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CHAPTER |

INTRODUCTION

Background

Nitrogen fertilizer is one of the most importanpins in agricultural production, accounting for
almost two thirds of the total fertilizer consungpti As the world’s largest corn producer, nearly
half of the total nitrogen fertilizer is used faro production in United States (ERS, USDA,
2012). An issue related to nitrogen fertilizer aqpgion is low nitrogen use efficiency (NUE) —
around 33% in world cereal grain production (Rand dohnson, 1999) and 37% in US corn
production (Cassman et al., 2002). Excessive retndgss is not only economically costly, but
also the cause of environmental problems suchtagpdcation in water body and greenhouse
gas emission. Research and technology to minimieegen loss and increase NUE is significant

for the sustainability of the living environmenatthuman beings rely on.

One of the major reasons of low NUE is the poorchyony between nitrogen supply and crop
nitrogen demand in terms of application timing aaie. If the nitrogen is not applied at the time
when a plant is fast taking it up, the chance atléng, surface runoff or other types of nitrogen
loss would increase. Also, if nitrogen is appliedrenthan the rate that is needed by a plant to
achieve an optimal yield, the excessive nitroggulieg would be wasted. These findings

motivated the research and adoption of in-seasoabla-rate nitrogen application at precise



timing and rate to replace the traditional pre-plapnitrogen application at a fixed rate through a
whole field. Problems needed to be answered iralibirate nitrogen application are how to

decide the rate and what the application resolgfauld be.

Models have been developed by finding the cor@tdbetween crop attributes (independent
variables), and yield (dependent variable) usimgHistoric data in previous years. These models
are then used to predict the yield in-season bykmpthe current crop attributes. In-season
nitrogen application rates vary according to thedprted yield, assuming the better the yield the
more nitrogen the crop would uptake. Crop attribuary spatially. Research demonstrated that
the optimal spatial scale of nitrogen applicationdorn management was less than 0.5 m or by-
plant (Martin et al., 2005), and the combinatiorcoin plant chlorophyll content, plant height,
interplant spacing and plant stalk diameter wegéligicorrelated with its grain yield and biomass
(Martin et al., 2012; Kelly, 2011). Technologiesatstomatically sense these plant attributes are
demanded to replace the time-consuming manualocddction and incorporate with other field
operations. This study focuses on automatic maagwithin-row plant spacing and plant stalk

diameters.

Though little research can be found on in-fieldcplant stalk diameter measurement, various
technologies have been studied or already appieglant counting and spacing/population
measurements. Remote sensing is a way to obtaergjdarge-scale information rapidly, while
ground-based method is used to collect detailepl @nal soil information and usually can be
incorporated with production operations. Corn plaminting systems on combine harvesters
usually use mechanical method, infrared proximéilgssng or capacitance sensing. For early and
mid-growth stage plants, non-invasive sensing nietk@ommonly used in order to have
minimum impact on plants. Optical sensing is a Widsed non-invasive sensing technique
usually has less limitation in terms of the senslisgance, object orientation and sensing speed

comparing with other non-invasive techniques.
2



As one of the most common optical sensing methmdshine vision technique includes 2D
imaging and range sensing. Several studies havedoerlucted successfully based on 2D color
images taken from the top view for early growthgstaorn plant counting and spacing
measurement (Shrestha and Steward, 2003 and 280§;ahd Tian, 2008a and b). Individual
plant was recognized by analyzing the collectedrcohages. However, using color images
collected from top view is not a best way to measurn interplant spacing at mid growth stage
when the in-season nitrogen application is usuggrated due to canopy overlap. To overcome
this, color images collected from side view is #tdyeoption. As for the stalk diameter
measurement, RGB imaging is not enough becaush d#ptmation is needed to estimate the
actual size of an object. Another optical sensauhique — range sensing — can compensate this

shortcoming.

Range sensing technique, especially laser linensagnhas been widely used in orchard studies
to estimate canopy volume and density of tredsadtnot been studied much for corn plant
sensing yet. Previous studies conducted for copuilption estimate (Luck et al., 2008) and plant
counting and interplant spacing measurement (Rag8d?) using laser pointer sensors showed
the prospect of using range sensing technologyisrapplication. However, they also indicated
the interference of leaves on the measurementacgand a lack of information to eliminate
such interference. 3D range imaging is a newly gesl range sensing technology. A 3D range
camera outputs a depth reading as well as a gedg-seading of each pixel in an image. Study
has been conducted successfully using a 3D rangereao measure corn interplant spacing at
early growth stage from the side view (Nakarmi @adg, 2010). So far, the 3D range cameras
for outdoor application have to use laser lightrsewand are in fairly high cost. Most of the 3D
range cameras used in industry and agriculturéE8elight sources which have lower light

intensity. Both sensor and plants need to be shadeag the field tests.



A LiDAR (Light Detection and Ranging) sensor isarpromise of a low-cost laser pointer
sensor and a high-cost 3D range camera. It conspéeli@e scan in very short time and provides
multiple distance measurements along the scanLiD¥R sensors are the most widely
investigated range sensors in agriculture apptinathnowadays. They are involved in
autonomous guidance on tractors, yield estimatevandble-rate spraying in orchard and cereal
production (Lee et al., 2007; Saeys, et al., 2@En, et al., 2012). The LIDAR sensor may have

the potential for corn plant spacing and stalk dilmnmeasurements.

In summary, automatic corn plant spacing and stalkneter estimates at mid-growth stages is
important for in-season variable-rate nitrogen iagibns. Development of real-time sensing

systems which are accurate and feasible for fipletations are in a great need.

Research Objectives

The overall objective of this study is to develgptems based on optical sensing technologies for
automatic corn plant location, spacing and stadkrgiter measurements to facilitate in-season

variable rate nitrogen applications. The specibfeotives include:

o Phase I: to develop a system based on LiDAR teclenigjth corresponding data
processing algorithms to estimate corn plant locaéind spacing;

e Phase IlI: to improve the overall system for plaagkion and spacing measurement and
evaluate the system with more field experiment;

¢ Phase lll: to develop two approaches to estimate plant stalk diameter: one system is
a combination of RGB imaging and LIDAR technique bther system is based on 3D
range imaging technique; develop corresponding @aladaimage processing algorithms
for each approach; and compare and evaluate twoagies in terms of their

performances on plant counting, spacing and sialikketer measurements.
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CHAPTER Il

LITERATURE REVIEW

Importance of Corn

Corn (or maize) is one of the oldest human-domatsittplants. Its origins were grown in the

form of a wild grass in Central Mexico dated bazls¢ven thousand years ago. Corn is known as
the third largest planted crop in the world aftéreat and rice. It is mostly used as a primary feed
crop — for instance it accounts for 95% of thelttgad grain production and use in United States
— but is also important as a food crop in manysafthe world, and in food processing for
making starch, sweeteners, oil and beverage. Befidel and feed, nowadays corn has been

playing an important role in industrial ethanol guotion.

World corn production was around 700 million tonive2010, which shared about one-third of
the total cereal production quantity. It has insezhby nearly 50 percent in the past two decades.
The five largest corn producers in the world in@®%ere: United States, 316.2 million tonnes;
China, 177.5 million tonnes; Brazil, 55.4 millioonines; Mexico, 23.3 million tonnes; and
Argentina, 22.7 million tonnes (FAOSTAT, 2012a).itdd States is the world’s largest producer,
consumer and exporter of corn. Corn planted ar&tSins estimated at 35.6 million hectares
which is the largest among all crop production (MASSDA, 2010). The US domestically used
corn was around 352 million3yin which about 41% was used to produce animal;fabout

45% was used for industrial ethanol production;rést was for human food, seed and other
7



usage (USDA, 2012).

Issues in Nitrogen Fertilizer Applications

Nitrogen fertilizer is a critical input in agricultal production. World nitrogen fertilizer
consumption was 105 million tonnes in 2009 whicboamted for almost two thirds of the total
fertilizer consumption (FAOSTAT, 2012b). This nigen fertilizer consumption quantity was
increased from 86 million tonnes in 2002 (FAOSTART12b). In United States, around 12
million tons of nitrogen was applied in agricultupgoduction, in which 5.6 million tons was

used for corn production (ERS, USDA, 2012).

An issue related to nitrogen fertilizer applicatisrthe low nitrogen use efficiency (NUE). NUE
is defined as the total nitrogen removed by cepkalts, excluding the nitrogen coming from the
soil and deposited from the rainfall, divided bg thtal fertilizer nitrogen applied (Raun and
Johnson, 1999). The world cereal grain NUE is estiéoh at 33% (Raun and Johnson, 1999).
Nitrogen uptake efficiency which is very similarNbJE was reported at 37% in corn production
in north-central US, 31% in rice production in Aézassman et al., 2002). Except for those
nitrogen incorporated in soil organic and inorgaritocogen pools, the unaccounted nitrogen is
lost in ways of surface runoff by rain before thieagen fertilizer enters the soil, ammonia
volatilization to the atmosphere, N@enitrification to N and NO gases, and leaching when
dissolvable nitrate in soil moved by sufficientrrair irrigation to surface water or groundwater

(Raun and Johnson, 1999; Ribaudo et al., 2011).

Excessive nitrogen in the environment has impact&ater resources, atmosphere and terrestrial
resources. Concentration of total nitrogen is fighédst in agricultural streams comparing with
other landscapes (Dubrovsky et al., 2010). Excegsitvate in drinking water can lead to low
oxygen level in human body; excessive nitrogeruiiege water can cause algal bloom (known

as eutrophication) and decrease the dissolved oxygeater that aquatic life rely on
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(Dubrovsky et al., 2010; Rabalais et al., 2002)i&dture fertilizer application is the largest
source of greenhouse gas emission in US, accoufatiry.9% in 2010 (USEPA, 2012). The
alteration of the nitrogen cycle also stimulategl tiptake and storage of carbon stored within

terrestrial ecosystem and further influenced thele/lecosystem (Vitousek et al., 1997).

Numerous researches have been conducted to imaestigethods of reducing nitrogen loss to
increase the NUE in agriculture production. Thes¢hmds include adopting crop rotations,
forage-only production systems, hybrid or cultivath higher NUE, conservation tillage, soll
injection rather than broadcasting, other formsloW-release nitrogen fertilizer, proper
irrigation, and precision farming strategy inclugliapplying the nitrogen at optimal timing and
rate using proper decision-making algorithm (Ramokh ohnson, 1999; Ribaudo et al., 2011,

Shanahan et al., 2008).

In-season Variable Rate Nitrogen Applications

One of the major causes of low NUE is due to thar ggnchrony between the nitrogen supply
and the crop nitrogen demand in terms of applicaiiming and rate (Raun and Johnson, 1999;
Casman et al., 2002; Campbell et al., 1995). Tédittonal approach of nitrogen fertilizer
application is to apply a uniform rate prior to gnaanting; however, using corn as an example,
the plant does not rapidly take up nitrogen uwmtilrfweeks after its emergence (Baker, 2001),
which increases the chance of nitrogen loss byhiegand denitrification. Nitrogen applications
can be taken up by wheat plants efficiently latehenseason during grain fill period without
affecting the crop grain protein levels and dedrgpsoil nitrogen uptake (Wuest and Cassman,
1992). NUE for dryland winter wheat can be improbgdn-season nitrogen application with
point injection or topdressing rather than repkgpplications (Sowers et al., 1994). Maximum
yields of corn can be achieved with delayed buigaht in-season nitrogen application when

nitrogen uptake by plant is greatest; or the yiglstill highly responsive to nitrogen application



level even if the full yield could not be achiev@trvel at al., 1997; Binder et al., 2000; Scharf
et al., 2002). The nitrogen application rate alas & major effect on NUE in crop production.
NUE decreases with increasing nitrogen level esfigainder drier soil conditions (Gauer et al,
1992). Nitrate leaching can be significant whenagjen is applied at rates in excess of that
needed for maximum yield (Raun and Johnson, 1998se reasons support the adoption of in-

season variable rate nitrogen application in craulpction.

It is critical to determine an optimal spatial sclir variable rate nitrogen application for inkfie
variability management. The optimal spatial scaleheat production is at 1*tSolie et al.,

1999). For corn production, Martin et al. (2005akenated by-plant grain yield variability in the
USA, Argentina and Mexico from 2002 to 2004. Thetudy found that average plant to plant
grain yield differed by 2,765 kg/ha. They also fduhat variability was not significant if the

yield was averaged along the row over a scale gréaan 0.5 m. These results indicate that high-

resolution plant management protocols may havefgignt impact in corn production.

Parameters commonly considered when investigatniglvility management are soil nutrient
level, soil moisture, plant nitrogen content, plpopulation or spacing, plant height, canopy
coverage or volume, and canopy density. In cordyction, variability of plant nitrogen content,
plant population or spacing, and plant height ditencexamined. Krall et al. (1977) found that
every 2.5 cm increase in the standard deviatiguiasft spacing would decrease the yield by 210
kg/ha. Lauer and Rankin (2004) found a yield ldsk.@6% with every centimeter increase in the
standard deviation of corn plant spacing when stahdeviation was larger than 12.0 cm. A corn
by-plant yield prediction model proposed by Masdiral. (2012) included plant height, plant
spacing and normalized difference vegetative if®XVI, indicating plant nitrogen content) and
achieved an Rof 0.48. The previous model without using plarigheand spacing had arf Bf

0.22. Another parameter recently being investigeaewrn stalk diameter. Kelly (2011) found
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the index of ‘stalk diameter x plant height’ coateld well with corn grain yield with arfRf

0.34 at V8, 0.55 at V10 and 0.67 at V12.
Sensing Technologies for Plant Spacing/Populatiomd Diameter Measurement

The approaches of plant population or interplaatBg measurement can be categorized as two
types: airborne and ground-based (Dworak et allpOost of the airborne remote sensing
approaches use hyperspectral or multispectral sisély rapidly obtain large scale data
(GopalaPillai and Tian, 1999; Huang et al. 2010prphet al. 2008). Ground-based sensing
methods have been used to obtain detailed croga@hithformation and conducted concurrently
with other in-field operations such as plantingaging or harvesting. Ground-based approaches
to plant population or spacing measurements cdarbieer categorized as intrusive (mechanical

methods) or non-intrusive methods.

Mechanical methods to measure corn plant populatsorlly use the resistant force of stalks on
a spring loaded arm or a gravity pendulum to col@mumber of stalks (Birrell and Sudduth
1995; Heege and Thiessen 2004). Some of these d®eftave already been commercialized on
combine harvesters. Non-intrusive methods are sitable for sensing corn population at early
and mid-growth stages. Some of these methods aesllzm capacitive sensing: Nichols (2000)
invented a moisture detecting sensor installed conebine to count harvested stalks; Li et al.
(2009) developed a capacitance-based biomass ptgxéemsor to count corn stalks during

harvesting.

Optical sensing techniques (including image-basediag) have been playing important roles in
plant population/spacing measurements. Image-kseesing is one category in it. Shrestha and
Steward (2003, 2005) developed and improved a maahsion based corn plant population

sensing system. Algorithms were developed for col@ge sequencing, segmentation and plant

recognition in order to count corn plants, andstineate plant location and intra-row spacing.
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Their system resulted in a 5.4% coefficient of &ioin for the standard error in population
estimates in 2003, and 6.2% root mean square @MSE) in 2005. Tang and Tian (2008a,
2008b) developed a real-time crop row image recoasdn and plant identification system for
automatically measuring the spacing of emerged plamts. They achieved an overall RMSE of
1.7cm and an Rof 0.96. All of these studies targeted early gtostage corn plants prior to

canopy closure.

Range sensing is also an optical sensing techmigidnas been applied to crop parameter
measurements. Wangler et al. (1994) patented adaaaning sensor which could be attached on
a sprayer to selectively spray according to thegiree of the tree foliage. Laser scanning
technique was also used for tree foliage densityvemeat stand density estimation by calculating
variation in laser penetration depth (Wei and Salg@04, 2005; Saeys et al. 2009; Chen et al.,
2012). Luck et al. (2008) used an infra-red rarageser for in-field plant population
measurements and achieved an error in populattonages between 0.7% and 4.4%. They did
not report results on plant counting and locatistingates. They indicated that the main error
source was interference from leaves. Rascon (20461 a red light range sensor to sense corn
plant stalk location at mid growth stages. He folead interference on the results was
significant. Nakarmi and Tang (2010) developedsiesy to measure corn interplant spacing at
growth stages V3 to V6 using a 3D range cameray Téworted a 100% plant identification
accuracy and RSME of 0.15 cm for interplant spaaegisurements. Little research has been
conducted so far on real-time corn stalk diameteasarement and plant location measurement at

their mid-growth stage using range sensing teclasqu
Data Processing Algorithms for Plant Sensing

Machine vision technology is based on image prasgsdgorithms. The following literatures

provide a review of related data/image processiggrahms which may inspire the algorithm
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development in automatic corn plant spacing arlé diameter measurement. Some image

processing algorithms can be applied on laser datnprocessing.

Segmentation

Segmentation is the process to partition an imageheterogeneous objects. It is an important
step before the objects of interest in an imagebearecognized and analyzed. Image
segmentation algorithms for monochrome images gdlgdrave three categories: 1,
thresholding; 2, point, line and edge detectiomt &yregion-based segmentation or clustering

(Gonzalez et al., 2002). For color images, sinalgproaches can be used in RGB vector space.

Thresholding is the most commonly used algorithnmiage segmentation. One or multiple
threshold is selected based on the differencexel’piintensity levels or other properties. One or
multiple distance thresholds are often used toiefite background pixels such as soil and sky in
3D depth images (Wei and Salyani, 2005; NakarmiTEaray, 2010; Chen et al., 2012).
Thresholds of gray levels are used to eliminatelpiwith undesired gray scale in monochrome

images (Wang et al., 1998).

Point, line or edge detection looks for discontii@siin an image. The most common way of
point, line or edge detection is to run a maskubtothe image and to compute the sum of
products encompassed by the mask at each pixein@kk varies from different applications.
The detected line or edge segments in an imageftare discontinued. Hough transform is an
approach to link them to a meaningful line. Wangle{1998) implemented the Hough transform

in identifying micropropagated sugarcane shootsaaieved a 93% of identification accuracy.

The region-based segmentation or clustering gdgenaludes two approaches — region growing
starting with seed points; and region splittinddeled by merging. Numerous models have been

developed for clustering such as distance conrigchased models, density based models,
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centroid linkage region growing models, distribatlmased models, and trainable models. Each of

them was developed for specific application.

Color image segmentation can be usually implement&GB color space. Shrestha et al. (2001)
developed a truncated ellipsoidal surface in RGIBrcgpace to segment corn plant from soil
background from top view color imaging. The paramebdf the truncated ellipsoidal surface
were obtained using artificial neural network meth®teward and Tian (1998) proposed an
environmentally adaptive segmentation algorithmcfamn plant segmentation in RGB image
taken from top view at early growth stages. Thigpathm included a transformation of pixel’s

RGB reading, a K-mean clustering and a Bayes giessiith a look-up table.

Morphological Processing

Morphological processing is used to extract shapéufes of regions in an image such as
boundaries and skeletons. Common morphologicalgssing techniques are dilation, erosion,
opening and closing. In agriculture engineeringrphological processing is often used to
eliminate noise in binary images (Wei and Salya@5; Tang and Tian, 2008b), to sharpen or
thinning objects in an image during pre-proces$ifigng et al., 1998), or to obtain skeleton of a
shape for further analysis (Tang and Tian, 200&kaxmi and Tang, 2010). It is a necessary

procedure to achieve the final image processingeaadiysis goal.

Image Registration

Image registration or image sequencing is a pracessnnect images taken from various points
of view with overlap to one scene. It often makss af the features in two images to register
them together such as shape and color. In agrreudipplications, the purpose of image
registration is often to stitch images taken dutimgfield operation together to one big map.
Some previous image registration studies were tegavith satisfactory results and feasibility.

Shrestha and Steward (2003) developed a patch ralggetithm to register corn images taken
14



from top view during operation. In the range imagecessing in which there is only color
information, auxiliary method was used for imaggisgation such as shaft encoder reading
(Nakarmi and Tang, 2010). The objects in imagesrtak a corn field are plants and residues on
the soil. The color and shape of plants are nosistent due to the wind blowing. Because of
this, information obtained from non-imaging senssarsh as a shaft encoder can be used to help

image registration in agriculture engineering.
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CHAPTER IlI

AUTOMATIC CORN PLANT LOCATION AND SPACING MEASUREMBT USING

LASER LINE-SCAN TECHNIQUE

The material in this chapter was published in 2@13ournal of Precision Agriculture, 14(5):
478-494.

Abstract

Identifying corn plant location and/or spacingrigportant for predicting yield potential and
making decisions for in-season nitrogen applicataia. In this study, an automatic corn stalk
identification system based on a laser line-scehnigue was developed to measure stalk
locations during corn mid-growth stages. A laseedscan technique is advantageous in this
application because the line-scan data sets takenviarious points of view of a plant stalk
results in less interference and higher probabdlitglant recognition. Data were collected for
two 10-meter-long corn rows at the growth stageg&®and V10 using a mobile test platform in
2011. Each potential stalk cluster was identified iscan and registered with the same stalks in
previous scans. The final location of a stalk wesaverage of the measured locations in all
scans. The current system setup with data progeagiorithms achieved 24.0 % and 10.0 % of

mean total errors in plant counting at the V8 arid growth stages, respectively. The root-mean-
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squared error (RMSE) between system measuredlptaaitons and manually measured ones
were 2.3 cm and 2.6 cm at the V8 and V10 growthestarespectively. The interplant spacing
measured by the developed system had a good dmmelath the manual measurement with an
R? of 0.962 and 0.951 for the V8 and V10 growth stagespectively. This system can be
ultimately integrated in a variable-rate-sprayiggtem to improve real-time, high spatial

resolution variable-rate nitrogen applications.

Keywords Corn population - In-field variability - Dataustering - Variable-rate technology

Introduction

Nitrogen use efficiency (NUE) in cereal productiwarldwide is as low as 33 % (Raun and
Johnson 1999). Much of the nitrogen (N) fertiliagplied to crops is lost to surface runoff and
leaching. This results in environmental damage sisctihe contamination of groundwater
supplies or eutrophication of surface waters. Rebsean the approaches to reduce N losses has
shown that the NUE decreases with increasing Niegtjon level (Gauer et al. 1992) and nitrate
leaching can be significant when N is applied tgg@n excess of that needed for maximum yield
(Raun and Johnson 1995). These findings have ntetivasearch and adoption of variable-rate
N applications where N is applied during the grayéeason rather than being applied at a fixed

rate prior to planting (Sowers et al. 1994).

It is critical to determine an optimal spatial scldr variable rate N application for in-field
variability management. For corn production, Madtral. (2005) evaluated by-plant corn yield
variability based on the data collected in the US#Agentina and Mexico from 2002 to 2004. The
by-plant corn yield was calculated in the unit gfha by assuming the grain yield of a plant was
the average grain yield in an area of one hectdre area occupied by that plant was calculated

as half the distance to and from its two nearegihfrs multiplied by the row spacing. They
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reported an averaged standard deviation of plaplaiat grain yield at 2,765 kg/ha. They also
found that variability was not significant if théeld was averaged along the row over a scale
greater than 0.5 m. These results indicated tighi-tgsolution plant management protocols might

have a significant impact in corn production.

Parameters commonly considered when investigatniglvility management are soil nutrient
level, soil moisture, plant N content, plant popioka or spacing, plant height, canopy coverage
or volume and canopy density. In corn productiarjability of plant N content, plant population
or spacing and plant height are often examinedl Ktal. (1977) found that every 2.5 cm
increase in the standard deviation of plant spasiogld decrease the yield by 210 kg/ha. Lauer
and Rankin (2004) found that when the standardadiewi in corn plant spacing was greater than
12.0 cm, relative grain yield reduced at 1.06 %hweitery centimeter increase of the standard
deviation in plant spacing. A corn by-plant yielggiction model proposed by Martin et al.
(2012) included plant height, plant spacing andnadized difference vegetative index (NDVI)
and achieved aR’ of 0.48. The previous model without using plangheiand spacing had &3

of 0.22.

The research on plant population or interplant spgameasurement can be categorized as two
types: airborne and ground-based (Dworak et allpOost of the airborne remote sensing
approaches use hyperspectral or multispectral sisély obtain large-scale data (Huang et al.
2010; Thorp et al. 2008). Ground-based sensingadsthave been used for obtaining detailed
crop and soil information. These can be done caoantly with other in-field operations such as
planting, spraying or harvesting. Ground-based @gges for plant population or spacing

measurements can be categorized as intrusive (meehanethods) or non-intrusive methods.

Mechanical methods to measure corn plant populaisorally use the resistant force of stalks on

a spring loaded arm or a gravity pendulum to colb@tumber of stalks (Birrell and Sudduth
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1995; Heege et al. 2004). Some of these methodsdiezady been commercialized on combine
harvesters. Non-intrusive methods are more suifablgensing corn population at early and mid-
growth stages. Some of these methods are baseapanitive sensing: Nichols (2000) invented a
moisture detecting sensor installed on a combimel e count harvested stalks; Li et al. (2009)

developed a capacitance biomass proximity sensmunt corn stalks during harvesting.

Other non-intrusive methods in ground-based crogiag are mainly based on optical sensing
technique including 2D color/gray-scale imaging amage sensing. Color imaging has been
explored in several studies for corn plant counéind spacing measurement in the past few
decades. Shrestha and Steward (2003, 2005) dedadmpktested a machine vision based corn
plant population sensing system. Algorithms weneettiped for color image sequencing,
segmentation and plant recognition in order to teom plants and to estimate plant location
and spacing. The root-mean-square errors (RMSE®)pulation estimates were in the range of 5
to 6 % compared with manual counts. Tang and T2808a, 2008b) developed a real-time crop
row image reconstruction and plant identificatigatem for automatically measuring the spacing
of emerged corn plants. They achieved an overalSEMf 1.7 cm and aR® of 0.96. All of these

studies targeted at early growth stage corn plamds to canopy closure.

Range sensing techniques are another categorytiodbpased sensing methods that have been
applied to crop parameter measurements. A photoeleenitter and receiver pair is a 1D range
sensor. Hummel et al. (2002) developed and tedtetbplectric sensors installed on a combine
corn head for plant diameter, spacing and populatieasurements. They used an air-jet system
to physically remove corn leaves and other deboisifthe sensors’ field of view. The average
normalized population and spacing estimates wererted at 0.94 and 1.08, respectively. Luck
et al. (2008) used an infra-red range sensor ffield plant population measurements and
achieved an error in population estimates betwegfdand 4.4 %. They indicated that the main

error source was the interference from leavessarléne scanner is a 2D range sensor. Wangler
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et al. (1994) patented a laser scanning sensohveaoigld be attached on a sprayer to selectively
spray according to the presence of the tree faliadaser scanning technique was also used for
tree foliage density and wheat stand density esitimdoy calculating variation in laser

penetration depth (Wei and Salyani 2004, 2005; Saewl. 2008).

Up to recent, little research has been conductédramn corn plant location measurement in the
mid-growth stages using 2D range sensing techniguesobjective of this study was to develop
a system using the laser line-scan technique flomaatic corn plant location measurements to

facilitate in-season variable rate N applicatiditse specific objectives were to:

° Develop a data acquisition system based on laseisiian techniques to obtain corn

plant location and spacing information;
. Develop data processing algorithms to estimate plamnt location and spacing;

. Evaluate the system performance at the V8 and Va@th stages.

Materials and methods

System setup and principles

The data acquisition platform was a four-wheel edrich moved easily between rows (Fig. 1a).
The key component of this system was a laser tinarger (LMS291, SICK AG, Waldkirch,
Germany) which measured distances between thersemddarget objects based on the time-of-
flight principle. It was configured to operate iontinuous line scan mode with a field of view of
100° and a resolution of 0.25°. The laser scanm@esrmounted on the cart’s front arm and aimed
about 5-cm above the roots of the corn stalks aidlownward angle of 20°. The scan plane
formed a 70° angle with the plane of the plant (Big. 1c). This setup was selected to allow the

sensing of stalks near the ground while maintaisuiffjcient clearance between the sensor and
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ground.

Multiple neighboring stalks within a row were sethé® a scan as illustrated in Fig. 1b. The
number of stalks in a scan depended on the distzateesen the sensor and plant row, as well as
how far apart neighboring plants were. A contraigrsam developed in LabVIE?MNational
Instruments Co., Austin, Texas, USA) was used tabdish the communication between a laptop
computer and the laser scanner, to receive datages, to extract distance data and convert
them from polar to Cartesian coordinates, and te fze data into a file with MS Excel format.
The laser scanner scanned 100° and collected 4€inde measurements in 53.28 ms. With an
average 0.447 m/s moving speed of the cart, theosemoved about 2.4 cm within the time of a
scan. This offset was ignored in this study. A §Bps baud rate was configured with a RS-422
connection and a serial to Ethernet convertor (EeMiaster 500, Comtrol Co., New Brighton,
Minnesota, USA) between the laser scanner andafitep to ensure a sufficient data transfer

rate.

A shaft encoder was mounted on one of the rear &la@e connected to a data acquisition card
(USB 6008, National Instruments, TX) to obtain kheation of each scan relative to a fixed start
point. Hence, the data of each laser scan wasdoestamped with a corresponding encoder
reading. A video camera was mounted next to ther lage scanner to record a video of each trial

which could be used later to verify the measuremefithe laser line scanner.
Field experiment setup

The field experiment was conducted at Lake CartBieell, near Stillwater, OK, in June and
July of 2011. Data were collected from two 10-mgaeows, each containing 50 corn plants, at
the V8 and V10 growth stages. Three trials weraluoted on each row at the V8 growth stage.
Due to equipment malfunctions, only the data frem trials was used on row 1 at the V10

growth stage. Fig. 2 shows the field setup fordat acquisition platform. The cart with the
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Fig. 1 Laser line-scan based corn plant location and spacing measuring system: (a) the cart with a laser

line-scan sensor and other data acquisition devices; (b) top view and (c) side view showing system

operation

developed data acquisition platform was manualhped between corn rows. The horizontal

distance between the sensor and the corn row viiged34 to 48 cm due to the deviation of the
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Fig. 2 lllustration of the cart’s deviation between rows (not to scale): Case 1 (see P1) was when the cart was
the closest to plant row B and Case 2 (see P2) was when the cart was the furthest to plant row B.
Designations 1L and 2L indicated the positions of left wheel, and 1R and 2R indicated the positions of right
wheel in these two cases, respectively

cart from the center line between rows. Since diserl scanner was mounted with a downward
angle, when the cart travelled between the rovesattiual distance reading of the central point of
a laser scan was between 36 and 51 cm. The seasaneunted at a height so that, with this
travel distance, the sensing plane on the plalissteas between 2.5 and 7.6 cm above the plant

roots. Manual location measurements were taketh&L00 plants and used as ground truth.

Data processing algorithms

Fig. 3 shows a flowchart of the main data procegaigorithm for locating corn stalks. Shaft
encoder data of each scan were pre-processedtsbdbald be synchronized with ground truth
measurement. For each scan, after eliminatingdivéackground, potential stalk clusters were
classified and each was registered with corresmgnstialk clusters from previous scans if they
were identified as the same plaBkcept for the most recent plant entering intosiesor’s field
of view during movement, each cluster in the cursgan not corresponding to any of the

clusters from previous scans were treated as ribieefinal location of each recognized plant
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Fig. 3 Flowchart of the main data processing algorithm for locating corn stalks

was calculated as the mean of the position measntsnn all related scans. All data processing

algorithms were developed in MATLABMathWorks Inc., Natick, Massachusetts, USA).
Synchronization of shaft encoder data and grounthtmeasurement

A pre-processing step was conducted on the shadiden data to synchronize it with ground
truth measurements so that the system could beatedl. Shaft encoder readings provided
location of each laser scan. They were criticairfienrow plant registration. The quality of the
shaft encoder readings depended on the rotatithreaffheel to which the encoder roller was
attached. Intermittent rotation due to obstaclaesnaven soil surface was unavoidable in a field

experiment and could reduce positional accuracypdrgally correct for these deviations,

27



encoder readings of each trial were stretched gw@aohg the entire row so that they would have

an equal total length in between the 1st and 5@ty

Thresholding

Fig. 4a shows a typical scan after conversion t@eSen coordinates. The sensor (gray square
box) was at the origin of the local coordinates mttés scan was taken. The clusters within 36 to
51 cm of the vertical axis of the coordinates cgponded to plant stalks. Other data points were
the reflections from the soil background, leavestber interfering objects and considered as
noise. A thresholding process was conducted taredita noise data points that were not within

the normal 36 to 51 cm range of the sensor asattdravelled down the row.

Clustering

A clustering algorithm was implemented to idenpfytential stalk clusters based on the density
variation of the line scan data. This algorithnswaapted from the density-based spatial

clustering of applications with noise (DBSCAN) ddised by Ester et al. in 1996.

Three parameters must be pre-defined in this dhgarie was the range in which a core point
searched for a neighbor point to form a clusteraas set as a specific value no less than 0.85
cm according to the distance the core point wag/dwan the origin; MinPts was the minimum
number of data points needed to identify a clusterwas set as five; MaxPts was the maximum
number of data points to be included in a clustelaas set as 25. These values were determined

by trial and error in this study.

The value of radius in which a core point searched for its neighboas wot the same for every
core point in the developed clustering algorithiwalried based on the distance a data point was
away from the origin. This was necessary becaieseattially collected data of the laser line

scanner resulted in a higher density of data poiaess the scanner. The section area of a laser
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beam at a data point was calculated based ontbegénce angle of the laser beam and the
distance between that data point and the origie.rékio of this section area to the section area of
a laser beam at 44-cm away from the origin (carntazed between two rows) was obtained. It
was used to multiply the minimum valuesofwhich was 0.85 cm in this study) to be the specif

¢ value for that data point. The adjustable searchamges made the clustering more accurate.

The values of MinPts and MaxPts were selected byraig that the stalk diameters measured in
this study would not be less than 1 cm or gredi@n 6 cm at both of the V8 and V10 growth
stages. If the cart was moving along the centerthietween rows, a 5 cm or a 1 cm object would
form a 25-point cluster or a five-point clustettad central point of a laser scan when the sensing

resolution was set as 0.25°. Hence, MinPts waassve and MaxPts was set as 25.

The clustering algorithm included the followingsse

1. All points in a dataset were initially marked asvisited. The algorithm randomly started
from one of the unvisited poimsn the dataset and marked it as a visited point.

2. Madep a core point and searched for neighboring poinithiv a radiuse. If no points
were found within that range, markgds noise and went back to step 1; otherwise, a new
cluster was found consisting pfand its neighbors.

3. Each neighbor of the core point was assigned tatheent cluster and was marked as
visited. Each of point in the cluster was then tiedlaas a core point and a search was conducted
for its neighbors within a radius @f For each of the neighbor points found, step 3 iepeated
until no new neighbors could be found.

4. Went back to step 1 until all points in the datdsed been visited.

5. Checked the size of each cluster. Only those ctusitat had a size larger than MinPts

and smaller than MaxPts were kept while others werated as noise and eliminated.
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Fig. 4 lllustration of clustering algorithm for stalk identification: (a) typical line scan data after converting to

“or

Cartesian coordinates. indicates reflectance data points; sensor was located at the origin (0, 0); (b)

clustering result of this scan: 1-5 were the identified clusters

The clustering algorithm developed in this studgraed the criterion for identifying a
point as a core point in a cluster expansion. énréferred algorithm (DBSCAN) a point
was usually marked as a core point when it had rinane three neighbors within a
certain range; otherwise, the point was marked&senThis made it possible to initially
mark border points in a cluster as noise if thesteluhad a narrow shape. Though
DBSCAN changed them to cluster points later, thas wefficient if most of the points in

a cluster were boarder points, which was the cdsmwsing a laser line scanner in plant
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stalk profiling. In the developed clustering alglon, a cluster expansion started from a

core point even if it had only one neighbor in &irdsd range.

Coordinate conversion

Two coordinate systems were involved in data prsings- a local coordinate system and a
ground coordinate system. Data from each scan higdi@ local coordinates due to the
movement of the cart down the row. The origin aftelocal coordinate system was located at the
laser source inside the laser line scanner.yHoeal axis of each of the local coordinate system
was along the midpoint of the sensor’s field ofawiend increased with the distance away from
the sensor; the-local axis was perpendicular withlocal axis and increased to the right of the
sensor. The origin of ground coordinates was asthe of each trial where the encoder reading
was zero. The-groundaxis of the ground coordinates was parallel tadihection of sensor’s
travel; they-groundaxis was parallel to local coordinate axis indimgathe depth measurement.
The local coordinates of a plant in a scan weralffrconverted to the ground coordinates

making use of the specific encoder reading of $han.

Scan registration / matching between scans

Multiple scans obtained for the same stalk fromotas points of view gave a better chance to
correctly recognize a plant. With the sensor’s ed field of view while traveling at 0.447

m/s during data acquisition, a stalk generally appe in approximately 40 continuous scans.
Although it might be interfered with or blocked kaves and other debris in some scans, a stalk
still had a high possibility to be recognized ie tiest of the scans. In order to match clusters fro
multiple scans corresponding to the same plarit,stadcan registration procedure was

implemented based on the difference of shaft encedelings between scans.
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Fig. 5 lllustration of the scan registration algorithm

Fig. 5 is an illustration of this scan registratimmocess. Assume scan # j was a current scan, scan
# i was a previous scan, three clusters were slimmath scans, and the difference between
encoder readings of these two scans dvakhe developed algorithm used cluster locatiorthén
current scan and to calculate estimated cluster locations in thlevimus scan. It then searched

for corresponding clusters within a small buffesedrch area around that estimated location for
each cluster. The buffered search area was sé as1in this study by trial and error. If multiple
corresponding clusters were found within that rafioge cluster in the current scan, the one
closest to the estimated location in the previamas svas selected. The first scan was exempted
from registration. The clusters recognized in ir& §can were assigned as plant stalks in

incremental indices starting from one.

Registration started from the second scan and &=hcould only register with the previous
scans in order to meet the requirement by a reed-firocessing system. For each cluster in the
current scan, the algorithm searched backward ¢ffrogp to thirty previous scans to find a
matching cluster. Once a matching cluster was fotivelone in the current scan was assigned to
the same cluster index as the cluster in the puswsoan; otherwise, the cluster in the current scan
was marked as not being matched. Finally, all th@atched clusters were checked to see if there

was a cluster which newly entered into the sendmid of view. If there was one, a new cluster
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Fig. 6 Sheath interference with stalk locations

index was assigned to it. At the end of the pracaltthe unmatched clusters were marked as

noise clusters.

The final location of a recognized plant stalk waes mean location of all clusters with the same
index in different scans. Estimated locations whigte within 5 cm of each other had a high
likelihood of corresponding to a stalk and a sh€gif. 6). Sheath interference was compensated

for by averaging the locations of two estimatedtams less than 5-cm apart into one location.

System performance evaluation

System performance was evaluated by comparingasarements to ground truth data which
was measured manually by a ruler for each plant Eavors in plant counting, plant location

estimate and interplant spacing estimate were aedly

Plant counting

Three errors were defined for evaluating systeratégpgmance on plant counting: the false
negative counting error (FNEr) (Eq. 1), false pgesitounting error (FPEr) (Eq. 2), and total

counting error (TEr) (Eg. 3):
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FNE Missing Count 100 %
= X
r Ground Truth Count 0 Eg. 1

Adding Count
FPEr =

= X 0,
Ground Truth Count 100%

Eq. 2

TEr = FNEr + FP Eq. 3

If no plant was identified within £10 cm from theogind truth location of an actual plant, there
was a false negative count for that actual plamil&ly, if no actual plant was located within
+10 cm of the location of an identified plant, thésulted in a false positive count. Only the
recognized plant closest to (and within £10 cm)ltwation of an actual plant was a valid count;
multiple counts of an actual plant were treatethbs® positive counts. The total counting error
was equal to the sum of the false negative errdrfalse positive error. These errors were
calculated for each of the two rows at each grastdlge. The SAS (SAS Institute, Cary, North
Carolina, USA) General Linear Model procedure (GLlgs used to test for significant

differences in FNEr, FPEr and TEr between the M8\h0 growth stages.
Plant location estimation

The RMSE was calculated between the manually medgmound truth locations and those
measured by the developed system for all correetiggnized plants in each row at each growth
stage. In this analysis, locations correspondinfgliae negative counts were eliminated from
ground truth locations in each trial while locasaorresponding to false positive counts were
eliminated from system measured locations. Thefgignt difference in plant location estimates

between the V8 and V10 growth stages was alsodtesiag GLM procedure in SAS.
Plant spacing estimation

Another parameter to investigate plant locatioornas the error of interplant spacing estimates.
Interplant spacing was calculated as the differdyateveen every recognized plant pair in a row

excluding false positive and false negative cotmtgach trial. The spacing of the two plants at
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each side of a false negative count was eliminfated the system measured spacing in order to
correlate with the manually measured spacing. TM&R of estimated spacing of all identified
plants was calculated for each row in each tridl @mpared to manually measured spacing. If
two successive plants were only correctly recoghimeone trial, their spacing was compared to
ground truth data; if two successive plants wereently recognized in different trials, the

corresponding spacing measurements were averagme lsemparing to ground truth data.

Results and discussion

Plant counting error

At the V8 growth stage, an averaged 2.0 % (SD 24).&NEr, an averaged 22.0 % FPEr and an
averaged 24.0 % (SD = 6.9 %) TEr were achievedhéd/10 growth stage, a 3.0 % (SD = 1.0

%) FNEr, a 7.0 % (SD = 3.0 %) FPEr, and a 10.0 26£3}.0 %) TEr were achieved (Table 1).

Table 1 Errors of plant counting and stalk location estimates compared to ground truth data

RMSE of RMSE of spacin
FNEr (%)  FPEr (%)  TEr(%) location estimate = 07 spacing
estimate (cm)
(cm)
Row 1, V8 1.3 (0.94)* 16.0(1.6) 17.3(0.94) 1.9200 2.1 (0.3)
Row 2, V8 2.7 (1.9) 28.0(2.8)  30.7 (2.5) 2.8 (0.3) 2.9 (0.8)
Row 1, V10 3.0 (1.0 7.0 (3.0 10.0 (4.0) 2.6 (0.2) 2.0 (0.1)

* Numbers in the parenthesis represent standaratitmv.
No significant difference was found in FNEr (&= 0.50,p = 0.51) and TEr (Fs=5.51,p =
0.057) between the V8 and V10 growth stages. Whdmgnificant difference was found in FPEr
between V8 and V10 growth stagesdE 7.61,p = 0.033). At V8 growth stage, false positive
errors were larger than false negative errors éoh bows; while at the V10 growth stage, false
positive errors decreased and false negative @morsased. The large false positive error at V8

growth stage was primarily due to weed interferambich prevented the system from
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differentiating weeds from stalks (Fig. 7a). Rowat larger errors than row 1 at V8 growth
stage. The recorded video indicated more weedf@ngarce for row 2 than row 1 at that time.
This suggested that the system developed in thity should be used in a weed controlled plot.
A higher sensing height to avoid the weed area nfiglp although interference from leaves on
the stalk could offset improvements. At the V10vgitostage, weeds had been treated with
herbicide so false positive errors decreased; hewenost of the lower leaves were dehydrated
and laid over the stalk (Fig. 8). A leaf clusteteofhad a larger size (> 25 data points) thanlla sta
cluster. This was used by the algorithm to difféiega the leaf clusters from the stalk clusters.
Attached leaves prevented the sensor from seetngdiual shape of the stalks resulting in more
false negative errors. At the V8 growth stage, nobshe lower leaves were still vital and

standing up.

Range (cm)
N
o

20

Scan Line (cm)

(b)

Fig. 7 Weed interference at the V8 growth stage: (a) a stalk with weed interference in row 2; (b)
corresponding laser line scan data
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Fig. 8 Typical laid-over leaf interference at the V10 growth stage

The number of plants identified in each trial wasdito assess the repeatability of system
estimates. At the V8 growth stage, 49 out of 501131898.0 %) were identified in all trials in row

1 though all 50 plants were identified in at learsé trial; 46 plants out of 49 plants (93.9 %) were
identified in all trials in row 2 excluding a plalaicated 3 cm apart from one of its neighbors
though the other 48 plants were identified in asteone trial. At the V10 growth stage, 47 out of
50 plants (94.0 %) were identified in valid triadsrow 1 though all 50 plants were identified in at

least one trial.

Plant location and spacing error

The RMSEs of system measured plant locations wérerd (SD = 0.5 cm) and 2.6 cm (SD = 0.2
cm) for the V8 and V10 growth stages, respectivieliythose correctly identified stalks in each
row at each growth stage. No significant differenees found in RMSE of location estimate
between the V8 and V10 growth stagess(#0.29,p = 0.61) which demonstrated the
repeatability in location estimate at two differgnbwth stages of the system. This plant location
estimate error was relatively small compared wi#h20.2 cm (SD = 10.6 cm) interplant spacing

which is discussed in the next section.

Factors contributing to errors in plant locatiotireates included errors from data acquisition,

data processing and sheath and leaf interferemeall 8iameter wheels on the cart likely caused
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some inaccuracy at some locations due to the urteviin in the field. The correction for
encoder readings in data pre-processing distribilie@ncoder error evenly to every scan in a
trial. This problem would be reduced if the encogtas mounted on a wheel with a larger contact
area with the soil surface. Subjective error wasiged in the manual measurement of plant
locations. In addition, corn plants were not pdfijeeertical during growth stages which caused

inconsistency between manual and system measurement

Interplant spacing estimated by the system wadigirrelated to ground truth data.
Comparison between them at the V8 growth stagdteelsin RMSE of 2.5 cm (SD = 0.8 cm), an
R? of 0.962 and a slope of 0.975 with an intercef.6#3 in the regression equation (Fig. 9a).
At the V10 growth stage, this comparison resulteBRMSE of 2.0 cm (SD = 0.1 cm), &3 of
0.951 and a slope of 0.995 with an intercept o D.Fig. 9b). The slopes were close to one and

the intercepts were close to zero in both regressimations.

Distribution of manually and system measured inéerpspacing was also investigated. Manually

measured interplant spacing had a mean of 20.58m=(10.6 cm); while those measured by the
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Fig. 9 Comparison between system measured interplant spacing and manually measured interplant spacing
(a) at the V8 growth stage (n = 96) and (b) at the V10 growth stage
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developed system had a mean of 20.6 cm (SD = hd)@&tthe V8 growth stage (Fig. 10a).
Manually measured interplant spacing had a med® & cm (SD = 8.5 cm); while those
measured by the developed system had a mean oft9(8D = 8.6 cm) at the V10 growth stage
(Fig. 10c). The similarity in the means and staddiaviations of the system measurements with

the ground truth data demonstrated the repeatabflihe system developed in this study.

The errors of the system measured interplant spdwd means of 0.1 cm (SD = 1.9 cm) and 0.1
cm (SD = 1.9 cm) at the V8 and V10 growth stagespectively (Fig. 10b and Fig. 10d).
Shapiro-Wilk normality tests were conducted to testnormality of the error distributions at the
two growth stages. There was no significant eviddnaeject the null hypothesis that they were
normally distributed (SWstatistic= 0.97 = 0.82 for V8; SWstatistic = 0.9% = 0.34 for V10;

a = 0.05) which demonstrated the reliability of the systmeasurements. However, the slightly
positive skewed shape in the error distributiort pfahe V10 stage (Fig. 10d) indicated that
there was an error source. It was very likely aisg¢ed with the pre-processing procedure in data
processing in which the encoder reading was stetahorder to be synchronized with the
ground truth data. The stretch ratio was largeh@V10 than that in the V8 growth stage
because the drought soil condition in the V10 glhosthge caused more missing encoder counts.
This suggested an improvement on the data acquigtatform with a better wheel encoder

mechanism in the future.

Evaluation of overall system performance

The RMSEs of interplant spacing measurements wérer@ (SD = 0.8 cm) at the V8 growth
stage and 2.0 cm (SD = 0.1 cm) at the V10 grovabestThese results were at a centimeter or a
tenth of a centimeter level, which were smalleclose to the agronomic spacing findings at a

centimeter level described by Krall et al. (197}l &auer and Rankin (2004). This indicated that
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the developed system could be used to provide uglefiot location and spacing information from

an agronomic point of view.
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system measured interplant spaces at the V8 growth stage; (c) manually and system measured interplant
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In summary, the developed approach had its unigatifes comparing with others from previous
research. Firstly, it was suitable for sensing gaamt location and spacing at mid-growth stage.
Previous work based on 2D imaging and collected fiatn the top of the canopy could only be
applied at early corn growth stages. At the midaghostage, the corn canopy might overlap with
each other, thus made it difficult to differentiatdividual plant. Secondly, the developed
approach could reduce interference from leaveso#met objects by scanning a plant multiple
times. This greatly increased the possibility tentify each plant and improved the accuracy on
corn location and spacing measurements when cochpdtie 1D ranger sensors. Thirdly, the
developed, laser-scanner-based approach acquagdaéa for plant measurements; hence, led to
faster processing and communication speed and ésmadds on data processing and storage
comparing with 2D imaging methods. This was vergadnant for real-time, field

implementation.
Conclusions

A system based on laser line-scan technique wasa@®d and tested to estimate corn plant
locations and interplant spacing at mid growth asad he field experiment results demonstrated

that:

. Using a laser line scanner to identify corn plaatks from different points of view on-
the-go is a feasible method for plant countingatmm and spacing measurement. The current
system achieved 24.0 % and 10.0 % of mean totatseim plant counting at the V8 and V10
growth stages, respectively. The mean RMSEs o$yhtem measured locations for correctly
identified plants were 2.3 cm and 2.6 cm at theax8 V10 growth stages, respectively.
Comparison between system measured and manualuneekinterplant spacing h& of 0.962

and 0.951 for the V8 and V10 growth stages, regpyt
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. The system can be enhanced for better performartbe ifuture. Redesign of the wheel
encoder mechanism will increase the reliabilitg@tia acquisition. Data processing algorithm can

also be madified on reducing errors from interfgriactors and fine-tuning parameter values.

. For practical deployment, the developed systenbeampgraded by using a laser scanner
with a faster data communication rate and an omebfaest microprocessor-based data-logging

system to accommodate the travel speed of a tréetr4-6 mph).
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CHAPTER IV

ALGORITHM DEVELOPMENT OF A LIDAR BASED CORN PLANT DCATION AND

SPACING MEASUREMENT SYSTEM FOR MID-SEASON FERTILIZEAPPLICATION

The material in this chapter will be submitted tmthal of Computer and Electronics in
Agriculture after minor revision.

Abstract

Corn plant location and within-row spacing is imoit information for in-season yield
prediction and variable-rate fertilizer applicatidm improved corn plant location and spacing
measurement system was developed. A LIDAR sengbranl 00° field of view horizontally
scanned at the bottom section of plant stalks whermrart was moving down the row. Each stalk
appeared in multiple scans from various anglesest which increased the possibility for the
stalks to be correctly measured. Compared witle#rker version system, the current system
enhanced the data acquisition platform to insueegtiality of data collection, and the data
processing algorithm especially the scan registnadind stalk recognition procedure to reduce the
misidentification errors. The current system wasee on 200 plants at the V8 growth stage in
2012. A total error of 5.5% in plant counting anil.& cm of root-mean-squared error (RMSE) in
spacing measurement were achieved between ther saaasurements and the manually

measured ground truth for data collected in 2042 improved data processing algorithm was
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also tested on the data collected in 2011. The mesjor — false positive plant counting error —
decreased to 14% from 24% for data collected a¥thgrowth stage. Overall, this study was a
good basis of developing a high spatial resolusi@nsing system for real-time, variable-rate

fertilizer application.

Keywords. Plant population, in-field variability, variablate technology, image clustering and

registration.

Introduction

With the advent of genetic modified varieties aeddicides, corn plants have been planted in a
much higher density than what was before the mitt-&8ntury. Competition for resources
among plants became an issue. A study conductedia than 350 commercial corn fields in
Indiana and Ohio showed a big range of standartienr on within-row plant spacing (Nielsen,
2001). Only 16% of the fields had the standard atexm less than 10 cm; about 60% of them
were between 10 and 15 cm; and the rest of thesfiehd this number between 15 and 33 cm.
The uneven within-row plant spacing results in aaqual distribution of resources such as
water, soil nutrient and sunlight which may caulsapstress and yield loss. Krall et al. (1977)
found a consistent yield loss with larger stanabrdation of within-row spacing in Kansas and
estimated an average of 83.3 kg/ha decrease foy egatimeter increase of the spacing
variability. A seven-year study on farms acrossdnd showed a yield loss at 62 kg/ha for every
centimeter increase in the standard deviation tfimirow spacing (Nielsen, 2001). Doerge et al.
(2002) strengthened previous findings with datéectéd in lowa, Missouri and Minnesota. For
every centimeter improvement of the within-row dpgetandard deviation, the data revealed an
average decrease of 84 kg/ha in corn grain yielldhAse studies demonstrated a negative

correlation between the variation of within-row sjpg and the corn grain yield. So the within-
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row spacing has been included in the yield presticthodel as an input variable and to further
guide the in-season fertilizer management (Matitiz.e 2012). Monitoring the plant population
would also help the insurance companies in thedesessment after severe stress or disease. All
of these applications require an intensive witlin-ispacing measurement. An automatic system

is in demand to replace the time-consuming andriatiensive manual way.

Various technologies have been studied or alrepgieal for plant counting and
spacing/population measurements. Remote sensing/éy to obtain large-scale plant stand
density rapidly (Thorp, et al., 2008), while grodmased methods are used to collect detailed crop
and soil information and usually can be incorpatat&h production operations. Corn plant
counting systems on combine harvesters often usbanecal, infrared proximity or capacitance
sensors. For early and mid-growth stage plants;destructive sensing method is commonly

used in order to have a minimum impact on plantctihe vision is a widely used non-
destructive sensing technique usually having lesigdtions on the sensing proximity, object
orientation and sensing speed comparing with atbardestructive techniques such as capacitive

sensing.

Machine vision technique includes 2D imaging antheasensing. When the midseason fertilizer
is applied to corn, the canopy has almost closetbr@mages collected from the top view are no
longer a best way for the application; insteadwing from the side of plants is a better approach.
Study has been conducted successfully using a B§ereamera to measure corn interplant
spacing at early growth stage from the side vieak@mi and Tang, 2012). The light source of
the commonly available 3D range camera is modubataces from a LED array. The imaging
sensor is subjected to the saturation problem uth@estrong sunlight due to the relative low

power light source.
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Light Detection and Ranging (LIDAR) sensors complatiine scan in very short time providing
multiple distance measurements along the scas fé@itured with a reliable outdoor performance,
a smaller data volume and a faster sampling raeatse of this, it becomes one of the most
investigated range sensors in agriculture apptinatincluding the autonomous tractor guidance,
yield estimate systems and variable-rate spraystems in orchard and field crop production
(Lee et al., 2007; Saeys, et al., 2009; Chen, £2@12). Little study has been conducted using
the LIDAR sensors for by-plant sensing on corn Reither than using the laser line scanners,
previous studies used laser pointer sensors forpapulation estimate (Luck et al., 2008), plant
counting and within-row spacing measurement (Ras20h?). Both studies showed the
prospects of using range sensing technology orafiptication; however, the interference of
leaves on the measurement accuracy and a lackeotieé way to eliminate such interference

were concluded.

A system for corn within-row plant spacing measweatwas developed based on LiDAR
technology in 2011 (Shi, et al., 2013). Comparirithwther work resulted with a population
estimate for a whole field, this system featuredt®wbility of identifying the location of
individual plant along a row. Its performance wastéd on 100 plants at their mid-growth stages.
Mean total errors in plant counting were 24.0% a40d% for the V8 and V10 growth stages,
respectively. The root-mean-squared error (RMSEhefplant location measurements were 2.3
cm and 2.6 cm at those two growth stages, resgdgtin the results, the false positive
(mistakenly added) counts were relatively higheesgly at the V8 growth stage. It was largely
caused by the failure of the data processing dlyos on effectively eliminating the leaf
interference. Another problem was that the dataiiaitapn platform was cumbersome and its
wheel alignment was not good which made it harget@ontrolled in the field and affected the
guality of data collected. The overall objectivetlvd study presented in this paper was to

improve the system performance in terms of the dedguisition platform and the data processing
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algorithms to achieve a better accuracy on planbtiog, location measurement and within-row

spacing measurement. The specific objectives were:

e To improve the data acquisition system to ensuggttality of data collected;

e To improve the data processing algorithm, espegrciaé scan registration and stalk
recognition procedure, to reduce the mis-identificaerror; and

¢ To evaluate the performance of the improved systgiits accuracy on plant counting and

within-row spacing measurement at corn mid-grovége.

Materials and Methods

Data Acquisition System

A four-wheel golf cart was modified to serve asasadacquisition platform (Fig. 11(a)). The

frame between its front and rear wheels were extgna place a LIDAR sensor, the key
component of the data acquisition system. This lHDgensor (LMS291, SICK AG, Waldkirch,
Germany) measured distances between itself anettabgects along a scanning line based on the
time-of-flight principle. Its light source was alped laser beam at a near infrared band of 905 nm
(SICK, 2006). In this study, the sensor was comfiguo operate with a field of view of 100° and

a resolution of 0.25°. This resulted with 401 disereadings in a scan in a time interval of 53.28
ms. With an average of 0.447 m/s moving speedet#nt, the sensor moved about 2.4 cm

within this interval. This offset was ignored irigistudy.

As shown in Fig. 11 (a) and (c), the LIDAR sensaswnounted on a vertical rail with a
downward angle of 30° and sensing at the bottorticseof the plants. The sensor's mounting
height was adjusted so that the sensing height@plant stalks was kept within 2.5 cm to 11.7
cm above the ground. The sensing height on the plalks was selected to be consistent with the

study by Kelly (2009). The mounting height of tlesor could be easily adjusted along the rail
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Fig. 11 System setup: (a) cart with sensors; (b) an illustration of the top view and (c) an illustration of
the side view of the system operating in the field.

and locked on the carriage during system calibmatigith a 100° field of view, multiple stalks

within a row appeared in a scan as illustrateddn FL(b). Other devices including a battery,
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power convertors, a serial to Ethernet convertadiata acquisition card and an on-board laptop
were properly mounted on the cart so that the divezater of mass was close to the rear part of
the cart. The front side of the cart could be sliglifted for direction adjustment whenever it was
necessary during the travel. Because of the latatidhe center of mass and the elasticity of the
aluminum wheel frames, the rear wheels were keptiacting with the ground most of the time
during the data acquisition. The better wheel atignt of this commercial golf cart also made the
direction adjustment much easier. A shaft encoder placed on a rear wheel and associated with
the wheel rotation by the friction force createtilmen a nylon plate and the inner side of the
wheel frame (Fig. 12). The friction was strengthiehg a spring. The whole design largely
reduced the encoder reading loss due to the missiatjons which was an issue in the previous

platform (Shi et al., 2013).

A LabVIEW® (National Instrument Co., Austin, Texas) prograasweveloped to control the
sensor and conduct data acquisition. Each scarevagrted into the Cartesian coordinates and
appended to a MS Excel file with the correspondigtion stamp from the encoder reading. A
normal digital camera was mounted under the LiD&Rssr to record video during each trial as

reference.

Nylon plate with
rubber ring

Shaft encoder

Spring

Fig. 12 Encoder associated with one rear wheel.
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Field Experiment Setup

Field tests were conducted from May to June in 2@X2corn field near Lake Carl Blackwell,
Stillwater, OK. Eight corn plots were planted inotimings with an interval of three weeks
(Table 2). For the four plots planted at the same tthree of them were planted in a population
of 49,419 plants/ha (20,000 plants/acre) and tsieare was planted in 64,245 plants/ha (26,000
plants/acre). Different nitrogen rates were appligdr to the planting. Each plot had four rows.
Part of the second row in each plot was separatédeayged. There were 25 plants in each
tagged row section and 200 plants in total in igateow sections. Data was collected at their

mid-growth stage V8. Five trials were conducteddach row.

Table 2 Planting timings and treatments of the eight experiment plots in year 2012 and two experiment plots
in year 2011.

Growth Number of
Planting Population Nitrogen Stage(s) when S
o amples
Timing (plants/ha) Rate (kg/ha) Data was
(plant)
Sampled
Plot 1 Apr 16 49,419 0 V8 25
Plot 2 Apr 1§ 49,419 89.6 V8 25
Plot 3 Apr 14 49,419 179.2 V8 25
Plot 4 Apr 14 64,245 89.6 V8 25
2012
Plot 5 May 2° 49,419 0 V8 25
Plot 6 May 2° 49,419 89.6 A< 25
Plot 7 May 2° 49,419 179.2 V8 25
Plot 8 May 2° 64,245 89.6 V8 25
Plot 1 May 27 74,129 0 V8, V10 50
2011
Plot 2 May 27 74,129 89.6 V8 50

When the cart was pushed down the row, the ho@taligtance between the sensor and the corn
row was within 30 and 46cm due to the deviatiotheftrolley from the center line between rows

(Fig. 13). The sensor was mounted at a heightapwhth this horizontal distance range, the
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53 cm
LiDAR

sensor 35 cm

Row A

r"‘ heel  Wheel
2R 1R

30 cm

46 cm

Fig. 13 lllustration of the cart’s deviation between rows (not to scale). The LiDAR sensor and wheels
marked as ‘1’ show their closest position to the sensing plant row; the LIDAR sensor and wheels
marked as ‘2’ show their furthest position to the sensing plant row.

sensing height on the plant stalks was within 215aad 11.7 cm above the ground. The locations
of the 200 plants were manually measured refetorige first plant in each row section used as
ground truth data. Data collected in year 2011quttile previous data acquisition platform was

used to validate the improved data processing idfgos.

Data Processing Algorithms

Figure 14 shows a flowchart of the data proces#ingre-processing was implemented on the
encoder readings to match the start and end resdiitly the ground truth location data. In this
way, the final location calculations could be comggldirectly with the ground truth data. One
scan was read in at a time. Only the data withito33 cm of the vertical axis of the coordinates

which corresponded to the plant row were usediferfairther processing. The preliminary data

53



Start
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for each plant
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Fig. 14 Flowchart of the data processing for locating corn plants (Shi et al., 2013).
processing algorithms developed last year had eepsable performance on achieving the
functions including 1) automatically recognizinggatial stalk clusters in each scan; 2)
converting each stalk cluster from the coordinafésdividual scan to the ground coordinates,
then matching the same stalk clusters appeareiffénesht scans, i.e. scan registration; 3)
obtaining the location of each stalk. A step-bypsterutiny revealed a major error source in the
scan registration procedure during which the saalk slusters appeared in different scans were
matched with each other. In addition, the clustgprocedure for individual scan sometimes
failed to differentiate the noise clusters whiclreveery close to a stalk cluster. These procedures
were improved in the current algorithms to reduneefalse positive counts in terms of i) a few
minor improvements to eliminate noisy clustershia tlustering procedure; i) a delayed
decision-making strategy was implemented in the segistration procedure; iii) a training

process to get the optimal variable values in therahms.
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Clustering Algorithm

The clustering algorithm for automatically recognigthe potential stalk clusters from a scan of
the LIDAR point cloud had a primary clustering tiled by a screening process. In the primary
clustering, a density-based clustering algorithrs im@plemented to automatically identify stalk
clusters in a scan. This algorithm was more gerfergrocessing the LiDAR point cloud. It
started from a randomly selected data ppiahd searched for its neighboring points within a
radius,e. If at least one neighboring point was found, & rluster was formed consisting of

and its neighbor(s); otherwigewas marked as a noise point. Once there was g+iemhed
cluster, the search then continued on each neigitppoint to find their neighbors and include
them in the cluster. The search stopped when ne maw neighboring point could be found on
any of the members in that cluster. The algorithemttried to find another cluster using the same
procedures. The whole searching process stopped ahef the data points in that scan were

visited (Shi et al., 2013).

After the primary clustering procedure, a screemiracess was implemented in order to refine
the previous result. This process included thresaifwns designed specifically for the LIDAR

data processing of corn plant stalk sensing.

Operation I: Estimating the plant row line.

The purpose of predicting the plant row line waditterentiate the plant leaves from stalks. In a
laser scan, the cluster formed by a leaf hangingndaften seemed very similar to the cluster
formed by a stalk, but would have less possibititpe on the plant row line. The plant row line
was moving-averaged by the stalk clusters deténtttke previous scans to simulate a real-time
operation. A width of +5 cm was used to toleramt tlon-straightness nature of the plant row.

Clusters outside this area were considered agliaster and eliminated.
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Fig. 15 Clusters close to each other on the radial axes centered the origin was screened: (a) and (b)
show scenes of the leaf interference; (c) clustering result without screening out the two noise clusters
marked in red; the desired clusters were marked in green; (d) clustering result of the corresponding
scenes with noise clusters being screened. The black dashed lines in (c) and (d) represent the
estimated plant row line.

Operation II: Screening clusters close to each ptirethe radial axes centered the origin of the

coordinates according to their offsets from theneated plant row line.

A typical distance between a sheath and a stalkegashan 5 cm. This resulted in a 6.5°
difference between the sheath cluster and the shadker at 44 cm away from the origin along
the radial axes centered the origin. Giving soneramce, a threshold of £10° along the radial
axes was selected and clusters closed to eachlesisethan that threshold were grouped. In each
group, the cluster further away from the predigikht row plane was eliminated (Fig. 15). By

this way, the sheath interference was reduced indimidual scan; however, potential errors
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were induced by eliminating some clusters due &@r fbcations further away from the row center

line than their neighboring ‘sheath’ clusters.

Operation Ill: Screening all clusters again accardito their size on the tangential direction

centered the origin of the coordinates.

The center of masg(, y.) for each cluster was calculated (Eq. 4 and 5)aaliinke was drawn
through it being tangential to the arc centeredoitigin of the coordinates (Fig. 16);(y;) in

the equations are the coordinates of individuah g@ints in the cluster with a massmof.
Assumem; equaled to one for each data point, the total mhasluster would equal to the
number of data points it had which wasThe length of the longest line segmen} between the
projection of all the data points on the tangenind was measured and used as the size of that
cluster. A cluster was considered to be a validteluonly if its size was within 1 and 4 cm.
These thresholds were decided by the size of dalikssat V8 and V10 growth stages in this
study. After these three operations, some noisstansiwere effectively eliminated.

C Ximamixg N lexg Niigx

Xc

_ feam -y _ Yiei 1y _ Yiz1Yi

m 1-n n Eqg.5

Ye

At the end of the clustering procedure, the locatibeach identified cluster was converted from
the scan coordinates to the ground coordinatesngaldge of the encoder reading of each scan.

The data was ready for the registration process.
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Fig. 16 Clusters were screened according to their size on the tangential direction centered the origin. ‘o’
represents the recognized laser data cluster; ** represents the center of mass of the recognized cluster;
‘— —' represents the line tangential to the arc centered the origin; ‘+’ represents the projection of the
laser data point on the tangential line; D is the measured width of this cluster.

Registration and Recognition Algorithm

In the registration and recognition process, thisters in different scans corresponding to the
same plant stalk were matched, and the stalk anddise clusters were differentiated. When the
cart passed by a plant, the plant stalk generalieared in 30 — 60 continuous scans before it
moved out of the sensor’s field of view. This numbkscans depended on the sampling rate of
the sensor, the communication speed of the cosyatem as well as the moving speed of the
data acquisition platform. Multiple scans from wais points of view gave a better chance to
observe and recognize a stalk even if it was blddkeleaves in some scans. A correct
registration of the same stalk in different scamsvall as a correct differentiation between the
stalk and leaf clusters were critical in succe$giuleasuring the plant locations and spacing. A

registration and recognition algorithm has alrelegn developed in the previous work (Shi et
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al., 2013) making use of the spatial shift obtaifiech the encoder readings. However, many leaf
clusters were falsely treated as stalk clusterghviesulted in a large number of false positive

counts.

In order to solve this problem, a delayed decisiaking strategy was adopted. A cluster was not
assigned to a stalk or noise cluster immediatetii@first time it was recognized; instead, the
number of times it appeared in the consecutivesseas counted until the counts reached a
certain number. A cluster first being recognize@ a®tential stalk cluster might turn out to be a
noise cluster at the end if it did not appear ehduges; on the other hand, a cluster first being
recognized as a noise cluster could be considatedds a stalk cluster as long as it gained
enough show-up counts. Two dynamic waiting liste for the potential stalk clusters and the

other for the potential noise clusters — were updlafter each scan was processed.

Each cluster in the current scan was registerdd avitiuster in its previous scans using the
difference of the encoder readings between thentand previous scans. A scan was only
registered with its previous scans to simulateafttisne operation. In the case that the
corresponded cluster in a previous scan was bldokdeaves, the algorithm would search
backward through up to 30 scans until a matchestellpeing found. A buffered search area was
set around the estimated cluster location in aipusvscan calculated by the encoder reading to
tolerate the encoder reading error (Fig. 17). Tibe af this buffered search area was represented
using a variablebdsd. A range of values was tested ftusd (+2, +4, +6, £8, +10 and +12 cm) in

order to find an optimal value resulting with a mascurate plant location measurement.

Except for the first scan, each cluster in theantly processed scan was checked for its match

with a certain cluster in one of the previous scans

if a matched cluster in one of the previous scamshe found
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if the matched cluster has already been determiodxd a stalk cluster or a

noise cluster, then assign the cluster in the qursean to the same category

else if the matched cluster is on a waiting lisstafik clusters or noise clusters,

then put the cluster in the current scan to thstt éilso

else mark the cluster as an unmatched one

Each of the unmatched clusters in the current e@@nassigned to one of the dynamic waiting

lists.

if it is the latest one entering the sensor’s fieldiiew or there was no matched cluster

after it, then put it on the waiting list of stalkusters

else if it is in between two matched clusters ahésfirst cluster entering the current

scan, then put it on the waiting list of noise tdus

At the end of the processing of each scan, themngdists were checked to see if there were
enough counts for a particular cluster to be ddatexthas a valid stalk or noise cluster. The
minimum number of counts a cluster needed to aehiewrder to be considered as a valid stalk
cluster was represented using a variabiec. A range of values was tested fonic¢ (10%,

20%, 30%, 40% and 50% of the averaged total nuimibsrans in which a stalk appeared) in
order to find an optimal value resulting with a mascurate plant location measurement. Finally,
the interquartile of the entire location measureimenrresponding to a same stalk was averaged

to be its estimated location.
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Scan #i

Buffered search areas

Scan # j

Fig. 17 lllustration of the scan registration algorithm (Shi et al., 2013). Scan #j is the current scan while scan
#i is a previous scan. Blue dots represent stalk clusters. d is the spatial shift or the difference of encoder
readings between the two scans. Green squares are the buffered search areas.

Selecting Optimal Values for Variablesaandmnc

The value selection of the two variablesaandmncin the algorithms would influence the
accuracy of plant location measurement. A rangebfes were tested for both variables using a
training data set in order to find an optimal vateenbination resulting with minimum
measurement error. In order to decide the numbeowfits ("\ng a cluster needed to gain in

order to be treated as a valid stalk cluster, tfeeaged total number of scans each stalk appeared
n was estimated for each trial. The sensor’s fiékdew on the plant row when the cart was in

the middle between the rows was about 105 cm. Verstalk was near the edge of a scan, its
profile may be incomplete. Hence, an effectivedfief view of 95 cm was used. Then the average
number of scans each stalk appeared could be asdulising Eq. 6. The number of counts a
cluster needed to have in order to be treatedvatichstalk cluster should depend on the moving
speed of the data acquisition platformy was estimated by the total length of the row sedti

and the time used to complete the data acquiditibrvaried from row to row andvaried from

trial to trial. Five values related with the esttedtotal number of show-up scamsvere tested
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(Eqg. 7). Except the variablennc, another variable tuned wassd — the size of the buffered
search area in the scan registration procedurezeires were tested (Eg. 8). So there were 30
possiblebsamnccombinations.

FOV/o _ 95/(L/T)
t  0.053 Eq. 6

n=
nn — average number of scans a stalk appeared setisor's field of view;

FOV — sensor’s effective field of view when cart waghe center of two rows (in cm); set as 95

cm;
v — average speed (in cm/s);

t — time needed for a scan to be completed (in si)pset as 0.053 seconds;
L — total length between thé and the 28 sampled plants in a row (in cm);

T — total time spend for the cart to move from tfeclthe 2% sampled plant in a row (in

seconds).

mnc = [0.10.20.30.40.5] *n Eq. 7

bsa=1[24681012]cm Eq. 8
Due to the system malfunction during the data agtijom, only 35 out of the total 40 data sets
collected in 2012 were valid for using. Twenty-fidata sets were randomly selected out of the
35 data sets to comprise the training data setetbtel O data sets and the eight data sets callecte
in 2011 formed the test data set. An in@xwas calculated as a weighted combination of the
percentages of false negative counting emey), false positive counting erropg,) and the

RMSE of location measurememt.f,..) (EQ. 9). In this study, the weight of false négaerror

wr, Was set to 2; the weight of false positive ewgg was set to 1; and the weight of RMSE

Wrmse Was set to 0.25. This was because we consideeddlde negative error was worse than
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the false positive errop,..,s. Was zero when the RMSE was less than or equabthbcn; and
was calculated as the percentage off 2.54 cm wieeRMSE was larger than 2.54 cm (Eq. 10).
However, other weights combinations were also itigated and they were shown in Table 3.
TheOF values were calculated with edademnccombination for each training data set. Under

each combination, th@F values of the santessamnccombination were summed together.

OF = Prn* Wen + Prp * Wrp + Drmse * Wrmse Eq. 9

Pfn, Prp aNdp,ms. — the percentages of false negative counts, palstive counts and RMSE,

respectively;
Wen, Wrp @aNdwy,g, — the weights ops,, pr, andp,ms. in the index function, respectively.

0, RMSE < 2.54cm

meS e

~ YRMSE — 2.54
e —+100,  RMSE >254cm Eq. 10

Table 3 Four combinations of the weights of psy,, ps, and p, for calculating index OF.

Wrn Wrp Wrmse

Combination 1 2 1 0.25
Combination 2 1 1 0.25
Combination 3 1 2 0.25
Combination 4 2 1 0.75

System Performance Evaluation

System performance was evaluated on the data tadlét years 2011 and 2012 which consisted
of 300 plants in total in terms of the plant congtaccuracy and the accuracy of plant location
estimate and within-row spacing estimate. Onlytthiming data set including 10 trials collected

in 2012 and 9 trials collected in 2011 were useslfdk the plant counting accuracy, three errors
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were defined — the false negative error (FNEr) (Bq, the false positive error (FPEr) (Eq. 12)
and the total error (TEr) (Eq. 13). If no plant wdentified within £10 cm from the ground truth
location of an actual plant, there was a false tiegyaount for that actual plant. Similarly, if no
actual plant was located within £10 cm of the lamabf an identified plant, this resulted in a
false positive count. Only the recognized planseki to (and within £10 cm of) the location of
an actual plant was a valid count; multiple cowftan actual plant were treated as false positive

counts.

FNEr = Missing Count « 100 %
"= Ground Truth Count 0 Eg. 11

FPEr — Adding Count % 100 %
"= Ground Truth Count 0 Eq. 12

TEr = FNEr + FPETr Eq. 13
As for the accuracy of plant location and withimvrspacing estimates, the root mean square
error (RMSE) was calculated according to the systexasured and the ground truth data. In
order to keep a consistency, locations correspgndinthe false negative counts were eliminated

from the ground truth data while the locations esponding to the false positive counts were

eliminated from the system measured data.

Results and Discussion

Optimal Values of Variablessaandmnc

For each value combination of the buffered seareh and minimum number of counbsé&mnc
combination), the sums of ind&¢& values for the training set were shown in Tablg éach
table with a different weight combination. The siest number in each table was underlined

indicating the optimabsamnccombination. The italic numbers around the smafleasber
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showed an area where the errors were small. Wigeweight combination wagg, =2, wy,=1

andw,.,,5.=0.25, the smallest error was at the intersectfanrc= 0.2n andbsa= 6 cm (Table
4). It moved towards the largbsaandmncvalues as the weight of the FPEr increased (T&ble
And when the FPEr was emphasized more than the RNiIEmumber moved to the intersection
of mnc= (0.2 ~ 0.3yn andbsa= 8 cm (Table 6). This trend was reasonable. @lgel the search
buffered areallsg during the scan registration procedure, the lachgance two closed clusters
would be combined and so the less the FPEr wouldlse the larger the minimum number of
scansihing a cluster needed to appear in order to beconadichstalk cluster, the less chance of
FPEr would happen. The weight of the RMSE of tloaiion measurement did not affect much
on the optimabsa-mnccombination when the other weights were the sarablé 7); however,

it had a little effect on thesavalue selection. The small errors shifted a liiti¢he smallebsa
when the RMSE of the location measurement was uasiigimore. An advice according to these
results was that the optimiada-mnccombination needs to be selected according tepheific
application. In this studynnc= 0.2n andbsa= 6 cm was selected with the weight combination

of wep, =2, wep=1 andw,.,s,=0.25. The test set confirmed the training restdiofe 8).

Table 4 Sum of the OF values at each buffered search area (mnc) and minimum number of counts (bsa)
combination for the training set with weight combination of wy,=2, wr,=1 and Wy, =0.25.

mnc
0.1n 0.2n 0.3 0.4n 0.5
2 568.9 380.8 420.1 684.3 1040.8
4 501.8 329.1 321.1 429.3 758.3
6 319.2 199.3 2315 378.1 607.8
bsa (cm)
8 271.1 231.3 252.1 400.1 616.6
10 411.1 435.8 489.0 608.5 836.7
12 8354 878.3 949.8 1065.6 1233.7
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Table 5 Sum of the OF values at each buffered search area (mnc) and minimum number of counts (bsa)

combination for the training set with weight combination of wg,=1, wg,=1 and wypse=0.25.

mnc
0.1n 0.2n 0.3 0.4n 0.5
2 528.9 328.8 316.1 416.3 592.8
4 473.7 301.0 249.0 269.3 430.2
6 283.0 171.6 164.1 217.6 339.6
bsa (cm)
8 179.0 143.2 139.1 208.1 335.8
10 252.6 247.7 287.1 331.0 467.7
12 509.6 525.2 576.3 635.1 731.8

Table 6 Sum of the OF values at each buffered search area (mnc) and minimum number of counts (bsa)

combination for the training set with weight combination of wg,=1, wg,=2 and wyp=0.25.

mnc
0.1n 0.2n 0.3 0.4n 0.51
2 1020.9 632.8 512.1 564.3 696.9
4 941.1 565.0 425.1 397.2 529.9
6 535.1 291.1 256.2 290.1 378.8
bsa (cm)
8 295.8 183.2 160.1 229.9 357.1
10 290.8 289.5 304.0 352.0 467.6
12 568.2 612.0 628.5 715.9 774.4
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Table 7 Sum of the OF values at each buffered search area (mnc) and minimum number of counts (bsa)

combination for the training set with weight combination of wg,=2, wg,=1 and wypse=0.75.

mnc
0.1n 0.2n 0.3 0.4n 0.5
2 554.5 390.5 428.2 677.0 1082.7
4 488.3 342.9 327.1 439.7 738.6
6 319.0 210.2 234.6 386.9 615.3
bsa (cm)

8 269.6 263.5 288.4 409.4 660.0
10 516.4 518.2 609.2 729.6 961.8
12 1026.6 1109.5 1185.7 1345.0 1562.1

Table 8 Sum of the OF values at each buffered search area (mnc) and minimum number of counts (bsa)

combination for the validation set with weight combination of wg,=2, wg,=1 and wpse=0.25.

mnc
0.1n 0.2n 0.3 0.4n 0.51
2 347.3 248.0 253.3 378.2 622.6
4 363.3 242.1 234.3 292.2 478.9
6 297.5 219.5 226.5 258.2 406.8
bsa (cm)

8 324.0 308.8 323.8 375.1 465.2
10 460.5 491.6 559.2 624.3 704.7
12 860.0 911.7 970.1 1027.8 1102.0

Plant Counting Error

The current system achieved an averaged 1.0% (8[2%) FNEr, an averaged 4.5% (SD =
5.1%) FPEr and an averaged 5.5% (SD = 5.3%) TEhetesting data set collected in 2012. It
also made an improvement on the data collectedan 2011 with an average 3.6% (SD = 2.2%)
FNEr, an 8.1% (SD = 4.2%) FPEr and an averagedd {SD = 5.5%) TEr (Table 9).

Comparing with the performance of the previousieergata processing algorithm (Shi, et al.,
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2013), the current data processing algorithm aeuevlarge improvement of the plant counting
accuracy on the same data collected in 2011 (Big.The averaged FPErs dropped from 22.0%
to 10.7% for data collected at V8 growth stage faoih 7.0% to 3.0% for data collected at V10
growth stage. The averaged FNErs increased abigtlesing the current data processing
algorithm — from 2% to 3.3% and from 3.0% to 4.080u8 and V10 growth stages, respectively
— which was mainly due to the adoption of then€ variable to eliminate clusters not appearing
enough times in the scans. However, due to the laduction of the FPEr, a significant overall
improvement on the averaged TErs was still achiewethe 2011 data — it decreased from 24%
to 14% for V8 data and from 10% to 7% for V10 dé#tavas also noticed that the standard
deviations of the errors resulted from the curedgorithm were also smaller than those resulted
from the old algorithm which indicated a more canstsystem performance by the current

algorithm.

Table 9 Errors of plant counting and stalk location estimates compared to ground truth data.

RMSE of RMSE of
FNEr (%) FPEr (%) TEr (%) location spacing

estimate (cm) estimate (cm)

2012 1.0 (1.7) 4.5 (5.1) 5.5(5.3) 1.9 (0.2) 1.9 (0.4)
2011 3.6 (2.2) 8.1(4.2) 11.7 (5.5) 2.4 (0.6) DB)

" Numbers in the parenthesis represent standardt@avi
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Fig. 18 Comparison of errors between old and current algorithms on data collected in year 2011. Data labels
on top of the bars were the standard deviations across the trials.

Plant Location and Spacing Measurement Error

The current system achieved averaged RMSEs ofl &0 = 0.2 cm) and 2.4 cm (SD = 0.6
cm) on the plant location measurement for therigsiata set collected in 2012 and 2011,
respectively (Table 4). Similarly, the system meadwvithin-row spacing was highly correlated
to the manually measured ground truth data in peéns (Fig. 19). For the 2012 data, an RMSE
of 1.9 cm (SD = 0.4 cm) and & of 0.958 with a slope of 1.01 and an intercepOaf cm were
achieved. For the 2011 data, an RMSE of 2.6 cm%®B cm) and aR® of 0.944 with a slope

of 0.964 and an intercept of 0.9 cm were achie@ahsidering with the average within-row plant
spacing which was about 20 ~ 25 cm (Fig. 20) aeduttavoidable inaccuracy in the ground truth
data because the manual measurements were contiyalé@terent operators, these errors on

plant location and within-row spacing measuremer@se within an acceptable range.
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Fig. 19 Comparison between system measured and manually measured within-row spacing on (a) data
collected in year 2012 (n = 188) and (b) data collected in year 2011 (n = 140).

This performance was close to the performanceeopthvious system on the same data collected
in year 2011. The previous system had an RMSES&. (SD = 0.8 cm), aR® of 0.962 and a
slope of 0.975 with an intercept of 0.643 in thgression equation on the within-row spacing
measurement at V8 growth stage; and an RMSE afr@.(8D = 0.1 cm), aR’ of 0.951 and a
slope of 0.995 with an intercept of 0.247 in thgression equation on the within-row spacing
measurement at V10 growth stage (Shi, et al., 2@iBge the data was collected using the
previous data acquisition platform, the differenoaghe results were only due to the change in
the data processing algorithms. The slight decreagheR? values was trivial considering with

the large increase on the plant counting accutaeyas reasonable that the successful detection
of those ‘not easily detected’ and previously nmiggdlants by the improved algorithm induced

more errors on the plant location and within-row@pg measurements.

The manually and system measured within-row spatatsimilar distributions (Fig. 20). For
the 2012 data, the manually measured within-rowisgshad a mean of 25.6 cm (SD = 8.6 cm),
while those measured by the current system hadaa wie25.7 cm (SD = 8.8 cm). For the 2011
data, the manually measured within-row spacinganagan of 20.4 cm (SD = 9.9 cm), while
those measured by the current system had a mexh®Em (SD = 9.8 cm). Each column in Fig.
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20 represented the frequency of the certain withim-spaces no greater than its tick marked
number. We could see that the system tended tothessieasurements on the small spaces
which were less than 10 cm on both years’ datas Wais largely due to the filtering algorithm in
the clustering procedure eliminating the sheatkrfatence as well as the 6 cm buffered search
area in the registration procedure. The normafidigion pattern of the errors of the system
measured within-row spacing on both years’ datéigilgrdemonstrated the reliability of the
system performance (Fig. 21). Each column in FigalBo represented the frequency of the
certain errors no greater than its tick marked remmbhe measurement error had means of 0.10
cm (SD =1.8 cm) and 0.16 cm (SD = 2.4 cm) on tte. dollected in 2012 and 2011,
respectively. The error of the 2011 data resultethfthe previous data processing algorithm had
a mean of 0.1 cm with a SD of 1.9 cm (Shi, et20113). The slight increase of the spacing
measurement error was also very possibly due tatge decrease of the plant counting error —

more error sources were included in.
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Fig. 20 Histograms of manually and system measured within-row spacing in (a) year 2012 and (b) year

2011. Each column in the plots represented the frequency of the within-row spaces no greater than its tick
marked number.
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Fig. 21 Error distribution histograms of within-row plant spacing measured by the current system on data
collected (a) in year 2012 and (b) in year 2011. Each column in the plots represented the frequency of the
errors no greater than its tick marked number.
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Conclusions

A corn plant location and spacing measurement sybtesed on LiDAR technology was
successfully improved in terms of its data progegsigorithm and its data acquisition platform.
The performance of the current system was evaluaiddompared to the previous system on

existing and newly collected field data. Major a&sl@ments were:

¢ By a delayed decision-making strategy in the segistration procedure and an
optimization on the variable values in the curmatia processing algorithm, the major
error in the previous system — the false positivers in the plant counting at V8 growth
stage — was largely reduced from 24.0% to 14.0%hersame data collected using the
previous data acquisition system.

e Current system resulted with an averaged 5.5% aré®d mean total errors in plant
counting, 1.9 cm and 2.6 cm mean RMSEs in plarttimitow spacing measurement on

the data collected in year 2012 and 2011, respygtiv
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CHAPTER V

CORN STALK DIAMETER MEASUREMENT USING TWO MACHINE VSION

APPROACHES

The material in this chapter will be submitted tafsactions of ASABE after medium revision.

Abstract

Corn plant stalk diameter correlates well with figeain and biomass yield and has been
recognized as an important variable in predictiotgptial yield in season. In this study, two
approaches based on machine vision technologyutonatic on-the-go corn plant stalk diameter
measurement were developed and compared. The LiB#RRGB Approach was a combination
of a ground-LiDAR sensor and a common webcam. Th&8nge Imaging Approach used a 3D
range camera which offered the distance and sindgeriation simultaneously. The sensors were
sensing at the lower section of plant stalks fromdide view when they were moving along the
row. Data and image processing algorithms wereldped for each approach to identify the
existence of a plant stalk and estimate its diametieg both shape and range information.
Registration was implemented to match the samk istalifferent scans/images. Both approaches
were tested with four row sections in total 98 daat their V12 growth stage in 2013. The

averaged root-mean-squared-errors (RMSE) of diametasurement were 4.1 mm and 3.9 mm
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for the LiIDAR-and-RGB Approach and 3D Range Imaghmproach, respectively. The major
error source of the LIDAR-and-RGB Approach was fribra stalk segmentation in color images
and the mis-synchronization between the two sehgiew. The major error source of the 3D
Range Imaging Approach was noise pixels due tdaihee of background light resistance. This
study provided a basis of developing a real-timm @ant stalk diameter measurement system

for in-season yield prediction and variable-ratpligation system.
Keywords

Plant stalk diameter, variable-rate technology,A) 3D camera, image processing

Introduction

Corn stalk diameter is one of those common indisadd corn plant growth status. A plant with a
thicker stalk diameter is usually considered tdealthier and have a higher yield potential than
other plants at the same growth stage. A studgwtted at both irrigated and non-irrigated tilled
locations in Oklahoma and Ciudad Obreg6n, Mexiommnf2009 to 2011, found that the index of
‘stalk diameter x plant height’ for individual coptant correlated well with its final grain yield
(Kelly, 2011). The Rwas 0.67 at the V12 growth stage. Another studyluoted during the

same time period at non-tillage and non-irrigataghtions in Alabama also found a high
correlation between final corn grain yield and edicting model using plant height, plant
population and stalk diameter (Mourtzinis et ab13). The Rwas 0.77 at R1 growth stage. The
model also had a high correlation with final stob@mass (R= 0.85). These studies not only
confirmed the importance of stalk diameter as dicator of corn plant health, but also proved

the possibility of predicting corn potential yietdseason using stalk diameters.
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Not much research has been conducted so far foausadtomatic, non-contact, on-the-go corn
stalk diameter measurement.  Most of the relevesgtaneh was in corn population estimation
and plant morphological characteristics sensing. dVailable technologies included capacitance
sensing and optical sensing. Since the capacitare@lant stalk could change with its moisture
content, the capacitance of a stalk could be intireorrelated to its diameter or directly related
to its growth status. A single-sided capacitivesee was patented to detect the existence of a
plant stalk using the moisture change in the sénpooximity (Nichols, 2000). The sensor was
mounted on the row separator of a combine harveBtés sensor had little interference from
leaves and other debris in the field due to their inoisture content. Li et al. (2009) designed a
single-sided biomass proximity sensor based ordpacitance measurement which was installed
on the row dividers of the combine harvester. Tdéreser had an accuracy of more than 95% on
corn plant population estimate. However, both eSthcapacitance-based designs required a very
close proximity (less than 3 cm) between the senand the detected plant stalk; otherwise the
accuracy could not been assured and the interfer@oald be induced in. In practical fertilizer
applications, a close proximity to the plants fritra sensing mechanism is often difficult to

achieve.

Okiror (2012) conducted a preliminary study on iiiierowave dielectric property of corn stalks
which could be related with the stalk charactersssuch as stalk diameter. Corn plants harvested
in field were brought to the lab to take their didtic property measurements using a bistatic
(two-sided) microwave scattering system. Compangas conducted between the system
measured and manually measured stalk diametecdigated from V8 to VT growth stages
during which the stalk diameters varied from alklbbam to 3 cm. The R2 of this comparison was
0.66 when the data was taken with the leaves osttles; and the R2 was 0.84 when the leaves
were stripped off. They did not give the statisb€shese models on stalks with smaller diameter

difference, such as stalks at the same growth stage
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A photoelectric sensor with an emitter and recepaér was designed and installed on a combine
harvester to measure corn plant stalk diametespading (Lobdell and Hummel, 2001). The
plant stalks interrupted the light beam of the semghich was mounted on the corn header during
harvesting. The interrupting and non-interruptiimget were multiplied by the vehicle speed
obtained from a radar transducer to calculate staleters and spacing. Too small or large
estimated diameters were eliminated by softwateriiilg. A problem they mentioned was plant
leaves being falsely counted as plant stalks. &kilile finger’ was tried to reduce the false

counts but resulting with no significant improvernein air-jet system was proved as a more
effective way to remove leaves out of sensor'sif@lview. They reported an error of 9.5% in

the diameter measurement. The inaccuracy of vetielel speed measurement as well as the
inaccuracy and delay in the interrupting time measent were discussed as major error sources.
If the stalk diameter could be measured in a waighvless relies on the vehicle speed
measurement, the measurement error could be red8ireiarly, Rascon (2012) used a 1D laser
pointer horizontally shooting at the bottom sediof corn plant stalks to measure the stalk
diameters based on the time-of-flight principlee ®ensor was mounted on a cart moving along
the crop row and its locations were measured thaét sncoder. The displacements when the
laser beam was blocked by stalks were used astinea¢ed stalk diameters. The unevenness of
the field surface caused the error between the umedglisplacements and actual stalk diameters.
Leaves and other debris also caused false positiees. Both studies indicated that a method
independent on the measurement of sensor displatemeehicle speed may improve the

accuracy in stalk diameter measurement.

Many studies can be found on using machine visgaaches to measure plant morphological
characteristics. Laser scanning technique was fosdcke foliage density and wheat stand
density estimation by calculating variations inelagenetration depths (Wei and Salyani 2004,

2005; Saeys et al. 2008; Chen et al., 2012). Golaging has been explored in several studies
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for corn plant counting and spacing measuremetttdrpast few decades. Shrestha and Steward
(2003, 2005) developed and tested a machine vimead corn plant population sensing system.
Algorithms were developed for color image sequepciegmentation and plant recognition in
order to count corn plants and to estimate plagdtion and spacing. The root-mean-square errors
(RMSEsS) in population estimates were in the rarfde-6 % compared with manual counts. Tang
and Tian (2008a, b) developed a real-time cropinoage reconstruction and plant identification
system for automatically measuring the spacingwérged corn plants. They achieved an overall
RMSE of 1.7 cm and an’Rf 0.96. All of these studies targeted at earbywgh stage corn plants

prior to the canopy closure.

Nakarmi and Tang (2010) developed a system to measun plant within-row spacing at

growth stages V3 to V6 using side-view images feoBD range camera. Background was
eliminated by distance thresholding. The skeletdrtke vegetation objects corresponding to the
bottom section of the stalks were used for statka®n. Images were stitched together to re-
construct a field map based on the recognized kia#itions and encoder reading of each image.
They reported a 2.2% plant mis-identification eod RSME of 1.7 cm in within-row spacing
measurements. They suggested a potential improvesneghe system accuracy by viewing

plants from various perspectives.

Similar to the corn stalk diameter measurementhmacvision technology was applied on the
stem diameter measurement of pine seedlings (RigndyKranzler, 1988). Grey scale images
were captured for individual pine seedling withiangeter ranged from 2.3 to 6.0 mm laid on a
conveyor belt using a high resolution industriaheaa. The location of the root collar area of a
seedling was identified by detecting rows with Iesck-to-white transitions in an image. The
average width between the transitions along thoas was used to estimate the stem diameter of

a seedling. A mean coefficient of variation of 7.8%s achieved for 100 seedlings with 20
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replications. This study demonstrated the feagjhilf using machine vision to accurately

measure plant stem diameters.

One thing needs to be pointed out is that a cantps bilateral symmetric and the section of its
stalk is an ellipse. The orientation of the ellifseandom when a shoot germinates but it changes
during its growth to optimize the sunlight interiep. This random orientation makes the corn
plant stalk diameter measurement even more congticén this study, approaches were
proposed and tested to profile the stalk widthefi@rious angles of view to approximate the

actual ellipse shape.

A corn plant location and within-row spacing measaent system was developed based on
LiDAR technology (Shi, et al., 2013). Line scanfiles were collected continuously from a
LiDAR sensor mounted on a moving cart scanningzoaitially at the bottom sections of plants.
Each stalk appeared as a cluster of data poitkteitaser scan and would keep showing up in
several successive scans from various angles asithmoving down the row. However, due to
the relative large beam divergence (0.29°) ancttige effect of the sensor’s laser beam, it was
concluded that the LIDAR sensor itself was notisight to accurately measure the stalk
diameters. In this study, two sensing approaches p@posed — the LiDAR-and-RGB Approach
based on a combination of a LIDAR sensor and a comRGB camera and the 3D Range
Imaging Approach based on a 3D range camera -héotdrn stalk diameter measurement. The
overall objective was to develop systems for the pnoposed sensing approaches, and to
evaluate their feasibilities and performances thhofield experiments. The specific objectives

were:

o To develop data acquisition systems for each pexgpapproach and collect field data for

corn plant stalk diameter measurement;
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e To develop data and image processing algorithmedor plant stalk diameter
measurement; and

e To evaluate system performance at the V12 mid-dratage of the corn plants.

Materials and Methods

System Setup

Considering with the shortcomings of using a LiDA&éhsor alone in the width measurement for
small objects, two approaches were proposed: thaRiand-RGB Approach was based on the
combination of the LIDAR sensing and the RGB imggamd the 3D Range Imaging Approach
was based on a 3D range imaging technology. Bqgthoagphes targeted at the lower section of
corn plant stalks where less leaves existed. TBAR-and-RGB Approach quickly detected the
existence of potential stalk objects in a lasenagsing their range information; then verified
those potential stalk objects and measured theithvin a corresponding RGB image; and finally
measured the stalk diameters using their widtiberRGB images and their distance away from
the sensors. The 3D Range Imaging Approach congpthtestalk recognition, the distance

measurement and the stalk diameter measuremegtthsimata from the 3D range camera.

All the sensors were mounted on a modified golf.cdre LIDAR sensor (LMS291, SICK AG,
Waldkirch, Germany) was mounted on a rail so ttsabight could be adjusted (Fig. 22). With a
NIR light source at 905 nm, this sensor measuredlistance based on the time-of-flight
principle. Instead of a fixed light beam, a rotgtmirror inside the sensor deflected the light
source to sweep in a circular pattern so that sfepe scan was formed out of the sensor (SICK,
2006). The LIDAR sensor was configured with a 166t of view and a 0.25° resolution (Fig.

23a). It was mounted with a 30° downward angleeepkthe scanning level at the lower section
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LiDAR sensor

3D range camera

RGB webcam

Fig. 22 Data acquisition system: (a) modified golf cart; (b) close view of sensors mounted on cart.

of the plant stalks (about 12 cm above the plaotsio(Fig. 23b). Each scan took 53.28 ms to be
completed. With an average speed of 0.447 m/sg;ahtecould move about 2.4 cm during this
period. This offset was ignored in this study. Beasor was configured with its highest
communication rate of 500 kbps to make sure adfaist acquisition. Details can be found in Shi

et al., 2013.

A webcam (LifeCam, Microsoft, WA) was mounted ditgander the LIDAR sensor in a way
that the mid-point of the LIDAR sensor’s field dew almost overlapped with the horizontal
centers of the webcam'’s field of view (Fig. 23adpwever, the spatial projection of the locations
of the two sensors’ light sources had an offsettdube way they were mounted (Fig. 23b). The
offset needed to be precisely determined in omlendtch the laser scans and the RGB images.
This webcam was a common low-cost RGB camera witB°aliagonal field of view (Microsoft
Corporation, 2012) and a 62° calibrated horizofiedd of view. It was configured with a
resolution of 360 x 640 (vertical x horizontal) i bitmap picture format in order to have a
minimum picture storage size while keeping enougbrcand shape information. The webcam’s
frame rate could be up to 30 fps depending on piseating system. Because it was viewing
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horizontal to the ground, not only the plants ia #djacent row but also those in the further rows
were all inside its field of view. The webcam’s &éength was adjusted by software so that only

the adjacent plant row was focused in the images.

A 3D range camera (SR4000, MESA Imaging AG, Zueriitzerland) was mounted next to
the LIDAR-webcam combination (Fig. 22, 23). Thisiser collected grey-scale images and
distance images simultaneously. With a NIR lighirse at 850 nm, the distance measurement
was based on the phase shift principle (MESA Ingg2®11). The resolution of this sensor was
144 x 176 (vertical x horizontal) with a correspmagfield of view of 34° x 43°. The major
problem of this sensor was its relative less ahiftbackground light resistance. Though its
integration time could be adjusted, the detectiarlp were easily saturated if strong sunlight
was received. To address this problem, a shadeeded on the top of the cart and the sensor’s

integration time was set to automatically adjusancoptimal number.

A LabVIEW® (National Instruments Co., Austin, Texas, USA)greon was developed to control
the three sensors simultaneously. Each laser sdarage was location-stamped with its
corresponding encoder reading, time-stamped wilsystem time of the laptop and saved on the

laptop for offline processing.
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Fig. 23 Schemetic diagram of the corn plant diameter measurement system with two machine vision
approaches (not to scale): (a) Top view and (b) side view.

Field Experiment Setup

Field tests were conducted in June, 2013, inextitiorn field near Lake Carl Blackwell in
Stillwater, OK. Four plots were planted with twoppitations and three nitrogen pre-application
rates (Table 10). Part of the second row in eachwphs tagged. Originally each tagged section
contained 25 plants; however, due to damages,Zhplants were survived in plot 1 and 3 which
resulted with a total of 98 plants. Data was céddaising the two approaches at V12 growth

stage. Manual measurements were taken for plaatitospacing using a tape ruler and the stalk
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diameter along the row direction using a calipergfach sampled plant. Fig. 24 is the box plot of

the manually measured ground truth stalk diamdterthe four plots.

The horizontal distance between the LIiDAR sensdrtha corn row varied from 30 to 46 cm
when the cart was pushed along a row due to thiatitav of the cart from the center line
between rows (Fig. 25). The mounting height oftH2AR sensor was adjusted so that the scan

line on the plant stalks was kept between 7.6 &8 dm above the plant roots.

Table 10 Plot treatment design.

. Population Nitrogen rate Number of
Planting Date (plants/ha) (kg/ha) samples Growth stage
Plot 1 Mar 28 49,419 0 24 V12
Plot 2 Mar 26 49,419 89.6 25 V12
Plot 3 Mar 2 49,419 179.2 24 V12
Plot 4 Mar 2 64,245 89.6 25 V12
40.00
35.00 A
I [ ]
30.00 A
T I .
£
— 25.00 -
& l l
()
€ 20.00 -
©
—(_E 15.00
(7))
10.00
5.00 A
0.00 T T T
plot 1 plot 2 plot 3 plot 4

Fig. 24 Box plot of manually measured stalk diameters of four testing plots.
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Fig. 25 lllustration of the cart’s deviation between rows (not to scale): Case 1 (see P1) was when the cart
was the closest to plant row A and Case 2 (see P2) was when the cart was the furthest to plant row A.
Designations 1L and 2L indicated the positions of left wheel, and 1R and 2R indicated the positions of right
wheel in these two cases, respectively.

Sensor Calibrations and Data Processing Algorithms
LiDAR-and-RGB Approach
Sensor Calibrations

1. Distortion correction of the webcam

A chess-board with 11 x 11 effective squared gedsh 30 x 30 mfmwas made to calibrate the
webcam. The result showed the distortion of thibaaen was trivial enough to be ignored (Fig.

47 and 48 in Appendix E).
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2. Matching two sensors’ data

The most important procedure of the sensor caidwan the LIDAR-and-RGB Approach was to
match the data points in a laser scan with thelpirea corresponding RGB image. The
webcam’s datasheet only gave a diagonal field@finaf 73°. To calibrate its horizontal field of
view, a paper board marked with grids was placedibint of both sensors at known distances
(Fig. 26). Fig. 27 shows the calibration proc&3s., andO,y, in the figure were where the light
sources of the LIDAR and the webcam located, resmyg, with a distance afd. A1Qy,B1
comprised the webcam'’s field of view, RQ,s.,S comprised the LIDAR sensor’s field of view
which was 100°. The shaded area was their comnetohdf view.O,,sM’ was the mid light

beam of the LIDAR sensor whil@4,M1 was the horizontal center of the webcam’s fieldiefv.
The offset betwee@,seM’ andO,4,M1 formed an angleda. Parameters unknown and needed to

be calibrated werer, Ad andAc.

Fig. 26 In order to obtain the webcam’s horizontal view angle, a paper board marked with grids was placed
at three distances away from the sensors.
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Fig. 27 Top view geometry of the LIDAR and webcam'’s relative locations and their coordinates. Ojaser and
Orgp Were the light sources of the LIDAR and the webcam, respectively. O;gAl and O;g,B1 comprised the
webcam’s field of view. OjaserR and OjaserS comprised the LIDAR sensor’s field of view. OjaseM’ was the mid
light beam of the LIDAR sensor while O,gM1 was the horizontal center of the webcam'’s field of view. The
shaded area was their common field of view.

a. Decide the distancéd, between two sensors’ light sources and the webcam

horizontal field of viewg

A paper board was first placed at locatdiB1 (Fig. 27), then was moved a distamge= 6 cm
closer to the locatior§2B2, and was finally moved a distandg = 5 cm closer to the location
A3B3. At each location, the halves of the horizonteldfiof view at those three distanchs/,
andl;, were obtained by counting the grids on the boahg. width of a minor grid was 1 cm.
This resulted; = 25 cm,[, =21 cm and; = 18 cm. Then three differemtvalues were
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calculated from Eq. 14, 15, and 16. Thxeealues were averaged resulting witk 28 cm. The
reason to over defineby three equations was to reduce the error in uneagent. Knowinge

andl1, (2, I3, the webcam’ horizontal field of view was calculated to be 62° (Eq. 17).

x+d, L

x+d1+d2_l1 qu4
x 3

x+d, I, Eq. 15
x 13

x+d1+d2_l1 Eq. 16
2 x+d;+d, Eq. 17

Knowing the LIDAR sensor was mounted with a 30° dex&rd angle, the distance data
measured by the LIDAR sensor was converted to ¢hiedmtal distance between the sensor and
the object. The LIDAR sensor’s coordinates wera tthefined as its converted horizontal
coordinates. At the same time, the LIDAR sensoa ghats taken to measure the distance of the
paper board at each of those three locations. ffegahce between the distances measured by
the LIDAR sensor and the corresponding distanclesileed using the webcam’s datal, was

5.5 cm. The mounting of the webcam resulted in allsmcline angle of the objects in the RGB

images. This angle was measured in the images @85& and used to correct the stalk diameter.

b. EstimateAa

As shown in Fig. 27, the paper board was placedkatown distance away from the LIiDAR
sensor and the webcam. The area out of the webdaatd ©f view was then cut off so that only
the area as wide as the webcam'’s field of view kegs. The LIDAR sensor’s data was collected

then to see which light beams corresponded todgesof the paper board. For example, when
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the paper board was placed at location in Figtt&|aser light beams #88 and #305
corresponded to the edges of the paper boardabhsidaser light beam #200, laser light beam
#196 corresponded to the horizontal center of telecam’s field of view. the center offsit of
the two sensors was known by this way. Severaloatpns were conducted and an averaged
final result wasta = 1.25°. So far, the geometry of locations and faldiew for the LIiDAR

sensor and the webcam was known.
c. Develop dynamic look-up-table for matching

For a random data poiRtin the LIDAR sensor’s coordinat@$, s, 01aserViaser. @anNgles andé in
Fig. 28 were known by knowinde, d;,s.,- andAd. Comparing? with the webcam'’s total field

of view, a, the column of pixels correspondingRavas identified in the RGB image.

Yiaser 4 VY
Tl yllaser
Al ‘l B1
N \
v
” \‘ : i- 7;: '.', di
R U \ : b / ){
\w\..\ K \e / s l\ dlaser
\\ \ I’t?’ / I// = Xmgh
il
N4 | Ad
~ \.W __I_L B __* ————— -_“-t Klaser
0 * X'laser
laser

Fig. 28 Matching data point P from the LIDAR sensor's coordinates X,se;-01q5er¥ 40, 10 the webcam's

coordinates XrghOrghYyrgp-

3. Actual object width calculation
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Fig. 29 lllustration of diameter calculation based on object’s width in an image. The black round area
represents the section of the object. 0 is the sensor location, « is the sensor’s view angle, r is the sensor’s
field of view at distance d,,, w is the object diameter.

As shown in Fig. 29, the webcam'’s field of vievat a random distan(r.%, could be calculated
(Eqg. 18). The horizontal resolution of the webcaasww40 pixels. Assume the object had a width
of Wimage PiXels in the image. The proportion of the objeatth to the image width in terms of
pixel numbers should be the same as the proparfithe actual object width to the sensor’s field

view (Eq. 19). Substitute with Eq. 18, we could get the actual object siz€Eq. 20).

r = 2d, - tan (%)

Eg. 18
Wimage w
640 r Eq. 19
_ Wimage " T
640
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w = 640 : (Wimage : d) Eq. 20

Data/Image Processing Algorithms
Step 1. Laser scan and RGB image matching usireygtamps

In this study, RGB images were collected at a lofneyuency than that for the laser scans. For
each RGB image, a laser scan with a time stamesias the time stamp of the RGB image was

found to form a laser-RGB pair.
Step 2. Clustering in laser scan

A density-based clustering procedure (Shi, efall3) was implemented for the paired laser
scan. Laser data points close enough to eachwtrergrouped together. Unspecified number of
clusters was formed until all the data points beiisged. Potential stalk clusters were further
screened according to their width along the tarigkdirection centered the coordinate origin.
Only those with widths between 1 and 5 cm were ki&ptshown in Fig. 30a, four clusters were
found and marked in colors. The area compasseleoset lines representing the field of view of

the webcam which means the clusters in pink and ayexe in the paired RGB image (Fig. 30Db).
Step 3. Stalk recognition in the paired RGB image

The vegetation area in the paired RGB image waseptpd based on the red (R), green (G) and
blue (B) values of each pixel. Generally four typégpixels could be found in an image: the stalk
pixels, the leaf pixels, the soil pixels and thight pixels due to the over exposure under
sunlight. Stalk pixels and leaf pixels usually tader G values than their R values; while soll
pixels usually had larger R values than their Gueal Most of the RGB images collected showed

that the over exposed pixels usually had all th&Rnd B values greater than 200 while the rest
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of the pixels had values less than 100 with a uilati& type. Leaf pixels could have similar or
slightly larger B values than G values while thed@nponents of the stalk pixels were usually the
largest. Based on these observations, a pixel effged as a stalk pixel if the rule shown in Eq.
21 was met. Fig. 30c shows the binary image dftervegetation segmentation for Fig. 30b. A
threshold was set as the minimum number of pixelsd stalk object should have. Connected
areas with sizes greater than this threshold wepé (Fig. 30d) and small holes in these areas
were filled (Fig. 30e). Finally, the sum of the gixalues along each column of Fig. 30e was
obtained (Fig. 30f). The center location of eactedked plateau with readings of 360 on the
vertical axis was calculated as the detected logatf a potential stalk in the RGB image.
Plateaus with too small or large width were eliniaia Also if a plateau was close to or touched
the edges of an image which indicated the stalflpnmight not be complete, it was also

ignored.

(Max(R,G,B) <200) & (R<G) & (B<G) _—

Step 4. Cross-verification of detected stalks

In each laser-RGB pair, a stalk had two profileme was from the laser; the other was from the
RGB image. The locations of a stalk measured filwgrtwo sensors were usually different due to
the delay during data acquisition. These two messlacations also needed to be cross-verified
in order to eliminate false detection. The corresipog location in the RGB image of a detected
cluster in the laser scan was estimated by therdignaatching strategy (Fig. 28). Then it was
checked to see if a detected stalk in the RGB incagéd be found within a certain buffered area
(set as =70 pixels by trial-and-error in this studiythis estimated location. A stalk measurement

was valid only when it was verified in both thedascan and the RGB image.

Step 5. Diameter calculation
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Fig. 30 The data/image processing for LIDAR-and-RGB Approach: (a) and (b) show a laser-RGB pair.
In (a), blue ‘o’s represent laser data points; color ‘o’s represent recognized clusters; the area
compassed by the red lines represents the webcam'’s field of view. (c) Result after the vegetation area
segmentation. (d) Connected area(s) with a size greater than 10800 pixels. (e) Result after filling in
holes smaller than 100 pixels big. (f) Sum of pixel values along the columns of (e).

The diameter of a detected stalk was calculateddas its width (number of pixels) in the RGB

image and its distance measured in laser scar?2(Bq.

Step 6. Registration between laser scans w/ couatebles
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After obtaining the diameters and locations of diete stalks in each laser-RGB pair, the same

stalk appeared in different laser-RGB pairs weggstered based on their encoder readings (Shi,
et al., 2013).

3D Range Imaging Approach
Sensor Calibration

1. 3D range camera distortion correction

In order to correct the sever barrel distortiothaf 3D range camera used in this study, a
calibration was conducted to obtain the rectifmatmodel. The distortion was successfully

corrected for both amplitude and distance images @).

(b) (d)

Fig. 31 Scene with a box and a bottle: (a) distorted amplitude image, (b) undistorted amplitude image, (c)
distorted distance image, (d) undistorted distance image.
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2. Actual object size calculation

The width calculation in a distance image was similith that in an RGB image. In Eq. 22,
was the calculated width of an object with the sami¢ asd; a was the view angle of the 3D
range camera which was 435;,,,,. was the width of the object in the distance image
represented by number of pixels; ahdas the distance the object away from the canidra.
only different was the horizontal resolution of tfistance image was 176 pixels.

2 - tan (%)
W=l | (Wimage ) Eq. 22

Image Processing Algorithm
Step 1. Stalk feature extraction in distance image

The potential stalk pixels in a distance image segnented based on the pixels’ distance
readings. A binary image was resulted from theadis¢ image by eliminating any pixel with the
distance reading out of the range of 25 to 51 cigp @2c¢). A threshold was set as the minimum
number of pixels that a stalk object should hava thstance image (1500 pixels in this study).
Connected areas with sizes greater than this thicslere kept and small holes (less than 200
pixels) in these areas were filled (Fig. 32d). $amio the LiDAR-and-RGB Approach, the sum

of the pixel values along each column of Fig. 3$wbtained (Fig. 32e).
Step 2. Diameter calculation

The plateaus with readings of 144 on the vertiged eorresponded to the detected stalk locations
and widthsw;,,4¢ in the distance images. Detected plateaus witlstaall or large width (less

than 10 pixels or larger than 30 pixels) were efated. Also if a detected plateau was close to or
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Fig. 32 The image processing for 3D Range Imaging Approach: (a) actual scene; (b) distance image

after distortion correction (c) after thresholding; (d) connected area(s) with a size greater than 1500

pixels and after filling in holes smaller than 200 pixels big; (e) Sum of pixel values along the columns
of (d).

touched the edges of an image which indicatedttile grofile might be incomplete, it was also
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ignored. The center location of each detected alateas calculated as the detected location of a
potential stalk in the distance image. The avedddke distance readings of all pixels consisted

of in a recognized stalk was calculatedlan Eq. 22 for the diameter estimation.

Step 3. Registration between distance images

After obtaining the diameters and locations of diete stalks in a distance image, the location of
the recognized stalk in the coordinates of indimidmage was converted to the ground
coordinates based on the encoder reading of tteagdrand the location of the stalk in that image.
Then the same stalk appeared in different distanages were registered based on their encoder

readings (Shi, et al., 2013).

Performance Evaluation

System performance was evaluated in terms of plauniting error, stalk diameter measurement
error as well as the within-row spacing measureraemar. As for the plant counting accuracy,
three errors were defined — the false negative €é¥Er) (Eq. 23), the false positive error
(FPEr) (Eq. 24) and the total error (TEr) (Eq. 26ho plant was identified within £10 cm of the
ground truth location of an actual plant, there wdalse negative count for that actual plant.
Similarly, if no actual plant was located withinG&m of the location of an identified plant, this
resulted in a false positive count. Only the re¢oggh plant closest to (and within £10 cm of) the
location of an actual plant was a valid count; iplétcounts of an actual plant were treated as

false positive counts.

Missing Count

FNEr = x 1009
r Ground Truth Count % Eq. 23
FPE Adding Count 100 %
= X
r Ground Truth Count 0 Eq. 24
TEr = FNEr + FPEr Eq. 25
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As for the accuracy of stalk diameter measurentbatioot mean square error (RMSE) was
calculated for each trial. As for the accuracy dthim-row spacing estimates, the RMSE was
calculated according to the system measured angrtiumd truth data. In order to keep a
consistency, locations corresponding to the faégative counts were eliminated from the
ground truth data while the locations correspondintie false positive counts were eliminated

from the system measured data.

Results and Discussion

Plant Counting Errors

Both approaches achieved similar results on plambiing accuracy. The LiDAR-and-RGB
Approach resulted with a TEr of 4.5% including a%.FNEr and a 1.3% FPEr; the 3D Range
Imaging Approach resulted with a TEr of 3.4% inchgda 1.5% FNEr and a 1.9% FPEr (Table
11). The LiDAR-and-RGB Approach had a higher FNtgti¢cating more missing counts. The
results of Row 1 using this approach were exclddmud the overall results due to the failure in
vegetation area segmentation during the image psowg The image processing algorithm
differentiated vegetation pixels from soil pixekssied on their different RGB compositions.
However, the leaf edges of plants in Row 1 weré& Baown caused by short of nutrients and that
color was closer to the soil than the green vegetatrea which resulted with the missing
identification of the plants in Row 1(Fig. 33). B#sss, the major reason caused the missing
identification with the LIDAR-and-RGB Approach wHee out of synchronization between the
two sensors’ data. The data processing algorithedeaeloped so that a plant was identified
only if it was detected at a same location in ksshsors’ fields of view. In some cases, the delay

between a paired laser scan and RGB image wasuob due to the malfunction during data
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acquisition to make the two sensors’ data match adich other which resulted with missing

identifications (Fig. 34).

These two problems did not bother the data coldeatieh the 3D Range Imaging Approach. The
3D range camera collected intensity and distaradimgs of each pixel simultaneously, and its
data processing algorithm implemented the vegetaiiea segmentation according to distance
readings rather than RGB compositions. Neverthgteesover-exposure during the data
acquisition affected the results of both approa¢h&s 35 and 36) and it was even severe for the
3D Range Imaging Approach. The major reason catlrerhissing identification for the 3D
Range Imaging Approach was because the sensorgrigpixels were saturated under over-
exposure or the sensor was not able to adjusttégtation time fast enough to response the

lighting change (Fig. 36).

Table 11 Errors of plant counting, spacing estimates and stalk diameter estimates compared to ground truth
data for two approaches.

Counting Error RMSE of spacing RMSE of diameter

FNET (%) FPET (%) TEr (%) estimate (cm) estimate (mm)

Approach Approach Approach Approach Approach

1 2 1 2 1 2 1 2 1 2
Row 1 na 0 na 0 na 0 na 1.6 na 2.9
Row 2 1.3 0 0 4.0 1.3 4.0 1.0 0.9 3.5 4.0
Row 3 4.2 4.6 0 1.7 4.2 6.3 0.9 1.2 4.6 4.4
Row 4 4.0 0 4.0 0 8.0 0 1.3 1.0 4.2 4.2
Mean 3.2 1.5 1.3 1.9 4.5 34 1.1 1.2 4.1 3.9

* na means data were eliminated due to bad quality
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(b)

Fig. 33 Example of the yellow-edge problem in Row 1 data: (a) an RGB image and (b) after the vegetation
segmentation and hole filling processing. The yellow-edged leaves and sheaths caused FNEr.
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Fig. 34 A laser-RGB pair showing the out of synchronization problem: (a) laser scan with two detected stalk
clusters marked in red; area compassed by two red line corresponded to the webcam'’s field of view; (b)
RGB image with estimated stalk locations from the laser scan showing as red lines. Dashed lines represent
the buffered search area. Stalk matching between the two sensors’ data was failed.
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Fig. 35 A laser-RGB pair showing the problem of over exposure on the vegetation segmentation: (a) laser

scan with two detected stalk clusters marked in red; area compassed by two red line corresponded to the

webcam'’s field of view; (b) RGB image containing two stalks of which the left one suffered with the over-
exposure problem (highlighted in red circle) and failed to be identified by the algorithm (c).
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(b)

Fig. 36 An example of noisy pixels in a distance image obtained by the 3D Range Imaging Approach. The
plant on the right side in (a) suffered with severe noise in its distance image (b).

As for the FPEr (adding counts), the major reasonhfe LiDAR-and-RGB Approach was the
failure in segmenting the plants in adjacent rawegground) with those in the background rows.
When the foreground and background overlappedtsama happened to be some weed or sheath
interference, the desired plant stalk could notdigmented correctly which resulted with FPErs
in plant counting and errors in stalk diameter raeasent (Fig. 37). Even though the multi-angle
sensing method combined with the shape-based ietdetd already largely reduced the leaf and
sheath interference for both approaches, FPErgddwsthis reason could not be completely

eliminated.
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Fig. 37 An example of the failure in differentiating foreground and background vegetation pixels: (a) RGB
image with an interested stalk on the right side; (b) binary image after primary vegetation segmentation of
(a); the interested stalk failed to be segmented from the soil surface and background vegetation; (c) binary
image after hole filling; red lines and arrows showing two identified stalk locations corresponding to the two
plateaus circled in (d); the falsely identified stalk happened to correspond to the falsely identified cluster in
the laser scan (e) corresponding to a sheath interference.

Within-row Spacing Measurement Errors

Both approaches achieved similar accuracies orinmittw spacing measurement. The RMSE of
system measured within-row spacing using the LiD#-RGB Approach was 1.1 cm; the one
using the 3D Range Imaging Approach was 1.2 cmléTab). Good correlations were achieved

105



between the system measured and manually measitreéd-ww spacing. The Rwvas 0.97 for

the LiDAR-and-RGB Approach (Fig. 38) and was 0.86the 3D Range Imaging Approach (Fig.
39). The error distribution of the LIDAR-and-RGB gypach had a mean of 0.3 cm (SD = 1.0
cm) (Fig. 40); the error distribution of the 3D Ranmaging Approach had a mean of 0 cm (SD
= 1.2 cm) (Fig. 41). Both error distributions wetese to normal distributions which

demonstrated the reliability of both systems’ perfance on within-row spacing measurement.
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Fig. 38 Comparison between system measured within-row spacing using the LiDAR-and-RGB Approach and
manually measured within-row spacing (n = 71).
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Fig. 39 Error distribution of system measured within-row plant spacing using the LiDAR-and-RGB Approach.
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Fig. 40 Comparison between system measured within-row spacing using the 3D Range Imaging Approach
and manually measured within-row spacing (n = 94).
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Fig. 41 Error distribution of system measured within-row plant spacing using the 3D Range Imaging
Approach.

Stalk Diameter Measurement Errors

The 3D Rang Imaging Approach had a better perfoomam the stalk diameter measurement
than the LIiDAR-and-RGB Approach. The LiDAR-and-R@Bproach achieved an RMSE of 4.1
mm in the stalk diameter measurement (Table 11dh i average diameter of 28.9 mm in the
corresponding ground truth data (Table 10), thisSEMesulted with a coefficient of variation
(CV) of 13.9%. The correlation between the systesasnred and the manually measured ground
truth stalk diameters was low for the LiDAR-and-R@pBproach (R = 0.049 in Fig. 42). This
was partly due to the small variation of the meedwstalk diameters which spanned from 22.9
mm to 36 mm. If the stalk diameter data from ofipewth stages could be included, the
correlation would be improved. The errors of thetegn measured stalk diameters using the
LiDAR-and-RGB Approach had a mean of 0.9 mm wistandard deviation (SD) of 4.0 mm
(Fig. 43). The skew towards the positive direcornthe horizontal axis indicated a tendency of
over-estimation in the diameter measurement usiadg.iDAR-and-RGB Approach. This may be

because of the error happened in the two sensatshimg procedure somehow always making
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the measurement larger. The sources caused thtecplamting error discussed before also caused
the stalk diameter measurement error if those problwere not severe enough so that a plant
stalk could still be identified. Because of thesejas concluded that the LiDAR-and-RGB
Approach was not a feasible method for stalk diameieasurement unless accurate sensor

calibration and matching were employed.
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Fig. 42 Comparison between system measured stalk diameters using the LiDAR-and-RGB Approach and
manually measured stalk diameters (n=73).
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Fig. 43 Error distribution of system measured stalk diameters using the LiDAR-and-RGB Approach.
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The 3D Range Imaging Approach was demonstrated eofeasible method for stalk diameter
measurement. It achieved an RMSE of 3.9 mm intéilk diameter measurement (Table 11).
With an average diameter of 27.9 mm in the corredjpg ground truth data with the 3D Range
Imaging Approach (Table 10), this RMSE resultechvaitcoefficient of variation (CV) of 13.3%.
The correlation between the system measured andaheally measured ground truth stalk
diameters was better than that using the LIDAR-BGRB Approach (R= 0.308 for all the data
and R = 0.392 for the same samples with the LiDAR-andBR&proach, Fig. 44). The
variation of the measured stalk diameters spamued £7.8 mm to 44.9 mm. The errors of the
system measured stalk diameters using the LIDARRG& Approach had a mean of -1.1 mm
with a standard deviation (SD) of 3.7 mm (Fig. 48)e little skew towards the negative direction
on the horizontal axis indicated a tendency of medtimation in the diameter measurement
using the 3D Range Imaging Approach. This may lwabse of the edge effect of the sensor’s

light source or the under-measurement of the distéime stalk away from the sensor.
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Fig. 44 Comparison between system measured stalk diameters using 3D Range Imaging Approach and

manually measured stalk diameters: (a) all of the data (n=98); (b) excluded data of Row 1 to compare with
the LiDAR-and-RGB Approach (n = 74).
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Fig. 45 Error distribution of system measured stalk diameters using the 3D Range Imaging Approach.

Current LiDAR technology usually has a wider fielidview comparing with 2D or 3D imaging
system due to the rotating light source intrindycalhe system developed in this study was based
on the current common 2D or 3D imaging cameras. éd@w the concept could be adapted to
similar system with wider field of view in the fui Sometimes a stalk diameter was measured
inaccurate in some of the perspectives but woulchbee accurate in the others for both
approaches. The stalk showing in Fig. 46a, b wassored larger than its actual diameter
because a leaf was closely attached to it in thegective; however, it was clearer after a few
images (Fig. 46¢, d). This supported the importafgaeasuring from various perspectives of

view.
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Fig. 46 Example of the advantage of measuring from various perspectives of view.

Future Work

Both approaches achieved acceptable performanstalndiameter measurement. The problems
of the LiDAR-and-RGB Approach were the error hapgzem the matching of the two sensors’
coordinates as well as the asynchronization hagpienthe data acquisition. Also, to achieve a
good vegetation segmentation based on RGB imagidgrarbitrary illumination and
uncontrolled background would always be challengifige 3D Range Imaging Approach does
not have these problems; however, its major probi@sithe noisy data when the 3D range
camera was operated in outdoor environment. Shadéanism needs to be well-designed and

the sensor variables such as integration time, xpdime or shutter speed need to be carefully

112



adjusted. Other problem of the 3D Range Imagingréagh was the low pixel resolution which

could be easily solved by upgrading to high pieslalution sensors.

In this study, the concept of sensing the samecobjem various perspectives of view was
partially realized. Due to the relative small figlof view of both approaches, the diameters
measured were actually the diameters of the aigaed with the plant row line. In order to have
a better approximation to the oval-shaped corkstalystems with larger field of view — better

greater than 90° — would be preferred.

Conclusions

Two approaches based on machine vision technotmgyéasuring corn stalk diameters on-the-
go were developed and evaluated at corn plantsgnadith stage: the LiDAR-and-RGB
Approach was a combination of a LIDAR sensor amgeacam; the 3D Range Imaging

Approach used a 3D range camera. The field expatinesults demonstrated that:

e Using either approach to measure corn stalk diansétem various perspectives of view
on-the-go is a feasible method with acceptableoperénce though the 3D Range
Imaging Approach was little superior. The RMSEsydtem measured stalk diameters
using the two approaches were 4.1mm and 3.9 mmhwduirespond to CVs of 13.9%
and 13.3%, respectively.

o Both approaches achieved good performances ongtanting and within-row spacing
measurements. The total counting errors were 4r@a1%, and the RMSEs of within-
row spacing measurement were 1.1 cm and 1.2 ceefdr approach, respectively.

¢ The 3D Range Imaging Approach performed superiam the LIDAR-and-RGB
Approach in terms of the simplicity of the systeapbbyment and of the data processing

which otherwise would be the error sources.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

A system for automatic corn plant location, withow spacing and stalk diameter measurements
based on optical sensing technologies was develapagdested in the field. The system realized
the plant location and spacing measurements hygesiiDAR sensor viewing each plant from
multiple angles when a testing platform was mowegveen plant rows. Comparing with
previous studies that mostly used laser pointes@snthis strategy was demonstrated to be able
to effectively eliminate interference factors aadykly increased the possibility of correctly
recognizing plants. The system also demonstratetetisibility of measuring stalk diameters

using the concept of multi-angle measurement.

The study consisted of three phases. In phase futittion of corn plant location and spacing
measurement was realized using a moving LIDAR seloased sensing system and
corresponding data processing algorithm. This tieghnis advantageous in this application
because the line-scan data sets taken from vgpmuoss of view of a plant stalk results in less
interference and higher probability of plant redtign. Each potential stalk cluster was identified
in a scan and registered with the same stalkseviqus scans. The final location of a stalk was
the average of the measured locations in all s@dressystem achieved 24.0 % and 10.0 % of
mean total errors in plant counting at the V8 aid growth stages, respectively. The RMSE
between system measured plant locations and mgmatsured ones were 2.3 cm and 2.6 cm at
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the V8 and V10 growth stages, respectively. Therptant spacing measured by the developed
system had a good correlation with the manual nreasent with an Rof 0.962 and 0.951 for

the V8 and V10 growth stages, respectively.

In phase I, the system developed in phase | wasaved in terms of the data processing
algorithm and data acquisition platform. The enleament was demonstrated by higher
measurement accuracy on two years’ data. Compatbdhe system developed in phase |, this
system improved the data acquisition platform suie the quality of data collection, and the
data processing algorithm especially the scantragjizn and stalk recognition procedure to
reduce the misidentification errors. More data w@lected in the field to test the system
performance. A total error of 5.5% in plant cougtand a 1.9 cm of RMSE in spacing
measurement were achieved. The improved data @iageslgorithm was also tested on the data
collected in phase I. The total plant counting edecreased to 14% from 24% for data collected

at the V8 growth stage when weed interference exist

In phase lll, the function of stalk diameter measuent was added to the existing system by
developing and comparing two approaches — one lasacdcombination of a LIDAR sensor and
a webcam,; the other based on a 3D range cameraaDdtimage processing algorithms were
developed for each approach to identify the excsteanf a plant stalk and estimate its diameter
using both shape and range information. The 3D Rém@ging Approach was demonstrated to
be a feasible method for corn stalk diameter measent while the LiDAR-and-RGB Approach
was not. The RMSEs of system measured stalk diasesing the two approaches were 4.1mm
and 3.9 mm which correspond to CVs of 13.9% an@8%3respectively. Both approaches
achieved good performances on plant counting attdmwiow spacing measurements. The total
counting errors were 4.5% and 3.4%, and the RM$stbin-row spacing measurement were

1.1 cm and 1.2 cm for each approach, respectiVély.3D Range Imaging Approach performed
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superior than the LIDAR-and-RGB Approach in termhghe simplicity of the system deployment

and of the data processing which otherwise woulthbeerror sources.

Future Work

e Real-time sensing and measurement for the withmapacing and stalk
diameters were not implemented in this study. H@xesonsiderations on this
were made at the beginning and throughout the whraleess. Data processing
algorithms were developed with a flow could be uisea real-time application.

e The stalk diameter measurement in this study h&dal sensing angle so few
measurements were taken for estimation. In thedutmaging sensors with a
larger field of view, especially larger than 90wid be preferred to have more
measurements from different perspectives and aregdproximation of the oval
shape stalk.

e Sensors and data acquisition system with fastenuamcation speed are
developing all the time. A faster data acquisitaord processing speed would
benefit the real-time application. This system ddug finally incorporated with
the spraying operation to realize the rea-timealde-rate fertilizer application.

Original Contribution to Community of Science

This study proposed a novel method for corn plamtpmological characterization by sensing
from different angles on-the-go which is advantagewith less interference and higher

probability of plant recognition.
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SICK® LMS291™ Specifications

Scanning angle (field of vision)

APPENDICES

APPENDIX A

100° ~ 180 (type-dependent)

Motor speed

75 Hz

Angular resolution (response time)

0.25 (53.33ms); 0.5 (26.66 ms); 1 (13.33 ms);
selectable

Range

Max. 80 m (type-dependent)

Measurement resolution

10 mm

Measurement accuracy

typical =35 mm

Systematic error

mm-mode: typicak=35 mm at range 1 to 20 m
cm-mode: typicalE5 cm at range 1 to 20 m

Statistical error

mm-mode: typical 10 mm at range 20 m/ reflectivity
= 10 %/ light<< 5 kix

Laser diode (wavelength)

Infra-red (A = 905 nm)

MTBF of LMS2xx

50,000 h

Laser class of device

Class 1 (eye-safe), to ENBB&25-1 and to 21CFR
1040.10

Optical indicators

3 xLED

Data interface

RS 232 or RS 422 (selectable icdmmector plug)

Data transfer rate

RS 232: 9.6 /19.2 kbd
RS 422: 9.6 /19.2/ 38.4/ 500 kbd

Data format

1 start bit, 8 data bits, 1 stop hitparity (fixed)

Electrical connections

1 x plug module plug witpi®-D Sub socket (solder
connection)

Operating voltage
(according to IEC 364-4-41)

24 V DC * 15 % (max. 500 mV ripple), current
consumption max. 1.8 A (with output load)

Power consumption

Approx. 20 W (without load)

Housing Aluminium die-cast
Protection class Class 2 (to VDE 0106/IEC 1010sajety insulated
Weight Approx. 4.5 kg

(without installation accessories)
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SwissRangef SR4000" Specifications

Imager Parameters (z) Value Comment

lllumination Wavelength 850 nm Central wavelength
Optical filter - Bandpass / Glass substrate
Maximum Frame Rate 50 FPS Camera setting depénden
Imager parameters (X,y) Value Comment

Pixel Array Size

176 (h) x 144 (v)

QCIF

Field of View 43.6° (h) x 34.6° (v) or Standard field of view cameras
69° (h) x 56° (v) Wide field of view cameras
Pixel Pitch 4Qum Horizontal and vertical
Angular Resolution 0.24° Standard field of view; central
0.39° pixels
Wide field of view; central pixels
Focus length / adjustment 10 mm Standard field of view cameras
5.8 mm Wide field of view cameras
Manually adjustable over
operating range
Environmental Value Comment

External light disturbances

Designed for indoa us

Not to be used in direct sunlight

Operating Temperature

+10 °C to +50 °C (50 °F2 1
OF)

Housing temperature

Storage Temperature

Power Connections

-20 °C to +70 °C (-4 °F to 158

OF)

Value

Comment

Electrical Power
Requirements

12 V (-2%; +10%), maximum
1.0 A,
(typical 0.8 A)

Power supply available from
MESA

Trigger connector

Lumberg M8 Male 4-pin

Screwmactor (on camera)

Power connector

Lumberg M8 Male 3-pin

Screw catore(on camera)

Software Value Comment
Software Drivers Windows XP, Windows 7 (32-
bit and 64-bit),
Vista (32-bit and 64-bit), Linux
32-hit
Software API C, C++, Matlab
Software features Value Comment

Modulation frequency
selection

29/30/31 MHz or 14.5/15/15.5
MHz selectable

Depending on camera model

Acquisition mode

Continuous, Triggered

Triggea @oftware or Hardware

Integration time

0.3 to 25.8 ms, steps of 0.1 msSelectable

Confidence Map

Data Output

Measures quality of distance
data, quality threshold to be set
by user

Value

Comment

Spherical distance
(Range)

0-65535 (16 Bit) <--> 0-5 m
0-65535 (16 Bit) <--> 0-10 m
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Cartesian coordinate transfer

Cartesian XYZ coordinates X, Y, z (M) Up to 5 istahce @ 30 MHz
modulation
Up to 10 m distance @ 15 MHz
modulation
Signal amplitude 0-65535 (16 Bit) Value above @2ihdicates
saturation
Converted grayscale Image 0-65535 (16 Bit) Valoeve 32767 indicates
saturation
Confidence Map 0-65535 (16 Bit) Quality threshtde set by user
Mechanical Value Comment
Dimensions 65 x 65 x 68 mm For USB cameras
65 x 65 x 76 mm For Ethernet cameras
Excludes the connectors
Case Material Anodized Aluminum
Color front housing Black
Color back cover Red
Window Material Polycarbonate lllumination cover
Borofloat glass Objective cover
Mounting Holes 4xM4; 2 x4H7; 1 x 1/4”
Weight 470 ¢ For USB cameras
5109 For Ethernet cameras
Cooling Passive, no fan Camera always to be aiaddo
a heat sink
Microsoft® LifeCam Cinema™ Specifications
Product Dimensions
Webcam Length 2.20 inches (55.9 millimeters)
Webcam Width 1.81 inches (46.0 millimeters)
Webcam Depth/Height 1.58 inches (40.0 millimeters)
Webcam Weight 3.36 ounces (95.3 grams)
Webcam Cable Length 72.0 inches +6/-0 inches (18H8Bneters +152/-0
millimeters)
Compatibility and Localization
Interface Compatible with USB 2.0 High Speed dfieation
Operating Systems Microsoft Windows® 7, Windowstd®, and Windows
XP Service Pack 2 or higher (excluding Windows XP 6
bit)
Imaging Features
Sensor CMOS sensor technology
Resolution * Motion Video: 1280 x 720 pixels vide8till Image: Up to
5 megapixel (2880x1620 pixels, interpolated) phbtos
Imaging Rate Up to 30 frames per second
Field of View 73° diagonal field of view
Imaging Features « Digital pan, tilt, and zoomuté\focus, range from 6” to

infinity « Automatic image adjustment with manuakoride
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NI USB-6008 Specifications

Analog Input (not used in this study)
Analog Output (not used in this study)
Digital I/O (not used in this study)

External Voltage
+5 V output (200 mA maximum)

MINIMUM Lo e +4.85V
Typical...co oo e +5V
+2.5 V output (1 mA Mmaximum) ........ccceevveceeeeennn. +25V
F2.5 V ACCUMACY ..ccvvviiiiiiii e mmmmmm e 0.25% maximum

Reference temperature drift ................coeeemernnneen... 50 ppm/°C maximum

Event Counter

Number of COUNErS .........cocvviiiiieceeee e 1
RESOIULION ..o s 32 bits
Counter measurements Edge counting (falling-edge)
Counter direction .........cccccveeeeeeeeenm Count up
PUll-UP FESISTON. .. eeeiiiiiiiiieiii it 4.7kto 5V
Maximum input freqUeNnCy...........cooooiiivmmene e e 5 MHz
Minimum high pulse width..............cccooiieee 100 ns
Minimum low pulse width................ceeeeiimeeeeeeenn. 100 ns
Input high voltage .........cooooiiiiiiiiiiceeeeee e 20V
INput IoW VOItage ......ooooiiiiee e 0.8V
Bus Interface
USB specification ..........ccccvviiveiiiie s USB 2.0 full-speed
USB bus SPEEd ......ovvvviiieeiiiiieieeee e 12 Mb/s
Power Requirements
USB
4.10t0 5.25 VDC
Typical...cooooiiiii e 80 mA
MaXIMUM.....ooiiiiiiieeee e GMA
USB suspend
Typical.....coovciiieeeeeee e 300pA
MaXimUM......uvrriiierieeeeeer e 0GuA
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APPENDIX B

List of Programs

1. Data acquisition programs in LabVIEW (Appendix C)
1.1  LabVIEW program of plant location and spacing measient (Page 124
-127)
1.1.1 Front panel (Page 124)
1.1.2 Block diagrams (Page 125 — 127)
Main block diagrams (Page 125 — 127)
1.2 LabVIEW program of plant stalk diameter measureniEage 128 — 134)
1.2.1 Front panel (Page 128)
1.2.2 Block diagrams (Page 129 — 134)
Main block diagrams (Page 129 — 134)
2. Data processing programs in MATLAB (Appendix D)
2.1 MATLAB program of plant location and spacingasarement (Page 135 —
140)
2.1.1 Main function (Page 135 — 140)
2.2 MATLAB program of plant stalk diameter measuesin(Page 141 — 148)
2.2.1 Main function of LIDAR-and-RGB Approach (Page 14145)
2.2.2 Main function of 3D Range Imaging Approach (Pagg 14148)
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APPENDIX C

LabVIEW Program for Data Acquisition

LabVIEW Program for Chapter IV (Improved Version fohapter IIl)

Front Panel

Cartesian Graph

Amplitude

A I 1 1 I
-1000 -500 0 S00 1000
Time
Encoder Count # of scans
Fo s HEpatirat

1 1198

124

Save File Path

h CihField TestifieldTestData_ternperaryStorage’,
LM5291 Dataltestxls

Counter{s) CRC Check 2
5},1/0 Drewdfctrl j J
WIS resource name 2 EZC Check

Leows vl

stap

SFOR

Mumber of Bytes at Serial Port du ring:Sto B
[0

=



Block Diagram

Part3 1:

0200 0200 2024 3408

Step 1: Establish Communication ‘
Stop LMS -> Start LMS -> CRC

1000000000000 00000000000007070

500

CRC Check

VISA resource name 2

[
|_|

V1A O000000000O000OO0O0o00o0o0oooon ooo0oo0ooo
S

lush Receive Buffer |

Encoder Counter(s)
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Part 3_2:

Step 2: working procedure of LM5291

Establish Communication- = Start acguisition->read Continuous Measurement->Parse Continuous Measurement-> Polar to Cartesian-
[N N N=N= NN NN NNl =Nl NN NN A=l N =il N === =Nl N N=N= NNl N =A== ==l =

Oo0o0o0O00000000000000000000°¢0C

CRC Check 2

@

TF

Save File Path

| True 't

Polar Co-ordinates

fils 2|
)
REZET

|OK message + warnings ~|- .

timeout
Encoder Count

__lel—
CounterU32 _
15amp

"""""" E 0000000000000 000000000000000000000000000000000000000000000

ooooo [ R I e I w s s s  w Y w  w  w lw W w  w}
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Part 3_3:

oooooooog

Mumber of Bytes at
Serial Port during Stop
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LabVIEW Program for Chapter V

Front Panel

Webcarn Attribute Tree

Attribute
Carnera Attributes

Mode

Walue

= Exposure

Mode

“Walue
Focus

Mode

Walue

Pan
Y

Backlight Compensation

Walue &
hanual
false

Puta
0.015625

U3z | DEL | Sting  Enum | Bool | Command |

Enurm Walue Control

640360 Ri3

0,00fes

Units

Tooltip

Getsfsets the video mode for a camera,

Buffer Mumber
1044

Frame Rate

SRA000 Original
Integration Time

0

SR4000 Open
0

SR4000 Close
1]

LIDAR Graph piotn WY

“Amplitude

Tirne

Wehcam Image

Select Webcarm

_I]

Y camD [+

. ')

E)’ISA Resou:rce Marme IE Counteris)

klcoms | % Deva/ctrl F
# of Scans

Encoder Count

4741 3051

MNumber of Bytes at Serial
Port during Stop

0
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Block Diagram

Part 8_1: Step 1. Establish communication with LIDA R sensor

Sick LMS 291
LiDAR Sensar

WIS Resource Mame 2

Step L: Establish Communication |
Skop LMS - Start LMS - CRC

o000 o000o000n Oo000o00000000

lush Receive Buffer =]

0!
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Part 8_2: Step 2. Start acquisition -> parse packages -> save LIDAR sensor’s data

orking procedure of L3201

Establish Communication-:»Start acquisition- >read Continuous Measurement- »Parse Continuous Measurement-»Polar to Cartesian-

|‘L CField Test\fieldTestData_termperaryStorage’,

LrAS291_Datatrowxls |-1

M True Vt

Standard ]

oot

timeout
10,00

0K message +warnings |

{ Encoder Count

3 D000 0000 00000000 0000000000 00000000 0000000000000 oo0o0oooooDooooon

oo oooo oMo o000000000000000ooooo

Part 8_3: Step 3. Stop LIDAR sensor

Step 3: Stop LMS291

0200 0200 2025 3508

100000000

- g-c Instr ?!

: Bytes at Port

ooooooog

Murnber of Bytes at
Serial Port during Stop =
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Part 8_4: Establish communication with 3D camera  -> acquisition and save data

SwissRanger SRA000
3D Range Carmera

Dfine

D
SR4000 Open Counter U32 _
1Sarnp

uto Exposure

StaragetSRADND: | T

HE
]
ol

g J e
TilTi

=
o
=

==
=]

Get Integration Time

Original Integration Time

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDUDDDDDDDDDDDDDDDD*DDDDDDDDDD

[Take a shot every 3cm corresponding to 40 pulses. |

Stop 3D Carnera

10

Part 8_5: Step 3. Stop 3D camera

9 SRA000 Close

10
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Part 8_6: Establish communication with webcam

Microsoft LifeCarn
Wi¥ebcarm

Grab and Setup Attributes

-> configure attributes

SelectWebcam

Continuous?

[+ Continuous |

MNumber of Buffers

12

IMAQ

Tab Caontral

Tab Control
& TabCaontrol 5
&
)
)
[}
[)

U32 Walue Control

& Slide —
DEBL Walue Control

a

String Walue Control

Enum Value Control

Boolean Walue Contral

Cormrnand Yalue Control
@ Boolean

i 13

14
15
e 16
17

— 18

P Bufferlnterval

19
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Part 8_7: Get and save images from webcam

11

12
13

15
16
17

18

19

=

|[1] <5ession Quts: FrameDone

|| 2ctualBufferMumber

v}
[
[
Buffer Mumber hMode
A et
—a—n

|3 Ci\Field Test\fieldTestData_temperanyStarageicam_datatraur
) T b
S
Tooo] 1 El— =
R

Wfhen a new frarme is available, display
the image and update the frame rate,

Wéebcam Image

Frarne Rate
Buffer Mumber

133

20

21

22



Part 8_8: Close webcam

20

21 11 R— Ll |

Unconfigure the
acquisition and

close the camera,
T

22
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APPENDIX D

Selected MATLAB Code for Chapter IV

(Improved Version for Chapter IlI)

Main Function

% This code is used to parse the LMS291 data
collected for plant spacing measurement in 2012.
% Yeyin Shi, Oct 2012

close all;
clear all; clc;

global D_thres_AllScans valid_C_members_AllScans
core_C_AlIScans span_C_AllScans;

global encoder stalkDiameter_AllIStalks
groundCoor_scan;

global buf;

global num_stalk num_stalk_pending pending_count
pending_clusters;

global num_noise num_noise_pending
pending_noise_count pending_noise;

global thres;

encoder_countCoef = 0.77; % Encoder reading
correction coefficient (mm/count);

ratio_n =[0.1 0.2 0.3 0.4 0.5]; % for variable
optimization

buf_array = [2 4 6 8 10 12]; % for variable optimization
OF = zeros(numel(buf_array), numel(ratio_n), 40);

for idx_row = 1:8
for idx_trial = 1.5

flag = 1; % 'flag' indicating if this trial data was in
use or not, 1 —in use; 0 — not in use.

switch idx_row

%% Select the trial
case 1
groundTruth =
xIsread('D:\CornStalkDiameterProject\Data\Summer201
2\LCB_stalkdiameter_1-
2012_CorrectedCompleted.xIsx', 'rows 1-4', 'F7:F31");
% row 1
groundTruth_offset = 93; % row 1
filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx";
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filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\05232012_plots1to4_V8\laserScanner_5inchAboveRo
ots_05232012_plotslto4_V8 m', filename);

switch idx_trial
case 1
n_scans = 89.88;
encoder_offset = 33.26;
encoder_correctionCoef = 698/702.09;

case 2
flag = 0; % used as validation set
% n_scans = 61.63;
% encoder_offset = 35.11;
% encoder_correctionCoef =
698/703.01;
case 3

n_scans = 48.79;

encoder_offset = 33.65;

encoder_correctionCoef = 698/703.55;
case 4

n_scans = 59.06;

encoder_offset = 38.19;

encoder_correctionCoef = 698/703.24;
case 5

n_scans = 51.36;

encoder_offset = 31.42;

encoder_correctionCoef = 698/704.78;

end

case 2

groundTruth =
xlsread('D:\CornStalkDiameterProject\Data\Summer201
2\LCB_stalkdiameter_1-
2012_CorrectedCompleted.xlsx', 'rows 1-4', 'F32:F56');
% row 2

groundTruth_offset = 105; % row 2

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;

filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\05232012_plots1to4_V8\laserScanner_5inchAboveRo
ots_05232012_plots1to4d V8_m', filename);

switch idx_trial
case 1
n_scans = 76.62;
encoder_offset = 37.11;
encoder_correctionCoef = 655/663.05;

case 2
flag = 0;
case 3
flag = 0; % used as validation set
% n_scans = 71.15;
% encoder_offset = 39.04;



% encoder_correctionCoef =
655/661.35;
case 4
n_scans = 79.36;
encoder_offset = 37.27;
encoder_correctionCoef = 655/663.59;
case 5
flag = 0;
end

case 3

groundTruth =
xlsread('D:\CornStalkDiameterProject\Data\Summer201
2\LCB_stalkdiameter_1-
2012_CorrectedCompleted.xlsx', 'rows 1-4', 'F57:F81);
% row 3

groundTruth_offset = 97; % row 3

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;

filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\05232012_plots1to4_V8\laserScanner_5inchAboveRo
ots_05232012_plotslto4_V8 m', filename);

switch idx_trial

case 1
flag = 0; % used as validation set
% n_scans = 58.86;
% encoder_offset = 20.10;
% encoder_correctionCoef =
670/673.37,
case 2

n_scans = 80.26;

encoder_offset = 18.48;

encoder_correctionCoef = 670/674.83;
case 3

n_scans = 61.53;

encoder_offset = 17.02;

encoder_correctionCoef = 670/675.68;
case 4

n_scans = 72.23;

encoder_offset = 17.17;

encoder_correctionCoef = 670/678.14;

case 5
flag = 0; % used as validation set

% n_scans = 69.56;
% encoder_offset = 18.79;
% encoder_correctionCoef =
670/676.37,

end

case 4
groundTruth =

xlsread('D:\CornStalkDiameterProject\Data\Summer201
2\LCB_stalkdiameter_1-
2012_CorrectedCompleted.xIsx', 'rows 1-4',
'F82:F106'); % row 4

groundTruth_offset = 105; % row 4

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;

filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\05232012_plots1to4_V8\laserScanner_5inchAboveRo
ots_05232012_plots1to4d V8_m', filename);

switch idx_trial
case 1
n_scans = 75.28;
encoder_offset = 21.02;
encoder_correctionCoef = 500/506.66;
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case 2
n_scans = 75.28;
encoder_offset = 21.33;
encoder_correctionCoef = 500/507.05;
case 3
n_scans = 71.70;
encoder_offset = 23.72;
encoder_correctionCoef = 500/502.66;

case 4
flag = 0; % used as validation set
% n_scans = 78.87;
% encoder_offset = 22.64;
% encoder_correctionCoef =
500/503.27;
case 5

n_scans = 86.04;

encoder_offset = 22.10;

encoder_correctionCoef = 500/503.50;
end

case 5

groundTruth = xIsread('LCB_stalkdiameter_1-
2012_CorrectedCompleted.xlsx', 'rows 5-8', 'F9:F33);
% row 5

groundTruth_offset = 110; % row 5

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;

filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\06042012_plots5to8_V8\laserScanner_06042012_plot
s5t08_V8_5inAboveRoots', filename);

switch idx_trial
case 1

n_scans = 56.01;

encoder_offset = 24.87; % Encoder
reading of the scan in which stalk #1 in the origin;

encoder_correctionCoef = 640/645.18;
% (Ground truth distance between stalk #1 and
#25)/(Encoder reading difference between stalk #1 and
#25);

case 2
flag = 0; % used as validation set
% n_scans = 61.62;
% encoder_offset = 25.87;
% encoder_correctionCoef =
640/646.03;
case 3

n_scans = 58.81;

encoder_offset = 26.87;

encoder_correctionCoef = 640/644.18;
case 4

n_scans = 50.41;

encoder_offset = 25.64;

encoder_correctionCoef = 640/650.26;
case 5

n_scans = 50.41;

encoder_offset = 25.87;

encoder_correctionCoef = 640/645.88;

end

case 6

groundTruth = xlsread('LCB_stalkdiameter_1-
2012_CorrectedCompleted.xIsx', 'rows 5-8', 'F34:F58);
% row 6

groundTruth_offset = 131; % row 6, %
Ground truth location of stalk #1 (cm); row2:105;
row3:97; row4:105;

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;



filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\06042012_plots5to8_V8\laserScanner_06042012_plot
s5t08_V8_5inAboveRoots', filename);

switch idx_trial
case 1
flag = 0;
case 2
n_scans = 52.81;
encoder_offset = 19.00;
encoder_correctionCoef = 611/612.71;
case 3
flag = O;
case 4
n_scans = 46.94;
encoder_offset = 19.64;
encoder_correctionCoef = 611/611.92;

case 5
flag = 0; % used as validation set
% n_scans = 61.61;
% encoder_offset = 20.10;
% encoder_correctionCoef =
611/612.00;
end
case 7

groundTruth = xIsread('LCB_stalkdiameter_1-
2012_CorrectedCompleted.xIsx', 'rows 5-8', 'F59:F83");
% row 7

groundTruth_offset = 110; % row 7

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;

filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\06042012_plots5to8_V8\laserScanner_06042012_plot
s5t08_V8_5inAboveRoots', filename);

switch idx_trial
case 1
n_scans = 53.72;
encoder_offset = 17.09;
encoder_correctionCoef = 634/640.41;
case 2
flag = 0;
case 3
n_scans = 45.24;
encoder_offset = 14.55;
encoder_correctionCoef = 634/637.86;

case 4
flag = 0; % used as validation set
% n_scans = 50.89;
% encoder_offset = 16.17;
% encoder_correctionCoef =
634/639.72;
case 5
flag = 0; % used as test set
% n_scans = 56.54;
% encoder_offset = 16.94;
% encoder_correctionCoef =
634/638.64;
end
otherwise

groundTruth = xIsread('LCB_stalkdiameter_1-
2012_CorrectedCompleted.xIsx', 'rows 5-8',
'F84:F108'); % row 8

groundTruth_offset = 115; % row 8

filename = [num2str(idx_row) '_3in_'
num2str(idx_trial) ".xIsx;
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filePattern =
fullfile('D:\CornStalkDiameterProject\Data\Summer2012
\06042012_plots5to8_V8\laserScanner_06042012_plot
s5t08_V8_5inAboveRoots', filename);

switch idx_trial

case 1
n_scans = 62.19;
encoder_offset = 16.02;
encoder_correctionCoef = 491/491.18;

case 2
n_scans = 58.53;
encoder_offset = 16.48;
encoder_correctionCoef = 491/492.42;

case 3
flag = 0; % used as validation set
% n_scans = 51.21;
% encoder_offset = 15.55;
% encoder_correctionCoef =
491/492.57;
case 4

n_scans = 62.19;

encoder_offset = 13.24;
encoder_correctionCoef = 491/496.34;

case 5

n_scans = 62.19;

encoder_offset = 13.86;
encoder_correctionCoef = 491/496.19;

end

end
groundTruth = groundTruth’;

if flag % If this trial data was valid, process it.

% Read in measured data file.

raw_data = xIsread(filePattern);

num_data = size(raw_data,1);

thres_array = n_scans.*ratio_n;

disp(['Row ' num2str(idx_row) ', Trial '
num2str(idx_trial) ":");

for i_buf = 1:numel(buf_array)
for i_thres = 1:numel(thres_array)

%% Set up global variables

num_stalk = 0; % how many identified
stalks

num_stalk_pending = 0; % how many
pending stalks

pending_count = zeros(1); % how many
show-up scans for each pending stalk

pending_clusters = cell(1);

num_noise = 0; % how many identified
noise

num_noise_pending = 0; % how many
pending noise

pending_noise_count = zeros(1); % how
many show-up scans for each pending noise

pending_noise = {};

thres = thres_array(i_thres);

buf = buf_array(i_buf);

i=0; % ipoints to the raw data array;

j=0; % # of scans

X=1;

Y=

encoder_raw = [J;

encoder = [J;

X_ground =J;



D_thres_AllScans =[];
valid_C_members_AlIScans = [];
core_C_AllScans =];
span_C_AlIScans =];
encoder = [J;
stalkDiameter_AlIStalks = [];
groundCoor_scan = [J;
num_stalk = 0;
num_stalk_pending = 0O;
pending_count = [];
pending_clusters = [];
num_noise = 0;
num_noise_pending = 0;
pending_noise_count = [];
pending_noise = [J;
dif_mean_location = [];
min_dif_mean_location = [J;
idx_min_dif_mean_location = [];
=

gt = groundTruth;
missCt_idx = [];

missCt = [J;

addCt_idx = [];

addCt =],

t_error =0,

t_error_perc = 0;

%% Processing the data
while i <= (num_data-1)
i =i+l;
if ~isnan(raw_data(i,2)) % If this row is
not the encoder reading...
if max(raw_data(i:i+400,2)) < 1800 %
If no noise, read this scan;
j=j+1; % # of valid scan;
Y(:,j) = raw_data(i:i+400,2)/10;
X(:,J) = raw_data(i:i+400,1)/10;
encoder_raw(j) =
raw_data(i+401,1)/10;
encoder(j) =
encoder_raw(j)*encoder_countCoef; % Encoder
reading in cm of scan #;
encoder(j) = (encoder(j)-

encoder_offset)*encoder_correctionCoef+groundTruth_

offset; % Corrected encoder reading;
X_ground(:,j) = X(:,j)+encoder(j);
i =i+401; % point to next scan;
clustering_yeyin_V062013(j, X(:.j),
YD)
registration_yeyin(j);
else
i =i+401; % If there is noise,
eliminate this scan;
end
end
end

%% All location measurements for each
stalk.
location_AllStalks = [J;
for i = 1:numel(groundCoor_scan)
if numel(core_C_AlIScans{i}) ~=0
groundCoor_scan{i}(:,3) =
core_C_AlIScans({i}(:,3);
for ii = 1:size(groundCoor_scan({i},1)

if groundCoor_scan{i}(ii,3) ~= -6 &&

groundCoor_scan{i}(ii,3) ~= -7 &&
groundCoor_scan{i}(ii,3) ~= 0

if numel(location_AllStalks) <
groundCoor_scan{i}(ii,3) % A newly shown-up stalk...

location_AlIStalks{groundCoor_scan{i}(ii,3)} = [i
groundCoor_scan{i}(ii,1:2)];

else % Has already shown-up
in previous scans...

location_AllStalks{groundCoor_scan({i}(ii,3)} =
[location_AlIStalks{groundCoor_scan{i}(ii,3)}; i
groundCoor_scan{i}(ii,1:2)];
end
end
end
end
end

mean_location_AllStalks =
zeros(1,num_stalk);
std_location_AlIStalks =
zeros(1,num_stalk);
for i = 1:num_stalk
% Compute mean of the interquartile of
location measurements:
tmp = sort(location_AllStalks{i}(:,2)); %
Sort location readings
median_tmp = median(tmp); %
Compute median
Ql=
median(tmp(find(tmp<median_tmp))); % Compute first
quartile
Q3=
median(tmp(find(tmp>median_tmp))); % Compute
third quartile
mean_location_AllStalks(i) =
mean(tmp(find(tmp>=Q1 & tmp<=Q3)));

std_location_AllStalks(i) =
std(tmp(find(tmp>=Q1 & tmp<=Q3)));
clear tmp median_tmp Q1 Q3
end

%% Sort the stalk indices
mean_location_AllStalks_sorted = [J;
idx_sort = [];
[mean_location_AllIStalks_sorted idx_sort]
= sort(mean_location_AlIStalks);
location_AlIStalks_sorted = cell(1,
numel(location_AlIStalks));
stalkDiameter_AlIStalks_sorted = cell(1,
numel(stalkDiameter_AlIStalks));
for i = L:numel(idx_sort)
if i == idx_sort(i)
location_AlIStalks_sorted{i} =
location_AlIStalks{i};
stalkDiameter_AlIStalks_sorted{i} =
stalkDiameter_AlIStalks{i};
else
location_AlIStalks_sorted{idx_sort(i)}
= location_AllStalks{i};

stalkDiameter_AllIStalks_sorted{idx_sort(i)} =
stalkDiameter_AlIStalks{i};
end
end

% Mean diameter of each stalk



mean_stalkDiameter_AlIStalks_sorted =
zeros(numel(stalkDiameter_AllIStalks_sorted),1);
fori=
1:numel(stalkDiameter_AllStalks_sorted)
mean_stalkDiameter_AllStalks_sorted(i)
= mean(stalkDiameter_AllStalks_sorted{i});
end

%% Combine locations closer than 5¢cm to
each other to eliminate sheath interference:
mean_location_AllStalks_sorted_combined
= mean_location_AllStalks_sorted;
dif_mean_location =
zeros(numel(mean_location_AllIStalks_sorted_combine
d)-1,1);
fori=
2:numel(mean_location_AllStalks_sorted_combined)
dif_mean_location(i-1) =
mean_location_AllStalks_sorted_combined(i)-
mean_location_AllStalks_sorted_combined(i-1);
end
[min_dif_mean_location
idx_min_dif_mean_location] = min(dif_mean_location);
while min_dif_mean_location <=5
% which means the stalk
#idx_dif_mean_location(i) and stalk
#idx_dif_mean_location(i+1) are closer than 5cm

mean_location_AllStalks_sorted_combined(idx_min_dif
_mean_location) =
(mean_location_AlIStalks_sorted_combined(idx_min_di
f_mean_location)+mean_location_AllIStalks_sorted_co
mbined(idx_min_dif_mean_location+1))/2;

mean_location_AllStalks_sorted_combined(idx_min_dif
_mean_location+1) = [];

dif_mean_location =
zeros(numel(mean_location_AllStalks_sorted_combine
d)-1,1); % reset

fori=
2:numel(mean_location_AllStalks_sorted_combined)

dif_mean_location(i-1) =

mean_location_AllStalks_sorted_combined(i)-
mean_location_AllStalks_sorted_combined(i-1);

end

[min_dif_mean_location
idx_min_dif_mean_location] = min(dif_mean_location);

end

%% Error Calculation
disp(['Result when thres='
num2str(ratio_n(i_thres)) 'n and buf=" num2str(buf) ":");

mean_location_AllStalks_sorted_combined;
tmp = find((I>=(gt(1)-10)) &
(I<=(gt(end)+10)));
I =1(tmp);
clear tmp;
| = [I'zeros(numel(l),1)];
gt = [gt' zeros(numel(gt),1)];
fori=1:size(l,1)
tmp = find(gt>=(1(i,1)-10) &
gt<=(I(i,1)+10));
if numel(tmp) ==
1(i,2) =-4; % '-4' means this is an
adding count

elseif numel(tmp) == 1 % this might be
a correct count or a adding count
1(i,2) = tmp;
gt(tmp,2) = 6;
else % it is among two or more gt
stalks
% see which one is closer:
num_tmp = numel(tmp);
tmpl = pdist([I(i,1) O; gt(tmp,:)]);
[na closest] = min(tmp1(1:num_tmp));
I(i,2) = tmp(closest);
gt(tmp(closest),2) = 6;
clear tmp1 closest;
end
clear tmp;
end

% Display missing counts

missCt_idx = find(gt(:,2)==0);

missCt = numel(missCt_idx);

disp(['There are ' num2str(missCt) ' missing
counts at locations: ' num2str(gt(missCt_idx,1)"]);

% Display adding counts
for i = 1:size(gt,1)
tmp = find(I(:,2)==i);
if numel(tmp) > 1 % there is/are adding
count(s)
% see which measured location is
closer to the ground truth
num_tmp = numel(tmp);
tmp1 = pdist([gt(i,1) O; I(tmp,1)
zeros(num_tmp,1)]);
[na closest] = min(tmp1(1:num_tmp));
tmp(closest) = [];
I(tmp,2) = zeros(numel(tmp),1);
end
clear tmp1 tmp closest;
end
addCt_idx = find(I(:,2)==0 | I(:,2)==-4);
addCt = numel(addCt_idx);
disp(['There are ' num2str(addCt) ' adding
counts at locations: ' num2str(l(addCt_idx,1)")]);

% Display total error

t_error = missCt+addCt;

t_error_perc = t_error/size(gt,1)*100;

missCt_perc = missCt/size(gt,1)*100;

addCt_perc = addCt/size(gt,1)*100;

disp(['The total error are ' num2str(t_error) '
counts, ' num2str(t_error_perc) '%.");

% RMSE of locations
I=1¢,1);
ll(addCt_idx) = [];
gg = ot(:,1);
gg(missCt_idx) =[];
rmse = sqrt(sum((ll-gg).*2)/numel(ll));
disp([RMSE is ' num2str(rmse)]);
if rmse > 2.54
rmse_perc = (rmse-2.54)/2.54*100;
else
rmse_perc = 0;
end

% Value of the objective function
y=weight1*t_error_perc+weight2*(rmse/10)
% %Y%weight_t_error_perc = 1;
weight_missCt_perc = 2;%1,
weight_addCt_perc = 1;%2;



weight_rmse = 0.75;%0.25;

OF(i_buf, i_thres, 5*(idx_row-1)+idx_trial) =
weight_missCt_perc*missCt_perc+weight_addCt_perc*
addCt_perc+weight_rmse*rmse_perc;

disp(['The value of the objective function is:
" num2str(OF(i_buf, i_thres, 5*(idx_row-1)+idx_trial))
VD

%% Plot:

% figure; bar(l(:,1), ones(1,size(l,1)),
0.4, 'c', 'EdgeColor’, 'c');

% hold on; bar(gt(;,1),
0.5.*ones(size(gt,1),1), 0.4, 'k');

% grid on; axis([0 800 0 1]);
xlabel('Location (cm)"); % row 5

% % grid on; axis([0 850 0 1]);
xlabel('Location (cm)"); % row 6

% % grid on; axis([0 850 0 1));
xlabel('Location (cm)’); % row 7

% % grid on; axis([0 700 0 1]);
xlabel('Location (cm)"); % row 8

% title(['Ground Truth Locations &
Measured Locations of file ' flename ' at thres *
num2str(thres) ' and buf ' num2str(buf)]);

% figure;
bar(1:1:numel(mean_location_AllStalks),std_location_A
lIStalks(1:numel(mean_location_AllStalks)));

% axis([0 35 0 10]); grid on;

% title(['Standard deviation of location
of file ' filename ' V87);

% xlabel('Measured Stalk #');
ylabel('Standard deviation (cm));

% figure; plot(1:1:numel(encoder),
encoder);

% title(['Modified encoder reading of '
filename ' V8');

% axis equal; grid on; xlabel('Scan #');

ylabel('Encoder Readings (cm)’);

% Spacing calculation ------------==-==--=--=----

% Il is the sensor measured locations
without the adding counts; gg is the ground truth
locations without the missing counts

spacing_gt = zeros(size(gg,1)-1,1);

spacing_sensor = zeros(size(ll,1)-1,1);

for i_spacing = 1:(size(ll,1)-1)
spacing_gt(i_spacing) =
gg(i_spacing+1)-gg(i_spacing);
spacing_sensor(i_spacing) =
II(i_spacing+1)-li(i_spacing);

end

spacing_gt = spacing_gt';

spacing_sensor = spacing_sensor';

rmse_spacing =
sqrt(sum((spacing_sensor-
spacing_gt).~2)/numel(spacing_gt));

disp([RMSE of spacing measurement: '
numz2str(rmse_spacing)]);

disp("
);

end
end

else
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disp(['Row ' num2str(idx_row) ', Trial '
num2str(idx_trial) ' was invalid.");
disp("

OF_sum = sum(OF,3);

% %% Individual scan display for testing purpose:

% close all;

% for i_scan = 55:1:58

% % figure, scatter(X_ground(:,i_scan), Y(:,i_scan));
% figure, scatter(X(:,i_scan), Y(;,i_scan));

% axis equal; grid on;

%  xlabel('Scan Line (cm)"); ylabel('Range (cm)");

% title([num2str(filename) ' scan #'
num2str(i_scan)]);

% end



Selected MATLAB Code for Chapter V

LiDAR-and-RGB Approach
Main Function

% This code is the main function for processing the
webcam and laser data.
% Yeyin Shi, Sept 2013

close all;
clear all; clc;

%% Define global variables

global num_stalk dia_cm_AllIStalks core_C_AllScans;
global encoder ind_laser;

global buf;

global stalkDiameter_AllIStalks;

%% Read all RGB images in the folder
imageFolder = 'C:\StalkDiameterProject\Field Test
Data\Summer2013\06132013_V12\2_1 V12 webcam’

if ~isdir(imageFolder)
errorMessage = sprintf('Error: The following folder
does not exist:\n%s', imageFolder);
uiwait(warndlg(errorMessage));
return;
end
filePattern = fullfile(imageFolder, *.bmp’);
listing=dir(filePattern);
nfiles = numel(listing); % Number of images in the
folder
filenames = cell(nfiles,1);
timeStamps_rgb = zeros(nfiles,1);
for i = L:nfiles
filenames({i} = listing(i).name;
timeStamps_rgb(i) = str2double(filenames{i}(1:8));
end

% Sort timeStamps_rgb and filenames into ascending
order

timeStamps_rgb2 = timeStamps_rgb;
[timeStamps_rgb IX] = sort(timeStamps_rgh2);

clear timeStamps_rgb2;

filenames?2 = filenames;

filenames = cell(numel(filenames?2),1);

for i = L:numel(filenames)
filenames({i} = filenames2{IX(i)};

end

%% Extract each laser scan first (used for off-line
processing)

num_stalk = 0; % how many identified stalks

buf = 6;

load raw_data_2_1 V12;
load dia_gt_2_V12;
load location_gt_2;
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num_data = size(raw_data,1);
encoder_countCoef = 0.77; % Encoder reading
correction coefficient (mm/count);

i=0;

j=0;

while i <= (hum_data-1)
i =i+1; % pointer to each row of raw data
if ~isnan(raw_data(i,2)) % If this row is not the
encoder reading...
if max(raw_data(i:i+400,2)) < 1800 % If no noise,
read this scan;
j =j+1; % # of valid scan;
Y(:,j) = raw_data(i:i+400,2)/10;
X(:,j) = raw_data(i:i+400,1)/10;
encoder_raw(j) = raw_data(i+401,1)/10;
encoder(j) =
encoder_raw(j)*encoder_countCoef; % Encoder
reading in cm of scan #;
timeStamp_laser(j) = raw_data(i+402,1); %
Time stamp of each scan
X_ground(:,j) = X(:,j)+encoder(j);
i =i+401; % point to next scan;
clustering_webcamLaser(j, X(:,)), Y(:.j));
else
i =i+401; % If there is noise, eliminate this
scan;
end
end
end

theta_rgb = 62; % webcam's total field of view in degree
¢ = 2*(tan(theta_rgb/180*pi/2))/640; % coefficient used
later for diameter calculation

%% Laser and webcam matching
for i_rgb = 2:nfiles

% Note: The time stamp of each webcam frame was
actually closer to the time

% of the next frame been taken. So use the time
stamp of previous frame

% as the time stamp of current frame.

rgblmg_orig = imread(fullfile(imageFolder,
filenames{i_rgb-1}));
%  figure; imshow(rgblmg_orig); title(['lmage *
filenames{i_rgb-1}]);

rgblmg = rgblmg_orig;

% Find corresponding laser scan with closest time
stamp
ff = 1; % flag indicating if a corresponding laser scan
can be found
ind = find(
(timeStamp_laser>=timeStamps_rgb(i_rgb)-0.05) &
(timeStamp_laser<=timeStamps_rgb(i_rgb)+0.05) );
if numel(ind) ==
ind = find(
(timeStamp_laser>=timeStamps_rgb(i_rgb)-0.1) &
(timeStamp_laser<=timeStamps_rgb(i_rgb)+0.1) );
if numel(ind) ==
disp(['No laser scan was found close to image '
filenames{i_rgb-1} ". Processing next image...);
ff=0;
end
end



if ff % if one or more corresponding laser scan was
found...
% find a laser scan with closest time stamp:
for i = 1:numel(ind)
dif(i) = abs(timeStamp_laser(ind(i))-
timeStamps_rgb(i_rgb));

end
[min_dif idx_min_dif] = min(dif);
% ind_laser = ind(idx_min_dif); % ind_laser is the

index of laser scan corresponding to the rgb image
ind_laser(i_rgb-1) = ind(idx_min_dif);
clear dif min_dif idx_min_dif;
% figure; scatter(X(;,ind_laser(i_rgb-1)),
Y(:,ind_laser(i_rgb-1)));

% axis equal; grid on;
% xlabel('Scan Line (cm)"); ylabel('Range (cm)");
% title(['Laser scan # num2str(ind_laser(i_rgb-1)) '

corresponding to RGB image ' filenames{i_rgb-1}]);

%% Get stalk recognition results from the RGB
image:

% Vegetative area segmentation:
bwimg = zeros(360,640);
fori=1:360
for j = 1:640
R =rgbimg(i,j,1);
G =rgblmg(i,j,2);
B = rgbimg(i,j,3);
if (R<=200) && (G<=200) && (B<=200)
if R<G && B<G
bwimg(i,j) = 1;
end
end
end
end
% figure; imshow(bwimg); title(‘Primary
Segmentation');
img_current = bwimg;
clearRGBij;

CC = bwconncomp(img_current);
numPixels = cellfun(@numel,CC.PixelldxList);
[biggest,idx] = max(numPixels);
tmp = zeros(size(bwimg));
tmp(CC.PixelldxList{idx}) = 1;
img_current = tmp;
% figure; imshow(img_current); title('Largest
connected area’);
clear CC numPixels biggest idx tmp;

% Fill in small holes in the binary image:

tmp = ones(size(img_current))-img_current;

CC = bwconncomp(tmp,4);

numPixels = cellfun(@numel,CC.PixelldxList);

hold_fill_thres = 100;

idx = find(humPixels<=hold_fill_thres);

for i = 1:numel(idx)

tmp(CC.PixelldxList{idx(i)})=0;

end

tmp = ones(size(tmp))-tmp;

img_current = tmp;
% figure; imshow(img_current); title(['Hole-filling
threshold ' num2str(hold_fill_thres)]);

clear tmp CC numPixels idx;
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% Diameter calculation:
thres_dial = 20; % number of pixels corresponds
to minimum stalk diameter
thres_dia2 = 80;
if max(max(img_current)) % if there is potential
stalk object(s)
sum_img = sum(img_current);
% figure; plot(1:1:640, sum_img); title('Sum of
binary values along vertical axis');
% grid on; axis([0 700 0 400]);
% xlabel('Horizontal Dimension (pixel)');
% ylabel('Sum along column’);

ind_pixel = find(sum_img>=360); % Check if
the connected part(s) is vertically across the image

if (numel(ind_pixel)>=thres_dial)
num_stalk_onelmg =1; %
num_stalk_onelmg is the number of stalks in an image
dia = 1; % dia is the width of the valley or the
diameter of a stalk
ind_eachStalk = {ind_pixel(1)};
for j = 2:numel(ind_pixel)
if ind_pixel(j) == ind_pixel(j-1)+1; % if two
pixels are connected...
dia(num_stalk_onelmg) =
dia(num_stalk_onelmg)+1; % count them as one stalk
ind_eachStalk{num_stalk_onelmg} =
[ind_eachStalk{num_stalk_onelmg} ind_pixel(j)];
else % if two pixels are not connected...
num_stalk_onelmg =
num_stalk_onelmg+1; % treat it as another stalk
dia(num_stalk_onelmg) = 1; % initialize
another stalk diameter counting
ind_eachStalk = [ind_eachStalk;
ind_pixel(j)]; % initialize another stalk cell
end
end

% eliminate too small object(s) and object(s)
near the image edge
num_stalk_onelmg2 = 0;
ind_eachStalk2 = {};
dia2 =J;
for i = 1:num_stalk_onelmg
% if an object is wide enough to be a
potential stalk:
if (numel(ind_eachStalk{i}) >= thres_dial)
&& (numel(ind_eachsStalk{i}) <= thres_dia2) % check
diameter
% if a stalk appears at or near the edge
of an image:
tmp =
find((ind_eachStalk{i}<=4)|(ind_eachStalk{i}>=636));
if numel(tmp) == 0
if num_stalk_onelmg2 == 0
num_stalk_onelmg2 = 1;
else
num_stalk_onelmg2 =
num_stalk_onelmg2+1;
end
ind_eachStalk2{num_stalk_onelmg2}
= ind_eachsStalk{i};
dia2(num_stalk_onelmg2) = dia(i);
end
end



end

num_stalk_onelmg = num_stalk_onelmg2;

ind_eachStalk = ind_eachStalk2;

dia = dia2; % 'dia’ the pixel width of each
stalk

clear tmp num_stalk_onelmg2
ind_eachStalk2 dia2;

if num_stalk_onelmg~=0

location_rgb =
zeros(numel(ind_eachStalk),1);

for i = 1:numel(ind_eachStalk)

location_rgh(i) =

mean(ind_eachStalk{i});

end

% Use the rgb image to calculate the
diameter; using the laser scan to get the distance the
stalk from the sensor.

% Get the clustering results here

core_currentScan =
core_C_AlIScans{ind_laser(i_rgb-1)}; % Cluster
locations in the corresponding laser scan

j =0; % Initialize stalk count in this image

dia_cm_currentimg = [J;

for i = 1:size(core_currentScan,1)

tmp_x = core_currentScan(i,1);
tmp_y = core_currentScan(i,2);
tmp_theta = atan(tmp_x/tmp_y)/pi*180;
if abs(tmp_theta)<=(66/2)
% Eliminate this cluster if it is located
larger than 66 degrees which would definitely out of the
webcam's field of view

[M_pixellnRgh M M_idx] =
sensorMatching(tmp_x,tmp_y);

% M_pixellnRgb is the pixel index in
RGB image;

% M is the laserPositionInRgbimg;

% M_idx is the data point index in the
laser scan

if numel(M) ~=0

% 70 are the buffered search area
if (M(M_idx)-70>=1) &&
(M(M_idx)+70)<=640
tmp_matchldx = find(
(location_rgb>=M(M_idx)-70) &
(location_rgh<=M(M_idx)+70) );
elseif (M(M_idx)-70<1)
tmp_matchldx = find(
(location_rgb>=1) & (location_rgh<=M(M_idx)+70) );
else
tmp_matchldx = find(
(location_rgb>=M(M_idx)-70) & (location_rgh<=640) );
end

if numel(tmp_matchldx)~=0 % If a
corresponding stalk in the RGB image can be found...

% If more than one
corresponding stalk were found in the RGB image,
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% keep one closer to the laser
estimated location
if numel(tmp_matchldx)>1
tmpl1 = M_pixellnRgb;
fori_tmp =
1:numel(tmp_matchldx)
tmp2 =
location_rgb(tmp_matchldx(i_tmp));
tmp_dif(i_tmp) = abs(tmp1-
tmp2);
end
[tmp_dif_min tmp_idx] =
min(tmp_dif);
tmp_matchldx =
tmp_matchldx(tmp_idx);
end
clear tmpl tmp2 tmp_dif
tmp_dif_min tmp_idx;

j =j+1; % Increments stalk count;

% Then tmp_y is the
distance/sqrt(3)*2 of the stalk at
location_rgb(tmp_matchldx) in the RGB image:

dis = tmp_y/2*sqrt(3);

dia_cm(tmp_matchldx) =
c*(dia(tmp_matchldx)+5)*dis*cos(0.85/180*pi); %
/cos(0.85/180*pi)was the incline angle correction

% 'dia_cm_currentimg' stores all
the information about recognized stalks in current RGB
image and laser scan:

dia_cm_currentimg(j,1:2) =
core_currentScan(i,1:2); % column 1:2 stores verified
stalk locations in laser scan;

dia_cm_currentimg(j,3) =
M_pixellnRgb; % column 3 stores estimated stalk
locations in rgb image from laser scan;

dia_cm_currentimg(j,4) =
location_rgb(tmp_matchldx); % column 4 stores
recognized stalk locations in rgb image;

dia_cm_currentimg(j,5) =
tmp_matchldx; % column 5 stores which stalk in rgb
image matched to the cluster in laser scan;

dia_cm_currentimg(j,6) =
dia_cm(tmp_matchldx); % column 6 stores stalk
diameters

end

end
clear M_pixellnRgb M M_idx
tmp_matchldx;

end
clear tmp_x tmp_y tmp_theta;

end
clear location_rgb core_currentScan
num_stalk_onelmg ind_eachsStalk dia_cm;

% if two clusters in laser scan correspond
to the same stalk in rgb image, eliminate the one further
away from the stalk location in rgb image

if numel(dia_cm_currentimg) ~= 0

if size(dia_cm_currentimg,1)>1
i=1;
while i<=size(dia_cm_currentimg,1)



tmp_sameStalk =
find(dia_cm_currentimg(:,5)==dia_cm_currentimg(i,5));

if numel(tmp_sameStalk)>1 %
which means there are multiple clusters corresponded
to one stalk...

[tmp_dif tmp_closest] =
min(abs(dia_cm_currentimg(tmp_sameStalk,3)-
dia_cm_currentimg(tmp_samesStalk,4)));

tmp_sameStalk(tmp_closest) =
0;

for ii = L:numel(tmp_sameStalk)

dia_cm_currentimg(tmp_sameStalk(numel(tmp_sameS
talk)-ii+1),:) = []; % Eliminate multiple clusters.

end
end
i =i+l;
end
end
clear i ii tmp_sameStalk tmp_dif
tmp_closest;
% Mark the estimated position on RGB
image:

figure; imshow(rgblmg_orig);
title(['lmage ' filenames{i_rgb-1}]);
for i = 1:size(dia_cm_currentimg,1)
x_plot =
ones(360,1).*dia_cm_currentimg(i,3);
y_plot = 1:1:360;
hold on; plot(x_plot, y_plot, 'r');
end

% Assign results to the global variable:
if ~exist('dia_cm_AlIStalks','var')
dia_cm_AlIStalks = cell(i_rgb-1,1);
dia_cm_AlIStalks{i_rgb-1} =
zeros(1,7);
end
if numel(dia_cm_AlIStalks)<i_rgbh-1

dia_cm_AlIStalks = [dia_cm_AlIStalks;

cell(i_rgb-1-numel(dia_cm_AlIStalks),1)];
dia_cm_AlIStalks{i_rgb-1} =
zeros(size(dia_cm_currentimg,1),6);
end

dia_cm_AlIStalks{i_rgb-1}(:,1:2) =
dia_cm_currentimg(:,1:2); % dia_cm_AlIStalks{}(:,1:2)
stores verified stalk locations in laser scan;

dia_cm_AlIStalks{i_rgb-1}(:,3) =
dia_cm_currentlimg(:,3); % column 3 stores estimated
stalk locations in rgb image from laser scan;

dia_cm_AlIStalks{i_rgb-1}(:,4) =
dia_cm_currentimg(:,4); % column 4 stores recognized
stalk locations in rgb image;

dia_cm_AlIStalks{i_rgb-1}(:,5) =
dia_cm_currentimg(:,6); % column 5 stores stalk
diameters;

% dia_cm_AllStalks{}(:,6) will be used
later for registration purpose.

% dia_cm_AlIStalks{}(:,7) will be the
ground coordinate locations.

end

clear dia_cm_currentimg;

end
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end
end
end

end

%% Register RGB images based on the encoder

readings and the feature (stalk locations) in each image

for i = 1:numel(dia_cm_AlIStalks)
registration_webcamLaser(i);

end

%% Location calculation
location_AllStalks = [];
for i = L:numel(dia_cm_AlIStalks)
if numel(dia_cm_AlIStalks{i}) ~= 0
for ii = 1:size(dia_cm_AllStalks{i},1)
if dia_cm_AllStalks{i}(ii,6) ~= -6 &&

dia_cm_AlIStalks{i}(ii,6) ~= -7 &&
dia_cm_AlIStalks{i}(ii,6) ~= 0

if numel(location_AllStalks) <
dia_cm_AlIStalks{i}(ii,6) % A newly shown-up stalk...

location_AlIStalks{dia_cm_AllStalks{i}(ii,6)}

= [i dia_cm_AlIStalks{i}(ii, 7)];

else % Has already shown-up in previous
scans...

location_AllStalks{dia_cm_AllIStalks{i}(ii,6)}

= [location_AlIStalks{dia_cm_AllIStalks{i}(ii,6)}; i
dia_cm_AllIStalks{i}(ii,7)];

end

end
end

end
end
mean_location_AllStalks = zeros(1, num_stalk);
for i = L:num_stalk

mean_location_AllStalks(i) =
mean(location_AllStalks{i}(:,2)); % Compute mean of
locations for each stalk;

% %std_location_AllStalks(i) =
std(location_AllStalks{i}(:,2)); % Compute standard
deviation of locations for each stalk;
end

load location_gt_2;

location_gt = location_gt-
(location_gt(1))+min(mean_location_AllStalks);
length_gt = max(location_gt)-min(location_gt);
length_encoder = max(mean_location_AllIStalks)-
min(mean_location_AllStalks);

encoder_ratio = length_gt/length_encoder;
mean_location_AllStalks1 = (mean_location_AllStalks-
min(mean_location_AllStalks)).*encoder_ratio+min(me
an_location_AllStalks);

figure; bar(mean_location_AllStalks1,
ones(1,numel(mean_location_AllStalks1)), 0.4, 'c',
'EdgeColor', 'c');

figure; bar(location_gt, 0.5.*ones(1, numel(location_gt)),
0.4, 'k');



figure; bar(mean_location_AllStalks1,
ones(1,numel(mean_location_AllStalks1)), 0.4, 'c,
'EdgeColor', 'c');

hold on; bar(location_gt, 0.5.*ones(1,
numel(location_gt)), 0.4, 'k’);

title('Ground Truth Locations & Measured Locations');
% rmse_location =
sqrt(sum((mean_location_AllStalks1-
location_gt).~2)/numel(mean_location_AllStalks))

%% Diameter calculation

load dia_gt_2 V12;

n_tmp = numel(stalkDiameter_AlIStalks);
count =J;

non_stalk = [J;

n_stalk = 0;

thres_count = 10;

dia_cm_mean = [];

fori=21:n_tmp
count(i) = numel(stalkDiameter_AllStalks{i});
if count(i) < thres_count
non_stalk = [non_stalk iJ;
else
n_stalk = n_stalk+1;
dia_cm_mean(n_stalk) =
mean(stalkDiameter_AllStalks{i})*10;
end
end
% figure; bar(1:1:n_tmp,count); grid on; title('Number of
images of each stalk’);
clear n_tmp;

figure;
scatter(1:1:numel(dia_cm_mean),dia_gt,'g', filled");
axis([0 25 0 50]); grid on;

hold on;
scatter(1:1:numel(dia_cm_mean),dia_cm_mean, k', *');
xlabel('Stalk Index'); ylabel('Diameter (mm)’);

title('Row 2 rep 2 at V12');

% rmse = sqgrt(sum((dia_cm_mean-
dia_gt")."2)/numel(dia_cm_mean))

%% Display individual scan for testing purpose
close all;
fori_test = 1:5:20

% Display RGB image

rgblmg_orig = imread(fullfile(imageFolder,
filenames{i_test}));

figure; imshow(rgblmg_orig); title(['#' num2str(i_test) '
"'Image ' filenames{i_test}]);

% Display laser scan

figure; scatter(X(:,ind_laser(i_test)),
Y(:,ind_laser(i_test)));

% %figure; scatter(X(:,i_test), Y(:,i_test));

axis equal; grid on;

xlabel('Scan Line (cm)’); ylabel('Range (cm)");

title(['Laser scan # num2str(ind_laser(i_test)) '
corresponding to RGB image ' filenames{i_test}]);
% title(['Laser scan #' num2str(i_test)]);

X = 0:0.1:40;

y = x.*(tan(59/180*pi))+5.5;
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hold on; plot(x,y,'r");
X = -40:0.1:0;
y = x.*(tan(121/180*pi))+5.5;
hold on; plot(x,y,'r");
end

3D Range Imaging Approach
Main Function

close all;
clear all; clc;

%% Global variables definition
global Infol Info2;

global num_stalk;

global buf;

global encoder;

global stalkDiameter_AlIStalks;

num_stalk = O;
buf = 15;
stalkDiameter_AlIStalks = {};

¢ = 2*tan(43.6/2*pi/180)/176;

%% Distortion correction
loading_calib;

raw = xIsread('C:\StalkDiameterProject\Field Test
Data\Summer2013\06132013_V12\06132013_V12_sr4
000\2_1_V12.xIsx");

rows = size(raw,1);

num_img = rows/(144+1);

img_orig = zeros(144,176,num_img);

img_rec = zeros(144,176,num_img);

encoder = zeros(1,num_img);

timeStamp = zeros(num_img);

i=1,

while (145*(i-1)+1) <= rows
img_orig(:,:,i) = raw(145*(i-1)+1:145*(i-1)+144,:);
encoder(i) = raw(145*(i-1)+145,1)/10;
timeStamp(i) = raw(145*(i-1)+145,2);
phy = bitshift(img_orig(:,:,i), -2);
img_orig(:,:,i) = phy/(2*14)*500;
% % figure; imagesc(img_orig(:,:,i)); axis off;
title('Raw distance image");
img_rec(:,:,i) = rect(img_orig(:,:,i),eye(3),fc,cc,kc,KK);
% img_rec contains images after distortion correction
% % figure; imagesc(img_rec(;,:,i)); axis off;
title('Undistorted distance image");
save(‘Undistortedimg.mat’, 'img_rec');
i =i+1;
end
img = img_rec;
% figure; plot(1:1:numel(encoder),encoder);

%% Thresholding

img_thres = zeros(144,176,num_img);

img_bw = zeros(144,176,num_img);

thresl = 25; % 30 is the minimum distance between
sensor and plant row; add 5 tolerance

thres2 = 51; % 46 is the maximum distance between
sensor and plant row; add 5 tolerance
fori=1l:num_img



tmp =img(:,:,i); % temporarily stores the thresholded

image
tmpl = ones(144,176); % temporarily stores the
binary image
forii=1:144
for jj = 1:176
if (tmp(ii,jj) > thres2) || (tmp(ii,jj) < thres1)
tmp(ii,jj) = 500;
tmp(ii,jj) = 0;
end
end
end

img_thres(:,:,i) = tmp; % img_thres contains images
after thresholding

img_bw(:,:,i) = tmpl;
end
% % img = img_thres; % 'img' stores all the
thresholded images
img =img_bw; % 'img' stores all the binary images

%% Find the connected part(s) in an image

Infol = cell(num_img,1);

Info2 = cell(num_img,1);

size_thres = 1500; % A connected part needs to be
larger than 1500 pixels in order to be valid.
fori_img = 1l:num_img

clear img_current img_current2 CC numPixels
biggest idx;
img_current = img(:,:,i_img);
CC = bwconncomp(img_current);
numPixels = cellfun(@numel,CC.PixelldxList);
[biggest,idx] = max(numPixels);
compo ={};
img_current2 = zeros(size(img_current));
while biggest >= size_thres
tmp = zeros(size(img_current));
tmp(CC.PixelldxList{idx}) = 1;
tmpl = tmp;
sum_tmp1 = sum(tmp1,2);
% figure; plot(1:1:144, sum_tmp1);
min_sum_tmp1l = min(sum_tmp1(10:130));
if min_sum_tmpl >0
compo = [compo; CC.PixelldxList{idx}]; %
‘compo’ contains all large enough connected areas
img_current2(compo{end}) = 1;
end
numPixels(idx) = 1; % Delete the largest part from
current 'numPixels'
[biggest,idx] = max(numPixels);
end
clear tmp tmpl sum_tmp1l min_sum_tmp1,;
% figure; imagesc(img_current2); axis equal; axis([0
176 0 144));

% Convert '‘compo' to Cartesian coordinates
‘compo_C'.

% Fill in small holes in the binary image:

img_current3 = ones(144,176)-img_current2;

CC_3 = bwconncomp(img_current3,4);

numPixels_3 = cellfun(@numel,CC_3.PixelldxList);

hold_fill_thres = 200;

idx_3 = find(numPixels_3<=hold_fill_thres);

for i = 1:numel(idx_3)

img_current3(CC_3.PixelldxList{idx_3(i)})=0;

end

% % figure; imagesc(img_current3); title(['Hole-filling
threshold ' num2str(hold_fill_thres)]);

img_current2 = ones(144,176)-img_current3;
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% figure; imagesc(img_current2);

% Detect stalk object:
if max(max(img_current2)) % if there is potential
stalk object(s)
sum_img = sum(img_current2);
% figure; plot(1:1:176, sum_img); title('Sum of
binary values along vertical axis');
% grid on; axis([0 180 0 150]); axis equal;
% xlabel('Horizontal Axis (pixel)');
% ylabel('Sum along column’);
% hold on; plot(1:1:176, ones(1,176).*72);

% ind = find(sum_img>=72);
ind = find(sum_img>=144); % Check if the
connected part(s) is vertically across the image

thres_dial = 10; % number of pixels corresponds
to minimum stalk diameter
thres_dia2 = 30;
if (numel(ind)>=thres_dial) % % &&
(numel(ind)<=thres_dia2)
num_stalk_onelmg = 1; % num_stalk_onelmg
is the number of stalks in an image
i=1
dia = [1]; % dia is the width of the valley or the
diameter of a stalk
ind_eachStalk = {ind(1)};
for j = 2:numel(ind)
if ind(j) == ind(j-1)+1; % if two pixels are
connected...
dia(num_stalk_onelmg) =
dia(num_stalk_onelmg)+1; % count them as one stalk
ind_eachStalk{num_stalk_onelmg} =
[ind_eachStalk{num_stalk_onelmg} ind(j)];
else % if two pixels are not connected...
num_stalk_onelmg =
num_stalk_onelmg+1; % treat it as another stalk
dia(num_stalk_onelmg) = 1; % initialize
another stalk diameter counting
ind_eachStalk = [ind_eachStalk; ind(j)]; %
initialize another stalk cell
end
end

% eliminate too small object(s) and object(s)
near the image edge
num_stalk_onelmg2 = 0;
ind_eachStalk2 = {};
dia2 = [J;
for i = 1:num_stalk_onelmg
% if an object is wide enough to be a
potential stalk:
if (numel(ind_eachStalk{i}) >= thres_dial) &&
(numel(ind_eachStalk{i}) <= thres_dia2) % check
diameter
% if a stalk appears near the edge of an
image:
clear tmp;
tmp =
find((ind_eachStalk{i}<=4)|(ind_eachStalk{i}>=172));
if numel(tmp) ==

if num_stalk_onelmg2 ==
num_stalk_onelmg2 = 1;
else
num_stalk_onelmg2 =
num_stalk_onelmg2+1;
end



ind_eachStalk2{num_stalk_onelmg2} =
ind_eachStalk{i};
dia2(num_stalk_onelmg2) = dia(i);
end
end
end
num_stalk_onelmg = num_stalk_onelmg2;
ind_eachStalk = ind_eachStalk2;
dia = dia2;
clear num_stalk_onelmg?2 ind_eachStalk2 dia2;

% Correct diameter estimation based on the
distance reading
tmp = img_thres(:,:,i_img);
for i = 1:num_stalk_onelmg
tmp_sum = 0;
tmp_idx = 0;
for ii = L:numel(ind_eachStalk{i})
forjj=1:144
% Because the step of hole fill-in, those
noise pixels
% need to be excluded from the
distance calculation
% here:
if tmp(jj,ind_eachStalk{i}(ii)) ~= 500
tmp_sum =
tmp_sum+tmp(jj,ind_eachStalk{i}(ii));
tmp_idx = tmp_idx+1;
end
end
end
d = tmp_sum/tmp_idx;
dia_c(i) = c*dia(i)*d*10; % 'dia_c'is the
corrected diameter in mm according to distance reading
'
end
clear tmp tmp_sum tmp_idx ii jj;

% sort ind_eachStalk
locale_stalk = zeros(num_stalk_onelmg,1);
for i = 1:num_stalk_onelmg
locale_stalk(i) = mean(ind_eachStalk{i}); %
location of each stalk in the image coordinates
end

[tmp, IX] = sort(locale_stalk,'descend’);
infol = cell(num_stalk_onelmg,1);
info2 = zeros(num_stalk_onelmg,4);
for i = 1:num_stalk_onelmg
infol{i} = ind_eachStalk{IX(i)}; % horizontal
pixel indices of all members in a stalk object
info2(i,1) = dia_c(IX(i)); % width of each stalk
object
info2(i,2) = locale_stalk(IX(i)); % location (in
pixels) of each stalk in the image

info2(i,3) = 0;
info2(i,4) = c*info2(i,2)*d+encoder(i_img);
end

Infol{i_img} = infol;

Info2{i_img} = info2;

clear tmp d dia dia_c infol info2 locale_stalk;

clear ind_eachStalk num_stalk_onelmg;

clear IX sum_img ind;

clear CC numPixels biggest idx compo
img_current2;

end
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end
end

%% Register with previous image

for i = 1:numel(Info2)
registration_sr4000(i);

end

%% Location and spacing measurement
location_AllStalks = [];
for i = 1:numel(Info2)
if size(Info2{i},1) ~=0
for ii = 1:size(Info2{i},1)
if Info2{i}(ii,3) ~= -6 && Info2{i}(ii,3) ~= -7 &&
Info2{i}(ii,3) ~= 0
if numel(location_AlIStalks) < Info2{i}(ii,3) %
A newly shown-up stalk...
location_AllStalks{Info2{i}(ii,3)} = [i
Info2{i}(ii,4)];
else % Has already shown-up in previous
scans...
location_AlIStalks{Info2{i}(ii,3)} =
[location_AlIStalks{Info2{i}(ii,3)}; i Info2{i}(ii,4)];
end
end
end
end
end
mean_location_AllStalks = zeros(1, num_stalk);
for i = 1:num_stalk
mean_location_AllStalks(i) =
mean(location_AllStalks{i}(:,2)); % Compute mean of
locations for each stalk;
end

load location_gt_2;

location_gt = location_gt-
(location_gt(1))+min(mean_location_AllStalks);
length_gt = max(location_gt)-min(location_gt);
length_encoder = max(mean_location_AllIStalks)-
min(mean_location_AllStalks);

encoder_ratio = length_gt/length_encoder;
mean_location_AllStalks1 = (mean_location_AllStalks-
min(mean_location_AllStalks)).*encoder_ratio+min(me
an_location_AlIStalks);

figure; bar(mean_location_AllIStalks,
ones(1,numel(mean_location_AllStalks)), 0.4, 'c',
'EdgeColor', 'c');

figure; bar(location_gt, 0.5.*ones(1, numel(location_gt)),
0.4, 'kY);

figure; bar(mean_location_AllStalks1,
ones(1,numel(mean_location_AllStalks1)), 0.4, 'c',
'EdgeColor', 'c');

hold on; bar(location_gt, 0.5.*ones(1,
numel(location_gt)), 0.4, 'k’);

title('Ground Truth Locations & Measured Locations');
rmse_location = sqgrt(sum((mean_location_AllStalks1-
location_gt).~2)/numel(mean_location_AllStalks))

%% Diameter estimation

for i = L:numel(stalkDiameter_AlIStalks(:))
stalkDiameter_mean(i) =

mean(stalkDiameter_AlIStalks{i});

end

load dia_gt_2 V12;



figure;
scatter(1:1:numel(stalkDiameter_mean),stalkDiameter_
mean, filled’);

axis([0 25 0 50]); grid on;

hold on; scatter(1:1:numel(dia_gt),dia_gt,'g’", filled");
xlabel('Stalk Index'); ylabel('Diameter (mm)’);

title('Row 3 rep 3 at V12');

rmse = sqrt(sum((stalkDiameter_mean-
dia_gt)."2)/numel(dia_gt))

%
%% Display individual image for testing purpose
% close all;

% fori=1:

% figure; imagesc(img_thres(;,:,i));

% % figure; imagesc(img_rec(:,:,i));

% % figure; imagesc(img(:,:,i));

% % axis off;

% title(['lmage # num2str(i) ' stalk #1);

% end
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APPENDIX E

Webcam Distortion Correction Result
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(b)

Fig. 47 Webcam’s images before (a) and after (b) distortion correction.
Complete Distortion Model
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Fig. 48 Complete distortion model of the webcam with camera parameters.
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3D Range Camera Distortion Correction Result
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Fig. 49 Amplitude images from the 3D range camera before (a) and after (b) distortion correction.
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Complete Distortion Model
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Fig. 50 Complete distortion model of the 3D range camera with camera parameters.
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