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Abstract:  

 
Anaplasma phagocytophilum, first identified as a pathogen of ruminants in Europe, has more 

recently been recognized as an emerging tick-borne pathogen of humans in the U.S. and Europe. 

A. phagocytophilum is transmitted primarily by ticks of the genus Ixodes. Our laboratory recently 

developed a sheep model for study of the host/ tick/pathogen interactions of the human NY-18 

isolate of A. phagocytophilum.  In this model, sheep became infected with the pathogen within 14   

days after inoculation but did not exhibit clinical signs and infected morulae were rarely seen in 

stained blood smears. However, when ticks were allowed to feed on the infected sheep, they 

readily acquired A. phagocytophilum infection, and 80% to 100% of the tick salivary glands and 

guts were confirmed by PCR to be infected after a 2- to 4-day feeding period.   In this research 

we examined tick feeding sites to determine the source of A. phagocytophilum infection for the 

ticks using PCR and immunohistochemistry (IHC). Postmortem skin biospies were taken directly 

below tick feeding sites, fixed in buffered formalin and embedded in paraffin. IHC was done 

using antibodies against recombinant major surface protein 4 (MSP4) that were indirectly labeled 

with fluorescein (FA) or peroxidase-antiperoxidase (PAP) and then examined with confocal or 

light microscopy. Expression of immune response genes, shown previously to be differentially 

regulated in response to A. phagocytophilum infection in sheep, was determined by qRT-PCR in 

blood and skin biopsies. Variable expression of these genes was observed in tick and non-tick 

feeding sites of infected and uninfected sheep. Granuloctyes infected with A. phagocytophilum 

were detected in skin biopsies by both IHC methods. Tick feeding appears to attract infected 

neutrophils and therefore contributes to the exposure and infection of ticks with A. 

phagocytophilum after short feeding periods. 
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CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Introduction 

Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a gram negative 

bacteria transmitted by ticks, most notably of the genus Ixodes, to a wide range of hosts, 

including birds, small and large mammals and humans (Goodman 2005; Woldehiwet 

2010). This organism is the etiologic agent of a febrile illness of humans (human 

granulocytic anaplasmosis, HGA), sheep and other ruminants (tick-borne fever, TBF), 

horses (equine granulocytic anaplasmosis, EGA) and dogs (canine granulocytic 

anaplasmosis, CGA). While A. phagocytophilum is an established pathogen of small 

ruminants in Europe (Stuen 2007; Stuen et al. 2009; 2013), this pathogen has more 

recently been shown to be the agent of the emerging tick-borne disease of humans, HGA, 

in the United States, Europe and Asia (Goodman 2005).  

  The recognition of the broad distribution of A. phagocytophilum and its 

emergence as a human tick-borne pathogen, particularly in the U.S., have created 

renewed interest and accelerated research on this organism, particularly on the molecular 

relationship of the pathogen with its vertebrate and tick hosts (Woldehiwet 2010).  

Because A. phagocytophilum is infective for a wide range of mammals, this pathogen 
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may emerge in other animal populations in the future, such as food animal species in the 

U.S., which may impact food animal production and also pose risk of increased exposure 

of humans. 

  Research in our laboratory has been directed toward development of a sheep 

model for studying host-pathogen-vector interactions and the NY-18 human isolate of A. 

phagocytophilum.  Sheep were shown to be susceptible to infection with A. 

phagocytophilum and served as a host for infection of Ixodes scapularis ticks (Kocan et 

al. 2012).  The research presented in this thesis confirmed our initial findings and 

extended our understanding of this sheep model by focusing on the tick feeding site and 

factors which may favor A. phagocytophilum infection of the tick vector.  

Historical Background and Current Classification 

Anaplasma phagocytophilum was first recognized in 1932 as the causative agent 

of TBF, a disease of sheep first reported in Scotland (MacLeod, 1932). Since that time, 

this pathogen has been shown to cause disease in sheep and cattle throughout Europe 

(Hudson 1950). The organism was first named Rickettsia phagocytophilia (Foggie 1949), 

and then was renamed Cytoecetes phagocytophila (Foggie 1962) based on morphological 

similarities to Cytoecetes microtic (Tyzzer 1938). Subsequently, this organism was then 

listed as a separate species, E. phagocytophila, and classified in the tribe Ehrlichieae 

(Ristic and Huxsoll 1984), but this designation was not adopted by researchers in Europe 

who continued to refer to the organism as C. phagocytophila (Woldehiwet and Scott 

1993).   

             Diseases in horses and dogs caused by organisms similar to E. phagocytophila 

were then reported to be emerging in the U.S. The first case of equine granulocytic 
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ehrlichiosis (EGE) in horses was reported in California in 1969 (Gribble 1969) and was   

presented as a separate species, E. equi. Granulocytic E. canis, an emerging disease in 

dogs, was first recognized in Arkansas in 1971 (Madewell and Gribble 1982). Up to this 

point, these organisms were thought to be maintained in a transmission cycle between 

domestic animals and free-living mammalian reservoirs (Ogden et al. 1998 a,b).  In the 

early 1990’s, an emerging tick-borne disease causing a febrile illness in humans in the 

U.S. was shown to be caused by a yet-to-be-named bacteria that parasitized granulocytes 

in a manner similar to E. phagocytophila, E. equi and granulocytic E. canis, and was  

named human granulocytic ehrlichiosis (HGE) (Chen et al. 1994). 

The disease characteristics of human infections were similar to those described in 

cases of TBF, EGE and CGE, as well as the unique ability of the organism to invade and 

survive in host granulocytes, and led to study of the molecular relatedness of organisms 

in the families, Rickettsiaceae, Bartonellaceae, and Anaplasmataceae. The 

reclassification of these families that followed was based primarily on the genetic 

relatedness of the 16S rRNA, groESL, and surface protein genes (Dumler et al. 2001). 

Phylogenetic analyses resulted in the formation of four distinct genera within the family 

Anaplasmataceae: (i) Anaplasma, with a 96.1% minimum similarity; (ii) Ehrlichia, with a 

97.7% similarity; (iii) Wolbachia, with a 95.6% similarity; and (iv) Neorickettsia, with a 

94.9% similarity. Most notably, this reclassification resulted in unification of the 

etiologic agents of EGE, CGE and HGE  into one taxon, A. phagocytophilum, and the 

associated diseases (EGE, CGE and HGE) were renamed equine granulocytic 

anaplasmosis (EGA), canine granulocytic anaplasmosis (CGA) and human granulocytic 

anaplasmosis (HGA), while  A. phagocytophilum infection in sheep continued to be  
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referred to as tick-borne fever TBF. Since this 2001 reclassification many strains of A. 

phagocytophilum have been identified in the U.S., Europe and other areas of the world 

which differ in host preferences, disease characteristics, molecular composition and other 

aspects. Each distinct strain is now referred to as a variant of A. phagocytophilum. 

 The bacteria classified within the family Anaplasmatacea are obligate intracellular 

organisms found exclusively within membrane-bound vacuoles in the host cell 

cytoplasm. Most organisms within the family Anaplasmataceae multiply within 

vertebrate and invertebrate hosts. Conversely, organisms classified within the family 

Rickettsiaceae are obligate intracellular bacteria that are found free within eukaryotic 

host cell cytoplasm. The reclassification of the genus Anaplasma sp. resulted in the 

placement of A. phagocytophilum with organisms that primarily infect ruminants and that 

are quite host specific (A. marginale, A. centrale and  A. ovis). Survival of Anaplasma sp. 

in nature is dependent upon mammalian host reservoirs because transovarial transmission 

from one generation of ticks to the next via the egg has not been reported, and therefore 

for tick transmission to occur, ticks must acquire infection as larvae or nymphs and then 

be transmitted by nymphs or adults.    

Epidemiology, geographic distribution and emergence of granulocytic anaplasmosis 

in the United States and other areas of the world 

Anaplasma phagocytophilum, recognized as the most common tick-borne disease 

of animals in Europe and as an emerging disease of humans in the U.S., has a wide host 

range and has been reported in mammals and ticks throughout Europe, the U.S. and other 

areas of the world. The distribution of the organism is dependent upon the presence of the 

vector, host and reservoir host species (de la Fuente et al. 2005b; Stuen 2007; 
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Woldehiwet 2010). Likewise, the severity of the disease is dependent upon the strain or 

variant of the organism and the susceptibility of the host to infection.  

Reports of the the number of A. phagocytophilum variants have continued to 

increase worldwide. Recent investigation of sequence variation of the msp4 gene of  A. 

phagocytophilum in 50 samples from the U.S., Germany, Poland, Norway, Italy and 

Switzerland and four samples from white-tailed deer in the U.S. revealed greater 

sequence variation in A. phaogcytophilum strains as compared with A. marginale (de la 

Fuente et al. 2005b). The results of studies also differentiated strains of A. 

phagocytophilum among ruminants, horses and dogs, and the strains isolated from white-

tailed deer were found to be more diverse. These findings were supported by similar 

studies of sequence analysis of the msp2 genes. Overall, sequence analysis studies 

indicate that the human strains differ from ruminant ones and may be maintained in 

nature within different reservoir hosts (de la Fuente et al. 2005e). 

Anaplasma phagocytophilum has been identified in feral ruminant populations in 

the U.K., and the pathogen has been reported in feral goats and red, fallow and roe deer 

(Foster and Greig 1969; McDiarmid 1965; Alberdi et al. 2000). The organism has also 

been isolated from cervids, moose and chamois in Norway, Slovenia, Switzerland and 

Austria (as reviewed by Woldehiwet 2010). Other species known to become infected 

with  A. phagocytophilum include wild rabbits, birds and cats (Bjoersdorff et al. 2001; 

Daniels et al. 2002; Goehert and Telford 2003; Lappin et al. 2004; de la Fuente et al. 

2005c). 
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Recent research has contributed to an understanding of the epidemiology of A. 

phagocytophilum in southern Europe and Spain. In Sicily, the organism has been detected 

by PCR analysis of the 16S rRNA gene in a large host range of animals, including cattle, 

goats, sheep, horses, dogs and mice (de la Fuente et al. 2005d; Torina et al. 2008a; 2010). 

Further analyses identified five genetically diverse strains that were found in specific 

geographic locations; two were isolated from hosts exclusively in the western region, one 

having 98.9% similarity to an isolate from a human case only found in cattle in the 

eastern region and two genotypes were found in sheep or mice in the eastern region.  

Such findings provide evidence that domestic animals such as cattle, horses, donkeys, 

sheep, dogs and cats may serve as reservoir hosts for A. phagocytophilum. However, 

ruminant variants were found to be different from those isolated from humans (Torina et 

al. 2008b).  

Recent investigations have resulted in a better understanding of the epidemiology 

of A. phagocytophilum throughout central, northern and southern Spain. In central Spain, 

the organism causes disease in humans and is maintained in the environment by cattle, 

donkeys, deer and birds. In northern Spain, A. phagocytophilum infections have been 

identified in cattle, sheep and humans while wild rabbits, birds and cats have been 

implicated in the epizootiology of the organism in central and southern Spain (de la 

Fuente et al. 2005c). PCR analyses and serologic studies identified infection in European 

roe deer in southern Spain (de la Fuente et al. 2008d). Two distinct A. phagocytophilum 

msp4 genotypes were identified in roe deer that had 99.5-99.9% sequence homology to 

genotypes previously reported from northern Spain, while an 89.9-90.1% sequence 

homology of genotypes was reported in roe deer from Germany (de la Fuente et al. 
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2008d). These findings suggest that roe deer serve as an important reservoir host in the 

natural cycle of A. phagocytophilum in Spain. 

CGA has also been reported in dogs in Europe, Australia, Canada and all states in 

the U.S. except Mississippi and Nebraska (as reviewed by Tsachev 2009; Woldehiwet  

2010). The organism was first described in dogs in the U.S. prior to its recent discovery 

in Europe. 

Since the first recognition of A. phagocytophilum in horses in California, the  

number of EGA cases has increased throughout the U.S. and other parts of the world, and 

have been diagnosed in Florida, Colorado, New Jersey and Connecticut (as reviewed by 

Woldehiwet 2010).  E. equi, now A. phagocytophilum, was identified in the equine 

population in Scandinavia (Engvall and Egenvall 2002), Switzerland (Pusterla et al. 

1998), and the U.K (McNamee et al. 1989; Korbutiak and Schneiders 1994; Shaw et al. 

2001).  

Prior to the discovery of HGA in the U.S., the disease was thought to be limited to 

domestic and wild animals. Since the first documented human case of HGA in Wisconsin 

in the early 1990’s, the annual number of human cases in one Wisconsin county alone   

increased to 58 cases per 100,000 (Dumler et al. 2005). However, many of the newly 

described strains may be genetically distinct with a limited host range. For example a 

unique variant (Ap-1) found to be infective for goats and deer was not associated with 

infection in humans or small mammals (Massung et al. 2006b; Reichard et al. 2009). 

When ticks that were allowed to feed on deer infected with either the Ap-1 or the human 

NY-18 isolate, only the ticks that fed on the Ap-1 variant infected deer acquired infection 
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(Reichard et al. 2009). These studies provided evidence that strains from ruminants share 

common characteristics that differ from human strains (Reichard et al. 2009; de la Fuente 

et al. 2005b). While the majority of A. phagocytophilum strains are serologically cross 

reactive, phylogenetic analysis of major surface protein (MSP) sequences, predominately 

msp4, documented strain differences (de la Fuente et al. 2005b). 

The majority of HGA cases reported in the U.S. were from areas in which the tick 

vector, I. scapularis, was established, including the northeast and upper mid-west and 

include Massachusetts, Connecticut, New York, Minnesota and Wisconsin (Rikihisa 

2006).  A total of 3,637 cases of HGA were reported in the U.S. from 2003 to 2008, with 

the majority of those cases being identified in 2007 (Thomas et al. 2009). In addition, 

HGA has been associated with other diseases transmitted by Ixodes sp., including human 

babesiosis and Lyme disease (Goodman 2005; Nadelman et al. 1997). Serologic evidence 

suggested that the number of human cases of HGA may be grossly underestimated and 

that 15%-36% of the population may be infected (Aguero-Rosenfeld et al. 2002; Bakken 

et al. 1998). A recent report suggested that the incidence of A. phagocytophilum increased 

between 2000 and 2007 from 1.4 to 3.0 cases/million persons/year (Dahlgren et al. 2011). 

The first case of HGA in Europe was identified in Slovenia in 1997. Since that 

time, human cases have been reported in Sicily in 2005 (de la Fuente et al. 2005d). The 

first Canadian diagnosed with HGA was reported in 2009, which was based on PCR and   

demonstration of morulae in granulocytes in peripheral blood smears (Parkins et al. 

2009). HGA has since been reported in the Netherlands, Spain, Sweden, Norway, 

Croatia, Poland and Greece (Thomas et al. 2009). Serologic studies suggested the 
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presence of HGA in adults in Germany, Bulgaria, Spain, Italy, Estonia and Grece, but 

these cases were most likely to be asymptomatic (Woldehiwet 2010). 

Tick vectors, transmission and the tick developmental cycle 

Ticks are ectoparasites that infect wildlife, domestic animals and humans and are 

the most important vector of disease-causing pathogens in some regions of the world (de 

la Fuente et al. 2008b; Dumler et al. 2001). Ticks from the genera Ixodidae are the 

primary vectors of Anaplasma sp. The tick species responsible for transmission of A. 

phagocytophilum varies depending upon geographic location. In the North America, A. 

phagocytophilum is transmitted by ticks of the Ixodes persulcatus complex (Woldehiwet 

2010). In the U.S. I. scapularis is responsible for transmission of the organism in the 

Midwest (Pancholi et al. 1995; Goodman 2005), while I. pacificus is the tick vector in the 

western and mountainous U.S. (Richter et al. 1996; Reubel et al. 1998). The tick species 

most commonly reported to vector A. phagocytphilum in Europe is I. ricinus (Blanco and 

Oteo 2002; Strle 2004; as reviewed by Thomas et al. 2009). Other ticks known to 

transmit A. phagocytophilum include Haemaphysalis punctate, I. persulcatus, I. 

trianguliceps and Rhipicephalus sanguineus (as reviewed by Steun 2007).  

 Studies on I. ricinus demonstrated that transmission of A. phagocytophilum was 

transstadial (MacLeod and Gordon 1933; MacLeod 1932; 1936). Ticks acquired infection 

as larvae or nymphs that were allowed to feed on infected hosts, and transmission was 

effected by subsequent tick stages, nymph or adults. Transovarial transmission via eggs 

to the next generation has not been reported.  Therefore, acquisition of infection by ticks 
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from infected mammalian hosts during the bloodmeal is required for transmission of A. 

phagocytophilum (Hodzic et al. 1998a). 

Advances in molecular techniques have demonstated the potential of tick species 

other than Ixodes to transmit A. phagocytophilum and may also contribute to the 

transmission cycle of the pathogen. A recent study in central Spain evaluated ticks 

collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus 

hispanicus), and detected A. phagocytophilum in D. marginatus, Rhipicephalus bursa and 

Hyalommam marginatum (Naranjo et al. 2006; de la Fuente et al. 2004;  2005c,f). The 

low prevalence of I.ricinus in this region of Spain suggested that other tick species may 

serve as vectors of A. phagocytophilum, thus contributing to HGA.  While Dermacentor, 

Hemaphysalis and Rhipicephalus ticks have been reported as potential vectors of A. 

phagocytophilum (MacLeod 1962; Holden et al. 2003; Alberti et al. 2005a; Cao et al. 

2006; Barandika et al. 2008), transmission patterns and target hosts have not been 

reported for these tick vectors. Interestingly, among the newly identified tick vectors, 

Baldrige et al. (2009) demonstrated transovarial transmission of A. phagocytophilum by 

D. albopictus. This finding is is of interest because transovarial transmission of A. 

phagocytophilum has not been reported previously in Ixodes sp ticks. Transovarial 

transmission would change the transmission pattern and decrease the dependence on 

mammalian hosts for transmission of A.phagocytophilum in nature. These and other 

findings demonstrated the need for continued research in order to fully understand the 

significance of newly identified tick vectors and their role in transmission of A. 

phagocytophilum.   
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Acquisition of A. phagocytophilum infection from the mammalian host is 

dependent upon the parasitemia at the time of tick feeding. Hodzic et al. (1998b) 

demonstrated that the transmission rate of A. phagocytohilum in nymphal I. scapularis 

correlated with the bacteremia level in mouse blood at the time of tick feeding. The 

number of ticks that became infected with the organism from mice was highest early in 

the course of disease when parasitemia in circulating granulocytes the greatest and lowest 

late in the course of disease when parasitemia was minimal (Hodzic et al. 1998 a,b). 

Interestingly, despite the degree of host parasitemia level, once the ticks became infected 

A. phagocytophilum multiplied and was successfully transmitted (Eriks et al. 1993; 

Hodzic et al. 1998a). Transmission of A. phagocytophilum to a susceptible host occurred 

within 24 to 48 hours after attachment (Sukumaran et al. 2006). Hodzic et al. (1998b) 

demonstrated tick infections within 24 hours of attachment with the frequency of tick 

infection increasing during the period of tick feeding. Ticks that were allowed to feed for 

48 hours were able to transmit the infection to mice and those that had fed to repletion 

had higher infection rates due to both increased acquisiton of organisms in the bloodmeal 

and increased multiplication of the pathogen within the tick (Hodzic et al. 1998b; 

Katavolos et al. 1998). 

Vertebrate hosts, reservoir hosts and transmission cycle 

The transmission of Anaplasma phagocytophilum is known to occur between ticks 

and ruminants but this host range has recently been shown to include a wide range of   

vertebrate hosts such as rodents, birds, cats, deer, humans, horses, and dogs. Despite this 

wide host range, only those animals capable of developing persistent infection can serve 

as competent reservoir hosts (as reviewed by Woldehiwet 2010). The importance of 
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rodents as potential reservoir hosts is dependent upon the geographic location. In certain 

regions rodents develop high infection levels and therefore are excellent reservoir hosts 

for ticks, while in other regions rodents do not develop sufficient parasitemias to effect 

consistent infection of ticks. The prevalence and severity of disease caused by A. 

phagocytophilum variants are dependent upon the geographic location, presence of 

reservoir hosts, tick vectors and their ability to effectively transmit the pathogen 

(Woldehiwet 2010).  

The role of mammalian reservoir hosts has been well established and more 

completely defined in Europe than the United States. The major mammalian reservoirs of 

A. phagocytophilum in Europe include wood mice, yellow-necked mice, voles, roe and 

red deer (Liz et al. 2000; Petrovec et al. 2002; Silaghi et al. 2008). In the U.S., 

mammalian reservoirs are those animals susceptible to infection by I. scapularis, 

including white-tailed deer (Odocoileus virginianus), raccoons (Procyon lotor), white-

footed mice (Peromyscus leucopus), gray squirrels (Sciurus carolinensis) and chipmunks 

(Levin et al. 2002; Nieto and Foley 2009; Telford et al. 1996; as reviewed by Woldehiwet 

2010). Within the U.S., the distribution of the mammalian vectors varies with the 

geographic location. The white-footed mouse is the major reservoir host in the eastern 

U.S., while wood rats and the Western gray squirrel are the major reservoir hosts in the 

western U.S. (Nicholson et al. 1999; Foley et al. 2002; Nieto and Foley 2008; 2009). 

Recent identification of other closely related species such as Douglas squirrels, flying 

squirrels and chipmunks, were shown to be susceptible to A. phagocytophilum and also 

may harbor ticks that are capable of transmitting the organism to other animals and 

humans (Foley et al. 2007; 2008 a,b; Nieto and Foley 2009).   
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The role of birds as potential reservoir hosts has not been fully investigated. 

However, at least two species of birds within the U.S. may be hosts for variants of A. 

phagocytophilum and may also serve as a source of infection for larval ticks (Daniels et 

al. 2002). In Sweden, A. phagocytophilum infected I.ricinus nymphs were collected from 

migrating birds (Bjoersdorff et al. 2001). In Spain, the role of birds as a potential source 

of A. phagocytophilum was evaluated by testing blackbirds and Turdus spp. using an A. 

phagocytophilum specific PCR assay (de la Fuente et al. 2005e). In another study 

conducted on a large hunting estate in central Spain, blackbirds were found to have the 

highest prevalence of A. phagocytophilum by PCR (de la Fuente et al. 2005c).  These 

results suggest that birds could contribute to the epidemiology of A.phagocyptophilum by 

serving as both reservoir hosts and also by spreading infected ticks during migrations. 

Transplacental transmission 

While A. phagocytophilum is an economically important pathogen of sheep in 

Europe (Stuen, 2007; Stuen et al, 2009), the pathogen has more recently been shown to 

cause the emerging tick-borne disease of humans, HGA, in the United States, Europe and 

Asia (Goodman, 2005). For the type species, A. marginale, three means of transmission 

occur (tick-borne, mechanical transmission by blood contaminated fomites and 

mouthparts of biting arthropods and transplacental transmission), but the latter two 

(mechanical and transplacental) have not been considered as a means of A. 

phagocytophilum transmission. However, transplacental transmission of A. 

phagocytophilum was reported previously in an experimentally infected cow (Pusterla et 

al, 1997) and a naturally-infected human (Dhand et al, 2007; as reviewed by Horowitz et 

al, 1998). Despite such findings, documented cases of transplacental transmission have 
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not been reported in sheep. Sheep are capable of becoming persistently infected with the 

organism. Therefore, transplacental transmission may be a cause of TBF in lambs that 

have not been exposed to the tick reservoir (Thomas et al. 2012) and warrants further 

investigation. 

Pathogenesis and clinical presentation 

Anaplasma phagocytophilum multiples and survives within mammalian cells of 

the granulocytic lineage. This obligatory intracellular pathogen multiplies in 

parasitophorous vacuoles called a morula in the host cell cytoplasm. Morulae of A. 

phagocytophilum are approximately 1.5 µm to 2.5 µm in diameter but have reported to be 

as large as 6 µm (Popov et al. 1998). Infection of mammalian host cells is dependent 

upon A. phagocytophilum recognition of the host cell receptor. However, the exact 

mechanisms by which the organism infects the host dermal tissue at the tick feeding site 

and their host cells resulting in clinical signs of disease are not well understood 

(Goodman 2005). 

The cell types targeted for infection during the period of bacteremia are 

eosinophils, neutrophils and macrophages. Neutrophils serve as the first line of defense 

against invading organisms and typically have a life span of 6-12 hours (Savill 1989; 

Akgul 2001). Due to their short life span, as well as their ability to phagocytize infecting 

bacterial organisms, neutrophils are not considered a hospitable environment for 

intracellular bacteria. However, A.phagocytophilum has evolved mechanisms for evading 

the hosts defenses while, at the same time, promoting attraction of neutrophils to the tick 

feeding site (Granquist et al. 2010). An additional function of neutrophils is their ability 
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to undergo apoptosis in response to bacterial killing. A. phagocytophilum infection in 

isolated human peripheral blood neutrophils was shown to inhibit spontaneous and 

induced apoptosis for up to 48 h. This effect was also seen in morphologic evaluation of 

neutrophils in peripheral blood leukocyte cultures for up to 96 h (Niu et al. 2010). The 

ability to manipulate neutrophil function is critical for propagation and replication of the 

organism within the host. After infection of cells and establishment in the 

parasitophorous vacuole, A. phagocytophilum undergoes multiplication until the cell 

lyses and organisms are released to subsequently infect other cells. 

The early development of A.phagocytophilum within the mammalian host has not 

been clearly described. A prepatent period of 4-7 days occurs between transmission from 

ticks to development of rickettsemia. However, the exact location of A. phagocytophilum 

of this initial development within the host presently is not known.  In experimental 

studies, susceptible animals inoculated with infected cells did not develop detectable 

rickettsemias until 72-96 hours post inoculation (Woldehiwet 2010). This data suggested 

that prior to visualization of morula in stained blood smears the organism may remain 

undetectable because of initial replication within a different host cell.  Recent studies 

suggested that A. phagocytophilum can be isolated from lung and spleen tissues prior to 

detection of the organism in the peripheral blood (Snodgrass 1974; Woldehiwet 2010). 

Other evidence suggests that A.phagocytophilum is more likely to infect myeloid 

precursors as compared with mature neutrophils (Walker and Dumler 1996; Woldehiwet 

2010). Despite this evidence, early studies in sheep did not support infection of immature 

neutrophils with A. phagocytophilum (Woldehiwet and Scott 1982; Woldehiwet 2010). In 

one study, sheep infected with A. phagocytophilum were treated with dexamethasone 
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during peak rickettsemia, and, while there was a dramatic increase in the number of 

circulating granulocytes, the percentage of infected neutrophils actually decreased. Such 

results suggested that immature neutrophils mobilized from bone marrow were not 

infected prior to peripheral blood neutrophils (Woldehiwet 2010). 

Infection of host granulocytes with A. phagocytophilum may result in high 

parasitemias, but the severity of clinical signs and duration of disease is dependent upon 

the strain of A.phagocytophilum and the susceptibility of the host (Foggie 1951; Tuomi 

1967a,b; Woldehiwet and Scott 1982;1993; Woldehiwet 2010). In domestic ruminants 

and horses, the first clinical sign of disease is a persistent fever that lasts for a minimum 

of 7 days (Tuomi 1967a,b,; Gribble 1969; Woldehiwet 1987a; Woldehiwet 2010). Fever 

detected in sheep recently after being moved to tick-infested pastures is considered an 

indicator of TBF. Other clinical signs associated with A. phagocytophilum include 

pyaemia in lambs, respiratory disease in cattle, decreased milk production and secondary 

infections (Woldehiwet 2006). Severe leukopenia and prolonged neutropenia are 

additional indicators of TBF. In addition, ewes in late gestation that are moved to tick-

infested pastures are at increased risk of abortion secondary to infection with A. 

phagocytophilum (Woldehwiet 2006). The most common clinical signs of canine and 

equine granulocytic anaplasmosis include fever, depression, anorexia, leukopenia and 

thrombocytopenia (Dumler et al. 2005). 

The clinical presentation of HGA in humans is characterized by fever, chills, 

headache and myalgia along with a history of recent tick bites 1-2 weeks prior to the 

development of clinical disease (Bakken and Dumler 2006). The spectrum of clinical 

signs associated with HGA ranges from asymptomatic to a severe acute febrile illness 
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leading to death in some cases (Goodman 2005). However, as suggested by Dumler et al. 

(2005), human infections may not always be apparent and 15%-36% of the population in 

tick endemic areas could be infected without apparent clinical signs. 

One major effect of A. phagocytophilum in the pathogenesis of granulocytic 

anaplasmosis is modification of host cell neutrophil function with inhibition of cellular 

apoptosis. Interestingly, when A. phagocytophilum was propagated in the human 

promyelocytic cell line, HL-60 cells, apoptosis of the infected cells did not appear to be 

inhibited at high infection levels. In this instance, infection with A. phagtocytophilum 

resulted in the majority of host cells dying or undergoing degenerating (de la Fuente et al. 

2005a). Such findings suggest that the anti-apoptic effect of A.phagocytophilum is 

neutrophil-specific and not a global phenomenon (de la Fuente et al. 2005a). 

Clinical and Laboratory Diagnosis 

Historically, clinical diagnosis of A. phagocytophilum has been based on the 

presence of an acute febrile illness with histologic evidence of morula within 

granulocytes on a blood smear during rickettsemia. Visualization of morula in human 

granulocytes is frequently observed but is not a consistent finding among other hosts. 

Therefore, serology and polymerase chain reaction (PCR) amplification of A. 

phagocytophilum DNA from acute-phase blood are required to definitively diagnose 

infection. A. phagocytophilum infection can also be confirmed by isolation of the human 

promyleocytic cell line, HL-60, inoculated with with acute-phase blood. However, all 

tests utilizing blood samples must be performed prior to the initiation of antimicrobial 

therapy which would cause a rapid decrease the rickettsemia (Bakken and Dumler 2006). 
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The importance of rapid detection of infection is to provide rapid treatment of the 

condition (Chandrashekar et al. 2010). 

In 2010, Chandrashekar et al. (2010) evaluated the efficacy of a commercially 

available cELISA for identification of A. phagocytophilum. The cELISA was based on 

the immunodominant P44 protein. Dogs that had been experimentally infected with A. 

phagocytophilum were seropositive within 8 days post inoculation despite the lack of a 

fever or the presence of morulae within granulocytes on a peripheral blood smear. A 

positive ELISA indicated exposure to the pathogen but PCR was needed to definitively 

confirm active infection.  Interestingly, the dogs in this study also had antibodies to A. 

platys which cross-reacted with the A. phagocytophilum ELISA which provided evidence 

that the ELISA is capable of detecting Anaplasma sp. but not differentiate between 

species. The serologic cross-reactivity was shown to be the result of conserved surface 

proteins, most notably major surface protein 5 (MSP5). An ELISA developed using a 

monoclonal antibody against MSP5 is a component of the A. marginale ELISA if the 

approved test for detection of bovine anaplasmosis in the U.S. and Canada (Dreher et al. 

2005; Strik et al. 2007), and this  cELISA was also shown to be cross-reactive with A. 

phagocytophilum antibodies. 

Indirect fluoresecent antibody (IFA) tests have also been developed for serologic 

diagnosis of A. phagocytophilum (Chandrashekar et al. 2010). Using IFA dogs were 

found to seroconvert as early as 2-4 days after first appearance of morulae within the 

blood.  
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Propagation in cell culture 

A. phagocytophilum has been experimentally cultured in endothelial cell lines 

from several species, including human, monkey and bovine cell lines (Munderloh 2004). 

The human promyelocytic cell line allowed for direct isolation of the organism from 

humans and mice (Blas-Machado et al., 2007, Goodman et al, 2005). Two tick strains 

isolated from embryos of I. scapularis have also been used to propagate human and other 

strains of A. phagocytophilum (Woldehiwet and Horrocks 2005; Munderloh et al. 1996 

a,b; 1999; Massung et al. 2006a; Reichard 2009). Cell culture has provided an in vitro 

system for characterization of pathogen adhesion and gene expression  (Goodman et al. 

1999; Jauron et al. 2001; Woldehiwet and Horrocks, 2005), as well as human and tick 

cell responses to infection (de la Fuente et al. 2010; Villar et al. 2010; Zivkovic et al. 

2009; 2010; de la Fuente et al. 2007b). 

Genetic variants of A.phagocytophilum 

Many A. phagocytophilum variants have been identified by sequence analysis of 

key genes in a variety of hosts. Comparison of TBF and HGA variants was done by 

analysis of the 16S rRNA gene, and TBF variants were found to differ in three positions 

as compared with HGA variants (Chen et al. 1994). Despite the presence of different 

variants, identical 16S rRNA sequences were shown for variants that were isolated from   

HGA patients in the U.S. (Belongia et al. 1997; Massung et al. 2002; 2003; 2005). 

Sequence analysis of the msp4 gene of A. phagocytophilum has also been used to 

differentiate variants from dogs, horses and humans (de la Fuente et al. 2005b). Genetic 

variation of A. phaocygophilum was demonstrated among sheep from the same flock 
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(Stuen et al. 2002). The majority of these variants are serologically cross-reactive because 

of outer membrane proteins which are highly conserved (Dumler et al. 1995; Zhi et al. 

1997; 1998). 

The pathogenicity A. phagocytophilum variants ranged from nondetectable to 

causing notable clinical signs (Gabriel et al 2009; Madigan et al. 1995; Morissette et al. 

2009; Foley et al. 2002; 2007; 2008 a,b; Nieto and Foley 2008; 2009; Goodman 2005). 

While mechanisms responsible for these variations in pathogenicity have not been fully 

elucidated (Rikihisa 2011), the differences are important to define in order to better 

understand the epidemiology and ecology of A. phagocytophilum in a wide range of hosts 

and geographic locations.  

Genomics 

The genome of the human HZ isolate of A. phagocytophilum was sequenced and 

determined to be 1.47 Mb (Rikihisa et al. 1997), which is much smaller than the genome 

of Escherichia coli. Further characterization of the genome revealed several open reading 

frames (ORFs: 1,369), but no plasmids, intact prophages or transposable elements were 

identified (Rikihisa 2011). The genes necessary for synthesis of lipopolysaccharide and 

peptidoglycan were also found to be absent from the genome (Lin and Rikihisa 2003; 

Dunning Hotopp et al. 2006). 

The immunodominant major surface proteins of A. phagocytophilum were found 

to be contained within the p44/msp2 multi-gene family (Wuryu et al. 2009), and the 

Omp-1/P44/Msp2 superfamily has been the most intensively study outer surface protein. 

The genome of A. phagocytophilum has multiple repeats totallying over 100 p44/msp2 
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genes and genes with tandem repeats (Dunning Hotopp et al. 2006; Storey et al. 1998). 

The transcription of p44 genes contributes to the antigenic diversity of different variants 

of A. phagocytophilum and is important for the pathogenicity of the organism. The 

variation in these genes and related surface proteins may reflect differences among strains 

in geographic regions and host specificities (Lin et al. 2004). 

The ability of A. phagocytophilum to alter the expression of different genes when 

exposed to different environments may contribute to the development of novel gene 

function or pseudogenes (Lin et al. 2004). The A. phagocytophilum genome has 121 

genes within this superfamily: one msp2, two msp2 homologs, one msp4, 113 p44, and 

three omp-1 genes. A. phagocytophilum genes are differentially expressed in HL-60 and 

ISE3 cultured cells, suggesting that the host cell environment is capable of regulating 

gene transcription (Wang et al. 2007; Nelson et al. 2008, Galindo et al. 2008; Zivkovic et 

al. 2009). 

Tick vector/host interactions at the tick feeding site 

Ticks serve as the most important cause of vector borne disease in animals 

(Balashov, 1972) and have developed ways to modulate the host immune response 

resulting in immunosuppression of the host which promotes survival of both the tick and 

the pathogen.The long duration of tick attachment and feeding impacts the host immune 

system  at the feeding site, including increased vascular permeability, activation of the 

coagulation cascade, increased infiltration of inflammatory cells  and stimulation of the 

innate and acquired immune systems (Francischetti et al., 2010). In response, the host has 

developed methods of resistance to tick infestation which result in reduced engorgement 
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weight, increased duration of feeding, decreased number and viability of ova and, in 

some cases, tick death (Wikel, 1999). A wide range of modifications by the host  

resulting from pathogen infection may further result in alterations of the acquired 

immune response including activation and mobilization of eosinophils, basophils, antigen 

presenting cells, complement, B and T-lymphocytes, cytokines, and other circulating 

granulocytes to the tick bite site (as reviewed by Wikel, 1999). Both the pathogen and 

tick vector are capable of modifying the host’s innate and acquired immune response 

which is critical for the propagation and survival of the pathogen and survival and 

feeding of the tick, processes that are perfectly coordinated (Zeinder et al., 1996). Ixodes 

scapularis mediated immunosuppresion involves  inhibition of complement components 

C3b and C5b, salivary inhibition of C3 hydrolysis leading to decreased release and 

activation of mast cell mediators, as well as inhibition of bradykinin necessary for pain 

and increased vascular permeability at the tick bite site (Ribeiro, 1987; Ribeiro and 

Spielman, 1986; Ribeiro et al., 1985; Ribeiro and Mather 1998). 

Sheep as model host for A. phagocytophilum/tick interactions. 

TBF is an economically important disease of sheep in Europe and therefore has 

been studied extensively, and natural A. phagocytophilum infections in sheep have been 

well documented. Experimentally, sheep have been shown to be a good host for raising 

and feeding ticks. Research in our laboratory was initiated to develop sheep model for 

studying tick/host/pathogen interactions of I. scapularis and the human NY-18 isolate of 

A. phagocytophilum (Kocan et al., 2012). For this model sheep were inoculated with the 

NY-18 isolate of A.phagocytophilum propagated in the HL-60 cell line. Six week after A. 

phagocytophilum infection was detected by PCR, sheep were infested with adult I. 
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scapularis. The majority of the ticks that were allowed to feed on experimentally-infected 

sheep were found by PCR to be infected with A. phagocytophilum after feeding periods 

as short as two days. However, none of the infected sheep developed clinical signs of 

disease and morulae were not observed in stained blood smears (Kocan et al., 2012). 

While the lack of clinical signs was in contrast to sheep that have been experimentally or 

naturally acquired TBF, this study demonstrated that sheep can be used as a host for 

infection of I. scapularis with this human isolate. The fact that clinical signs were not 

observed in sheep and infected granulocytes were not seen in stained blood smears, raised 

the question of the host cell that was the source of infection for ticks. Therefore, the 

research focused on study of the tick feeding sites in order to better understand 

tick/host/pathogen interactions and the source of A. phagocytophilium infection for ticks. 

Summary 

While A. phagocytophilum has been a  pathogen of veterinary importance in 

Europe for over 70 years known as the cause of  TBF sheep, the recent emergence of 

HGA and increased incidence of this disease in the United States, Asia and Europe, has 

generated global interest conducting research on this pathogen. The transmission cycle 

has historically been thought to be primarily between ticks and ruminants. However, the 

host range has broadened to include a wide variety of A. phagocytophilum variants and 

hosts, including rodents, birds, cats, deer, horses, cattle, dogs, sheep and humans. Recent 

research provided evidence that the pathogenicity of variants is influenced by interactions 

between the A. phagocytophtilum strain, vertebrate host(s), the tick vector and the 

geographic location. Identification of variants has been done by PCR and sequence 

analysis because serologic cross-reactions result from the presence of highly conserved 
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surface proteins.  A. phagocytophilum has a wide host range and the overall risk of 

infection with A.phagocytophilum and the spread of granulocytic anaplasmosis will likely 

continue to increase because of expanding populations and the changing distribution of 

Ixodes sp, a concern for both human and animal health in the U.S.  

Granulocytes are the target cell for A.phagocytophilum in the vertebrate host.  

Within the cell, the organism resides within a parasitophorous vacuole or morula which is 

identified on a peripheral blood smear. The molecular mechanisms associated with early 

infection have not been well established. Therefore, during early infection, the organism 

remains undetectable and may replicate within another host cell that has not yet been 

identified. Infection of host cells with A. phagocytophilum has been found to result in 

transcriptional changes and altered cell functions that may contribute to the pathogenesis 

of the disease. 

The tick is a required vector in the life cycle of A. phagocytophilum. The exact 

developmental cycle of the organism within the tick is not completely defined. Recent 

research has contributed to further development of the exact interaction between the tick 

cell and the pathogen. However, continued studies are needed to more completely 

understand this interaction and the impact of infection on vector competency and 

pathogen transmission. 

Recent research has focused largely on the molecular interaction of A. 

phagocytophilum and the host cells. The pathogen has evolved unique methods to exploit 

and invade host cells. Development of a sheep model of the human NY-18 isolate of A. 

phagocytophilum provides the opportunity to study interaction of the tick/pathogen/host 
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interactions in order to further define the invasive nature of the organism and the 

mechaisms by which ticks acquire infection. These studies are especially important in 

this sheep model where infected granulocytes were not seen in stained blood smears, but 

in which ticks readily acquired A. phagocytophilum infection after a short feeding period.  

This finding prompted our interest in characterizing the tick feeding site to better 

understand the relationship between the host, tick vector and pathogen. The current 

research was, therefore, focused on the tick feeding site in order to define the relationship 

between the tick feeding and the host response and to determine the cellular source of A. 

phagocytophilum infection for ticks. 
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RESEARCH PROBLEM 

HGA, caused by A. phagocytophilum, is an emerging tick-borne disease in the 

U.S. The increasing incidence of HGA has generated renewed interest in research on this 

pathogen in order to more clearly define the relationship between the host, the vector and 

the pathogen in order to improve disease prevention and treatment. In natural infections, 

A. phagocytophilum is transmitted by Ixodes ticks and infects host cells of the 

granulocytic lineage. Clinically, ruminants exhibit an acute febrile illness and infection is 

confirmed   during febrile episodes by detection of morulae within granulocytes in 

stained blood smears. We recently established a sheep model for studying the 

tick/pathogen/host interactions of a U.S human isolate of A. phagocytophilum obtained 

from a clinical case of HGA. In this sheep model while sheep were experimentally 

infected by inoculation with the NY-18 isolate that was propagated in HL-60 cells, they 

did not develop clinical disease and the histopathological response was mild.  

Surprisingly, these sheep served as an efficient source of infection for ticks. The lack of 

circulating granuocytes infected with A. phagocytophilum suggested that these cells are 

attracted to and sequestered at the tick feeding site. The focus of this research was 

therefore to further characterize tick feeding sites in order to describe the environment in 

which ticks readily acquired A. phagocytophilum infection and led to formulation of the 

hypothesis for this research that the host-pathogen interactions at the tick feeding site 

modulate infection of ticks with the human NY-18 isolate of A. phagocytophilum.  

The specific objectives are as follows: 

1. To confirm sheep as a model host for infection of ticks with the human NY-18 

isolate of A. phagocytophilum. 
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2. To characterize the histopathology of the tick feeding site from sheep 

experimentally infected with the human NY-18 isolate of A. phaogcytophilum. 

3. To characterize A. phagocytophilum infections at the tick feeding site. 
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CHAPTER II 
 

 

DEMONSTRATION OF TRANSPLACENTAL TRANSMISSION OF A HUMAN ISOLATE 

OF ANAPLASMA PHAGOCYTOPHILUM IN AN EXPERIMENTALLY INFECTED SHEEP 

 

SUMMARY 

Anaplasma phagocytophilum, first identified as a pathogen of sheep in Europe, has more 

recently been recognized as an emerging tick-borne pathogen of humans in the U.S. and 

Europe. Transmission of A. phagocytophilum is reported to be by ticks, primarily of the 

genus Ixodes. While mechanical and transplacental transmission of the type genus, A. 

marginale, occur in addition to tick transmission, these modes of transmission have not 

been considered for A. phagocytophilum. Recently, we developed a sheep model for 

studying host/tick/pathogen interactions of the human NY-18 A. phagocytophilum isolate.  

While sheep were susceptible to infection with this human isolate in our studies and 

served as a source of infection for I. scapularis ticks, they did not display clinical signs of 

disease, and the pathogen was not apparent in stained blood smears. In the course of these 

A. phagocytophilum/sheep experiments, one sheep unexpectedly gave birth to a lamb 5 

weeks after being experimentally infected by inoculation with the pathogen. The lamb 

was depressed and was subsequently euthanized 18 hrs after birth. Tissues were collected  
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at necropsy for microscopic examination and PCR in order to confirm A. 

phagocytophilum infection. At necropsy the stomach contained colostrum, the spleen was 

moderately enlarged and thickened with conspicuous lymphoid follicles and mesenteric 

lymph nodes were mildly enlarged and contained moderate infiltrates of eosinophils and 

neutrophils. Blood, spleen, heart, skin, cervical and mesenteric lymph nodes tested 

positive for A. phagocytophilum by PCR, and sequence analysis confirmed infection of 

the lamb with the NY-18 isolate. Transplacental transmission should therefore be 

considered as a means of A. phagocytophilum transmission and may likely contribute to 

the epidemiology of tick-borne fever in sheep and other mammals, including humans.   

Key Words:  Anaplasma phagocytophilum, transplacental transmission, human isolate, 

sheep, tick-borne 
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Introduction 

Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a tick-borne pathogen 

infective for a wide range of hosts, including birds, small and large mammals and humans 

(Goodman, 2005; Woldehiwet, 2010). This organism is the etiologic agent of a febrile 

illness of humans (human granulocytic anaplasmosis, HGA), sheep and other ruminants 

(tick-borne fever, TBF), horses (equine granulocytic anaplasmosis, EGA) and dogs 

(canine granulocytic anaplasmosis, CGA). While A. phagocytophilum is an economically 

important pathogen of sheep in Europe (Stuen, 2007; Stuen et al, 2009), the pathogen has 

more recently been shown to cause the emerging tick-borne disease of humans, HGA,  in 

the United States, Europe and Asia (Goodman, 2005). For the type species, A. marginale, 

three means of transmission occur (tick-borne, mechanical transmission by blood 

contaminated fomites and mouthparts of biting arthropods and transplacental 

transmission), but the latter two (mechanical and transplacental) have not been 

considered as a means of A. phagocytophilum transmission. However, transplacental 

transmission of A. phagocytophilum was reported previously in an experimentally 

infected cow (Pusterla et al, 1997) and a naturally-infected human (Dhand et al, 2007; as 

reviewed by Horowitz et al, 1998).  

We recently developed a sheep model for a human isolate, the NY-18 isolate, of A. 

phagocytophilum in order to study molecular host/tick/pathogen interactions (Kocan et al, 

2012). While sheep were susceptible to infection with this human isolate and served as a 

source of infection for I. scapularis ticks, they did not display clinical signs of disease 

and the pathogen was not conclusively demonstrated in stained blood smears. However, 

the sheep served as a good host for infection of ticks, with the infection rates ranging 
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from 80-100% after a feeding period as short as 2 days. In the course of recent 

experiments, one sheep unexpectedly gave birth to a lamb 5 weeks after being 

experimentally infected by inoculation with A. phagocytophilum infected cell cultures, 

near the beginning of the 3
rd

 trimester of gestation. Herein, we describe transplacental 

transmission of A. phagocytophilum infection to the lamb.  

Materials and Methods 

Experimental design overview  

Sheep No. 44, one of several sheep in a larger study, was experimentally infected with A. 

phagocytophilum by  intravenous inoculation (iv) of HL-60 cell cultures infected with the 

human NY-18 isolate of A. phagocytophilum (Asanovich et al, 1997; de la Fuente et al, 

2006). The pregnancy status of Sheep 44 had not been determined prior to the onset of 

the experiment. The sheep was monitored for infection by daily recording of clinical 

signs, PCR of blood samples, and by examination of stained blood films. A lamb, born 

unexpectedly to Sheep 44, five weeks after being inoculated with A. phagocytophilum, 

was tested for infection. 

Anaplasma phagocytophilum isolate, propagation in HL-60 cells and infection of 

sheep                    

The human NY18 isolate of A. phagocytophilum (Asanovich et al, 1997; de la Fuente et 

al, 2006) was propagated in cultures of the human undifferentiated promyelocytic cell 

line, HL-60.  Infected and uninfected cell cultures were maintained at 37
o
C in RPMI 

medium as reported previously (de la Fuente et al, 2005a).  For inoculation of each sheep, 

two T-25 flasks of A. phagocytophilum-infected HL-60 cells were used (45% infection, 

as determined by detection of intracellular morulae in stained cytospin cell smears; 
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Hema-3 Stain, Fisher Scientific, Middletown, VA, USA). The cultures were centrifuged 

and resuspended with serum free RPMI 1640 medium with a final iv dose of 1 X 10
7 

cells 

in 2 ml of cell culture medium.  

Sheep 44, one of a group of sheep used for a tick infection experiment, was purchased at 

a local livestock auction for use in this study. The sheep was first determined to be 

negative for A. phagocytophilum by PCR analysis of blood samples and subsequently 

inoculated with HL-60 cell cultures infected with A. phagocytophilum and used for tick 

feeding experiments (Kocan et al, 2012). Blood and serum samples were collected 2 

times per week, and stained blood films were prepared and examined on blood collection 

days for the presence of characteristic A. phagocytophilum morulae in granulocytes. 

Necropsy, collection of tissues and PCR studies 

A blood sample was collected from the lamb prior to euthanasia and samples of spleen, 

liver, heart, skin, lung, cervical and mesenteric lymph nodes were collected at necropsy. 

DNA was extracted from blood, spleen, liver, heart, skin, lung, cervical and mesenteric 

lymph nodes, using TriReagent (Sigma, St. Louis, MO, USA) following manufacturer’s 

recommendations. A. phagocytophilum infection levels were characterized by msp4 PCR 

using the Applied Biosystem 2720 thermocycler as described previously (de la Fuente et 

al, 2006), using oligonucleotide primers MSP4-L (5’ -

CCTTGGCTGCAGCACCACCTG-3’) and MSP4-R (5’-

TGCTGTGGGTCGTGACGCG-3’) (Busby et al, 2011). PCR reaction products were 

analyzed by agarose gel electrophoresis to determine positive samples. To corroborate the 

identity of the A. phagocytophilum isolate, msp4 amplicons were resin purified (Wizard; 

Promega) and cloned into pGEM-T vector (Promega) for sequencing (Core Sequencing 
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Facility, Department of Biochemistry and Molecular Biology,  Oklahoma State 

University). Samples of the same tissues were also fixed in buffered formalin for 

microscopy. Quantitative PCR was also performed to test for difference in infection 

levels among the tissues as previously described by Zivkovic et al. 2009, but normalizing 

against Ovis aries Aldolase B (gene bank accession number NM_001009809) using 

primers Oa-ALDOBF (5’ -CCCATCTTGCTATCCAGGAA -3’) and Oa-ALDOBR (5’-

TACAGCAGCCAGGACCTTCT -3’).  

Results and Discussion 

The lamb born to Sheep 44 was infected with A. phagocytophilum at birth, the infection 

being acquired presumably by transplacental transmission. In our previous studies, the 

prepatent period observed in experimentally infected adult sheep varied from 10-21 days, 

suggesting it was unlikely that the newly borne lamb could have become infected from 

ingesting colostrum immediately after birth. Although clotted colostrum was found in the 

lamb’s stomach at necropsy, the lamb was clearly depressed and feeding had not been 

observed. Furthermore, tissues (spleen, liver, heart, skin, lung, cervical and mesenteric 

lymph node), collected at the necropsy approximately 18 hours after birth, were all PCR 

positive by A. phagocytophilum msp4 gene PCR with the exception of lung tissue 

samples which were negative (Fig. 1). Infection levels in these PCR positive tissue 

samples, as determined by quantitative PCR, were not significantly different. 

Lesions seen at necropsy were similar to those described in our previous studies (Kocan 

et al, 2012), and were mild and restricted to the lymphoid system. The spleen was 

moderately enlarged and thickened and mesenteric lymph nodes were mildly enlarged. 
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Microscopic examination of spleen showed a mildly increased number of neutrophils in 

the red pulp. Lymph nodes displayed moderate sinusoidal eosinophilia and neutrophilia.  

While transplacental transmission of A. phagocytophilum has been reported in one 

naturally infected human (Horowitz et al, 1998; Dhand et al, 2007) and one 

experimentally infected cow (Pusterla et al, 1997), this means of transmission has not 

been reported or studied in sheep. However, sheep have been clearly shown to become 

persistently infected with A. phagocytophilum, thus increasing the likelihood of 

transplacental transmission, and this means of transmission may be the cause of 

infections in lambs in the absence of natural tick challenge-exposure (Thomas et al, 

2012). While the seroprevalance of lambs was found to negatively correlate with the 

mean meters above sea level (masl), infected lambs were still present. In addition, 

infected lambs were observed on farms  in which lambs were treated with acaricides for 

tick control, as well as  in tick-free pastures or high altitude pasturing where ticks would 

not be present ( Hardeng et al, 1992; Stuen and Bergstrom, 2001; Grøva et al, 2011; 

Stuen et al, 2012).   

The present study further documents transplacental transmission of A. phagocytophilum, 

but additional studies are needed to assess the impact of this mode of A. phagocytophilum 

transmission in sheep and other hosts. Transplacental transmission may prove to be an 

important means of spread of A. phagocytophilum in many host species and thus 

contribute to the epidemiology of this pathogen, especially in the absence of the tick 

vector. 
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Figure 1.  A. phagocytophilum msp4 PCR products of tissues collected from the lamb 

born to Sheep 44. Lane 1, blood, Lane 2, mesenteric lymph node; Lane 3, blood; Lane  4,  

spleen; Lane 5, heart; Lane 6, cervical lymph node; Lane 7,  lung (negative), Lane 8, 

skin; Lane 9; A. phagocytophilum DNA ( positive control); Lane 10, negative control. 
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CHAPTER III 
 

 

STUDIES OF ANAPLASMA PHAGOCYTOPHILUM IN SHEEP                               

EXPERIMENTALLY INFECTED WITH THE HUMAN NY-18 ISOLATE: 

CHARACTERIZATION OF THE TICK FEEDING LESIONS 

 

Abstract 

Anaplasma phagocytophilum, transmitted by ticks of the genus Ixodes, was first described 

in Scotland as the agent of tick-borne fever in sheep and more recently as the cause of 

human granulocytic anaplasmosis in the U.S. and Europe. We previously reported sheep as 

an experimental host for the human NY-18 isolate of A. phagocytophilum. While clinical 

signs were not observed and morulae in granulocytes were not seen in stained blood 

smears, these sheep served as a good host for infection of ticks. In this research we 

characterized tick feeding sites to better understand tick/host/pathogen interactions. Ixodes 

scapularis adults were allowed to feed for 2 and 4 days on experimentally infected sheep, 

after which biopsies were taken beneath tick feeding sites for histopathology, PCR and 

immunohistochemistry (IHC) studies. In addition, the expression of selected immune 

response genes was studied in blood and feeding site biopsies. While necrosis was too 

advanced in 4-day biopsies for accurate cell counts, higher numbers of eosinophils and 

neutrophils were found in 2-day biopsies from infected sheep as compared with the 
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uninfected controls. An unexpected result was the documentation of higher dermal 

inflammation in infected sheep at sites without ticks. A. phagocytophilum infected 

granulocytes were localized by immunohistochemistry (IHC) in skin biopsies using rabbit 

antibodies against the recombinant A. phagocytophilum major surface protein 4 as the 

primary antibody for indirect peroxidase-antiperoxidase and fluorescent antibody IHC.  

These infected cells are likely to be the source of infection for ticks. Sheep therefore served 

as good hosts for studying host/pathogen/tick interactions of this human strain of A. 

phagocytophilum, and provided a means of producing infected ticks for future studies on 

tick/pathogen developmental and transmission cycles.   

Key words: Anaplasma phagocytophilum, Ixodes scapularis, tick bite site, NY-18 human 

strain, iummunocytochemistry.  

Introduction  

Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a pathogen transmitted   

primarily by ticks of the genus Ixodes to a wide range of hosts. Although A. 

phagocytophilum transmission was thought previously to be primarily between ticks and 

ruminants (Woldehiwet, 2010), the host range is now known to  include rodents, 

hedgehogs, birds, cats, deer, horses, cattle, dogs, sheep, and humans (Stuen et al. 2013;  

Dumitrache et al. 2013). After the reclassification of the Family Anaplasmataceae by 

Dumler et al. (2001), A. phagocytophilum has been recognized as the etiologic agent of 

several diseases including human granulocytic anaplasmosis (HGA), tick-borne fever 

(TBF) in sheep and other ruminants, equine granulocytic anaplasmosis (EGA) in horses 

and canine granulocytic anaplasmosis (CGA) in dogs (Dumler et al. 2001; Goodman, 

2005; Woldehiwet, 2010; Stuen et al. 2013). However, while several organisms were 
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combined as A. phagocytophilum, genetic analyses have demonstrated notable strain 

variation among A. phagocytophilum variants and differences were found between 

ruminants, horse, dogs and humans. These and other studies have suggested that strains in 

ruminants may share common characteristics which differ from human strains (de la 

Fuente et al. 2005b; Torina et al. 2008; Reichard et al. 2009; Rar and Golovljova 2011).  

 In Europe A. phagocytophilum is an economically important pathogen of sheep and 

infection causes septicemia resulting from secondary infection, abortion, as well as 

lameness in lambs (Stuen, 2007; Stuen et al. 2009; Grøva et al. 2011). During the 

rickettsemia in sheep, neutrophils were found to be the main host cell for A. 

phagocytophilum, but eosinophils and monocytes were also present, and notable 

parasitemias of circulating granulocytes (≤ 90%) were determined by examination of 

stained blood smears (Foggie, 1951; Tuomi, 1967 a,b; Woldehiwet and Scott, 1982; 

1993; Woldehiwet 1987; Woldehiwet, 2010). Recently, neutrophils infected with A. 

phagocytophilum were also demonstrated with IHC in skin biopsies taken at the tick 

feeding lesions from the naturally infected lambs (Granquist et al. 2010).   

The emergence of A. phagocytophilum as a human pathogen in the U.S., Europe and Asia 

(Goodman, 2005) has drawn interest in characterizing human isolates. Since studies of 

human isolates require an animal model, we initiated studies to determine whether sheep 

would serve as an experimental host for defining host/pathogen/tick interactions. Our 

initial studies confirmed that sheep were susceptible to infection and served as a source 

for infection of I. scapularis ticks (Kocan et al. 2012; Reppert et al. 2012). In contrast to 

infections in naturally and experimentally infected sheep in Europe (Stuen, 2007; Stuen 

et al. 2009), infection of sheep with this human strain did not result in clinical signs and 
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infected granulocytes were not seen in stained blood smears. However, I. scapularis 

females that were allowed to feed on these sheep acquired infection after short feeding 

periods (2-4 days). This finding prompted our interest in characterizing the tick feeding 

site to better understand the relationship between the host, tick vector and pathogen.  

In this research we characterized tick feeding sites on sheep infected with the NY-18 

isolate of A. phagocytophilum and provided evidence for the source of A. 

phagocytophilum infection for ticks that fed on the experimentally infected sheep.   

Materials and Methods 

Experimental Design Overview  

The experimental design overview is shown in Figure 1. Three sheep (44, 45 & 66), 

determined by a series of 4 PCR of blood samples to be A. phagocytophilum-free, were 

used for these studies ad was similar to the previously reported study by Kocan et al. 

(2012).  Sheep 44 and 45 were experimentally infected by intravenous inoculation (IV) of 

HL-60 cell cultures infected with the human NY-18 isolate of A. phagocytophilum, and 

Sheep 66, not inoculated with infected cell cultures, served as the uninfected control.  

Ticks were placed in cloth stockinettes on the sheep and allowed to feed in cells 1 and 2 

for 2 or 4 days, while cell 3 remained without ticks. Skin biopsies were collected beneath 

tick feeding and non-feeding sites immediately after the sheep were euthanized for 

histopathology, IHC and PCR studies. 

Animals and Sampling 

Ticks 

 Ixodes scapularis ticks (180 male and female pairs) were obtained from the laboratory 

colony maintained at the Oklahoma State University Tick Rearing Facility. Adult ticks 
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were raised at the Tick Rearing Facility and the male and female ticks were then 

purchased and used for these studies. Off-host ticks were maintained in a 12 h light: 12 h 

dark photoperiod at 22–25
◦
C and in humidity chambers with a 95% relative humidity 

(RH).   

Sheep 

Three Suffolk female sheep, approximately 1 year old, were originally purchased by the 

Tick Rearing Facility at a local livestock auction and subsequently bought by our 

laboratory for use in these studies (Fig 1; Sheep 44, 45 and 66). The sheep were 

determined to be negative for A. phagocytophilum by PCR analysis of the initial four 

blood samples that were collected twice per week.  Sheep 44 and 45 were then inoculated 

IV with HL-60 cell cultures infected with A. phagocytophilum and Sheep 66 was not 

inoculated with cell cultures and was a source of uninfected ticks and sheep tissues as 

described previously by Kocan et al. (2013). All sheep were observed daily for clinical 

signs of disease. Blood samples were collected 2 times per week from all sheep and 

stained blood films were prepared from EDTA-anticoagulated blood 

on each collection day and stained with an aqueous Romanowsky stain using an 

automated stainer (Aerospray 7120, Wescor Inc., Logan, UT, USA). The stained smears 

were then examined for the presence of characteristic A. phagocytophilum morulae in 

granulocytes. All blood samples were also stored at -20 C and then tested for A. 

phagocytophilum msp4 PCR assay to confirm that the seep remained infected throughout 

the study.   

A. phagocytophilum propagation in HL-60 cells and infection of sheep 



65 
 

The human NY-18 isolate of A. phagocytophilum (Asanovich et al. 1997; de la Fuente et 

al. 2006) was propagated in cultures of the human undifferentiated HL-60 promyelocytic 

cell line. Infected and uninfected cell cultures were maintained at 37
◦
C in RPMI medium 

as reported previously (de la Fuente et al. 2005a). Sheep 44 and 45 were inoculated with 

2 T-25 flasks of A. phagocytophilum-infected HL-60 cells (45% infection, as determined 

by detection of intracellular morulae in stained cytospin smears; Hema-3 Stain, Fisher 

Scientific, Middletown, VA, U.S.A.). The cultures were centrifuged and re-suspended 

with serum-free RPMI 1640 medium for a final dose of 1×10
7 

cells in 2 ml of cell culture 

medium.  

Inoculation of sheep, tick infestations and collection of ticks and skin biopsies 

After Sheep 44 and 45 were determined by PCR to be infected with A. phagocytophilum 

they were used, along with uninfected Sheep 66, for tick feeding studies. The sheep were 

infested with ticks at one month after the sheep were determined as PCR positive for 

infection with A. phagocytophilum. This 30 day time period was found in previous 

studies to be optimal for acquisition of A. phagocytophilum infections by ticks 

(unpublished results). For tick feeding, three tick feeding cells (Cells 1, 2 and 3), made 

from 8 inch cotton orthopedic stockinettes (Tex-Care Medical, Burlington, N.C., U.S.A.),  

were glued to a shaved and washed areas on the sides of the sheep using industrial 

adhesive (#M Scotch-Grip Industrial Adhesive 4799, 3M Industrial Adhesvies and Tapes, 

St. Paul, MN U.S.A.). Cells 1 and 2 were placed 8 inches apart on the upper left side on 

the sheep and Cell 3, which was not infested with ticks, was placed on the upper right 

side of the sheep. Twenty male/female pairs of I. scapularis were then placed in each cell 

and allowed to feed. Cells 1 (4-day fed ticks) and 2 (2-day fed ticks) were infested with 

ticks on Day 0 and Day 2, respectively. Cell 3 did not receive ticks and served as a site 
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for collection of tick free (control) skin biopsies for histopathology and ICH studies. The 

tick feeding times (2 and 4 days) were based on previous studies in which advanced 

necrosis was observed in longer tick feeding times which would not be favorable for 

histologic and IHC studies (Kocan et al. 2010 and unpublished results). On Day 4, all 

ticks were removed, and the feeding lesions were photographed and marked for biopsy 

collection (Fig. 2c). After collection of blood samples, the three sheep were then 

euthanized by a licensed veterinarian with 1 mL / 10 lbs body weight of pentobarbital in 

the vein. Immediately after being euthanized three 8 mm full thickness punch skin 

biopsies of selected feeding and non-feeding sites were taken from each of the three cells 

on each sheep and placed in buffered formalin for histopathology, immunohistochemistry 

(IHC) or in Tri-reagent for PCR studies. The three skin biopsies taken from each cell 

were processed as follows: (1) one skin biopsy was fixed in buffered formalin for paraffin 

embedment. Sections prepared from these tissue blocks were either stained with 

hematoxylin and eosin (H&E) for characterization of the histopathology of the feeding 

lesions or left unstained for IHC studies, (2) one skin biopsy was homogenized and used 

for extraction of RNA and DNA for PCR and gene expression studies and (3) one skin 

biopsy from each cell was fixed in glutaraldehyde and stored for future light and electron 

microscopy studies. Ten of the female ticks collected from each cell were cut in half 

separating the left and right sides. Tick guts and salivary glands  were  then dissected  

from ½ of each of 10 female ticks per cell (Cell 1, 4d fed ticks; Cell 2, 2d fed ticks) on 

infected Sheep 44 and  45 and uninfected Sheep 66, and placed in Tri-reagent for 

subsequent DNA and/or RNA extraction. The other ½ tick was placed in glutaraldehyde 

fixative and stored for future microscopy studies. Necropsies were performed on the 
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sheep for gross and histopathologic evaluation, and samples of skin, liver, lung, heart, 

lymph node,  and kidney were fixed in buffered formalin for histopathology or placed in 

Tri-Reagent for PCR studies. Use of experimental sheep for this research was done under  

protocol VM1026 approved by the Oklahoma State University, Institutional Care and Use 

of Animals Committee according to the regulations of the U.S. Department of 

Agriculture.   

Detection of A. phagocytophilum by PCR in sheep and tick tissues 

For PCR studies, DNA was extracted from tissue samples in Tri-Reagent (Sigma, St. 

Louis, MO, U.S.A.) following manufacturer’s recommendations. Blood samples tested 

by PCR were collected from sheep prior to inoculation with A. phagocytophilum infected 

HL-60 cells, then twice per week post inoculation and immediately prior to euthanasia. 

Skin biopsies for PCR studies were collected immediate after euthanasia. Other sheep 

tissues tested by PCR were collected at necropsy and included spleen, liver, heart, skin, 

lung and cervical and mesenteric lymph nodes. A. phagocytophilum infection levels in 

sheep and tick tissues were characterized by msp4 PCR on DNA samples as described 

previously by Kocan et al. (2010) using the Applied Biosystem 2720 Thermocycler as 

described previously (Busby et al. 2011) and  using oligonucleotide primers MSP4-L (5’ 

-CCTTGGCTGCAGCACCACCTG-3’) and MSP4-R (5’ 

TGCTGTGGGTCGTGACGCG-3’). PCR products were analyzed by agarose gel 

electrophoresis to identify positive samples. To corroborate the identity of the A. 

phagocytophilum isolate, msp4 amplicons were resin purified (Wizard; Promega) and 

cloned into pGEM-T vector (Promega) for sequencing (Core Sequencing Facility, Dept. 
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of Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State 

University).   

Real-time quantitative PCR  

To quantify infection levels in each sheep tissue by real time PCR, 100 ng of total DNA 

was used in a 20 µl reaction, using the primers for msp4 PCR described in the previous 

section and the SsoAdvanced SYBR Green Supermix (Biorad Hercules, CA, U.S.A.).  

The Ovis aries aldolase B (GenBank accession number NM_001009809.1) was amplified 

using primers Oa-ALDOBF (5’ -CCCATCTTGCTATCCAGGAA -3’) and Oa-

ALDOBR (5’-TACAGCAGCCAGGACCTTCT -3’) and used for normalization.  The 

reaction mixes were placed in the CFX96 Thermal cycler (BioRad Hercules, CA, 

U.S.A.). The cycling program for both PCRs consisted of 1 cycle of denaturation at 98ºC 

for 2 min and 40 cycles of annealing-extension at 55ºC for 1 min. and melting curve 55-

95 ºC in 0.5 ºC increments 5 sec/step. Each run contained two negative controls with no 

DNA added. Triplicate values for infected and uninfected samples were normalized by 

calculating the ratio of A. phagocytophilum msp4 product to averaged Ovis aries aldolase 

B product. Normalized values were averaged and the standard error of the mean was 

determined. The data were statistically analyzed using the Student’s t-test (P=0.05). 

Microscopic examination and assessment of inflammation 

Skin biopsies fixed in buffered formalin were trimmed to the lesion sites then processed 

for paraffin embedment. Sections (3 µm) were prepared and stained with H&E for 

histologic evaluation. The stained slides were scanned and analyzed using the Spectrum 

11.1.1.760 Software (Aperio Technologies Copyright 2006-2011, Vista, CA USA). Three 

separate areas (100 µm x 100 µm) were selected at 40 X magnification on biopsy 
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sections from Cells 1-3 on Sheep 44, 45 and 66 and the eosinophils and neutrophils cells 

within each area were counted and tabulated. These data were then statistically analyzed 

using the Student’s t-test (P=0.05).  

Immunohistochemistry 

MSP4 antibody production 

Recombinant A. phagocytophilum NY18 MSP4 (AFD54597) protein was expressed in 

Escherichia coli (Champion pET 101 Directional TOPO Expression kit, Carlsbad, CA, 

U.S.A.) and purified using the Ni-NTA affinity column chromatography system (Qiagen 

Inc., Valencia, CA,  U.S.A.) following manufacturer’s recommendations and as described 

by Ayllón et al. (2013). Rabbits were then immunized with purified MSP4 and serum 

samples were collected from the pre-immune and immunized rabbits from which the IgG 

was purified using Montage Antibody Purification Kit and Spin Columns with PROSEP-

A Media ( Millipore, Billerica, MA, U.S.A.), and stored frozen at -20
o
C until used for  

the IHC studies.  

Peroxidase-antiperoxidase (PAP) immunohistochemistry studies 

Immunohistochemistry studies using peroxidase-anti-peroxidase (PAP) labeling on 

paraffin sections of  skin biopsies from the infected and control sheep were done using 

the Vectastain Elite Rabbit IgG ABC Kit and AEC peroxidase substrate kit (Vector Labs, 

Burlingame, CA, U.S.A.). The PAP labeling reactions were done according to the 

manufacturer’s instructions using A. phagocytophilum rabbit anti-MSP4 antibody 

prepared as described above. Control labeling reactions were done with MSP4 antibody 

on skin biopsy sections from the uninfected Sheep 66 and by using pre-immune antisera 

as the primary antibody in labeling reactions on biopsy sections from infected sheep. The 
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stained slides were examined and photographed using a Nikon Eclipse E600 and a Nikon 

DS-F12 camera with NIS Elements F4.00.00 software.  

Confocal microscopy  

Rabbit antibodies against A. phagocytophilum MSP4 were used for confocal microscopy 

studies on biopsy sections from infected and uninfected sheep. The sections were placed 

in xylene to remove the paraffin, and rehydrated in decreasing concentrations of ethanol 

followed by enzymatic antigen retrieval using proteinase K (Dako North America, CA, 

U.S.A.) (40 µl in 2 mL phosphate buffered saline [PBS]) for 7 min at room temperature, 

after which the slides were washed in PBS and blocked by incubation with 2% bovine 

serum albumin (BSA) in PBS at room temperature for 60 minutes. The primary MSP4 

antibody (100 µl) diluted with buffer (2%BSA + PBS) ratio of 1:100 was then applied to 

sections and allowed to incubate at overnight at 4ºC. FITC conjugated anti-rabbit IgG 

antibody (Sigma-Aldrich, MO, U.S.A.) diluted in PBS+2%BSA at a ratio of 1:160 was 

used as the secondary antibody and the slides were allowed to incubate for 60 min in the 

dark at room temperature. The slides were then rinsed with PBS + Tween followed by a 

second wash of PBS. DAPI (4',6-diamidino-2-phenylindole) (Sigma-Aldrich, MO, 

U.S.A.) was prepared by adding 0.5 µL of DAPI to 5 mL of PBS  and  incubated  at 37C 

for 15 minutes, after which the slides were rinsed with PBS and dried. A single drop of 

anti-fade reagent (Invitrogen Molecular Probes, OR, U.S.A.) was placed directly over 

each sample followed by application of a glass coverslip and the slides were sealed. The 

slides were examined and photographed at 40x using a Leica SP2 Laser Scanning 

Confocal Microscope located in the OSU Electron Microscopy Laboratory.  

Gene expression analysis by real-time RT-PCR 
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Immune response genes studied in blood and biopsy samples for this study were selected 

based on previous studies of blood samples from sheep experimentally infected with A. 

phagocytophilum (Galindo et al. 2008; Table 2). The analysis of gene expression in blood 

samples from infected and control sheep included erythropoeitin receptor (EPO-R), tight 

junction protein 2 (Z02), tight junction protein 3 (Z03), G-protein linked receptor 

(EDG2), interleukin 2RA (IL-2RA), toll-like receptor 7 (TLR7), desmoglein (DSG), 

macrophage migration inhibition factor (MIF), integrin alpha 4 (INTEG4; CD49d), G 

protein-coupled receptor (CCR7), and monocyte chemo-attractant protein 1 receptor 

MCP-1RA (CCR2).  Gene expression was also studied in skin biopsies from the infected 

and control sheep and included EDG-2, IL-4RA (interleukin 4RA), CCR7, EPO-R, 

TLR7, DSG, CCR2, and ZO3. Total RNA was isolated from blood and skin biopsies 

samples of infected and uninfected sheep using Tri-Reagent (Sigma) and following 

manufacturer’s recommendations. The primers for each of the genes and the real time 

RT-PCR procedures were as reported previously by Galindo et al. (2008). The iScript 

One-Step RT-PCR Kit with SYBR Green QuantiTec SYBR Green RT-PCR kit (Qiagen) 

and the CFX96 Thermal cycler (Bio-Rad Hercules, CA, U.S.A.) were used following 

manufacturer’s recommendations. The mRNA levels were normalized against sheep beta 

actin as described previously (Galindo et al. 2008).  In order to analyze gene expression 

in response to A. phagocytophilum infection in blood, samples from the same sheep 

before (Day 0) and after (Day 33) infection were used to avoid animal-to-animal 

variation. The expression of immune response genes in skin biopsies was analyzed using 

three different comparisons: (1) skin biopsies from feeding tick sites versus skin biopsies 

from sites without ticks in infected and uninfected sheep, (2) skin biopsies in sites 
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without feeding ticks in uninfected and infected sheep, and (3) skin biopsies with feeding 

ticks at the bite site in uninfected and infected sheep. Statistical analysis was conducted 

using Student’s t-test with unequal variance (P = 0.05) for skin biopsies and by ANOVA 

test (P = 0.05) for blood samples.  

 Results   

PCR detection of A. phagocytophilum in sheep tissues and ticks 

 Sheep. Sheep 44 and 45 were determined by PCR to be infected with A. 

phagocytophilumat 12 and 15 days post inoculation (PI), respectively, and blood samples 

collected throughout tick feeding and tested as a group after the end of the study 

confirmed that the sheep remained infected with A. phagocytophilum. Sequence analysis 

of the msp4 amplicons from PCR products confirmed that both sheep were infected with 

the NY-18 strain of A. phagocytophilum used to initiate infection.  Samples of blood, 

spleen, heart, liver, lung, skin and cervical and mesenteric lymph nodes collected at 

necropsy from the infected sheep were also PCR positive for A. phagocytophilum, with 

the exception of heart tissue from Sheep 45 which was negative.  All blood and tissue 

samples collected from Sheep 66 throughout the experiment were confirmed by PCR to 

be negative for A. phagocytophilum. 

Ticks. Salivary glands and guts (90% to 100%, respectively) from ticks that fed on 

infected Sheep 44 and Sheep 45 for 2 and 4 days were PCR positive for A. 

phagocytophilum (Table 1). Salivary glands and guts from ticks that fed on the uninfected 

Sheep 66 were PCR negative for A. phagocytophilum. 

 Quantitative PCR on sheep tissues collected at necropsy.  
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Significant differences were not observed by quantitative PCR in infection levels of A. 

phagocytophilum in spleen, liver, heart, skin, lung, cervical and mesenteric lymph nodes 

tissues, skin biopsies and blood samples collected at the time of euthanasia.               

Necropsy findings. 

Relevant gross changes seen at necropsy were similar in both infected sheep (44 and 45) 

and were mild and restricted to the lymphoid system.  While the use of barbituates may 

have contributed to the mild splenomegaly that was observed, the lesions observed at 

necropsy would not have been impacted. Visible on the cut surface spleens of infected 

sheep were mildly enlarged with conspicuous lymphoid follicles.  Sublumbar and 

prescapular lymph nodes were mildly to moderately enlarged, with maintenance of 

distinct corticomedullary architecture.  In each of the sheep, gross lesions interpreted to 

be background changes unrelated to A. phagocytophilum infection were occasionally seen 

such as mild chronic pericardial adhesions with focal myocardial degeneration and 

fibrosis in sheep 45. Microscopic examination of lymphoid tissues revealed moderate 

lymphoid hyperplasia with germinal center formation in spleen and lymph nodes of each 

sheep. Moderate numbers of eosinophils and neutrophils were present in medullary 

sinuses of lymph nodes of both sheep and medullary cords were moderately expanded by 

increased numbers of plasma cells. 

Histopathology of tick feeding lesions  

Skin lesions were seen around feeding ticks (Fig 2a) and three feeding sites were marked 

after tick removal for biopsy collection (Fig 2, b and c). When biopsy sections stained 

with hematoxylin and eosin were examined with light microscopy, inflammation was 

seen in the 2 day tick feeding site biopsies all sheep (Fig. 3, Cell 2 column: 44-2,45-2 and 

66-2) and after 4 days inflammation at tick feeding sites was pronounced in all sheep and 
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accompanied by necrosis (Fig. 3, Cell 1 column: 44-1,45-1, 66-1). Mild inflammation 

was also observed in the biopsies from Cell 3 of each sheep (Fig 3. Cell 3 column: 44-3, 

45-3 66-3) where ticks had not fed. In the 4-day tick feeding biopsies from all sheep (Fig 

3:  Cell 1 column:  44-1, 45-1 and 66-1), the epidermis and underlying dermis were 

focally interrupted by an ulcer overlain by intense eosinophilic, neutrophilic and 

histiocytic inflammation within the dermis. Inflammatory cells were accompanied by 

abundant cellular debris within a background of edema. Dermal inflammation was most 

intense surrounding blood vessels and adnexal structures. Inflammation was less severe 

in biopsies from all sheep where the ticks had fed for 2 days (Fig. 3, Cell 2 column, 44-2, 

45-2 and 66-2) and was restricted to the superficial dermis, in which a moderate 

inflammatory infiltrate composed of eosinophils and macrophages with fewer 

lymphocytes and plasma cells surrounded blood vessels and adnexa.                                                             

Analysis of the distribution of granulocytes in skin biopsies.  

Analysis of the distribution of granulocytes in skin biopsies is depicted in Figure 4. The 

populations of eosinophils and neutrophils in skin biopsies from tick feeding sites were 

determined  from the sections of the 2-day tick feeding sites (Cell 2) and  the non-tick 

feeding sites of Cell 3 because inflammation and necrosis observed in 4-day tick feeding 

sites (Cell 1) was too advanced for accurate cell counts. The overall populations of 

granulocytes in the skin biopsies were significantly higher in biopsies from   tick feeding sites 

(Cell 2) on all three sheep (44, 45 & 66) as compared with the non-tick feeding sites (Cell 3) (Fig. 

4).  The number of eosinophils was significantly higher in tick feeding sites in both 

infected and uninfected sheep (P<0.03; N=3). Neutrophils counts were significantly 

higher in biopsies from non-tick feeding sites in infected sheep when compared to the 

uninfected sheep (P<0.05; N=3). The number of neutrophils was higher in the infected 
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and uninfected sheep at tick feeding sites when compared to non-tick feeding sites 

(P=0.002; N=3). Total cell counts were higher in tick feeding sites in both infected and 

uninfected sheep, reflecting results of eosinophils counts (P<0.02; N=3). Additionally, 

total cell counts were higher in non-tick feeding sites of infected sheep 44 and 45 when 

compared to similar sites in the uninfected sheep 66 (P=0.004; N=3). These results 

suggested that eosinophils accumulate in tick feeding sites independently of infection, 

while neutrophils are associated with A. phagocytophilum infection.   

IHC studies.  

At low magnification focal fluorescence was not seen in sections of skin biopsies from 

the uninfected control sheep 66 (Fig. 5a). In contrast, infected cells were observed at low 

magnification in skin biopsy sections from the infected sheep that were taken from  the 2-

day tick feeding site (Cell 2; Fig. 5b) and the 4-day tick feeding site (Cell 1; Fig5c). At 

higher magnification IHC studies, infected neutrophils were localized by PAP labeled A. 

phagocytophilum MSP4 rabbit antibody in skin biopsies from infected sheep 44 and 45 

cells in which ticks were allowed to feed  Fig. 6a). PAP labeled cells were not seen in 

skin biopsy sections from the uninfected control (Sheep 66) or in biopsies from infected 

sheep reacted with pre-immune rabbit sera as the primary antibody.  Likewise, infected 

cells were identified by confocal microscopy and indirect fluorescent antibody labeling in 

skin biopsies from infected Sheep 44 and 45 (Fig.  6, b and c). The nuclei of the infected 

cells were more clearly visible in sections that were counterstained DAPI (Fig. 6c).  

Analysis of the expression of selected immune response genes  

Expression of selected immune response genes in blood samples of infected sheep was 

not different from the uninfected sheep with the exception of Z02, which was 

significantly upregulated by 3- to 4-fold in the two infected sheep.  In the analysis of 
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gene expression in skin biopsies from tick feeding sites versus skin biopsies where ticks 

had not fed, four genes (TLR, DSG, CCR2 and Z03) were significantly downregulated in 

response to tick feeding in Sheep 44, while Z03 was the only gene significantly 

downregulated in Sheep 45 (Table 2). Expression of immune response genes was not 

significantly different in skin biopsies in sites without feeding ticks in uninfected and 

infected sheep and in skin biopsies with feeding ticks at the bite site in uninfected and 

infected sheep (data not shown). 

Discussion 

This research is a continuation of our efforts toward development of a sheep model for 

the   human NY-18 isolate of A. phagocytophilum for study of host/pathogen/tick 

interactions. Since our laboratory is most interested in tick-pathogen interactions, we 

chose sheep for this model because they are a good host for feeding large numbers of 

ticks required for gene expression and developmental studies.  Previous studies have 

shown that genes are differentially expressed in sheep and tick cells in response to A. 

phagocytophilum (Galindo et al. 2008; Villar et al, 2010; Busby et al. 2012; Ayllón et al. 

2013; Naranjo et al., 2013). In this research we also demonstrated differential expression 

of  immune response genes in blood (upregulation of Z02 in response to infection) and  

skin biopsies from tick feeding sites of the experimentally infected sheep 

(downregulation of TLR, DSG, CCRS and Z03 in response to tick feeding). A similar 

study in mice demonstrated that tick feeding inhibits gene transcription and Th17 

immunity in skin (Heinze et al. 2012). These results suggested that tick feeding 

downregulates immune response genes, thus contributing to mechanisms by which ticks 

counteract host immune responses (Hajdušek et al. 2013).  



77 
 

In our initial experiments (Kocan et al. 2012) we demonstrated by tick acquisition 

feeding studies that ticks are susceptible to infection with the NY-18 human isolate of A. 

phagocytophilum which was confirmed again by the results of this study. While A. 

phagocytophilum has been reported microscopically in tick gut muscle cells (Reichard et 

al. 2009), the complete description of tick developmental cycle of this pathogen is not 

known.  Notably, even in the absence of clinical signs, these sheep served as an efficient 

host for infection of ticks (Kocan et al. 2010). This result led to our interest in further 

studying host-pathogen-tick inactions by characterizing the tick feeding site and the 

immediate environment where ticks acquire A. phagocytophilum infection. While 

infected granulocytes, as determined by the presence of morula, were not seen in blood 

smears of these experimentally infected sheep, IHC provided evidence of the 

multiplication of A. phagocytophilum in granulocytes at the tick feeding site which is 

likely to be the source of infection for ticks.  

The necropsy results in this study were consistent with systemic inflammation and 

immune stimulation characterized predominately by hyperplasia of lymphoid tissues 

including splenomegaly which is commonly reported in Anaplasma infections (Blas-

Machado et al. 2007; Kocan et al. 2003). By Day 2, tick feeding resulted in a dermal 

inflammatory response in which granulocytes, primarily neutrophils and eosinophils, 

were attracted to the tick feeding site, and by 4 days of tick feeding, inflammation was 

advanced with necrosis. These results are not surprising because ticks secrete a variety of 

salivary compounds during feeding that allow them to complete their blood meal despite 

the host immune response. Such salivary compounds have also been found to promote 

pathogen transmission, infection and infiltration of inflammatory cells to the bite site 
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(Kazimίrova et al. 2013). Additionally, some of biomolecules secreted in tick saliva 

cause activation of the host’s innate immune response promoting the infiltration of 

neutrophils and eosinophils into the bite site. Tick saliva biomolecules were recently 

reported to have a chemotactic effect, and to inhibit neutrophil and eosinophil function 

(Guo et al. 2009).   

While the host inflammatory response to the tick feeding site was anticipated in these 

studies, we were surprised to find a significantly greater diffuse dermal inflammation at 

non-tick feeding sites in these experimentally-infected sheep. This generalized dermal 

inflammation is likely to be a mechanism that has evolved which enhances the 

coordination between tick feeding and infected granulocytes which would favor infection 

of ticks.  

Confocal and PAP IHC studies revealed A. phagocytophilum infected granulocytes in the 

skin biopsies at the tick bite sites. These findings confirm previous ones in which A. 

phagocytophilum was demonstrated in granulocytes at the bite site on naturally infected 

sheep (Granquist et al. 2010). In this previous study, the majority of the inflammatory 

cells described at the tick bite site were neutrophils and monocytes, but interestingly 

lacking in eosinophils. However, the results were obtained on naturally infected sheep 

and non-tick feeding bite sites were not examined for analysis of dermal inflammation.  

In summary, this research further advanced our understanding of the host/tick/pathogen 

interactions of the human NY-18 isolate of A. phagocytophilum. While sheep served as a 

good source of infection for ticks, as in our previous studies clinical signs were not 

apparent in any of the experimentally infected sheep (Kocan et al. 2012). Likewise, 

evidence was presented that tick feeding modulates the host immune response to 
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infection by altering the cellular infiltrates at the bite site and gene expression. 

Granulocytes recruited to the tick bite site appear to be the source of infection for ticks, 

and the increased levels of dermal inflammation in the infected sheep that apparently 

resulted from A. phagocytophilum infection were likely to enhance acquisition of tick gut 

and salivary gland infections in the 2- and 4-day fed ticks. While tick feeding Cells 1 & 2 

were placed eight inches apart on the same side of the sheep, eight inches apart,  Cell 3 

without ticks was located on the opposite site of the sheep.  

This model therefore provides a means of producing infected ticks for future 

tick/pathogen developmental morphologic and molecular interaction studies. This sheep 

model will also be useful for study of the molecular interactions between A. 

phagocytophilum and granulocytes and to determine the basis for the absence of 

recognizable morula in circulating granulocytes. It is likely that differences in gene 

expression in granulocytes occur at the bite site from that of the circulating granulocytes. 

Future studies are needed to further elucidate the specific genes involved in the 

development of dermal inflammation and A. phagocytophilum infection at the tick bite 

site.  
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Table 1.  The percentage of guts and salivary glands from female I. scapularis infected 

with Anaplasma phagocytophilum as determined by PCR 

 

 
Sheep 44,  

Cell 1 (2-day 

fed) 

Sheep 44,  

Cell 2 (4-day 

fed) 

Sheep 45 

Cell 1 (2-day 

fed) 

Sheep 45 

Cell 2 (4-day 

fed) 

Salivary 

Glands 

100%  

(10/10)  

90% 

(9/10) 

100% 

(10/10) 

100%  

(10/10) 

         Guts           100% 

(10/10)  

100% 

(10/10)  

90% 

(9/10) 

90% 

(9/10) 
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Table 2. Expression of selected immune response genes in sheep skin biopsies.  

 

a
Genes were selected based on the research reported previously by Galindo et al. (2008). 

Normalized mRNA levels were represented as ratios (Ave ± S.D.) of biopsies from Cell 

2, 2-day tick feeding sites over skin biopsies from Cell 3 without ticks and compared 

between samples by Student’s t-test (*P<0.05; N=3).  

 

 

 

 

 

 

 

 

 

 

Genbank 

accession 

number 

 

Gene 

symbol 

 

Gene description 

Gene expression  

Ratio
a
 

Uninfecte

d sheep 

Infected 

sheep 

U18405 EDG2 G-protein linked receptor 0.7 ± 0.3 1.3 ± 0.5 

AF081273 IL4R Interleukin 4RA 0.1 ± 0.2 1.6 ± 0.2 

NM_001024930 CCR7 G protein-coupled 

receptor 

0.1 ± 0.2 0.7 ± 0.5 

AY029231 EPO-R Erythropoietin receptor 0.1 ± 0.2 0.7 ± 0.2 

EF583900 TLR7 Toll like receptor 7 0.2 ± 0.4* 1.3 ± 0.2 

M58165 DSG Desmoglein 0.2 ± 0.2* 0.8 ± 0.2 

XM_584158 CCR2 Monocyte 

chemoattractant protein 1 

receptor 

0.2 ± 0.2* 1.4 ± 0.1 

AJ313186 ZO3 Tight junction protein 3 0.1 ± 0.3* 0.4 ± 

0.1* 
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Figure 1.  Experimental design for the infection of sheep and ticks with                           

A. phagocytophilum and for collection of skin biopsies from sheep at tick 

feeding and non-tick feeding sites.  
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Figure 2. Tick feeding sites on sheep.  (a) Lesions (arrows) around I. scapularis feeding 

sites on sheep; (b) The same skin lesions (arrows) after removal of ticks; and (c) 

three tick feeding lesion sites marked for collection of skin biopsies.  
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Figure 3.  Light photomicrographs of hematoxylin and eosin stained sections of skin 

biopsies from infected Sheep 44 and 45 and uninfected Sheep 66. Column 1 

sections of biopsies from Cell 2 after removal of the 2-day fed ticks (44-2, 45-2 

and 66-2); Column 2- sections of biopsies from Cell 1 after removal of the 4-

day fed ticks (44-1, 45-1 and 66-1); and Column 3-sections of biopsies from 

Cell 3 without ticks (44-3, 45-3 and 66-3). Bars = 100 µm. 
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Figure 4.  Graphic presentation of the distribution of eosinophils, neutrophils and the 

totals of both cell types in skin biopsies from infected Sheep 44 and Sheep 45 

and uninfected Sheep 66. The data were analyzed using the Student’s t-test 

(P=0.05). 
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Figure 5. Low magnification light micrographs of the immunohistochemical localization 

of A. phagocytophilum infected neutrophils in sheep skin biopsies from Cell 2 

in which the ticks had fed for 2 days. Rabbit polyclonal antibody against 

recombinant A. phagocytophilum MSP4 was used as the primary antibody.  (a) 

uninfected sheep 66; (b) infected Sheep 44; and (c) infected Sheep 45.  Cells 

infected with A. phagocytophilum seen in (b) and (c) appear as a bright 

punctate fluorescence.  Bar = 100 µm. 
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Figure 6.  High magnification light micrographs of the immunohistochemical localization 

of A. phagocytophilum infected neutrophils in sheep skin biopsies using rabbit 

polyclonal antibody to MSP4 as the primary antibody.  (a) A. phagocytophilum 

localized in neutrophils using perxoidase-antiperoxidase (PAP) conjugated to 

anti-rabbit IgG antibody (arrows); (b) and (c) A. phagocytophilum localized in 

neutrophils using confocal microscopy and FITC conjugated anti-rabbit IgG 

antibody 7(arrows). In (c) DAPI was used as a counter stain.  Bar = 10 µm. 
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CHAPTER IV 
 

 

SUMMARY 

Anaplasma phagocytophilum, a gram negative obligate intracellular bacterium,   

has a tropism for granulocytes in the vertebrate host where it resides within a 

parasitophorous vacuole in the host cell cytoplasm. This tick-borne pathogen, first 

described in sheep in Europe as the etiologic agent of tick-borne fever (TBF), is 

transmitted primarily by ticks of the genus Ixodes. More recently, A. phagocytophilum 

has been shown to be the agent of granulocytic anaplasmosis in a variety of other species, 

including dogs, cats, llamas/alpacas, birds, rodents, deer, and has been recognized as an 

emerging tick-born disease of humans in the U.S. and Europe. The recognition of the 

broad distribution of A. phagocytophilum and its emergence as a human tick-borne 

pathogen, particularly in the U.S., have created renewed interest and resulted in 

accelerated research on this organism, particularly concerning its molecular relationship 

with vertebrate and tick hosts. Recently, variants of A. phagocytophilum isolated from 

humans with HGA were found by sequence analysis to differ from than those that cause 

disease in ruminants. Because A. phagocytophilum is infective for a wide range of 

mammals, this pathogen may emerge in other animal populations in the future, such as 

food animal species, which may impact food animal production and also pose risk of 

increased exposure of humans.  
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Research in our laboratory was directed toward development of a sheep model for 

studying host-pathogen-vector interactions and the NY-18 human isolate of A. 

phagocytophilum. Sheep were shown to be susceptible to infection with A. 

phagocytophilum and served as a host for infection of I. scapularis ticks (Kocan et al. 

2010). The research presented in this thesis confirmed our initial findings and extended 

our understanding of this sheep model by characterizing the tick feeding sites on infected 

sheep and describing factors that may favor  infection of the tick vector.  

 Ticks are the biological vector for A. phagocytophilum and are most often 

required for transmission between humans and their mammalian hosts. The 

developmental cycle of the organism within the tick has not been fully characterized, but 

infections of the Ap-1 variant of A. phagocytophilum have been demonstrated in tick gut 

cells. While recent research has contributed to advancing our understanding of  the 

relationship between the tick, the host and the pathogen, further research is needed to 

elucidate the tick developmental cycle of A. phagocytophilum and to define the  

mechanisms of infction and transmission by ticks.  

An unexpected result of this research was the confirmation of transplacental 

transmission of A. phagocytophilum in sheep. One of the two sheep used for this research   

was experimentally infected with the A. phagocytophilum organism during the third 

trimester of pregnancy. The sheep gave birth to a lamb that was depressed and not 

feeding and was subsequently euthanized 18 h after birth. Tissues (blood, spleen, heart, 

skin, cervical and mesenteric lymph nodes) collected at necropsy tested positive for A. 

phagocytophilum by PCR, and sequence analysis confirmed that the lamb was infected 

with the NY-18 isolate. Transplacental transmission may therefore also be a means of A. 
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phagocytophilum transmission and may likely contribute to the epidemiology of tick-

borne fever in sheep and other mammals. This was the first report of transplacental 

transmission of the A. phagocytophilum in sheep and may be a source of infection for 

lambs that were raised on tick free pastures. Further research is needed to better 

understand the specific role of transplacental transmission in the transmission cycle of 

A.phagocytophilum.  

The focus of this research was to characterize the feeding site on sheep where 

ticks acquire infection with A. phagocytophilum. The overall hypothesis for this research 

was that A. phagocytophilum infected inflammatory cells were attracted to and 

sequestered at tick feeding sites where they served as a source of infection for ticks. To 

test this hypothesis, sheep were first reconfirmed as a model host for infection of ticks 

with the human NY-18 isolate of A. phagocytophilum. Skin biopsies were then collected 

at tick feeding sites on infected and uninfected sheep for histopathology and 

immunohistochemistry studies. The predominant cell types at the tick feeding site were 

found to be neutrophils and eosinophils. In addition, increased inflammation was 

observed in the dermis of experimentally infected sheep where ticks had not fed. Thus, A. 

phagocytophilum infection resulted in a generalized dermal inflammation as compared 

with the uninfected control sheep and localized inflammation is compounded by tick 

feeding. Immunohistochemistry using anitbodies to recombinant A. phagocytophilum 

MSP4 was done by two methods, indirect fluorescent antibody and peroxidase-anti-

peroxidase labeled antibody, and both methods resulted in localization of A. 

phagocytophilum infection in granulocytes at the tick feeding sites.  These infected cells 

are likely to be the source of infection for ticks. 
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 Collectively, the results of this research demonstrated that A. phagocytophilum 

infection and tick feeding contribute to inflammation and likely modulate the recruitment 

of infected granulocytes to tick feeding sites where they serve as a source of infection for 

ticks. Over all, these studies have contributed to our understanding of the A. 

phagocytophilum interactions with vertebrate and ticks hosts. 
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