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SOME QUESTIONS ON DISTRIBUTIONS, NETS, AND DUALITY
CHAPTER I

INTRODUCTION

The contributions of this thesls are the following.

Chapter II gives a new method by which distributions may be
constructed. The essential idea 1s to use nets to form a weak comple-
tion of a dual space. The theory 1s then developed to a stage where it
parallels other methods of comstructing distributions, [6],% [18], [22].

The novelty of Chapter III is twofold. First is the introduc-
tion of a topology on the sum set (Definition 3.10). Using this defini-
tion, a new proof is given to a tﬁeorem of Birkhoff, [1]. The second
contribution is the proof of several theorems on double, iterated, and
partial limits of nets and subnets. These are the proofs of theorems
3.11, 3.13, 3.1L4, 3.18, and corollary 3.1k.

Chapter IV is based on a result of Ellis, [5]. One of the
problems considered by Ellis was the duslity of an arbitrary number of
groups with a topology. It is first shown that his upper bound topology
does not make the direct sum of an arbltrary number of groups, a topolo-

gical group. His result is then modified by introducing a weak topology

lNumbers in brackets refer to the bibllography.
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on the direct sum. This weak topology 1s shown to be an upper bound for
his topologies. The direct sum with the weak topology is then proven to
be a topological group.

The following heuristic discussion will maeke explicit these
PUrposes.

In the late nineteenth and early twentieth centuries, mathe-
matics was invaded by some strange objects. These objects have been
labeled the operationel calculus. Technically they are methods of sol-
ving different types of problems with no apparent mathematical justifi-
cation. The origin of the problem is usually in the field of applied
mathematics and the solution is any mathematicel chicanery which "gets
the snswer". On the other hand these methods have two outstanding fea-
tures. First, they have a labor saving formslism, and second, and more
impor%ant, they work. Consequently, any mathematical justification of
these techniques would only enhance their use. To this end, the work
of Schwartz [18], Mikusinski {17}, and Bochner [3] deserve special men-
tion. |

To make this conclse description more intelligible, we consid-
er an example. Operational calculus utilizes many improper functions of
which the Dirac delta function, &x), is probably the most famous [6],

(22}, [23]). It is said to arise in the following manner.

Iet Y(x) =E’ x <0
s x20.

The derivative of this function is the Dirac delta function,
6(x), which has the following (mathematically impossible!) properties

[6]: it vanishes everywhere except at the origin where its value is so



large that

(]
- JB(x)ax = 1.
moreover
-
S(x)p(x)ax = £(0),
= o« @ e «
I8 (x)B(x)ax=8(x)p(x]]_-SB(x)g" (x)ax=- [o(x)g" (x)ax=-4'(0),
[ [ = =
L8 (x)B(x)ax= fB(x)g"(x)ax=4'(0), « . - ,
where prime denotes differentiation and the function #(x) is assumed to
possess the requisite number of derivatives [22]. There are several
methods by which we can make the ill-defined delta function into a well-

defined mathematical entity. One is using a limiting procedure involving

ordinary functions. For instance let

fp(x)= L B __

" l+n2x2
o @®
or lim 1 n a1
- o oz T x=l= -;/B(x)dx.

Another would be to define the delta function as a measure,
that is, a set function instead of an ordinary point function. A third
and more elegant way would be to use the generalized functions as origin-
ated by Sobolev [20], [21] and later developed in a somewhat extended
form by Schwartz [18], [19). This method is characterized by the fact
that the delta function generates a certain linear functional, say L,
such that

L{g(x)} $(0),
while §'(x) generates another linear functional, say M, such that

M{g" (x)}=-g"(0).

Schwartz's method 1s to replace the delta function and its derivatives

by linear functionals. The functions $(x) are chosen in a manner so



N
that they will satisfy certain continuity and differentiability proper-
ties [22]. Following Bochner [2] the #(x) are called testing functions
while the linear functionals are called distributions by Schwartz [18].
Using Schwartz distributions all the improper functions of mathematical
physics can be replaced by aeppropriate linear Tunctionals (22].

Now, Mikusinski {17] has generalized the Schwartz theory in
the following manner. He noted that in the Schwartz theory you start
with three sets, F, the locally summable functions, @, the infinitely
differentiable functions with compact support, and C the complex numbers.
You have a mapping from Fx§ (cartesian product) with values in C. More-
over a sequence fh€ F 1s sald to converge if and only if fne$ converges
in C for all g€ . That is, he forms a weak closure of F, by means of
convergence in C in order to obtain the desired distributions (up to
identification). He further defined an operation on F, which can be
extended to F so that it preserves certain properties possessed by F.
However, in the generalization F, § 'and C are chosen to be any sets.

Using Mikusinski's results, Temple [22] indicated how this
point of view might better be exploited. The work of Korevaar [9], [10],
[11], [12], Lighthill [1L], and Love [15] can be mentioned as a few who
adopted this point of view. Temple indicates a complete equivalence
between the Schwartz theory and Mikusinski's general theo:iy. There are
several shortcomings to thils. Schwartz utilizes filters to obtain his
completion whereas Mikusinski, Temple, and others [23] use sequences.

In a general topological space, sequences are not adequate for describing
the topology whereas filters may be {8]. In particular one can not show

the closure of the closure is closed which is tatamount to showing
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completion. Furthermore if one obtalns a completion by means of sequen-
ces, it may not be the same for filters. That is, one obtains limits by
means of filters which can not be had by means of sequences. However,
from the point of view of applications, sequences or nets, afe more ap-
pealing. The tools and techniques of sequences are well known and in
’practice many problems resolve themselves to sequential analysis. Neigh-
borhoods, open sets, etc., are not in general use by applied mathemati-
cians, and since nets have both the generality and the formalism of
sequences, they will be used in preference to filters.

But, even within this setting it is important that some form
of completion exi;ﬁ or one is immediately confronted with many patholo-
gies. And, since the completion of F depends on the completeness of C,
it seems that a natural requirement would be that C be endowed with cer-
tain completeness properties.

We start with Mikusinski's general method with some variations.
First, we let C be a complete metric space and complete F by means of
nets. Next, we endow § with a topology, and, following Schwartz, define
continulty of elements of F and show that we get the Mikusinskl theory
by letting ¢ have the discrete topology. We further make several obser-
vations concerning completeness using sequences and ¢ with or without a
topology. Finally, we define a reguler operation on F, and discuss some
of its properties relative to nets and sequences.

Returning to the problem of completion, there are two standard
methods which overcome much of the inadequacies of sequences. They are
filters and Moore-Smith convergence [8]. It is part of the folk-lore of

mathematics that these two ideas are equivalent {8]. The Moore-smith



6
approach generslizes the concept of a sequence to that of nets, but its
application to the problem of completion does not seem to be available
in the literature.

The Cantor approach to completion replaces an iterated limit
of sequences by a single sequence. With this as a model, the completion
used in Chapter II is accomplished by means of nets.

A Justification for the use of this model 1s the proof éf
Theoren 3.9. The proof has a further advantage. It gives a proper set-
ting for limits of nets in a function space. Consequently, theorems on
iterated, and double limits of nets can ée proven within this context.
This is the primary content of Chapter III.

One of the properties enjoyed by Schwartz's distribution is
infinite differentiability. This property coupled with the infinite
differentiability of the elements of § reflect a certain duality [18].
It was hoped that this property might also be generaslized. Only minor
results were obtained and are also contained in Chapter II. However, in
order to exploit this idea, results of Ellis (5] and Kaplan [7} concern-
ing Pontryagin duality were studied. It was found that the approach of
Ellis did offer some generalization. This is the primary content of
Chapter IV. The result of Ellis is concerned with the Pontryagin duality
of the direct sum and direct product of a famlly of groups. He showed
that the complement of the direct sum, if its topology lies within a
certain interval, i1s the cartesian product of complement. In Chapter IV
we show that the strongest topology which lies in this interval does not

make it a topological group, and we replace it by one which does.



CHAPTER II
DISTRIBUTIONS

As stated in the introduction, this chapter is based on Miku-
sinski"s generalization [17] of the Schwartz theory of distributions
(18], [19]. Our method will parallel the one suggested by Temple [22],
[23] but with several generalizations; The problem of completion will
be accomplished by means of nets Instead of sequences and hence will be
more general. Moreover the sets involved will be endowed with the topo-
logical properties necessary to actually accomplish this. Both Temple
[22], [23] and Mikusinski [17] are not too clear on this point. The
space ¢ will then be given a topology and from this we get Mikusineki's
general approach as a special case. Finally, from the point of view of
applications, sequences (or nets) are more appealing and better known.
To this end, our general method includes the work of Koreveaar [9], [10],
(11], [12], [13], Lighthill {1k4], Temple [22], [23], and Love [15],

[16] where the sets F, @, and C have been specialized.

2.1) Let F, ¢, and C be non-empty sets and () a map:
Fxfet>C:(f,p)=>f ¢ satisfying

2.2) fep=g+g for all ge @ if and only if f=g, where f, geF.
Since no confusion is likely to arise we will suppress the () and mere-
ly write f¢. We introduce a topology in F in the following manner. Let
C be a complete metric space with metric D, a family of pseudo-metrics

7
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can be introduced on F as follows.

For each ge @ define

2.3) d¢(f,g)=D(f¢,gy$) where f, ggF.
We show that this definition provides us with a family of pseudo-metrics.

Now for all § @, f, g, h in F we have

2.k) dag(f,g)=D(1¢,ed) >0

2.ba) a4(r,e)=D(1¢,ep)=D(ep,r¢)=d4(s,f)

2.4p) d,g(f,f):D(fgﬂ,fyS):o

2.hc) ag(f,e)=D(fd,ap) <D(£d,hp )+D(hp,ep)=dg(£,h)+d4(h,g)
In most of the applications [18], C is usually the real or complex num-
bers. But from Kelly [8] we have that this family of pseudo-metrics
generate a subbase for a uniformity of F and thus a topology. More
specifically the following definitions teken from Kelly Jjustify this
claim.

A uniformity for a set X is a non-void family of subsets of
XxX such that
a) each member of U contains the diagonal elements (x,x) where x€X;
b) If U €9 then ULe U where UL is the set of (y,x) such that (x,y)eU;
c) If UEW, then V-VEU for some V inY ;
d) If U and V are members of U , then UNVEY ; and
e) If UER and UC VEXxX, then VEY.

The pair (X,%) is a uniform space.

A subfamily B of a uniformity U is a base if and only if each
member of "l( contains a member of B, or what is the same thing, satisfy
a, b, ¢, 4 of the foregoing.

If (X,%Y) 1s a uniform space the topology f of the uniformity
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U , or the uniform topology is the family of all subsets T of X such

that for each x in T there is U € Y such that U[x]cT.

Each pseudo-metric dgg for the set F generates a uniformity in
the following wey. For each positive number r let Vg r= (f,8) dgg(f,gkr.
Clearly (v¢,r)'1=v¢,r, Vg, rNV4,s=Vg t where t=min(r,s), and
Vgg,r.Vgg’rcVé,gr. It follows that the family of gll sets of the form
Vé,r is a base for a uniformity for F. This 1s caelled the uniformity
generated by %. Every family of pseudo-metrics generates a uniformity;
it will also be sald to generate the gage of this uniformity. The fol-
lowing theorem 6.18 from Kelly will relate these concepts somewhat better.

2.5) Theorem 6.18 Kelly [8]. Let (X,%) be a uniform space
and let P be the gage of « In our case X=F, P=¢. Then:

a) The family of all sets V4 r for g€ § and r positive is a base for the
uniformity U .

b) Suppose ¢' is a subfamily of ¢ which generates ¢ A net {fn,nt D}
in F converges to a point f€ F if, and only if, fdé(fn,f) ,ng D}converges
to zero for each ¢¢ @.

Now 2.5b plays an important part in our development and de-
serves speclal notice. The following companion theorem will be of the
same usefulness.

Theorem 2.6. Let ifn}nc D be a net in F then ifn3n£D converges to f if,
and only if, ‘(fnﬂnz p converges to fg for all g€ §.

Proof: By the definition of 44, d¢(fn,f)=D(fn¢,f¢). But by 2.5b
an}niD converges to f if, and only if, d4(fy,f) converges to fg for all
#€P. It should be noted that at this stage nothing is sald relative to

the location of f but is implicit that f@€C.
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As a consequence of 2.2 one has the following trivial theorem.
Theorem 2.7. d¢(f,g)=0, for all g€P if, and only if, f=g. Moreover we
say ¢ is total with respect to F if, and only if, this condition is sat-
isfied.

Proof': d¢(f,g)=n(f¢,g¢) for all d€ P. Therefore d4(f,g)=0 if, and only
if, D(fd,gf)=0. But this implies fg=g¢ if, and only if, f=g, for all
e d.

Due to the type of convergence considered limits of nets in F
may not be contained in F. So we complete F in a manner very similar to
the completion of a metric space. Recall that in a metric space every
sequence need not converge but every Cauchy sequence does. Moreover the
completion of a metric space is accomplished by considering equivalence
classes of Cauchy sequences and identifying elements of F with constant
sequences in respective equivelence classes. The family of equilvalence
classes is the completion of F (denoted by ¥) having the properties that
F is dense in F and F is complete. For limits of nets we do the same
thing. One considers equivalence classes of so.éalled Cauchy nets. These
are nets which possess certain convergence properties. That is, F is
equivalence classes of Cauchy nets. Specifically we have at our disposal
a space F, a unifonmity'QL, and a gage § of U . That is, we have a uni-
form space. Now.g uniform space is said to be complete if, and only if,
each Cauchy net in the space converges to a point in the space [8]. More-
over, a net ifﬁ!ng p in the uniform space (f,?() is a Cauchy net if, and
only if, for each member U of U there is N in D such that (fy,fn)€ U
whenever m and n follow N in the ordering of D. Better yet the family

of all sets of the form Vg ., for g€ P, r positive, is a base for the
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uniformity U, from which it follows that ifn}nt D 1s a Cauchy net if,
and only 1f, (fm,fn)(m,n)€pxp 18 eventually in each set of the form
V4,r. That is, for all g€P and r>0, there exists an NED such that
d'g(fm,fn)<r for myn>D. In terms of pseudo-metrics the foregoing is

equivalent to " for all ¢ €@,d4(fy, fy) converges to zero" [8]. We will
(n,m)g DxD

have occaslion to call on each of the foregoing formulations of a Cauchy
net. So let us denote limits of Cauchy nets in ¥ by T, and tﬁe comple-
tion of F by F where F is the family of all equivalence classes of Cauchy
nets in F indexed by a sufficiently smsll set. The necessity of having

a small index set is that in the completion of F we are faced with a
logical problem. For a given topological space there 1s no universal
directed set in general. Consequently we are forced to take the class

of all directed sets which have Cauchy nets in F. Thié is usually an
extremely large family and we need to replace it by a set. This is ac-
complished in two steps. First the family of directed sets 1is partitioned
into equivalence classes (def. 2.8) and second the neighborhood system

of the point is used to select a representative of an equivalence class
thus assuring us that the power set of F is adequate for indexing pur-
poses.

Definition 2.8. A Cauchy net {fp}, ¢p in F is equivalent to a Cauchy

net igm}mc g (notation fy ~~ gy ,) if and only if for all gef,dy,(fn,em)
(n,m) € DxS

converges to O, when DxS is given the product ordering. We show that
"' provides us with an equivalence relation. Now for all €@ and

Cauchy nets {fn]ng Ds igmsmi S {hik i g I We have

2.8a) dg(fn,Ty)=D(fuf,fnp)=>0 since {fynep is & Cauchy net.
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Therefore f, & f; and '"" is reflexive.

2.80) dg(fn,&n)=D(fnh,end )=D(&np,fnp)=dg(em,fn) for all n€D, mES.

But DxS and SxD have the product ordering so if d4(fy,gp) =0 this implies
(n,m)€e DxS

dé(gmfn)—bO by the properties of (C,D). That is "' is symmetric.
2°8c) d¢(fn,gm)=D(fn¢,gm¢)SD(fnyﬁ,gi,é)+D(hi¢,gm¢)=d¢(fn,hi)+d¢(hi,gm)
for all n€D, meS, 1 £I. And since DxS. DxI, IxS have the product or-

dering then by the properties of (C,D) if d¢(f hi)-c»o and d¢(h 3 &m J==0
(n,i)€ (c,m) € Ixs

then d¢(f »8n)=®0. That is "~ transitive and hence an equivalence
,m)g DxS -

relation. Thus "' partitions the family of Cauchy nets into equivalence
classes (possibly a much smsller class than the one started with). We
next show the neighborhood system of a point is adequate for indexing
purposes and permit a class to be a set. Since we will be working with
representatives of equivalence classes we need to show that any repre-
sentative will be sufficient.
2.80) et ffdneD {Falne g 204 {Ep)pe ¥ $6if1¢ g+ Then for all neD,
m€S, peP, 1¢I, § £f we have |d¢(fn,gp)-—d¢(fn‘1,gi)l =)d.¢(fn,gp)-d¢(fn,g{)+
ag(tn,e} )-dg(5h,8] )| < |ip(fnrap)-ag(ty, a0 ) +lag(ey,8))-

ag(trse;)) < |agley ey g2, 1)

But ffn\n,_ 5 { 1} e s and ng‘sptpggijie 1 lmplies that

dyg(f »8p)=lim d¢( Thus showing that the choice of representative
(n,p)¢ DxP(m, 1)£SxI

1s immaterial. Also dg(f »fp)=>0 implies D(f,@,fpd)=>0 for all g €g.
m) £ DxD

But ifnié}ni.D is a net in a metric space and hence has a l"im;t. Denote

this 1imit by fef. From 2.5b, we have that convergence in C implies
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convergence in F. Or we write lim f=f. Moreover the choice of repre-
néED

sentative of an equivalence class is immaterial in obtaining f, since

it is true for obtaining ?gﬁ in C. We are now Justified in writing: for

all g€ g, %gm%(g%gm)=lm D(fn#,enp)=D(fp,ep)=dg(f,g). Finally, our

previous statement that F is the family of equivalence classes of Cauchy
nets in F has a more precise z;ea.ning.

Returning to the problem of completion, if we define a map H:
F-»c?’; f—>Hr; Hp(f)=f(#) end note that He=H; if, and only if, f=g then
we have a one to one map of F into C¢ . Hence we can ldentify F with a
subset of C¢ where C¢ has the topology of pointwise convergence. We
further note that Fe C¢. C¢ is a uniform space since C is, (8], and for
each T€F, U€U, U[F] is identical with the neighborhood system of f.
Since T&U ff] one can form a directed set in the following way:
UE]zV(f] if, and only if, UCV. From the property of set inclusion
this is clearly a directed set. Define a net S on this directed set in
the following way: S(U([f])=5y L. This net is Cauchy since
(sy[F1,8u[F))=(f,T)€ U for all U¢Y, and is thus eventually in U, for
all U ﬁ.u . But we have shown that any representative from an equivalence
class is sufficient. So, we can use the neighborhood system of each ele-
ment T § Fec? for indexing purposes. That is, our family of directed
sets is a set of cardinality at most the power set of C¢. For conven-~
ifence we will continue to use our former notation for nets and limits.

To be precise F is not a subset of F but we can identify F
with a subset of F. LetT:F=pF:fe>{f} ¢ p, fy=f for all neD. Clear-

1y T is one to one from F to T[F] and to finish the completion problem
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we show T[F] is dense in F, that T is a uniform isomorphism snd F is
complete.
Theorem 2.9. T[F] is dense in F.
Proof: Let FEF then there exists a net {fn2nt p€ F such that Efn}ntD
converges to f, or ET(fn)}nf_D converges to T(f). Hence T[F] is dense
in F.
Theorem 2.10. T is a uniform isomorphism.
Proof: If U is a member of the uniformity of F then by definition of
T, T[U] is a member of the uniformity of F. Hence if (ff(f),T(g)).c_T[U]
then (f,g)gU and conversely. This satisfies the definition of uniform
isomorphism.
Theorem 2.11. F is complete.
Proof: To show F complete, first observe that it is sufficient to show
that each Cauchy net in T[F] converges to a point in F because T[F] is
dense in F. Since each Cauchy net in T[F] is of the form T-?:T(fn)
vwhere T 1s a Cauchy net in F one sees that TeFf converges in F to the
member T of F.

In what follows let us agree to identify F with T[F] and mere-
ly think of F as a subset of F. Recall that we defined @ to be total
with respect to F. From Kelly [8] we have that this is equivalent to F
being Hausdorff or separated and hence F enjoysi this property. ‘1'Moreover,
as noted earlier, d¢ has & natural and obvious extension to F. For all
T, g, heF and for all €@ we have
2.12) a(T,7)=0
2.12a) d4(%,e)=a4(g,T)

2.120)  a4(%,E)=ag(F,E)rag(B,2).-
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All of the foregoing discussion parallels the ideas set forth
. by Mikusinski [17]. Specifically, Mikusinski assumes 2.1, 2.2, and that
C possess a topology by which one can define a limit of certain sequences
in C. He defines a weak convergence in F by fy=>f if, and only if,
fpf=>fg in C. He defines F to be the weak closure F and further assumes
that ¢ is total with respect to F. As an example of this general tech-
nique he cites the Schwartz theory of distributions. That is, his weak
limits are distributions in the sense of Schwartz. Temple [22],[23],
indicates an equivalence between these two methods in obtaining distri-
butions as well as a further exploitation of the Mikusinski point of
view. However, Schwartz uses fllters and shows the space of distribu-
tions is complete. Moreover, his distributions are continuous linear
functionels which imply the space ¢ has a topology. Since sequences
are Inadequate to describe the topology in a general topological space
this suggested the possibility of a counter example to Temple's proof
of the equivalence of the two methods. We will do this shortly but first
we have noted that by means of nets (or filters) F can be completed. In
particular cases one can show that sequences are adequate. This 1is true
without regard to the continuity of the elements of ¥, but one does not
obtain the Schwartz distributions in either case.

Our example will consider only real distributions and our basic

compact set will be the interval [-1,1]. ILet &(x--Z_) be a sequence of
n+l

delte functions. These are continuous linear functionals in the sense
of Schwartz. That is, for any sequences of testing functions gy(x) con-

verging uniformly to O, é(x-§§£)¢K(x) converges uniformly to O for each
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n and for any closed interval contained in [-1,1]. Moreover,
K
limit ZS(x—-._n.I)géK(x) converges since for any closed interval (compact
K=>® n=1 ©I°
set) properly contained in [-1,1] the foregoing sum has only a finite

number of summands. But, consider the following sequence of testing

functions:
- - » .o.n Y
1 1 2 2 2 - K)~
x)=1/2 + 2K--1)/K<(K+1 }ln{121+ K+1)/K
() /&,—K_ esfee{@E-0/R0e)? fin f/eas EDTRYEEL /,
for-'lc_<x<i.,
K+1 K+1

and dyx(x)=0, for all other x.

These functions have the property that their maximum is at x=0 and mini-

mm at x= £ _K_ . Furthermore if zK¥l <x<X-l then L =¢K(x)<_.l_ which
BrI K ™ = K K+l K

implies they converge uniformly to O. A somewhat tedious calculation
n
will show ¢(K)(x) converges uniformly to O for each derivative n. But

for these pr(x), Iz(; 6(':—523;)¢K(x)_>_K‘]Q_2 = \K=>e. Hence the sum is
n=1 n K

not a continuous linear functional. The essentlal i1dea is to pick a
variable compact set within the fixed compact set [-l,l]. If one rede-
fines the foregoing sequence on the fixed compact set [-l,l], then a
classical theorem tells us that a uniformly convergent sequence of con-
tinuous function on a compact converges to a continuous function. This
is the situation with which Temple worked, hence, his space of distri-
butions. Next we introduce a topology in ¢ and conslder the completion
relative to continuous f, by starting with those which are, or, better
yet, start by assuming all of the elements of ¥ are continuous.

Definition 2.13. ¥ is continuous at ¢ if, and only if, for all € >0,
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there exists a neighborhood V of ¢ such thet for all xe V, D(F(x),f(#))<e.
This is a standard definition of continuity and the purpose of the next
three theorems is to rephrase the definition of continuity of elements
of F in terms of elements of F.
Theorem 2.1k. T is continuous at #& @ if, and only if, for all€ > O
and all NED there exists an n€N and a neighborhood V of ¢ such that
for all xgV, (D(f(x),fy(x))<€ .
Proof: Let f be continuous, € >0, and N be given, then D(F(x),f,(x))<&/3
for all x in some V( €/3,N) due to the continuity of . Moreover,

D(F((#),f,(#))< €/3 for some n >N(4, €/3) since lim fy=F. There exists
mgD

a neighborhood Vy(n,#, €/3) for this choice of n such that for all
x€Vp,D(£,(8),f,(x)) < €/3 since £, is continuous. Or we have for
€ >0, n>N and all x€V=VNVy,D(T(x),,(x))< D(F(x),£(4))+D(T(4),
£n(B) HD(£n(8),tn(x)) < € -

Conversely, for € >0, we must show there exists a neighbor-
hood V1 of @ such that D(F(x),f(#))< €. Now, there exists an N such
tl:;at for some n>N,D(T(x),f,(x))< €/3 for all x£Vi(n, &/3), in parti-
cular, if x=p we also have D(f(#)},f,(#)) < €/3. But, since fj is
continuous there exists a Vo(n,$, €/3) such that for all xeVo,
D(fu(x),fn(#)) <€/3. Therefore, for some n >N and all x gV NVp we
have D(F(x),£(#)) <D(F(x), £n(x) )+D(fn(x),n($) +D(£n(4),2(4)) < € -
Theorem 2.15. T is contimwous at g€@ if, and only if, for all € >0
and for all N€ D, there exists n€N and a neighborhood V of ¢ such that

lim D(fy(x),f (x)) <€ .
mgD

Proof: € >D(f(x),fu(x))=1im D(fy(x),f,(x)) for n>N, and x€gV(n,& ).
meD
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Conversely, € >lim D(fy(x),f,(x))=D(f(x),f(x)) for x€V(n,€ ).
me€D

Theorem 2.16. T is continuous at €@ if, and only if, for all € >0
and for all NED, there exists an n€ N and there exists V(n,$) such that
if m>My, then D(fy(x),f (x))< € for all x€V.
Proof: Assume D(fp(x),fp(x))< € for all xeV(n,4) and m>My. Then
(lm(x),fn(x))<€; for each x'V(n,Q) since 1lim fm(x) exisis.
If lim D(fp(x), fu(x)) < € for each x€V(n, €), then for each
meD

x€V there exists an M, such that if m>M,, then D(fy(x),f,(x)) <€ for

all xgV.

Definition 2.17. A net {fn}nCD is a strong Cauchy net if, and only if,
8. ifanED is Cauchy in F and

b. f=lim f, is continuous at g€y
ngD

Notatiqn: Fe is the set of all strong Cauchy nets in F.

Theorem g;:l_fi. F° s complete with respect to the strong completion.
Proof: IlLet s_?n}n gD be a strong Cauchy net. Tt has a limit since F is
complete and in particular a continuous limit since it 1s a strong
Cauchy net.

Corollary 2.19. If ¢ has the discrete topology then theorem 2.18 is

equi;alent_to Theorem 2.11.

Summarizing, we see that F can be compléted by means of nets
with or without a topology in F. But, to obtain a generalization of the
Schwartz theory, @ should have a topology. By restricting F, @, C, and
(+), sequences can be used to obtain a completion of F which is not equi-

valent to the Schwartz theory. From the point of view of application
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this has definite advantages.
It should be further noted that if @ is a vector space, all

of the foregoing 1s a dusl space completion.



CHAPTER III
NETS

In general topology there are three ideas from which nearly
all other ideas arise [1]. They are closure, neighborhood, and sequen-
tial convergence. For specialized spaces such as metric or Hausdorff
and first countable these ideas are essentially the same. However, for
general spaces closure and neighborhocods are roughly equivalent, but not
so for sequential convergence. We owe to Moore and Smith the 1dea of a
net, which generalizes the concept of sequence and overcomes the lack of
equivalence of closure and convergence.

Since the concept of sequence is the basic object to be gener-
alized, it is accomplished in the following menner. The domain of any
sequence is the positive integers, and this is true irrespective of its
range [1]. Consequently, it is not surprising that all of the properties
of the inte;rers are not used. So we replace the integers by a set whose
properties are preclsely those needed for sequential convergence, Speci-
fically it ls their order.* This set will be called a directed set. Then
the concept of a sequence is replaced by that of a net. Namely, a net is
a furction whose domain is a directed set. Of course, additional defini-
tions must be given to cover such properties as convergence, etc.

With this as a motivation for the use of nets, we turn to a
theorem of Birkhoff's [1] as found in Kelly [8]. This is a theorem on

20
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iterated limits of nets. Iterated limits are closely related to the
closure of the closure of a set, and hence the ccmpletion of space. Re-
call that in the completion of the real number system (Cantor approach)
en iterated limit of sequences is used. And in Chapter II, we used it
to complete the space F.

In this theorem, an iterated limit is replaced by a single
limit in much the same manner as a sequence of sequences 1s replaced in
a single sequence. A natural question arises, 1s this setting adequate
for describing the corresponding generalization of a net of nets? Anoth-
er question is, to what extent are partial and iterated limits related to
double limits? And further, what 1is the relation of partial, iterated,
and double limits of subnets to nets? The answer to these questions is
the content of this chapter. As usual, we start with several definitions,
and then we enlarge somewhat on Kelly's proof of the iterated limit theor-
em. Having this, we then either prove or exhibit counter-examples to
show the relationship of the different types of limits of nets and sub-
nets in a general topologicael space. For the sake of completeness we
next prove two more theorems due to Birkhoff [1] and conclude with a
remark on a net of nets. The final part of the chapter contains two
theorems which are natursl generslizations of sequences to nets in a
complete metric space (more generally a complete uniform space).

Definition 3.l. A binary relation > directs a set D if D is non-void

and
a) if m, n, and p are members of D such that m>n and n>p
then mgp;

b) if m€D, then m>m; and
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¢) if m and n are members of D, then there is a pzD such
that p2m and p >n.
We say that m follows n in the ordering > and that n precedes
m if, end only if, m >n.

Definition 3.2. A directed set is a pair (D, >) such that > directs D.

Definition 3.3. A net is a pair (8, >) such that S is & function and 2

directs the domain of S.

Definition 3.4. A net fsn,ne D, >} 1s in a set A if, end only if, Sp€ A

for all n€¢ D.

Definition 3.5. A net isn,ni D, 3} is eventually in A if, and only if,
there is an element m¢ D such that, if ne¢D and n 2m, then SnEA.

Definition 3.6. A net is frequently in A if, and only if, for each m€D

there is an n in D such that ngm and Sp€ A.

Definition 3.7. A net (S, 3) in e topological space (X,T) converges to

8 relative to T if, and only if, it is eventually in each T neighborhood
of s.

The notion of convergence depends on the function S, the topo-
logy T, and the ordering >. However, in cases where no confusion is
likely to result we may omit mention of T or of > or of both and simply
say "the net converges to s" or even better the sequence notation

lim Sn=S-
n€D

Definition 3.8. If the net S is frequently in a set A, then the set E

of 81l members ngD such that S, € A has the property: for each meE
there is p€ E such that p2>m. Such subnets of D are called confinal.
At first glance this definition might appear to be adequate

for the definition of a subnet. However, examples can be constructed to
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the contrary [8].

Definition 3.9. A net {T;Smg p 1s a subnet of a net isn}n €E if, and

only if, there is a function N on D with values in E such that

a) T=S-N or equivalently T1=Sy; for each i in D; and

b) for each m E there is n in D with the property if pzn,
then Np >m.

It is important to note that in general the‘ set D is much lar-
ger than E.

As promised, we enlarge somewhat on Kelly's iterated limit
theorem. First we define the sum set of a family of sets Xg , which when

the X« are mutually disjoint is merely the union of the Xg's.

Definition 3.10. Let {ng el be a family of sets and X = U Xq and
atl

consider the product set IxX. Let X'a= cmX‘x cIxX. (We note that
XuNXg'=p 1fd # P and that X}y and X4 have a natural and obvious 1-1

correspondence.) We define the sum set of the Xq tobe the I X=1U X;I.
' a€&l a&el

Thus ZXq Ix(UXg)and (&x) Z X4 if, and only if, a £ I and
ael a€l ael

x¢Xq-

If T and each X , is partially ordered then X q is partial-
ael

ly ordered by (a ,x) $(8,y) if, and only if, a<P ‘or a=§
and x€y in Xa=X@ . Clearly if each X4 and I is a directed set then

z X o 1s directed.
ael

Now consider the situation in Kelly's theorem. We have a dir-
ected set D, a family of directed sets {EPSPC D and a topological space

X. We also have a function S: J EP—DX:(m,n)—-bS(m,n). In view of our
peD

[y
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defining I Elp with an ordering, we can even call S a net in X. (Here-
peD

after, to help fix notation let us agree to call I EP,E). We further
pED

consider the set F=Dx® Ej and define R:F=>E:(m,f)=>(m,f(m)) and ve
peED

consider the map T:FeedX:(m,f)=>3(m,f(m)). But F=Dx=n EP can begin
PED

the product ordering. Nemely (m,f)z (p,g) if, and only if, m>p and
f>g where 2 g if, and only if, f(p)>g(p) for all pgD. Hence T is a
net.

But the definition of T implies that T=S°*R or definition 3.9a

is satisfied. To show 3.9b consider any (ml,nl)EE. Pick I} £ n F?
. PED

so that for m=mj, f1(m)2n; in the ordering of E;, otherwise let f;(m)
be arbitrary. Then for any (m,f)F and f(m) :fl(m) we certainly have
R(m,f)=(m,f(m)) > (m,f1(m)) z(ml,nl) in the orderiné of E. For if

(m,f) :(ml,fl) in the ordering of F then either m>m; and R(m,f)=
(m,f(m)) >(m1,n1) in the ordering of E or m=m; and f(m)ifl(m)inl in
the ordering of Ej. In either case R(m,f)=(m,f(m))>(mj,n;) in the
ordering of E. That is, 2.9b is satisfied and we have proven

Theorem 3.1l. T is a net and a subnet of S. A result of the foregoing
proof was that R is a map of F onto E. We will need this fact later.
Concerning the convergence of the nets Jjust descrilbed we have, if

lim S(m,n) exists for each m&€D, and we define S#H(m)=1im S(m,n) and if
ne Ey . meEE,

the net S# converges then lim S#(m)=1im lim 8(m,n). Furthermore, the
mg D m€D ng Ey

net T=S°*R converges and the 1lim T(p,f)=1lim S#m)=lim 1im S(m,n) =acX.
(m,f)& R mg D meD n€E,
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Following Kelly [8] another formulation would be: For each neighborhood
U of s in X there exists & (m,f)€&F such if (p,g) > (m,f) in the ordering
of F then S+R(p,g)=T(p,g)€ UCX. In the following we will have occasion
to call on both of these formulations.

Now this theorem states that the existence of an iterated lim-
it of a net implies the existence and equality of a double 1limit of a
subnet. Of course, a rather natural question is, how 2:bout the converse?
Since sequences are nets, it is rather easy to construct a subsequence
which converges and its sequence does not. Better yet, see the discussion
following Definition 3.12. Of course, another question might be, does
the exlstence of the iterated limit of a net help in any way to establish
the equality of the double and iterated limits of subnets? The following
definition and two theorems answer ihis in the affirmative if you start
with S first and in the negative if you start with T first. Moreover,
the two theorems give a better relacionship between existence and equal-
ity of partial, lterated, and double limitg of S and T.

Definition 3.12. R*:XPe X :5=»T or R*(S)=G=S-R.

Now given R and T we ask i1f we can find an S such that T=S-R.
As commented earlier, R is a mapping of F onto E. Consequently, R¥ may
not be onto or what 1is the same thing given, TEXF and R there mey not
exist an S such that T=5-R. Therefore, the existence and equality of
the lterated and double limits of T have no relationship to S if we
start with T first.

Theorem 3.13. If lim 8(m,n) exists for each mED then T*=lim T(.,f)
ngEy

exists in XD with its topology.
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Proof: To facilitate the proof we start with some definitions.

T:Dxn Ep=>X:(p,f)=>3(p,f(p)).
peD

Ty: n Ep=sXD:f=>T, (£)=F(+,f) where T1(f)(m)=T(m,*).
rPeD

R i XP=>XBX: > g(m) s0 that np(g)=g(m) and in particular
Ry Ty (£)=T(m, ).

Now to show T*= 1im T(+,f)= lim T1(f) exists we need only
fenk, e nE%
show that for each mg D, the lim mp - T1(f) exists. That is, since Tq

£ ENE,

is a function from a directed set (nEp) to a product space (XP), it con-
PED

verges if, and only if, 1ts projection into each coordinate space conver-

ges.

So, let 1im S(m,n)=S#(m)=x, and let Uy be any open neighbor-
ng Ey

hood of xp. Since lim S(m,n)=xy, there exists ny€ Ey such that if n>ny
ne By

in the ordering of Ej then S(m,n)g Uyp. Pick fp g n Ep such that fm(p):nm
peD

for p=m and arbitrary otherwise. But if f >fp in the ordering of n
re€D

then f(m) >f1(m) >ny in the ordering of Ep so wp-T(f)=T(m,f)=8(m,f(m))e Uy

since f(m) 2hp. Thus lim nm'Tl(f)=xm=S#(m). Hence 1lim Tl(f)=S#.
fenE, f¢ nE,
Now, the foregoing theorem can be restated in the following way.
Since SEXE, (#) is a mapping of XE into XP. Specifically it is a map-

ping of those S for which lim S(m,n) exists. That is,

neEy
#: x5 xP:5—> 5#, where Sf{m)= lim S(m,n),S#:D=>X:m—> S#Hm).

nekE,
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But, from Kelly (8] we have XDXEp‘ is homeomorphic to (XP)wEp,
So we define
R*: XEed> (XP) MEp:See>R*(S) where
R*(8)=S.R=T and R*(5)(f)(m)=S.R(m,f)=S(m,f(m))=T(m,f).
Our theorem then becomes "to each SEXE in the domain of #

(that is, 1im S(m,n) exists) we have a convergent net in
neg By
XP(viz. T1€ (XP) ™) such that

Sf= 1im Ty(f)=T*." And
£E nE
#:(XP) "Eps XD > lim T, (£)=T* where TDemi> X;me—sT*(m).
fegnkE
p

Moreover, if lim lim S(m,n) exists we have the following
m€D neE

theorem.

Theorem 3.14. If 1lim lim S(m,n) exists then T*g XD is a convergent net
n€D ntE

in X and lim ™(m)=lim lim T1(f)(m)=1lim lim T(m,f)=lim lim S(m,n)=
me D f€nk, me D € nEy m€D neEy

lim T(p,f).
(P:f)ﬁ F

Proof: By the previous theorem T*(m)= 1lim T(f)(m)= lim T(m,f)=
TE nEp T& nEp

1im S(m,n). Hence the iterated limits exists if anyone of them does.
ngE,

This establishes the first three equalities. The last equality is Kelly's
iterated limit theorem.

In particular, this theorem states that if 1lim lim S(m,n) ex-
m€D nE E,

ists then 1im 1lim T(p,f)= lim T(p,f), or what is the same thing the
PED fE T (p,f)ETF
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itersted limit of the subnet T of the net S, equals the double limit of
T. And even further since S#ET*, S or equivalently T can be thought of
as a net of nets since S#=T* is a net.

All of the foregoing discussion has been concerned with rela-
tionship of iterated and double limits of nets to iterated and double
limits of subnets in a general topological space. With one exception,
the foregoing theorems and discussion take care of all possible implica-
tions. This one exception is due to Birkhoff and is listed for complete-
ness.

Theorem 3.15. The space X is T3 (regular) if, and only if, for every
net S:E~>X the existence of the limits;

1) lim S(m,n)=x,=S#{m) exists for every m.
ng;Em

2) lim T(m,f)=x,
(m,f)EF

implies lim S#(m)=lim 1lim S(m,n) exists and equals x.
meD mEDniqn

Proof: Let A be any closed set in X and x any point not in A and assume
X not T3 so that x and A cannot be separated by disjoint open neighbor-
hoods. Then every neighborhoodlji?(x has 1its closure intersecting A 1n
a point sy so that by Kelly's theorem 2.2 there exists a net in U con-~
verging to Xy, say the net Sy:Ey—>U. For D take the directed (downward)

set Uy and define S(U,n)=S;(n)& X. Then lim $(U,n)=xy=S#U) exists.
ng EU

Moreover, T(U,f)=5(U,f(U))=8y(f(U)) €U and hence (since (U,f)< (V,g) if,
and only if, VCU and £(U)< g(V))T converges to x. However, SHU)g A

end since A 1is closed, x£ A and lim S(U)#x by Kelly's theorem 2.2c.

X
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Conversely if X is T3 and if lim 8(m,N)=xp=S#(m) and lim T(m,f)=x,
neEy (m,f)gF

the closure of the set for any mO:D, {g;mg mg contains x. Otherwise,

since X 1s regular we can pick a set Usig}m >mg and V a neighborhood of
-

x which are disjoint and pick for m an f(m) such that for m >m, T(m,f)=

S(m,f(m)) a neighborhood of xp. This is possible since lim S(m,H)—>x
n

for each mgmy there exist n such that S(m,n) €U for n> some ng. SO
for m>my pick f(m)>ny and for m<my pick f(m) arbitrary. But then T

cannot be eventually in V, contrary to the assumption 1lim 'I‘(m,f):x.
(m,f)& F

Thus X § {;}m >mg for each mye D and by Kelly's theorem 2.7 the net S#
=
converges to X.

Theorem 3.16. Let X be T3 and suppose lim S(m,n) exists and that
(myn)g E

lim S(m,n)=xy=S(m) exists for every m then
mgED

1) 1lim S#{m) exists and equals x and
me D

2) 1lim 1im S(m,n)=x.
m€D ng Ey

Proof: (2) is trivial from (1) and (1) is true from the previous theor-
em and the theorem that a subnet of a convergent net converges and to

the same limit. Thus if S converges and lim S(m,n) exists then since T

nE_Em

is a subnet of S, 1lim T(m,f)=x and by Theorem 3.15, lim S#(m)=x.
(m,£)E F mE D

It should be noted that in the last two theorems we used only

that 1im S(m,n) exists for m>my, but not for all m. Theorems asserting
nEE,

the existence of double limits In terms of partial limits require the
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concept of uniform convergence and thus we need the concept of uniform
space. Our next theorem and corollary is of this nature. We first glve
two examples to show that the iterated and double limits of a net are
not in general equal, to further motivate the necessity of uniform con-

vergence.

Example 1. Let Z be the integers and f:ZxZ—>R = reals, be defined by

f(m,n)ﬁ . Order ZxZ by (my,n;)>(m,n) if,and only if, m)>m and

n; >n. Then 1im 1im mn _ 1im 1im _mn _ o,
[ t> ® > 0 IO 4.1 D m—ben—»»er@

But lim m - 1/2 for m=n.
(m,n)—bwm +n /

Example 2. Lebt ZxZ be ordered as in 1 and f:ZxZ=P RxR be defined by

f(m,n) =§.J:., -1)%)then 1lim lim l, (-1)™)does not exist and
m Mo Nem>e m

(&, L:}.X‘.) (0,0).

(m:n)"b

Definition 3.17. Let P and Q be directed sets, PxQ the product directed

set, (X, 'i() a complete uniform space such that S:PxQ=-»X,T:Q=>X are nets.

Then the lim S(p,q) is said to be uniform in q if, and only if,
PeP

lim s(p,q)=T(q) for all q£Q. Or equivalently, if, and only if, for all
PEP

U €2{ there exists a Py£ P such that if p3 Py, then S(p,q)€ UlT(q)] for
all q.
Theorem 3.18. Let (X,‘t() be a complete uniform space, S:PxQ=>X, T:Q=> X.

If 1im S(p,q)=T(q) exists for sach q £Q uniformly and if lim S(p,q) exists
pe P qeQ

for every p then lim 1lim S(p,q), 1lim 1im S(p,q) and lim s(p,q)
PEP gEQ 9€ Q PEP (pya)€ PxQ
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all exlsts and are equal.
Proof: For all W[T(q)], W€, there exists a UER( such that U-UCW.

And 1if lim S(p,q) exists for all p then S(py,a)€ VIS(p1,q;)] for some
pe’P

V €9 and a>ay, ql:qV' Moreover, S(py,a) €U[T(q)] for all q and P12 Py-

Hence U-V-UcW and T(q;)e W[T(q)] where q, q; >y, WE‘L(. But this im-

plies (T(g;), ™g))ew for 221 W. Or, T iz a2 Cauchy nct which converges
to a point x€ X (recall we assumed X was a complete uniform space). Next

consider Ulx], then, there exists a VE,‘Z( such that V-VCU and

s(p,a)e VIT(a)), ™(a)evix], p>py, azay. Hence, S(p,q)eV for

P>Py, A2y and S converges to x. Furthermore, this proves the exis-
=

tence and equality of all three limits.

Corollary 3.19. The foregoing theorem is true if the word uniform is

replaced by the word metric.

Proof: A metric space is a uniform space. Kelly [8].



CHAPTER IV
DUALITY

In this chapter we will concern ourselves with Pontrysgin du-
ality and the relation of a certain "weak" topology to it. As a starting
point we consider the following result of Ellis [5]. "The complement cf
a cartesian prodvct of spaces, with the usual product topology is the
direct sum of their complements; and the complement of a direct sum of
spaces, 1f its topology lies within a certain interval, is the cartesian
product of the complement"”. However, the upper bound of these topologiles
(that is, the strongest topology which lies in this interval) does not
make the direct sum a topological group. Since Pontryagin duality is
primarily concerned with topologlcal groups, it was felt that Ellis's
results could be strengthened by replacing his upper bound topology group.
This 1s the primary result of this chapter. Specifically, we show that
our so-called "weak" topology lies within this interval of topologies
and does indeed mske the direct sum a topologlcal group.

We start by giving several theorems and definitions which are
gEggﬂard‘results of topological groups each of which is germane to our

interest. Complete proofs are not given, but references and, or comments

are.

Definition 4.l1. A triple (G,-,T) is a topological group if, and only if,

(Gy) 1s a group, (G,T) is a topological space, and the function whose

32
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value at (x,y) of GxG is x-y is continuous relative to the product topo-
logy.

The reason for using asdditive notation is that in what follows
all groups will be assumed to be abelian. Following Kelly (8] , we shall
further agsume that all topologlcal groups are Hausdorff.

Theorem 4.2. The family @ of neighborhoods of the identity O of a topo-
logical group has the properties.

1) If U and V belong tol , then UNVEYU ;

2) If U¢WU and UCV, then VEU ;

3) If UEW, and some VERL , then V-Vg U; and

4) For each UL and each xgG, x+U-x 29 .

Proof: Kelly [8].

Moreover, x+G is a homeomorphism of G Into G. Hence, the
neighborhoods of the identity are adequate for describing the topology
of the topological group G.

Definition 4.3. A neighborhood of the identity O of a topological group

G is called a nucleus.
Let {Xa‘}a £ T {Ya'{a €I each be families of topological groups

indexed by some set I.

Definition 4.4, X = n X = [x‘x( a)t Xq for all ac I} is called the
atl .

direct product of the {Xgq ¢ 1-

Definition 4.6. The members of the defining subbase for the product

Lopology for the space X = :IXa are of the form [nglxacU, where U
a

1s open in X al*

They are, intuitively, cylinders over open sets in the coordin-
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ate spaces [(8].

We will use n to denote this topology.

Definition 4.7. A base for the box topology L for the space X can be

described as the family of all sets R Uy where Uy 1s open in X4 for
[ T

4oa An a fnPn'lna'lnnW anace Y.
- e e L T T T T g " T

Then ¢ € T 1f, and only if, every ¢ open set 1s T open in which case we
say T is stronger than ¢ .

Theorem 4.9. nec &

Proof: The product of open sets need not be open relative to = but
they are & open.

Theorem E:_Jﬁ X with the product topology (notation (X,l )) is Hausdorff
if, and only if, each X4 is Hausdorff,

Proof: Kelly [8].

Theorem 4.1l. (X,&) 1s Hausdorff if, and only if, each X4 is Heusdorff.
Proof: Kelly (8].

Theorem 4.12. (X, n) and (X, &) are each topological groups.

Proof: The proof is a routine verification of the group postulates where
addition in X is defined by (x+x')(a )=x(a )+x'(a).

Corollary 4.13. The direct sum is a subgroup of the direct product and

is a topological subgroup with the induced topology.

Definition 4.1L. If G is a topological group then the group H of all

continuous homomorphisms of G into the reels mod.( 4 With the induced

topology (notation S) is called the character group of G, where H is

given the compact-open topology. Notation H=G*,
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Definition 4.15. A base for the compact-open topology is the set of

W[K,U)=[h € H’h[K]cU, where K is compact in G and U open in S}.

Definition 4.16. Two groups G and H are said to be Pontryasgin dual if

they are isomorphic end homeomorphic to the character groups of each
other.

Having these definitions, we note that two of the big questions
in Pontryagin duaslity are: (1) What pairs of topological groups are
Pontryagin dual? (2) What topological groups are character groups of
their character groups? Kaplan [7] has shown that the family of groups
which are character groups of their character groups is closed under the
formation of cartesian productse.

To effect this duality, both Kaplan [7] and Ellis [5] show an
algebraic isomorphism and then (whenever possible) a homeomorphism. The
result of Ellis that we are interested in is that part concerned with
the algebraic isomorphism. Specifically, his theorem which states; "for
each q¢I, let X a and Ya be topological groups which are character

groups of each other. If g is the product topology for X = g Xq and
ael

T any topology for Y = I @Y, such that for all a€I, T(W)e TC.T(%’),
ael

then each of the groups (X, n) and (Y,T) is algebraically isomorphic to
the character group of the other." [5]. We further note that
T(W)eTeT(M) is the interval of topologles originally stated and T(im)
is the so-called upper bound of Ellis's interval of topologies.

The general plan of attack is to show the following: (1) the
weak topology & T(?Q), (2) T('))?) does not meke Y a topological group,

(3) the weak topology is the strongest topology which makes Y a topolo-
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gical group, and (4) Y with the weak topology is algebraically isomorphic
to (X, m )*.

Definition 4.17. LetM=[MEY| for each q¢I, there exist a nucleus

VgC Yq such that iy (Vg ) M, where 14 is the injection of Yg into Y.

Let'M F:[M%’(lm:ﬁMi where ﬁMi denotes any finite intersection of

e twn(}
1".\15 . L]

The topology T(?)) is characterized by defining a set UEY to
\)

be T(m) open if, and only if, for each y€U there exists an Mp&WMp
such that y+Mp€U. A trivial verification will show that this is a

topology for Y.

Definition 4.18. If yq€Yg , then (yg|Yq ) is the smallest -zl‘n—, n an
integer, such that 2%yq€ Yq . If there is no smallest then (yqlYq )=0.

The set of ye¢Y such that 2 (ya {Yq )<l is a base for the
atl

asterisk (*) topology. Note pA (yalYa) is a finite sum since Y=fy a‘g
aél

has finitely non-zero terms {7].
Theorem }_._1_9_ The ¥ topology is equivalent to the compact-open topology.
Proof: Ellis [5].
Theorem 4.20. T(W)cC=c¢ fcxc (M)
Proof: Since T(W) is not germane to our interest we have not defined it,
but merely note that it can be found in Ellis's paper as well as the fact
T(W)en. nc L by Theorem 4.9. Kaplan [7) shows & €* and Ellis [5]
shows that *c T(Mm).

The purpose in introducing this theorem is that when we intro-

duce our weak topology, we will use o and T(M) to prove the weak
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topology is in Ellis's interval of topologiles. Of course, Theorem 4.19
is fundamentel to Pontrysgin duality.
Theorem 4.21. (Y,T(m)) is not a topological group.
Proof: Let Y=ReR=RxR where R is the field of real numbers. A nucleus
in R is any open set containing the origin. Moreover, ”nis msade up of
sets of the form (0,y)U(x,0) where (y|< € and |x|\<€,€ >O. MF is
trivially equsal tom. Consider the set of (r,0) defined by the polar
inequality r<cos 20. This is just a four leaf rose, whose petals lie
on the X and Y axes, and which intersects the lines y=tx only at the
origin. This set is T(’"’) open since translates of the sets (0,y)V (x,0),
lyl <€, |x1 <& can be made to lie completely in the rose by proper
choice of € >0. But by Theorem 4.2, if this set is to be an open set
of a topological group, it must contain a set U such that V-V is containe_dA
in it. But this would imply for some x#O€ R and x=y, (x,0)-(0,y)=
(x,-y)= [(r,Q)Irccos (29)‘]. But this is impossible since this point
lies on the line y=-x, which only intersects this set at the origin.
Hence, T(""l) does not make Y a topological group.

 Definition 4.22. A set WeY = 2 @Y, is weakly open if, and only if,
aEl

WN( Z eYy) is open in I &Y, for all finite subsets J of I. We call
atd aed

this the weak topology for Y and denote it by &) .

Theorem 4.23. (Y,W) is a topological group.
Proof: Any nucleus W in Y satisfies Theorem 4.2 if, and only if,

wn( 2 eYa) is a nucleus satisfying Theorem 4.2 in § 8Y o for all
af J ae J

finite J€I. But, I &Y I3 is a topological group (with the product
ce J
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topology) hence WN Z &Y, is a nucleus in I oY¥q and (Y,d)) is a
agJd aEJ

topologicsal group.

The following two lemmas help to better characterize the
topology and establish the fact that dr€ &ec T(m).
Lemma 4.25. If W is an&/ nucleus, then W contains elements of the form
=O; ; ar=Mdand yaglo‘s if a 3:!:(3].
Proof: WA Yy 1is open and 1g(WANYq)CW. Hence W contains elements
of the stated form.
Theorem 4.26. X-c (AJCT(%'I).
Proof: Consider a.nyf}- open set. It is merely the product ofrnuclei
from each Y 4. But, the intersection of each Fys open set with any

I Y4 1s the product of a finite number of nuclei in 2 eYq4 . But,
afJd atJd

the set is open in I oYa. Hence the set is &J open andﬁ'C‘t) .
atJ

Next, let W be an ¢J nucleus. From Lemma L4.24 we have for
each g€ I, Wq=WNY 4 is an open neighborhood of Oq in Yq 1f each Ygq
is non-discrete. And for each discrete Yg, Wgq=WNYgq 1is trivially
open. Thus by Lemma 4.25 1 q(W q)=WAY qCW. Hence W CT(M).

Sumarizing, we have shown that (Y,QJ) is a topological group,
T(W)C&-c.'l‘('h‘?), and T(‘Wz) is not a topological group. What remains to
be shown is that is the strongest topology which makes Y a topological
group and (Y,4))* algebraically isomorphic to (X, m), and (X, n)* alge-
braically isomorpbic (Y,w)). We do this in Theorem 4.30 and Corollary
4.31. To do this we need two preliminary theorems é,nd a corollary.

Theorem 4.27. Let Y= I 9Y, with the ¢-topology. Then for all groups
at K
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G, the map f where f:Y=>G 1s continuous if, and only if, f|Ya is con-
tinuous for all qé€l.
Proof: We first note that the word group will mean topological abelian
Hausdorff group and the word map will mean & continuous homomorphism.

Let fq =f|Yq be continuous for all G, O any open set contained
in G, and let Y have the W -topology. Now, Yg) £ 1[0)=r .~1[0] is rela-
tively open in Y4 for all €I, and all. open O in all G. But, Y has the
W/ -topology which implies that Yanf'l 0] 1s open in Y4 for each open
O in each G. Hence fg 1is continuous for gll a&gI.

To show f is continuous whenever fg is continuous, for all

agI, we need to show f-[0JNZ Y, 1is open in ZLeY, for all finite
acJ aeJ

JCI. To do this we show it true for Ygq4 e¥g =Yq XYP and hence, by
induction, it will be true for.all finite J<T.

Define fq xfg :Yq xYg ~>G:(yq Ya )bt o (v ¢ )-;-fe (y(3 ),
fqufg :Yq xYP-onG:(ya g )=>(fq (vq ),f‘3 (y(s )) and h:GxGe==>G:
(81,8, )=>81+8p+

. Clearly, we have fgq xf@ =hefq afe « Moreover, since the pro-
duct of open sets in GxG 1s a subbase for the product topology of GxG,

the continuity of fg m_'f‘? can be established in terms of these sets.

But, if UxV is open in GxG, then [f, m:f'p]'l[UxV]=fc'l[U]w:f‘ (3'1[v] 1s
open in Ygq XY@ with the product topology. Hence, fg4 Xfﬂ is continuous.
Also, h is continuous sinée the group operation, +, is continuous. There-
fore, fa xfp =h«fq xf@ is continuous.

However, -1f O is open in G, then [fg xfg 1-1i0]=
(yqg »vg)eYg xXg| fq (v o WEg (v, JeOl=l(yq s75 )€Y, xYa\ (£1Y @ )yg)+

(£1%q )3y V€0 {(vq 53, e Yo xtg | (217q 22 g Mg SO+l gxty )
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(O:YP )L-O]:[ (yu Vg )€ Yq XYpl (lea )(Ya Jp J)e 0k
[ (vq e )& TqxYy ‘ (fIIY&‘Y@ )1e0. Thus, f‘YaxYp is continuous and,

by induction, fl I Y4 1s continuous. Hence, f is continuous.
aEd

Theorem 4.28. Iet X be a family of maps of Y—pG, G a fixed group.
Furthermore, let x|Y 4=x4 be continuous for all @ € I, xeX. If T 1s
the smallest topology on Y making all such maps contin}lous, then TCWJ.
Proof: 1If O is any open set in G, then x~1 [0] is T open in Y, for all
xeX, 0£G. Furthermore, x~1[0] Ya=xa"l[0] is open in Y, for all
&tIl, xeX since xa=x(Y¢ is continuous. But, by the same construction
as in Theorem 4.27, we have XIYGXYﬁ continuous on YCXYP and hence

continuous on I &Y, for all finite JCI. Therefore,
aed

x 0] NZ e¥g=[x| Z ¥ _ I71[0] is open in 2 oY end Tcw.
a
atd aged agd

Corollary 4.29. Let X be a family of maps of Y-5, G a fixed group.

Furthermore, let x]Ya =xq be continuous for all &« €I, x€X and T any
topology on Y making all such maps continuous. Then TC W .,

Proof: The same as Theorem 4,28 since the proof does not depend on T
being the smallest topology which makes all maps X:Yeep G continuous.

Theorem 4.30. Let Xgq=Yg*, Yg =Xg*. X= n Xy, Y= 2 oYy . Then
- afl agl

(Y,w)* is algebraically isomorphic to (X, n) and (X, n )* is algebrai-
cally isomorphic to (Y,ed).

Proof: From Ellis {5] we have the following theorem. "For each atg I,
let X4 and Y4 be topological groups which are character groups of each

other. If m 1s the product topology for X and T a topology for Y such

that T(W)C T& T(9)), then each of the groups (X, n ) and (Y,T) is
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algebraically isomorphic to the character group of the other". But,
from Theorem 4.26, we have 'I‘(W)CQJc'I‘('h?). Hence, the theorem is true.
The following corollary is the maln result of this chapter.
Corollary 4.31. For any topology T such that (Y,T)* is algebraically
ismorphic to (X, m ), then T<«’. In particular, the compact open topo-
logy is contained in W/.
Proof: If xg(Y,T)¥, then x is continuous by the definition of a char-
acter group. By Theorem 4.30, Xgq =Y, * implies x|Yq 1is continuous.

Hence, from Theorem 4.29 we have TC &J and, in particular, the compact

open topology is contained ine/.
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