile.
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These features imply that there is no unique solution for a given set of independent equations/for 

the given detected signal. Due to this non-uniqueness problem we need to constrain the solution 

space, by using regularization. Regularization involves formulating the inversion as an iterative 

model-based linear algebra problem. This kind of formulation poses constrains on the real time 

computational methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Endoscopic Imaging Geometry for prostate cancer imaging. The dotted yellow 
line shows how the sensitivity varies with respect to the imaging depth. 

 
 
 

 
Here in our study we consider an endoscopic imaging geometry for prostate cancer as shown in 

Figure 6. The spatially non-uniformity sensitivity is unfavorable due to the resulted non-

uniformity in contrast, resolution, and particularly the biased localization of the anomaly at the 

position of the local sensitivity peak. 

1.6 Motivation and Objective  
 

 
Diffuse optical tomography enhanced with fluorescence-contrast is an active area of optically 

rendered imaging that has the potential to achieve molecular sensitivity and high specificity in
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diagnosis. A surface measurement of the fluorescence photon to resolve the distribution of 

endogenous or extraneous fluorophore usually involves an array of illumination and detection 

points at the medium-applicator interface. The medium-applicator interfaces relevant to 

reflective-mode diffuse fluorescence measurements and the photon propagation in any of these 

geometries could be modeled by diffusion as long as the measurement distance exceeds several 

times of the transport scattering scale. Fluorescence Diffuse optical tomography (fDOT) is 

inherently prone to spatially-dependent sensitivity, due to scattering-dominated photon 

propagation in biological tissue. The spatial dependence of fDOT sensitivity is also specific to the 

geometry of the interface between the medium and the array of optodes. The optode-array of 

fDOT usually has one- or two-dimensional symmetry that gives rise to a sensitivity distribution 

that is mostly uniform along the direction of the symmetry except at locations close to the 

optodes. For example, the spatial sensitivity of a circular array that has evenly distributed optodes 

along the circumference is azimuthally invariant and the spatial sensitivity of a near-planar array 

whereupon the optodes are orderly distributed changes insignificantly over the lateral dimension 

of the array. However, at the directions orthogonal to the symmetry of the optode configuration, 

specifically along the depth into the medium, the spatial sensitivity varies, generally with a 

pronounced peak in the proximity of the medium-array interface. 

 
Such variation of the sensitivity causes depth-dependent reconstruction of the contrast and 

resolution. More severely, it may cause objects of different depths to be recovered at 

approximately the same depth, the position at which the radial profile of the sensitivity peaks. 

The depth-dependence of the sensitivity is thus a common issue to be negotiated in many fDOT 

applications, including those to brain, to breast using planar remission geometry and to prostate 

via endo-rectal probing for either sagittal or axial imaging, etc. Among these fDOT applications, 

the endo-rectal axial-imaging geometry is subjected to arguably the strongest variation of the 

sensitivity with respect to imaging depth, due to the rapid reduction of photon fluence versus the
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source-detector distance when compared with the geometries involving a planar interface or a 

curved interface that encloses the medium. As will be shown, localizing the depth of an object of 

interest in such circular-array outward-imaging geometry is challenging. 

 
So there is a need of using a robust method to localize the target in this endo-rectal probing for 

fDOT to image the prostate in its early stages. This is where the GSD method [1] is implemented 

which uses the paired measurements to localize the object location at the correct depth making 

the geometry less sensitive with respect to the depth variation from the optodes array to 

reconstruct the anomaly at correct depth so as to localize the malign region for biopsy. 

 
1.7 Organizing of Thesis 

 

 
The rest of the thesis is arranged as follows. Chapter 2 The forward and inverse reconstruction 

algorithms of NIRFAST software are discussed in this section. It presents the analytical 

formations of GSD method as it applies to fDOT image reconstruction in the context of 

Levenberg–Marquardt (LM) minimization using paired continuous-wave (CW) measurements 

from source-sharing source-detector-pairs. Chapter 2 also describes two reconstruction 

approaches against which the GSD method will be evaluated: one is a conventional or baseline 

method that applies a spatially invariant regulation in the LM minimization; and the other is a 

reference-compensation approach [32-33] which is similar in methodology to the DCA method 

but is more robust than the original DCA method for the circular-array outward-imaging 

geometry of this study. Chapter 3 deals with the circular-array axial outward-imaging geometry to 

be studied, of which the native sensitivity with respect to imaging depth varies significantly more 

than those of planar or circular-array inward-imaging geometries. The simulation results in 

Chapter 3 demonstrate that the GSD method generally outperforms the baseline and depth-

compensation methods, in terms of localizing the depth of single object, resolving two 

azimuthally separated objects, and estimating the optical property of single object or azimuthally
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separated dual objects in the circular-array outward-imaging geometry. As all three methods 

involve a step-specific regularization scheme in the iterations, the same step-specific 

regularization factor optimal to the reference-compensation method is applied to the base-line 

reconstruction and the GSD based reconstruction. An outperformance of the GSD method over 

the base-line method is unsurprising at all, because the effective sensitivity profile of the former 

method is much more uniform with respect to the imaging depth than that of the latter method. 

The outperformance of the GSD method over the depth-compensation method, shall relate to the 

pairing measurements by the former method versus the un-paired measurements by the latter 

method. Chapter 3 also deals with using the GSD applied to negative contrast target which is 

analogous to reconstructing a negative contrast fluorescence target in the case of prostate using a 

zinc biomarker. 
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CHAPTER II 
 

 
COMPUTATIONAL MODELLING 

 

 
The propagation of photon flux can be analytically modeled by the diffusion approximation of the 

radiative transfer equation. For imaging geometry, human tissue can be modeled as either infinite 

(optode inserted into the tissue) or semi-infinite (surface detection). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The Figure on the right shows an infinite imaging geometry. The figure on 

the left shows the semi-infinite imaging geometry. 
 

 
The modeling of NIR tomography consists of two parts: 1) a forward model, which represents the 

light interaction to the medium being imaged; and 2) an inverse model, which is solved for the 

optical properties of the imaged medium. [30] For the forward model of NIR tomography, 

explicit analytical solution of the light propagation can be solved. For a semi-infinite medium, by 

applying mirror method with the precondition that photon density is zero at the extrapolated 

boundary, the solution for the photon propagation in infinite medium is derived. However, for 
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more complicated tomography cases, which reconstructs the spatially varied of optical property 

distribution, numerical methods such as finite element method and finite difference method are 

used. As to inverse model, NIR tomography reconstruction iteratively fits the forward model to 

the actual measurements. 

 
2.1 Forward Model 

In the frequency domain of photon propagation in a turbid medium it is known that the 

propagation of both excitation and fluorescent emission light in tissues or multiple scattering 

media can be described by the following coupled diffusion equations. 

  [  ( ⃗)   ( ⃗)]  [   ( ⃗)]  ( ⃗)     ( ⃗)                                                   (1) 

  [  ( ⃗)   ( ⃗)]  [   ( ⃗)]  ( ⃗)     ( ⃗)  
  
  ( ⃗)                 (2)     

Where      is the photon density for excitation (x) and emission of the fluorescent light (m). 

    is the diffusion coefficient,   (   ) is the absorption coefficient from both the non-

fluorescing chromopheres and the fluorescent dye,   
  

is the absorption co-efficient for the 

excitation light due to the contribution from the fluorescent dye, ω is the modulation frequency 

and c is the velocity of light in the medium, and η is the fluorescent quantum yield and τ is the 

life time of the fluorescent dye.  

The diffusion coefficient is written as :  

    ( ⃗)     [  (   )( ⃗)     (   )
 ( ⃗)]        (3) 

Hence, for the known optical properties Eqs. (1) and (2) reduces to standard boundary value 

problems for spatially varying photon densities of excitation and emission light subject to the 

Robin-type boundary conditions (III – BC) which is considered to give most accurate results. On 

applying the III-BC to the medium applicator interface we get, 
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     ( ⃗)       ̂                                                                                           (4) 

Where  ̂ is the unit vector pointing outwards normal to the interface and α is a co-efficient 

determined by the reflective index mismatch across the boundary. By the phasor notation 

         so this can be implemented in specifies the algorithm as, 

   [    ( ⃗)]     (    )                                                                                   (5)  

So as to get a better scaled inverse problem for the reconstruction. The purpose of fDOT is to 

recover all the distributions including        (   )          Here we are mainly concerned about 

the reconstruction of     
  

. 

2.2 Inverse Reconstruction Model 

An individual source-detector pair,⟨     ⟩, consisting of a source i and a detector j which are used 

in the data model fit (χ) of the conventional objective function of fDOT inverse problem is 

thereby: 

         ||[  ⟨     ⟩ 
  ]

 
 [  ⟨     ⟩ 

  ( )]
 
||

 
                                                                  

         (6a) 

         ||[  ⟨     ⟩ 
  ]

 
 [  ⟨     ⟩ 

  ( )]
 
||

 

                                                (6b) 

Where χ refers to optical property of interest. m and c represent ‘measurement’ and ‘calculation’ 

respectively. 

This function is done at every iteration until the error is minimized. This equation after Taylor 

series expansion around the μ values and ignoring the higher order terms: 

[   (  )]  [   (    )]                                                                               (7a) 
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[   (  )]  [   (    )]                                                                            (7b) 

Where subscripts n and n-1 are the iteration numbers and δμn is the difference between the present 

value and the previous iteration value. The J in eq. (7a,b) is the Jacobian, or called the sensitivity 

matrix, which is the first order derivative of the measurement quantities with respect to the optical 

properties. Here J corresponds to the excitation and emission matrices (J
ex,em

) which have been 

discussed in the later part of the section. 

Therefore, the update of the optical properties at nth iteration is given by: 

    (   )                                                                                                         (8) 

In order to facilitate a good reconstruction a Levenberg-Marquardt scheme implements a diagonal 

regularization factor λ in the form of 

    (       )                                                                                               (9) 

The value of λ value is used as 100 and an empirical damping factor of 1.78 is used. 

We have N as the total number of spatial elements for which the updating of the optical properties 

is reconstructed. “NoS” as the number of source channels, and “NoD” as the number of detector 

channels. As we have mentioned above about the J for both excitation and emission we have the 

complete coupled Jacobian matrices which are given by:  

   [         ] [   ]       [
[
    (   )

   
  ][       ]  [

    (   )

    ][       ]  

[
  

   
  ][       ]  [

  

    ][       ]  

]             (10a) 

 [         ] [   ]
       =  

[

[
    (   )

   
  ][       ]  [

    (   )

    ][       ]  [
    (   )

    
  ][       ]  

[
  

   
  ][       ]  [

  

    ][       ]  [
  

    
  ][       ]  

]             (10b) 
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Here the analytical formulation of the GSD method discussed for the CW case can be 

straightforwardly extended to recovering all the properties   (   )     ,          The 

extentsions involve either doubling the columns or doubling the number of both columns and 

rows. 

So in the remaining analytics, let us consider        [
    (      )

  
] where log(I) can be replaced 

by ψ and χ is the change in the parameters in the above jacobians i.e    
  

. In the later part of the 

analytics we will also specify the NoD=16 and Nos=16, to the outward circular geometry used in 

the simulation studies. With these changes the Jacobian matrices to be written as a single matrix 

for avoiding confusion becomes: 

         [
  

    ]      [              ]                                                         (11a) 

Where       <>
 and χ

<>
, <> = {1:N}, are respectively, the sub-matrix of  J and χ associated with 

the “<>th” element. J
<>

 has a dimension of 256 1 and is shown as: 

        
 

[       
〈     〉
  

         
〈       〉  
  

       
〈     〉
  

       
〈      〉
  

        
〈      〉
  

       
〈       〉
                                  

          
            (11b) 

This shows the sensitivity of the measurement by the source-detector pair with respect to the 

“<>th” special element. 

2.3 Continuous wave steady-state measurements  

The continuous steady-state measurement uses the DC light source to directly measure the 

attenuation of the light power. Although the frequency domain and the time domain approaches 

provide more optical information than the CW approach, researchers are more inclined to CW 

due to the relative simplicity, cost effectiveness and high SNR.  
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Here in our analytics too we have considered CW steady state measurements where the lifetime 

of the fluorophore is considered zero. 

The previously demonstrated methods, that make the reconstruction less sensitive to the object 

depth, may be different in terms of how the native sensitivity profile was compensated or 

counteracted. As in some the actions were imposed indirectly by the regularization but in others 

were applied directly to the sensitivity function; however, all these methods were similar, in terms 

of fitting the calculated data to the individual measurements taken by individual source-

detector-pairs. This study introduces an alternative method of optimizing the data-model fit, 

which is to fit the calculated data to the paired measurements taken by two source-detector-pairs 

that share either the source or the detector. An intuitive explanation of this method is that, 

although the sensitivity of one pair of source-detector with respect to an object could vary 

significantly over the depth of the object, the relative response between two pairs of source-

detector that share one optode could vary substantially less over the depth with respect to the 

same object, and hypothetically the image reconstruction based on this relative or paired response 

could be more robust in localizing the object than that based on the response of individual pairs of 

source-detector. The relative response between two optode-sharing source-detector-pairs to a 

given medium heterogeneity is related to the positioning (i.e. geometric) difference of the 

heterogeneity with respect to the two source-detector-pairs, therefore, the reconstruction scheme 

that takes advantage of such relative or paired response is called a geometric-sensitivity 

difference (GSD) based reconstruction. The objective of this study is to demonstrate that the GSD 

method effectively evens the reconstruction updating sensitivity with respect to imaging depth 

and consequently improves fDOT depth-localization. The GSD differs from previously 

investigated depth-compensation reconstruction method in that it does not involve depth-adapted 

or to-be-optimized parameters in order to reduce the variation of the reconstruction sensitivity 

with respect to imaging depth.  
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2.4 Geometric Sensitivity Difference Reconstruction using source detector pairing 

We analyze the forward pairing between the two source detector pairs i.e 〈     〉     〈     〉 

with j < m. The relative sensitivity of the measurements with respect to the <>th element is 

 [ 〈     〉
   〈     〉]

     
  〈     〉

     
  〈     〉

                                                                     (12) 

                              〈     〉
      〈     〉

     ̃〈        〉
     

This illustrates the complete forward pairing of the Source-Detector pairs, for example the 

forward solving solution with respect to 〈     〉  is given by  ̃〈        〉
   

 
 with i = 1, j =1, 

m={2:16}, which is of the form, 

Figure8. Illustration of the fDOT reconstruction approaches which utilize the paired 

measurements from two source-sharing source-detector-pairs. The solid curve represents the 

native sensitivity profile of 〈     〉, the dashed curve represents native sensitivity of 〈     〉. 

(a) The signal response of a source and a detector; (b) the relative differences between the 

signal responses of 〈     〉  and 〈     〉  to the same object located at different depths are 

different, yet the difference between the sensitivity profiles is less depth dependent. 
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                          (13a) 

[ 〈̃           〉
   [    〈           〉

  ]
     

  [ 〈     〉
    〈     〉

       〈      〉
  ]            (13b) 

Here the [diff] matrix which is used is called the GSD matrix operator and it helps in forward 

pairing differentiation of the native sensitivity values. The [Diff] matrix in eq. (16b) is of 

dimension 15 16 whereas the complete forward solver of the GSD operator for   〈     〉 is j = 

{2:16}, will generate a [Diff] matrix that has a dimension of (16-j)   16.   

This method is applied for all the N spatial elements, a matrix transformation of the native 

sensitivity J by a complete and non-redundant forward pairing GSD operator [Diff] follows as      

 ̃  [    ]                                                                                                              (14)                       

Where the dimension of  ̃  is [(NoD-1)*NoD/2*NoS]    1   N, that of [Diff] is                     

[(NoD-1)*NoD/2*NoS]   [NoS*NoD]  N and that of J is given by [NoS*NoD]   1   N. The 

matrix multiplication is done for the first two dimensions of the three matrices. The third 
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dimension N indicates that the matrix multiplication has been done N times and hence, the J is 

represented in such a way. 

By using the GSD operator in eq. (17), the conventional objective function eq. (6) for 

reconstruction changes to  

        ||[    ] [  ⟨     ⟩ 
  ]

 
 [    ] [  ⟨     ⟩ 

  ( )]
 
||

 
                                        

(15) 

       ||[  ⟨     ⟩ 
  ]

 
 [  ⟨     ⟩ 

  ( )]
 
||

 

[    ] [    ] ||[  ⟨     ⟩ 
  ]

 
 

                                                                                                                     [  ⟨     ⟩ 
  ( )]

 
|| 

Here both Ψ and   
are now column vectors that have [NoS*NoD*(NoD-1)/2] rows. Accordingly, 

eq. (11) and eq. (12) transforms to: 

    ( ̃  ̃)   ̃                                                                                                   (16) 

    ( ̃  ̃     )    ̃                                                                                        (17) 

These equations are valid for both excitation and emission of the reconstruction process. 

 

2.5 Choice of reconstruction method to which GSD is compared 

Comparing the GSD method to the baseline method is straight forward as we know that the 

FDOT of the baseline method does not use the depth compensation scheme. So this GSD method 

is compared to that of the DCA method which involves the depth compensation scheme which 

involves the operation on the Jacobian matrix of the reconstruction process. 
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2.5.1 Choice of reconstruction method to which GSD is compared 

DCA study is applied to this circular-outward imaging geometry whose sensitivity is much 

greater than that compared to the geometries that were previously considered. This method 

modifies the sensitivity matrix by weighting scheme of        to achieve the updated function 

for retrieving the optical properties as follows: 

    ([  ]
       )   [  ]

                  (18) 

The weighting implementation in DCA in implementing   is M = {diag[MSV(  ), MSV(    ),…, 

MSV(  ), MSV(  )]}, where MSV stands for maximum singular value of the sensitivity terms in 

  . The subscripts {1, 2,….l} denote the number of the layer over a depth and   is the power 

factor. The number of layers and the power factor are the two parameters that have to be 

optimized in the above equation. In the previous study the DCA method was tested on this 

outward circular imaging geometry and the effect of this method to effectively compensate for the 

depth was too strong compared to that demonstrated for the planar geometry. So an enhanced 

method of the DCA was used called the reference compensation algorithm which is identical to 

Eq. (18) except that,        , where     is the a sensitive compensation matrix that is 

exponentially regulated according to the radial depth of the spatial element. For the studied 

circular-array of outward imaging geometry with inner radius of 10mm the diagonal elements of 

    are calculated for each of the N spatial elements with respect to their distance (ρ) from the 

center of the geometry as 

    (   )  {      
     

                                      
                                                                     

                             (19) 
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2.6 Effective sensitivity distribution and regularization of parameters 

The effective sensitivity distribution over the entire imaging geometry can be evaluated by 

summing the sensitivity terms corresponding to the same spatial element <> and associated with 

the source detector pairs, i.e.,∑[ {       }
  ]for the baseline method [Fig. 5(a)], ∑[ 

{        
}

  ] for the 

DCA method [Fig. 5(b)], and ∑[ ̃{          }
  ]  for the GSD method [Fig. 5(c)]. The depth 

sensitivity along the radial direction is plotted as shown in Fig. 5(d). The GSD method involves a 

slight rearrangement of the terms of sensitivity matrix. For example if the signs of all  ̃{          }
   

terms that satisfy m-j>8 are reversed, the rows containing paired blocks with the bold italic such 

as “1” and”-1” will incur a sign change to the paired blocks, denoted by “1  (-1)” and “(-1)  

1”, i.e the reversing of the order of  〈     〉
         〈     〉

   in  ̃{          }
  . This is because of the 

crossing of the measurements of the source detector pairs as shown in Ref.1. 

This adjusted  ̃{          }
   is implemented in our simulations and is compared with the effective 

distribution profiles of the native sensitivity J, and the depth compensation applied sensitivity  , 

along a marked depth direction. It can be appreciated that the effective sensitivity profile of the 

GSD is nearly depth invariant and insignificant comparing to the other two methods. The DCA 

out performs the base-line method as it peaks at a significantly increased depth. The parameters 

that we have used for the DCA method are explicitly described in Ref (1). 
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CHAPTER II 
Figure9. Conceptual illustration of the principle of Depth-dependences of the conventional (a), 

depth compensated algorithm (b) and geometric sensitivity difference (c), respectively. (d) 

Shows the depth plot of the 3 methods along the yellow dotted line. 

 

Depth-dependences of the conventional (c), exponentially compensated sensitivity profiles and geometric-differential (d), 
respectively. 
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CHAPTER III 
 

RESULTS AND DISCUSSION 

In this simulation study we are using a circular-array outward imaging geometry as is shown in 

Fig.(number). This imaging geometry has inner radius of 10mm and outer radius of 50mm, with 

16 source and 16 detectors. This mesh is generated using finite element method and the 

parameters of the background and the anomaly are given in table I and II. Here the outer 

boundary is not a physical boundary as the internal one where the sources and detectors are 

placed. We make sure the radius of the imaging geometry is sufficiently large such that it does 

not interfere with the photon fluence rate in the imaging region proximal to the inner boundary. 

Here we consider only a two-dimensional geometry because we are primarily concerned about 

the reconstruction of the object in the plane of the optodes. So the 2-D annular imaging domain 

applying to the geometry of Fig.7 was discretized into a fem mesh with 7664 evenly distributed 

nodes and 14820 elements. The display of the sensitivity distributions, forward and inverse 

computations were realized based on NIRFAST for a 16 source detector pairs on the inner 

boundary for the geometry. The potential of the GSD method is alleviating the sensitivity 

variation with respect to the imaging depth maybe graphically appreciated by comparing the 

sensitivity profiles of the neighboring source sharing source detector pairs as shown in Ref.1. 

The optical heterogeneities that are employed for the simulation were either a single circle or a 

two such identical circles which are separated azimuthally. The circles, i.e the anomalies are of 

5mm radius and are placed at a distance of 0.5mm, 5mm, and 10mm from the detection array. 

The optical properties of the anomaly are listed in Table I and Table II. The contrast of the 

anomaly is 3 times the background for the positive contrast case and 1/3 times for the negative 

contrast case. A Gaussian noise of 1% was added to this set of forward computation unless 

otherwise specified. In the remaining sections the three methods were simulated and the 
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comparison is shown by placing them side by side. These methods were run explicitly in different 

scenarios to compare the outcome: 

(1) Single anomaly case with positive contrast at 0.5mm, 5mm and 10mm from the optode 

array.   

(2) Single anomaly case with negative contrast at 0.5mm, 5mm and 10mm from the optode 

array. 

(3) Dual anomaly case with positive contrast with a fixed azimuthal separation of 90
o
 and at 

depths of 0.5mm, 5mm and 10mm from the optode array. 

(4)  Dual anomaly case with negative contrast with a fixed azimuthal separation of 90
o
 and at 

depths of 0.5mm, 5mm and 10mm from the optode array. 

(5) Dual anomaly case with positive contrast with a fixed depth of 10mm from the optode 

array and different azimuthal separation of 45
o
, 135

o
, 180

o
. 

(6) Dual anomaly case with negative contrast with a fixed depth of 5mm from the optode 

array and different azimuthal separation of 45
o
, 135

o
, 180

o
. 

Parameter Tissue property Anomaly Property 

Dimension Inner Rad-10mm ; Outer Rad-

50mm 

Radius-5mm. Placed at 0.5,5,10 

deep from the optode array. 

Absorption Co-eff Muax – 0.01mm-1;  

Muam – 0.01mm-1    

Muax - 0.01mm-1 

Muam – 0.01mm-1  

Scattering Co-eff Musx – 1.00mm-1 

Musm – 1.10mm-1 

Musx – 1.00mm-1 

Musm – 1.10mm-1 

Refractive Index 1.33 1.33 

Fl. Quantum Yield 0.1 0.2 

Fl. Absorption 0.01mm-1 0.0150mm-1 

 

 

 

 

 

TABLE II 
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3.1 Positive contrast target with respect to the background 

3.1.1 Single Anomaly 

A single anomaly has been placed at the depths of 0.5mm, 5mm, and 10mm from the optode 

array. The properties of the anomaly and the background are described in Table I. This setup 

simulation was run for the three methods and the radial one dimensional profile was extracted for 

each depth and compared. 
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In the figure 11 (a)-(d) it is observed that by using the baseline method the objects at the three 

different depths are reconstructed at the same depth close to the optical detection array. The GSD 

method and the DCA method recover the object at approximately the true depth. The object 

optical properties were underestimated by all the three methods; however the underestimation 

was least for GSD method.  

3.1.2 Dual Anomaly at different depths 

Two anomalies have been placed at the same depths of 0.5mm, 5mm, and 10mm from the optode 

array with an azimuthal separation of 90
o
. The properties of the anomalies and the background are 

Figure 11.Simulations experiments examining target depth recovery (Unit:10
-4

∙mm
-1

). Columns 

(a) set values; (b) conventional reconstruction; (c) depth compensation reconstruction and (d) 

GSD reconstruction. Column (e) contour plot along the yellow dotted lines in colume (b)(c)(d). 
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described in Table I. This setup simulation was run for the three methods and the azimuthal one 

dimensional profile was extracted for each depth and compared. 
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In the figure 12 (a)-(d) it is observed that by using the baseline method the objects at the three 

different depths are reconstructed at the same depth close to the optical detection array. At a 

depth of 10mm from the optode array the conventional method is unable to distinguish between 

the two targets. The GSD method and the DCA method recover the object at approximately the 

true depth and can differentiate between the two target locations. However the GSD shows a 

better contrast between the two objects compared to the DCA as the depth increases. The object 

optical properties were underestimated by all the three methods; however the underestimation 

was least for GSD method.  

3.1.3 Dual Anomaly at different azimuthal separation 

Two anomalies have been placed at the same depth of 5mm from the optode array with azimuthal 

separations of 45
o
, 135

o
, 180

o
. The properties of the anomalies and the background are described 

Figure12.Simulations examining target depth recovery(Unit:10
-4

mm
-1

). Columns (a) set values; 

(b) conventional reconstruction; (c) depth compensation reconstruction and (d) GSD 

reconstruction. Column (e) contour plot along the yellow dotted lines in colume (b)(c)(d). 
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in Table I. This setup simulation was run for the three methods and the azimuthal one 

dimensional profile was extracted for each depth and compared. 
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In the figure 13 (a)-(d) it is clearly shown that the GSD can outperform the DCA and the 

conventional baseline reconstruction. For the reconstructed images at 45 degrees GSD is able to 

reconstruct and show a clear contrast of the targets as compared to the DCA and the Conventional 

reconstruction. 

 

3.2 Negative contrast target with respect to the background 

3.2.1 Single Anomaly 

A single anomaly has been placed at the depths of 0.5mm, 5mm, and 10mm from the optode 

array. The properties of the anomaly and the background are described in Table II. This setup 

simulation was run for the three methods and the one dimensional profile was extracted for each 

depth and compared. 

 

Figure13.Simulations experiments examining target depth recovery (Unit:10
-4

mm
-1

). Columns 

(a) set values; (b) conventional reconstruction; (c) depth compensation reconstruction and (d) 

GSD reconstruction. Column (e) contour plot along the yellow dotted lines in colume (b)(c)(d). 

 

 

 



30 
 

 

 

Parameter Tissue property Anomaly Property 

Dimension Inner Rad-10mm ; Outer Rad-

50mm 

Radius-5mm. Placed at 0.5,5,10 

deep from the optode array. 

Absorption Co-eff Muax – 0.01mm-1;  

Muam – 0.01mm-1    

Muax - 0.01mm-1 

Muam – 0.01mm-1  

Scattering Co-eff Musx – 1.00mm-1 

Musm – 1.10mm-1 

Musx – 1.00mm-1 

Musm – 1.10mm-1 

Refractive Index 1.33 1.33 

Fl. Quantum Yield 0.1 0.05 

Fl. Absorption 0.01mm-1 0.0067mm-1 
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In the figure 14 (a)-(d) it is observed that by using the baseline method the objects at the three 

different depths are reconstructed at the same depth close to the optical detection array. The GSD 

method and the DCA method recover the object at approximately the true depth. The object 

TABLE III 

Figure14. Simulations and experiments examining target depth recovery (Unit:10
-5

∙mm
-1

). 

Columns (a) set values; (b) conventional reconstruction; (c) depth compensation 

reconstruction and (d) GSD reconstruction. Column (e) contour plot along the black dotted 

lines in colume (b)(c)(d). 
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optical properties were underestimated by all the three methods. It can also be confirmed that the 

negative contrast anomaly is hard to recover as compared to the positive contrast target as the 

conventional baseline reconstruction method cannot reconstruct the target at a distance of 10mm, 

whereas in a positive anomaly case it can even though it is at the detector array.  Yet GSD helps 

in locating the target at approximately at the correct depth even though the recovered fluorescent 

contrast with respect to the background is quite low. When the target depth goes greater than 

25mm GSD is also unable to locate the target and all the three methods fail. 

3.2.2 Dual Anomaly at different depths 

Two anomalies have been placed at the same depths of 0.5mm, 5mm, and 10mm from the optode 

array with an azimuthal separation of 90
o
. The properties of the anomalies and the background are 

described in Table II. This setup simulation was run for the three methods and the azimuthal one 

dimensional profile was extracted for each depth and compared. 
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3.2.3 Dual Anomaly at different azimuthal separation 

Figure15.Simulations experiments examining target depth recovery (Unit:10
-5

∙mm
-1

). 

Columns (a) set values; (b) conventional reconstruction; (c) depth compensation 

reconstruction and (d) GSD reconstruction. Column (e) contour plot along the black dotted 

lines in colume (b)(c)(d). 

 



32 
 

Two anomalies have been placed at the same depth of 5mm from the optode array with azimuthal 

separations of 45
o
, 135

o
, 180

o
. The properties of the anomalies and the background are described 

in Table II. This setup simulation was run for the three methods and the azimuthal one 

dimensional profile was extracted for each depth and compared. 
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In the figure 16 (a)-(d) it is clearly shown that the GSD can outperform the DCA and the 

conventional baseline reconstruction. For the reconstructed images at 45 degrees GSD is able to 

reconstruct and show a clear contrast of the targets as compared to the DCA and the Conventional 

reconstruction. 

Figure 16. Simulations experiments examining target depth recovery (Unit:10
-5

∙mm
-1

). Columns 

(a) set values; (b) conventional reconstruction; (c) depth compensation reconstruction and (d) 

GSD reconstruction. Column (e) contour plot along the black dotted lines in colume (b)(c)(d). 
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CHAPTER IV 

CONCLUSION AND FUTURE WORK 

This study demonstrates an alternative approach FDOT image reconstruction by optimizing the 

data model fit with the individual source-detector measurements. This method which is called the 

GSD method helps in optimizing the data model fit by taking the advantage of the paired 

measurements of the source-detector-pairs. It effectively and passively suppresses the spatial 

variance of the detection sensitivity with respect to depth taking advantage of the relative changes 

of the measurements of two optode-sharing source-detector pairs. It is demonstrated that this 

GSD method improves the depth localization for FDOT in an axial outward imaging circular 

geometry that is considered to have the strong sensitivity variation with respect to imaging depth. 

Simulated measurements based on CW are used to evaluate the performance of GSD over the 

other two methods: the conventional algorithm which does not involve any depth adaptation 

scheme and the depth compensation algorithm which involves the active depth dependent 

compensation scheme. 

The GSD method clearly outperforms the other two methods in terms of localizing the object at 

correct depth and also resolving them azimuthally correctly and estimating the optical properties 

for both single object and dual object cases. 

The GSD method however is more computational demanding due to the increase in the jacobian 

matrix and due to more matrix multiplications. The effectiveness of this method is associated 

with the symmetry of the optode array.         

6.1 Future work 

This methodology was carried out experimentally on DOT and works equally well with FDOT 

too. This is an in-silico study and should be experimentally validated in the future. 
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The prostate tissue just like any other epithelial cells have the ability to accumulate high levels of 

zinc, there has been found to be a decrease in the levels of zinc in the human prostate at the sight 

of malignancy creating a negative contrast with respect to the background. Fluorescent contrast 

bio markers which are specific to Zinc can be used in to image prostate cancer at a very early 

stage and localizing the tumor can be done effectively by this method. 
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APPENDICES 
 

MATLAB PROGRAMING CODES 

Reconstructing single anomaly in NIRFAST    run_single.m 

Reconstructing dual anomaly in NIRFAST    run_dual.m 

Adding a blob to the mesh      add_blob_fl_direct.m 

Plot the reconstructed or the set mesh     plotmesh_fl.m 

Conventional reconstruction      reconstruct_fl_dc.m 

Depth compensation Algorithm      recon_fl_DCA_dc.m 

Geometric sensitivity Difference Algorithm    recon_fl_GSD_dc.m  
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run_single.m 
 

clc;clear;close all; 
mesh=load_mesh(''); %load the FEM mesh that has been created 
save_mesh(mesh,'axial_outward_fluor') 
%add an anomaly to the FEM mesh that was loaded onto the platform 
blob1.x=;blob1.y=;blob1.z=; % the positions of the anomalies 
blob1.r=; %raius of the anomaly 
%optical properties of the anomaly 
blob1.muax=mesh.muax;blob1.musx=mesh.musx;  
blob1.muam=mesh.muam;blob1.musm=mesh.musm; 
blob1.muaf=mesh.muaf;blob1.eta=; 
blob1.tau=0; 
blob1.ri=1.33;blob1.region=1;  
mesh_anom = add_blob_fl_direct('axial_outward_fluor',blob1); %add the 

anomaly 
plotmesh_fl(mesh_anom) %plot the set mesh 
save_mesh(mesh_anom,'axial_outward_fluor_with_anomaly')  
data_dc_fl = femdata_fl(mesh_anom,0); 
data_noise = 

add_noise('data_anom_test_fl.paaxfl',1,1,'data_anom_test_fl_noise.paaxf

l'); 
save_data(data_dc_fl,  ''); 
clc;clear;close all; 
% lambda=100; 
% lambda.type='JJt'; 
fwd_mesh=load_mesh(''); 
[mesh,pj_error] = recon_geom_dc_fl(fwd_mesh,... 
                    [30 30],... 
                    0,... 
                    'data_anom_test_fl_noise.paaxfl',... 
                    100,... 
                    100,... 
                    '',... 
                    0); 
mesh_geom = read_solution('',... 
             ''); 
         plotmesh_fl(mesh_geom) 
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run_dual.m 
clc;clear;close all; 
mesh=load_mesh(''); 
save_mesh(mesh,'') 
blob1.x=;blob1.y=;blob1.z=; 
blob1.r=; 
blob1.muax=mesh.muax;blob1.musx=mesh.musx; 
blob1.muam=mesh.muam;blob1.musm=mesh.musm; 
blob1.muaf=mesh.muaf;blob1.eta=; 
blob1.tau=0; 
blob1.ri=1.33;blob1.region=1; 
mesh_anom_1 = add_blob_fl_direct('',blob1); 
plotmesh(mesh_anom_1) 
save_mesh(mesh_anom_1,'') 
blob2.x=25;blob2.y=0;blob2.z=0; 
blob2.r=5; 
blob2.muax=mesh.muax(1);blob2.musx=mesh.musx(1); 
blob2.muam=mesh.muam(1);blob2.musm=mesh.musm(1); 
blob2.muaf=mesh.muaf(1).*2;blob2.eta=0.2; 
blob2.tau=0; 
blob2.ri=1.33;blob2.region=2; 
mesh_anom = add_blob_fl_direct('',blob2); 
save_mesh(mesh_anom,'') 
plotmesh_fl(mesh_anom) 
data_dc_fl = femdata_fl(mesh_anom,0); 
save_data(data_dc_fl,  '.paa'); 
data_noise = 

add_noise('data_anom_test_fl.paaxfl',1,1,'data_anom_test_fl_noise.paaxf

l'); 
clc;clear;close all; 
% lambda=100; 
% lambda.type='JJt'; 
fwd_mesh=load_mesh(''); 
[mesh,pj_error] = recon_geom_derv_dc_fl(fwd_mesh,... 
                    [30 30],... 
                    0,... 
                    'data_anom_test_fl_noise.paaxfl',... 
                    100,... 
                    100,... 
                    '',... 
                    0); 
mesh_geom = read_solution('',... 
             ''); 
         plotmesh_fl(mesh_geom) 
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add_blob_fl_direct.m 

function mesh = add_blob_fl_direct(mesh_nm,blob) 

  
% used by add_blobs 
% adds fluorescence blobs. 
%  
% Part of NIRFAST package 
% H Dehghani 2006 

  
mesh=load_mesh(mesh_nm); 

  
p = 1; 
% while p ~= 0 
%   p = 1; 
  if p == 1 
    x = blob.x; 
    y = blob.y; 
    if mesh.dimension == 3 
      z = blob.z; 
    elseif mesh.dimension == 2 
      z = 0; 
    end 
    r = blob.r; 
    dist = distance(mesh.nodes(:,1:3),ones(length(mesh.bndvtx),1),[x y 

z]); 
    muax = blob.muax; 
    musx = blob.musx; 
    muam = blob.muam; 
    musm = blob.musm; 
    ri   = blob.ri; 
    muaf = blob.muaf; 
    eta = blob.eta; 
    tau = blob.tau; 
    region = blob.region; 
    kappax = 1./(3*(muax+musx)); 
    kappam = 1./(3*(muam+musm)); 
    mesh.muax(find(dist<=r)) = muax; 
    mesh.musx(find(dist<=r)) = musx; 
    mesh.kappax(find(dist<=r)) = kappax; 
    mesh.ri(find(dist<=r)) = ri; 
    mesh.muam(find(dist<=r)) = muam; 
    mesh.musm(find(dist<=r)) = musm; 
    mesh.kappam(find(dist<=r)) = kappam; 
    mesh.muaf(find(dist<=r)) = muaf; 
    mesh.tau(find(dist<=r)) = tau; 
    mesh.eta(find(dist<=r)) = eta; 
    mesh.region(find(dist<=r)) = region; 
    disp(['Number of nodes modified = ' ... 
      num2str(length(find(dist<=r)))]); 
  end 
% end 
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plotmesh_fl.m 

function plotmesh_fl(mesh) 

  
% plotmesh(mesh) 
% where mesh is either structured variable or mesh filename 
% Allows fast and easy viewing of mesh property 
% Common usage:  plotmesh('circle2000_86') loads mesh 
% s davis 03/27/06 
%  
% Part of NIRFAST package 
% H Dehghani 2006 

  
%**************************************** 
% If not a workspace variable, load mesh 
if ischar(mesh)== 1 
    mesh = load_mesh(mesh); 
end 

  

  
%**************************************** 
% Plotting 
%**************************************** 
figure; 
set(gca,'FontSize',28) 

  
% STANDARD NIRFAST CASE 
if strcmp(mesh.type,'stnd') == 1 
  subplot(1,2,1); 
  plotim(mesh,mesh.mua); 
  title('\mu_a','FontSize',20); 
%   caxis([0.0024 0.0028]) 
  colorbar('horiz'); 

   
  subplot(1,2,2); 
  plotim(mesh,mesh.mus); 
  title('\mu_s''','FontSize',20); 
  colorbar('horiz'); 

  
elseif strcmp(mesh.type,'fluor') == 1 
%   subplot(3,2,1); 
%   plotim(mesh,mesh.muax); 
%   title('\mu_{ax}','FontSize',10); 
%   colorbar; 
%  
%   subplot(3,2,2); 
%   plotim(mesh,mesh.musx); 
%   title('\mu_{sx}''','FontSize',10); 
%   colorbar; 
%  
%   subplot(3,2,3); 
%   plotim(mesh,mesh.muam); 
%   title('\mu_{am}','FontSize',10); 
%   colorbar; 
%  
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%   subplot(3,2,4); 
%   plotim(mesh,mesh.musm); 
%   title('\mu_{sm}''','FontSize',10); 
%   colorbar; 
%    
%   subplot(3,2,5); 
  if isfield(mesh,'etamuaf') == 1 
      plotim(mesh,mesh.etamuaf); 
  else 
      plotim(mesh,mesh.muaf.*mesh.eta); 
  end 
  title('\eta\mu_{fl}','FontSize',10); 
  colorbar; 
%  
%   subplot(3,2,6); 
%   plotim(mesh,mesh.tau); 
%   title('\tau','FontSize',10); 
%   colorbar; 

  

  
elseif strcmp(mesh.type,'spec') == 1 
  [nc,junk]=size(mesh.chromscattlist); 
  n = ceil((nc-2)/2)+1; 
  k = 1; 
  for i = 1 : nc-2 
    subplot(n,2,k); 
    plotim(mesh,mesh.conc(:,i)); 
    t = char(mesh.chromscattlist(i,1)); 
    title(t,'FontSize',10); 
    colorbar; 
    k = k + 1; 
  end 
  subplot(n,2,k+1); 
  plotim(mesh,mesh.sa); 
  title('Scatter Amplitude','FontSize',10); 
  colorbar; 
  subplot(n,2,k+2); 
  plotim(mesh,mesh.sp); 
  title('Scatter Power','FontSize',10); 
  colorbar; 
end 

  
function plotim(mesh,val) 
h = trisurf(mesh.elements,... 
        mesh.nodes(:,1),... 
        mesh.nodes(:,2),... 
        mesh.nodes(:,3),... 
        val); 
shading interp; 
view(2); 
axis equal;  
axis off; 
colormap hot; 
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reconstruct_fl_dc.m 

 
function [fwd_mesh,pj_error] = reconstruct_fl_dc(fwd_mesh,... 
                                              recon_basis,... 
                                              frequency,... 
                                              data_fn,... 
                                              iteration,... 
                                              lambda,... 
                                              output_fn,... 
                                              filter_n) 

  

                                           
% A subroutine used in the main reconstruction program for 
% fluorescence yield. 
% reconstruction program for fluorescence meshes 
% See documentation for general operating procedures. 
%  
% Part of NIRFAST package 
% H Dehghani 2006 

  

  
%************************************************************ 
% load fine mesh for fwd solve: can input mesh structured variable 
% or load from file 
if ischar(fwd_mesh)==1 
    fwd_mesh = load_mesh(fwd_mesh); 
end 

  
etamuaf_sol=[output_fn '_etamuaf.sol']; 
% stau_sol=[output_fn '_tau.sol']; 

  
%********************************************************** 
% Initiate log file 

  
    fid_log = fopen([output_fn '.log'],'w'); 
    fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
    if ischar(recon_basis) 
        fprintf(fid_log,'Basis          = %s\n',recon_basis); 
    else 
        fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
    end 
    fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
    fprintf(fid_log,'Data File      = %s\n',data_fn); 
    fprintf(fid_log,'Initial Regularization  = %d\n',lambda); 
    fprintf(fid_log,'Filtering        = %d\n',filter_n); 
    fprintf(fid_log,'Output Files   = %s',etamuaf_sol); 
    % fprintf(fid_log,'Output Files   = %s',tau_sol); 
    fprintf(fid_log,'\n'); 

  

  
% get direct excitation field 
data_fwd = femdata(fwd_mesh,100); 
data_fwd.phi = data_fwd.phix; 
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%*********************************************************** 
% load recon_mesh 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
elseif isstruct(recon_basis) == 0 
  [fwd_mesh.fine2coarse,recon_mesh] = 

pixel_basis(recon_basis,fwd_mesh); 
elseif isstruct(recon_basis) == 1 
    recon_mesh = recon_basis; 
end 

  
%********************************************************** 
% read data 
anom = load_data(data_fn); 

  
% Only reconstructs fluorescence yield! 
anom = log(anom(:,3)); 

  
%************************************************************ 
% initialize projection error 
pj_error=[]; 

  
%************************************************************* 
% modulation frequency 
omega = 2*pi*frequency*1e6;  
% set fluorescence variables 
fwd_mesh.gamma = 

(fwd_mesh.eta.*fwd_mesh.muaf)./(1+(omega.*fwd_mesh.tau).^2); 

  
%************************************************************* 
% Iterate 
for it = 1 : iteration 

     
    % build jacobian 
    [Jwholem,datafl] = jacobian_fl(fwd_mesh,frequency,data_fwd); 

     
    % Read reference data 
    clear ref; 
    ref(:,1) = log(datafl.amplitudem); 

    
    data_diff = (anom-ref); 
    pj_error = [pj_error sum((anom-ref).^2)];   

     

  
    %*********************** 
    % Screen and Log Info 

   
    disp('---------------------------------'); 
    disp(['Iteration_fl Number          = ' num2str(it)]); 
    disp(['Projection_fl error          = ' num2str(pj_error(end))]); 
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    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'Iteration_fl Number          = %d\n',it); 
    fprintf(fid_log,'Projection_fl error = %f\n',pj_error(end)); 
        if it ~= 1 
        p = (pj_error(end-1)-pj_error(end))*100/pj_error(end-1); 
        disp(['Projection error change   = ' num2str(p) '%']); 
        fprintf(fid_log,'Projection error change   = %f %%\n',p); 
        if (p) <= 1 
            disp('---------------------------------'); 
            disp('STOPPING CRITERIA FOR FLUORESCENCE COMPONENT 

REACHED'); 
            fprintf(fid_log,'---------------------------------\n'); 
            fprintf(fid_log,'STOPPING CRITERIA FOR FLUORESCENCE 

COMPONENT REACHED\n'); 
            % set output 
            data_recon.elements = fwd_mesh.elements; 
            data_recon.etamuaf = fwd_mesh.etamuaf;   
            break 
        end 
    end 
    %************************* 
    clear data_recon 

  
    % Interpolate Jacobian onto recon mesh 
    [Jm,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,Jwholem.completem); 
    Jm = Jm(1:2:end-1, 1:end/2); % take only intensity portion 

     
    % Normalize Jacobian wrt fl source gamma 
    Jm = Jm*diag([recon_mesh.gamma]); 

  
    % build Hessian 
    [nrow,ncol]=size(Jm); 
    Hess = zeros(nrow); 
    Hess = Jm*Jm'; 

     
    % initailize temp Hess, data and mesh, incase PJ increases. 
    Hess_tmp = Hess; 
    mesh_tmp = recon_mesh; 
    data_tmp = data_diff; 

     

         
    % add regularization 
    reg = lambda.*(max(diag(Hess))); 
    disp(['Regularization Fluor           = ' num2str(reg)]); 
    fprintf(fid_log,'Regularization Fluor            = %f\n',reg); 
    Hess = Hess+(eye(nrow).*reg); 

     
    % Calculate update 
    u = Jm'*(Hess\data_diff); 
    u = u.*[recon_mesh.gamma]; 

     
    % value update:   
    recon_mesh.gamma = recon_mesh.gamma+u; 
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    recon_mesh.etamuaf = 

recon_mesh.gamma.*(1+(omega.*recon_mesh.tau).^2); 
    % assuming we know eta 
    recon_mesh.muaf = recon_mesh.etamuaf./recon_mesh.eta; 
    clear u Hess Hess_norm tmp data_diff G 

     
    % interpolate onto fine mesh   
    [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh); 

     
    % filter 
    if filter_n ~= 0 
        disp('Filtering'); 
        fwd_mesh = mean_filter(fwd_mesh,filter_n); 
    end 

       

  
    %********************************************************** 
    % Write solution to file 

  
    if it == 1 
        fid = fopen(etamuaf_sol,'w'); 
    else 
        fid = fopen(etamuaf_sol,'a'); 
    end 
    fprintf(fid,'solution %d ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%g ',fwd_mesh.etamuaf); 
    fprintf(fid,'\n'); 
    fclose(fid); 

     
end 
fin_it = it-1; 

  
%****************************************************** 
% Sub functions 
function [val_int,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,val) 

  
% This function interpolates fwd_mesh into recon_mesh 
% For the Jacobian it is an integration! 
NNC = size(recon_mesh.nodes,1); 
NNF = size(fwd_mesh.nodes,1); 
NROW = size(val,1); 
val_int = zeros(NROW,NNC*2); 

  
for i = 1 : NNF 
    if recon_mesh.coarse2fine(i,1) ~= 0 
        val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) = 

... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) + ... 
            val(:,i)*recon_mesh.coarse2fine(i,2:end); 
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val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) = ... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) + ... 
            val(:,i+NNF)*recon_mesh.coarse2fine(i,2:end); 
    elseif recon_mesh.coarse2fine(i,1) == 0 
        dist = 

distance(fwd_mesh.nodes,fwd_mesh.bndvtx,recon_mesh.nodes(i,:)); 
        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        val_int(:,i) = val(:,mindist); 
        val_int(:,i+NNC) = val(:,mindist+NNF); 
    end 
end 

  
for i = 1 : NNC 
    if fwd_mesh.fine2coarse(i,1) ~= 0 
        recon_mesh.region(i,1) = ... 
            

median(fwd_mesh.region(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:)))

; 
        recon_mesh.eta(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.eta(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.muaf(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.muaf(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.gamma(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.gamma(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.tau(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.tau(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 

         
    elseif fwd_mesh.fine2coarse(i,1) == 0 
        dist = distance(fwd_mesh.nodes,... 
            fwd_mesh.bndvtx,... 
            [recon_mesh.nodes(i,1:2) 0]); 
        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        recon_mesh.region(i,1) = fwd_mesh.region(mindist); 
        recon_mesh.eta(i,1) = fwd_mesh.eta(mindist); 
        recon_mesh.muaf(i,1) = fwd_mesh.muaf(mindist); 
        recon_mesh.gamma(i,1) = fwd_mesh.gamma(mindist); 
        recon_mesh.tau(i,1) = fwd_mesh.tau(mindist); 

         
    end 
end 

  
function [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh) 

  
for i = 1 : length(fwd_mesh.nodes) 
  fwd_mesh.gamma(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.gamma(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
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  fwd_mesh.muaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.muaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
   fwd_mesh.eta(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.eta(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.etamuaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.etamuaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)))

; 
  fwd_mesh.tau(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.tau(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
end 

 

 

recon_fl_DCA_dc.m 

function [fwd_mesh,pj_error] = recon_dca_fl_dc(fwd_mesh,... 
                                              recon_basis,... 
                                              frequency,... 
                                              data_fn,... 
                                              iteration,... 
                                              lambda,... 
                                              output_fn,... 
                                              filter_n,... 
                                              gap) 

  

                                           
% A subroutine used in the main reconstruction program for 
% fluorescence yield. 
% reconstruction program for fluorescence meshes 
% See documentation for general operating procedures. 
%  
% Part of NIRFAST package 
% H Dehghani 2006 

  

  
%************************************************************ 
% load fine mesh for fwd solve: can input mesh structured variable 
% or load from file 
if ischar(fwd_mesh)==1 
    fwd_mesh = load_mesh(fwd_mesh); 
end 

  
etamuaf_sol=[output_fn '_etamuaf.sol']; 
% stau_sol=[output_fn '_tau.sol']; 

  
%********************************************************** 
% Initiate log file 
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    fid_log = fopen([output_fn '.log'],'w'); 
    fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
    if ischar(recon_basis) 
        fprintf(fid_log,'Basis          = %s\n',recon_basis); 
    else 
        fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
    end 
    fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
    fprintf(fid_log,'Data File      = %s\n',data_fn); 
    fprintf(fid_log,'Initial Regularization  = %d\n',lambda); 
    fprintf(fid_log,'Filtering        = %d\n',filter_n); 
    fprintf(fid_log,'Output Files   = %s',etamuaf_sol); 
    % fprintf(fid_log,'Output Files   = %s',tau_sol); 
    fprintf(fid_log,'\n'); 

  

  
% get direct excitation field 
data_fwd = femdata(fwd_mesh,100); 
data_fwd.phi = data_fwd.phix; 

  
%*********************************************************** 
% load recon_mesh 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
elseif isstruct(recon_basis) == 0 
  [fwd_mesh.fine2coarse,recon_mesh] = 

pixel_basis(recon_basis,fwd_mesh); 
elseif isstruct(recon_basis) == 1 
    recon_mesh = recon_basis; 
end 
%.........Krishna........................................ 
[layer,layer_indx]=cal_dis(recon_mesh,gap); 
%********************************************************** 
% read data 
anom = load_data(data_fn); 

  
% Only reconstructs fluorescence yield! 
anom = log(anom(:,3)); 

  
%************************************************************ 
% initialize projection error 
pj_error=[]; 

  
%************************************************************* 
% modulation frequency 
omega = 2*pi*frequency*1e6;  
% set fluorescence variables 
fwd_mesh.gamma = 

(fwd_mesh.eta.*fwd_mesh.muaf)./(1+(omega.*fwd_mesh.tau).^2); 

  
%************************************************************* 
% Iterate 
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for it = 1 : iteration 

     
    % build jacobian 
    [Jwholem,datafl] = jacobian_fl(fwd_mesh,frequency,data_fwd); 

     
    % Read reference data 
    clear ref; 
    ref(:,1) = log(datafl.amplitudem); 

    
    data_diff = (anom(:,1)-ref(:,1)); 
    pj_error = [pj_error sum((anom(:,1)-ref(:,1)).^2)];   

     
    %*********************** 
    % Screen and Log Info 

   
    disp('---------------------------------'); 
    disp(['Iteration_fl Number          = ' num2str(it)]); 
    disp(['Projection_fl error          = ' num2str(pj_error(end))]); 

     

     
    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'Iteration_fl Number          = %d\n',it); 
    fprintf(fid_log,'Projection_fl error          = 

%f\n',pj_error(end)); 

     
    if it ~= 1 
        p = (pj_error(end-1)-pj_error(end))*100/pj_error(end-1); 
        disp(['Projection error change   = ' num2str(p) '%']); 
        fprintf(fid_log,'Projection error change   = %f %%\n',p); 
        if (p) <= 1 
            disp('---------------------------------'); 
            disp('STOPPING CRITERIA FOR FLUORESCENCE COMPONENT 

REACHED'); 
            fprintf(fid_log,'---------------------------------\n'); 
            fprintf(fid_log,'STOPPING CRITERIA FOR FLUORESCENCE 

COMPONENT REACHED\n'); 
            % set output 
            data_recon.elements = fwd_mesh.elements; 
            data_recon.etamuaf = fwd_mesh.etamuaf;   
            break 
        end 
    end 
    %************************* 
    clear data_recon 

  
    % Interpolate Jacobian onto recon mesh 
    [Jm,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,Jwholem.completem); 
    Jm = Jm(1:2:end-1, 1:end/2); % take only intensity portion 

     
    % Normalize Jacobian wrt fl source gamma 
    Jm = Jm*diag([recon_mesh.gamma]); 
    [nrow,ncol]=size(Jm); 
    %....................DCA-Krishna................ 
    layer_size=size(layer,1); 
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  dca_reg=zeros(nrow,size(layer,1)); 
  for ii=1:layer_size 
     Jm_sub_tmp=Jm(:,layer{ii,1}); 
     [U_tmp,S_tmp,V_tmp]=svd(Jm_sub_tmp); 
     dca_reg_fl(ii)=max(max(S_tmp,[],1),[],2); 

      
     %J_sub_tmp=J(:,layer{ii,1}+ncol/2); 
     %[U_tmp,S_tmp,V_tmp]=svd(J_sub_tmp); 
     %dca_reg_mua(ii)  =max(max(S_tmp,[],1),[],2); 
  end 
  dca_reg_fl_full=[]; 
  %dca_reg_mua_full=[]; 
  for ii=1:length(layer_indx) 
      for jj=1:size(dca_reg,2) 
          if jj==layer_indx(ii) 
            dca_reg_fl_full=[dca_reg_fl_full dca_reg_fl(jj)]; 
            %dca_reg_mua_full  =[dca_reg_mua_full   dca_reg_mua(jj)]; 
          end 
      end 
  end 
  dca_reg_full=diag([dca_reg_fl_full]); 
  Jm=Jm*abs(dca_reg_full.^2); 
  

%......................................................................

%% 
    % build Hessian 
    Hess = zeros(nrow); 
    Hess = Jm*Jm'; 

     
    % initailize temp Hess, data and mesh, incase PJ increases. 
    Hess_tmp = Hess; 
    mesh_tmp = recon_mesh; 
    data_tmp = data_diff; 

     

         
    % add regularization 
    %reg = lambda.*(max(diag(Hess))); 
    %disp(['Regularization Fluor           = ' num2str(reg)]); 
    %fprintf(fid_log,'Regularization Fluor            = %f\n',reg); 
    %Hess = Hess+(eye(nrow).*reg); 
    % Add regularization 
  if it ~= 1 
    lambda = lambda./10^0.25; 
  end 
% %----nirfast 
%  reg_amp = lambda*max(diag(Hess)); 
%   reg = ones(nrow,1); 
%   reg = reg.*reg_amp; 
%   Hess = Hess+diag(reg);   
%   % Calculate update 
%   foo = J'*(Hess\data_diff); 
%   foo = foo.*[recon_mesh.kappa;recon_mesh.mua]; 
% %----nirfast 
%----dca 
    [U_tmp_Jm,S_tmp_Jm,V_tmp_Jm]=svd(Jm); 
    s_max=max(max(S_tmp_Jm,[],1),[],2); 
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    reg = lambda*s_max.*eye(size(Hess)); 
    Hess = Hess+reg;  
    u = Jm'*(Hess\data_diff);%dca_reg_full* 
    %Hess=foo; 
%----dca 
    % Calculate update 
    %u = Jm'*(Hess\data_diff); 
    u = u.*[recon_mesh.gamma]; 

     
    % value update:   
    recon_mesh.gamma = recon_mesh.gamma+u; 
    recon_mesh.etamuaf = 

recon_mesh.gamma.*(1+(omega.*recon_mesh.tau).^2); 
    % assuming we know eta 
    recon_mesh.muaf = recon_mesh.etamuaf./recon_mesh.eta; 
    clear u Hess Hess_norm tmp data_diff G 

     
    % interpolate onto fine mesh   
    [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh); 

     
    % filter 
    if filter_n ~= 0 
        disp('Filtering'); 
        fwd_mesh = mean_filter(fwd_mesh,filter_n); 
    end 

       

  
    %********************************************************** 
    % Write solution to file 

  
    if it == 1 
        fid = fopen(etamuaf_sol,'w'); 
    else 
        fid = fopen(etamuaf_sol,'a'); 
    end 
    fprintf(fid,'solution %d ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%g ',fwd_mesh.etamuaf); 
    fprintf(fid,'\n'); 
    fclose(fid); 

     
end 
fin_it = it-1; 

  
%****************************************************** 
% Sub functions 
function [val_int,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,val) 

  
% This function interpolates fwd_mesh into recon_mesh 
% For the Jacobian it is an integration! 
NNC = size(recon_mesh.nodes,1); 
NNF = size(fwd_mesh.nodes,1); 
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NROW = size(val,1); 
val_int = zeros(NROW,NNC*2); 

  
for i = 1 : NNF 
    if recon_mesh.coarse2fine(i,1) ~= 0 
        val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) = 

... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) + ... 
            val(:,i)*recon_mesh.coarse2fine(i,2:end); 
        

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) = ... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) + ... 
            val(:,i+NNF)*recon_mesh.coarse2fine(i,2:end); 
    elseif recon_mesh.coarse2fine(i,1) == 0 
        dist = 

distance(fwd_mesh.nodes,fwd_mesh.bndvtx,recon_mesh.nodes(i,:)); 
        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        val_int(:,i) = val(:,mindist); 
        val_int(:,i+NNC) = val(:,mindist+NNF); 
    end 
end 

  
for i = 1 : NNC 
    if fwd_mesh.fine2coarse(i,1) ~= 0 
        recon_mesh.region(i,1) = ... 
            

median(fwd_mesh.region(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:)))

; 
        recon_mesh.eta(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.eta(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.muaf(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.muaf(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.gamma(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.gamma(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.tau(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.tau(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 

         
    elseif fwd_mesh.fine2coarse(i,1) == 0 
        dist = distance(fwd_mesh.nodes,... 
            fwd_mesh.bndvtx,... 
            [recon_mesh.nodes(i,1:2) 0]); 
        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        recon_mesh.region(i,1) = fwd_mesh.region(mindist); 
        recon_mesh.eta(i,1) = fwd_mesh.eta(mindist); 
        recon_mesh.muaf(i,1) = fwd_mesh.muaf(mindist); 
        recon_mesh.gamma(i,1) = fwd_mesh.gamma(mindist); 
        recon_mesh.tau(i,1) = fwd_mesh.tau(mindist); 
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    end 
end 

  
function [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh) 

  
for i = 1 : length(fwd_mesh.nodes) 
  fwd_mesh.gamma(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.gamma(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.muaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.muaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
   fwd_mesh.eta(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.eta(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.etamuaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.etamuaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)))

; 
  fwd_mesh.tau(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.tau(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
end 

 

recon_geom_dc_fl.m 

function [fwd_mesh,pj_error] = recon_geom_dc_fl(fwd_mesh,... 
                                              recon_basis,... 
                                              frequency,... 
                                              data_fn,... 
                                              iteration,... 
                                              lambda,... 
                                              output_fn,... 
                                              filter_n) 

  

                                           
% A subroutine used in the main reconstruction program for 
% fluorescence yield. 
% reconstruction program for fluorescence meshes 
% See documentation for general operating procedures. 
%  
% Part of NIRFAST package 
% H Dehghani 2006 

  
%-----------krishna 
% always CW for fluor 
frequency = 100; 
%-----------krishna 
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%************************************************************ 
% load fine mesh for fwd solve: can input mesh structured variable 
% or load from file 
if ischar(fwd_mesh)==1 
    fwd_mesh = load_mesh(fwd_mesh); 
end 

  
etamuaf_sol=[output_fn '_etamuaf.sol']; 
% stau_sol=[output_fn '_tau.sol']; 

  
%********************************************************** 
% Initiate log file 

  
    fid_log = fopen([output_fn '.log'],'w'); 
    fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
    if ischar(recon_basis) 
        fprintf(fid_log,'Basis          = %s\n',recon_basis); 
    else 
        fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
    end 
    fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
    fprintf(fid_log,'Data File      = %s\n',data_fn); 
    fprintf(fid_log,'Initial Regularization  = %d\n',lambda); 
    fprintf(fid_log,'Filtering        = %d\n',filter_n); 
    fprintf(fid_log,'Output Files   = %s',etamuaf_sol); 
    % fprintf(fid_log,'Output Files   = %s',tau_sol); 
    fprintf(fid_log,'\n'); 

  

  
% get direct excitation field 
data_fwd = femdata(fwd_mesh,100); 
data_fwd.phi = data_fwd.phix; 

  
%*********************************************************** 
% load recon_mesh 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
elseif isstruct(recon_basis) == 0 
  [fwd_mesh.fine2coarse,recon_mesh] = 

pixel_basis(recon_basis,fwd_mesh); 
elseif isstruct(recon_basis) == 1 
    recon_mesh = recon_basis; 
end 

  
%********************************************************** 
% read data 
anom = load_data(data_fn); 

  
% Only reconstructs fluorescence yield! 
anom = log(anom(:,3)); 

  
%-change 
anom_geom=data_dc_stnd2geom(anom,fwd_mesh); 
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%-change 

  
%************************************************************ 
% initialize projection error 
pj_error=[]; 

  
%************************************************************* 
% modulation frequency 
omega = 2*pi*frequency*1e6;  
% set fluorescence variables 
fwd_mesh.gamma = 

(fwd_mesh.eta.*fwd_mesh.muaf)./(1+(omega.*fwd_mesh.tau).^2); 

  
%************************************************************* 
% Iterate 
for it = 1 : iteration 

     
    % build jacobian 
    [Jwholem,datafl] = jacobian_fl(fwd_mesh,frequency,data_fwd); 

     
    % Read reference data 
    clear ref; 
    ref(:,1) = log(datafl.amplitudem); 
    %-gary 
    ref_geom=data_dc_stnd2geom(ref,fwd_mesh); 

    
    data_diff = (anom_geom(:,1)-ref_geom(:,1)); 
    %-gary 
    pj_error = [pj_error sum(data_diff.^2)];   

     

  
    %*********************** 
    % Screen and Log Info 

   
    disp('---------------------------------'); 
    disp(['Iteration_fl Number          = ' num2str(it)]); 
    disp(['Projection_fl error          = ' num2str(pj_error(end))]); 

     

     
    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'Iteration_fl Number          = %d\n',it); 
    fprintf(fid_log,'Projection_fl error          = 

%f\n',pj_error(end)); 

     
    if it ~= 1 
        p = (pj_error(end-1)-pj_error(end))*100/pj_error(end-1); 
        disp(['Projection error change   = ' num2str(p) '%']); 
        fprintf(fid_log,'Projection error change   = %f %%\n',p); 
        if (p) <= 1 
            disp('---------------------------------'); 
            disp('STOPPING CRITERIA FOR FLUORESCENCE COMPONENT 

REACHED'); 
            fprintf(fid_log,'---------------------------------\n'); 
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            fprintf(fid_log,'STOPPING CRITERIA FOR FLUORESCENCE 

COMPONENT REACHED\n'); 
            % set output 
            data_recon.elements = fwd_mesh.elements; 
            data_recon.etamuaf = fwd_mesh.etamuaf;   
            break 
        end 
    end 
    %************************* 
    clear data_recon 

  
    % Interpolate Jacobian onto recon mesh 
    [Jm,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,Jwholem.completem); 
    %-----------------change----------------------% 

     
    Jm = Jm(1:2:end-1, 1:end/2); % take only intensity portion 
%     Jm = Jm(:, 1:end/2); 

     
    J_geom_derv_dc_fl=jacob_dc_stnd2geom(Jm,fwd_mesh); 
    Jm=J_geom_derv_dc_fl; 
    %-----------------change----------------------% 

     
    % Normalize Jacobian wrt fl source gamma 
    Jm = Jm*diag([recon_mesh.gamma]); 

  
    % build Hessian 
    [nrow,ncol]=size(Jm); 
    Hess = zeros(nrow); 
    Hess = Jm*Jm'; 

     
    % initailize temp Hess, data and mesh, incase PJ increases. 
    Hess_tmp = Hess; 
    mesh_tmp = recon_mesh; 
    data_tmp = data_diff; 

     

         
    % add regularization 
    reg = lambda.*(max(diag(Hess))); 
    disp(['Regularization Fluor           = ' num2str(reg)]); 
    fprintf(fid_log,'Regularization Fluor            = %f\n',reg); 
    Hess = Hess+(eye(nrow).*reg); 

     
    % Calculate update 
    u = Jm'*(Hess\data_diff); 
    u = u.*[recon_mesh.gamma]; 

     
    % value update:   
    recon_mesh.gamma = recon_mesh.gamma+u; 
    recon_mesh.etamuaf = 

recon_mesh.gamma.*(1+(omega.*recon_mesh.tau).^2); 
    % assuming we know eta 
    recon_mesh.muaf = recon_mesh.etamuaf./recon_mesh.eta; 
    clear u Hess Hess_norm tmp data_diff G 
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    % interpolate onto fine mesh   
    [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh); 

     
    % filter 
    if filter_n ~= 0 
        disp('Filtering'); 
        fwd_mesh = mean_filter(fwd_mesh,filter_n); 
    end 

        
    %********************************************************** 
    % Write solution to file 

  
    if it == 1 
        fid = fopen(etamuaf_sol,'w'); 
    else 
        fid = fopen(etamuaf_sol,'a'); 
    end 
    fprintf(fid,'solution %d ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%g ',fwd_mesh.etamuaf); 
    fprintf(fid,'\n'); 
    fclose(fid); 

     
end 
fin_it = it-1; 

  
%****************************************************** 
% Sub functions 
function [val_int,recon_mesh] = 

interpolatef2r_fl(fwd_mesh,recon_mesh,val) 

  
% This function interpolates fwd_mesh into recon_mesh 
% For the Jacobian it is an integration! 
NNC = size(recon_mesh.nodes,1); 
NNF = size(fwd_mesh.nodes,1); 
NROW = size(val,1); 
val_int = zeros(NROW,NNC*2); 

  
for i = 1 : NNF 
    if recon_mesh.coarse2fine(i,1) ~= 0 
        val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) = 

... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) + ... 
            val(:,i)*recon_mesh.coarse2fine(i,2:end); 
        

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) = ... 
            

val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) + ... 
            val(:,i+NNF)*recon_mesh.coarse2fine(i,2:end); 
    elseif recon_mesh.coarse2fine(i,1) == 0 
        dist = 

distance(fwd_mesh.nodes,fwd_mesh.bndvtx,recon_mesh.nodes(i,:)); 
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        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        val_int(:,i) = val(:,mindist); 
        val_int(:,i+NNC) = val(:,mindist+NNF); 
    end 
end 

  
for i = 1 : NNC 
    if fwd_mesh.fine2coarse(i,1) ~= 0 
        recon_mesh.region(i,1) = ... 
            

median(fwd_mesh.region(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:)))

; 
        recon_mesh.eta(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.eta(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.muaf(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.muaf(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.gamma(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.gamma(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
        recon_mesh.tau(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
            

fwd_mesh.tau(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 

         
    elseif fwd_mesh.fine2coarse(i,1) == 0 
        dist = distance(fwd_mesh.nodes,... 
            fwd_mesh.bndvtx,... 
            [recon_mesh.nodes(i,1:2) 0]); 
        mindist = find(dist==min(dist)); 
        mindist = mindist(1); 
        recon_mesh.region(i,1) = fwd_mesh.region(mindist); 
        recon_mesh.eta(i,1) = fwd_mesh.eta(mindist); 
        recon_mesh.muaf(i,1) = fwd_mesh.muaf(mindist); 
        recon_mesh.gamma(i,1) = fwd_mesh.gamma(mindist); 
        recon_mesh.tau(i,1) = fwd_mesh.tau(mindist); 

         
    end 
end 

  
function [fwd_mesh,recon_mesh] = interpolatep2f_fl(fwd_mesh,recon_mesh) 

  
for i = 1 : length(fwd_mesh.nodes) 
  fwd_mesh.gamma(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.gamma(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.muaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.muaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
   fwd_mesh.eta(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.eta(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
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  fwd_mesh.etamuaf(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.etamuaf(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)))

; 
  fwd_mesh.tau(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       

recon_mesh.tau(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
end 
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