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Abstract: 

The overall goal of this research was to improve and optimize yield and 
composition of syngas generated from biomass gasification using an autothermal lab-
scale fluidized-bed gasifier, and to develop a biomass gasification model to predict the 
syngas composition. The first objective was to design, develop and experimentally 
optimize the equivalence ratio (ER) of a 5 kg/h lab-scale fluidized-bed gasifier using 
switchgrass as a biomass feedstock. The ER of 0.32 was found to be optimal with the 
maximum syngas heating value of 6.6 MJ/Nm3, and cold and hot gas efficiencies of 71 
and 75%, respectively. Our next objective was to investigate the effects of bed-materials 
(i.e. a mixture of sand, switchgrass and gasifier solid residues (GSR)) on fluidization 
characteristics (minimum fluidization velocity and bed-pressure drop) that are critical for 
optimizing reaction conditions in a fluidized-bed gasifier. Results showed that the 
fluidization characteristics were found to be strongly dependent upon mixture’s effective 
properties, which were determined using properties of all mixture components. GSR and 
switchgrass present in the mixture had a highly significant (p-value < 0.001) influence on 
fluidization. Then, the syngas yield was further improved by optimizing steam injection 
location into the gasifier. Steam injection locations of 51, 152, and 254 mm above the 
distributor plate and steam-to-biomass ratios (SBRs) of 0.1, 0.2, and 0.3 were selected. 
The best syngas yields (0.018 kg H2/kg biomass and 0.513 kg CO/kg biomass) and 
gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon 
conversion efficiency of 96%) were obtained at the steam injection location of 254 mm 
and SBR of 0.2. Finally, biomass gasification models, using three modeling approaches, 
i.e. Gibbs equilibrium, reaction kinetics and computational fluid dynamics (CFD) with 
reaction kinetics, were developed and validated with experimental results. Results 
showed that reaction kinetics and CFD models with reaction kinetics showed 
considerable improvements in the prediction of syngas composition and yield, as well as 
gasification energy efficiency compared to the Gibbs equilibrium model. Further, the 
CFD model also revealed insight about distribution of syngas constituents, temperature 
and dominating reactions within the gasifier.
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CHAPTER I 
 

 

INTRODUCTION 

Biomass such as plants, agro-residues, and grasses is a renewable and sustainable 

source of energy. Many researches have successfully demonstrated the generation of heat 

and power from biomass (Abelson, 1976; Jenkins and Bhatnagar, 1991; Quaark et al., 

1999). However, biomass is categorized as a low-grade energy fuel (Rao and Reddy, 

2010) and has limited uses as a direct feedstock for generating liquid fuels and chemicals. 

Thermochemical conversion process, such as gasification and pyrolysis, converts the 

solid biomass into gaseous or liquid fuel under high temperature (Brown et al., 1986; 

Kumar et al., 2009b). Gasification process yields a gaseous product, called syngas or 

producer gas, through partial oxidation of biomass in the presence of one or more 

oxidizing agent such as air, steam, and oxygen. Biomass generated syngas or producer 

gas consists of CO, H2, CO2, CH4, C2H2, C2H4, C2H6, N2 (if air is used as oxidizing 

agent) and impurities such as tars, H2O, NH3 and H2S. Syngas is considered a building 

block for many liquid fuels and chemicals such as Fischer-Tropsch gasoline, methanol, 

and ethanol (Spath and Dayton, 2003). However, synthesis of liquid fuels and chemicals 

using various conversion processes requires a quality syngas with different 

concentrations of H2, CO, and CO2 (Wender, 1996), as well as H2/CO ratio from 0.4 to 4 

(Hamelinck and Faaij, 2002; Jess et al., 1999; Klasson et al., 1993; Spath and Dayton, 
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2003; Wender, 1996). To maximize the product (fuels, chemicals or power) yield, it is 

necessary that biomass gasification matches the needs of downstream conversions in terms of 

gas composition, levels of impurities, and yield of the syngas. Currently available 

experimental and modeling techniques of biomass gasification are inadequate to provide and 

predict syngas with gas compositions needed for production of fuels and chemicals. 

The biomass-generated syngas yield and quality rely on several factors such as the 

properties of biomass, gasifier reactor design and operating conditions, and oxidizing agents. 

Biomass properties, such as size, shape, moisture content, and chemical compositions, 

significantly influence the quality of syngas in terms of gas composition and impurities.  The 

biomass properties depend upon the biomass type such as switchgrass, which is a perennial 

grass. The physical properties and chemical composition of switchgrass varies with the 

geographic location, and variety.  

Switchgrass is a lignocellulosic material primarily composed of cellulose, 

hemicellulose, and lignin. Ash and moisture are the other inorganic compounds, present in 

the switchgrass. All these organic and inorganic compounds of the switchgrass participate in 

gasification reactions and influence the overall quality of the syngas in terms of gas 

composition and contaminants. Literature shows numerous experimental (Bhoi et al., 2006; 

Boateng et al., 1992; Boateng et al., 2007; Campoy et al., 2009; Hanping et al., 2008; Kumar 

et al., 2009a; Kurkela and Ståhlberg, 1992; Singh et al., 2006) and simulation (Kumar et al., 

2009c; Nikoo and Mahinpey, 2008; Paviet et al., 2009; Puig-Arnavat et al., 2010; Wenyi and 

Qin, 2010) studies on gasification using different biomass feedstocks; however, limited 

information is available on fluidized-bed gasification of switchgrass as a biomass feedstock. 



3 
 

Gasifier operating conditions such as flowrate of oxidizing agent, biomass feedrate, 

and gasification temperature influence syngas quality. The appropriate flow of oxidizing 

agent is key to maintain effective fluidization in the reactor bed, and to optimize reaction 

conditions in a fluidized-bed gasifier. An improper fluidization leads to inefficient 

conversion due to many reasons such as low heat and mass transfers, ineffective gas-solid 

phase reactions, and uneven reactor temperatures in autothermal gasification (Daleffe et al., 

2008). Therefore, one focus of this study was on fluidization characteristics of all 

participating solids during gasification and optimization of gasifier reaction conditions.     

Oxidizing agent, such as air, oxygen, and steam, used in biomass gasification also 

effects on the syngas quality. Researchers have shown that injecting steam with air in air-

steam gasification yields syngas with higher H2 and CO contents (Kumar et al., 2009a; Lv et 

al., 2003; Lv et al., 2004) which makes the syngas a more suitable feedstock to convert into 

liquid fuels and chemicals. Since reaction conditions inside the gasifier vary along the height 

of the gasifier reactor, we hypothesized that the location of steam injection has an influence 

on the syngas quality. This was another focus of this study. 

With the advent of latest computational techniques and sophisticated simulation 

software such as ASPEN plus™ and CFD (computational fluid dynamics), biomass 

gasification can be optimized and syngas composition can be predicted more reliably. 

ASPEN plus™ software contains a wide property database of conventional materials and 

various reaction models, such as Gibbs equilibrium reactor model (RGIBBS) and continuous 

stirred-tank reactor (RCSTR), which can be used to simulate biomass gasification. There are 

several ASPEN plus™ based modeling studies on biomass gasification using an equilibrium 

reactor called ‘RGIBBS’ (Kumar et al., 2009c; Nikoo and Mahinpey, 2008; Paviet et al., 
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2009; Puig-Arnavat et al., 2010; Wenyi and Qin, 2010). However, the gasification models 

based on the Gibbs equilibrium reactor showed large deviations between the predicted and 

experimental values of gas composition. The primary reason for these deviations is the 

unrealistic assumption made in Gibbs equilibrium model that gasification reactions reach 

equilibrium within the short residence time of gasification. Moreover, the model does not 

consider fluidization hydrodynamics that occurs in fluidized-bed gasifier along with several 

heterogeneous and homogeneous reactions.  

By including reaction kinetics of major reactions in the gasification model, 

continuous stirred-tank reactor model, i.e. RCSTR of ASPEN plus™, can more reliably 

predict syngas composition. Nikoo and Mahinpey (2008) developed a RCSTR reactor-based 

gasification model using ASPEN plus™ for pine sawdust. However, authors assumed a 

limited number of gasification reactions that may have led to the deviations between 

experimental and predicted data. Further, the authors assumed that combustion of volatiles 

(all gaseous products from biomass devolatization) followed Gibbs equilibrium model but 

the volatile reactions are so fast that assuming equilibrium state during gasification is 

impractical and leads to deviations between predicted and experimental results. Another 

focus of this research was to build and evaluate a significantly improved reaction kinetics-

based model by incorporating all major gasification reaction. 

Reaction kinetic-based gasification model, stated above, does not predict the 

temperature and species distributions along the height of the gasifier reactor. Further, the 

reaction kinetics-based gasification model does not take into consideration the non-ideal 

behavior of the gasifier, which is effected by the fluidization hydrodynamics. In the last part 

of this study, we propose to incorporate both reaction kinetics and fluidization characteristics, 
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which are effected by shape and size of biomass and bed materials, in the gasification model 

using CFD. 

1.1 Objectives 

The overall goal of the proposed research was to improve and optimize composition 

of syngas generated from switchgrass gasification using a lab-scale fluidized-bed gasifier and 

to develop a biomass gasification model to predict the syngas composition. The specific 

objectives of proposed studies were as follows: 

1. The objective of study-1 was to design, develop and evaluate performance of a 5 kg/h 

laboratory-scale fluidized bed biomass gasifier (FBBG) in terms of reactor 

temperature profile, yield, composition, and heating value of producer gas, as well as 

gasifier efficiencies by varying the equivalence ratio. 

2. The objective of study-2 was to investigate effect of reactor bed composition, i.e. a 

mixture of gasifier solid residues, switchgrass, and inert material, on fluidization.  

3. The objective of study 3 was to investigate effect of steam injection location on 

syngas composition and yield, gas tar and particulates contents, as well as gasifier 

efficiencies.  

4. The objective of study 4 was to develop a reaction kinetics-based gasification model 

using continuous stirred-tank reactor (CSTR) to predict syngas composition and 

yield, and validate model prediction with the experimental results obtained using the 

experimental results obtained on our lab-scale fluidized-bed gasifier. 

5. The objective of study 5 was to develop a CFD-based gasification model by 

incorporating fluidization hydrodynamics and gasification reaction kinetics to predict 
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reliable gas composition and yield, and validate model prediction using the 

experimental results obtained on our lab-scale fluidized-bed gasifier. 

1.2 References 

Abelson, P.H. 1976. Energy from biomass. Science, 191(4233), 1221. 

Bhoi, P.R., Singh, R.N., Sharma, A.M., Patel, S.R. 2006. Performance evaluation of open 
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Boateng, A., Walawender, W., Fan, L., Chee, C. 1992. Fluidized-bed steam gasification of 

rice hull. Bioresource Technology, 40(3), 235-239. 
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Abstract 

The goal of present study was to evaluate performance of a 5 kg/h laboratory-

scale fluidized bed biomass gasifier (FBBG) using switchgrass as a biomass feedstock. 

The main components of the FBBG system were a biomass feeding unit, a fluidized bed 

gasifier, an air supply unit with preheater, an air pressure regulator, two cyclone 

separators, an orifice plate, and a jet-type self-aerated producer gas burner. Silica sand 

was used as a bed material. Experiments were conducted to evaluate the effect of 

equivalence ratio (ER) on the reactor temperature profile, energy efficiencies, and 

producer gas yield and quality such as gas composition and particulate contents. An ER 

of 0.32 was found to be optimal with a producer gas higher heating value of 6.6MJ/Nm3 

and tar and particulates contents of 4.28 and 0.13 g/Nm3, respectively. The cold and hot 

gas efficiencies at the optimal condition were 71% and 75%, respectively, and these 

efficiencies decreased on either side of the optimal value of ER. Both gas yield and 

carbon conversion efficiency were found to be in positive correlation with ER, with 

maximum values of 2.5 Nm3/kg biomass (d.b.) and 96%, respectively, at an ER of 0.45. 

Keywords: Biomass; equivalence ratio; fluidized bed gasifier; particulates; producer gas; 

switchgrass; tar 
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2.1 Introduction 

Gasification and pyrolysis are the two primary thermochemical conversion 

processes that convert a solid biomass into gaseous and liquid fuels with the help of high 

temperature (Brown et al., 1986). The gasification process yields a gaseous product, 

called producer gas or syngas, through partial oxidation of biomass in the presence of one 

or more oxidizing agents such as air, steam, and oxygen (Li et al., 2004). The producer 

gas can be used for various thermal and power applications or, after cleaning and 

conditioning, can be further processed into liquid fuels and chemicals (Wang et al., 

2008). Several gasifier designs, such as fluidized bed, updraft, downdraft, and crossed 

draft, accept a wide variety of biomass feedstocks for conversion into gaseous fuel, which 

makes the gasification process a more viable route for using numerous biomass resources 

for fuel and power production (Overend, 2004). Fluidized bed gasifiers are more 

commonly used for gasifying low-density, irregularly shaped, poor flowability, high ash 

content or powdery biomass feedstocks such as pine sawdust, chopped wheat straw, rice 

hulls, and almond shells (Boateng et al., 1992; Ergudenler and Ghaly, 1993; Kurkela and 

Ståhlberg, 1992; Natarajan et al., 1998; Rapagnà and Latif, 1997). Even a low-grade 

feedstock of non-uniform size with varying moisture content (3.5% to 25%) can easily be 

gasified using fluidized bed reactors (Natarajan et al., 1998). Moreover, fluidized bed 

reactors have inherent advantages of high heat and mass transfers because of better 

biomass mixing and efficient gas-solid phase reactions, which result in isothermal 

operating condition and high conversion efficiency (Buragohain et al., 2010). 

A fluidized bed gasifier consists of a cylindrical reactor column with a bed of 

inert material, such as sand or a mixture of sand and catalysts, supported by a distributor 
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plate. Initially, the sand bed is preheated by an external heat source. Air or another 

oxidizing agent is then made to flow through the gasifier for fluidization of the bed 

materials and for partial oxidation of the biomass. The temperature of the gasifier varies 

in the range of 700°C to 900°C (Buragohain et al., 2010). An auger is used to introduce 

biomass into the gasifier. The biomass particles then flow upward through the fluidized 

bed, undergo a series of gasification reactions and finally convert primarily into producer 

gas. Steam generation, power production using internal combustion engine or gas turbine, 

and production of fuels and chemicals are possible applications of producer gas. The 

gasifier performance parameters such as yield, composition, and heating value of 

producer gas, amount of tar and particulates in the producer gas, and energy efficiencies 

depend upon both the biomass properties and the gasification operating conditions. The 

biomass properties include particle size, composition, and moisture content. The 

operating conditions include flow rate and type of oxidizing agent, and reactor 

temperature and pressure. For gasification with air as an oxidizing agent, the gasifier 

performance is highly dependent on the equivalence ratio (ER), which is the ratio of air 

supplied to air needed for complete combustion. In addition, inert materials or catalysts 

used in the gasifier bed, and the type of the fluidized reactor design, such as bubbling 

bed, circulatory bed, and dual bed, also influence the performance. 

Switchgrass, a perennial grass, is locally available in the state of Oklahoma and 

can be a potential biomass feedstock for gasification. It is estimated that 377 million dry 

tons of perennial crops can be produced on a sustainable basis in the U.S. with changes in 

land use patterns (Perlack et al., 2005). The physical properties and chemical composition 

of switchgrass significantly depend upon the geographic location where it grows, and the 
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variety such as Kanlow and Alamo. Gasification studies for several biomass feedstocks 

are reported in the literature; however, little information is available on gasification of 

switchgrass as a biomass feedstock. The goal of this study was to evaluate performance 

of a 5 kg/h laboratory-scale fluidized bed biomass gasifier (FBBG) in terms of reactor 

temperature profile, yield, composition, and heating value of producer gas, as well as 

gasifier efficiencies by varying the ER using Kanlow switchgrass as the biomass 

feedstock. 

2.2 Materials and methods 

2.2.1 Experimental setup 

 

Fig. 2.1. Schematic of the fluidized bed gasifier setup 

Fig. 2.1 shows the experimental setup of the laboratory-scale fluidized bed 

gasifier. A hopper was used to store and feed the biomass into a screw feeder. The screw 

feeder injects the biomass into the gasifier. The inside and outside of the gasifier were 

thermally insulated with a 25.4 mm thick refractory lining and a 25.4 mm thick cerawool 

layer, respectively. Air supplied into the gasifier was measured with a mass flowmeter 

(model 8059MPNH, Eldridge Products, Inc., Monterey, Cal.). During startup, air was 
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preheated with a heat torch (model HT150, Farnam Custom Products, Arden, N.C.). Two 

cyclone separators were connected in series for removal of soot and particulate matter 

from the producer gas. A calibrated orifice plate was fitted in the gas line for measuring 

the flow rate of tar-laden producer gas. The producer gas was finally combusted in a gas 

burner. 

2.2.2 Gasifier components  

2.2.2.1 Lab-scale fluidized bed gasifier 

The reactor is the main component of the gasifier where the gasification process 

takes place. Many design parameters, such as thermal power output, biomass 

consumption rate, ER, and superficial velocity, were considered for determining the 

reactor dimensions (Fig. 2.1). Based on the maximum thermal power output of 20 kW, a 

biomass consumption rate was estimated by assuming gasifier efficiency of 77% and gas 

heating value of 5.7 MJ/Nm3 (van den Enden and Lora, 2004). The gasifier reactor was 

designed for a biomass throughput of 5 kg/h. The reactor diameter was determined by 

assuming air superficial velocity of 0.3 m/s (Mansaray et al., 1999; Patil et al., 2005) at 

an ER of 0.3 (Cateni, 2007; Gabra et al., 2001; van den Enden and Lora, 2004). Other 

reactor dimensions, such as height of freeboard and disengagement zones, were 

calculated by assuming a height to diameter ratio of 14.5, as reported by (Cateni, 2007) 

for our pilot-scale bubbling fluidized bed gasifier. The gasifier reactor (102 mm i.d.  

1118 mm height) and disengagement zone (250 mm i.d.  310 mm height) were 

fabricated of SS 316 steel. 
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2.2.2.2 Hopper and screw feeder 

The biomass hopper was used to store the biomass, and the screw feeder was used 

to inject the biomass into the gasifier reactor. Biomass feed rate, physical characteristics 

(Dai and Grace, 2008a, b) of chopped switchgrass, and desired test duration were 

considered in designing the hopper and the screw feeder (Fig. 2.1). Physical 

characteristics of chopped switchgrass included particle size, shape, bulk density, and 

angle of repose. The biomass hopper was designed to store 20 kg of chopped switchgrass. 

The hopper (610 mm length  305 mm width  914 mm height) was fabricated of SS 316 

steel. The diameter, pitch, depth, and length of the feeder screw were 46.7 mm, 50.8 mm, 

10.7 mm, and 762 mm, respectively. The feeder screw was fabricated of 4140 HT alloy 

steel. The hopper screw was designed to run at variable speeds in the range of 0 to 9.43 

rad/s, whereas the speed of the screw feeder was kept constant at 3.14 rad/s. 

2.2.2.3 Cyclones 

Standard cyclone designs called 1D3D and 2D2D, as reported by Parnell et al. 

(1982), were used to design cyclone separators for removing soot and particulate 

materials from the producer gas (Parnell and Guzman, 1982). The above design notations 

represent the lengths of the barrel (upper cylindrical section) and the cone (lower conical 

section) of the cyclone, respectively. In this notation, D stands for the diameter of the 

barrel; therefore, 1D3D notation means that the lengths of the barrel and cone are one 

time and three times the barrel diameter, respectively. Producer gas flow rate of 12.5 

Nm3/h and gas velocity of 15.4 m/s at the inlet of the cyclone were assumed to calculate 

the inlet cross-sectional area for both cyclones. Both cyclones were fabricated of SS 316 

steel. 
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2.2.2.4 Orifice plate 

A maximum gas flow rate of 12.5 Nm3/h was assumed for designing the orifice 

plate (Miller, 1996). The orifice plate was fabricated of SS 304 steel and was installed in-

line with the gas pipeline for measuring producer gas flow rate. 

2.2.2.5 Producer gas burner 

A jet-type self-aerated atmospheric burner was designed for the combustion of the 

producer gas (Priestley, 1973). The burner was fabricated of SS 316 steel. The central 

part of the burner was composed of a converging pipe that increased the gas velocity, 

which allowed self-aeration of the gas through two air ports. The air ports were aligned at 

30° tangentially in the horizontal direction to produce a swirling gas flame. A maximum 

gas flow rate of 12.5 Nm3/h was assumed to design the burner. 

2.2.2.6 Distributor plate and gas pipeline 

A distributor plate (280 mm o.d.  5 mm thick) was used to support the silica sand 

(bed material) and to uniformly distribute the inlet air flowing through the gasifier bed. 

The distributor plate was made of SS 316 steel and contained 37 equally spaced holes (3 

mm i.d.). A wire mesh (30  30 mesh size) was placed on top of the distributor plate to 

prevent sand from falling through the plate. The gasifier exit port was connected to the 

cyclone separators using a gas pipeline of 50.8 mm. The cyclones and the producer gas 

burner were connected with a gas pipeline of 38.1 mm i.d. The gas pipelines were made 

of SS 316 steel. 
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2.2.3 Material characteristics 

2.2.3.1 Silica sand 

Silica sand (supplied by Oglebay Norton Industrial Sands, Inc., Brady, Tex.) was 

used as the bed material for all experiments. Particle size distribution of the silica sand 

was determined by ANSI/ASAE Standard S319.3 (ASABE-Standards, 1997) using a 

sieve shaker (CSC Scientific, Fairfax, Va.). To determine bulk density, the silica sand 

was poured into a container of known weight and volume. The container with silica sand 

was weighed. The bulk density was the ratio of the weight of the silica sand and the 

volume of the container. The particle size and bulk density of the silica sand were in the 

range of 106 to 850 m and 1612 to 1668 kg/m3, respectively. 

2.2.3.2 Chopped switchgrass 

Kanlow switchgrass grown at the Oklahoma State University Agronomy Research 

Station and harvested in the fall of 2009 was used as the biomass feedstock. Switchgrass 

bales were chopped using a Haybuster tub grinder (H1000, Duratech Industries 

International, Inc., Jamestown, N.D.) with a screen size of 25 mm. Properties of the 

chopped switchgrass are shown in Table 2.1. Proximate analysis (moisture, volatile 

matter, fixed carbon, and ash percentages on weight basis) was performed using ASTM 

D-3172 and ASAE Standard S358.2 (ASABE-Standards, 2008). Proximate analysis was 

performed using three representative samples of switchgrass. Moisture content was 

obtained by placing the samples in an oven at 104°C for 24 h. The ash content was 

obtained by heating the dry sample in a furnace at 750°C for 4 h, while the volatile 

content was obtained by heating the sample at 950°C for 7 min. Ultimate analysis was 

performed by Midwest Microlab, LLC (Indianapolis, Ind.). A bomb calorimeter (model 
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A1290DDEB, Parr Instrument Co., Moline, Ill.) was used to determine calorific value of 

the biomass. The average bulk density of chopped switchgrass was measured to be 138 

kg/m3. ANSI/ASAE Standard S424.1 (ASABE-Standards, 2007) was used to calculate 

the geometric mean length and standard deviation by mass of the chopped switchgrass 

particles. 

Table 2.1. Chopped switchgrass properties 

Proximate Analysisa  Ultimate Analysis 

Moisture (%, w.b.) 9.70  Carbon 46.62% 

Volatile matter (% d.b.) 80.36  Hydrogen 5.74% 

Ash (% d.b.) 4.62  Oxygen 42.27% 

Fixed carbon (% d.b.) 15.02  Nitrogen 0.18% 

HHV of biomass (MJ/kg, d.b.) 18.83  Sulfur <0.3% 

a w.b. = wet basis, d.b. = dry basis, and HHV = higher heating value 

2.2.4 Gasification test runs 

2.2.4.1 Startup 

Initially, a silica sand bed of a 102 mm height was prepared above the distributor 

plate inside the gasifier reactor. Hot air was supplied below the distributor plate for 

preheating the sand bed up to 400°C. Chopped switchgrass was then fed into the reactor 

bed using the screw feeder to initiate the gasification process. The air preheater was shut 

off after the reactor bed temperature stabilized above 700°C. In general, it took 

approximately 20 to 30 min for temperature to stabilize since the start of biomass 

feeding. Operating parameters such as biomass feed rate and airflow rate were then 

adjusted to desired levels. 
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2.2.4.2 Measurements and calculations 

All measurements were made after gasifier operation stabilized with a uniform 

gasifier temperature profile. ERs of 0.20 to 0.45 were obtained by varying the air and 

biomass flow rates. At each ER level, two numbers of test runs were conducted. The 

reactor temperature and flow rates of air and biomass were recorded using a LabVIEW 

system (National Instruments, Austin, Tex.). An average of the data during the test run 

was reported for each ER. The airflow rate and dry biomass feed rate corresponding to 

the selected ERs are shown in Table 2.2. Airflow rates and dry biomass feed rates were in 

the range of 4.5 to 10 kg/h and 2.9 to 4.2 kg/h, respectively. Each test run was of 2 to 3 h 

in duration. 

Table 2.2. Flow rates of air and biomass into the gasifier 

Equivalence ratio Airflow rate (kg/h) Dry biomass feed rate (kg/h) 

0.20 4.5 3.9 

0.29 6.8 4.2 

0.32 6.5 3.4 

0.40 6.4 2.9 

0.45 10 3.7 

The reactor temperature profile, gas temperatures at the gasifier exit and orifice 

plate, gas flame temperature, pressure drops across the gasifier and orifice plate, and flow 

rates of air and biomass were closely monitored and logged using a LabVIEW system. 

For each ER, three gas samples were collected to determine the gas composition. Gas 

samples were taken at every 30 min interval. The producer gas composition (percentages 

of H2, N2, CH4, CO, CO2, C2H2, C2H4, and C2H6) was measured with a gas 

chromatograph (model CP3800, Varian, Inc., Cal.) containing a packed column 

(HayeSep DB-100/120, Alltech Associates, Inc., Deefield, Ill.) and a thermal 
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conductivity detector (TCD). Calibration of the gas chromatograph was performed using 

two standard gas mixtures (Superior Specialty Gas, Inc., Tulsa, Okla.): one consisting of 

11.71% H2, 29.5% N2, 3.9% CH4, 23.39% CO, 14.76% CO2, 2.08% He, 4.78% C2H2, 

4.98% C2H4, and 4.9% C2H6 and the other consisting of 5% H2, 60.01% N2, 20.01% CO, 

and 14.98% CO2. The gas yield from the gasifier was calculated by balancing the mass of 

nitrogen and was also verified using a calibrated orifice plate. The orifice plate was 

connected in line of the gas flow path to measure the producer gas flow rate. The orifice 

plate was calibrated using flowmeter (model 8059MPNH, Eldridge Products, Inc., 

Monterey, Cal.). A graph of the pressure drop across the orifice plate versus the airflow 

rate was plotted to obtain the calibration equation. The pressure drop across the orifice 

plate was continuously recorded during each test run. 

For measuring tar and particulates, a sample of producer gas was passed through 

an isokinetic sampling probe. One end of the probe was curved at angle of 90° for 

sampling tar and particulates from the main gas stream. The other end of the probe 

contained a thimble filter (34 mm o.d.  100 mm long) to remove particulates from the 

producer gas. The thimble filter was made of ceramic material (fused alumina oxide). 

The sampling probe and downstream pipeline were heated to 250°C to prevent 

condensation of tar vapor. The producer gas from the sampling probe was passed through 

six impinger bottles containing acetone and immersed in an ethylene glycol solution 

maintained at -5°C. A vacuum pump and a rotameter were fitted in-line following the 

impinger bottles for suction of the gas and for measuring the flow rate of the gas, 

respectively. The tar concentration of the acetone solution, collected from the impinger 

bottles, was measured gravimetrically with a rotary evaporator. The same procedure was 
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replicated three times to obtain the average tar content of the producer gas. The thimble 

was dried before and after gas sampling. Initial and final weights of the dried thimble 

filter were measured to determine particulate content in the producer gas. 

The ER was calculated using equation 1 (Patil et al., 2008) as follows: 

 
  

STADBDBIR

AIR
  ER


          Eq.(1) 

where  AIR = air input (Nm3/h) 

 DBIR = dry biomass input (kg/h) 

 STADB = stoichiometric air requirement for dry biomass (Nm3/kg). 

 The HHV of the producer gas was calculated using following equation 

(Waldheim and Nilsson, 2001): 

HHV	=	(13.6×H2%)	+	(13.4×CO%)	+	(42.3×CH4%)	+	�61.7×C2H
2
%�	+	 

�67×C2H
4
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where H2%, CO%, CH4%, C2H2%, C2H4%, and C2H6% represent the volumetric 

percentages of H2, CO, CH4, C2H2, C2H4, and C2H6, respectively. 

Cold gas, hot gas, and carbon conversion efficiencies of the gasifier system were 

calculated using equations 2, 3 (Patil et al., 2008) and 4, respectively: 

 
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




          Eq.(2) 

where  CGE = cold gas efficiency (%) 

 PCE = chemical energy in dry producer gas (MJ/Nm3) 

 DBE = dry biomass energy (MJ/kg) 

 ASE = hot air sensible energy (MJ/m3). 
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where HGE = hot gas efficiency (%) 

 PSE = sensible energy in dry producer gas (MJ/m3). 
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÷	(C% × 22.4)                                                                                       Eq.(4) 

where CCE = carbon conversion efficiency (%) 

 Ydry gas = yield of dry gas per kg of dry biomass (Nm3/kg). 

 CO2% represents the volumetric percentage of CO2 and C% is the percentage of 

carbon in the dry biomass, determined through ultimate analysis of switchgrass. Equation 

5 (Ju et al., 2010) was used to calculate the yield of dry gas (Nm3/kg of biomass): 

 
 %

2
N

b
m

79.0
air

Q
 

dry gas
Y




            Eq.(5) 

where Qair = flow rate of air(Nm3/h) 

 mb = feed rate of dry biomass (kg/h) 

 N2% = volumetric percentage of N2 in the producer gas. 

2.3 Results and discussion 

The effects of ER on performance of the lab-scale fluidized bed gasifier were 

analyzed. Feedstock characteristics and the effects of ER on gasifier performance 

parameters such as gas yield, gas composition, gas heating value, gasifier bed 

temperature and gasifier efficiencies are discussed in the subsequent sections. 
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2.3.1 Feedstock characteristics 

The properties of Kanlow switchgrass are given in Table 2.1. Proximate analysis 

of Kanlow switchgrass showed a fixed carbon content of 15.02% (d.b.), which was 

higher than the fixed carbon content of Kentucky bluegrass straw (13.51% d.b.) and 

almost similar to the fixed carbon content of hemlock wood (14.8% d.b.). The volatile 

matter content of Kanlow switchgrass was 80.36% (d.b.), which was very close to the 

volatile matter content of Kentucky bluegrass straw (81% d.b.) but lower than the volatile 

matter content of hemlock wood (84.8% d.b.). The ultimate analysis showed 46.62% 

carbon content (d.b.) of Kanlow switchgrass, which was less than the carbon content of 

Kentucky bluegrass straw (48.96% d.b.) and hemlock wood (51.8% d.b.). The heating 

value of Kanlow switchgrass was determined to be 18.83 MJ/kg (d.b.), which was very 

close to the heating value of Kentucky bluegrass straw (17.46 MJ/kg, d.b.) and lower than 

the heating value of hemlock wood (20.3 MJ/kg, d.b.) (Boateng et al., 2007; Doherty et 

al., 2009). The geometric mean length and standard deviation by mass of the chopped 

switchgrass particles were calculated to be 10.27 mm and 1.73, respectively. 

2.3.2 Performance characteristics of the fluidized bed gasifier 

2.3.2.1 Gas yield 

The gas yields (amount of gas produced per kg of biomass) at different values of 

ER are given in Table 2.3. It can be seen that the gas yield was in direct correlation with 

ER. Gas yield continuously increased with an increase in ER because of two main 

reasons. First, with an increase in ER, a larger quantity of O2 entered the gasifier, which 

increased the degree of oxidation of biomass and available carbon. These resulted in 

increased temperature and conversion of biomass into gaseous forms (also evident from 
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CCE in Fig. 2.4). Second, with an increase in ER, a larger quantity of N2 injected into the 

gasifier also contributed to the increase in gas yield. Mansaray et al. (1999) studied 

fluidized-bed air gasification of rice husk and reported a similar trend (Mansaray et al., 

1999). In this study, the maximum gas production of 2.5 Nm3 per kg of dry switchgrass 

was observed at an ER of 0.45. 

Table 2.3. Process parameters and gas yields with change in ER 

Parameter Equivalence ratio 

0.20 0.29 0.32 0.40 0.45 

Reactor bed temperature (°C) 801  78 809  77 825  72 893  53 907  57 

Exit gas temperature (°C) 137  7 126  8 161  12 181  20 177  5 

Gasifier pressure drop (mm H2O) 80 150 130 240 130 

Gas production rate (Nm3/h) 4.6 7.2 7.0 6.4 9.2 

Gas yield (Nm3/kg d.b.) 1.2  0.1 1.7  0.03 2  0.1 2.2  0.02 2.5  0.03 

2.3.2.2 Gas composition 

  

 Fig. 2.2. Variation in gas composition with time (ER = 0.32) 

The variation in producer gas composition with time from the start of biomass 

feeding is shown in Fig. 2.2 for one experimental condition. As shown in Fig. 2.2, the 
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quality of producer gas remained consistent throughout the gasifier run. This could be 

due to a uniform and stable gasifier bed temperature at a constant ER of 0.32. The 

composition of producer gas with varying ER is given in Table 2.4. With an increase in 

ER from 0.20 to 0.32, CO and H2 concentrations increased. These concentrations 

decreased with further increase in ER from 0.32 to 0.45. A similar trend of increase and 

decrease in CO and H2 concentrations with the maximum at an ER of 0.35 for fluidized-

bed air gasification of hemlock wood was reported by Doherty et al. (2009) (Doherty et 

al., 2009). This increase and decrease of CO and H2 concentrations could be explained by 

the gasification reactions shown in Table 2.5, which are dependent upon the gasifier 

temperature and the concentration of reactants. 

Table 2.4. Gas composition and heating value with change in ER 

Gas composition 
(% V/V, d.b.) 

Equivalence ratio 

0.20 0.29 0.32 0.40 0.45 

H2 5.9  2 9.2  1.8 9.3  0.8 7.3  1 2  0.1 

N2 60.1  1.8 57.4  0.7 56.7  1.1 60.7  1.4 65.9  0.7 

CO 15.2  2.1 16  1.8 16.5  1.1 14.9  0.9 12.4  1 

CH4 2.5  0.4 1.9  0.5 2.2  0.7 1.8  0.3 2.1  0.2 

CO2 14.3  0.4 13.1  0.6 12.2  1.2 12.8  2 16.8  0.2 

C2H2 0.1  0.1 0.5  0.1 0.3  0.2 0.3  0.3 0.04  0.04 

C2H4 0.8  0.3 1  0.01 0.6  0.4 0.8  0.4 0.7  0.1 

C2H6 1.1  0.9 1.3  0.1 2.1  1 1.4  0.3 0.1  0.02 

HHV of dry gas (MJ/Nm3) 5.3  0.8 6.2  0.3 6.6  0.2 5.5  0.5 3.4  0.1 

As explained earlier, with an increase in ER, the quantity of O2 entering the 

gasifier increased, which resulted in a continuous increase in the gasifier temperature due 

to enhanced oxidation of available char. In this study, with an increase in ER from 0.20 to 

0.32, the increase in the gasifier temperature from 801°C to 825°C may have favored the 

endothermic reactions, as shown by equations 6 to 8 in Table 2.5. As a result of these 
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reactions, the CO and H2 concentrations increased until there was enough char available 

in the gasifier. Rapagna and Latif (1997) also reported an increase in CO and H2 

concentrations of producer gas with the initial increase in gasifier temperature (Rapagnà 

and Latif, 1997). As shown in Table 2.3, with further increase in ER from 0.32 to 0.45, 

the gasifier temperature continued to increase from 825°C to 907°C because of the 

increased degree of oxidation. The higher oxidation may also have contributed to the 

increase in CO2 and decrease in CO in the producer gas through the reactions shown in 

equations 9 and 12 in Table 2.5. The H2 concentration decreased with an increase in ER 

from 0.32 to 0.45. One of the reasons for the decrease in H2 concentration may be that 

less char was available in the gasifier at higher ERs to produce H2 through a water gas 

reaction (eq. 7 in Table 2.5). The N2 concentration decreased with an increase in ER from 

0.20 to 0.32 and increased with a further increase in ER from 0.32 to 0.45. The quantity 

of N2 in the air supplied and in the producer gas generally remains same during these 

conditions, so the nitrogen concentration primarily depends on nitrogen supplied in the 

air and gas yield from biomass. With the initial increase in ER, gas yield from the 

biomass predominated the increase in N2, which resulted in decreased N2 concentration. 

However, with further increase in ER, the increase in N2 may have predominated the gas 

yield, resulting in increased N2 concentration. The maximum concentration of CO (16.5 ± 

1.1%) and H2 (9.3 ± 0.8%) was found at ER of 0.32. Patil et al. (2008) reported CO and 

H2 concentrations of 19.2 ± 1.6% and 9.8 ± 1.2%, respectively, at an ER of 0.23 for 

switchgrass gasification in a downdraft gasifier. The difference in optimum ER (0.32 vs. 

0.23) can be explained by the different reactor conditions due to different designs of the 

gasifiers (fluidized bed vs. downdraft). 
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In this study, the amount of tar and particulate contents were found to be 4.28 

g/Nm3 (w.b.) and 0.13 g/Nm3 (d.b.), respectively, at the ER of 0.32, which were lower 

than those reported by both Patil et al. (2008) and Cateni (2008). Patil et al. (2008) 

reported tar and particulate contents of 18 g/Nm3 (w.b.) and 2.5 g/Nm3 (d.b.), 

respectively (Patil et al., 2008). Cateni (2008) reported tar and particulate contents of 5 to 

12 g/Nm3 and 0.4 to 0.45 g/Nm3, respectively in a fluidized bed gasification of wood 

pallet (Cateni, 2007). 

Table 2.5. Gasification reactions 

Boudouard C + CO2   2CO (∆H = +172.6 kJ/mol) Eq. 6 

Water gas C + H2O   CO + H2 (∆H = +131 kJ/mol) Eq. 7 

Methane reforming CH4 + H2O   CO + 3H2 (∆H = +206 kJ/mol) Eq. 8 

Complete combustion of char C + O2 = CO2 (∆H = -394.4 kJ/mol) Eq. 9 

Water gas shift CO + H2O   CO2 + H2 (∆H = -41.2 kJ/mol) Eq. 10 

Partial combustion of char C + 0.5O2 = CO (∆H = -111 kJ/mol) Eq. 11 

Partial combustion of CO CO + 0.5O2 = CO2 (∆H = -283 kJ/mol) Eq. 12 

Partial combustion of H2 H2 + 0.5O2 = H2O (∆H = -242 kJ/mol) Eq. 13 

As air is available free of cost, air gasification of biomass for generating producer 

gas is one of the most economical options for producing heat, power, and fuels when the 

nitrogen content of the producer gas does not adversely affect the process. The producer 

gas quality obtained in this study could be suitable for direct combustion in a boiler for 

generating steam and can replace conventional fuels. Additionally, the producer gas can 

be used for equipment such as furnaces, kilns, and ceramic dryers for heating processes 

where the non-combustible gases (N2 and CO2) in the producer gas do not have any 

adverse effect on the process or processing equipment. After removal of tar and 

particulates, the producer gas can be used in internal combustion engines and gas turbines 

if the contaminants and energy content are acceptable (Ståhl et al., 2004). The producer 
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gas can also be converted into alcohols fuels through microbial fermentation or to 

produce hydrocarbon fuels through chemical catalytic conversion. However, the producer 

gas may not be suitable where the non-combustibles gases will have adverse effect on the 

process. 

2.3.2.3 Gas heating value 

Table 2.4 shows the HHV of dry producer gas with varying ER. With an increase 

in ER from 0.20 to 0.32, the reactor bed temperature increased which may have 

accelerated the endothermic reactions (eqs. 6 to 8 in Table 2.5) and yielded more CO and 

H2, the main combustible components of the producer gas. As a result, HHV of dry gas 

increased from 5.3 MJ/Nm3 to a maximum of 6.6 MJ/Nm3. With an additional increase in 

ER from 0.32 to 0.45, the higher oxygen throughput into the gasifier may have caused 

partial oxidation of CO, H2 and char (eqs. 11 through 13 in Table 2.5). As a result, the 

concentrations of CO and H2 decreased, so the HHV decreased from 6.6 to 3.4 MJ/Nm3. 

This can be evidenced by the increased percentage of CO2 and decreased percentages of 

CO and H2 for ER above 0.32. 

2.3.2.4 Gasifier temperature 

Fig. 2.3 shows the gasifier bed temperature, 76.2 mm above the distributor plate, 

from the start of biomass feeding. After an initial 30 to 40 min of gasifier run, the reactor 

bed temperature stabilized between 700°C and 950°C and showed relatively smooth and 

consistent gasifier performance with a reactor bed temperature of 825°C 72°C, and exit 

gas temperature of 161 ±12°C, respectively. Table 2.3 shows the variation in the gasifier 

bed temperature with increasing ER from 0.20 to 0.45. As explained earlier, the reactor 

bed temperature increased continuously with increase in ER due to the higher degree of 
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oxidation. The average and maximum reactor temperatures were observed to be in the 

ranges of 801°C to 907°C and 851°C to 963°C, respectively. Generally, a bed 

temperature above 900°C is not suitable for gasification as it results in choking of the 

gasifier bed due to agglomeration of bed materials. Ergudenler and Ghaly (1993) 

observed agglomeration of silica sand in the form of hard brittle solids in a fluidized bed 

gasification of wheat straw at 850°C (Ergudenler and Ghaly, 1993). Fryda et al. (2008) 

tested two bed materials (quartz and olivine) in a lab-scale fluidized bed gasifier using 

olive bagasse and observed agglomeration of quartz and olivine at 830°C and above 

850°C, respectively (Fryda et al., 2008). In this study, after 2 h of smooth gasifier 

operation at 907°C for ER of 0.45, the pressured drop across the gasifier gradually 

increased from 130 to 400 mm H2O. The increase in pressure drop was due to 

agglomeration of silica sand in the gasifier bed. A clinker (hard solids) was observed in 

the bed during cleaning of the gasifier. A fresh bed of silica sand was then prepared for 

the next test run. No noticeable amount of agglomerates was found during gasification 

with ER below 0.45. 

 

Fig. 2.3. Variation in temperatures with time (ER = 0.32) 
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2.3.2.5 Gasifier efficiencies 

 

Fig. 2.4. Variation in gasifier efficiencies with change in ER 

The variations in CGE, HGE, and CCE with varying ER are shown in Fig. 2.4. 

The CGE and HGE were directly related to the HHV of the producer gas, which depends 

on the concentrations of the main combustible gases (CO and H2). As shown earlier, the 

CO and H2 concentrations initially increased with increasing ER from 0.20 to 0.32, and 

so did the HHV. As a result both CGE and HGE increased. With a further increase in ER 

from 0.32 to 0.45, the CO and H2 concentrations decreased, and so did the HHV. This 

resulted in decreases in CGE and HGE. The maximum values of CGE and HGE were 

71% and 75%, respectively, at an ER of 0.32. Campoy et al. (2009) reported CGE of 59% 

for wood pallet gasification in a bubbling fluidized bed gasifier at an ER of 0.35 

(Campoy et al., 2009). Patil et al. (2008) observed CGE and HGE of 72% and 82%, 

respectively, at an ER of 0.22 for switchgrass gasification in a downdraft gasifier (Patil et 

al., 2008). 

The CCE indicates the percentage of carbonaceous biomass that is converted into 

gaseous forms. The increase in bed temperature with increase in ER accelerated the 
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conversion of biomass carbon into gaseous forms. As a result, the CCE continued to 

increase with an increase in ER from 0.20 to 0.45. The maximum value of CCE was 

found to be 96% at the maximum ER. The CCE at an ER of 0.32 was 89%. Campoy et al. 

(2009) reported a maximum CCE of 93% (Campoy et al., 2009). 

2.4 Conclusions 

The performance of a laboratory-scale FBBG was evaluated using Kanlow 

switchgrass. The performance parameters such as gas yield, gas composition, gas heating 

value, gasifier bed temperature, and gasifier energy efficiencies were studied by varying 

the ER from 0.20 to 0.45. The HHV of the producer gas increased and then decreased as 

ER increased from 0.20 To 0.45, with a maximum value of 6.6 MJ/Nm3 (d.b.) at an ER of 

0.32 (airflow rate of 6.5 kg/h and dry biomass feed rate of 3.4 kg/h). Hot and cold gas 

efficiencies followed a similar trend as ER varied, with maximum values of 71% and 

75%, respectively, at an ER of 0.32. However, gas yield and carbon conversion efficiency 

continued to increase as ER increased from 0.20 to 0.45. The optimum ER of 0.32 

resulted in carbon conversion efficiency of 89% and average gas yield of 2 ± 0.1 Nm3 per 

kg of dry biomass. 
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CHAPTER III 
 

 

FLUIDIZATION CHARACTERISTICS OF A MIXTURE OF GASIFIER 

SOLID RESIDUES, SWITCHGRASS AND INERT MATERIAL 
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R.L. 2013. Fluidization characteristics of a mixture of gasifier solid residues, switchgrass 
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Abstract 

Effective fluidization of materials present in the reactor bed is critical for 

optimizing reaction conditions in a fluidized-bed gasifier. An improper fluidization leads 

to inefficient conversion due to many reasons such as low heat and mass transfers, 

ineffective gas-solid phase reactions, and uneven reactor temperature in autothermal 

gasification. The objective of this study was to investigate effect of reactor bed 

composition, i.e. a mixture of gasifier solid residues (GSR), switchgrass, and inert 

material, on fluidization using a 0.25 m i.d. transparent column. In this cold-flow study, 

the amount of inert material, i.e. silica sand, in the bed was held at 20 kg. The switchgrass 

in the mixture ranged from 0.17 to 5% of the sand quantity while the GSR ranged from 5 

to 35% of the switchgrass. The particle geometric sizes by mass of sand, GSR and 

switchgrass were 348±1.6 µm, 80±2.6 µm, and 10.3±1.7 mm, respectively. For all 

conditions, with an increase in gas superficial velocity, i.e. ratio of volumetric gas flow 

and bed cross-sectional area, the pressure drop across the bed increased reaching a 

maximum level at the minimum fluidization condition. Results showed that when the bed 

consisted of only GSR and sand, with an increase in the GSR from 5% to 35%, the gas 

superficial velocity at minimum fluidization condition, called minimum fluidization 

velocity (Umf), decreased significantly (p < 0.05); however, corresponding bed pressure 

drop (dPmf) remained constant. When the bed consisted of GSR, switchgrass and sand, 

there were significant effects (p < 0.001) of GSR, switchgrass and their interaction 

(GSR*Switchgrass) on Umf and dPmf. Fluidization improved with an increase in GSR up 

to 35% in the mixture. Overall, both Umf and dPmf increased with an increase in levels of 

GSR (5 to 35%) and switchgrass (0.17 to 3%) in the mixture. Fluidization characteristics 



40 
 

were found to be strongly dependent upon mixture’s effective properties, which were 

determined using properties of all mixture components. Correlations available in 

literature were used to predict Umf using effective properties of tertiary mixture with 

GSR, switchgrass and sand. Prediction of Umf from all selected correlations did not match 

well with the experimental data for the entire range of tertiary mixture compositions. 

Fluidization of bed materials sustained up to 3% level of switchgrass. However, 

segregation of bed materials and in-bed channelization caused ineffective fluidization at 

5% level of switchgrass in the mixture.   

Keywords: Fluidized-bed gasifier; fluidization velocity; bed pressure drop; solid 

residues; switchgrass; sand 
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3.1 Introduction 

Effective fluidization of materials present in the reactor bed is essential for 

optimizing reaction conditions in a fluidized-bed gasifier. Gasifier bed normally consists 

of gasifier solid residues (GSR), such as char and ash, biomass and inert material such as 

silica sand. An improper fluidization of bed materials can results in low heat and mass 

transfers (Daleffe et al., 2008), ineffective gas-solid phase reactions, and inability to 

maintain a uniform reactor temperature in autothermal gasification. Such conditions can 

also cause an in-bed accumulation of GSR and biomass, further resulting in choking of 

the gasifier bed and can ultimately stop the gasification process. Therefore, a thorough 

understanding of fluidization characteristics of all participating solids during gasification 

is essential for reactor design (Patil et al., 2005) and optimizing reaction conditions of the 

gasifier. 

A typical fluidized bed gasifier is a cylindrical reactor that consists of a bed of 

inert material, such as sand, or a mixture of sand and catalyst. A distributor plate is used 

to support a bed material inside the gasifier. For gasification, initially, the bed is 

preheated by an external heat source. Thereafter the bed is fluidized by supplying an 

oxidizing agent, such as air, through the distributor plate. Finally, a biomass feedstock is 

injected into a fluidized-bed using a screw feeder. Biomass particles then pass upward 

through the bubbling fluidized-bed, undergo a series of gasification reactions, and finally 

convert into gaseous products (McKendry, 2002). Both fluidization of bed materials and 

gasification of biomass are occurred simultaneously during gasification. Several 

parameters such as flowrates and types of oxidizing agent and biomass, properties of 

oxidizing agent, biomass and bed material, and operating temperature and pressure have 
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influence of fluidization characteristics of materials that are normally present in the 

gasifier bed. These, in turn, play key roles in the gasification process and influence 

gasifier performance in terms of gas composition and yield, gas impurities and gasifier 

efficiencies (Sharma et al., 2011). 

The flow rate of oxidizing agent supplied to the fluidized-bed gasifier is a key 

parameter to maintain effective fluidization of bed materials. The fluidization condition is 

usually described using a gas superficial velocity which is the ratio of volumetric gas 

flowrate and bed cross-sectional area. The gas superficial velocity, at which the drag 

force on the bed materials equals the gravitational force, is defined as the minimum 

fluidization velocity (Umf) of the bed materials. At minimum fluidization condition, the 

bed materials lift upward and remain in suspension; bed pressure drop (dPmf) reaches to a 

maximum and remains constant with further increase in the gas superficial velocity. 

Fluidization characteristics, such as Umf and dPmf, depend upon the particle size and 

composition of the bed materials (Jena et al., 2008). Umf and dPmf are also influenced by 

segregation and mixing behaviors of bed materials. Segregation is a process during which 

a bed material with higher particle density, such as sand, moves downwards in the bed 

while a material with lower particle density, such as biomass, floats upwards (Formisani 

& Girimonte, 2003; Noda et al., 1986). This, in turn, causes separation of biomass from 

sand and results in a localized accumulation of biomass particles as smaller and/or bigger 

sized lumps throughout the bed. These lumps further lead to channel formation, called in-

bed channelization, that give rise to larger void space and a shorter path to the gas flow 

(Rao & Reddy, 2010). As a result, the gas easily escapes through in-bed channels, which 

affect bubble formation, and thus turbulence level in the bed resulting in ineffective 
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fluidization. Segregation occurs due to differences in densities or sizes of the bed 

materials such as a sand and biomass (Chiba et al., 1979; Chok et al., 2010a; Chok et al., 

2010b; Noda et al., 1986; Werther, 2000; Wu & Baeyens, 1998; Zhang et al., 2010). 

Further, segregation tendency increases with an increase in the biomass weight fraction in 

a mixture (Chok et al., 2010a). Thus, the quantity of biomass in the mixture plays a 

crucial role in segregation behavior of bed materials. Also, a bed consisting of a material, 

such as particulate matters, that has adhesive or cohesive properties may enhance 

segregation tendency and suppress fluidization (Daleffe et al., 2008). In case of 

segregation or channelization, comparatively a higher gas superficial velocity than Umf is 

needed for fluidization of bed materials (Chok et al., 2010a). This is because at higher gas 

velocity, formation and collapsing of bubbles become predominant leading to high 

turbulence in the bed. The high turbulence breakdowns segregated lumps and removes in-

bed channels. Hence, higher gas velocity eradicates segregation of bed materials resulting 

in a better particle mixing. As opposed to segregation, mixing prevents separation of bed 

materials resulting in a uniform distribution of mixture particles in the bed. Mixing 

enhances particle-particle interactions, and thus improves heat and mass transfers in 

fluidized bed. Chok et al. (Chok et al., 2010b) indicated improved mixing with decrease 

in the particle size ratio from 30 to 20 of palm shell and sand mixture. The author also 

reported that segregation and channelization were predominant at higher particle size 

ratio, and biomass weight fraction (10% and 15%) in the mixture. Correlations to 

determine Umf and bed expansion of coal particles were suggested for coal gasification 

(Babu et al., 1978). Equations to determine Umf for a mixture of sand and biomass, such 

as sawdust, rice husk and groundnut shell, have been developed (Rao & Reddy, 2010; 
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Rao & Bheemarasetti, 2001). However, fluidization behavior and correlations for 

determining Umf for a tertiary mixture of GSR, switchgrass, and silica sand have not been 

reported. The specific objective of this study was to investigate the fluidization 

characteristics of a mixture of switchgrass, GSR, and silica sand for determining the 

optimum operating conditions in terms of fluidization velocity and bed pressure drop. 

3.2 Materials and methods 

3.2.1 Bed materials 

GSR, biomass and silica sand were used as bed materials, shown in Fig. 3.1, for 

fluidization experiments. GSR was obtained by gasification of switchgrass in a 0.25 m 

i.d. pilot-scale bubbling fluidized-bed gasifier with constant switchgrass and air flow 

rates of 12 kg/h and 17 m3/h (i.e. 0.096 m/s superficial velocity), respectively. The 

gasifier was connected to three cyclone separators in series for removing the GSR from 

the producer gas. The GSR in the cyclone separators were collected, weighed, and 

analyzed for its properties. On an average the GSR production rate was 0.5 kg/h, which 

contained 64% ash and 36% char. A Kanlow switchgrass, a perennial grass, was used as a 

biomass material in this study. It was grown at the Agronomy Research Station of 

Oklahoma State University and harvested in the fall of 2010. A Haybuster tub grinder 

(H1000, Duratech Industries International, Inc. Jamestown, ND) with a screen size of 25 

mm was used to grind the switchgrass. Moisture and ash contents of the switchgrass, 

determined through proximate analyses, were 12.76% and 4.72%, respectively. A silica 

sand is the most commonly used inert bed material for fluidized-bed gasifier. In this 

study, silica sand, supplied by Oglebay Norton Industrial Sands, Inc. (Brady, TX), was 

used as an inert bed material. 
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Fig. 3.1. Bed materials 

3.2.2 Density of bed materials 

Bulk densities of bed materials were determined by using a container of 0.001 m3 

volume. To measure bulk density of GSR, weights of the empty container and container 

filled with GSR were measured.  Bulk density was calculated by dividing the mass of the 

GSR in the container with the volume of the container. A similar method was used to 

determine bulk densities of ground switchgrass and silica sand. Particle densities of silica 

sand and switchgrass were obtained from the supplier and literature (Lam et al., 2008), 

respectively. A 3 g GSR pellet was prepared to measure particle density of GSR, which 

was determined by dividing the mass with the volume (3.22 cm3) of the GSR pellet. 

Table 3.1 shows the bulk and particle densities of GSR, ground switchgrass, and silica 

sand. 

Table 3.1. Densities of bed material 

Bed material GSR Ground switchgrass Sand  

Bulk density a, kg/m3 205 ± 5.6 111 ± 6.2 1602 ± 11.1  

Particle density, kg/m3 932 400 2650  
a Average of six replications 
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3.2.3 Particle size distribution of bed materials 

Particle size distributions of GSR and silica sand samples were determined 

following ANSI/ASAE standard S319.3 JUL97 (ASAE, 2000) using a sieve shaker (CSC 

Scientific, Fairfax, VA). The sieve shaker consisted of seven screens, a lid, and a pan. 

The screen size ranged from 850 to 106 µm. Initially, the empty screens and pan were 

weighed and arranged in a descending order of screen sizes in the sieve shaker. The pan 

was placed below the lowest screen. A 50 g representative sample was kept in the first 

screen (850 µm), and the screen was closed with the lid. The sieve shaker was set to sieve 

the sample for 10 minutes. After each sieving test, the mass of the sample in each screen 

and pan was measured. A total of six samples were used to determine its particle size 

distribution. An average of the data was used to calculate a percentage mass distribution 

of GSR on each screen and on the pan. Six representative samples (500 g each) of silica 

sand were analyzed using the sieve shaker. Particle size distribution (length and width) of 

ground switchgrass was measured manually with a digital vernier caliper (Digimatic, 

Mitutoyo, Japan) having a resolution of 0.1 mm. The geometric mean sizes by mass of 

bed materials were determined using ANSI/ASAE standard S424.1 (ASABE, 2007). The 

particle size ratio of GSR, silica sand and switchgrass (i.e. GSR/silica sand/switchgrass) 

was calculated using geometric mean sizes by mass of GSR, silica sand and switchgrass 

particles. 

3.2.4 Test setup and instrumentation 

The fluidization test setup, shown in Fig. 3.2, consisted of a cylindrical column 

(0.25 m i.d. × 2 m height) made of a transparent acrylic glass to facilitate visual 

observation during the experiment. A distributor plate (0.28 m o.d.) located at the bottom 
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of the column supported the bed materials and also helped to ensure a uniform 

distribution of inlet air supply. The distributor plate was made of a 6.4 mm-thick acrylic 

glass sheet with 145 equally-spaced 1.6 mm i.d. holes. To prevent bed materials from 

falling through the distributor plate, a wire screen (40 mesh size) was placed on top of the 

distributor plate. Air was supplied into the test setup by an air compressor (TS10K10 

model, Ingersoll Rand, Davidson, NC)connected to a mass flowmeter (8059MPNH 

model, Eldridge Products, Inc., Monterey, CA), a flow control valve, and a pressure 

regulator . A water tube manometer was installed across the bed of the column for 

measuring the pressure drop across the bed. Rubber packings were used between the 

flanges to make the whole unit air-tight. A silicone gel (Type 650 RED RTV, Versachem, 

Riviera Beach, FL) was applied between rubber packings and flanges to prevent any air 

leak. 
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Fig. 3.2. Fluidization test setup 

3.2.5 Experimental design and mixture preparation 

Quantities of GSR and switchgrass were varied while holding quantity of sand 

constant 20 kg (i.e. 0.25 m bed height). A 4 x 5 full factorial design (four levels of GSR, 

i.e. 5%, 15%, 25% and 35% of switchgrass levels in the mixture, and five levels of 

switchgrass, i.e. 0%, 0.17%, 1%, 3% and 5% of sand quantity in the mixture) with two 

replications (40 experiments) was used. The levels of GSR and switchgrass were selected 

based on bed composition observed in our pilot-scale fluidized bed gasifier. Experiments 

were completely randomized and the data were analyzed using a general linear model 

(GLM) procedure. Bed was prepared by mixing predetermined quantities of GSR, 

switchgrass, and silica sand as shown in Table 3.2. 
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Table 3.2. Bed compositions 

Sand, kg Switchgrass, kg 
GSR, kg 

5% 15% 25% 35% 

20 0 0.01a 0.03 a  0.05 a  0.07 a  

20 0.035 0.002 0.005 0.009 0.012 

20 0.2 0.01 0.03 0.05 0.07 

20 0.6 0.03 0.09 0.15 0.21 

20 1 0.05 0.15 0.25 0.35 

 a GSR levels were based on 1% level of the switchgrass 

3.2.6 Test and maintenance procedures 

 For each experiment, mixture was placed above the distributor plate (Fig. 3.2). 

The air flow rate was increased from 0 to a maximum of 34 m3/h (i.e. 0.19 m/s superficial 

velocity) to facilitate fluidization, and then decreased from the maximum to 0, to 

facilitate defluidization. The pressure drop across the bed was continuously monitored 

during fluidization and defluidization. Also, visual observations, such as bubble 

formation, initial and complete fluidization of the bed, and height of fluidized bed, were 

recorded during each experiment. After each experiment, the bed material was removed 

and the test setup was dismantled for cleaning. Prior to the next experiment, a leakage 

test was performed on the test setup to ensure no air leakage. 

3.2.7 Determination of minimum fluidization velocity, Umf 

Several correlations are available to determine Umf of a bed consisting of a single 

material or a binary mixture such as sand and biomass (Babu et al., 1978; Bourgeois & 

Grenier, 1968; Coltters & Rivas, 2004; Cui & Grace, 2007; Kunii & Levenspiel, 1991; 

Leva, 1965; Lucas et al., 1986; Rao & Reddy, 2010; Rao & Bheemarasetti, 2001; Sau et 

al., 2008; Saxena & Vogel, 1977; Si & Guo, 2008; Wen & Yu, 1966; Yudong & 

Zhiqiang, 2010; Zhong et al., 2008). In present work, Umf was determined using 
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experimental and theoretical approaches. Experimental Umf was determined using 

graphical method. The bed pressure drop against gas superficial velocity was plotted, and 

the Umf was determined to be the gas superficial velocity at the intersection of the 

inclined line representing a fixed bed pressure drop before minimum fluidization and the 

horizontal line representing a constant bed pressure drop after minimum fluidization 

(shown in Fig. 3.3). The fluidization region during which the bed pressure drop linearly 

followed the gas superficial velocity till the minimum fluidization condition reached is 

known as the fixed bed zone (Daleffe et al., 2008; Formisani & Girimonte, 2003) shown 

in Fig. 3.3. At the minimum fluidization condition, the bed pressure drop reached a 

maximum level and remained constant with further increase in the gas superficial 

velocity. 

 

Fig. 3.3. Fluidization characteristics of sand 
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Table 3.3. Correlations to determine Umf 

Correlation Reference 

Remf = (25.252 + 0.0651Ar) 0.5 – 25.25 (Babu et al., 1978) 

Umf = dpeff 
2 (ρeff - ρg) g /1650µg (Rao & Bheemarasetti, 2001) 

Remf = (25.462 + 0.0384Ar) 0.5 – 25.46 (Bourgeois & Grenier, 1968) 

Remf = (28.72 + 0.0494Ar)0.5 – 28.7 (Kunii & Levenspiel, 1991) 

Umf = 0.00094 [(ρs - ρg) g]0.934 dp
1.8 / µg

0.87 ρg
0.066 (Leva, 1965) 

Remf = [(42.857C1 /C2)
2 + Ar /1.75C1] 

0.5 – (42.857C1 /C2) 
where, C1 = (1 /Φ3 ɛmf) and C2 = (1 - ɛmf) /Φ

2 ɛmf
3 

(Lucas et al., 1986) 

Remf = (25.282 + 0.0571Ar) 0.5 – 25.28 (Saxena & Vogel, 1977) 

Remf = (33.72 + 0.0408Ar) 0.5 – 33.7 (Wen & Yu, 1966) 

Umf = 0.000701(ρs - ρg) g dp
2 / µg (Si & Guo, 2008) 

Where, Remf = dpeff Umf ρg /µg and Ar = dpeff
 3 ρg (ρeff - ρg) g /µg

2 

Umf was calculated, theoretically, using available correlations shown in Table 3.3. 

Effective properties such as effective density (ρeff) and effective particle diameter (dpeff) 

of the tertiary mixture were needed to determine Umf theoretically. Effective density and 

effective particle diameter of a binary mixture can be calculated using following 

equations 1 and 2 (Rao & Bheemarasetti, 2001): 

ρeff = (w1ρ1 + w2ρ2) / (w1 + w2) 

dpeff 
2 = k' { dp1 [(ρ1 / ρ2) (dp2 / dp1)] 

(w2 / w1) }2, where k' = (20dp1 + 0.36) 

Eq.(1) 

Eq.(2) 

where w1 and w2, ρ1 and ρ2, and dp1 and dp2 were the masses, particle densities and 

particle diameters, respectively, of the two components in a binary mixture.  

To determine effective properties of a tertiary mixture consisting of three bed 

materials such as GSR, switchgrass and sand, first, effective density (ρeff') and effective 

particle diameter (dpeff') for a binary mixture of switchgrass and GSR were obtained using 

following equations 3 and 4: 
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ρeff' = (w2ρ2 + w3ρ3) / (w2 + w3) 

dpeff ' = k2 dp2 [(ρ2 / ρ3) (dp3 / dp2)] 
(w3 / w2) , where k2 = (20dp2 + 0.36) 0.5 

Eq.(3) 

Eq.(4) 

where w2, ρ2 and dp2 were the mass, particle density and particle diameter, respectively, 

of the switchgrass. Similarly, w3, ρ3 and dp3 were the mass, particle density and particle 

diameter, respectively, of the GSR.  

Next, effective properties of the tertiary mixture were obtained using effective 

properties of binary mixture of switchgrass and GSR (ρeff' and dpeff') and sand as follows 

in equations 5 and 6: 

ρeff = (w1 ρ1 + w2 ρ2 + w3 ρ3) / (w1 + w2 + w3) 

dpeff  = k1 dp1 { k2 [ (ρ1 dp2 w2 + ρ1 dp2 w3) / (ρ2 dp1 w2 + ρ3 dp1 w3) ]  

           (ρ2 dp3 /ρ3 dp2)
(w3 / w2) }(w2 + w3)/ w1 

Eq.(5) 

 

Eq.(6) 

where k1 = (20dp1 + 0.36) 0.5 and k2 = (20dp2 + 0.36)0.5 and w1, ρ1 and dp1 were the mass, 

particle density and particle diameter, respectively, of the sand in tertiary mixture of sand, 

switchgrass and GSR.  

Effective bed void space at the minimum fluidization conditions (εmfeff) was 

calculated using effective properties of the tertiary mixture in equation 7 (Broadhurst & 

Becker, 1975) as follows:  

εmfeff = (0.586 / ѱ0.72) {µg
2 / [ρg (ρeff - ρg) g dpeff

3 ]}0.029 (ρg/ρeff)
0.021  Eq.(7) 

Another fluidization parameter called complete fluidization velocity (Ucf) was 

determined experimentally using graphical approach. Ucf was defined as the gas 

superficial velocity where the bed pressure drop begins to decrease from the constant bed 

pressure line during defluidization (Chok et al., 2010a). The fluidization state at Ucf is 
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known as complete fluidization state. Experimentally, Ucf was determined by gradually 

decreasing the gas flowrate (defluidization) immediately after reaching maximum gas 

flowrate during fluidization. 

3.3 Results and discussion 

3.3.1 Particle size distribution of bed materials  

Particle geometric diameters by mass of GSR and sand were 80±2.6 µm and 

348±1.6 µm, respectively (shown in Table 3.4). The geometric diameter by mass of sand 

particles was more than four times larger than that of GSR particles.  About 64% of the 

GSR particles were below 125 µm in size while 88% of the sand particles were between 

212 to 600 µm sizes. Particle length of more than 88% of the switchgrass was between 2 

to 30 mm (shown in Table 3.5). The geometric mean length by mass of switchgrass 

particles was 10.3±1.7 mm. Width of the switchgrass particle ranged from 0.3 to 3.1 mm. 

Table 3.4. Particle size distribution of GSR and sand 

Sieve size 
(µm) 

GSR  Sand 

Mass on 
sieve (g) 

% of total mass 
on sieve 

 Mass on 
sieve (g) 

% of total mass 
on sieve 

> 850 0.7 ± 0.2 1.4  0 0 

600 - 850 0.5 ± 0.2 1.1  1.7 ± 0.8 0.3 

300 - 600 3.8 ± 1.7 7.7  367.3 ± 6.3 73.9 

212 - 300 2.1 ± 0.7 4.2  70.9 ± 1.9 14.3 

150 - 212 5.0 ± 0.4 10.3  34.4  ± 0.8 6.9 

125 - 150 5.5 ± 0.4 11.1  13.4 ± 2.1 2.7 

106 - 125 7.8 ± 1.0 16.0  6.9 ± 1.3 1.4 

<106 23.8 ± 1.6 48.4  2.5 ± 1.6 0.5 
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Table 3.5. Particle size distribution of ground switchgrass 

Particle size (mm) Mass (g) % of total mass 

60 - 70 0.09 2.7 

50 - 60 0 0 

40 - 50 0.01 0.2 

30 - 40 0.15 4.4 

20 - 30 0.43 13.1 

10 - 20 1.25 37.6 

5 - 10 0.91 27.6 

 2- 5 0.32 9.7 

< 2 0.16 4.7 

3.3.2 Fluidization characteristics of bed materials 

3.3.2.1 Bed containing only sand 

Fig. 3.3 shows typical fluidization characteristics of bed containing only sand. 

The bed pressure drop increased linearly within the fixed bed zone and reached 

maximum at the minimum fluidization state. Umf and dPmf were 0.093 m/s and 0.42 m of 

H2O, respectively. Beyond the minimum fluidization state, formation of bubbles was 

steady and predominant throughout the bed. As a result, a continuous internal-circulation 

of bed particles from the bottom to the top and vice-versa was observed showing a good 

mixing among bed particles. Further increases in gas superficial velocity above Umf, i.e. 

beyond minimum fluidization state, exhibited a large-sized bubble formation with rapid 

internal-circulation of bed particles. As a result, a rigorous mixing of sand particles with a 

considerable bed expansion was observed at Ucf of 0.12 m/s. 
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3.3.2.2 Bed containing GSR and sand 

 

Fig. 3.4. Fluidization characteristics of bed containing GSR and sand 

Bed containing different levels of GSR, i.e. 5%, 15%, 25% and 35% of the 

switchgrass level in the mixture of GSR and sand, were studied to determine fluidization 

characteristics. Since no switchgrass was used in these cases, quantities of GSR in the 

mixture were based on 1% level of switchgrass.  A sudden increase in the bed pressure 

drop within the fixed bed zone was observed before collapse of the first bubble (Fig. 3.4). 

This sudden rise in the bed pressure drop can be due to the presence of comparatively 

smaller sized GSR particles than the sand particles, which precipitated in-between the 

sand particles, thus, reduced the total void space in the bed. This decrease in the void 

space may have resulted in a higher static resistance to the gas flow till the first bubble 

collapsed before the minimum fluidization state. With an increase in the quantity of GSR 

in the mixture, Umf decreased significantly (p-values < 0.05) from 0.099 to 0.083 m/s. 

This can be attributed due to decrease in bed mean particle size with increase in GSR. 
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The GSR particles were 4.2 times smaller than the sand particles. As a result, the 

effective mean particle diameter of the bed material continuously decreased with an 

increase in the quantity of GSR in the mixture. Rao and Reddy (Rao & Reddy, 2010) 

reported decrease in Umf with decreasing mean particle diameter of the sand when a 

binary mixture of biomass and sand was used for fluidization. However, other 

fluidization parameters, such as dPmf and Ucf, remained constant with change in GSR 

levels at 0.45 m of H2O and 0.18 m/s, respectively. 

3.3.2.3 Bed containing GSR, switchgrass and sand 

When the bed consisted of GSR, switchgrass and sand, there was a sudden rise in 

the bed pressure drop with an increase in gas superficial velocity within the fixed bed 

zone. A poorly mixed under-fluidization was observed due to irregular bubble formation 

and limited internal-circulation of the bed materials. Beyond the minimum fluidization 

state, fluidization was observed to be normal with improved mixing of bed materials in 

terms of a continuous bubble formation and frequent internal-circulations. The Umf and 

dPmf with varying bed composition are shown in Figs. 4.5 and 4.6, respectively. 

Statistical results showed that quantities of GSR and switchgrass had significant (p-value 

< 0.001) influence on fluidization. The main effects of GSR, switchgrass and their 

interaction (GSR*Switchgrass) on Umf, dPmf and Ucf were significant. Overall, both Umf 

and dPmf increased with an increase in levels of GSR and switchgrass. 
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Fig. 3.5. Umf with varying bed composition 

 

Fig. 3.6. Bed pressure drop with varying bed composition 

3.3.3 Theoretical and experimental Umf 

Table 3.6 shows the experimental and theoretical (determined using available 

correlations) values of Umf for different bed compositions. The correlation reported by 

Babu et al. (Babu et al., 1978) predicted Umf within ± 7% error for only six out of 

seventeen mixture compositions  investigated under this study while it showed higher 

deviation (± 10% error) for remaining mixture compositions. Similarly, the correlation 
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reported by Saxena and Vogel (Saxena & Vogel, 1977) predicted Umf within ± 9% for 

only one out of seventeen mixture compositions while it showed more than ± 12% error 

for remaining mixture compositions. Also, correlations reported by Rao and 

Bheemarasetti (Rao & Bheemarasetti, 2001), Wen and Yu (Wen & Yu, 1966) and Leva 

(Leva, 1965) predicted Umf for only one out of seventeen mixture composition within ± 

10%, ± 7% and ± 3% errors, respectively. Overall, results indicated that none of the 

available correlations (Babu et al., 1978; Bourgeois & Grenier, 1968; Kunii & 

Levenspiel, 1991; Leva, 1965; Lucas et al., 1986; Rao & Bheemarasetti, 2001; Saxena & 

Vogel, 1977; Si & Guo, 2008; Wen & Yu, 1966) fit well for the entire range of mixture 

compositions investigated under this study. The large error deviation between theoretical 

and experimental Umf can be because these correlations were based on a single material 

or a mixture of two materials while the present study involved a mixture of three bed 

materials. Several factors that influence Umf are density, size and shape of bed materials, 

gas-solid and solid-solid interactions, collision property of particles, friction between 

particles, wall effect, and effective properties of a mixture (Cui & Grace, 2007; Gupta et 

al., 2009; Si & Guo, 2008). All of these factors were not considered in correlations shown 

in Table 3.5. Formisani and Girimonte (Formisani & Girimonte, 2003) reported that 

fluidization velocity for a binary mixture primarily depends upon density-ratio / size-ratio 

of bed materials, bed composition, and initial distribution (before fluidization) of bed 

particles. In this study, the bed materials used had higher particle size ratio 

(GSR/sand/switchgrass = 1:4:129) and particle density ratio (GSR/sand/switchgrass = 

1:2.8:0.4) that could have resulted in the deviation between experimental and theoretical 

Umf. 
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Table 3.6. Experimental and theoretical values of Umf for different bed compositions 

  Bed composition 

Switchgrass (%)  0 0 0 0 0 0.17 0.17 0.17 0.17 1 1 1 1 3 3 3 3 

GSR (%)  0 5 15 25 35 5 15 25 35 5 15 25 35 5 15 25 35 

Correlation  Minimum fluidization velocity, Umf (m/s) 

Lucas et al. (1986)  0.038 0.012 0.012 0.012 0.012 0.013 0.013 0.012 0.012 0.014 0.014 0.013 0.013 0.017 0.016 0.016 0.015 

Rao and Bheemarasetti 
(2001) 

 0.102 0.037 0.037 0.037 0.037 0.038 0.038 0.038 0.038 0.041 0.041 0.040 0.040 0.049 0.048 0.047 0.045 

Wen and Yu (1966)  0.099 0.037 0.037 0.037 0.037 0.038 0.038 0.038 0.037 0.040 0.040 0.040 0.039 0.048 0.047 0.046 0.045 

Leva (1965)  0.095 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.042 0.042 0.041 0.041 0.049 0.048 0.047 0.046 

Si and Guo (2008)  0.118 0.043 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.047 0.047 0.046 0.046 0.056 0.055 0.054 0.052 

Bourgeois and Grenier 
(1968) 

 0.120 0.046 0.046 0.046 0.046 0.047 0.047 0.047 0.046 0.050 0.050 0.049 0.049 0.060 0.058 0.057 0.055 

Kunni and Levenspiel 
(1991) 

 0.137 0.052 0.052 0.052 0.052 0.053 0.053 0.053 0.053 0.057 0.057 0.056 0.056 0.068 0.067 0.065 0.063 

This study  0.093 0.099 0.091 0.090 0.083 0.098 0.082 0.079 0.076 0.104 0.095 0.091 0.088 0.114 0.110 0.109 0.107 

Saxena and Vogel (1977)  0.176 0.068 0.068 0.068 0.068 0.069 0.069 0.069 0.069 0.075 0.074 0.073 0.073 0.089 0.087 0.085 0.082 

Babu et al. (1978)  0.199 0.078 0.078 0.078 0.077 0.079 0.079 0.079 0.079 0.085 0.084 0.084 0.083 0.101 0.099 0.096 0.093 
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3.3.4 Segregation and in-bed channelization 

 

Fig. 3.7. Segregation of bed materials at 5% level of switchgrass in the mixture 

In present study, segregation of bed materials was predominant at 5% level of 

switchgrass (Fig. 3.7) and no fluidization was observed at 5% level of switchgrass in the 

bed. This can be due to large differences in the particle size ratio (GSR/silica 

sand/switchgrass = 1:4:129) and particle density ratio (GSR/silica sand/switchgrass = 

1:2.8:0.4). In this study, the switchgrass particles were about 31 times larger than the 

silica sand particles. Also, switchgrass is characterized as a low density and irregularly 

shaped loose material. Consequently, at higher switchgrass weight fraction in the bed, 

there can be a higher proclivity between switchgrass particles to join together to form a 

bigger particle, leading to lump and channel formation in the bed (Chok et al., 2010a; 

Pattipati & Wen, 1982). In the present study, at 5% switchgrass level in the mixture, there 

was formation of lumps and channels in the bed. As a result, the air easily escaped 

through in-bed channels resulted in a segregation of bed materials, and hence no 

fluidization was observed at 5% level of switchgrass in the mixture. Furthermore, the 
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adhesive forces of GSR particles may also have contributed to segregation. Abdullah et 

al. (Abdullah et al., 2003) indicated that higher bed bulk density supports fluidization 

whereas higher bed void space suppresses fluidization. In the present study, increase in 

quantity of switchgrass in the mixture decreased the bulk density with subsequent 

increase in the bed void space. This can be another factor to suppress fluidization at 5% 

level of switchgrass in the mixture. Overall, the results indicated that fluidization 

sustained up to 3% level of switchgrass. However, in-bed channelization caused 

ineffective fluidization at 5% level of switchgrass in the mixture. 

3.4 Conclusions 

Fluidization characteristics of a mixture of GSR, switchgrass and silica sand were 

studied. GSR and switchgrass present in the mixture had significant (p-value < 0.001) 

influence on fluidization. For the binary mixture of GSR and sand, with an increase in the 

GSR from 5% to 35%, the minimum fluidization velocity decreased significantly (p < 

0.05). When the bed consisted of GSR, switchgrass and sand, with an increase in GSR 

and switchgrass from 5 to 35% and 0.17 to 3%, respectively, both minimum fluidization 

velocity and bed pressure drop increased. Fluidization of bed materials sustained up to 

3% level of switchgrass. However, segregation of bed materials and in-bed 

channelization caused ineffective fluidization when the bed consisted of 5% level of 

switchgrass, 20 kg of sand and GSR between 5 to 35% in the mixture. For a mixture 

consisting of three different materials, the fluidization characteristics were found to be 

strongly dependent upon mixture’s effective properties, which were determined using 

properties of all mixture components. Minimum fluidization velocity determined using 

effective properties of a tertiary mixture of GSR, switchgrass and sand showed that 
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prediction of Umf from all selected correlations did not match well with the experimental 

data for the entire range of mixture compositions investigated under this study. 

Nomenclature 

Latin letters 

Ar  Archimedes number 

dPmf  Bed pressure drop at minimum fluidization condition 

dp  Particle diameter, µm 

dp1, dp2, dp3 Mean diameters of sand, switchgrass and GSR particles, respectively, m 

dpeff  Effective particle diameter of a mixture, m 

k1, k2  Constants (Eq.(2)) 

Remf  Reynolds number at minimum fluidization condition 

u0  Fluid superficial velocity, m/s 

Umf  Minimum fluidization velocity, m/s  

Us  Minimum fluidization velocity of smaller particles, m/s 

UB  Minimum fluidization velocity of bigger particles, m/s 

w1, w2, w3 Masses of sand, switchgrass and GSR particles, respectively, kg 

xB   Weight fraction of bigger particles in the mixture 

Greek letters 

ρg  Fluid density, kg/m3 

ρ1, ρ2, ρ3 Particle densities of sand, switchgrass and GSR, respectively, kg/m3 

ρeff  Effective density of a mixture of sand, switchgrass and GSR, kg/m3 

µg  Fluid viscosity, kg/m s 

ɛmf, ɛmfeff Effective void space of the bed at minimum fluidization condition 
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Φ, ѱ  Shape factor of particle 
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Abstract 

For a fluidized-bed gasifier, reaction conditions vary along the height of the 

reactor. Hence, the steam injection location may have a considerable on the syngas 

quality. The objective of this study was to investigate the effects of steam injection 

location and steam-to-biomass ratio (SBR) on the syngas quality generated from an air-

steam gasification of switchgrass in a 5 kg/h autothermal fluidized-bed gasifier. Steam 

injection locations of 51, 152, and 254 mm above the distributor plate and SBRs of 0.1, 

0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were 

significantly influenced by the steam injection location (p < 0.01) and SBR (p < 0.05). 

The steam injection location also significantly influenced hot and cold gas, as well as 

carbon conversion efficiencies. The best syngas yields (0.018 kg H2/kg biomass and 

0.513 kg CO/kg biomass) and gasifier efficiencies (cold gas efficiency of 67%, hot gas 

efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection 

location of 254 mm and SBR of 0.2. 

Keywords: Fluidized-bed gasifier; biomass; steam port location; syngas 
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4.1 Introduction 

Dependence on fuels and chemicals derived from petroleum resources has created 

a major challenge to meet world’s demands on a sustainable basis. Biomass is a 

sustainable and renewable energy resource, which has the potential to reduce a significant 

portion of world’s dependency on petroleum resources with subsequent reduction in 

global warming due to greenhouse gas emissions (Kumar et al., 2009b; Lv et al., 2004; 

Schuster et al., 2001). Biomass gasification, a thermochemical conversion technology, is 

one of the promising routes for producing fuels and chemicals using biomass-derived 

syngas. However, synthesis of liquid fuels and chemicals using various conversion 

processes typically requires a syngas with a wide range of H2/CO ratio, i.e. between 0.4 

and 4 (Hamelinck & Faaij, 2002; Jess et al., 1999; Klasson et al., 1993; Spath & Dayton, 

2003; Wender, 1996), as well as concentrations of H2 and CO and CO2 (Wender, 1996; 

Zhang, 2010).  

Syngas quality generated from biomass depends on several parameters such as 

biomass properties, gasifier design, gasifier operating conditions, and type of oxidizing 

agent (Kumar et al., 2009b). Different gasifier designs such as downdraft, updraft, and 

fluidized-bed have been optimized to produce syngas having high H2 and CO contents. 

Biomass properties such as size, shape, moisture content, and chemical compositions, 

also significantly influence syngas quality in terms of gas composition and impurities. H2 

concentration of the syngas can also be increased by optimizing the design and operating 

conditions of the gasifier (Cox et al., 1995). Gasifier operating conditions such as 

biomass feed rate, gasification temperature, and flow rate of oxidizing agent have 

influence on syngas quality (Kumar et al., 2009b).  The biomass feed rate into the gasifier 
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must be optimized to yield high heating value syngas with maximum energy efficiency 

(Kumar et al., 2009b). Gasification temperature controls reactions occurring inside the 

reactor. A gasification temperature above 800°C is desired to obtain high gas yield and 

H2 and CO contents (Kumar et al., 2009b). 

The type of oxidizing agent such as air, oxygen, and steam, used in biomass 

gasification also significantly effects quality and yield of syngas. Using air as an 

oxidizing agent results in a syngas highly-diluted with nitrogen (up to 65%) with low 

heating value (Delgado et al., 1997; Seo et al., 2010). Using oxygen as an oxidizing agent 

results in syngas with high CO and H2 concentrations (Zhou et al., 2009). Using steam as 

an oxidizing agent results in syngas with high H2 content (Bridgwater, 2006; 

Weerachanchai et al., 2009). Overall, air gasification yields a low-calorific syngas 

containing much less H2 than that obtained through air-steam or steam-only gasification 

(Baratieri et al., 2008; Delgado et al., 1997; Lv et al., 2003; Ross et al., 2007). Air-steam 

gasification using fluidized bed gasifier at equivalence ratio (ER) of 0.22, steam-to-

biomass ratio (SBR) of 2.7 and gasifier temperature of 900°C resulted in syngas with a 

high H2 yield (71 g/kg of biomass, wet basis) (Lv et al., 2003) . Air-steam gasification of 

rice hull in a fluidized bed gasifier at 800°C showed high H2 content (40%) in the syngas 

(Boateng et al., 1992). Kumar et al. (2009) studied air-steam gasification in a fluidized-

bed gasifier and reported significant increase from 4% to 15% in syngas H2 content  with 

an increase in temperature from 650 to 850°C (Kumar et al., 2009a). Overall, air-steam 

gasification studies (Kumar et al., 2009a; Lv et al., 2003; Lv et al., 2004) showed that 

both steam injection and higher gasification temperatures (above 800°C) resulted in a H2 
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rich syngas, making it more suitable for further conversion into liquid fuels and 

chemicals. 

In air-steam gasification, major reactions contributing to the high H2 yield are 

water-gas and water-gas shift reactions Eqs. (1)-(3) (Lv et al., 2003; Wang et al., 2007). 

The methane steam reforming reaction (Eq. (4)) also contributes to the H2 content of the 

gas (Sharma et al., 2011). 

C+H2O → CO+H2 (water-gas  reaction, ∆H = 131.3 kJ/mol) Eq.(1) 

C+2H2O → CO2+2H2 (water-gas  reaction, ∆H = 89.7 kJ/mol) Eq.(2) 

CO+H2O → CO2+H2 (water-gas shift  reaction, ∆H = - 41.2 kJ/mol) Eq.(3) 

CH4+H2O → CO+3H2 (methane steam reforming reaction, ∆H = 206 kJ/mol) Eq.(4) 

An important consideration in maximizing efficiency and H2 production in air-

steam gasification is the location of steam injection, which can significantly affect the 

reaction conditions inside the gasifier. Injection of steam into a high temperature zone of 

the fluidized bed gasifier favors H2 forming reactions (Eqs. (1)-(2)) and can yield H2-rich 

syngas. On the contrary, injecting steam into a low temperature zone can further reduce 

the gasifier temperature, and thus adversely affect gasification reactions (Eqs. (1)-(3)) 

leading to low H2 yield. Additionally, the formation of H2 depends upon the residence 

time of reactants involved in gasification reactions. The residence time can also be 

optimized by changing the location of steam injection, which can further increase the H2 

content of the syngas. 

Further, based on the temperature condition and carbon availability, steam 

injection in the reduction zone of the gasifier can increase H2 production through 
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reducing reactions (Eqs. (1)-(3)). In fluidized-bed gasification, drying and 

devolatilization of biomass occur at the bottom of the fluidized bed, which can be 

considered as the virtual location of both drying and pyrolysis zones. Oxidation of de-

volatized products and char occur next in the middle and top of the bed, which can be 

considered the virtual oxidation zone. Reduction occurs is the final step of the 

gasification and involves conversion of pyrolysis products into syngas, and thus, the 

region above the combustion zone i.e. top of the bed plus the freeboard region can be 

considered as the virtual reduction zone. Injection of steam into the reduction zone at the 

top of bed and in freeboard regions may lead to high H2 yield through reducing reactions 

(Eqs. (1)-(3)). 

Reaction conditions vary along the height of the reactor in especially autothermal 

fluidized-bed gasifiers. This study is based on the hypothesis that the location of steam 

injection has a significant effect on syngas quality. The objective of present study was to 

investigate the effect of steam injection location on the quality of syngas generated from 

an air-steam gasification in a 5 kg/h autothermal lab-scale fluidized-bed gasifier.  

4.2 Materials and methods 

4.2.1 Biomass feedstock and bed material 

All experiments were performed using Kanlow switchgrass which was grown at 

the Agronomy Research Station of Oklahoma State University and harvested in the fall of 

2010. Proximate and ultimate analyses of switchgrass were performed by Hazen 

Research, Inc. (Golden, CO). A bomb calorimeter (model A1290DDEB, Parr Instrument 

Co., Moline, IL) was used to determine higher heating value of switchgrass (18.83 MJ 

per kg dry biomass). Switchgrass bales were chopped using a 25 mm screen in a 
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Haybuster tub grinder (Model: H1000, Duratech Industries International, Inc. Jamestown, 

ND). Silica sand, supplied by Oglebay Norton Industrial Sands, Inc. (Brady, TX), was 

used as inert bed material. Bulk densities of switchgrass and silica sand were measured 

using a 0.0001 m3 container. Switchgrass was poured into the container from 100 mm 

above the container and mass of the switchgrass in the container was determined. The 

bulk density was determined by dividing the mass of the switchgrass in the container with 

the container volume. The bulk density of silica sand was measured using the similar 

procedure. A digital vernier caliper (Digimatic, Mitutoyo, Japan) with 0.1 mm resolution 

was used to measure the particle length of switchgrass while a sieve shaker (CSC 

Scientific, Fairfax, VA) was used to perform particle size distribution of silica sand. The 

geometric mean sizes by mass of switchgrass and silica sand were determined using 

ANSI/ASAE Standard S319.3-February 2008 (ASABE Standards, 1997).    

4.2.2 Test setup and instrumentation 

Fig. 4.1 shows the gasifier test setup. Details of the gasifier system are described 

elsewhere (Sharma et al., 2011). A fluidized-bed gasifier test setup with a biomass 

throughput of 5 kg/h was used for this study. The test setup consisted of a fluidized-bed 

gasifier (0.1 m i.d. × 1.1 m height), a hopper, a double dump valve, a screw feeder, two 

cyclone separators, a producer gas burner, an air supply unit, a heat torch, and a steam 

boiler. The inside wall of the gasifier was thermally insulated with 1 inch refractory 

lining of conventional castable (Resco Products Inc., Pittsburgh, PA) while the outside 

wall was covered with 1 in. layer of thick cerawool (Kaowool RT Blanket-RCF-24/SW-

24, Thermal Ceramics Inc. Augusta, GA). A distributor plate (0.28 m o.d. × 5 mm 

thickness) was located at the bottom of the gasifier to uniformly distribute the inlet air, 



75 
 

and to support a bed of silica sand. A 30 × 30 mesh size wire screen was placed on the 

top of the distributor plate to prevent the silica sand from falling down through the 

distributor plate. The biomass hopper was fitted with a stirrer to prevent bridging of the 

biomass feedstock and a screw coupled with a 90 V DC motor (Model: 2M168D, Dayton 

Electric Mfg. Co., Niles, IL) at the bottom for discharging biomass to the gasifier screw 

feeder. A DC speed regulator (Model: 4Z829B, Dayton Electric Mfg. Co., Niles, IL) was 

used with the gasifier screw motor to control the biomass flow rate into the gasifier. A 

double dump valve (Fig. 4.1) between the hopper exit and screw feeder was used to 

isolate the hopper from the gasifier and thus prevented backflow of hot gases into the 

biomass hopper. Two cyclone separators were connected in series to remove particulates 

from the gas at the gasifier exit. A burner at the end of the gas pipe lines was used to 

combust the exiting gas.  

Air was supplied using an air compressor (Model: TS10K10, Ingersoll Rand, 

Davidson, NC).  An air control valve, mass flow meter (Model: 8059MPNH, Eldridge 

Products, Inc., Monterey, CA), and pressure regulator (Model: 4Zk96, Grainger, Inc., 

Oklahoma City, OK) were fitted in-line with the air supply line. A heat torch (Model: 

HT200, Farnam Custom Products, CA) was used to heat air for preheating the sand bed 

inside the gasifier. A steam boiler (Model: MBA12, Sussman Electric Boilers, NY) was 

used to inject the steam into the gasifier. A stainless steel tube coil (8 mm i.d.) wrapped 

with a heat tape (Model: SRT051-040, Omega Engineering, Inc., Stamford, CT) was used 

to superheat the steam. A mass flow meter (Model: 1/2-73-R-101-HR-ESK, RCM 

Industries, Inc., CA) and flow control ball valve were used at the boiler outlet to monitor 

and control the steam flow rate. A U-tube water manometer and a differential pressure 



76 
 

transducer (Model: PX154-025DI, Omega Engineering, Inc., Stamford, CT) were used to 

measure pressure drop across the gasifier. Sampling ports were available in the gas pipe 

line for taking samples of syngas, tar and particulates. Gas pipe lines were wrapped with 

heat tapes for maintaining pipe line temperature above 300°C to prevent condensation of 

tars and water vapor. Gasifier operation was monitored using a LabVIEW system 

(National Instruments, Austin, TX). 

 

Fig. 4.1. Gasification test setup 

4.2.3 Experimental design 

A total of 18 gasification experiments (3 locations × 3 SBRs × 2 replications) 

were performed at ER of 0.32. The ER of 0.32 was selected for this study based on our 

earlier study with the 5 kg/h autothermal lab-scale fluidized bed gasifier that concluded 

that ER of 0.32 was optimum to obtain the best syngas composition, gas heating value, 
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and gasifier energy efficiency (Sharma et al., 2011). The gasifier reactor temperature 

varied along the height of the reactor at the ER of 0.32, (shown in Table 4.1). Based on 

the gasifier temperature, three gasifier locations at the heights of 51 mm, 152 mm, and 

254 mm above the distributor plate were selected for steam injection. SBR was selected 

between 0.1 and 0.3 (maximum) based on our preliminary experiments to maintain 

autothermal requirements of the gasifier reactor. 

Table 4.1. Reactor temperature along the height of the gasifier at ER = 0.32 

Location above distributor plate (mm) Average temperature (°C) 

51 880 

152 755 

254 524 

Above 356 ≤ 340 

4.2.4 Test procedure and system maintenance 

A small inspection window (102 mm × 152 mm) with an airtight door was 

provided on the gasifier wall above the distributor plate for loading the sand in the 

gasifier and for maintenance work. 1.5 kg of sand was placed on the distributor plate 

through the inspection window and then the window was properly sealed. A thin 

cerawool packing and a high temperature RED RTV silicone gel (Type 650, Versachem, 

Riviera Beach, FL) were used to make metal flanges air-tight. Initially, the sand bed was 

preheated to 400°C by supplying hot air using the heat torch. The bed temperature was 

further raised to 700°C by feeding a low quantity of biomass into the gasifier. Typically, 

20-40 min after the preheating, the gasifier temperature profile became uniform and the 

gas burner showed consistent flame from the exiting gas. The heat torch was then 

extinguished, and the gasification conditions such as flow rates of air and biomass were 
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adjusted to desired levels as per experimental design. Steam was then injected into the 

gasifier at the specified location. Duration of each test run was between 2 and 3 h. 

System maintenance was performed the following day after each test run. During 

maintenance, the entire gasifier reactor, gas pipe lines, cyclone separators, and the burner 

were properly cleaned to remove any remaining tars and particulates. Used sand was 

removed using a vacuum cleaner through inspection window located at the gasifier 

bottom. After cleaning, the setup was prepared for the next test run. Unused biomass was 

also removed from the hopper, and the hopper was filled with a fresh biomass for the 

next test run.   

4.2.5 Measurements and calculations 

All data measurements were recorded when the gasifier temperature profile was 

stable, and the exiting gas was flammable. Flow rates of air, biomass, and steam; 

temperature of gasifier; gas-exit; gas-flame and steam; and pressure drop across the 

gasifier were continuously monitored. LabVIEW software was used for continuous 

recording of temperatures, pressure drop and air flow rate. Air and biomass flow rates 

were controlled using the LabVIEW program. To determine biomass flow rate, a 

calibration was performed between biomass flow rate and motor speed. The steam flow 

rate was measured using the steam mass flow meter. Equipment details and measurement 

techniques used for sampling gas, tar, and particulates, and gas and tar analyses are 

described elsewhere (Sharma et al., 2011). Equations to determine gas yield, gas heating 

value and gasifier efficiencies, i.e. cold gas, hot gas, and carbon conversion efficiencies, 

were used from literature (Sharma et al., 2011). Statistical analysis was performed using 

statistical software SAS (Release 9.3, SAS, Cary, NC, USA). Analysis of variance 
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(ANOVA) method with generalized linear model (GLM) procedure was used to study 

effects of steam injection port location and SBR (independent variables) on syngas yield, 

concentrations and impurities, gasification temperature, and gasifier efficiencies 

(dependent variables). The alpha (level of significance) for the statistical analysis was 

held constant at 0.05. 

4.3 Results and discussion 

Air-steam gasification of switchgrass was performed using the lab-scale fluidized-

bed gasifier to study the effects of steam injection port location and SBR on the gasifier 

performance. Biomass properties, gas composition and heating value, tar and particulate 

contents, as well as gasifier efficiencies, are discussed in the following subsections. 

4.3.1 Biomass Characteristics 

Proximate and ultimate analyses of the Kanlow switchgrass are shown in Table 

4.2. Bulk densities of chopped switchgrass and silica sand ranged from 105 to 117 kg/m3 

and 1592 to 1612 kg/m3, respectively. Particle geometric mean size by mass of chopped 

switchgrass and silica sand were calculated to be 10 ± 1.7 mm and 336 ± 2 µm, 

respectively. 

Table 4.2. Material properties 

Proximate Analysis (wt.%, d.b.) a  Ultimate Analysis (wt.%, daf)b 

Moisture content 14.63  Carbon 52.74 

Ash content 4.72  Hydrogen 5.91 

Fixed carbon 13.69  Oxygen 41.05 

Volatile matter 81.59  Nitrogen 0.24 

   Sulfur 0.06 
a Dry basis.   
b Dry ash-free. 
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4.3.2 Gasifier temperature 

The effect of SBR on the gasification temperature at the three steam injection port 

locations, i.e. 51, 152 and 254 mm, is shown in Fig. 4.2. The average temperature of 

steam at injection was 201°C, which was lower than the normal operating temperature of 

the gasifier bed (Table 4.1). Therefore, the steam injection into the gasifier caused 

quenching of the temperature environment at all injection locations leading to decreases 

in gasification temperature. Additionally, the quantity of steam injected into the gasifier 

increased with SBR, which directly influenced the gasifier temperature, resulting in 

further decreases in the temperature of the reactor bed. As a consequence, the gasifier 

temperature decreased with an increase in the SBR from 0.0 to 0.3 as shown in Fig. 4.2. 

The gasifier temperature decreased with increase in SBR at all steam injection port 

locations. At steam injection port location of 51 mm, with an increase in SBR, the 

gasifier temperature decreased from 713°C at SBR of 0.1 to 419°C at SBR of 0.2, and 

367°C at SBR of 0.3. Similarly, at steam injection port location of 152 mm, the gasifier 

temperature decreased from 549°C at SBR of 0.1 to 437°C at SBR of 0.2, and 482°C at 

SBR of 0.3. At steam injection port location of 254 mm, with an increase in SBR, the 

gasifier temperature decreased from 664°C at SBR of 0.1 to 636°C at SBR of 0.2, and 

587°C at SBR of 0.3. At steam injection port locations of 51 and 152 mm, the increase in 

the SBR from 0.1 to 0.3 significantly decreased (p < 0.05) the gasification temperature by 

104oC to 449°C (Fig. 4.2). This is primarily attributed to the quenching of the dense 

phase of bed materials at the lowest and middle, steam injection port, positions. At steam 

injection port location of 254 mm, with an increase in SBR, the gasifier temperature 
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decreased from 664°C at SBR of 0.1 to 636°C at SBR of 0.2, and 587°C at SBR of 0.3. 

The 254 mm steam injection port was located at the top of the bed that included a lean 

phase of the bed materials. As a result, the increase in the SBR from 0.1 to 0.3 did not 

show a significant influence on the gasification temperatures at 254 mm steam injection 

port location (shown in Fig. 4.2).    

 

Fig. 4.2. Gasifier temperature with varying steam injection port location and SBR 

4.3.3 Gas composition 

CO and H2 yields in syngas are influenced by the gasification temperature and the 

availability of limited reactant (H2O). The water-gas reaction (Eq. (1)) that yields both H2 

and CO is an endothermic reaction, i.e. ΔΗ > 0, and is considerably influenced by the 

gasification temperature (Franco et al., 2003). Thermodynamically, higher gasification 

temperatures favor endothermic gasification reactions such as Eq. (1) resulting in more 

H2 and CO. Also, in addition to gasification temperatures, the quantity of limiting 
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reactant, i.e. H2O, considerably influences the production of H2 and CO through water 

gas reaction (Eq. (1)). This is because at higher levels of limiting reactant (H2O), more 

H2O reacts with the available carbon to form H2, CO, and CO2 through reactions (Eqs. (1) 

and (2)). 

 

Fig. 4.3. Syngas hydrogen yield with varying steam injection port location and SBR 
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Fig. 4.4. Syngas carbon monoxide yield with varying steam injection port location 

and SBR 

In the present study, the maximum H2O was available at SBR of 0.3. Hence, it 

was anticipated that the SBR of 0.3 would result maximum H2 and CO yields through 

reaction Eq. (1). However, as explained above, due to a significant decrease in the 

gasification temperature at the 51 and 152 mm steam injection port locations , the SBR of 

0.3 resulted in lower H2 (Fig. 4.3) and CO (Fig. 4.4) yields. Also, the decrease in the 

gasification temperature caused reduction in the gas volumetric flowrate (due to cooling 

effect) through the bed materials resulting in decrease of overall bed-expansion and 

turbulence level in the fluidized-bed (Daleffe et al., 2008; Sharma et al., 2013). Such a 

decrease in the bed expansion and in-bed turbulence level may have further reduced the 

overall heat and mass transfer in the gasifier bed, resulting in the lower H2 and CO yields 

at steam injection port locations of 51 and 152 mm.  
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At the 254 mm steam injection port location, maximum CO and H2 yields were 

observed at SBR of 0.2. The SBR of 0.3 showed 4% and 17% lower H2 and CO yields, 

respectively, than at SBR of 0.2. Such observations can be explained by the decrease in 

the gasification temperature (Fig. 4.2) caused by the higher steam injection at SBR of 0.3. 

Also, at 254 mm steam injection port location, the SBR of 0.1 resulted in 5% and 13% 

lower H2 and CO yields, respectively, than those at SBR of 0.2. No steam injection (SBR 

of 0.0) also resulted in lower CO and H2 yields than those obtained at SBR of 0.2. It can 

be inferred from these results that SBR of 0.2 at steam injection of 254 mm provided the 

best combination of bed temperature and H2O to maximize CO and H2 yields. Results 

show that steam injection at the 254 mm port (located in the reduction zone of the 

gasifier) led to high H2 yield. The high H2 yield can be attributed to reducing reactions 

(Eqs. (1)-(3)), as discussed earlier. 

Water-gas shift reaction (Eq. (3)) is also an important gasification reaction that 

produces H2. However, this reaction also increases CO2 yield. High CO2 yields at steam 

injection port location of 254 mm (Fig. 4.5) can be attributed to the water-gas shift 

reaction (Eq. (3)) that also contributed to the high H2 yield. Alternatively, the high CO2 

yields can be attributed to the reaction (Eq. (2)) leading to the consumption of injected 

H2O (steam), producing H2 as well as CO2. The endothermic methane steam reforming 

reaction (Eq. (4)) could also have contributed to the high H2 and CO yields at the steam 

injection port location of 254 mm. This was because at high gasification temperatures, as 

observed at this location and in the presence of H2O, methane is less thermodynamically 

stable and could have converted to more stable gaseous products, i.e. H2 and CO. 
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Fig. 4.5. Syngas carbon dioxide yield with varying steam injection port location and 
SBR 

Statistical results showed that both steam injection port location (p < 0.01) and 

SBR (p < 0.05) had highly significant effects on H2 and CO yields. Also, the interaction 

between steam injection port location and SBR was significant (p < 0.05). The effect of 

steam injection port location and SBR on the syngas CO2 yield was, however, not 

significant. Overall, the SBR of 0.2 and steam injection port location of 254 mm resulted 

in 12% and 18% higher syngas H2 and CO yields, respectively, than H2 and CO yields 

obtained without any steam injection. 
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Fig. 4.6. Concentrations of syngas with varying SBR at different steam injection 
port locations. (a) 51 mm, (b) 152 mm, and (c) 254 mm 

Concentrations of CO, H2, CO2, CH4 and N2 in syngas depend on several factors 

such as gasification temperature and quantities of limiting reactants (H2O and O2). In the 

present study, concentrations of H2, CO, CO2, CH4 and N2 with no steam injection (at 
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SBR of 0.0) were 8.4%, 16.4%, 13.7%, 2.3% and 57.8%, respectively. Steam injection at 

51 mm port location decreased H2, CO and CH4 concentrations as shown in Fig. 4.6(a). 

The reduction in H2, CO and CH4 concentrations was mainly due to decrease in 

gasification temperature with steam injection at the 51 mm port.  However, with the 

steam injection, CO2 content was found to increase (by 2-17%). The N2 content was 

mainly dependent on the quantity of air supplied to the gasifier. Since ER in the present 

study was held constant at 0.32, the syngas N2 concentration followed an opposite trend 

with the cumulative concentrations of H2, CO, CO2 and CH4. The N2 concentration 

increased (by 1-10%) with an increase in SBR. 

At steam port location of 152 mm, syngas H2 concentration increased by 6 % at 

SBR of 0.1 as compared to that with no steam injection. However, with further increase 

in steam injection at SBR of 0.2 and 0.3, H2 concentration considerably decreased by 52-

62%. With increase in SBR, CO and CH4 concentrations continue to decrease by 3-43% 

and 20-47%, respectively, as compared to those obtained with no steam injection. On the 

contrary, CO2 concentration increased by 6-15% with an increase in SBR. The N2 

concentration decreased slightly (4%) at SBR of 0.1 as compared to that with no steam 

injection and then increased (16-17%) at SBRs above 0.1. 

At steam port location of 254 mm, the gasification temperature was not 

significantly affected by SBR. Further 254 mm steam injection port location and at SBR 

of 0.2 showed the maximum H2 (9.0%) and CO (18.7%) concentrations. This implies that 

the 254 mm port location and the SBR of 0.2 provided the best combination of bed 

temperature and H2O to produce CO and H2. H2 concentration increased by 4-7% with an 

increase in SBR compared to that with no steam injection. CO concentration also 
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increased by 2-14% with an increase in SBR from 0.1 to 0.2 while it decreased by 3% 

with further increase in SBR from 0.2 to 0.3 (Fig. 4.6(c)). The CH4 concentration 

remained constant at SBRs of 0.1 and 0.3; however, it decreased by 7% at SBR of 0.2 as 

compared to that obtained with no steam injection. The decrease in the CH4 and increase 

in CO and H2 concentrations indicate that methane steam reforming reaction (Eq. (4)) 

may have occurred. The CO2 concentration increased by 3 to 10% with an increase in 

SBR as compared to that obtained with no steam injection. The N2 concentration 

decreased by 1 to 7% with an increase in SBR as compared to that obtained with no 

steam injection. The decrease in N2 concentration was mainly due to the increase in CO, 

H2 and CO2 concentrations as discussed above. Statistical analysis showed that syngas 

CO and H2 concentrations were significantly influenced by the steam injection port 

location (p < 0.01) and SBR (p < 0.05). However, the interaction effect of steam injection 

port location and SBR on the syngas CO2 concentration was not significant.  

4.3.4 Syngas yield, heating value and impurities 

Syngas yield, which is the quantity of gas produced (Nm3) per kg of dry biomass, 

depends primarily on gasification temperature and quantities of reacting species, i.e. 

biomass, air, and steam supplied to the gasifier. Since quantities of biomass and air were 

held constant, gasification temperature and SBR were the variables that influenced the 

syngas yield. With an increase in SBR from 0.1 to 0.3, higher gasification temperatures 

were observed at the 254 mm steam injection port location (Fig. 4.2). Further, the 

maximum quantity of steam injected into the gasifier was at SBR of 0.3; however, SBR 

of 0.3 resulted in a decrease in the gasification temperature at 254 mm steam injection 

port location, and thus, showed lower syngas yield (2.14 Nm3 per kg of dry biomass). 



89 
 

The maximum syngas yield of 2.19 Nm3 per kg of dry biomass was observed at SBR of 

0.2 at the 254 mm steam injection port location. 

Syngas heating value depends upon concentrations of primary combustible 

products, i.e. H2 and CO. The other minor constituents of the syngas were the lighter 

hydrocarbons, i.e. CH4, C2H2, C2H4 and C2H6 that also contain considerable amounts of 

energy and have influence on the syngas heating value. In the present study for all 

gasification conditions, the syngas heating value ranged between 3.3 and 5.4 MJ/Nm3. 

The 254 mm steam injection port location and SBR of 0.2 resulted in the highest syngas 

H2 (9.0%) and CO (18.7%) contents leading to the maximum syngas heating of 5.4 

MJ/Nm3.  

Tar and particulate contents are the major impurities in the syngas. Tar, a 

condensable organic compound, is composed of several hydrocarbons heavier than 

benzene and its quantity in syngas mainly depends on biomass properties, and 

gasification conditions such as temperature and residence time. Steam injection can 

reform tar leading to an overall reduction in tar. In the present study, the maximum tar 

content of 29.5 g/Nm3 was observed at the 152 mm steam injection port and SBR of 0.3. 

At 152 mm steam injection port, the tar content increased from 18.8 to 29.5 g/Nm3 with 

an increase in SBR from 0.1 to 0.3. The increase in tar content with increased SBR can be 

attributed to quenching of devolatilized products within the gasifier bed by the low 

temperature steam, as explained earlier. However, steam injections at 51 and 254 mm 

port locations showed low syngas tar contents (1.9-8.1 and 4.1-18.5 g/Nm3, respectively) 

implying that the injected steam participated in tar-reforming reactions leading to 

decrease in the overall tar content. The maximum particulate content of 12 g/Nm3 was 



90 
 

observed at the 152 mm steam injection port location and the SBR of 0.3. Statistical 

results showed that both tar and particulate contents were not significantly influenced by 

either the steam injection port location or SBR. 

4.3.5 Gasifier efficiencies 

 

Fig. 4.7. Gasifier efficiencies at three steam injection port locations at SBR of 0.2 

The gasifier cold gas and hot gas efficiencies depend on the syngas heating value 

and yield. The hot gas efficiency also depends on sensible energy content of the syngas, 

which is directly proportional to the syngas exit temperature. Statistical analysis showed 

that the steam injection port location had a significant effect on the cold gas and hot gas 

efficiencies (p < 0.05) while SBR showed a significant effect (p < 0.05) on only the hot 

gas efficiency of the gasifier. As explained earlier, the decrease in the gasification 

temperature at the steam injection port locations of 51 and 152 mm resulted in the lower 

syngas exit temperature, which in turn decreased the hot gas efficiency at steam injection 

port locations below 254 mm. The 254 mm steam injection port location and SBR of 0.2 

resulted in the maximum cold gas (67%) and hot gas (72%) efficiencies (Fig. 4.7).  
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Carbon conversion efficiency of the gasifier depends on the concentrations of 

carbon containing gaseous products of the syngas such as CO, CO2 and other lighter 

hydrocarbons. The maximum carbon conversion efficiency of 96% was observed at the 

254 mm steam injection port location and SBR of 0.2. Statistical results showed that the 

steam injection port location had a highly significant influence (p < 0.01) on the carbon 

conversion efficiency. The interaction between steam injection port location and SBR 

(location*SBR) had significant influence (p < 0.05) on the carbon conversion efficiency. 

However, the effect of SBR alone on the carbon conversion efficiency was not 

significant. 

4.4 Conclusions 

Air-steam gasification of switchgrass was performed using an autothermal lab-

scale fluidized-bed gasifier to investigate the effects of steam injection port location and 

steam-to-biomass ratio (SBR) on syngas composition, yield and impurities, as well as, 

gasifier efficiencies. Statistical results showed that the syngas H2 and CO yields were 

significantly influenced by the steam injection port location (p < 0.01) and SBR (p < 

0.05). The steam injection port location had also significant effect (p < 0.05) on the 

gasifier cold gas and hot gas efficiencies. However, SBR had significant effect on the hot 

gas efficiency but not on the cold gas efficiency. The carbon conversion efficiency was 

significantly influenced (p < 0.01) by the steam injection port location but not by the 

SBR. The 254 mm steam injection port location and SBR of 0.2 resulted in the maximum 

syngas H2 (0.018 kg/dry kg biomass) and CO (0.513 kg/dry kg biomass) yields, cold gas 

(67%), hot gas (72%) and carbon conversion (96%) efficiencies. 
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Abstract 

Syngas, the main gasification product, is a well-known intermediate for making 

fuels, chemicals and power. Literature shows several gasification models based on the 

Gibbs equilibrium approach. However, the assumption made in the Gibbs equilibrium 

model that the gasification reactions reach equilibrium condition does not occur in 

application due to the short residence time and multiphase reactions. The objective of this 

study was to develop and validate reaction kinetics-based gasification model using 

extents of major reactions in a continuous stirred-tank reactor (CSTR) to predict syngas 

composition and yield. The model was studied by varying biomass and air flowrates from 

2.9 to 4.2 dry kg/h and 4.5 to 10 kg/h, respectively, with temperature ranging from 801 to 

907°C. Results showed significant improvement in the prediction of syngas composition 

and yield, and gasification energy efficiencies. The extents of gasification reactions 

indicated that at equivalence ratio (ER) below 0.29, water gas reaction contributed the 

most to the syngas CO and H2 yields while char oxidation reaction contributed to the CO 

yield. At ER of 0.29 and above, Boudouard and methane oxidation reactions were the 

most dominating reactions contributing to the CO yield while water gas shift reaction 

contributed to the H2 yield. 

Keywords: Biomass gasification; syngas; kinetics; Gibbs equilibrium; extent of reaction
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5.1 Introduction 

Biomass, such as grass, plants and crop residues, is a sustainable and renewable 

energy feedstock. Many research efforts have been successfully demonstrated for 

generating energy from biomass (Abelson, 1976; Jenkins & Bhatnagar, 1991; Patel et al., 

2006; Quaak et al., 1999). However, biomass is categorized as a low grade energy fuel 

and has limited uses as a direct feedstock for generating liquid fuels and chemicals. 

Gasification, a thermochemical conversion process, converts a low grade solid biomass 

under high temperature into gaseous fuel called syngas. The biomass generated syngas 

consists mainly of CO, H2, CO2, CH4, N2 (if air is used as an oxidizing agent), and 

impurities such as tar, H2O, NH3 and H2S. Syngas is a well-known intermediate for 

making biofuels, biochemical and biopower through various conversion processes. 

However, these conversion processes require syngas with different concentrations of H2, 

CO, and CO2 (Wender, 1996) as well as H2/CO ratios from 0.4 to 4 (Hamelinck & Faaij, 

2002; Jess et al., 1999; Klasson et al., 1993; Spath & Dayton, 2003; Wender, 1996). To 

maximize the product (fuels, chemicals or power) yield, it is necessary that biomass 

gasification matches the needs of downstream conversions in terms of gas composition, 

levels of impurities, and yield of the syngas. The biomass-generated syngas quality and 

yield, on the other hand, rely heavily on several factors such as the properties of biomass, 

gasifier operating conditions, and complex chemical reactions that occur during the 

gasification.  

With the advent of latest computational techniques and sophisticated simulation 

tool, such as Aspen™ Plus, the biomass gasification process can be modeled and the 

syngas composition and yield can be predicted more reliably. Several Aspen™ Plus 
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gasification modeling studies (Kumar et al., 2009b; Paviet et al., 2009; Puig-Arnavat et 

al., 2010; Wenyi & Qin, 2010) using Gibbs equilibrium reactor (RGibbs) are available for 

different biomass feedstocks. However, little information is available on kinetics 

modeling of biomass gasification using extents of major reactions in a continuous stirred-

tank reactor (CSTR). 

When using the Gibbs equilibrium reactor modeling approach, one of the primary 

assumptions many researchers make is that the gasification reactions reach equilibrium, 

which does not happen due to short residence time. In addition, the gasification involves 

several homogenous and heterogeneous reactions R(1) to R(7) (Kumar et al., 2009a) and 

the kinetics of these reactions play a significant role on syngas composition and yield.  

Equilibrium modeling approaches do not consider the influence of these influential 

reactions. As a result, large deviations between the predicted and experimental values of 

the syngas composition have been found while using the equilibrium modeling approach. 

Water gas reaction C + H2O  CO + H2 (∆H = + 131 kJ/mol) R(1) 

Boudouard reaction C + CO2  2CO (∆H = + 173 kJ/mol) R(2) 

Water gas shift CO + H2O  CO2 + H2 (∆H = - 41 kJ/mol) R(3) 

Methane oxidation CH4 + 3/2O2  CO + 2H2O (∆H = - 519 kJ/mol) R(4) 

Methane reforming CH4 + H2O  CO + 3H2 (∆H = + 206 kJ/mol) R(5) 

Char combustion C + O2 = CO2 (∆H = - 394 kJ/mol) R(6) 

Char partial combustion C + 1/2O2 = CO (∆H = - 111 kJ/mol) R(7) 

By including kinetics of the major reactions, the CSTR based reaction kinetics 

gasification model can more reliably predict the syngas composition for the given 

biomass feedstock, gasification conditions, and type of oxidizing agent. Nikoo and 

Mahinpey (2008) developed an Aspen™ Plus gasification model using CSTR reactor 
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model (RCSTR) for pine sawdust. Simulations were performed assuming reactor 

temperatures of 700-900 °C. The authors, however, considered only five gasification 

reactions which may have led to the deviations between experimental and predicted gas 

compositions. The authors reported mean error deviations of 0.18 - 0.34 for H2, 0.09 – 

0.11 for CO, 0.20 – 0.30 for CO2 and 0.16 – 0.27 for CH4 on % volume basis. Authors 

also assumed that the volatile reactions followed Gibbs equilibrium that is unlikely to 

happen because of the fast volatile reactions leading to the deviations observed between 

experimental and simulation data. Moreover, most of the previous biomass gasification 

models use RYield reactor of Aspen™ Plus to decompose biomass (a non-conventional 

material) into conventional elemental components such as C, H, O, N, S and ash. This is 

done because properties of non-conventional materials are not available in Aspen™ Plus 

database whereas properties of conventional components are. However, the above 

decomposition of biomass into several elemental components can only occur in extreme 

reaction conditions far beyond the conditions during gasification. Hence, the currently 

available models of biomass gasification are inadequate to simulate reaction mechanisms 

of biomass gasification to reliably predict syngas needed for production of fuels and 

chemicals. 

The novelty of present study lies in the development of a gasification model using 

a modeling approach based on extents of major gasification reactions and the 

fundamental design of CSTR. The model incorporated extensive gasification condition, 

such as seven major gasification reactions, their kinetics parameters, reactor volume and 

residence time that are not possible in Gibbs equilibrium based gasification model studied 

by several researchers. Also, the this model incorporates a novel biomass decomposition 
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approach of converting the biomass into products such as C, H2O, CO, CO2, CH4, H2 and 

tar that are feasible during biomass gasification (Pasangulapati et al., 2012). The specific 

objectives of this study were to develop kinetics-based gasification model using extents 

of major reactions in a CSTR to predict syngas composition and yield, and to validate 

model prediction with the experimental results obtained on our fluidized-bed gasifier.  

5.2 Materials and methods 

5.2.1 Biomass feedstock and gasification conditions  

Kanlow switchgrass was gasified in a lab-scale fluidized-bed gasifier with air as 

an oxidizing agent. The higher heating value of the switchgrass was 18.83 MJ/kg dry 

biomass. The details of the experimental conditions (Table 5.1) and the experimental 

results were reported previously (Sharma et al., 2011). Operating pressure of the gasifier 

was 1.01 MPa. The gasification model was studied by varying the equivalence ratio (ER), 

which is defined using following Eq.(1).  

ER = �
Actual air supplied for gasification per unit mass of biomass

Theoretical air required for complete combustion per unit mass of biomass
� 		 Eq.(1) 

Table 5.1. Experimental conditions used for simulation of gasification models 
(Sharma et al., 2011) 

ER 0.20 0.29 0.32 0.40 0.45 

Dry biomass feed rate, kg/h 3.9 4.2 3.4 2.9 3.7 

Air flowrate, kg/h 4.5 6.8 6.5 6.4 10.0 

Air temperature, °C 25.2 29.0 29.5 29.0 32.0 

Gasification temperature, °C 801 809 825 893 907 

Syngas volume flowrate, Nm3/h 4.61 7.23 6.99 6.43 9.25 
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5.2.2 Biomass decomposition characteristics 

Ultimate and proximate analyses of switchgrass (Table 5.2) were used to 

calculated chemical formulas of switchgrass (CH1.46O0.68 N0.003S0.002Ash0.02, dry basis) 

and its volatile matters (CH2.16ON0.005S0.004, dry basis). Based on the proximate analysis 

properties, switchgrass was decomposed into four major components, i.e. fixed carbon, 

moisture, ash and volatile matters (Fig. 5.1). Coefficients a, b, c and d of the biomass 

decomposition reaction (Fig. 5.1) were determined based on the fixed carbon, moisture, 

ash and volatile matters, respectively. The volatile matters were further decomposed into 

possible devolatization products (i.e. CO, CO2, CH4, H2, tar, NH3 and S); hence, the 

overall reaction of biomass decomposition into several species used in the present study 

was represented by Eq. (1) (Kumar et al., 2009b). In equation 1, coefficients a, b and c 

were based on Fig. 5.1, while coefficients e to k were calculated based on the total 

volatile matters (i.e. d VM) obtained based on decomposition scheme shown in Fig. 5.1. 

Table 5.2. Switchgrass properties (Sharma et al., 2011) 

Proximate Analysis (wt.%, d.b.)a  Ultimate Analysis (wt.%, daf)b 

Moisture content 14.63  Carbon 52.74 

Ash content 4.72  Hydrogen 5.91 

Fixed carbon 13.69  Oxygen 41.05 

Volatile matter 81.59  Nitrogen 0.24 

   Sulfur 0.06 
a Dry basis   
b Dry ash-free 
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Fig. 5.1. Decomposition of switchgrass into different species 

CH1.46O0.68 N0.003S0.002Ash0.02 (Switchgrass) → aC + bH2O + cAsh + eCO + fCO2 

+ gCH4 + hH2 + iTar + jNH3 + kS Eq.(2)

Pasangulapati et al. (2012) studied characterization of switchgrass for 

thermochemical conversion using the Thermogravimetric Analysis (TGA) coupled with 

Fourier Transform Infrared Spectrometer (FTIR) and reported that CO, CO2 and CH4 

were the major products generated from switchgrass devolatization. The diatomic 

molecule such as H2 was not detected by the FTIR as it has no IR absorption 

(Pasangulapati et al., 2012). Therefore, CO, CO2, CH4 and H2 plus tar, NH3 and S (Eq. 2), 

were assumed to be the possible devolatization products generated from volatile matters 

of switchgrass.  

Mass balance of C, H, O, N and S elements of volatile matters 

(CH2.16ON0.005S0.004) resulted in five equations; however, the overall switchgrass 

decomposition reaction (Eq. 2) contained a total of seven unknowns (e through k). Hence 

two more equations were required to determine all seven unknowns. Kumar et al. (2009) 

developed Gibbs equilibrium biomass gasification model using Aspen™ Plus. In their 

model, the authors assumed CO/CO2 ratio equal to one to determine the seven unknowns 
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in the biomass decomposition reaction (Eq. 2). It was reported that CO/CO2 ratio of one 

did not affect the predicted composition of syngas because the Gibbs equilibrium reactor 

depends on total energy of final product at the given temperature and accordingly 

rebalances the syngas composition (Kumar et al., 2009b). Hence, the sixth equation in 

this study was obtained by considering CO/CO2 ratio to be one. The seventh equation 

was obtained by assuming that tar yield is known based on the experimental results. 

Three possible combinations of devolatization products were evaluated to improve the 

overall reliability of the gasification models under the present study (Table 5.3). 

Because switchgrass contains negligible S content, S yield in the devolatization 

products was assumed to be negligible in case 1. In case 2, S was considered as one of the 

devolatization products. As described earlier, in addition to the main constituents of 

syngas (CO, H2, CO2, CH4 and N2), the biomass generated syngas may also contain light 

hydrocarbons, such as C2H2, C2H4, and C2H6 (Sharma et al., 2011) resulting from the 

biomass volatile matters. Hence, these lighter hydrocarbons were also considered as 

devolatization products in case 3 (Table 5.3). The yields of C2H2, C2H4, and C2H6 in case 

3 were assumed to be known based on the experimental results (Sharma et al., 2011). The 

three cases were evaluated through preliminary simulation runs to determine the best 

possible products of biomass devolatization with a goal to improve model predictions. 

Table 5.3. Biomass devolatization reactions 

Case 1: VM → eCO + fCO2 + gCH4 + hH2 + iTar 

Case 2: VM → eCO + fCO2 + gCH4 + hH2 + iTar + jNH3 + kS        

Case 3: VM → eCO + fCO2 + gCH4 + hH2 + iTar + jNH3 + kS + lC2H2 + mC2H4 + nC2H6  
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5.3 Modeling approach 

Two approaches were used for modeling biomass gasification process to predict 

syngas composition and yield. In the first approach, Aspen™ Plus software was used for 

modeling biomass gasification using the Gibbs equilibrium reactor model (RGibbs). In 

the second approach, the kinetics of various gasification reactions and gasification 

residence time were incorporated using the CSTR, which is the most common reactor to 

design the chemical processes. RGibbs was used as a baseline to compare the 

improvement in prediction of the reaction kinetics gasification model. The detailed 

description of both modeling approaches are described as follows. 

5.3.1 Gibbs equilibrium reactor Aspen™ Plus gasification model 

The equilibrium gasification model for switchgrass was developed using Gibbs 

equilibrium reactor (RGibbs) of Aspen™ Plus (Version 7.0, Aspen™ Technology, Inc., 

MA). The input parameters to the model included biomass properties (ultimate and 

proximate analyses), flowrates of biomass and air, and gasification temperature and 

pressure, shown in Fig. 5.2. The model outputs included gas composition and yield. 

 

Fig. 5.2. Input and output parameters of Gibbs equilibrium Aspen™ Plus model 
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Fig. 5.3. Gibbs equilibrium Aspen™ Plus biomass gasification model 

Fig. 5.3 shows the process flow diagram of Gibbs equilibrium Aspen™ Plus 

biomass gasification model. In Aspen™ Plus model, air, C, S, H2O, CO, CO2, H2, O2, CH4 

and NH3 were defined as conventional material components while switchgrass, tar, and 

ash were defined as the unconventional material components. The Soave-Redlich-Knowg 

(SRK) property method was used in the Aspen™ Plus biomass gasification model. The 

entire gasifier system including biomass supply, gasifier reactor and cyclone separator, 

was modeled using three different blocks, i.e. DECOM, C-SEP and G-REACTR, shown 

using the rectangular box in Fig. 5.3. DECOM block was used to decompose input 

material stream (switchgrass) into several output material steams such as solid (C, S and 

ash), vapor (tar and H2O) and gaseous (CO, CO2, H2, O2, CH4 and NH3) material streams. 

DECOM block was simulated using RYield reactor model of Aspen™ Plus. In DECOM 

block, the yields of all outgoing materials (decomposed products) were specified based 

on the biomass decomposition as described in previous section (Fig. 5.1 and Table 5.3). 

All decomposed products (TO-C-SEP) from DECOM block were supplied to C-SEP 

block for separation and removal of ash and unreacted char from the decomposed 

products. C-SEP block was simulated using SEP (separator) model of Aspen™ Plus. The 
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ash and unreacted char-free decomposed products (TO-G-REC) from C-SEP block plus 

air through separate stream (AIR) were fed to G-REACTR for gasification. The N2 to O2 

molar ratio of 3.76 was used for air. The G-REACTR was simulated using RGibbs 

reactor model of Aspen™ Plus in which temperature and pressure conditions were defined 

using the experimental data. G-REACTR block computed concentrations of feasible 

products (thermodynamically and chemically) based on the minimization of total Gibbs 

free energy (Kumar et al., 2009b). The output product stream (HOTGAS) from G-

REACTR contained only gaseous species (CO, H2, CO2, CH4 and N2) and impurities (tar, 

H2O and NH3). The impurities of the HOTGAS stream were condensed to 30°C using 

COOLER block, which was simulated using HEATER (heat exchanger) model of 

Aspen™ Plus. The condensed stream from COOLER (COLDGAS) was supplied into 

SEP-COND block for separation and removal of condensed impurities from the 

COLDGAS stream. The SEP-COND block was simulated using SEP (separator) model 

of Aspen™ Plus. The outlet stream from SEP-COND block (SYNGAS) contained only 

gaseous species (CO, H2, CO2, CH4 and N2). 

Following assumptions were made in the Gibbs equilibrium Aspen™ Plus model 

(Kumar et al., 2009b; Nikoo & Mahinpey, 2008; Paviet et al., 2009; Puig-Arnavat et al., 

2010; Wenyi & Qin, 2010). 

1. Gasification reactions reached equilibrium condition, and thus, the Gibbs equilibrium 

reactor calculated the final gas composition based on the minimization of total Gibbs 

free energy (Kumar et al., 2009b; Nikoo & Mahinpey, 2008). 
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2. Fluidized-bed reactor is assumed to be a well-mixed and steady state system with 

uniform temperature throughout the reactor (Fogler, 1999). Therefore, the gasifier 

(Gibbs reactor) operation was assumed to be an isothermal and steady state process. 

3. As described earlier, switchgrass instantly decomposed into possible devolatization 

products such as C, H2O, ash, CO, CO2, CH4, H2, tar, NH3, S, C2H2, C2H4 and C2H6. 

4. Carbon conversion efficiency and tar yield were assumed to be known based on the 

experimental results. The tar, which primarily contained C, H and O, was represented 

as CH1.55O0.55 (Kumar et al., 2009b). Char yield was assumed to be negligible. 

5. The operating pressure of the fluidized-bed gasifier previously studied (Sharma et al., 

2011) was atmospheric, and the Gibbs equilibrium gasification was assumed to be an 

isobaric process. 

6. The hydrodynamics of fluidized-bed were not incorporated in the gasification model; 

rather it was assumed that the temperature, and heat and mass transfer conditions 

within the gasifier were sufficient for gasification reactions (Kumar et al., 2009b). 

5.3.2 Reaction kinetic gasification model 

If the operating condition of a fluidized-bed gasifier is constant, it can be 

considered as a continuous and steady state system wherein the bed materials, such as the 

mixture of biomass and inert sand, are uniformly distributed within the fluidized-bed. 

Hence, the fluidized-bed gasifier was assumed to be a well-mixed reactor. The fluidized-

bed is also under high temperature (above 750 °C) and turbulence conditions; hence, 

drying, heating and devolatization of biomass, and various gas-solid and gas-gas 

reactions of gasification can be considered to be completed within the fluidized-bed. 

Therefore, a continuous type of well-mixed chemical reactor, called CSTR, was used to 
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develop reaction kinetics gasification model. CSTR is the commonly used reactor in 

chemical industries to design chemical processes. CSTR is characterized as a perfectly 

mixed reactor in which all participating species are assumed to be uniformly distributed 

throughout the volume of reactor (Fogler, 1999). The CSTR is designed based on the 

kinetics and residence time of various reactions involved. In this study, seven major 

gasification reactions and their kinetics, plus residence time, were included in the reaction 

kinetics biomass gasification model to predict the syngas composition. The input 

parameters to the reaction kinetics gasification model included biomass properties, 

flowrates of biomass and air, gasification temperature and pressure, seven major 

gasification reactions and their kinetics (reaction rates and rate constants), and residence 

time (as shown in Fig. 5.4). The model outputs included gas composition and yield. 

 

Fig. 5.4. Input and output parameters of CSTR reaction kinetic model 

Based on the overall biomass decomposition reaction (Eq. 2) and devolatization 

reactions shown in Table 5.3, the biomass was decomposed into several possible 

products. The molar flowrate of each decomposed product were calculated using 

flowrates of biomass and air from experimental data. The decomposed products with 

their respective molar flow rates were specified as input feed streams to the CSTR 

gasification model. Table 5.4 shows the kinetics parameters, i.e. reaction rates and rate 
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constants, of seven major gasification reactions R(1) to R(7) used in the present study to 

develop reaction-kinetics gasification model. The inlet gas concentrations of the CSTR 

were calculated as ratio of molar flowrate of each decomposed product and the volume of 

the CSTR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

Table 5.4. Kinetic parameters of gasification reactions 

Reaction No. Rate equationa, r Reference 

R(1) 
�� =

2	��	����	�(�)

1 + ��	���� + ��	��� + ��	���
 

where, �� = 239	�
�
�������

��
�
 

�� = 0.0316	��
������
��

� 

�� = 0.00536	��
������
��

� 

�� = 8.25 ∗10��	�
�
������
��

�
 

�(�) = (1 − �)
�����
� �

 

X = carbon conversion 
ρchar = char density 
MC = carbon molar weight 

(Matsui et al., 1985; 
Petersen & Werther, 
2005) 

R(2) 
�� =

2	��	����	�(�)

1 + ��	���� + ��	���
 

where, �� = 4.89∗10�	�
�
�������

��
�
 

�� = 0.066 

�� = 0.12	�
�
������
��

�
 

(Matsui et al., 1987a; 
Matsui et al., 1987b; 
Petersen & Werther, 
2005) 

R(3) 
�� = �� 	�������� − 	

�������
���

� 	� 

where, �� = 2.778	��
������

��
� 

��� = 0.022	��
�����
��

� 

�	 = 0.1   

(Biba et al., 1978; 
Petersen & Werther, 
2005) 

R(4) �� = ��	����	��� 

where, �� = 5.16∗10��	���	�
�
����

��
�
 

(Gómez-Barea & 
Leckner, 2010) 

R(5) 

�� = ��� ��������� − 	
������

�

0.0265	 �
32900
� �

�  

where, ��� = 3.1005	��
������

�
� 

(Corella & Sanz, 2005; 
Umeki et al., 2010) 

R(6) �� = ���	�� 

where, ��� = 17.67	�	�	��
������

�
� 

(Goyal et al., 2010) 

R(7) �� = �	��	�� ��� 

where, ��� = 8710	��
������

�
� 

(Choi et al., 2001; Inayat 
et al., 2010). 

a CCO, CH2, CH2O, CCO2, CCH4, CO2 and CC are CSTR inlet concentrations of CO, H2, H2O, 
CO2, CH4, O2 and C, respectively. 
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Fig. 5.5. Flow chart showing CSTR design steps 

Fundamental design steps to develop CSTR biomass gasification model are 

illustrated in Fig. 5. In step 1 of the CSTR design, the seven major gasification reactions 

R(1) to R(7), their rate equations (r1 to r7, Table 4), reaction rate constants (k1 to k12 and 

Keq, Table 4), and extents of gasification reactions (ζ1 to ζ7) were specified in a tabulated 

form (as shown in Table 5). The extent of reaction (ζ) was the fractional conversion of 

reactant into the product for a given reaction..  

In the step 2 of the CSTR design, mass balance of CSTR inlets (decomposed 

products) and outlets (final products) was performed. The details of CSTR mass balance 

were shown in the stoichiometric Table 6. The molar flowrates of CSTR inlets were 
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specified in column 2 using the notation F0 before each material. For example, the initial 

molar flowrate of C entering into the CSTR was denoted using notation F0C. As shown in 

Table 6, F0T was the total initial molar flowrate of combined CSTR inlet stream. Based 

on gasification reactions details (step 1, Table 5), the change in each material within the 

CSTR was obtained in terms of extents of gasification reactions as shown in column 3, 

Table 6. The final composition of each CSTR outlet material was obtained by subtracting 

values in column 3 from respective values in column 2 (shown in column 5, Table 6). 

Column 4 shows the composition of final CSTR outlet product (syngas) wherein FT 

denotes the total molar flow of the final product. 

In the step 3 of CSTR design, the net rate of reaction for each participating 

reactant was derived using the gasification reactions given in step 1 of Table 5. The net 

rates of reactions for all participating reactants are shown in column 2 of Table 7. 

In the step 4 of CSTR design, the fundamental design equation of CSTR was 

solved for each of the seven participating reactants (Table 4) to obtain seven nonlinear 

equations in terms of extents of gasification reactions. The CSTR design equation for 

reactant C is given as follows. 

F0C (entering) – FC (leaving) + rC VR (generation) = 0 (accumulation) Eq.(3)

where, VR was the volume of CSTR that was calculated using ideal gas law as follows. 

(P VR / P0 V0) = (FT R T / F0T R T0) Eq.(4)

where, P0, V0, F0T and T0 were the initial values of pressure, volume, molar flow 

rate and temperature, respectively, of reactants while P, VR, FT and T were the final 

values of pressure, volume, molar flow rate and temperature, respectively, of products. R 

is the ideal gas constant. Since the gasification temperature and pressure were assumed to
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Table 5.5. Step 1 - Gasification reactions details 

Reaction No. Gasification reactions Reaction rate Rate constant Extent of reaction 

R(1) C + H2O   CO + H2 r1 k1, k2, k3, k4 ζ1 

R(2) C + CO2   2CO r2 k5, k6, k7 ζ2 

R(3) CO + H2O   CO2 + H2 r3 k8, Keq ζ3 

R(4) CH4 + 3/2O2   CO + 2H2O r4 k9 ζ4 

R(5) CH4 + H2O   CO + 3H2 r5 k10 ζ5 

R(6) C + O2 = CO2 r6 k11 ζ6 

R(7) C + 1/2O2 = CO r7 k12 ζ7 

Table 5.6. Step 2 - CSTR stoichiometry table 

Material Material entering  
CSTRa (mol/s) 

Material change Material leaving CSTR 
(mol/s) 

 

C F0C  - ζ1 - ζ2 - ζ6 - ζ7 FC = F0C - ζ1 - ζ2 - ζ6 - ζ7 

H2O F0H2O  - ζ1 - ζ3 + 2ζ4 - ζ5 FH2O = F0H2O - ζ1 - ζ3 + 2ζ4- ζ5 

O2 F0O2  - 1.5ζ4 - ζ6 – 1/2ζ7 FO2= F0O2 - 2ζ4 - ζ6 – 1/2ζ7 

CO F0CO ζ1 + 2ζ2 - ζ3 + ζ4 + ζ5 + ζ7 FCO = F0CO + ζ1 + 2ζ2 - ζ3 + ζ4 + ζ5 + ζ7 

H2 F0H2 ζ1 + ζ3 + 3ζ5 FH2 = F0H2 + ζ1 + ζ3 + 3ζ5 

CH4 F0CH4  - ζ4 - ζ5 FCH4 = F0CH4 - ζ4 - ζ5  

CO2 F0CO2  - ζ2 + ζ3 + ζ6 FCO2 = F0CO2 - ζ2 + ζ3 + ζ6 

Inert, N2 F0N2 0 FN2 = F0N2  

Total F0T = F0C+F0H2O+F0O2+F0CO 
+F0H2+F0CH4+F0CO2+F0N2 

FT = F0T + 0.5ζ4 + 2ζ5 - ζ6 – 1/2ζ7  

a F0C, F0H2O, F0O2, F0CO, F0H2, F0CH4, F0CO2 and F0N2 were the initial molar flowrates of C, H2O, O2, CO, H2, CH4, CO2 and N2, 
respectively, entering into the CSTR.
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Table 5.7. Step 3 - Net rate of reaction for participating reactants during 
gasification 

Material Net rate of reactiona 

C rC = - r1 - r2 - r6 - r7 

H2O rH2O = - r1 - r3 + 2r4 - r5 

O2 rO2 = - 1.5r4 - r6 - 1/2r7 

CO rCO = r1 + 2r2 - r3 + r4 + r5 + r7 

H2 rH2 = r1 + r3 + 3r5 

CH4 rCH4 = - r4 - r5 

CO2 rCO2 = - r2 + r3 + r6 

a rC, rH2O, rO2, rCO, rH2, rCH4 and rCO2 are the net rate of reactions for C, H2O, O2, CO, H2, 
CH4 and CO2, respectively. 

be constant, i.e. T = T0 and P = P0, the equation (4) was further simplified by substituting 

values of F0T and FT from stoichiometry Table 6 in the equation (4) as follows  

VR = (F0T + 0.5ζ4 + 2ζ5 - ζ6 – 1/2ζ7) V0 / F0T Eq.(5)

Next, by substituting values of FC (Table 6) in the equation (5), the CSTR design 

equation for the reactant C was reduced to following equation (6). 

(ζ1 + ζ2 + ζ6 + ζ7) + rC VR = 0    Eq.(6)

Since the volume of the gasifier reactor is constant, by dividing the equation (6) 

with the volume flowrate (v0), the CSTR design equation (6) for reactant C was further 

simplified and expressed in terms of residence time (τ) as follows. 

(ζ1 + ζ2 + ζ6 + ζ7) / v0 + rC τ = 0    Eq.(7)

where, τ was defined as the ratio of VR to volume flowrate (v0) of materials through the 

CSTR. As explained earlier, the τ was calculated as the ratio of the gasifier volume (VR) 

and syngas flowrate (v0) and was used in the present study [17]. 
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Similarly, based on the equations (3) to (7), the CSTR design equation for 

reactants H2O, O2, CO, H2, CH4 and CO2 were deduced as follows.  

(ζ1 + ζ3 - 2ζ4 + ζ5) / v0 + rH2O τ = 0 

(1.5ζ4 +ζ6 + 1/2ζ7) / v0 + rO2 τ = 0 

(- ζ1 - 2ζ2 + ζ3 - ζ4 - ζ5 - ζ7) / v0 + rCO τ = 0 

(- ζ1 - ζ3 - 3ζ5) / v0 + rH2 τ = 0 

(ζ4 + ζ5) / v0 + rCH4 τ = 0 

(ζ2 - ζ3 - ζ6) / v0 + rCO2 τ = 0 

Eq.(8)

Eq.(9)

Eq.(10)

Eq.(11)

Eq.(12)

Eq.(13)

The seven nonlinear equations (7) to (13) were solved using polymath software to 

determine extents of reactions ζ1 to ζ7. Using the formulas of FC, FH2O, FO2, FCO, FH2, 

FCH4, and FCO2 (column 4, Table 6), the extents of reactions were used to calculate 

composition of final products leaving the CSTR. 

In addition to assumptions 3 to 6 made in the Gibbs equilibrium gasification 

model, following assumptions were used to develop CSTR reaction kinetic gasification 

model. 

 CSTR was assumed to be a perfectly mixed reactor [18]; hence the fluidized-bed 

gasifier was assumed to be a well-mixed reactor.  

 Based on the seven possible participating reactants (C, H2O, O2, CO, H2, CH4 and 

CO2) and kinetics of seven major gasification reactions, only seven nonlinear 

equations were possible; hence concentrations of syngas impurities (NH3 and H2S) 

and lighter hydrocarbons (C2H2, C2H4 and C2H6) were assumed to be negligible.  
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5.4 Results and Discussion 

5.4.1 Extent of gasification reactions 

Several reactions occur simultaneously during biomass gasification process; 

hence, for the given gasification conditions, dominating reactions can be determined 

using the approach of extent of reaction for seven major gasification reactions R(1) to 

R(7). The extent of reaction can easily identify the relative importance of the seven major 

gasification reactions involved during gasification process. High extent of a specific 

reaction represents high conversion of reacting species into product through the reaction. 

Reactions R(1), R(2), R(4), R(5) and R(7) were the five gasification reactions 

having relative influence on the syngas CO yield. The reaction R(3) can contribute to the 

syngas CO yield if this equilibrium reaction proceeds in the reverse direction. Among 

these five reactions, char partial combustion reaction R(7) was the most dominating at 

ERs of 0.20 and 0.32 as indicated by the highest extent of reaction of 0.011 and 0.006 at 

ERs of 0.20 and 0.32, respectively (Table 5.8). The extent of 0.011 at ER of 0.20 

indicated that only 0.011 mol/s of input carbon supplied into the gasifier reacted through 

reaction R(7) to form CO. At ER of 0.29, the water gas reaction R(1) was the most 

dominating reaction contributing to the syngas CO yield indicated by the highest extent 

of reaction (0.014). At ER of 0.40, both the Boudouard R(2) and methane oxidation R(4) 

reactions were the most dominating reactions contributing to the syngas CO yield 

indicated by the highest extents of reaction (0.004). At ER of 0.45, the extent of 

Boudouard reaction R(2) was the maximum (0.022) indicating higher conversion of 

available carbon into syngas CO. 
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Table 5.8. Extent of gasification reactions at different ERs 

Reaction No. Extent of reaction   ER 

  0.20 0.29 0.32 0.40 0.45 

R(1) ζ1   0.007 0.014 -0.004 -0.003 -0.025 

R(2) ζ2   -0.009 -0.011 0.002 0.004 0.022 

R(3) ζ3   -0.003 -0.002 0.006 0.005 0.016 

R(4) ζ4   0.002 0.007 0.004 0.004 0.003 

R(5) ζ5   -0.002 -0.004 -0.001 -0.001 0.003 

R(6) ζ6   0.001 0.001 0.004 0.006 0.016 

R(7) ζ7   0.011 0.006 0.006 0.002 -0.002 

Reactions R(1), R(3) and R(5) were the three gasification reactions having 

considerable influence on the syngas H2 yield. Among these three reactions, water gas 

reaction R(1) was the most dominating at ERs of 0.20 and 0.29 as indicated by the 

highest extent of reaction of 0.007 and 0.014 at ERs of 0.20 and 0.29, respectively (Table 

5.8). At ERs of 0.29 and above, the water gas shift reaction R(3) was the most 

dominating reaction contributing to the syngas H2 yield as indicated by the highest extent 

of reaction, shown in Table 5.8. 

  Reactions R(3) and R(6) were the two gasification reactions having considerable 

influence on the syngas CO2 yield. Result showed that the char combustion reaction R(6) 

was highly sensitive to the ER as indicated by the continuous increase in its extent of 

reaction from 0.001 to 0.016 (Table 5.8) with an increase in the ER from 0.20 to 0.45. 

This resulted in a continuous increase in the syngas CO2 yield with ER.  

Reactions R(4) and R(5) were the two gasification reactions having considerable 

influence on the syngas CH4 yield. Among these two reaction, methane oxidation 

reaction R(4) was the most dominating reaction as indicated by its higher extent of 
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reactions at all ERs. This resulted in a continuous conversion of CH4 into CO and H2O 

through reaction R(4) with an increase in the ER from 0.20 to 0.45. At all ERs below 

0.45, extents of methane steam reforming reaction R(5) were negative, which indicated 

that the equilibrium reaction R(5) occurred in the reverse direction resulting in formation 

of CH4. At ER of 0.45, the reaction R(5) occurred in the forward direction leading to 

conversion of CH4 into CO and H2 as indicated by the positive extent of reaction of 0.003 

(Table 5.8). Overall, the extents of reactions approach revealed insight regarding the 

dominating reactions for increasing CO and H2 yields in biomass generated syngas. 

Biomass-generated syngas typically has low H2/CO ratio, which is a technical challenge 

in its conversion to hydrocarbon fuels. The modeling approach presented here can be 

used to maximize the H2/CO ration in the syngas. 

5.4.2 Syngas composition 

Composition of biomass generated syngas at different ERs was predicted using 

the two different models: Gibbs equilibrium biomass gasification model and reaction 

kinetics biomass gasification model. The predictions of biomass gasification models 

under present study are compared with experimental data and discussed below in terms of 

four major syngas constituents i.e. CO, H2, CO2 and CH4. 

5.4.2.1 Carbon monoxide 

Experimental and predicted syngas CO yields (kg/kg dry biomass) with variation 

in ER from 0.20 to 0.45 are shown in Table 5.9. At low ER of 0.20, compared to the 

corresponding experimental result, the Gibbs equilibrium gasification model over-

predicted (309% high) syngas CO yield while the reaction kinetics gasification model 

showed result comparable to the experimental data (53% high) of CO yield. At ER of 
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0.29, compared to the corresponding experimental result, the Gibbs equilibrium 

gasification model again over-predicted CO yield (138% high) while, the reaction 

kinetics gasification model showed a good agreement with the experimental data (1%) of 

the CO yield. At ER of 0.32, compared to the experimental result, the reaction kinetics 

gasification model closely predicted syngas CO yield within 15% deviation while a large 

deviation (80%) was observed in the corresponding predicted result obtained using the 

Gibbs equilibrium gasification model. At ER of 0.40, compared to the experimental 

result, the reaction kinetics gasification model comparatively showed a better agreement 

in the predicted syngas CO yield (within 3%) than the corresponding result (within 78%) 

obtained using the Gibbs equilibrium gasification model. At ER of 0.45, compared to the 

experimental result, the reaction kinetics gasification model closely predicted the syngas 

CO yield within 12% compared to the corresponding predicted result (57% deviation) 

obtained from the Gibbs equilibrium gasification model. Overall, compared to the 

experimental results, the reaction kinetics gasification model showed a considerable 

improvement in the predicted syngas CO yields while the Gibbs equilibrium gasification 

model showed higher deviations (57 to 309%) in the corresponding predicted results.  

The large deviations in the predicted syngas CO yields using the Gibbs 

equilibrium gasification model were due to the assumption that the gasification reactions 

reached equilibrium conditions, which does not occur in application due to short 

residence time. Further, the fluidized-bed gasifier involved fluidization hydrodynamics, 

which are influenced by the size, shape, and composition of participating materials in the 

gasifier bed (Sharma et al., 2013). The fluidization hydrodynamics have considerable 

effect on turbulence level and mixing characteristics of the participating materials which 
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further influence the overall heat and mass transfers, and thus, kinetics of gasification 

reactions within the fluidized-bed gasifier. In the present gasification models, the 

fluidization hydrodynamics were assumed to be negligible. As a result, the reaction 

kinetics gasification model also showed deviations within 53% in the predicted syngas 

CO yields compared to the corresponding results obtained thorough experiment. 
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Table 5.9. Experimental and predicted yields of syngas constituents at various ERs 

Syngas constituents 
 

Yield (kg/kg dry biomass) 

Experimental yield  
(Sharma et al., 2011) 

Gibbs equilibrium 
model 

Reaction kinetics 
model 

 ER = 0.20 

CO 0.203 0.829 0.310 

H2 0.007 0.053 0.014 

CO2 0.301 0.229 0.639 

CH4 0.019 0.001 0.145 

 ER = 0.29 

CO 0.312 0.741 0.316 

H2 0.013 0.047 0.018 

CO2 0.402 0.370 0.687 

CH4 0.021 0.000 0.093 

 ER = 0.32 

CO 0.384 0.689 0.325 

H2 0.016 0.043 0.018 

CO2 0.448 0.452 0.724 

CH4 0.030 0.000 0.074 

 ER = 0.40 

CO 0.368 0.653 0.358 

H2 0.013 0.038 0.017 

CO2 0.499 0.508 0.771 

CH4 0.026 0.000 0.073 

 ER = 0.45 

CO 0.359 0.563 0.402 

H2 0.005 0.032 0.021 

CO2 0.768 0.650 0.838 

CH4 0.035 0.000 0.036 
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5.4.2.2 Hydrogen 

Experimental and predicted syngas H2 yields (kg/kg dry biomass) with variation 

in ER from 0.20 to 0.45 are shown in Table 5.9. At low ER of 0.20, compared to the 

experimental result, the Gibbs equilibrium gasification model predicted 648% higher 

syngas H2 yield while the reaction kinetics gasification model showed improved 

prediction of the corresponding result within 93% deviation. At ER of 0.29, the Gibbs 

equilibrium gasification model showed large deviation (267%) in the predicted syngas H2 

yield whereas the  reaction kinetics gasification model predicted comparatively better 

corresponding result (within 36%). At ER of 0.32, compared to experimental results, the 

Gibbs equilibrium gasification model showed a large deviation (180%) in the predicted 

syngas H2 yield whereas the reaction kinetics gasification model comparatively predicted 

better syngas H2 yield (within 17%). At ER of 0.40, compared to experimental result, the 

Gibbs equilibrium gasification model predicted 194% higher syngas H2 yield while the 

reaction kinetics gasification model comparatively predicted better syngas H2 content 

within 29%. At ER of 0.45, the Gibbs equilibrium and reaction kinetics gasification 

models respectively predicted seven and four folds higher syngas H2 yield than the 

corresponding experimental result. As explained earlier, due to equilibrium assumption 

and negligible effect of fluidization hydrodynamics, the Gibbs equilibrium gasification 

model showed large deviations in the predicted syngas H2 yields at all ER conditions. The 

reaction kinetics gasification model predicted comparatively better syngas H2 yields at 

ERs of 0.29, 0.32 and 0.40. As described earlier, the fluidization hydrodynamics were not 

included in the reaction kinetics gasification model, which may have resulted in higher 

syngas H2 yields at the minimum and maximum ERs of 0.20 and 0.45, respectively. 
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5.4.2.3 Carbon dioxide 

Experimental and predicted syngas CO2 yields (kg/kg dry biomass) with variation 

in ER from 0.20 to 0.45 are shown in Table 5.9. Compared to experimental results, the 

Gibbs equilibrium gasification model predicted syngas CO2 yields within 24% at all ER 

conditions. With an increase in the ER, the predicted syngas CO2 yield continuously 

increased. Such increasing trend in the syngas CO2 yields with ER can be explained using 

the Le Chatelier’s principle (Jenkins, 2008), which states that when the equilibrium state 

of a given reacting system is disturbed by introducing a change in the system, such as 

varying the quantity of limiting reactant (i.e. oxidizing agent in the present study), the 

system oppose this change. Hence, system tries to restore its equilibrium state by 

favoring conversion of added reactant into possible products. The quantity of oxidizing 

agent (limiting reactant) used in the present gasification models were in the increasing 

order with minimum at ER of 0.20 and maximum at ER of 0.45. This increase in the 

quantity of oxidizing agent accelerated the oxidation of available carbon to form more 

stable product, such as CO2, at the equilibrium state. As a result, the Gibbs equilibrium 

gasification model showed increasing trend in the predicted syngas CO2 yield with an 

increase in ER from 0.20 to 0.45. Such increasing trend in the predicted CO2 yield was 

also evident from the decreasing trend in the predicted syngas CO yield (Table 5.9), 

which indicated higher oxidation of available of CO into CO2. 

Compared to the experimental result, the reaction kinetics gasification model 

closely predicted the syngas CO2 yield (within 9%) at the maximum ER of 0.45. At ERs 

below 0.45, the model predicted higher (54 to 112%) syngas CO2 yields. As stated 

earlier, the actual gasification temperatures based on the experimental results were used 
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in the gasification model to perform simulation runs. With an increase in the ER from 

0.20 to 0.45, the temperature condition used in the gasification model also increased from 

801 to 907°C. This increase in the gasification temperature resulted in higher oxidation of 

carbonaceous species into CO2 through char reaction R(6). As a result, the syngas CO2 

yield continuously increased with an increase in the ER from 0.20 to 0.45, shown in 

Table 5.9. 

5.4.2.4 Methane 

Experimental and predicted syngas CH4 yields (kg/kg dry biomass) with variation 

in ER from 0.20 to 0.45 are shown in Table 5.9. Compared to experimental results, the 

Gibbs equilibrium gasification model predicted negligible syngas CH4 yields at all ER 

conditions. This was due to the assumption of equilibrium at which CH4 

thermodynamically becomes less stable under higher gasification temperatures, i.e. 801 

to 907°C used in the present study, and oxidizing agent, resulting in the conversion to 

more stable products, such as CO, H2, CO2 and H2O (Nikoo & Mahinpey, 2008). The 

reaction kinetics gasification model showed good agreement with experimental result 

with CH4 yield (within 1% deviation) at the maximum ER of 0.45. At ERs below 0.45, 

the model over-predicted CH4 yields (between 148 and 645%). Such large deviation in 

the predicted CH4 yield was because of two reasons. First, results showed that the 

selected kinetics parameters had least influence on the reactions involving CH4 as the 

reacting species (Table 5.4); hence, this resulted in low CH4 conversion. Second, initial 

molar flowrate of CH4 supplied into the gasification model was high (24 to 35 mol/h) that 

could have resulted in unconverted CH4 in the outlet let material stream. Hence, a 

considerable portion of the CH4 in the inlet stream supplied into the model remained 
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unconverted, resulting in a high CH4 yield. Despite of higher predictions of the syngas 

CH4 yields, the deviation in the predicted syngas CH4 yield continuously decreased from 

maximum of 645% at ER of 0.20 to minimum of 1% at ER of 0.45. This indicated that 

the CH4 conversion into possible products through reactions R(4) and R(5) continuously 

increased with an increase oxidizing atmosphere (from 0.20 to 0.45 ER). The 

considerable increase in the CH4 conversion was primarily due to the increased 

gasification temperature and oxidizing atmosphere at high ERs. Since the rate of a given 

reaction increases with an increase in the reaction temperature, the increase in the 

gasification temperature from 801 to 907°C showed increased conversion of CH4. Also, 

the increase in the quantity of oxidizing agent (4.5 to 10 kg/h) with increase in ER could 

have accelerated the CH4 oxidation, and thus, CH4 conversion increased with an increase 

in the ER from 0.20 to 0.45. 

5.4.3 Syngas yield 

 
Fig. 5.6. Experimental and predicted syngas yields with varying ER 

The comparison between experimental and predicted syngas yields with ER 

varying from 0.20 to 0.45 is shown in Fig. 5.6. With an increase in the ER, both of the 
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present gasification models predicted similar syngas yields. As described earlier that the 

Gibbs equilibrium gasification model predicted considerably higher syngas CO (Table 

5.9) and H2 (Table 5.9) yields at all ER conditions. As results, the Gibbs equilibrium 

gasification model over-predicted syngas yields compared to the experimental results at 

all ERs. The deviation in the predicted syngas yield continuously decreased from a 

maximum of 109% at ER of 0.20 to a minimum of 7% at ER of 0.45. The reaction 

kinetics gasification model also over-predicted syngas yields compared to experimental 

results at all ER conditions. The deviation in the predicted syngas yield continuously 

decreased from maximum of 109% at ER of 0.20 to minimum of 11% at ER of 0.45. As 

described earlier, the reaction kinetics gasification model predicted CH4 yields (Table 

5.9) higher than the corresponding experimental results at all ER conditions; this 

contributed to the over prediction of the syngas yield. The gasification models showed 

increasing trend in the syngas yield with an increase in the ER, which was in agreement 

with the experimental trend of the syngas yield. 

5.4.4 Energy efficiency 

 
Fig. 5.7. Experimental and predicted energy efficiencies with varying ER 
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Variation in experimental and predicted gasification energy (cold gas) efficiencies 

with an increase in ER from 0.20 to 0.45 is shown in Fig. 5.7. Using Gibbs equilibrium 

gasification model, the predicted gasification energy efficiency continuously decreased 

with an increase in ER from 0.20 to 0.45. The deviation between the predicted and the 

experimental gasification energy efficiency also continuously decreased from 171% at 

ER of 0.20 to 23% at ER of 0.45. As discussed earlier, the Gibbs equilibrium gasification 

model over-predicted CO (Table 5.9) and H2 (Table 5.9) yields at all ER conditions. As 

results, the model also over-predicted gasification energy efficiency. However, the 

reaction kinetics gasification model closely predicted the gasification energy efficiency 

within 18% deviation at ERs above 0.20. However, at low ER of 0.20, the model showed 

large deviation (122%) in the predicted gasification energy efficiency as compared to 

corresponding experimental result. As explained earlier, at low ER of 0.20, the reaction 

kinetics gasification model predicted the maximum CH4 yield (Table 5.9) and the energy 

content of CH4 is more than three times higher than that of CO and H2 gases. Therefore, 

the reaction kinetics gasification model showed a large deviation in the predicted 

gasification energy efficiency at low ER of 0.20.   

5.5 Conclusions 

Gasification models were developed to predict composition and yield of biomass 

generated syngas using two different modeling approaches: Gibbs equilibrium 

gasification model and reaction kinetics gasification model using CSTR. The predictions 

from both gasification models were compared and validated using experimental results 

on lab-scale fluidized-bed gasifier. The Gibbs equilibrium gasification model showed 

large deviations in the predicted syngas composition (CO, H2, CO2 and CH4) and yield, 
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and gasification energy efficiency compared to the corresponding experimental results. 

These deviations were primarily due to assumption of equilibrium used in the Gibbs 

equilibrium gasification model. The reaction kinetics gasification model showed much 

better prediction of syngas composition (CO, H2, CO2 and CH4) and yield, and 

gasification energy efficiency as compared to the predictions from Gibbs equilibrium 

gasification model. The selected kinetics of seven major gasification reactions showed 

considerable influence on the predictions of reaction kinetics gasification model. The 

extents of gasification reactions indicated that at ER below 0.29, water gas reaction R(1) 

contributed the most to syngas CO and H2 yields. The char partial combustion reaction 

R(7) was also the dominating reaction contributing to CO yield at ERs below 0.29. At ER 

of 0.29 and above, the Boudouard R(2) and methane oxidation R(4) reactions were the 

most dominating reactions contributing to CO yield while the water gas shift reaction 

R(3) was the most dominating reaction contributing to H2 yield. Small deviations in the 

predicted syngas composition and yield compared to the experimental results can be 

attributed to the fluidization hydrodynamics that was not considered in this reaction 

kinetics gasification model.  

Nomenclature 

Latin letters 

CC, CCH4, CCO, CCO2,  

CH2, CH2O, CO2  Concentrations of C, CH4, CO, CO2, H2, H2O, O2, respectively, in  

   the inlet material stream, mol/m3 

f   Dampering factor 

F0C, F0CH4, F0CO, 
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F0CO2, F0H2, F0H2O,  

F0N2, F0O2   Initial molar flowrates of C, CH4, CO, CO2, H2, H2O, N2 and O2,  

   respectively, entering into the CSTR, mol/s 

F0T   Total initial molar flowrate of materials entering into the CSTR, 

mol/s 

FC, FCH4, FCO, 

FCO2, FH2, FH2O,  

FN2, FO2   Final molar flowrates of C, CH4, CO, CO2, H2, H2O, N2 and O2,  

   respectively, leaving the CSTR, mol/s 

FT   Total final molar flowrate of materials leaving the CSTR, mol/s 

k1, k2, k3, k4  Rate constants for reaction R(1) 

k5, k6, k7  Rate constants for reaction R(2) 

k8, k9, k10, k11, k12 Rate constants for reactions R(3) to R(7), respectively 

Keq   Equilibrium constant of R(3) 

MC    Carbon molar weight, g/mol 

R   The ideal gas constant, J/(mol K) 

r1, r2, r3, r4, r5, r6, r7 Rate equations for reactions R(1) to R(7), respectively, mol/(m3s)  

rC, rCH4, rCO, rCO2,  

rH2, rH2O, rO2  Net reaction rates for C, CH4, CO, CO2, H2, H2O, O2, respectively, 

mol/(m3s) 

T   Absolute temperature, K 

Po, P   Initial and final pressures in the reactor, Pa 

Vo, VR   Initial and final volumes of the reactor, m3 
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v0   Volume flowrate of materials through the CSTR, m3 

X   Carbon conversion  

Greek letters 

ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7 Extents of reactions R(1) to R(7), respectively, mol/s 

ρchar    Char density, kg/m3 

τ   Residence time, s 
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CHAPTER VI 
 

 

NUMERICAL MODELING OF BIOMASS FLUIDIZED-BED 

GASIFICATION: INCORPORATING FLUIDIZATION 

CHARACTERISTICS AND REACTION KINETICS 

 

This research paper is intended to be published as “Sharma, A.M., Kumar, A., Huhnke, 

R.L. Numerical modeling of biomass fluidized-bed gasification: Incorporating 

fluidization characteristics and reaction kinetics.” 
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Abstract 

A fluidized-bed gasification involves fluidization of bed-material and a series of 

gasification reactions which together influence the syngas yield and quality. Extensive 

gasification modeling studies using equilibrium and kinetics approaches have been 

reported to predict composition and yield of biomass generated syngas. However, the 

equilibrium and kinetics gasification models studied by several researchers did not 

consider the fluidization characteristics which are influenced by shape and size of 

materials present in the gasifier bed, and non-ideal behavior of gasifier. This study aimed 

to develop and validate a numerical gasification model based on reaction kinetics and 

fluidization using computational fluid dynamics (CFD) technique to predict syngas 

composition. Fluidization characteristics (effective particle size and effective density of 

bed materials) and kinetics of major gasification reactions were incorporated in the 

studied gasification model. Numerical simulations were performed using switchgrass as 

biomass feedstock and silica-sand as inert bed material. Biomass and air flowrates ranged 

from 3.4 to 3.9 kg/h and 4.5 to 6.5 kg/h, respectively. Properties of biomass and silica-

sand were obtained from a previous experimental study using a fluidized-bed gasifier. 

The sensitivity analysis showed that with the change in equivalence ratio the model was 

able to predict syngas CO, H2 and CO2 contents within 32%, 47% and 42% errors, 

respectively. Compared to CO (3.6%) and H2 (2.4%) contents observed without sand bed, 

the presence of sand in the bed showed higher syngas CO (11.2%) and H2 (6.6%). The 

model also predicted the locations of drying, combustion and reduction zones of the 

gasifier, as well as revealed dominating reactions occurring in the fluidized-bed gasifier. 

Simulation results showed that the char combustion and char partial-oxidation reactions 
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were dominant in the combustion zone of the gasifier. The Boudouard and water-gas 

reactions contributed the most for CO production in the freeboard zone of the gasifier. 

Simulation results showed that the water-gas-shift reaction led to the decrease in CO 

content in the disengagement zone. The methane-steam-reforming reaction contributed 

the most for H2 production in the gasifier. 

Keywords: Fluidized-bed; CFD modeling; biomass gasification; syngas; fluidization 

characteristics; reaction kinetics 
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6.1 Introduction 

Biomass, a lignocellulosic material, is a sustainable resource and potential energy 

feedstock for the production of green fuels, chemicals and power through 

thermochemical conversion process such as gasification. The gasification process 

thermally degrades biomass into a gaseous product called syngas, which is a building 

block for many fuels and chemicals (Ansys, 2011), and can be directly utilized to 

generate heat and power. Biomass gasification has been extensively studied using a 

fluidized-bed reactor (Campoy et al., 2008; Chen et al., 2004; Hanping et al., 2008; Jiang 

et al., 2003; Kumar et al., 2009a; Lim & Alimuddin, 2008; Mansaray et al., 1999; Sharma 

et al., 2011; Xu et al., 2006) as it offers better heat and mass transfers and efficient gas-

solid reactions (Schmidt & Renz, 2000; Sharma et al., 2011; Yu et al., 2007) than a fixed-

bed reactor. A fluidized-bed gasification process involves bed-material fluidization and a 

series of gasification reactions which influence the syngas quality. Although fluidized-

bed gasification is a well-established process, thorough information on in-bed 

hydrodynamics and complex gasification reactions are still limited (Fakhim & Farhanieh, 

2011; Lavoie et al., 2009) because experimental evaluation of such information is 

difficult and expensive. Several gasification modeling studies using equilibrium and 

kinetics approaches were reported to predict composition and yield of biomass generated 

syngas (Abdelouahed et al., 2012; Kumar et al., 2009c; Mann et al., 2004; Paviet et al., 

2009; Puig-Arnavat et al., 2010; Radmanesh et al., 2006; Schuster et al., 2001; Wang & 

Kinoshita, 1993; Wenyi & Qin, 2010). However, these equilibrium and kinetics 

gasification models do not take into consideration the non-ideal behavior of the gasifier, 

and fluidization characteristics which are influenced by shape and size of materials 
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present in the gasifier bed (Sharma et al., 2013). Further, the equilibrium and kinetics 

gasification modeling approaches do not predict the temperature and species distributions 

along the height of the gasifier. 

Computational fluid dynamics (CFD) is an advanced computational technique 

which is capable of modeling various physical and chemical processes such as a fluid 

flow through a complex system involving multiphase and multiple reactions (Sundaresan, 

2000). Using CFD, it is possible to simulate a fluidized-bed gasification process which 

involves multiphase and several heterogeneous and homogenous reactions for 

optimization of gasifier design and operating conditions. Additionally, the CFD modeling 

technique provides visual details on non-ideal behavior of fluidized-bed gasifier and 

distribution of temperature and syngas constituents along the gasifier height. 

Armstrong et al. (2011) simulated the fluidized-bed coal gasification using CFD 

model. The authors observed that the syngas composition was considerably influenced by 

height and composition (coal + limestone) as well as temperature of the gasifier bed 

(Armstrong et al., 2011). Deng et al. (2008) developed a CFD model of coal gasification 

process in a pressurized spout-fluidized-bed and reported that their model closely 

predicted the syngas composition and gasifier temperature distribution within 10% error 

as compared to experimental results (Armstrong et al., 2011).  

Compared to coal, biomass exhibits different physiochemical properties, and 

contains high amounts of volatile matters, which make the biomass more reactive than 

coal (Basu, 2006). Thus, the biomass and coal both have different devolatization kinetics 

(activation energy and pre-exponential factor) and rates of gasification reactions. 
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However, the governing equations and modeling steps used in CFD modeling of coal 

gasification are also applicable to biomass gasification (Gómez-Barea & Leckner, 2010). 

Literature shows several CFD modeling studies on coal gasification while limited 

information is available on CFD gasification modeling of low bulk density biomass 

feedstock such as switchgrass. More importantly, most of the previous CFD studies on 

biomass gasification assumed that biomass decomposes into elemental materials (i.e. C, 

H, O, N and S), which can only occur in an extreme reaction environment far beyond the 

normal gasification conditions (Kumar et al., 2009c).  

In this study, a novel methodology to decompose biomass into several possible 

devolatization products such as C, H2O, CO, CO2, CH4 and H2 was used along with 

experimentally-derived devolatization kinetics to develop the CFD-based biomass 

gasification model. Further, fluidization characteristics were also incorporated based on 

effective particle size (Eq. (1)) and effective density (Eq. (2)) of gasifier bed materials 

(i.e. a mixture of sand, switchgrass and gasifier solid residues (GSR)) (Sharma et al., 

2013). The goal of this study was to develop and validate a numerical gasification model 

based on reaction kinetics and fluidization using computational fluid dynamics (CFD) 

technique to predict syngas composition, and distributions of syngas constituents and 

gasifier temperature within the fluidized-bed gasifier.  

6.2 Materials and methods 

6.2.1  Experimental setup and material characteristics 

The diameter and height of the fluidized-bed gasifier, with throughput capacity of 

5 kg/h, were 0.10 m and 1.52 m, respectively. The details of fluidized-bed gasifier, and 

experimental conditions and results are elucidated elsewhere (Sharma et al., 2011). 
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Gasification conditions and physical properties of materials are shown in Table 6.1. 

Kanlow switchgrass (a perennial grass native to Oklahoma) and silica sand (Oglebay 

Norton Industrial Sands, Inc., Brady, TX) were used as the biomass feedstock and inert 

bed material, respectively. Proximate and ultimate analyses of switchgrass are shown in 

Table 6.2. The calorific value of dry switchgrass was 18.83 MJ/kg. The mass of sand in 

the gasifier bed was 1.5 kg. The masses of switchgrass and GSR in the gasifier bed were 

determined using experimental data collected earlier (Sharma et al., 2011). Since 

fluidization was considerably influenced by the effective properties of materials present 

in the gasifier bed (i.e. a mixture of sand, switchgrass and GSR), the effective particle 

size (Eq. 1) and effective density (Eq. 2) of bed materials were determined and 

incorporated in the gasification model. The gasification model was studied by varying the 

equivalence ratio (ER), which is defined using following Eq. (3). 

Eq.(1)

 Eq.(2)

where k1 = (20dp1 + 0.36)0.5 and k2 = (20dp2 + 0.36)0.5. w1, w2 and w3 were the masses of 

sand, switchgrass, and GSR, respectively. ρ1, ρ2 and ρ3 were the particle densities of sand, 

switchgrass, and GSR, respectively. dp1, dp2 and dp3 were the particle sizes of sand, 

switchgrass, and GSR, respectively. 

ER = �
Air supplied for gasification per unit mass of biomass

Theoretical air required for complete combustion per unit mass of biomass
�    	Eq.(3) 
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Table 6.1. Experimental conditions used for model simulation 

Gasification conditions (Sharma et al., 2011):    

ER 0.20 0.32  

Dry biomass feed rate, kg/h 3.9 3.4  

Air flowrate, kg/h 4.5 6.5  

Air temperature, °C 25.2 29.5  

Gasification temperature, °C 801 825  

Operating pressure, MPa 1.01 1.01  

Material properties (Sharma et al., 2013):    

Material Silica sand Switchgrass GSR 

Particle density (ρ), kg/m3 2650 400 932 

Bulk density (ρb), kg/m3 1602 111 205 

Particle size (dp), mm 0.35 10.30 0.08 

Table 6.2. Biomass properties (Sharma et al., 2011) 

Proximate Analysis (wt. %, d.b.)a  Ultimate Analysis (wt. %, daf )b 

Moisture content 10.74  Carbon 49.02 

Ash content 4.62  Hydrogen 6.04 

Fixed carbon 15.02  Oxygen 44.44 

Volatile matter 80.36  Nitrogen 0.19 

   Sulfur 0.32 
a Dry basis   
b Dry ash-free 

6.2.2 Numerical modeling approach 

CFD methodology involves discretization of the whole domain of interest into a 

large number of finite elements of definite sizes and shapes, and then solution of 

governing equations such as conservation equations of mass, momentum, energy and 
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species for each element is integrated to obtain a solution for the whole domain (Fluent, 

2009). 

6.2.2.1 Governing equations 

6.2.2.1.1 Conservation of mass equation 

The general form of the conservation of mass (i.e. continuity) equation is shown 

using Eq. (4) in which �� (source term) represents the addition of mass to the continuous 

(gas) phase from discrete (solid) phase (Fluent, 2009). 

��

��
+ � ∙ (��⃗	) = �� 

Eq.(4) 

6.2.2.1.2 Conservation of momentum equation 

The general form of the conservation of momentum equation (i.e. Newton’s 

second law) is shown using Eq. (5) wherein the terms �⃗, �⃗, � and �̿ represent external 

body forces, velocity vector, static pressure and stress tensor, respectively (Fluent, 2009). 

�

��
(��⃗) + � ∙ (��⃗�⃗) = −�� + � ∙ (�̿) + ��⃗ + �⃗ Eq.(5) 

6.2.2.1.3 Conservation of energy equation 

The general form of the conservation of energy equation is shown using Eq. (6).  

Where, E represents total energy, ����  is the effective thermal conductivity, hj and Jj 

terms are the sensible enthalpy and diffusion flux, respectively, of species j,  ��̿�� is the 

deviatoric stress tensor, and �� term is the heat source due to chemical reactions (Fluent, 

2009). 

�

��
(��) + � ∙ ��⃗ ∙ (�� + �)� = � ∙ ������∇�� − �ℎ��� + ���̿�� ∙ �⃗�

�

� + �� Eq.(6) 
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6.2.2.1.4 Species transport equation 

The general form of the conservation of species equation is shown using Eq. (7).  

Where, �� is the mass fraction of species i,	�� is the rate of generation due to dispersed 

phase, and �� is the net rate of change in species i by chemical reactions (Fluent, 2009; 

Singh et al., 2013). 

�

��
(���) + ∇ ∙ (��⃗	��) = ∇ ∙ ��∇(���)� + �� + �� Eq.(7) 

6.2.2.2 Turbulence model 

CFD technique contains various turbulence models to account for fluctuations in 

the fluid flow, i.e. variation in velocity and flow pattern with respect to time and space. 

The fluctuation in the fluid velocity is defined using eddy viscosity also known as 

turbulent viscosity. There are several approaches available to determine eddy viscosity 

using turbulent kinetic energy (k) and turbulence dissipation rate (ε). Unlike other 

turbulence models such as standard k-ε and renormalization group (RNG) k-ε, the 

realizable k-ε turbulence model included the new transport equation for ε making fluid 

turbulent viscosity more precise. Hence, the realizable k-ε turbulence model was used to 

determine eddy viscosity to account turbulence eddies resulting from fluidization 

hydrodynamics of gasification. The realizable k-ε turbulent model solves following two 

transport equations (Eqs. 8 and 9) to calculate k and ε, which are later used to determine 

eddy viscosity (μ�) using Eq. (10) (Fluent, 2009). 

6.2.2.2.1 Turbulent kinetic energy transport equation 

�

��
(��) + ∇ ∙ (���⃗ �) = ∇ ∙ ��μ +

μ�
��
� ∙ ∇�� + �� + �� − �� − �� + �� Eq.(8) 
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where �� is the turbulent Prandtl number. �� and �� are turbulent kinetic energy 

generation terms attributed to mean velocity gradients and buoyancy, respectively. �� is 

the influence of fluctuating-dilation to overall dissipation rate. �� is the user defined 

source term (Fluent, 2009). 

6.2.2.2.2 Turbulent dissipation rate transport equation 

�

��
(��) + ∇ ∙ (���⃗ 	�)

= ∇ ∙ ��μ +
μ�
��
� ∙ ∇�� + ����� − ���

��

� + √��
+ ���

�

�
����� + �� 

Eq.(9) 

where �� is the turbulent Prandtl number. c�, c�, c�� and ��� are constants. �� is the user 

defined source term (Fluent, 2009). 

μ� = ���
��

�
 Eq.(10) 

6.2.2.3 Gasification chemistry 

6.2.2.3.1 Biomass drying and devolatization 

Biomass drying process (i.e. moisture evaporation) was included in the model 

using reaction R(1) with its Arrhenius equation parameters, i.e. activation energy (E) and 

pre-exponential factor (A) (Simone et al., 2013). In the model, moisture was included as 

one of inputs. 

Biomass drying:   H2O(l) → H2O(v) R(1) 

During devolatization process, the biomass disintegrates into char, i.e. fixed 

carbon (C), volatile products, moisture and ash (Fig. 6.1). The volatile matters further 

disintegrate into gaseous species (such as CO, CO2, CH4 and H2) and impurities (such as 

tar, NH3 and H2S) as shown using reaction R(2). Thereby, the global reaction scheme of 
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biomass devolatization process can be described using reaction R(3) (Gómez-Barea & 

Leckner, 2010; Kumar et al., 2009c). 

 

Fig. 6.1. Biomass decomposition into primary products 

VM → eCO + fCO2 + gCH4 + hH2 + iTar + jNH3 + kH2S R(2)

Biomass → aC + bH2O + cAsh + eCO + eCO + fCO2 + gCH4 + hH2 + iTar + jNH3 

+ kH2S   R(3)

In this work, coefficients a to d (Fig. 6.1) were calculated using proximate 

analysis of switchgrass (Table 6.2). Proximate and ultimate analyses of switchgrass were 

used to determine coefficients e to k in reaction R(2) by balancing masses of C, H, O, N 

and S contents of the biomass and assuming CO/CO2 ratio of 1 (Kumar et al., 2009c) 

while the quantity of tar was assumed known based on experimental results. The kinetics 

of switchgrass devolatization reaction (Table 6.3) were obtained from literature 

(Pasangulapati, 2012).  

6.2.2.3.2 Biomass gasification reactions 

Gasification process involves complex reaction mechanisms during which the 

solid char and gaseous products evolved during biomass devolatization process undergo 

series of gasification reactions. Table 6.3 shows the various heterogeneous (solid-gas) 

and homogeneous (gas-gas) gasification reactions (Kumar et al., 2009b; Sharma et al., 
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2011) and their kinetics (Pasangulapati, 2012) used in the model. The heat released from 

exothermic reactions (such as methane oxidation R(7) and char combustion R(9) 

reactions) provide essential heat for biomass devolatization and other endothermic 

reactions such as Boudouard R(10) and water gas R(12) reactions. 

Table 6.3. Gasification reactions and their kinetics (Pasangulapati, 2012; Simone et 
al., 2013) 

Reactions ∆H (kJ/mol) A (1/s) E (kJ/mol) 

R(1)    Biomass drying  41 5.13 × 1010 88 

R(3)    Devolatization 118 3.88 × 1010 122 

R(4)    CO + H2O ↔ H2 + CO2 -41 2.65 × 10-2 66 

R(5)    CO + 1/2O2 → CO2 -338 8.83 × 1011 100 

R(6)    H2 + 1/2O2 → H2O -242 3.09 × 1011 100 

R(7)    CH4 + 3/2O2 → CO + 2H2O -519 1.58 × 108 202 

R(8)    CH4 + H2O → CO + 3H2 206 3.02 × 106 125 

R(9)    C + O2 → CO2 -394 9.35 × 104 83 

R(10)  C + 1/2O2 → CO -111 6.47 × 103 167 

R(11)  C + CO2 → 2CO 173 3.62 × 10 77 

R(12)  C + H2O → CO + H2 131 1.52 × 104 122 

R(13)  C + 2H2 → CH4 -75 4.20 × 103 19 

6.2.2.4 CFD methodology 

6.2.2.4.1 Geometry creation and discretization 

Based on the physical dimensions of our lab-scale fluidized-bed gasifier, a two 

dimensional (2D) axisymmetric geometry of the gasifier (Fig. 6.2) was created using 

ANSYS Design-modeler. The gasifier geometry was imported to the ANSYS Mesh for 

discretization. Thereafter, the whole gasifier domain was discretized (also known as 

meshing) into large numbers of finite subdomains (i.e. elements) of quadrilateral shapes 

using a quadrilateral mesh method. The minimum and maximum element sizes used in 

the numerical grid were 0.0001 and 0.03 m, and the maximum face size of element was 

0.025 m. This was because for the simple 2D geometry (Fig. 6.2), the quadrilateral mesh 
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contains lower skewness and offers better numerical grid and solution convergence  

compared to the other available mesh (i.e. triangular). The numerical grid of the gasifier 

domain under this study consisted of a total of 19096 nodes and 18450 elements. The 

advanced size function called proximity and curvature with curvature normal angle of 12° 

was used to generate numerical grid. 

 

Fig. 6.2. Computational domain setup. (a) Geometry, and (b) discretization of 
gasifier domain 
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6.2.2.4.2 Boundary and initial conditions 

In numerical simulation, establishing appropriate boundary conditions is key step 

to minimize convergence errors and achieve better simulation results. Since mass flow 

rates of biomass and air were known from the experimental study, a mass flow rate 

boundary condition was used for the gasifier inlet. A combined material stream, consisted 

of biomass’s decomposed products and air, was defined at the inlet boundary. The total 

mass flow rate of combined material stream was calculated using the biomass 

decomposition procedure based on reactions R(2) and R(3). The gasifier was run at 

atmospheric pressure (Table 6.1); thereby a pressure outlet boundary condition was used 

by setting a zero gauge pressure (i.e. atmospheric pressure) as the outlet boundary 

condition. The no slip wall boundary condition was used for the velocity and axis 

boundary condition was used for the centerline of axisymmetric geometry. After setting 

up the essential boundary conditions, the numerical model was initialized to start the 

solver calculation. During initialization, a static bed of silica sand (0.106 m height) using 

volume fraction of 0.051 was patched at the bottom of the gasifier geometry (Fig. 6.2). 

Further, an initial temperature of 500°C was patched to the gasifier to initiate gasification 

process. 

6.2.2.4.3 Simulation and convergence 

ANSYS Fluent (release 14.5) was used to solve governing equations defined in 

the model of fluidized-bed gasifier. Eulerian multiphase flow, energy, viscous flow and 

species transport models were used in this study. Based on the experimental conditions 

(Tables 6.1 and 6.2), model inputs such as boundary and initial conditions were set 

during problem setup in ANSYS Fluent. In the Eulerian multiphase model, two phases 
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were used to define the input gaseous mixture stream (i.e. biomass plus air) as primary 

phase (phase-1) and the silica sand as secondary phase (phase-2). Syamlal-Obrien drag 

law was used to enable interaction between primary and secondary phases. As discussed 

earlier, the fluidization behavior depends on the size, shape and type of materials (i.e. a 

mixture of chopped switchgrass, silica sand and GSR) present in the gasifier bed. Hence, 

effective particle size (Eq. 1) and effective density (Eq. 2) of bed materials were used as 

particle size and density of phase-2. A time-step of 0.005 s and 50 iterations per time-step 

were used in the simulation run. The convergence absolute criterion for residual was set 

at 0.0001 for governing equations. Initially, a simulation run was performed with 

multiphase and viscous flow models and the whole fluid flow domain was calculated 

until the simulation reached steady state. Thereafter, other models (i.e. energy and species 

transport models) were also enabled and all governing equations were solved 

simultaneously until the convergence criterion was achieved. The model was validated 

using sensitivity analysis by varying ER. In the previous experimental study (Sharma et 

al., 2011), the best syngas composition and gasifier energy efficiency were observed at 

the ER of 0.32. Therefore, the model simulation and validation were performed using ER 

of 0.32. Based on the experimental condition shown in Table 6.1, another ER of 0.20 was 

selected for the sensitivity analysis of the studied model.    

6.2.2.4.4 Model assumptions 

The following assumptions were made in the numerical model of the fluidized-

bed gasifier. 

 Biomass decomposition was instant and the products of devolatization process were 

C, H2O, CO, CO2, CH4, H2 and ash. 
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 To avoid model complexity and reduce convergence time, gas impurities (i.e. tar, 

NH3, and H2S) and other lighter hydrocarbons (i.e. C2H2, C2H4 and C2H6) were 

assumed to be negligible. 

 The effective particle size and effective density of bed materials were used for 

secondary phase (phase-2) for simulating fluidization hydrodynamics. 

 An axisymmetric 2D numerical grid of fluidized-bed gasifier was selected to reduce 

the computational power required. 

6.3 Results and Discussion 

A 2D axisymmetric numerical model of fluidized-bed gasifier was developed 

using Eulerian multiphase flow approach. The model predictions in terms of syngas 

composition and distributions of syngas constituents, and gasifier temperature are 

discussed as follows. 

6.3.1 Syngas composition 

The distribution of syngas constituents (i.e. CO, H2, CH4, CO2, O2 and H2O) 

within the gasifier for ER of 0.32 is shown in Fig. 6.3. The axial profiles of syngas 

constituents (Fig. 6.3) clearly indicated the locations of different zones (such as drying, 

pyrolysis, combustion and reduction) and revealed insight regarding dominating reactions 

that occurred in the fluidized-bed gasifier. The drying zone was located within the small 

bed-height (0.015 m above the gasifier inlet) in which evaporation of moisture occurred 

(Fig. 6.3(a)) leading to the production of H2O vapor (Fig. 6.3(b)) though reaction R(1). In 

the drying zone, most of the biomass moisture (94%) was converted into H2O vapor.  It 

can be seen from Fig. 6.3(c and d) that most of the C and O2 supplied to the gasifier 

rapidly reacted and consumed within a short bed-height (about 0.25 m above the gasifier 
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inlet), which disclosed that the char combustion reaction R(9) was predominant in this 

region as evident from the high CO2 production (Fig. 6.3(e)). In addition, the CO 

oxidation reaction R(5) also contributed to CO2 production in the combustion zone. As 

the products of combustion progressed up in the gasifier, the CO2 content decreased from 

14.7% to 14.1% in the reduction zone (i.e. the region located between the combustion 

zone and gasifier-top).            

The CO distribution profile (Fig. 6.3(f)) showed 12.1% CO in the combustion 

zone, which indicated that the char partial-oxidation reaction (R(10)) was occurred in this 

zone leading to the production of CO. A further increase in the CO content from 12.1 to 

12.8 was observed in the freeboard zone of the gasifier, which indicated that endothermic 

reactions such as Boudouard R(11) and water-gas R(12) occurred in the freeboard zone 

of the gasifier. Conversely, in the disengagement zone of the gasifier, the model showed 

decrease in the CO content from 12.8% to 11.2% which indicated that the water-gas-shift 

reaction R(4) might have occurred leading the decrease in the CO content. The H2 

distribution profile (Fig. 6.3(g)) indicated that methane-steam reforming reaction R(8) 

occurred in the combustion zone as exhibited by 7.8% H2 production in this zone. In 

freeboard and disengagement zones, the H2 content decreased from 7.8% to 6.6%, which 

indicated the H2 oxidation reaction R(6) might have occurred producing H2O vapor. The 

CH4 distribution profile (Fig. 6.3(h)) indicated that most of the CH4 consumed in the 

combustion zone, which indicated that CH4 oxidation reaction R(7) was dominant in the 

combustion zone. The results indicated that the fluidization of sand in the gasifier-bed 

had enhanced the turbulence level, mixing characteristics, and heat and mass transfers 
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leading to the higher production of syngas CO (11.2%) and H2 (6.6%) as compared to CO 

(3.6%) and H2 (2.4%) contents observed without the sand bed.  

 

Fig. 6.3. Contour plots of syngas constituents (mole fraction) along the height of the 
gasifier for ER of 0.32 
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6.3.2 Gasifier temperature profile 

Fig. 6.4 shows the predicted and experimental average temperature profile along 

the height of the gasifier. As described previously, the char combustion R(9) and char 

partial-oxidation R(10) reactions were dominant in the combustion zone (located in the 

gasifier-bed). As a result, the model predicted a higher temperature distribution within the 

gasifier-bed which attributed to the high heat release from exothermic reactions R(9)-

R(10). Additionally, the presence of sand in the combustion zone enhanced the heat and 

mass transfer. As a result, the model showed few local hot spots in the combustion zone. 

The predicted maximum temperature in the combustion zone was 1995°C.  

 

Fig. 6.4. Gasifier temperature profile along reactor height 
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As the products of combustion progressed upward in the freeboard and 

disengagement zones of the gasifier, the model predicted a continuous decrease in the 

temperature with an increase in the gasifier height above the bed.  Such reduction in the 

gasifier temperature was mainly due to endothermic reactions such as Boudouard R(11), 

water-gas R(12) and methane-steam reforming R(8), which occurred in the freeboard and 

disengagement zones. These endothermic reactions consumed part of the process heat 

resulting in the overall decrease in the gasifier temperature as shown in Fig. 6.4. 

Considering the experimental results, the model closely predicted the temperature 

distribution for the bottom region of the gasifier-bed (located between gasifier inlet and 

up to 0.15 m of bed-height) and at the gasifier outlet while model showed much higher 

temperature in the region above 0.15 m, as well as in the freeboard zone as shown in Fig. 

6.4. Such high temperature in the prediction might be attributed to the major assumption 

made in biomass devolatization. Since, the devolatization process is an endothermic 

reaction, the absence of devolatization step in this study might have caused over 

prediction of the temperature. Further, the kinetics of the reactions were not for the 

switchgrass rather they were adopted from literature (for cotton trash char), which might 

have resulted deviation between the predicted and experimental temperature.  

6.3.3 Model validation 

Comparison between experimental and predicted syngas CO, H2, CH4, CO2 and 

N2 contents at two ER conditions, i.e. 0.20 and 0.32, are shown in Fig. 6.5. At ER of 

0.20, compared to the experimental result of CO (15.2 ± 2.1%), H2 (5.9 ± 2.0%), CH4 

(2.5 ± 0.4%), CO2 (14.3 ± 0.4%) and N2 (60.1 ± 1.8%), the model predicted low CO 

(11.4%) and CO2 (8.3%) while high H2 (8.6%), CH4 (4.8%) and N2 (63.9%). At ER of 
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0.32, compared to the experimental result of CO (16.5 ± 1.1%), H2 (9.3 ± 0.8%), CH4 

(2.2 ± 0.7%), CO2 (12.2 ± 1.2%) and N2 (56.7 ± 1.1%), the model predicted low CO 

(11.2%), H2 (6.6%) and N2 (54.4%) while high CH4 (5.2%) and CO2 (14.1%). The 

sensitivity analysis showed that with varying ER from 0.20 to 0.32, CO and H2 decreased 

from 11.4 to 11.2% and from 8.6 to 6.6%, respectively; whereas CO2 content increased 

from 8.3 to 14.1%. 

 

Fig. 6.5. Model validation - predicted and experimental syngas composition at ERs 
of (a) 0.20 and (b) 0.32 

6.4 Conclusions 

A 2D axisymmetric numerical model of biomass gasification was developed using 

an Eularian multiphase flow approach and by incorporating the reaction kinetics and 

fluidization characteristics. The model clearly indicated the locations of drying, 

combustion and reduction zones of the gasifier, as well as providing insight regarding 

dominating reactions occurring in the fluidized-bed gasifier. Simulation results showed 

that the char combustion and char partial-oxidation reactions were dominant in the 

combustion zone of the gasifier. The Boudouard and water-gas reactions contributed the 

most toward CO production in the freeboard zone of the gasifier. Simulation results 

showed that the water-gas-shift reaction led to the decrease in CO content in the 
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disengagement zone of the gasifier. The methane-steam-reforming reaction contributed 

the most H2 production in the gasifier. The sensitivity analysis showed that the model 

was sensitive to the equivalence ratio and was able to predict syngas composition and the 

gasifier temperature with the change in equivalence ratio. The presence of sand in the bed 

increased syngas CO (from 3.6 to 11.2 %) and H2 (from 2.4 to 6.6%) contents. 
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CHAPTER VII 
 

 

RECOMMENDATIONS FOR FUTURE WORK 
 

In this research a lab-scale autothermal fluidized-bed gasifier was designed, 

developed and experimentally optimized to maximize composition and yield of syngas 

generated from air and air-steam gasification of switchgrass. However, further 

modifications in the gasifier and change in the gasification conditions, such as increasing 

steam-to-biomass ratio (SBR) and steam injection temperature, would improve syngas 

composition and yields, as well as gasifier efficiencies. The reaction kinetics and 

computational fluid dynamics (CFD) gasification models developed in this research can 

also be improved by removing some of the model assumptions, such as CO/CO2 ratio of 

1.0 and devolatization products and kinetics of cotton trash char, used in this study, and 

thus, enabling the models to simulate the real conditions more closely. The following 

studies are recommended for further improving the quality and prediction of biomass-

generated syngas suitable for the production of advanced biofuels, biochemicals and 

biopower. 

1. In chapter three of the dissertation, a cold fluidization setup was used to study 

the fluidization behavior of bed consisted of a mixture of sand, biomass and 

gasifier solid residues (GSR). The study provided insights on fluidization 

behavior of a tertiary mixture with different particle size and shape. However, 
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since real gasification process occurs at high temperature, fluidization study at 

high temperature (600-800 °C) will be more informative. 

2. In chapter four, since the autothermal fluidized-bed gasifier was limited by the 

maximum temperature it can reach, raising its temperature using external heaters 

and increasing steam-to-biomass ratio (SBR) to 1.0 can further improve syngas 

hydrogen and carbon monoxide contents. The high temperature and SBR would 

also help in the reduction of tars. 

3. In chapter four, the temperature of the steam injected was lower (200°C) than that 

of the reactor bed (700-800°C). This resulted in reduced gasifier bed temperatures 

which affected the gasification process. Therefore, superheating steam up to 

gasification temperature or even higher would enhance steam-gasification 

reactions, and thus to improve syngas hydrogen and carbon monoxide yields. 

4. Chapters five and six dealt with modeling of biomass gasification using reaction 

kinetics and computational fluid dynamics (CFD) approaches. In both of these 

modeling approaches, the biomass devolatization products were determined by 

balancing masses of C, H, O, N and S contents of the biomass with possible 

products and assuming CO/CO2 ratio of 1. However, in reality, biomass 

devolatization depends on several factors such as biomass properties, temperature 

condition, and type of oxidizing agent. Hence, obtaining quantitative information 

on products of biomass devolatization is essential to improve reliability of 

gasification models.
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APPENDICES 
 

 

A.1 Biomass decomposition products used in simulation (chapters 5 and 6) 

Table A.1.1. Products of biomass decomposition determined using mass balance for 
different gasification conditions 

Gasification conditions :        

Equivalence ratio (ER)  0.20 0.29 0.32 0.40 0.45 

Biomass moisture content, %  9.7 9.7 9.7 9.7 9.7 

Biomass feed rate, kg/h  4.3 4.7 3.8 3.2 4.1 

Dry biomass feed rate, kg/h  3.9 4.2 3.4 2.9 3.7 

Air flow rate, kg/h  4.5 6.8 6.5 6.4 10 

Air temperature, °C  25.2 29 29.5 29 32 

Gasification temperature, °C   801 809 825 893 907 

Gasification pressure, MPa  1.01 1.01 1.01 1.01 1.01 

Syngas flow rate, Nm3/h  4.61 7.23 6.99 6.43 9.25 

Gasifier reactor volume, m3  0.0272 0.0272 0.0272 0.0272 0.0272 

Products of biomass decomposition (mol/s): 

C  0.0135 0.0146 0.0118 0.0101 0.0129 

H2O  0.0065 0.0070 0.0056 0.0048 0.0061 

CO  0.0092 0.0095 0.0075 0.0065 0.0087 

H2  0.0107 0.0111 0.0088 0.0076 0.0102 

CH4  0.0093 0.0096 0.0076 0.0066 0.0088 

CO2  0.0092 0.0095 0.0075 0.0065 0.0087 
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B.1 Polymath code used for reaction kinetic gasification model (chapter 5) 

Given below the example of polymath code for one gasification conditions (ER = 0.20).  

# defining equations 

f(x2) = (x1+x2+x6+x7)/v0+rA*t 

x2(0) = 0 

f(x1)= (x1+x3-2*x4+x5)/v0+rB*t 

x1(0) = 0 

f(x6)= (1.5*x4+x6+0.5*x7)/v0+rC*t 

x6(0) = 0 

f(x7)= (-x1-2*x2+x3-x4-x5-x7)/v0+rD*t 

x7(0) = 0 

f(x5)= (-x1-x3-3*x5)/v0+rE*t 

x5(0) = 0 

f(x4)= (x4+x5)/v0+rF*t 

x4(0) = 0 

f(x3)= (x2-x3-x6)/v0+rG*t 

x3(0) = 0 

# defining net rate of reaction for each participating species 

rA = -r1-r2-r6-r7 

rB = -r1-r3+2*r4-r5 

rC = -1.5*r4-r6-0.5*r7 

rD = r1+2*r2-r3+r4+r5+r7 

rE = r1+r3+3*r5 
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rF = -r4-r5 

rG = -r2+r3+r6 

# defining reaction rate equation for 7 reactions using literature data 

r1 = 2*k1*(FH2O/v0)*0.045/(1+k2*(FH2O/v0)+k3*(FH2/v0)+k4*(FCO/v0)) 

r2 = 2*k5*(FCO2/v0)*0.045/(1+k6*(FCO2/v0)+k7*(FCO/v0)) 

r3 = k8*((FH2O/v0) *(FCO/v0)-(((FH2/v0)*(FCO2/v0))/Keq))*1 

r4 = k9*(FCH4/v0)*(FO2/v0) 

r5 = k10*((FCH4/v0)*(FH2O/v0)-((FCO/v0)*((FH2/v0)^2)/(0.0265*32900/(Tg+273)))) 

r6 = k11*(FC/v0) 

r7 = k12*(FC/v0)*(FO2/v0) 

# defining reaction rate constants for 7 reactions using literature data 

k1 = 239*EXP(-129000/8.314/(Tg+273)) 

k2 = 0.0316*EXP(-30100/8.314/(Tg+273)) 

k3 = 0.00536*EXP(-59800/8.314/(Tg+273)) 

k4 = 8.25*(10^-5)*EXP(-96100/8.314/(Tg+273)) 

k5 = 4.89*(10^-7)*EXP(-268000/8.314/(Tg+273)) 

k6 = 0.066 

k7 = 0.12*EXP(-25500/8.314/(Tg+273)) 

k8 = 2.778*EXP(-12560/8.314/(Tg+273)) 

Keq = 0.022*EXP(34730/8.314/(Tg+273)) 

k9 = 5.16*(10^13)/((Tg+273)^-1)*EXP(-130000/8.314/(Tg+273)) 

k10 = 3.1005*EXP(-15000/(Tg+273)) 

k11 = 17.67*8.314*(Tg+273)*EXP(-13600/(Tg+273)) 
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k12 = 8710*EXP(-17967/(Tg+273)) 

FC = 0.0135-x1-x2-x6-x7 

FH2O = 0.0065-x1-x3+2*x4-x5 

FO2 = 0.0091-1.5*x4-x6-0.5*x7 

FCO = 0.0092+x1+2*x2-x3+x4+x5+x7 

FH2 = 0.0107+x1+x3+3*x5 

FCH4 = 0.0093-x4-x5 

FCO2 = 0.0092-x2+x3+x6 

FN2 = 0.0342 

FT_0 = 0.0135+0.0065+0.0091+0.0092+0.0107+0.0093+0.0092+0.0342 

# defining reactor volume, total molar flow rates entering and leaving the reactor 

v0 = FT_0*(22.4/1000)*((25.2+273)/273) 

FT = (FT_0+0.5*x4+2*x5-x6-0.5*x7) 

# Calculation or residence time based on the gasifier volume and gas volume flowrate 

t = 0.0272/(4.61*(Tg+273)/(273*3600)) 

# Defining gasifier temperature 

Tg = 801 
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C.1 Numerical model parameters used for gasification CFD model (chapter 6) 

Table C.1.1. Solver parameters used to develop gasification CFD model 

Solution setup:    

Solver type : 2D Pressure-Based  

Velocity formulation : Absolute 

Formulation : Implicit 

Time : Transient 

2D Space : Axisymmetric 

Models:    

 Multiphase model : Eulerian multiphase flow (2 phases) 

 Volume Fraction Parameters : Implicit 

 Energy Equation : On 

 Viscous model 
Near-Wall Treatment 
Turbulent multiphase model 

: Realizable k-e 
Standard Wall Fn. 
Mixture 

 Species model 
Reactions 

: Species transport 
Volumetric   

Turbulence-Chemistry Interaction   Finite-Rate/Eddy-Dissipation 
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Table C.1.2. Biomass-decomposition products and their properties used in the gasification CFD model (Chapter 6) 

Properties  Biomass-decomposition products  

  Ca H2O
b CO CO2 H2 CH4 

Type : Fluid Fluid Fluid Fluid Fluid Fluid 

Density, kg/m3 : 2000 998.2 1.123 1.788 0.082 0.668 

Specific heat, j/kg-k : Piecewise-
polynomial 

Piecewise-
linear 

Piecewise-
polynomial 

Piecewise-
polynomial 

Piecewise-
polynomial 

Piecewise-
polynomial 

Molecular weight, kg/kmol : 12.01 18.02 28.01 44.01 2.02 16.04 

Standard state enthalpy, j/kgmol : 7.17e+08 -2.86e+08 -1.11E+08 -3.94E+08 0 -7.49E+07 

Standard state entropy, j/kgmol-k : 157995 69902 197532 213720 130582 186040 

Reference temperature, k : 298 298 298 298 298 298 

a Biomass fixed carbon content 
b Biomass moisture content
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