CALENDAR SPREAD OPTIONS FOR STORABLE

COMMODITIES

By
JUHEON SEOK
Bachelor of Arts in Economics
SungKyunKwan University
Seoul, Korea
2004
Master of Arts in Economics
SungKyunKwan University
Seoul, Korea
2008
Master of Science in Economics
Oklahoma State University
Stillwater, Oklahoma
2012
Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of
\section*{DOCTOR OF PHILOSOPHY}
December, 2013

CALENDAR SPREAD OPTIONS FOR STORABLE COMMODITIES

Dissertation Approved:

Dr. B. Wade Brorsen
Dissertation Adviser
Dr. Brian Adam

Dr. Philip Kenkel

Dr. Weiping Li
Outside Committee Member

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Brorsen, who gave me his limitless patience, support, encouragement, and guidance for the past three years and allowed me to experience the frontier research of calendar spread options. I would like to thank Dr. Adam for his sharp advice, support, and commenting and correcting my writing. I would also like to thank Dr. Kenkel and Dr. Li for guiding my research and providing me with valuable knowledge for my research. Special thanks to Dr. Stoecker who was willing to help me at all times.

I would like to thank LJ, who is my best of best friend, was always willing to help me and cheer me up for everything. It would not have been possible to finish my dissertation without his support and encouragement. I thank my friends, Hyojin, Pilja, and Jungmin for their encouragement when I faced hardship in my research.

Finally, I would like to thank my parents and my younger sister. Without their sacrifice, I would never have been able to complete my Ph.D. and dissertation.

iii

Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University.

Name: Juheon Seok
Date of Degree: DECEMBER, 2013
Title of Study: CALENDAR SPREAD OPTIONS FOR STORABLE COMMODITIES
Major Field: Agricultural Economics

Abstract

Previous studies provide pricing models of options on futures spreads. However, none fully reflect the economic reality that spreads can stay near full carry for long periods of time. A new option pricing model is derived that assumes convenience yield follows arithmetic Brownian motion that is truncated at zero. The new models as well as alternative models are tested by testing the truth of their distributional assumptions for calendar spreads and convenience yield with Chicago Board of Trade corn calendar spreads. Panel unit root tests fail to reject the null hypothesis of a unit root and thus support our assumption of arithmetic Brownian motion as opposed to a meanreverting process as is assumed in much past research. The assumption that convenience yield follows a normal distribution truncated at zero is only approximate as the volatility of convenience yield never goes to zero. Estimated convenience yields can be negative, which is presumably due to measurement error. Option payoffs are estimated with the four different models and the relative performance of models is determined using bias and root mean squared error (RMSE). The new model outperforms three other models and that the other models overestimate actual payoffs. There is no significant difference in error variance for Hinz and Fehr, Poitras, and the new model, and the error variance of the new model is smaller than that of Gibson and Schwartz.

Key words: calendar spreads, corn, futures, panel unit root tests, options, bias, RMSE, significance tests

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THEORETICAL MODEL 6
The Theory of Storage 6
Long Call Option Solution 9
Short Call Option Solution 10
A Solution to Final Calendar Spread Option 11
III. DATA 13
IV. METHODS 15
Testing the Truth of Assumptions 15
A New Model for Calendar Spread Options 18
Gibson and Schwartz model: Stochastic Convenience Yield 21
Poitras: Bachelier Model for Calendar Spread Options 22
Hinz and Fehr Model: A Shifted Lognormal Distribution Model for Calendar Spread Options 23
Prediction Tests. 24
V. RESULTS 27
VI. SUMMARY AND CONCLUSION 31
REFERENCES 34

LIST OF TABLES

Table Page
Table 1. The volume of CBOT calendar spread options and futures 38
Table 2. Summary statistics 39
Table 3. Distribution for corn futures spread and convenience yield 41
Table 4. Panel unit root tests in corn futures spread and convenience yield (1975-2012)42
Table 5. The results of the first order auto regression for nearby futures prices 43
Table 6. Estimation of the parameters k and α of the Gibson and Schwartz model 44
Table 7. Panel cointegration tests for corn futures 45
Table 8. Payoffs of calendar spread options at the money 46
Table 9. Payoffs of calendar spread options in the money 47
Table 10. Payoffs of calendar spread options out of money 48
Table 11. Bias and RMSE of calendar spread options according by exercise price. 49
Table 12. Overall bias and RMSE of calendar spread options according by exercise price 50
Table 13. Significance tests for error means 51
Table 14. Significance tests for error variances 52

LIST OF FIGURES

Figure Page
Figure 1. Plots of CBOT Dec-Mar corn spread 53
Figure 2. Plots of CBOT Mar-May corn spread 54
Figure 3. Plots of CBOT May-Jul corn spread 55
Figure 4. Plots of CBOT Jul-Dec corn spread 56
Figure 5. Plots of CBOT Dec-Jul corn spread 57
Figure 6. Nonparametric regression of corn spread versus days to expiration 58
Figure 7. Histograms of Dec-Mar spread and convenience yield, (1976-2011) 61
Figure 8. Histograms of Mar-May spread and convenience yield, (1975-2012) 62
Figure 9. Histograms of May-Jul spread and convenience yield, (1975-2012) 63
Figure 10. Histograms of Jul-Dec spread and convenience yield, (1976-2012) 64
Figure 11. Histograms of Dec-Jul spread and convenience yield, (1976-2011) 65
Figure 12. Dec-Mar convenience yield plots by year, (1976-2011) 66
Figure 13. Mar-May convenience yield plots by year, (1975-2012) 67
Figure 14. May-Jul convenience yield plots by year, (1975-2012) 68
Figure 15. Jul-Dec convenience yield plots by year, (1976-2012) 69
Figure 16. Dec-Jul convenience yield plots by year, (1976-2011) 70
Figure 17. Nonparametric regressions of Dec-Mar spread and convenience yieldagainst trading days to expiration for the sample period71

LIST OF FIGURES

Figure
Figure 18. Nonparametric regressions of Mar-May spread and convenience yield against trading days to expiration for the sample period

Figure 19. Nonparametric regressions of May-Jul spread and convenience yield against trading days to expiration for the sample period73

Figure 20. Nonparametric regressions of Jul-Dec spread and convenience yield against trading days to expiration for the sample period74

Figure 21. Nonparametric regressions of Dec-Jul spread and convenience yield against trading days to expiration for the sample period75

CHAPTER I

INTRODUCTION

The Chicago Board of Trade (CBOT) offers trading of calendar spread options on futures in wheat, corn, soybean, soybean oil, and soybean meal and the New York Mercantile Exchange offers trading of calendar spread options on cotton and crude oil. Calendar spread options are a new risk management tool. For example, storage facilities can purchase a calendar spread call option to hedge the risk of futures spread narrowing or inverting. Grain elevators can use calendar spread options to partially offset the risk of offering hedge-toarrive contracts.

Calendar spreads are the difference between futures prices of the same commodity with different delivery dates. The CBOT definition of calendar spread is the nearby futures minus distant futures. Options on calendar spreads cannot be replicated by combining two futures options with different maturity dates. The reason is that calendar spread options are affected only by volatility and value of the price relationship while any strategy to replicate the spread using futures options is also sensitive to the value of the underlying commodity (CME Group). Despite such benefits, so far the volume of calendar spread options traded has been low. Table 1 presents the volume of CBOT futures, options, and calendar spread options on December 2, 2013. The volume year to date 2013 across all agricultural calendar spread
option markets was 361,597 contracts, compared to the volume in the corresponding futures contracts of $168,076,317$. The small volume may at least be partly due to a lack of understanding of how to value such options. A more precise pricing formula for calendar spread options would allow option traders to offer lower bid-ask spreads as has occurred with the adoption of the Black-Scholes model.

Earlier papers model the relationship between spot and futures prices by assuming a mean reverting convenience yield (Gibson and Schwartz 1990; Shimko 1994). However, such an assumption is doubtful for storable agricultural commodities since convenience yield may not follow a mean reversion process. Gold does not have strong mean reversion (Schwartz 1997). Gold is typically stored continually with no convenience yield so its spreads tend to remain at full carry ${ }^{1}$. Spreads for agricultural markets could be close to full carry for long periods. Thus, there is a need to create a more suitable option formula on calendar spreads for storable commodities that takes account of all three factors: opportunity cost of interest, storage cost, and convenience yield.

The objectives of this study are

1. determine an analytical solution of calendar spread option for storable commodities that accounts for the lower bound on calendar spreads due to imposing no arbitrage opportunities;
2. determine the empirical distribution of calendar spreads and convenience yield using historical corn data for corn; and
3. determine the accuracy of alternative calendar spread option pricing models in the payoff distribution of calendar spread options simulated using historical market data.
[^0]To do this, a two factor model is derived where nearby futures prices follow a geometric Brownian motion and convenience yield is an arithmetic Brownian motion. The call option valuation problem is like an option bear spread where a long call option is combined with a short call option with a strike price of zero. It is possible to test hypotheses about distributional properties of futures spread and convenience yield since spread is observable and convenience yield can be estimated.

Daily Chicago Board of Trade (CBOT) corn futures prices are used for the empirical tests of assumptions and models. The sample period is for the last 100 calendar days to expiration. The prime rate is used for interest rate and storage costs are estimated using historical data on commercial storage rates between 1975 and 2012.

Based on the theory of storage, implicit convenience yield is equal to adding spread, interest costs, and physical storage cost. We perform the distributional tests to examine the distribution of calendar spread and convenience yield. As expected, we reject the hypothesis of normal distribution for both the calendar spread and convenience yield. Nevertheless, this finding partially supports our assumption of truncated convenience yield at zero. Arbitrage should prevent the price difference between two futures from exceeding full carry and thus convenience yield should not be negative. The observed instances of negative convenience yield can be explained by market participants having varying interest cost or physical storage costs or possibly lack of an incentive to take risks without some return. It could also be measurement error.

Monte Carlo simulation is used to obtain option payoffs for the new model as well as Gibson and Schwartz model. Payoffs for Poitras and Hinz and Fehr model are calculated, using analytical formulas. Bias and RMSE are used to compare the performance of the four
models. The new model outperforms three other models and negative bias of the new model suggests underestimated payoffs of puts due to the restriction of truncated convenience yield at zero.

We also perform significance tests to see whether error mean and variance are significantly different with the four models. The results of the significance tests for forecast error mean show that (1) the null of no difference in two means is rejected in most cases, which implies that predicted error is biased and (2) the mean coefficients are positive in most cases, but put mean error of the new model is negative. The findings for error variance imply that (1) there is no difference between Hinz and Fehr, Poitras, and the new model for the variance and (2) Gibson and Schwartz has higher variances than the new model.

Gibson and Schwartz (1990) develop a two-factor model taking account of stochastic convenience yield in order to price oil contingent claims. They assume a mean reverting convenience yield since Gibson and Schwartz's (1989) research reports strong evidence of mean reversion in convenience yield of crude oil. Schwartz (1997) extends this model to a three-factor model including a stochastic interest rate and analyzes futures prices of copper, oil, and gold. He finds that copper and oil have strong mean reversion while gold has weak mean reversion. Note that almost all gold is stored, while long-term storage of copper and oil is less frequent. Shimko (1994) derives a closed form approximation to the futures spread option model, based on the framework of Gibson and Schwartz (1990).

Hinz and Fehr (2010) propose a commodity option pricing model under no physical arbitrage where the calendar spread cannot exceed the storage returns. They derive an upper bound observed in the situation of contango limit by using an analogy between commodity and money markets. Their work represents an important theoretical contribution, however,
their empirical work is based on using a shifted lognormal distribution and the Black-Scholes pricing formula. Their model does satisfy the no arbitrage condition created by the contango limit, but it does not reflect the economic reality that spreads can stay near the contango limit for long periods of time.

CHAPTER II

THEORETICAL MODEL

The Theory of Storage

The theory of storage predicts the spread between futures and spot prices will be a function of the interest costs, $S(t) R(t, T)$, the storage cost, $W(t, T)$, and the convenience yield, $C(t, T)$:

$$
\begin{equation*}
F(t, T)-S(t)=S(t) R(t, T)+W(t, T)-C(t, T) \tag{1}
\end{equation*}
$$

where $F(t, T)$ is the futures price at time t for delivery at time T and $S(t)$ denotes the spot price at t. Some studies argue that the commodity spot price is not readily observable and use the futures contract closest to maturity as a proxy for the spot price in empirical analysis for this reason (Brennan 1958; Gibson and Schwartz 1990; Schwartz 1997; Hinz and Fehr 2010). This is a tenuous argument since daily commodity spot prices are readily available. There are good reasons for using the nearby as a proxy for spot prices, but it is not because spot prices do not exist. Futures prices reflect the cheapest-to-deliver commodity and thus the spot price represented by futures contracts can change over time. Also, as Irwin et al. (2011) discuss, grain futures markets require the delivery of warehouse receipts or shipping certificates rather than the physical delivery of grain.

During much of 2008-2011, the price of deliverable warehouse receipts (or shipping certificates) exceeded the spot price of grain and thus futures and spot prices diverged.

Inverse carrying charges have been observed in not only futures and spot prices but also prices of distant and nearby futures. In this point, we extend the relationship in the theory of storage from the futures and spot prices to two futures prices. Nearby futures $F_{1}\left(t, T_{1}\right)$ with maturity T_{1} is treated as the spot $S\left(T_{1}\right)$ at time T_{1} and the periods for the interest rate, storage cost, and convenience yield are the difference between deferred time T_{2} and near time T_{1}. Equation (1) is rewritten as:

$$
\begin{equation*}
F_{2}\left(t, T_{2}\right)-F_{1}\left(t, T_{1}\right)=F_{1}\left(t, T_{1}\right) R\left(t, T_{2}-T_{1}\right)+W\left(t, T_{2}-T_{1}\right)-C\left(t, T_{2}-T_{1}\right) \tag{2}
\end{equation*}
$$ where $F_{2}\left(t, T_{2}\right)$ denotes the distant futures price at time t for delivery at T_{2} and $F_{1}\left(t, T_{1}\right)$ is the nearby futures price. $R\left(t, T_{2}-T_{1}\right), W\left(t, T_{2}-T_{1}\right)$, and $C\left(t, T_{2}-T_{1}\right)$ denote the interest rate, the storage cost, and the convenience yield for the period $T_{2}-$ T_{1} at time t, respectively.

Convenience yield is a benefit from holding physical commodities. It may be regarded as a negative storage price in which it reflects the benefits rather than the cost of holding inventory. Zulauf et al. (2006) argue that convenience yield is at least partly explained by the benefits from being able to take advantage of temporary increases in cash prices. As a result, convenience yield tends to be highest when stocks are low and cash price are variable. In the theory of storage, convenience yield approaches zero as calendar spread goes near full carry. Below full carry, convenience yield can be zero or positive. The explanation of this finding is that interest and storage costs would be misspecified and convenience yield may have measurement error. To explain this phenomenon, we assume
that convenience yield is truncated at full carry. The truncated convenience yield can be represented as:

$$
\begin{align*}
C\left(t, T_{2}-T_{1}\right) & =C^{*}\left(t, T_{2}-T_{1}\right) & & \text { if } C^{*}\left(t, T_{2}-T_{1}\right)>0 \tag{3}\\
& =0 & & \text { otherwise. }
\end{align*}
$$

We propose a new model that takes account of the convenience yield being truncated at full carry and derive a formula for options on calendar spreads.

The calendar spread option is an option on the price difference between two futures prices of the same commodity with different maturities. When a calendar spread call option is exercised at expiration, the buyer receives a long position in the nearby futures and a short position in the distant futures. Consider a European calendar spread call option. The call option expires at time $T \leq T_{1}$, that is, the option expires prior to the delivery time of the nearby futures contract. The value of the calendar spread call option with exercise price K at maturity T is

$$
\begin{equation*}
\max \left(F_{1}\left(T, T_{1}\right)-F_{2}\left(T, T_{2}\right)-K, 0\right), \quad T \leq T_{1} \leq T_{2} \tag{4}
\end{equation*}
$$

As seen, the payoff of the call option is affected by the price difference between nearby and distant futures prices. The theory of storage shows the spread between two futures is equal to interest costs plus storage costs minus convenience yield. We simplify the model by assuming that both interest rate and storage costs are constant. Thus, a twofactor model with stochastic nearby futures price and convenience yield is used to derive the price of the first call option.

Long Call Option Solution

The nearby futures price F_{1} is assumed to follow geometric Brownian motion with drift μ and volatility σ_{1}. The convenience yield C follows an arithmetic Brownian motion. The drift of convenience yield is given by δ and its volatility is given by σ_{2}. Two standard Brownian motions have constant correlation ρ. The two stochastic factors can be expressed as

$$
\begin{align*}
& d F_{1}(t)=\mu F_{1}(t) d t+\sigma_{1} F_{1}(t) d Z_{1}(t) \tag{5}\\
& d C(t)=\delta d t+\sigma_{2} d Z_{2}(t) \tag{6}
\end{align*}
$$

where $d Z_{1}(t)$ and $d Z_{2}(t)$ are standard Wiener processes and $d Z_{1}(t) d Z_{2}(t)=\rho d t$. The stochastic volatility model of Heston (1993) is one of the most popular option pricing models. Our model does not consider stochastic volatility but the approach to derive the call option follows steps similar to Heston's work.

The first call price is

$$
\begin{align*}
\mathbb{C}\left(F_{1, t}, C_{t}, t, T\right) & =e^{-r \tau} E\left[\max \left(F_{1, t}-K\right)\right] \tag{7}\\
& =F_{1, t} P_{1}\left(x_{t}, C_{t}, \tau\right)-K e^{-r(T-t)} P_{2}\left(x_{t}, C_{t}, \tau\right) \\
& =e^{x_{t}} P_{1}\left(x_{t}, C_{t}, \tau\right)-e^{-r \tau} K P_{2}\left(x_{t}, C_{t}, \tau\right)
\end{align*}
$$

where $P_{1}\left(x_{t}, C_{t}, \tau\right)$ and $P_{2}\left(x_{t}, C_{t}, \tau\right)$ denote the probabilities of the call that expires in the money, conditional on $x_{t}=\ln F_{1}$ of the nearby futures and on convenience yield of C_{t}, $\tau=T-t$ denotes the time to expiration.

Since the call price $\mathbb{C}\left(F_{1, t}, C_{t}, t, T\right)$ is an option, it must satisfy the partial differential equation (PDE) under no arbitrage condition

$$
\begin{equation*}
\frac{1}{2} \sigma_{1}{ }^{2} F_{1}{ }^{2} \frac{\partial^{2} \mathbb{C}}{\partial F_{1}{ }^{2}}+\rho \sigma_{1} \sigma_{2} F_{1} \frac{\partial^{2} \mathbb{C}}{\partial F_{1} \partial C}+\frac{1}{2} \sigma_{2}{ }^{2} \frac{\partial^{2} \mathbb{C}}{\partial c^{2}}+r F_{1} \frac{\partial \mathbb{C}}{\partial F_{1}}+\delta \frac{\partial \mathbb{C}}{\partial C}-r \mathbb{C}+\frac{\partial \mathbb{C}}{\partial \tau}=0 . \tag{8}
\end{equation*}
$$

Once we know two probability P_{1} and P_{2}, we can calculate the call option price of equation (7). To obtain the probability P_{1} and P_{2}, we should first compute two characteristic functions f_{1} and f_{2} which correspond to the in the money probabilities P_{1} and P_{2} and then can obtain two probabilities P_{1} and P_{2}.

The characteristic functions f_{1} and f_{2} are assumed for $j=1,2$
(9)

$$
\begin{aligned}
& f_{1}(\varnothing ; x, C)=\exp \left\{r \emptyset i \tau+\delta \frac{1}{2} \sigma_{2}\left(b_{1}-\rho \sigma_{1} \emptyset i \pm d\right) \tau+\frac{1}{2} \sigma_{2}\left(b_{1}-\rho \sigma_{1} \emptyset i \pm d\right)+i \emptyset x\right\} \\
& f_{2}(\varnothing ; x, C)=\exp \left\{r \varnothing i \tau+\delta \frac{1}{2} \sigma_{2}\left(b_{2}-\rho \sigma_{1} \emptyset i \pm d\right) \tau+\frac{1}{2} \sigma_{2}\left(b_{2}-\rho \sigma_{1} \emptyset i \pm d\right)+i \emptyset x\right\}
\end{aligned}
$$

where $\quad b_{1}=-\rho \sigma_{2}, b_{2}=0, d=\sqrt{\left(\rho \sigma_{1} \emptyset i-b_{j}\right)^{2}-\sigma_{1}^{2}\left(2 u_{j} \varnothing i-\emptyset^{2}\right)}, u_{1}=\frac{1}{2}, u_{2}=-\frac{1}{2}$.
The probabilities P_{1} and P_{2} corresponding to the characteristic functions f_{1} and f_{2} are

$$
\begin{equation*}
P_{j}=\frac{1}{2}+\frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re}\left[\frac{e^{-i \phi \ln K} f_{j}(\tau, x ; \varnothing)}{i \emptyset}\right] d \emptyset, \quad j=1,2 . \tag{10}
\end{equation*}
$$

A slight difficulty is to evaluate integrals in equation (10) for two probabilities P_{1} and P_{2}. Those integrals cannot be evaluated directly, but can be approximated by using a numerical integration technique.

Short Call Option Solution

To adjust for convenience yield being truncated at zero, we propose a second option for convenience yield which follows arithmetic Brownian motion (Bachelier, 1990) and has a strike price of zero. We specify the convenience yield $C_{B}(t)$ satisfying at time t

$$
\begin{equation*}
d C_{B}(t)=\sigma_{B} d W(t), \quad t \leq T \tag{11}
\end{equation*}
$$

where $d W(t)$ denotes standard Brownian motion, subscript B stands for Bacheiler, and σ_{B} represents the volatility.

The value of a European call option c_{B} at maturity T is

$$
\begin{equation*}
c_{B}(T)=\max (C(T)-K, 0) \tag{12}
\end{equation*}
$$

where K is the exercise price. Following the Bachelier framework, the convenience yield is normally distributed with mean zero and variance $\sigma_{B}^{2} \tau$. The call option at time t is

$$
\begin{equation*}
c_{B}(t)=e^{-r \tau}\left[(C(t)-K) \Phi\left(\frac{C(t)-K}{\sigma_{B} \sqrt{\tau}}\right)+\sigma_{B} \sqrt{\tau} \phi\left(\frac{C(t)-K}{\sigma_{B} \sqrt{\tau}}\right)\right], \quad \tau=T-t \tag{13}
\end{equation*}
$$

where $\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ is the standard normal density function. Our interest is a call option with a strike price of zero. Substituting the strike price of zero yields

$$
\begin{equation*}
c_{B}(t)_{K=0}=e^{-r \tau}\left[C(t) \Phi\left(\frac{C(t)}{\sigma_{B} \sqrt{\tau}}\right)+\sigma_{B} \sqrt{\tau} \phi\left(\frac{C(t)}{\sigma_{B} \sqrt{\tau}}\right)\right] \tag{14}
\end{equation*}
$$

where $c_{B}(t)_{K=0}$ represents the second call option with a strike price of zero.

A Solution to Final Calendar Spread Option

By combining the first long call option from equation (7) and the second short call option from equation (14), a long calendar spread call option is

$$
\begin{align*}
c_{c s} & =\mathbb{C}\left(F_{1, t}, C_{t}, t, T\right)-c_{B}(t)_{K=0} \tag{15}\\
& =\left[F_{1, t} P_{1}\left(x_{t}, C_{t}, \tau\right)-K e^{-r \tau} P_{2}\left(x_{t}, C_{t}, \tau\right)\right]-e^{-r \tau}\left[C(t) \Phi\left(\frac{C(t)}{\sigma_{B} \sqrt{\tau}}\right)+\sigma_{B} \sqrt{\tau} \phi\left(\frac{C(t)}{\sigma_{B} \sqrt{\tau}}\right)\right]
\end{align*}
$$

where $c_{c s}$ is the calendar spread call option price and $\mathbb{C}\left(F_{1, t}, C_{t}, t, T\right)$ is the first long call option price from the combined stochastic processes of changes in the nearby price and convenience yield.

Note that while this is an analytical solution, the solution is still one that has to be solved numerically. Future research may want to consider using Malliavin calculus or characteristic functions as approaches that might yield a solution that can be directly solved.

CHAPTER III

DATA

The data used to test the assumptions and models consists of daily futures prices, daily prime interest rate, and annual physical storage costs. Corn futures prices are from the Chicago Board of Trade between 1975 and 2012. The interest costs are calculated by nearby futures prices times the prime interest rates.

Five calendar spreads are used since the CME group offers five sets of calendar spread options: Dec-Mar, Mar-May, May-Jul, Jul-Dec, and Dec-Jul. The calendar spreads of Dec-Mar, Mar-May, May-Jul, Dec-Jul crop years use two same crop year whereas JulDec spread is a combination of old-new crop year. For intra-year spreads, the difference between two futures would be mostly negative and convenience yield may be small or close to zero because inventories are plentiful after harvest. The Jul-Dec calendar spread would have positive spreads and large convenience yields. The movements of five corn futures spreads are described in figures 1 through 5 .

Nonparametric regression is used to determine both the trend and the sample period of calendar spreads. The whole sample period of calendar spread ranges between 800 and 1300 calendar days to expiration and calendar spreads vary over time as shown in figure 6. All figures show positive intercepts although average spreads are negative. The reason
is that the plots are only partial predictions and so the negative intercept term is not included. All five spreads decrease as maturity approaches. This downward trend might reflect a risk premium. Since historical corn spreads exhibit a downward trend over 100 calendar days to maturity, the sample period is selected by the last 100 calendar dates to expiration. Until 100 calendar days before expiration, full carry is hardly ever hit. The markets is always at less than full carry since there is a positive probability that the market will move away from full carry.

Table 2 presents the summary statistics for nearby and distant futures, calendar spread, the change in calendar spread, convenience yield, the change in convenience yield, interest rates, and storage cost according to different calendar spreads. The difference between nearby and distant futures prices has a negative value except the Jul-Dec spread. The average spread is between -20.11 and 5.22; the huge difference between Dec-Jul futures prices (-20.11) may be explained by the longer time between the two maturity dates. The average convenience yield is between 1.24 and 25.75. As expected, the JulDec convenience yield is positive and large. It may reflect the scarce inventories since the Jul-Dec spread contains the corn harvest period. The mean of the prime rate (8.3\%) is higher than that of three-mouth Treasury Bills (5.2\%).

The convenience yield, displayed in figures 12 through 16, is plotted against the trading days to expiration. It shows that convenience yield has positive value mostly but negative convenience yield is often found. The convenience yield would be negative when the spread is greater than the cost of storage. Thus, the negative convenience yield could occur from underestimating storage costs.

CHAPTER IV

METHODS

Testing the Truth of Assumptions

One way of testing models is to test the truth of their assumptions. Poitras (1998) proposes that futures prices have a joint normal distribution so calendar spread would be normally distributed and Hinz and Fehr (2010) suggest that the distribution of calendar spread is a shifted lognormal distribution. We test the assumptions of normality using skewness $\left(\sqrt{\beta_{1}}\right)$, kurtosis $\left(\beta_{2}\right)$, and an omnibus test $\left(K^{2}\right)$.

With Poitras (1998) assumption, calendar spread follows arithmetic Brownian motion with mean $\mu_{p} \tau$ and variance $\sigma_{p}^{2} \tau$ which is proportional to time to expiration τ

$$
\begin{equation*}
d\left(F_{1}-F_{2}\right) \sim N\left(\mu_{p} \tau, \sigma_{p}^{2} \tau\right) \tag{16}
\end{equation*}
$$

Hinz and Fehr (2010) suppose that the distribution of calendar spread can be approximated by a shifted lognormal distribution where the shift parameter is estimated by a maximum value of the difference between two futures prices. We partially test for Hinz and Fehr's distributional assumption in which the logarithm of the ratio Z is normally distributed. The ratio Z is $\frac{F_{1}+\kappa-F_{2}}{F_{2}}$. The ratio implies no arbitrage in that calendar spread cannot exceed the costs of storage so that the ratio should be above zero.

The lognormal distribution of the ratio Z with mean $\Pi_{H F} \tau$ and variance $\Phi_{H F}^{2} \tau$ is

$$
\begin{equation*}
d \ln Z=\operatorname{dln}\left(\frac{F_{1}+\kappa-F_{2}}{F_{2}}\right) \sim N\left(\Pi_{H F} \tau, \Phi_{H F}^{2} \tau\right) \tag{17}
\end{equation*}
$$

where $\kappa=\max \left(F_{2}-F_{1}\right)$ is upper bound created by the contango limit.
Gibson and Schwartz (1990) assume that convenience yield is mean reverting. We test for the presence of mean reversion in convenience yield as well as calendar spread using panel unit root tests. Im, Pesaran and Shin (IPS) panel unit root test is used since it allows for heterogeneous coefficients $\left(\rho_{i}\right)$ whereas Levin-Lin-Chu test imposes a restriction of homogeneous coefficients (ρ) across cross section i. Thus, Im, Pesaran and Shin test employs a unit root test for each cross section i. The IPS test uses a t-statistic which is the average of the individual unit root tests. The Dicky Fuller regression is

$$
\begin{equation*}
\Delta y_{i t}=\alpha_{i}+\rho_{i} y_{i, t-1}+\varepsilon_{i t}, \quad i=1, \ldots, N, \quad t=1, \ldots, T \tag{18}
\end{equation*}
$$

The equation (18) can be expressed as the augmented Dickey Fuller (ADF) regression

$$
\begin{equation*}
\Delta y_{i t}=\alpha_{i}+\rho_{i} y_{i, t-1}+\sum_{j=1}^{P_{i}} \theta_{i j} \Delta y_{i t-j}+\varepsilon_{i t} \tag{19}
\end{equation*}
$$

where $y_{i t}$ is the observation on the i th cross-section unit at time t, α_{i} is the intercept, and $\varepsilon_{i t}$ is the error term. In our model, $y_{i t}$ is calendar spread or convenience yield, the cross section i is year, and the time t is trading days. The null hypothesis that all individuals i have a unit root is

$$
\begin{equation*}
H_{0}: \rho_{i}=0, \quad \text { for all } i . \tag{20}
\end{equation*}
$$

The alternative hypothesis is

$$
\begin{equation*}
H_{1}: \rho_{i}<0, \quad \text { for all } i \tag{21}
\end{equation*}
$$

A unit root implies that the calendar spread or convenience yield is not stationary. Since IPS test is applied only for a balanced panel data alternatively, Fisher-type test is also
performed. Fisher-type test uses the p-values from unit root tests for each cross section i. The null and alternative hypotheses are the same as those of IPS test.

The Stata commands for the IPS and Fisher-type test are
xtunitroot ips spread (or convenience yield)
xtunitroot fisher spread (or convenience yield), dfuller lags(\#).
We also test whether convenience yield follows arithmetic Brownian motion truncated at zero employing historical data. For that purpose, we first estimate convenience yield according to the theory of storage since convenience yield is not obtainable directly. In equation (2), we substitute the spot price into the nearby futures price and use the CBOT definition of calendar spread is the nearby futures minus distant futures. In contango, calendar spread is negative whereas it is positive in backwardation. Equation (2) is multiplied by negative one to match the CBOT definition of calendar spreads:

$$
\begin{equation*}
F_{1}\left(t, T_{1}\right)-F_{2}\left(t, T_{2}\right)=-F_{1}\left(t, T_{1}\right) R\left(t, T_{2}-T_{1}\right)-W\left(t, T_{2}-T_{1}\right)+C\left(t, T_{2}-T_{1}\right) \tag{22}
\end{equation*}
$$

To obtain convenience yield, rearrange equation (22) as

$$
\begin{equation*}
C\left(t, T_{2}-T_{1}\right)=\left(F_{1}\left(t, T_{1}\right)-F_{2}\left(t, T_{2}\right)\right)+F_{1}\left(t, T_{1}\right) R\left(t, T_{2}-T_{1}\right)+W\left(t, T_{2}-T_{1}\right) . \tag{23}
\end{equation*}
$$

Equation (23) provides a formula to compute implicit convenience yield. Namely, implicit convenience yield is estimated by adding calendar spread, interest costs, and storage cost.

Two normality tests are conducted for the assumption of convenience yield; first is to test truncation at zero using implicit convenience yield, second is to test arithmetic Brownian motion employing residuals of convenience yield. Means are allowed to vary
by year so the data used are residuals from a regression of the change in convenience yield against year dummies.

A New Model for Calendar Spread Options

The option payoffs are obtained by Monte Carlo simulation in that payoffs are calculated by a number of calendar spreads created by two stochastic processes, various interest costs and constant physical storage costs. Parameter for the nearby futures drift μ, the nearby futures volatility σ_{1}, the convenience yield drift δ, and the convenience yield volatility σ_{2} are estimated using historical data. The nearby futures price follows geometric Brownian motion by equation (5)

$$
\begin{equation*}
d F_{1}(t)=\mu F_{1}(t) d t+\sigma_{1} F_{1}(t) d Z_{1}(t) \tag{5}
\end{equation*}
$$

Applying Ito's lemma

$$
\begin{equation*}
d \ln F_{1}(t)=\left(\mu-\frac{1}{2} \sigma_{1}^{2}\right) d t+\sigma_{1} d Z_{1}(t) \tag{24}
\end{equation*}
$$

The distribution of the nearby futures return is

$$
\begin{equation*}
\Delta \ln F_{1}(t) \sim N\left[\left(\mu-\frac{1}{2} \sigma_{1}^{2}\right) \tau, \sigma_{1} \sqrt{\tau}\right] \tag{25}
\end{equation*}
$$

where τ is time to expiration. Since the futures market is assumed to be efficient, μ is regarded as zero for an initial value. We examine whether there exists autocorrelation in residuals using the first order autoregression. The first order autoregressive model for the nearby futures returns is

$$
\begin{equation*}
\ln \left(\frac{F_{1, t}}{F_{1, t-1}}\right)=p+q \ln \left(\frac{F_{1, t-1}}{F_{1, t-2}}\right)+\varepsilon_{t} . \tag{26}
\end{equation*}
$$

If $\hat{q}=0$, it supports that the model is not misspecified. Thus, the assumption of independence of nearby futures returns is supported. ${ }^{2}$ The nearby futures volatility of σ_{1} is estimated by the daily standard deviation of $\ln \frac{F_{1, t}}{F_{1, t-1}}$ over a past 20 trading day period covering the period 1976 to 2011^{3}.

We collected 41 years of daily convenience yield covering the period 1971 to 2011. Rewrite the stochastic convenience yield process in equation (6) as

$$
\begin{equation*}
d C(t)=\delta d t+\sigma_{2} d Z_{2}(t) \tag{6}
\end{equation*}
$$

We assume that the calendar spread market is efficient so that δ is assumed to be zero ${ }^{4}$.
To reflect the mean differences across year (group) over time, we include fixed effects (crop year dummy variables as a group). We regress changes in convenience yield of $\Delta C_{i t}$ on crop year dummies of $D_{j i}$

$$
\begin{equation*}
\Delta C_{i t}=\sum_{j=1}^{40} s_{j} D_{j i}+\varepsilon_{i t}^{C} \tag{27}
\end{equation*}
$$

Obtain residuals of $\widehat{\varepsilon_{l t}^{C}}$ and then compute the standard deviation of residuals for a past 5 year period to estimate the volatility of convenience yield σ_{2}. For example, we can compute a standard deviation of Dec-Mar convenience yield of σ_{2} for year 1976 covering the period 1971 to 1975. The standard deviation of convenience yield for year 1976 is

$$
\begin{equation*}
\sigma_{2}^{\text {Year } 1976}=\sqrt{\frac{1}{N-1} \sum_{i=1971}^{1975} \sum_{t=1}^{69}\left(\widehat{\varepsilon_{l t}^{C}}-\overline{\varepsilon_{l t}^{C}}\right)^{2} * d u m_{i t}^{C}} \tag{28}
\end{equation*}
$$

[^1]where $N=\sum_{i=1971}^{1975} \sum_{t=1}^{69}$ dum $_{i t}, \overline{\varepsilon_{l t}^{C}}=\frac{1}{N} \sum_{i=1971}^{1975} \sum_{t=1}^{69} \varepsilon_{i t}^{C} * d u m_{i t}^{C}, \overline{\varepsilon_{l t}^{C}}$ is a mean of residual $\widehat{\varepsilon_{l t}^{C}}, \sigma_{2}^{\text {Year } 1976}$ is a standard deviation of convenience yield for year 1976, i is year, t is trading days, and $d u m_{i t}$ is dummy variables to deal with truncation at zero if $\Delta C_{i t}$ is greater than zero then $d u m_{i t}$ is one, otherwise $d u m_{i t}$ is zero. Thus, the dummies allow negative convenience yields to become zero since we assume convenience yield only has zero or positive value.

Although we consider correlation between nearby futures and convenience yield in the theoretical model, we assume no correlation between the two processes in the empirical analysis. Correlation tests are conducted using the change in logarithm of nearby futures prices and residuals of convenience yield across all calendar spreads. The overall correlation is 0.034 and significant; correlations are significant for Dec-Mar and Dec-Jul spreads, but not for other spreads. Correlation reduces payoffs around 3\% in Dec-Mar and Dec-Jul and around 1% in the three others. The effect of assuming correlation is not as important as that of truncation at zero in estimating payoffs. Hence, we simulate the model with two stochastic processes assuming no correlation. Discounting of the payoff function is not needed since all payoffs would be discounted at the same rate.

We run Monte Carlo simulation to obtain option payoffs since there is no closed form solution for distribution of calendar spread based on our assumptions of log-normally distributed change in nearby futures and truncated convenience yield at zero.

A simulation procedure is as follows:

1) Create 10,000 replications of size $M=$ the total number of trading days - trading days for each year i from stochastic processes to equation (23) and (8).
2) Impose the restriction of truncated convenience yield at zero

$$
C=\max \left(C^{*}, \min (0, C)\right)
$$

where C is the observed convenience yield and C^{*} is the latent convenience yield. Compute calendar spread using the theory of storage of equation (4)

$$
\text { Calendar Spread }=F_{1}-F_{2}=-F_{1} * R-W+C .
$$

3) Calculate the payoffs of option resulting in M values $P_{11}, \ldots P_{i M}$ for each year i, and then take the average of option payoffs

$$
\bar{P}=\frac{1}{i * M} \sum_{z=1}^{i} \sum_{v=1}^{M} P_{v z} .
$$

Gibson and Schwartz Model: Stochastic Convenience Yield

Gibson and Schwartz (1990) introduce a two-factor model with mean-reverting convenience yield and spot price following geometric Brownian motion. We simulate Gibson and Schwartz's model to obtain payoffs for calendar spread options; draw 10,000 replication of size $=i * M$ from below two stochastic process of equation (29), obtain the calendar spread using equation (4), calculate the payoffs, and then take the average of payoffs.

The spot price process is replaced by the nearby futures price process. The two joint stochastic processes are

$$
\begin{align*}
& \frac{d F_{1}}{F_{1}}=\mu d t+\sigma_{1} d z_{1} \tag{29}\\
& d C=k(\alpha-C) d t+\sigma_{2} d z_{2} \\
& d z_{1} d z_{2}=\rho
\end{align*}
$$

The nearby futures drift of μ and the volatility of σ_{1} are estimated according to the same method in the new model section. k is the speed of adjustment and α is the long
run mean of convenience yield. The Dickey-Fuller regression is used to estimate parameters of k and α over the past 5 year period

$$
\begin{equation*}
\Delta C_{t}=C_{t}-C_{t-1}=\beta_{0}+\beta_{1} C_{t-1}+\epsilon_{t}=\alpha k+k C_{t-1}+\epsilon_{t} \tag{30}
\end{equation*}
$$

Let $k=-\beta_{1}$ and $\alpha=-\frac{\beta_{0}}{\beta_{1}}$. The parameter of ρ is estimated by the correlation between $\Delta \ln F_{1, t}$ and ϵ_{t} from the Dickey-Fuller regression over the past 1 year period.

Poitras: Bachelier Model of Calendar Spread Options

Poitras (1998) proposes a calendar spread option pricing formula in which individual futures prices follow arithmetic Brownian motion. Since spread can be negative or positive, the assumption of a normal distribution on spread is more realistic than that of a log-normal distribution for two futures. The calendar futures spread stochastic process is

$$
\begin{equation*}
d\left(F_{1}-F_{2}\right)=\sigma_{P} d z_{F} \tag{31}
\end{equation*}
$$

where $\sigma_{P}^{2}=\sigma_{F_{1}}^{2}-2 \sigma_{F_{1}, F_{2}}+\sigma_{F_{2}}^{2}$ is the variance of the joint process, $2 \sigma_{F_{1}, F_{2}}$ is covariance between two futures prices. The solution to Bacheiler calendar spread call option is

$$
\begin{equation*}
C_{P}=\left(F_{1}-F_{2}-X\right) N(u)+\sigma_{P} \sqrt{\tau} n(u) \tag{32}
\end{equation*}
$$

where $u=\frac{F_{1}-F_{2}-X}{\sigma_{P} \sqrt{\tau}} . C_{P}$ is the price of the Bachelier calendar spread option, τ is trading days to expiration, $N(u)$ is the cumulative normal probability function, and $n(u)$ is the normal density function. Two futures prices of F_{1} and F_{2} are used for last 100 calendar days to expiration. Call option volatility of σ_{P} is estimated by two futures prices over the past 20 days.

[^2]
Hinz and Fehr Model: A Shifted Lognormal Distribution Model for Calendar Spread Options

Hinz and Fehr (2010) develop an option pricing model for calendar spread options, which imposes a physical arbitrage condition that calendar spread cannot exceed storage cost returns. They propose a shifted lognormal distribution for calendar spread and derive the call option price on calendar spread based on the Black-Scholes formula. The payoff on expiration date T is

$$
\begin{align*}
& C_{H}=\max \left(F_{1}\left(T_{1}\right)+\kappa-(1+X) F_{2}\left(T_{2}\right), 0\right), \quad t<T<T_{1}<T_{2} \tag{33}\\
& \text { given } \quad \kappa=\max \left(F_{2}\left(T_{2}\right)-F_{1}\left(T_{1}\right)\right) .
\end{align*}
$$

κ is an upper bound created by the contango limit. T is date to expiration for calendar spread option, and T_{1} and T_{2} are the maturity date for nearby and distant futures.

The price of calendar spread option is

$$
\begin{equation*}
C_{H}=F_{2}\left\{Z N\left(d_{1}\right)-X N\left(d_{2}\right)\right\}, \quad \tau=T-t \tag{34}
\end{equation*}
$$

where $Z=\frac{F_{1}+k-F_{2}}{F_{2}}, Z>0, d_{1}=\frac{1}{v \sqrt{\tau}}\left\{\log \left(\frac{Z}{X}\right)+\frac{1}{2} v^{2} \tau\right\}$, and $d_{2}=d_{1}-v \sqrt{\tau}$.
Z is the ratio and should be greater than zero due to the arbitrage condition that calendar spread cannot exceed full carry. v is the standard deviation of the ratio of $Z . X$ is the exercise price.

The storage cost parameter of κ is estimated from the past 5 year period. The ratio Z is calculated by a formula of equation (34) over the past 20 day period. Hinz and Fehr obtain the full carry parameter κ as a maximum value of calendar spread for the whole sample period. In order to make our results out of sample, we estimate κ as a maximum value of calendar spreads over the previous 5 year period for each year so that we can
have 36 different values of κ. The full carry parameter of κ can be less than the calendar spread, which results in the negative ratio of Z. Any negative Z is deleted to satisfy the constraint, which leads to missing values in calculation of volatility. The volatility of v is computed by the standard deviation of the ratio over the past 20 trading days.

Prediction Tests

The bias and root mean squared error (RMSE) are computed to analyze the degree of accuracy provided by the models for specific trading days and these statistics are provided with respect to moneyness (at the money, in the money, and out of money).

Three different exercise prices in cents are used for the prediction tests; the exercise price of at the money is given by the calendar spread of the first trading day for each year ($X=$ Spread), the exercise price for in the money is designed to the spread of the first trading day of each year minus three ($X=$ Spread-3), the exercise price for out of money is specified as the spread of the first trading day of each year plus three $(X=\operatorname{Spread}+3)$. Also, the exercise price given in the first trading day is used to compute option payoffs over the subsequent trading days. Four trading days are trading day $1,15,30$, and 50 in the sample chosen.

The bias in cents for a given year is calculated

$$
\begin{equation*}
\text { Bias }=\frac{1}{N} \sum_{i=1}^{N}\left[\widehat{P}_{l}-\left(P_{i} \mid \text { trading days }=g\right)\right], \quad g=1,15,30,50 \tag{35}
\end{equation*}
$$

where N denotes the number of the calendar spreads, $N=1, \ldots, 5, \widehat{P}_{l}$ denotes actual payoffs, and $P_{i} \mid$ trading days $=g$ denotes payoffs from each model given the specific trading days.

The RMSE in cents is computed

$$
\begin{equation*}
R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left[\widehat{P_{l}}-\left(P_{i} \mid \text { trading days }=g\right)\right]^{2}}, \quad g=1,15,30,50 \tag{36}
\end{equation*}
$$

Significance tests using a regression are performed to compare two means between forecast and actual errors as well as two variances between another model and the new model. We include two interactions of option and method and of method and trading days since option, method, and trading days may affect forecast errors, but it is also possible that the effect of option will vary by the method. We regress errors on dummy variables of spread, option, and method, exercise prices as fixed effects and two interactions. Regression is given by

$$
\begin{align*}
\text { error }_{\text {gnlht }}= & a_{0}+\sum_{i=1}^{3} a_{i} D_{i g}+\sum_{i=1}^{4} b_{i} D_{i n}+c_{l} D_{l}+\sum_{i=1}^{3} d_{i} D_{i h} \tag{37}\\
& +\sum_{i=1}^{2} e_{i} D_{i u}+\sum_{i=1}^{3} f_{i} D_{l} * D_{i h}+\sum_{j=1}^{3} \sum_{i=1}^{3} s_{i j} D_{i g} * D_{j h} \\
& +\varepsilon_{g n l h t}
\end{align*}
$$

where error $_{\text {gnlht }}$ denotes errors between actual and expected payoffs for each trading day g, each calendar spread n , option type l, each method h, and year $t, D_{i g}, D_{i n}, D_{l}$, and $D_{i h}$, and $D_{i u}$ represent dummy variables for trading day, spread, option, method, and exercise price, $D_{l} * D_{i h}$ and $D_{i g} * D_{i h}$ are interactions of option and method, and of trading day and method, and $\varepsilon_{g n l h t} \sim N\left(0, \sigma_{g m l h t}^{2}\right)$.

We test for the bias hypotheses that the mean of forecast errors has the same value as the mean of actual errors, that is, the forecast errors have zero means. The null hypothesis of testing a difference of means is

$$
\begin{equation*}
H_{0}: \quad \mu_{h}=0, \quad h=1,2,3,4 \tag{38}
\end{equation*}
$$

where μ_{h} represents the average of means of forecast errors in terms of model h; the new model is regarded as a base. To obtain forecast error means of one model, take
expectation of equation (37) on both sides. We test unbiasedness for each model by testing whether the expected forecast error for each model is zero. The average of means of forecast error in terms of model h as a linear combination of model parameters is

$$
\begin{gather*}
H_{0}: \quad a_{0}+0.25 \sum_{i=1}^{3} a_{i}+0.2 \sum_{i=1}^{4} b_{i}+c_{l}+d_{h}+0.33 \sum_{i=1}^{2} e_{i} \tag{39}\\
+D_{l} * f_{h}+0.25 \sum_{i=1}^{3} s_{i h}=0, \quad h=1,2,3,4, l=1,2
\end{gather*}
$$

Since there are 4 trading days in the trading day group, each trading day gets a weight of
$1 / 4$. In the same fashion, the weights of spread and exercise prices are 0.2 and 0.33 .
Error variance equation allowing for heteroskedasticity is

$$
\begin{equation*}
\sigma_{g n l h t}^{2}=\exp \left[\zeta_{0}+\sum_{i=1}^{3} \zeta_{i} D_{i g}+\sum_{i=1}^{4} \vartheta_{i} D_{i n}+\xi_{l} D_{l}+\sum_{i=1}^{3} \varpi_{i} D_{i h}\right] \tag{40}
\end{equation*}
$$

We are interested in the error variance difference between one model and the new model.
For simplicity, the error variance difference in model h and the new model is

$$
\begin{equation*}
\zeta_{0}+\sum_{i=1}^{3} \zeta_{i} D_{i g}+\sum_{i=1}^{4} \vartheta_{i} D_{i n}+\xi_{l} D_{l}+\varpi_{h}, \quad h=1,2,3 . \tag{41}
\end{equation*}
$$

The null hypothesis is

$$
\begin{equation*}
H_{0}: \quad \zeta_{0}+\sum_{i=1}^{3} \zeta_{i} D_{i g}+\sum_{i=1}^{4} \vartheta_{i} D_{i n}+\xi_{l} D_{l}+\varpi_{h}=0, \quad h=1,2,3 \tag{42}
\end{equation*}
$$

If coefficient of variance difference is significant and positive, the model h has larger variance than the new model. Otherwise, the variance of the model h is not different from the variance of the new model.

CHAPTER V

RESULTS

The distributional tests for the calendar spread, convenience yield and nearby futures are reported in Table 3. In all cases, the changes in spread (Poitras) and logarithm of ratio (Hinz and Fehr) are not normally distributed at the 5%. The cases of the changes in spread and convenience yield present that skewness of Mar-May is similar to that of a normal distribution and kurtosis of Jul-Dec is very high, which implies a distinct peak near the mean. The change of logarithm of the ratio has negative skewness except DecMar and kurtosis is very large. In all cases the normality of convenience yield is rejected and skewness is positive except the change in logarithm of ratio. The log-normality of the nearby futures is rejected but the Dec-Mar and Dec-Jul futures returns are similar to a normal distribution.

Figures 7 through 11 present histograms for the calendar spread, convenience yield, and nearby futures. The histograms of convenience yield ${ }^{6}$ show a long right tail and skewness to the right. Jul-Dec histogram of convenience yield is especially skewed to the right. The right skewness is consistent with the assumption of convenience yield being truncated at zero. Jul-Dec likely has the least truncation since it is often in backwardation.

[^3]Although the normality of convenience yield is rejected, the shape of the distribution provides modest support for assuming truncation at zero once values less than zero are regarded as measurement noise. Convenience yield has measurement noise due to estimating storage and interest costs. All of the models rely on normality assumptions and the normality assumption is rejected. Rejection of the normality assumption is often not as critical as rejection of other assumptions.

We use a panel unit root test to examine Gibson and Schwartz's assumption that convenience yield follows mean reversion. Table 4 presents t-statistics and p-values for calendar spreads and convenience yield. We cannot reject the hypotheses that calendar spread and convenience yield have a unit root. The t-statistics in the Augmented DickeyFuller regression for the calendar spread and convenience yield range between -2.74 and 1.69. This is not significant at the 5% level, which means that calendar spread and convenience yield are non-stationary. This also indicates that the new model's assumptions cannot be rejected in favor of the Gibson and Schwartz alternative.

Table 8 reports payoffs of the five different maturities given exercise price equal to spread at the first trading day, which indicates at the money. In all cases, actual payoffs of put options are higher than actual payoffs of calls. At the first trading day, put-call parity holds for Poitras and Hinz and Fehr models whereas it is not satisfied for Gibson and Schwartz and the new model. The Gibson and Schwartz model does not impose putcall parity, but it has no built-in biases. The lack of parity means that the convenience yield at 100 calendar days from expiration differs from the historical mean convenience yield. This could occur if there is a trend in convenience yield or seasonality. The new model does have a builit-in bias due to truncating convenience yield at zero and not
imposing efficiency on the spread market. This bias causes the model to overestimate call payoffs relative to puts. The payoffs of Dec-Mar and Dec-Jul spread, nevertheless, satisfy put-call parity, which can be explained by these maturities usually having positive convenience yield (not at full carry) and thus there is little truncation at zero.

The payoffs of in the money and out of money are presented in tables9 and 10. Poitras and Hinz and Fehr models overestimate option payoffs. The problem with Poitras option pricing formula is that it assumes no cointegration of the two futures processes. If they are cointegrated then the Poitras model will overestimate the volatility of the spread. Table 7 reports panel cointegration tests for two futures. As expected, the hypothesis of no cointegration is rejected. The problem with Hinz and Fehr's model is that when the spread is almost equal to the lower bound of full carry, the simple ratio can approach infinity (very large), which inflates the volatility. Adding an arbitrary constant to keep the ratio away from zero might improve the Hinz and Fehr model.

Figures 17 to 21 depict nonparametric regressions of calendar spread and convenience yield against trading days to expiration for the last 100 calendar days. DecMar, May-Jul, and Dec-Jul spread and convenience yield have a smile pattern while MarMay spread and convenience yield decrease as maturity approaches and Jul-Dec spread and convenience yield declines after the last 20 trading days to maturity.

We report the bias (mean error) and the root mean squared error (RMSE) to compare the relative performance of the four models: alternative calendar spread option pricing models. As shown in tables 11 and 12, the new model clearly outperforms the three other models. For instance, at the first trading day of table 12, the RMSEs of call and put are 0.69 and 1.57 for the new model and the RMSEs of call are 4.1, 6.77 , and 8.15 for

Gibson and Schwartz, Poitras, and Hinz and Fehr model, respectively. The bias of the new model is negative for puts, which suggests underestimated put payoffs. This is possible because of imposing the restriction of truncation at zero for convenience yield. We also compute the prediction errors for significance tests with respect to the mean and variance. Table 13 indicates that three methods overestimate actual payoffs and the new model underestimates actual put payoffs. For example, the mean coefficients of put payoffs of the three models are positive and significant, $1.94,0.83$, and, 0.37 , but that of put payoff of the new model is -0.05 . The new model has the least bias, which again favors the new model over the other three models.

Table 14 presents the results of the significance test for the variance difference in models by exercise prices. The null hypothesis is no difference in error variance between the new model and the other models. The variance of Hinz and Fehr model is positive but insignificant (0.27), which implies that the variance of Hinz and Fehr is not different from the variance of the new model. Similarly, the variance of Poitras model of -0.13 is negative, but not significantly different from zero, which indicates no difference in error variance compared to the new model. The variance of Gibson and Schwartz is higher than that of the new model. In summary, there is no difference in Hinz and Fehr, Poitras, and the new model for the variance. The variance for Gibson and Schwartz is higher than that for the new model.

CHAPTER VI

SUMMARY AND CONCLUSION

The theory of storage says that calendar spreads on a storable commodity are the sum of the opportunity cost of interest, the physical cost of storage, and convenience yield. We develop a new calendar spread option pricing model in which convenience yield follows arithmetic Brownian motion that is truncated at zero, nearby futures follows geometric Brownian motion, and interest rates and the physical cost of storage are held constant. A call option premium of the two-factor model is obtained using steps similar to that used to derive the Heston stochastic volatility model although our model does not assume stochastic volatility. The premium of a call option on a calendar spread is then obtained as the sum of the premium of the two-factor model minus the premium of call option on the convenience yield that has a strike price of zero.

We compute the implicit convenience yield based on the theory of storage since convenience yield is not obtainable directly. We perform the distributional tests for the calendar spreads and convenience yield to examine whether the models' assumptions are true. In all cases the null hypothesis of normality is rejected for both calendar spread and convenience yield. The histogram of the change in calendar spread, however, is somewhat similar to a normal distribution for Dec-Mar, May-Jul, and Dec-Jul spreads.

The distribution of convenience yield is strongly skewed to the right which supports the assumption that full carry is acting as a lower bound. Jul-Dec convenience yield is well fitted by a normal distribution since Jul-Dec calendar spreads are in backwardation where convenience yield is positive mostly. The variance of observed convenience yield does not go to zero and convenience yield usually stops a little short of full carry. This result may reflect market participants that have varying physical cost of storage and varying interest rates. Most commercial elevators are likely net borrowers, but some producers may be net lenders. It is also another possible reason that convenience yield may have measurement error.

We conduct a panel unit root test for five calendar spreads and convenience yield. The null hypothesis of a unit root cannot be rejected and thus the results support our assumption of Brownian motion over the Gibson and Schwartz (1990) assumption of mean reverting convenience yield. This also suggests that we cannot reject the new model's assumptions in favor of the Gibson and Schwartz alternative.

Monte Carlo simulation is used to obtain option payoffs for the new model as well as the Gibson and Schwartz model. The option payoffs for Poitras model as well as Hinz and Fehr model are calculated using analytical formulas. To compare the relative performance of the four models, we compute bias and RMSE. The findings imply that the new model outperforms the three other models. The negative bias of the new model suggests underestimated payoffs of puts, which is due to the restriction of truncated convenience yield at zero.

The significance tests for mean and volatility of the prediction error imply that the models overestimated payoffs in most cases, no difference in error variance for Hinz and

Fehr and Poitras as well as the new model, and the least variance of the new model compared to Gibson and Schwartz.

Future study will need to improve the estimation of the drift of convenience yield δ in the new model. With efficient markets, the drift of convenience yield should be negative rather than zero although this study assumes zero drift of convenience yield. The performance of the Hinz and Fehr model is disappointing. It could perhaps be improved by adding a constant to expected full carry to assure that relative spreads were always sufficiently away from zero to avoid the creation of outliers when spread is near full carry.

The new calendar spread option pricing model developed here has the potential to allow traders to lower bid-ask spreads, which ultimately could increase volume in these markets much like has occurred with traders use of the Black-Scholes model. The new model is clearly more accurate than the three alternative models considered.

REFERENCES

Bachelier, L. 1900. "ThCorie de la spkculation." Annales de l'Ecole Superieure, 17:2186. Translated in Cootner, P. H., ed. 1964. The Random Character of Stock Market Prices. Cambridge MA: MIT Press, pp.17-78.

Black, F., and Scholes, M. 1973. "The Pricing of Options and Corporate Liabilities." Journal of Political Economy 81: 637-654.

Brennan, M. J. 1958. "The Supply of Storage." The American Economic Review 48: 5072.

Bresson G. 2002. "Nonstationary Panels: Panel Unit Root Tests and Panel Cointegration." Paper presented at EuroLab Courses High-Level Scientific Conferences, Nice, 1729 June.

Chicago Mercantile Exchange (CME) Group. "Grain and Oilseed Calendar Spread Options." accessible at http://www.cmegroup.com/trading/agricultural/files/AC-357_CSO_Sell_Sheet-FC_3.pdf.

Commandeur, J.J., and Koopman, S.J. 2007. An Introduction to State Space Time Series Analysis. New York: Oxford University Press.

Fama, E.F., and K.R. French. 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage." The Journal of Business 60: 55-73.

Franken, J.R.V., P. Garcia, and S.H. Irwin. 2009. "Is Storage at a Loss Merely an Illusion of Spatial Aggregation?" Journal of Agribusiness 27:65-84.

Gibson, R., and Schwartz, E. 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims." Journal of Finance 45: 959-976.
de Goeij, W.J. 2008. "Modeling Forward Curves for Seasonal Commodities with an Application to Calendar Spread Options." PhD dissertation, Free University of Amsterdam.

Heston, S.L. 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options." The Review of Financial Studies 6: 327-343.

Heath, D., Jarrow, R. A., and Morton, A.J. 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation." Econometrica 60: 77-105.

Hinz, J., and Fehr, M. 2010. "Storage Costs in Commodity Option Pricing." SIAM Journal on Financial Mathematics 1: 729-751.

Irwin, S.H., Garcia, P., Good, D.L., and Kunda, L.E. 2011. "Spreads and Nonconvergence in Chicago Board of Trade Corn, Soybean, and Wheat Futures: Are Index Funds to Blame?" Applied Economic Perspectives and Policy 33: 116-142.

Nakajima K., and Maeda A. 2007. "Pricing Commodity Spread Options with Stochastic Term Structure of Convenience Yields and Interest Rates." Asia-Pacific Financial Markets 14: 157-184.

Murphy, J.A. 1990. "A Modification and Re-Examination of the Bachelier Option Pricing Model." American Economist 34: 34-41.

Poitras, G. 1990. "The Distribution of Gold Futures Spreads." The Journal of Futures Markets 10: 643-659.
\qquad . 1998. "Spread Options, Exchange Options, and Arithmetic Brownian Motion." Journal of Futures Markets 18: 487-517.

Schachermayer, W., and Teichmann J. 2008. "How Close Are the Option Pricing Formulas of Bachelier and Black-Merton-Scholes?" Mathematical Finance 18:155-170.

Schwartz, E.S. 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging." Journal of Finance 52: 923-973.

Shimko, D. 1994. "Options on Futures Spreads: Hedging, Speculation and Valuation." The Journal of Futures Markets 14: 183-213.

Thompson, S. 1986. "Returns to Storage in Coffee and Cocoa Futures Markets." The Journal of Futures Markets 6: 541-564.

Working, H. 1949. "The Theory of Price of Storage." American Economic Review 39: 1254-1262.

Zulauf, C.R., H. Zhou, and M.C. Roberts. 2006. "Updating the Estimation of the Supply of Storage." Journal of Futures Markets 26: 657-676.

Table 1. The volume of Chicago Board of Trade calendar spread options and futures

Type	Name	$\begin{aligned} & \text { VOLUME } \\ & \text { Y.T.D } 2013^{\text {a }} \end{aligned}$	$\begin{aligned} & \text { VOLUME } \\ & \text { Y.T.D } 2012 \end{aligned}$
Futures	Corn	61,283,591	69,830,860
Futures	Soybean	42,666,223	48,159,958
Futures	Soybean Meal	18,603,518	16,952,919
Futures	Soybean Oil	21,913,169	25,457,886
Futures	Wheat	23,609,816	25,939,886
	SUM	168,076,317	186,341,509
Options	Corn	22,575,455	25,083,104
Options	Soybean	13,946,834	17,315,067
Options	Soybean Meal	1,906,741	1,547,393
Options	Soybean Oil	1,367,277	2,084,934
Options	Wheat	4,241,180	4,939,028
	SUM	44,037,487	50,969,526
CSOs	Consecutive Corn	156,590	68,017
CSOs	Consecutive Soybean	9,426	735
CSOs	Consecutive Soybean Meal	115	0
CSOs	Consecutive Soybean Oil	1,724	3,236
CSOs	Consecutive Wheat	30,703	43,206
CSOs	Corn Jul-Dec	92,000	102,292
CSOs	Corn Dec-Dec	2,239	4,933
CSOs	Corn Dec-Jul	562	2,476
CSOs	Soybean Jul-Nov	59,152	95,692
CSOs	Soybean Aug-Nov	363	1,831
CSOs	Soybean Nov-Jul	50	1,106
CSOs	Soybean Nov-Nov	587	52
CSOs	Soybean May-Nov	80	0
CSOs	Soybean Jan-May	0	270
CSOs	Soy Meal Jul-Dec	0	0
CSOs	Soy Oil Jul-Dec	460	50
CSOs	Wheat Dec-Jul	0	2,278
CSOs	Wheat Jul-Jul	675	2,539
CSOs	Wheat Jul-Dec	6,871	5,750
	SUM	361,597	334,463

Table 2. Summary statistics

Variable	Sample Period	Mean	Standard Deviation	Minimum	Maximum
Dec-Mar CBOT Corn					
Dec Futures ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	279.18	102.10	161.50	775.25
Mar Futures ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	289.33	103.08	173.00	787.25
$\Delta \operatorname{lnDec}(\phi / \mathrm{bu})$	8/12/1976-11/16/2011	0.00	0.01	-0.07	0.09
Dec-Mar Spread ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	-10.15	3.74	-19.50	3.75
Δ Dec-Mar Spread ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	0.00	0.50	-2.50	3.25
Dec-Mar Implicit Convenience Yield	8/12/1976-11/16/2011	1.52	4.08	-8.30	19.42
Δ Dec-Mar Implicit Convenience Yield	8/12/1976-11/16/2011	0.00	0.52	-2.61	3.20
Three-month TB (\%)	8/12/1976-11/16/2011	5.24	3.27	0.00	15.85
Prime rate(\%)	8/12/1976-11/16/2011	8.29	3.33	3.25	20.50
Storage Costs ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	6.16	1.00	4.50	9.00
Mar-May CBOT Corn					
Mar Futures ($¢ / \mathrm{bu}$)	11/12/1975-2/17/2012	287.65	102.01	142.75	712.75
May Futures ($¢ / \mathrm{bu}$)	11/12/1975-2/17/2012	294.36	102.71	150.75	723.00
$\Delta \operatorname{lnDec}$ ($¢ / \mathrm{bu}$)	11/12/1975-2/17/2012	0.00	0.01	-0.08	0.07
Mar-May Spread ($¢ / \mathrm{bu}$)	11/12/1975-2/17/2012	-6.71	2.92	-13.75	2.50
Δ Mar-May Spread ($¢ / \mathrm{bu}$)	11/12/1975-2/17/2012	-0.02	0.41	-2.25	2.25
Mar-May Implicit Convenience Yield	11/12/1975-2/17/2012	1.24	3.11	-5.17	12.57
Δ Mar-May Implicit Convenience Yield	11/12/1975-2/17/2012	0.00	0.50	-2.46	9.02
Three-month TB (\%)	11/12/1975-2/17/2012	5.23	3.42	0.00	17.14
Prime rate(\%)	11/12/1975-2/17/2012	8.25	3.53	3.25	21.50
Storage Costs (ϕ / bu)	11/12/1975-2/17/2012	4.12	0.70	3.00	6.00
May-Jul CBOT Corn					
May Futures ($¢ / \mathrm{bu}$)	1/12/1976-4/20/2012	300.03	114.01	150.75	776.00
Jul Futures ($¢ / \mathrm{bu}$)	1/12/1976-4/20/2012	304.96	113.99	155.25	781.25
$\Delta \operatorname{lnDec}(\phi / \mathrm{bu})$	1/12/1976-4/20/2012	0.00	0.01	-0.07	0.07
May-Jul Spread ($¢ / \mathrm{bu}$)	1/12/1976-4/20/2012	-4.93	4.43	-14.75	19.75
Δ May-Jul Spread ($¢ / \mathrm{bu}$)	1/12/1976-4/20/2012	0.01	0.50	-2.50	4.50
May-Jul Implicit Convenience Yield	1/12/1976-4/20/2012	3.17	4.75	-5.77	30.06
Δ May-Jul Implicit Convenience Yield	1/12/1976-4/20/2012	0.00	0.50	-2.79	4.37
Three-month TB (\%)	1/12/1976-4/20/2012	5.28	3.56	0.02	16.00
Prime rate(\%)	1/12/1976-4/20/2012	8.22	3.62	3.25	20.00
Storage Costs ($¢ / \mathrm{bu}$)	1/12/1976-4/20/2012	4.15	0.73	3.00	6.00

[^4]Table 2. Summary statistics (continued)

Variable	Sample Period	Mean	Standard Deviation	Minimum	Maximum
Jul-Dec CBOT Corn					
Jul Futures ($¢ / \mathrm{bu}$)	3/12/1976-6/20/2012	307.23	119.69	160.75	787.00
Dec Futures ($¢ / \mathrm{bu}$)	3/12/1976-6/20/2012	302.00	105.29	171.75	780.00
$\Delta \operatorname{lnJul}(¢ / \mathrm{bu})$	3/12/1976-6/20/2012	0.00	0.01	-0.06	0.06
Jul-Dec Spread ($¢ / \mathrm{bu}$)	3/12/1976-6/20/2012	5.22	30.49	-34.25	159.25
Δ Jul-Dec Spread ($¢ / \mathrm{bu}$)	3/12/1976-6/20/2012	-0.04	2.55	-21.75	29.75
Jul-Dec Implicit Convenience Yield	3/12/1976-6/20/2012	25.75	32.29	-9.13	186.58
Δ Jul-Dec Implicit Convenience Yield	3/12/1976-6/20/2012	0.00	2.54	-22.48	30.67
Three-month TB (\%)	3/12/1976-6/20/2012	5.21	3.47	0.02	17.01
Prime rate(\%)	3/12/1976-6/20/2012	8.25	3.66	3.25	20.50
Storage Costs ($¢ / \mathrm{bu}$)	3/12/1976-6/20/2012	10.39	1.81	7.50	15.00
Dec-Jul CBOT Corn					
Dec Futures ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	279.21	102.11	161.50	775.25
Jul Futures ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	299.33	103.62	182.00	794.00
$\Delta \operatorname{lnDec}$ ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	0.00	0.01	-0.07	0.09
Dec-Jul Spread ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	-20.11	8.88	-42.00	11.00
Δ Dec-Jul Spread ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	-0.01	0.96	-3.75	5.00
Dec-Jul Implicit Convenience Yield	8/12/1976-11/16/2011	7.23	10.39	-18.84	47.77
Δ Dec-Jul Implicit Convenience Yield	8/12/1976-11/16/2011	0.00	1.02	-4.12	5.40
Three-month TB (\%)	8/12/1976-11/16/2011	5.24	3.27	0.00	15.85
Prime rate(\%)	8/12/1976-11/16/2011	8.29	3.33	3.25	20.50
Storage Costs ($¢ / \mathrm{bu}$)	8/12/1976-11/16/2011	14.38	2.33	10.50	21.00

Note: Implicit convenience yield is computed by the prime rate times nearby futures prices plus storage costs.

Table 3. Distribution tests for corn futures spread and convenience yield

| | Obs. | Skewness | Kurtosis | Kolmogorov-
 Smirnov | Cramer-von Mises |
| :--- | :--- | :---: | :---: | :---: | :---: | Anderson-Darling

Note: Implicit convenience yield is computed as the spread minus the prime rate times nearby futures price and also minus storage costs. * indicates rejection of the null hypothesis of normality at the 5% level.

Table 4. Panel unit root tests in corn futures spread and convenience yield, (1975-2012)

Variable	Spread	Convenience Yield
Dec-Mar		
Im-Pesaran-Shin Test	$-1.40(0.08)$	$-1.17(0.12)$
Fisher-type unit-root test	$0.39(0.35)$	$-0.37(0.64)$
Mar-May Futures Spread		
Im-Pesaran-Shin Test	$-2.53(0.01)$	$-2.74(0.00)$
Fisher-type unit-root test	$0.30(0.38)$	$0.10(0.46)$
Mar-July Futures Spread	$-0.54(0.29)$	$-0.28(0.39)$
Im-Pesaran-Shin Test	$-0.97(0.16)$	$-0.01(0.50)$
Fisher-type unit-root test		
	$-0.28(0.39)$	$-0.34(0.37)$
July-Dec Futures Spread	$1.69(0.05)$	$1.41(0.08)$
Im-Pesaran-Shin Test		
Fisher-type unit-root test	$0.35(0.64)$	$1.12(0.87)$
Dec-July Futures Spread	$-0.39(0.65)$	$-1.31(0.90)$
Im-Pesaran-Shin Test		
Fisher-type unit-root test		

Note: The null hypothesis is that panels contain a unit root and thus the null hypothesis is not rejected using any of the tests. Numbers in parentheses indicate p-values.

Table 5. The results of the first order auto regression for nearby futures prices

	\hat{q}	t-statistic	p-value
Dec-Mar spread	0.031	1.22	0.22
Mar-May spread	0.020	0.99	0.32
May-Jul spread	0.017	0.70	0.48
Jul-Dec spread	-0.005	-0.22	0.83
Dec-Jul spread	0.018	0.79	0.43

Table 6. Estimation of the parameters k and α of the Gibson and Schwartz model

	Dec-Mar		Mar-May		May-Jul		Jul-Dec		Dec-Jul	
Year	k	α								
1976	0.040	3.117	0.027	4.421	0.023	5.359	-0.005	4.510	0.029	10.045
1977	0.038	2.952	0.026	4.040	0.021	4.882	-0.003	-21.664	0.031	10.483
1978	0.034	2.660	0.028	4.285	0.020	4.746	-0.003	-21.001	0.029	10.262
1979	0.029	1.806	0.056	2.527	0.021	5.161	-0.005	5.721	0.020	8.736
1980	0.041	0.446	0.015	0.618	0.015	4.754	-0.006	12.694	0.020	5.180
1981	0.016	0.407	0.029	0.190	0.000	-3.810	-0.001	12.597	0.003	4.768
1982	0.017	-0.641	0.002	-2.805	0.019	3.873	0.017	13.115	0.003	-8.177
1983	0.017	-0.042	0.011	-1.385	0.025	4.453	0.018	16.835	0.004	-2.685
1984	0.002	-1.159	0.012	-1.820	0.030	4.068	-0.007	14.079	-0.002	16.450
1985	0.005	6.245	0.012	-1.551	0.008	2.372	0.001	184.934	0.000	78.801
1986	0.003	12.253	0.010	-2.566	0.008	5.073	0.002	85.777	0.000	228.998
1987	0.004	18.117	0.018	-0.413	-0.003	-1.543	0.004	94.236	0.001	75.202
1988	0.004	15.357	0.012	0.237	0.000	402.146	0.003	123.198	0.001	76.274
1989	0.014	4.495	0.012	0.926	-0.005	3.028	-0.001	-14.017	0.018	12.088
1990	0.015	4.805	0.016	2.096	-0.007	4.118	-0.003	6.075	0.020	12.050
1991	0.016	3.932	0.015	1.639	-0.008	3.448	-0.003	0.100	0.018	10.030
1992	0.019	3.759	0.016	2.211	0.005	6.053	0.002	21.369	0.017	8.676
1993	0.013	2.145	0.033	1.222	0.000	5.006	-0.002	54.283	0.012	3.843
1994	0.012	2.480	0.039	1.186	0.001	25.565	0.002	1.761	0.006	3.720
1995	0.038	1.016	0.025	0.373	0.014	3.750	0.007	9.522	0.015	2.390
1996	0.011	1.123	0.014	0.000	0.030	3.060	0.010	6.589	-0.002	10.799
1997	0.001	22.348	0.023	-0.424	-0.007	4.636	-0.003	23.862	-0.002	-11.098
1998	0.004	7.492	0.023	1.201	-0.006	5.341	-0.002	-0.092	0.001	60.744
1999	0.000	27.513	0.019	2.876	-0.008	8.311	-0.003	17.421	-0.001	-24.375
2000	0.001	12.248	0.019	4.535	-0.007	5.778	-0.003	-4.283	-0.002	4.770
2001	0.000	-25.364	0.018	4.042	-0.007	5.171	-0.003	-6.194	0.004	1.609
2002	0.012	-1.489	0.018	4.702	0.006	0.410	0.003	-3.923	0.009	-3.903
2003	0.004	-1.763	0.004	3.770	0.037	1.575	0.023	0.627	0.006	-5.353
2004	0.004	0.962	0.003	0.352	0.003	3.099	0.000	183.699	0.006	-1.335
2005	0.001	-4.762	0.063	-0.433	0.003	-0.777	0.008	-1.214	0.003	-6.826
2006	-0.002	10.727	0.015	0.338	0.003	-2.645	0.008	-3.572	0.000	-622.796
2007	0.008	-1.053	0.016	0.128	-0.002	13.843	0.006	-9.253	0.005	4.090
2008	0.023	-2.484	0.013	-0.528	0.000	425.854	0.022	2.592	0.009	-0.638
2009	0.034	-3.954	0.007	-2.702	0.014	-2.977	0.022	-2.483	0.008	-7.228
2010	0.031	-3.801	0.031	0.069	0.024	-1.179	0.029	-2.145	0.007	-5.472
2011	0.020	-2.595	0.044	-0.795	0.025	-1.204	0.030	-0.994	0.003	17.739
2012	0.005	-1.364	0.053	-1.928	0.008	-1.998	0.006	-11.571	0.003	0.945
Average	0.014	3.187	0.022	0.828	0.008	25.914	0.005	21.438	0.008	-0.573

Table 7. Panel cointegration tests for corn futures

Futures	Pt - statistic	p -value	Pa - statistic	p -value
Dec-Mar	-6.60	0.001	-2.52	0.001
Mar-May	-7.93	0.000	-3.53	0.000
May-Jul	-5.63	0.015	-2.43	0.002
Jul-Dec	-11.55	0.000	0.00	0.000
Dec-Jul	-6.23	0.00	-2.19	0.008

Table 8. Payoffs of calendar spread options at the money

$X=$ Spread: At the money								
Payoffs of Dec-Mar Calendar Spread Options								
Actual Payoff at Maturity			Call:	1.33	Put:	1.43		
			Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
68	1.31	1.30	1.18	1.49	2.03	2.03	4.11	4.11
54	1.06	1.51	1.00	1.57	1.40	1.85	3.12	3.62
39	0.94	1.56	0.89	1.52	1.27	1.86	2.21	2.84
19	1.19	1.44	0.97	1.36	2.07	2.21	2.00	2.03
Payoffs of Mar-May Calendar Spread Options								
Actual Payoff at Maturity			Call:	0.30	Put:	1.90		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
61	1.41	0.53	0.94	1.47	1.62	1.62	2.82	2.82
47	1.26	0.62	0.89	1.36	1.50	1.89	2.58	2.50
32	0.97	0.82	0.73	1.40	1.08	1.79	1.77	2.12
12	0.66	1.21	0.50	1.40	0.83	1.98	1.96	1.15
Payoffs of May-Jul Calendar Spread Options								
Actual Payoff at Maturity			Call:	1.46	Put:	1.61		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
64	1.13	0.96	8.43	0.00	2.13	2.13	4.28	4.28
50	1.11	1.06	8.32	0.00	1.75	1.72	2.94	3.08
35	0.90	1.23	7.93	0.01	1.51	2.09	2.12	2.49
15	1.57	1.64	7.86	0.01	1.26	1.72	1.83	1.37
Payoffs of Jul-Dec Calendar Spread Options								
Actual Payoff at Maturity			Call:	4.07	Put:	6.12		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
63	3.82	3.90	11.94	15.48	6.15	6.15	17.39	17.39
49	4.53	4.03	10.57	13.76	7.27	6.31	11.81	11.00
34	5.34	4.77	9.02	11.75	8.02	8.10	10.33	11.40
14	5.32	5.51	7.50	9.13	7.78	6.33	8.28	5.48
Payoffs of Dec-Jul Calendar Spread Options								
Actual Payoff at Maturity			Call:	2.40	Put:	2.85		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
66	2.61	2.61	3.31	3.83	16.73	16.73	9.52	9.52
52	2.21	2.86	2.89	3.86	4.02	4.67	6.23	7.39
37	1.95	3.20	2.55	3.81	3.31	4.39	3.86	5.62
17	2.23	3.18	2.42	3.42	2.48	3.65	2.65	3.83

Table 9. Payoffs of calendar spread options in the money

$\mathrm{X}=$ Spread-3: In the money								
Payoffs of Dec-Mar Calendar Spread Options								
Actual Payoff at Maturity			Call:	3.35	Put:	0.46		
			Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
68	3.60	0.28	3.17	0.48	3.94	0.94	5.60	2.60
54	3.18	0.33	2.94	0.50	3.29	0.74	4.17	1.89
39	3.01	0.33	2.80	0.43	3.12	0.74	3.11	1.06
19	3.39	0.34	2.97	0.37	3.57	0.82	3.50	0.55
Payoffs of Mar-May Calendar Spread Options								
Actual Payoff at Maturity			Call:	1.76	Put:	0.36		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
61	3.91	0.04	2.90	0.43	3.62	0.62	4.75	1.75
47	3.71	0.07	2.95	0.42	3.40	0.78	4.71	1.27
32	3.23	0.08	2.72	0.39	2.94	0.65	3.48	0.80
12	2.69	0.25	2.45	0.35	2.50	0.64	3.34	0.61
Payoffs of May-Jul Calendar Spread Options								
Actual Payoff at Maturity			Call:	3.30	Put:	0.45		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
64	3.30	0.13	2.48	0.63	4.09	1.09	6.40	3.40
50	3.26	0.20	2.48	0.56	3.74	0.71	4.50	1.68
35	2.91	0.24	2.16	0.46	3.34	0.92	3.90	1.18
15	2.89	0.30	2.32	0.35	3.09	0.55	3.43	0.63
Payoffs of Jul-Dec Calendar Spread Options								
Actual Payoff at Maturity			Call:	5.45	Put:	4.50		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
63	5.74	1.68	13.43	13.97	7.84	4.84	19.57	16.57
49	6.42	1.89	12.02	12.21	8.98	5.03	12.98	9.18
34	7.07	2.68	10.51	10.24	9.70	6.78	12.03	10.25
14	7.04	3.66	9.05	7.68	9.56	5.10	10.48	4.63
Payoffs of Dec-Jul Calendar Spread Options								
Actual Payoff at Maturity			Call:	4.19	Put:	1.65		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
66	4.70	0.82	4.94	2.46	18.40	15.40	11.26	8.26
52	4.13	1.01	4.48	2.45	5.67	3.32	7.33	5.67
37	3.73	1.34	4.08	2.34	4.91	2.98	5.02	3.97
17	4.02	1.59	4.06	2.06	4.01	2.19	4.05	2.28

Table 10. Payoffs of calendar spread options out of money

X=Spread+3: Out of money								
Payoffs of Dec-Mar Calendar Spread Options								
Actual Payoff at Maturity			call:	0.44	put:	3.55		
			Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
68	0.38	2.48	0.25	3.56	0.94	3.94	3.96	6.96
54	0.29	2.93	0.18	3.75	0.47	3.92	2.85	6.37
39	0.23	3.12	0.15	3.78	0.47	4.09	1.69	5.34
19	0.33	3.05	0.15	3.54	0.80	4.05	1.09	4.14
Payoffs of Mar-May Calendar Spread Options								
Actual Payoff at Maturity			call:	0.03	put:	4.63		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
61	0.43	2.56	0.18	3.71	0.62	3.62	2.62	5.62
47	0.33	2.68	0.14	3.61	0.60	3.98	2.31	5.25
32	0.22	3.06	0.09	3.76	0.33	4.04	1.36	4.71
12	0.15	3.71	0.05	3.96	0.23	4.38	0.83	3.27
Payoffs of May-Jul Calendar Spread Options								
Actual Payoff at Maturity			call:	0.69	put:	3.84		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
64	0.23	3.06	0.13	4.28	1.09	4.09	4.15	7.15
50	0.23	3.18	0.16	4.24	0.73	3.69	2.62	5.76
35	0.17	3.50	0.04	4.34	0.66	4.23	1.63	5.03
15	0.32	3.74	0.07	4.10	0.49	3.95	0.89	4.31
Payoffs of Jul-Dec Calendar Spread Options								
Actual Payoff at Maturity			call:	3.16	put:	8.22		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
63	2.57	4.52	10.68	17.22	4.84	7.84	16.99	19.99
49	3.20	4.68	9.33	15.52	5.88	7.93	11.12	13.31
34	4.10	5.71	7.76	13.50	6.69	9.77	9.49	13.54
14	4.10	6.72	6.25	10.89	6.37	7.92	6.95	7.11
Payoffs of Dec-Jul Calendar Spread Options								
Actual Payoff at Maturity			call:	1.13	put:	4.59		
	New model		Gibson \& Schwartz		Poitras		Hinz	
Trading days to expiration	Call	Put	Call	Put	Call	Put	Call	Put
66	1.41	3.54	2.12	5.63	15.40	18.40	9.27	12.27
52	1.12	3.99	1.75	5.72	2.81	6.46	5.82	9.98
37	0.98	4.59	1.49	5.75	2.23	6.31	3.30	8.03
17	1.17	4.74	1.29	5.29	1.53	5.71	1.84	6.07

Table 11. Bias and RMSE of calendar spread options by exercise price

Table 12. Overall Bias and RMSE of calendar spread options according by exercise price

Overall Bias and RMSE

Bias of Calendar Spread Options								
	New model Bias		 Schwartz Bias		Poitras Bias		Hinz \& Fehr Bias	
Trading days	Call	Put	Call	Put	Call	Put	Call	Put
1	0.23	-1.17	2.26	1.91	4.12	2.90	6.34	5.11
15	0.20	-1.00	1.87	1.57	1.59	0.47	3.83	2.80
30	0.18	-0.65	1.39	1.17	1.46	0.85	2.51	2.16
50	0.27	-0.33	1.05	0.53	1.26	0.35	1.70	0.10

RMSE of Calendar Spread Options

	New model RMSE		Gibson \& Schwartz RMSE		Poitras RMSE		Hinz \& Fehr RMSE	
Trading days	Call	Put	Call	Put	Call	Put	Call	Put
1	0.69	1.57	4.10	4.20	6.77	6.19	8.15	6.39
15	0.66	1.44	3.54	3.44	2.72	0.86	5.00	3.28
30	0.79	1.03	2.91	2.57	2.91	1.17	4.02	2.86
50	0.65	0.58	2.38	1.42	2.80	0.51	3.16	0.76

Table 13. Significance tests for error means

Least Squares Means						
Method	Option	Estimate	Standard	Error	DF	t Value
	Call	1.95	0.15	454	12.95	
Hinz \& Fehr	Put	1.94	0.12	454	15.85	$<.0001$
	Call	0.70	0.13	454	5.23	$<.0001$
Poitras	Put	0.83	0.11	454	7.39	$<.0001$
	Call	0.32	0.17	454	1.89	0.06
Gibson \& Schwartz	Put	0.37	0.14	454	2.69	0.01
	Call	$\mathbf{0 . 2 0}$	0.10	454	1.92	$\mathbf{0 . 0 6}$
New model	Put	$\mathbf{- 0 . 0 5}$	0.09	454	-0.55	$\mathbf{0 . 5 8}$

Table 14. Significance tests for error variances
Variance Parameter Estimates

Cov Parm	Estimate	Standard Error	Pr Z
Trading days 1	1.29	0.16	$<.0001$
Trading days 2	-0.09	0.12	0.45
Trading days 3	-0.36	0.12	0.00
Dec-Mar spread	0.94	0.22	$<.0001$
Mar-May spread	-2.32	0.18	$<.0001$
May-Jul spread	2.33	0.14	$<.0001$
Jul-Dec spread	-0.40	0.17	0.02
Call option	0.39	0.09	$<.0001$
Exercise: ATM	0.25	0.12	0.03
Exercise: ITM	0.03	0.12	0.79
Hinz \& Fehr	$\mathbf{0 . 2 7}$	0.14	$\mathbf{0 . 0 5}$
Poitras	$\mathbf{- 0 . 0 2}$	0.17	$\mathbf{0 . 8 8}$
Gibson \& Schwartz	$\mathbf{0 . 5 9}$	0.20	$\mathbf{0 . 0 0}$
Residual	1.59	0.11	$<.0001$
Note: Exponential function is used to estimate	variance for the prediction	error	

Note: Exponential function is used to estimate variance for the prediction error. The variance equation is specified as $\sigma_{g n l h t}^{2}=\exp \left[a_{0}^{v}+\sum_{i=1}^{3} a_{i}^{v} D_{i g}+\sum_{i=1}^{4} b_{i}^{v} D_{i n}+c_{l}^{v} D_{l}+\sum_{i=1}^{3} d_{i}^{v} D_{i h}\right]$.

Figure 1. Plots of CBOT Dec-Mar corn spread

Figure 2. Plots of CBOT Mar-May corn spread

	$\begin{aligned} & 0 \\ & 3 / 23 / 1981 \text { men } \\ & -20 \\ & \\ & \text { spread } 82-82 \end{aligned}$
	$\begin{aligned} & \begin{array}{l} 0 \\ 12 / 20 / 1985 m^{2} \\ -10 \\ \\ \text { spread } 87-87 \end{array} \\ & \hline \end{aligned}$
0 $9 / 16 / 2004$ -20 spread 06-06	$\begin{aligned} & \begin{array}{l} 0 \\ 9 / 15 \\ -20 \\ \hline 2005 \operatorname{lan}^{2} \end{array} \\ & \text { spread 07-07 } \end{aligned}$

Figure 3. Plots of CBOT May-Jul corn spread

Figure 4. Plots of CBOT Jul-Dec corn spread

Figure 5. Plots of CBOT Dec-Jul corn spread

Figure 6. Nonparametric regression of corn spread versus days to expiration

Figure 6. Nonparametric regression of corn spread versus days to expiration (continued)

Jul-Dec corn spread (cents/bu.)

Figure 6. Nonparametric regression of corn spread versus days to expiration (continued)

Figure 7. Histograms of Dec-Mar spread and convenience yield, (1976-2011)

Note: Convenience yield is computed as the spread minus the prime rate times nearby futures price and also minus storage costs.

Figure 8. Histograms of Mar-May spread and convenience yield, (1975-2012)

Note: Convenience yield is computed as the spread minus the prime rate times nearby futures price and also minus storage costs.

Figure 9. Histograms of May-Jul spread and convenience yield, (1975-2012)

Note: Convenience yield is computed as the spread minus the Prime rate times nearby futures price and also minus storage costs.

Figure 10. Histograms of Jul-Dec spread and convenience yield, (1976-2012)

Note: Convenience yield is computed as the spread minus the Prime rate times nearby futures price and also minus storage costs.

Figure 11. Histograms of Dec-Jul spread and convenience yield, (1976-2011)

Note: Convenience yield is computed as the spread minus the Prime rate times nearby futures price and also minus storage costs.

Figure 12. Dec-Mar convenience yield plots by year, (1976-2011)

Figure 13. Mar-May convenience yield plots by year, (1975-2012)

Figure 14. May-Jul convenience yield plots by year, (1976-2012)

Figure 15. Jul-Dec convenience yield plots by year, (1976-2012)

Figure 16. Dec-Jul convenience yield plots by year, (1976-2011)

Figure 17. Nonparametric regressions of Dec-Mar calendar spread and convenience yield against trading days to expiration for the sample period

Figure 18. Nonparametric regressions of Mar-May calendar spread and convenience yield against trading days to expiration for the sample period (continued)

Mar-May Convenience Yield (cents/bu.)

Figure 19. Nonparametric regressions of May-Jul calendar spread and convenience yield against trading days to expiration for the sample period (continued)

Figure 20. Nonparametric regressions of Jul-Dec calendar spread and convenience yield against trading days to expiration for the sample period (continued)

Figure 21. Nonparametric regressions of Dec-Jul calendar spread and convenience yield against trading days to expiration for the sample period (continued)

VITA

Juheon Seok

Candidate for the Degree of

Doctor of Philosophy

Thesis: CALENDAR SPREAD OPTIONS FOR STORABLE COMMODITIES

Major Field: Agricultural Economics
Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Agricultural Economics at Oklahoma State University, Stillwater, Oklahoma in December, 2013.

Completed the requirements for the Master of Science in Economics at Oklahoma State University, Stillwater, Oklahoma in 2012.

Completed the requirements for the Master of Arts in Economics at Sungkyunkwan University, Seoul, Korea in 2008.

Completed the requirements for the Bachelor of Arts in Economics at Sungkyunkwan University, Seoul, Korea in 2004.

Experience:

Research Assistant at Oklahoma State University 2011-2013
Graduate Assistant at Oklahoma State University 2008-2010
Research Assistant in Korea Research Institute for Vocational Education \&
Training
Research Assistant at SungKyunKwan University 2006-2008
Assistant in Korea Institute for International Economic Policy 2004 - 2005

Professional Memberships:

Agricultural \& Applied Economics Association (AAEA) 2013 - 2014
American Economic Association (AEA) 2013-2014

[^0]: ${ }^{1}$ The price difference between (futures) contracts with different maturity is prevented from exceeding the full cost of carrying the commodity. Carrying costs include interest, insurance and storage.

[^1]: ${ }^{2}$ The result is shown in table 5. As expected, the results are consistent with the no autocorrelation assumption of nearby futures price.
 ${ }^{3}$ The implied volatility is also considered as an estimate for σ_{1}. In the study, however, historical volatility is used since implied volatility is not obtainable for the entire sample period. The comparison of payoffs which are obtained using historical and implied volatility shows that it is not different. The reason for this is that the movement in the interest cost component is small relative to the movement in convenience yield.
 ${ }^{4}$ Due to truncation, the condition for efficiency is not actually zero.

[^2]: ${ }^{5}$ Table 6 reports estimates of the parameters k and α.

[^3]: ${ }^{6}$ The convenience yield is computed by the prime rate times nearby futures prices plus storage costs.

[^4]: Note: Implicit convenience yield is computed by the prime rate times nearby futures prices plus storage costs.

