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Abstract:   

Patients with type 2 diabetes mellitus (T2DM) have demonstrated a 1.5-3.5 fold increase 

in fracture risk, but the mechanisms responsible remain in question.  Due to the 

inflammatory response that has been shown to accompany T2DM and impaired insulin 

signaling, the purpose of this project was to:  (1) determine alterations in bone 

metabolism and their effects on bone microarchitectural and biomechanical properties the 

development and progression of T2DM in a young, growing animal; (2) determine the 

role of toll-like receptor (TLR)-4 in this skeletal response; and (3) explore the extent to 

which the autophagic pathway in bone cells is altered in response to impaired insulin 

signaling and glucose availability.  The initial study was designed to characterize long-

term metabolic and skeletal response between two commonly used C57BL/6 substrains 

(i.e., C57BL/6 and C57BL/6N) on a high fat (HF) diet.  The findings of this study show 

that the C57BL/6J and the C57BL/6N mouse differ in their metabolic response to a HF 

diet over a 24 wk study period, but their skeletal response was similar.  The subsequent 

study demonstrated that C3H/HeJ mice with a non-functional TLR-4, were somewhat 

protected from the metabolic changes induced by a HF diet and were also protected from 

the deleterious impact a HF diet exerted on bone.  The final study demonstrated that 

autophagy was up-regulated in bone and as impaired glucose tolerance progressed, 

autophagic flux was enhanced as evidenced by the increased pBeclin1 protein expression.  

Furthermore, the development and progression of impaired glucose tolerance was 

associated with osteoblast maturation and an apparent increase in osteocytes.  The ability 

of autophagy to drive osteoblast maturation was further confirmed by the ability of 

rapamycin-mediated autophagy to shift the phenotype of MC3T3-E1 towards that of a 

more mature osteoblast.  Therefore, the results from these studies (1) establish an 

appropriate mouse model for the pathogenesis of T2DM; (2) suggest that the metabolic 

changes associated with a HF diet attenuate bone accrual by altering bone turnover, and 

that TLR-4 is involved in this skeletal phenotype; and (3) Beclin1-mediated autophagy 

appears to be up-regulated during impaired glucose tolerance, driving the osteoblast 

towards a more mature, non-mineralizing phenotype. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Background Information 

Obesity is a major public health problem that affects 35.7% of adults and 17% of 

youth in the United States (Center for Disease Control and Prevention, 2011; Ogden et 

al., 2012).  These statistics represent an increase in obesity rates of approximately 3-fold 

over the past 5 decades (Parikh et al., 2007).  National medical costs associated with 

obesity are estimated at $147 billion per year, which accounts for 10% of all healthcare 

expenditures (Finkelstein et al., 2009).  These estimates include both direct and indirect 

costs associated with treating obesity and its co-morbidities, including stroke, 

hypertension, peripheral vascular diseases, and type 2 diabetes mellitus (T2DM).  In fact, 

80-90% of people diagnosed with T2DM are also clinically defined as obese (Berenson, 

2012).   

Currently, 24 million Americans have T2DM and the prevalence is expected to 

rise sharply over the next 40 years due to an increase in the aging population, increases in 

minority groups at high risk for T2DM, and individuals with T2DM living longer 

(Centers for Disease Prevention and Control, 2011).  The Centers for Disease Control
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and Prevention (CDC) has projected that the number of Americans with T2DM will double 

or triple by 2050, which translates to 1 in 3 adults being diagnosed with T2DM (Centers for 

Disease Prevention and Control, 2011).  While T2DM was once considered to be “adult-

onset” diabetes, health care providers have been diagnosing more children with T2DM 

(Centers for Disease Control and Prevention, 2013).  Children and adolescents diagnosed 

with T2DM are usually between 10-19 years of age, obese, and have a family history of 

diabetes (Centers for Disease Control and Prevention, 2013).  The annual medical costs 

related to treating the diabetes and it complications have been estimated at $116 billion in the 

U.S. and these expenditures are 2.3 times higher than the health care costs of patients without 

diabetes (Centers for Disease Prevention and Control, 2011).  The costs and the projected 

increase in T2DM over the next several decades highlight the negative impact T2DM will 

have on the health of both adults and children if better prevention strategies and treatment 

options are not developed.  

T2DM is a condition that results in elevated blood glucose or hyperglycemia due to 

the inability of cells to take up glucose from the circulation.  This impairment in glucose 

uptake is particularly affected in cells dependent upon insulin (e.g., white adipose tissue and 

skeletal muscle).  Although pancreatic insulin secretion often increases as a compensatory 

mechanism to clear glucose from the blood during the early stages of glucose intolerance, 

impaired insulin signaling is responsible for the observed hyperglycemia.  If blood glucose is 

not controlled with a regimen of diet, exercise and oral hypoglycemic agents, over time 

damage to the pancreatic β-cells can result in the cessation of insulin production and 

secretion (Porte, Jr., 1991).  It is at this point that patients may become dependent upon 

insulin therapy for control and regulation of blood glucose.  
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Aside from the effects on pancreatic β-cells, failure to control blood glucose can lead 

to other long-term debilitating complications.  Classic complications associated with T2DM 

include macro- and micro- vascular diseases, which contribute to an increased risk of stroke, 

myocardial infarction, blindness, renal failure and upper and lower extremity amputation 

(Hajer et al., 2008).  As a result, T2DM is considered the 7
th

 leading cause of death in the 

U.S. (i.e., ~230,000 deaths/ year) when all contributing factors are taken into account 

(Centers for Disease Prevention and Control, 2011).  Interest in identifying other long-term 

complications associated with T2DM has led to the investigation of hyperglycemia’s effects 

on other tissue and organ systems, including connective tissue.  As early as 1946, researchers 

began to explore the relationship between T2DM and bone health (Kenney, 1946).  While 

initial studies supported a positive association between T2DM and bone density, continued 

research with fracture as the primary outcome has depicted a very different relationship 

between T2DM and fracture risk (Schwartz et al., 2001; Nicodemus et al., 2001; de Liefde et 

al., 2005; Janghorbani et al., 2006; Melton, III et al., 2008). 

Bone mineral density (BMD) determined by dual-energy x-ray absorptiometry 

(DXA), is commonly used as a determinant of fracture risk (World Health Organization, 

2004).  Early studies examining fracture risk in adult type 2 diabetics often concluded that 

these patients were not at increased risk of fracture due to reports of a normal or even 

elevated BMD (Rishaug et al., 1995; van Daele et al., 1995; Stolk et al., 1996).  Further 

support of this concept was data from the Rochester cohort in 1980 that showed diabetes (i.e., 

T1DM and T2DM) was not associated with increased fracture incidence (Heath, III et al., 

1980).  However, continued concern of fracture incidence in this population caused some 

investigators involved with large scale studies to examine the relationship between fracture 
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incidence and T2DM as a secondary outcome using previous data sets.  In 2001, data from 

the Study of Osteoporotic Fractures (SOF) demonstrated that women with T2DM had an ~2-

fold increase in fracture incidence of the hip and proximal humerus (Schwartz et al., 2001).  

The Iowa Women’s Health Study reported a similar increase in fracture risk in women with 

T2DM, and importantly the duration (i.e., >12 yr) of T2DM was considered an important 

contributing factor that increased relative risk (RR) by ~3 fold (Nicodemus et al., 2001).  The 

Nurses’ Health Study also reported a RR of hip fracture ~2 fold, and concluded that duration 

(i.e., >5 yr) of the condition was associated with an exacerbated increase in fracture risk 

(Janghorbani et al., 2006).  These studies were followed by similar reports from the 

Rotterdam Study describing an increase in fracture incidences among patients with T2DM of 

~2 fold (Nicodemus et al., 2001; de Liefde et al., 2005; Janghorbani et al., 2006).  

Interestingly, in 2008 a follow-up report from the Rochester cohort, which originally reported 

no increase in fracture incidence in patients with diabetes (i.e., T1DM and T2DM), 

concluded that both men and women with T2DM had an ~2-fold increase in fracture of the 

hip, and as duration of T2DM increased 10 years and beyond, this risk was exacerbated 

(Melton, III et al., 2008; Heath, III et al., 1980).  The discrepancy in these results compared 

to the original findings was attributed to stricter inclusion/exclusion criteria, more stringent 

classification of T2DM, delineating T1DM and T2DM, and consideration of T2DM duration 

(Melton, III et al., 2008; Melton, III et al., 2008).  Collectively, these studies have provided 

support that independent of BMD, both men and women with T2DM experience an increased 

risk of fracture 5-10  yrs post diagnosis.  While considerably less research has been done 

relative to the influence of impaired glucose tolerance on the young, growing skeleton, recent 

evidence has also established a connection between childhood obesity and increased risk of 
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fracture (Goulding et al., 2000; Goulding et al., 2001).  Due to the importance of optimizing 

peak bone mass during this early stage of life and its effects on lifetime osteoporosis risk, if 

bone accrual is inhibited in these children they are not only at increased risk for fracture in 

the short-term, but also their long-term risk of osteoporotic-related fractures is increased 

(Goulding et al., 2005).  In light of the prevalence of T2DM across all age groups and their 

potential short- and long-term complications associated with fracture, more research is 

needed to understand the mechanisms through which altered glucose homeostasis affects 

bone quality, so that appropriate prevention and therapeutic strategies can be developed. 

While the disconnect between BMD and fracture risk in T2DM has perplexed 

clinicians and researchers alike, common confounders associated with T2DM and bone (e.g., 

increased adiposity, decreased physical activity, and/or chronic inflammation) have made this 

clinical observation difficult to unravel.  Recent research, however, has focused on the role of 

the inflammatory response in T2DM and offers a potential explanation of an impact on bone 

metabolism.  A number of different potential sources of inflammation exist among diabetic 

patients.  For instance, most type 2 diabetics are obese and adipose tissue can serve as a 

source of many adipocytokines that alter the immune response and act as either insulin 

sensitizers (i.e., leptin and adiponectin) or insulin antagonists (i.e., resistin and tumor 

necrosis factor or TNF-α) (Mathieu et al., 2010).  In addition to adipocytokines, another 

source of inflammatory signaling in T2DM has been attributed to the pathogen pattern 

recognition receptors (PRR), toll like receptor (TLR)-4 and the receptor for advanced 

glycation end-products (RAGEs) (Schiller et al., 2006).  Obesity has been linked to gut 

leakage of lipopolysaccharide (LPS) and increased circulating saturated free fatty acids, both 

of which are considered TLR-4 ligands (Cani et al., 2008; Lee et al., 2001).  Elevated blood 
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glucose has also been shown to increase the expression of TLR-4 on human monocytes 

(Dasu et al., 2008).  These findings suggest that increased TLR-4 and its ligands enhance the 

activation of the downstream inflammatory signaling pathway in T2DM.   

More direct evidence establishing a role for TLR-4 in T2DM has come from animal 

models.  Mouse models deficient in TLR-4 (e.g., TLR4
-/-

 deletion or C3H/HeJ strain with a 

naturally occurring mutation in TLR-4), have been reported to be protected against the 

development of diet-induced obesity and insulin resistance (Poggi et al., 2007; Tsukumo et 

al., 2007; Shi et al., 2006).  Another PRR, RAGE, has also been of interest as it relates to the 

inflammation and complications of T2DM.  Hyperglycemia accelerates nonenzymatic 

glycation and oxidation of proteins and the formation of advanced glycation end products 

(AGEs).  The increase in this ligand as well as the RAGE receptor during T2DM not only 

promotes inflammation, but has also been shown to promote cross-talk with TLR-4 resulting 

in similar downstream responses (Ramasamy et al., 2011; Hofmann et al., 1999).  The role of 

these pathways is of particular interest in understanding how T2DM impacts bone 

metabolism due to the intimate relationship of TLR-4 and RAGE on bone cellular 

differentiation and function.   

The interplay between bone metabolism and the immune response, especially 

inflammation, has led to the proposed notion that enhanced stimulation of TLR-4 and RAGE 

during T2DM contributes to the increase in fracture incidence.  Bone forming osteoblasts 

express receptor activator for NF-κB ligand (RANKL), which promotes bone resorption by 

up-regulating osteoclast differentiation (Kearns et al., 2008).  In turn, osteoclastogenesis 

induced by RANKL signaling also increases the  release of the high mobility group box 

(HMGB) 1, another ligand of both TLR-4 and RAGE (Zhou et al., 2008).  Pro-inflammatory 
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cytokines that are downstream targets of TLR-4 and RAGE signaling (e.g. TNF-α, 

interleukin 1β or IL-1β, and IL-6) have been shown to stimulate the production of RANKL 

and increase osteoclastogenesis (Roggia et al., 2001).  Moreover, TNF-α has been shown to 

reduce bone formation by inhibiting the maturation of pre-osteoblast cells (Gilbert et al., 

2000), decreasing osteoblast activity (Bu et al., 2008) and stimulating osteoblast apoptosis 

(Jilka, 1998).  Due to the regulatory effects of these cytokines on bone turnover, the 

inflammatory state that occurs with T2DM has the potential to negatively impact bone 

metabolism, which could ultimately contribute to an increase in fracture.  

Aside from AGE/RAGE signaling, increased AGEs observed in T2DM may also be 

incorporated into the protein matrix of the skeleton, resulting in compromised bone quality.  

Cross-linking of collagen in bone tissue is catalyzed by the enzyme lysyl oxidase (Lox), 

leading to the formation of aldehydes from lysine residues in collagen and elastin precursors, 

assembling the protein matrix for bone mineralization (Robins et al., 1972).  The 

incorporation of AGEs into the mineralized matrix involved in collagen cross-linking has the 

ability to incorporate AGEs and can directly affect bone fragility (i.e., strength, stiffness, and 

toughness) (Vashishth, 2007).  The increased potential for AGEs to be incorporated into 

collagen cross-links of bone with increased duration of T2DM could explain the increase in 

fracture risk, despite the maintenance or increase in BMD. 

Another potential cellular process that could contribute to the dysregulation of bone 

metabolism during the initiation and progression of T2DM is autophagy.  Autophagy, a 

process that is controlled by proteins downstream of the insulin receptor and involved in 

glucose (energy) sensing, can effectively influence cell survival or cell death by means of 

organelle recycling (Bursch et al., 2008).  Increased circulating insulin observed relatively 

http://en.wikipedia.org/wiki/Aldehydes
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Collagen
http://en.wikipedia.org/wiki/Elastin
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early in the development of T2DM could lead to the over-activation of the insulin signaling 

pathway and promotion of osteoblast maturation and mineralization.  Conversely, when 

serum insulin decreases as in the case of attenuated pancreatic β-cell production, the 

osteoblast’s growth and proliferation could decline as a result of autophagy, resulting in a 

decrease in bone formation that could lead to reduced bone mass and increased incidence of 

fracture.  Understanding how impaired insulin signaling and altered glucose homeostasis 

influence autophagy in osteoblasts and osteoclasts may provide novel insights into the 

alterations in skeletal metabolism that are occurring over time in patients with T2DM.  

Moreover, the lack of information describing the mechanism by which osteoblasts and 

osteoclasts transport glucose, and the role of insulin and glucose availability in the function 

of these cells needs to be investigated in both cell types.   

The purpose of this project is to:  1) determine the alterations in bone metabolism and 

their effects on bone microarchitectural and biomechanical properties during the 

development and progression of T2DM in a young, growing animal; 2) determine the role of 

TLR-4 in this skeletal response; and (3) explore the extent to which the autophagic pathway 

in bone cells is altered in response to impaired insulin signaling and glucose availability.  We 

hypothesize that 1) the young growing C57BL/6 mice will exhibit compromised bone mass, 

structure and quality with increasing time on the high fat diet compared to their C3H/HeJ 

counterparts; and 2) autophagy associated with the metabolic changes occurring in T2DM 

will contribute to the dysregulation of skeletal metabolism, resulting in deterioration of bone 

quality.  A series of in vitro and in vivo experiments have been designed that to test these 

hypotheses.  The in vivo experiments will utilize rapidly growing, male C57BL/6 and 

C3H/HeJ mice fed a high fat (60% kcal from fat) over a 2, 8, and 16 wk time course to track 
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metabolic alterations occurring in conjunction with the alterations in bone mass, 

microarchitecture and strength.  The second set of experiments will utilize a well-

characterized system of pre-osteoblasts (MC3T3-E1 cells, RIKEN) and primary cells that can 

be differentiated into osteoblasts to further examine the role of TLR-4, and how autophagy is 

impacting bone cell function in T2DM.  To test these hypotheses, the following specific aims 

have been developed. 

 

Specific Aim 1.  To determine the alterations in bone metabolism (i.e., bone formation and 

bone resorption) that occur at times corresponding to pre-, short, and long term glucose 

intolerance (i.e., 2, 8 and 16 wks) and the implications of these changes on bone structural 

and biomechanical properties in C3H/HeJ and C57BL/6 mice consuming a high fat or control 

diet.   

 

Specific Aim 2.  Investigate the role TLR-4 has on the differentiation of osteoclasts and 

osteoblasts ex vivo, and to determine how these alterations contribute to the in vivo 

phenotype.  

 

Specific Aim 3.  Investigate glucose transport of osteoblasts using in vivo and in vitro 

models. 
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Specific Aim 4.  Determine the extent to which autophagy induced by rapamycin affects 

osteoblast differentiation and activity using an established cell line. 

 

Specific Aim 5.  Determine how indicators of autophagy in bone tissue are altered in diet-

induced obese mice over time (2, 8, and 16 weeks) and to compare these changes with the 

alterations in glucose tolerance, bone density, microarchitecture and strength. 

 

Limitations:  

 Despite efforts to design scientifically sound experiments to test the hypotheses, 

limitations do exist.   

1) The study of the skeletal effects of high fat diet induced obesity and glucose 

intolerance on bone is a complex issue due to the influences of weight-bearing and 

insulin in the early stages followed by the effects of inflammation and by-products of 

hyperglycemia with increasing duration.  To address these issues, a time course study 

was developed to evaluate the alterations in bone metabolism and structure occurring 

over time.   

2) While fasting the animals prior to sacrifice allows for optimal assessment of plasma 

glucose, insulin, leptin, and adiponectin, it may have impaired the ability to determine 

alterations in intracellular insulin signaling in vivo.   

3) Cell culture systems serve only as a model for the physiological responses that occur 

in vivo.  The in vitro experiments described used either single cell populations or 

subsets of cells enriched for stromal and hematopoietic cells.  A more realistic 
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depiction of the cellular responses would include tissue culture systems that allow 

cell-to-cell interaction, but such experiments would limit the ability to investigate a 

specific cell population’s response.   

4) The induction of autophagy with rapamycin serves only as a model and may not 

mimic all aspects of the cellular response to altered glucose homeostasis and insulin 

signaling.  To address this issue, the mechanism by which autophagy is induced 

during impaired glucose tolerance in vivo and that of the phenotype in the rapamycin-

treated osteoblasts was characterized.   

5) The mutation in TLR-4 was one of the first genetic variations to be described in the 

C3H/HeJ mice, however, after beginning Study 1, a genetic variation in the leptin 

receptor gene (Lepr) was also described (REF).  While the most classic role of leptin 

is its action regulating appetite and metabolism, leptin can also regulate the 

inflammatory response and the skeletal response to mechanical stimulation.  The 

difference in C3H/HeJ’s response to leptin in this animal strain is dually noted as it 

could contribute to the impaired metabolic and skeletal response observed in these 

mice upon high fat diet feeding.  To address this issue, (1) plasma leptin was 

assessed, and (2) genes involved in TLR-4 signaling were determined to attempt to 

characterize the modulation of this response. 

Each of these limitations was addressed as conclusions were drawn related to the given 

results.  Therefore, there is no foreseeable reason that these issue would prohibit the 

accomplishment of the specific aims described. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

 

 

Obesity and Type 2 Diabetes Significance and Background 

Obesity is a condition of excess adiposity defined as a body mass index (BMI) 

greater than or equal to 30 kg/m
2
 in adults (National Institutes of Health, 1998).  In the 

U.S. a significant increase in the prevalence of obesity has occurred over the past five 

decades, and current estimates indicate that approximately 35% of adults and 17% of 

children and adolescents are obese (Ogden et al., 2013).  No state has an adult obesity 

rate lower than 20%, and 12 states located in the southern region of the U.S. reported 

obesity rates greater than 30% (May et al., 2013; Center for Disease Control and 

Prevention, 2008).  Although obesity has classically been reported in adults, childhood 

obesity has more than doubled in children, and tripled in adolescents in the past 30 yr 

(Ogden et al., 2012). While more recent data suggests obesity rates may have reached a 

plateau, the prevalence rates remain high and continue to negatively affect our nation’s 

health (Ogden et al., 2012; Flegal et al., 2010).  One of the most striking health  
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consequences related to the prevalence of obesity has been the staggering increase in 

cases of type 2 diabetes (T2DM). 

T2DM is the most common form of diabetes in adults and accounts for an 

estimated 16 million cases (95%) of diabetes in adults in the U.S. (Centers for Disease 

Prevention and Control, 2011).  Among type 2 diabetics, 80-90% are obese and the 

associated hyperglycemia is primarily due to impaired insulin signaling (Centers for 

Disease Prevention and Control, 2011).  The Center for Disease Control and Prevention 

(CDC) has projected that the prevalence of T2DM will double or even triple by 2050 to 

affect 1 in 3 adults if current trends continue (Centers for Disease Prevention and 

Control, 2011).  While T2DM was once considered to be “adult-onset” diabetes, health 

care providers have been diagnosing children with T2DM with greater frequency 

(Centers for Disease Control and Prevention, 2013).  Children and adolescents diagnosed 

with T2DM are usually between 10-19 years old, obese, and have a family history of 

diabetes (Centers for Disease Control and Prevention, 2013).  Generating accurate 

estimates of the prevalence of childhood T2DM has been difficult due to undiagnosed 

symptoms, a lack of routine monitoring of blood glucose, and the normal changes in 

glucose tolerance that occur during puberty (Centers for Disease Prevention and Control, 

2011; Reinehr, 2013).  However, in response to the growing health concerns with T2DM 

in children, the CDC funded the SEARCH for Diabetes in Youth Study in 2000 to 

provide a surveillance system for childhood diabetes.  The systemic nature of the 

hyperglycemia associated with T2DM predisposes adults and children to a number of 

health complications that can negatively impact one’s quality of life. 
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Direct and indirect medical costs to treat diabetes in the U.S. have been estimated 

at $174 billion annually, which includes medical coverage for glucose monitoring 

supplies, hypoglycemic agents (e.g., thiazolidinediones or TZDs and metformin) and 

treatment of complications (Centers for Disease Prevention and Control, 2011).  

Hypoglycemic agents are generally prescribed to adults during the earlier stages of 

T2DM; but long-term loss of β-cell function can result in a patient becoming dependent 

on insulin therapy.  While these therapeutic agents have improved the overall prognosis 

for the type 2 diabetic, T2DM is still listed as the seventh leading cause of death in the 

U.S. (Centers for Disease Prevention and Control, 2011).  Cause of death associated with 

T2DM is attributed to its complications, including micro- and macro vascular diseases 

and loss of renal function (Berenson, 2012).   

Several of the complications (e.g., peripheral vascular disease, retinopathy, 

nephropathy, impaired wound healing, and neuropathy) are known to result from 

alterations in connective tissues (Robins et al., 1972; Schmidt et al., 1999; Berenson, 

2012).  Interest in how the metabolic perturbations in T2DM affect connective tissues led 

investigators to examine the relationship between T2DM and bone health.  Early studies 

indicated that patients with T2DM were not at increased risk for fracture based on the 

assessment of bone density (Rishaug et al., 1995; van Daele et al., 1995; Stolk et al., 

1996).  However, subsequent studies with fracture as the primary outcome variable have 

challenged these initial findings (Valerio et al., 2012; Schwartz et al., 2001; van Daele et 

al., 1995; Nicodemus et al., 2001; de Liefde et al., 2005; Janghorbani et al., 2006; Farr et 

al., 2013; Cole et al., 2012; Goulding et al., 2000). 
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Clinical Investigation of Fracture Risk Associated with T2DM 

 One of the earliest studies documenting an impact of diabetes mellitus on the 

skeletal system was published in 1946, by William Kenney in the Department of 

Orthopedics at Yale University.  Kenney asserted that diabetes mellitus (i.e., T1DM and 

T2DM) was found in cases of femoral neck fracture more frequently than in cases of 

intertrochanteric fracture (Kenney, 1946).  While this observation focused on fracture as 

an outcome in patients with diabetes, other reports began to appear in the literature 

indicating that based on their bone mineral density (BMD), type 2 diabetics were not at 

increased risk for fracture (Rishaug et al., 1995; van Daele et al., 1995; Stolk et al., 

1996).  Many of these early reports were limited by the fact that they did not differentiate 

based on the type of diabetes, tended to have a small sample size, and used BMD as a 

surrogate indicator of fracture risk (World Health Organization, 2004).  The result was a 

number of published reports with conflicting findings.  One of the first large-scale studies 

published in 1980, on a cohort of residents in Rochester, MN, reported that neither male 

or female diabetic patients (i.e., both T1DM and T2DM) experienced a greater incidence 

of fractures (Heath, III et al., 1980).  As additional reports began to focus on T1DM or 

T2DM separately, it became apparent that T1DM was associated with low BMD (i.e., 

osteopenia), whereas BMD in the type 2 diabetics was typically normal (de Liefde et al., 

2005; Melton, III et al., 2008; Nicodemus et al., 2001; van Daele et al., 1995; van Daele 

et al., 1995).  Based on the findings from these early studies, investigators concluded that 

type 2 diabetics were not at increased risk of fracture. 

Continued clinical concerns with fracture incidence among type 2 diabetics 

caused some investigators involved with large scale osteoporosis studies to begin to 
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examine the relationship between fracture incidence and T2DM in their cohorts.  In 2001, 

data from the Study of Osteoporotic Fractures (SOF) research group, revealed a relative 

risk (RR) for fracture in women (≥ 65 years of age) who were not on insulin (n = 551) of 

1.82 and 1.94 in the hip and proximal humerus, respectively (Schwartz et al., 2001).  

These authors also reported a RR of 2.66 for fracture of the foot in diabetic patients on 

insulin (n = 106) (Schwartz et al., 2001).  Similar to this study, data from the Iowa 

Women’s Health Study showed an increase in fracture risk (1.7-fold) of the hip among 

postmenopausal women with T2DM compared to woman without diabetes (Nicodemus et 

al., 2001).  The author’s also demonstrated that patients in the highest tertile for duration 

of T2DM (i.e., >12 yr) had a 2.3-fold increase in fracture risk, and insulin treatment 

further increased this risk to 2.66 (Nicodemus et al., 2001).  These studies were followed 

by similar reports from the Rotterdam Study and the Nurses’ Health Study describing an 

increase in RR for hip fracture among patients with T2DM of 1.8 and 2.2, respectively 

(de Liefde et al., 2005; Janghorbani et al., 2006).  Interestingly, in 2008 a follow-up 

report from the Rochester cohort, which originally reported no increase in fracture 

incidence in patients with T1DM and T2DM, concluded that both men and women with 

T2DM had a 1.8-fold increase in fractures of the axial skeleton, and that diabetes duration 

greater than 10 years exacerbated this risk (Melton, III et al., 2008; Heath, III et al., 

1980).  The discrepancy in these findings compared to their original report was attributed 

to stricter inclusion/exclusion criteria, more stringent classification of T2DM, 

distinguishing between T1DM and T2DM, and consideration of diabetes duration as a 

covariant.   
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The results of these studies demonstrate that BMD underestimates fracture 

incidence in patients with T2DM and have brought into question the relevance of BMD 

as a screening tool for fracture risk in some populations.  Schwartz et al. collected data 

from 3 large prospective studies (e.g., SOF, Osteoporotic Fractures in Men Study, and 

Health, Aging, and Body Composition study) and demonstrated that femoral neck BMD 

and the World Health Organization Fracture Risk Algorithm (FRAX) underestimate 

fracture risk in older adults with T2DM (Schwartz et al., 2011).  However, the 

development of reference point indentation (RPI) testing has provided a means by which 

scientists can test the biomechanical properties of bone and evaluate bone “quality” in 

vivo.  Biomechanical testing allows for the measurement of a parameter directly 

associated with bone strength and fracture.  Although reference point indentation is not 

yet approved for routine clinical use, recently, an elegant study by Farr et al, (Farr et al., 

2013) showed that bone material strength (BMS) is compromised in patients with T2DM.  

This study provides further evidence that the skeleton is an important target tissue that is 

adversely affected by T2DM, and that the current, clinical assessments (i.e., DXA and 

FRAX) are likely inadequate at predicting fracture in patients with T2DM.   

Information related to complications fracture risk among young children who are 

type 2 diabetics is more scarce than the data available on the adult population.  Similar to 

observations among overweight and obese adults, studies reporting DXA results suggest 

that obese children have a higher BMD compared to non-obese children (Klein et al., 

1998; Leonard et al., 2004).  However, when bone mass is expressed relative to bone size 

and body weight, this is not the case (Goulding et al., 2000).  Childhood obesity has also 

been shown to be associated with a modest increase in risk for fractures (Valerio et al., 
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2012; Kim et al., 2013b; Kessler et al., 2013; Adams et al., 2013).  For example, obesity 

increased fracture incidence of the upper and lower limbs in girls, and increased fracture 

incidence of the lower limbs in boys (Valerio et al., 2012).  Moreover, increased BMI 

(i.e., overweight, moderately obese, and extremely obese categories) has been associated 

with increased odds ratio of foot, ankle, leg, and knee fractures among children (Kessler 

et al., 2013).  Compromised bone mass accrual during these critical years of skeletal 

growth not only predispose overweight children to fractures during childhood and 

adolescence, but also increase osteoporosis risk throughout the course of their lifetime 

(National Institutes of Health, 2000; Goulding et al., 2005).   

To begin to unravel the phenomenon of increased skeletal fragility in T2DM, it is 

imperative that the alterations in bone metabolism be investigated during the initiation 

and progression of glucose intolerance.  Contributing factors (e.g., inflammation, glucose 

availability/transport, and insulin signaling) have been hypothesized to play pivotal roles 

in the pathogenesis of T2DM and have the potential to alter bone metabolism.  Due to the 

prevalence of T2DM, taken together with the devastating consequences associated with 

fracture in this population, continued research is needed to identify the mechanisms 

involved, so that appropriate prevention and therapeutic strategies can be developed.  

 

Rodent Models of T2DM and its Impact on Bone 

Complications associated with T2DM often require decades to develop.  

Therefore, animal models provide important tools for studying the molecular aspects and 

pathological effects of obesity-induced changes in glucose homeostasis and progression 
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to severe glucose intolerance.  In 1949, Ingle (INGLE, 1949) was the first to report on an 

obesity model in which rats were fed diet ad libitum and their physical activity was 

restricted.  Since then, there have been many studies aimed at characterizing the 

metabolic responses of rodent models exposed to high fat diets.  The C57BL/6 mouse fed 

a high fat is a particularly good model because it mimics many of the metabolic 

alterations observed with obesity and T2DM in humans, including hyperinsulinemia, 

hyperglycemia, and hypertension (Collins et al., 2004).   

In addition to the metabolic and cardiovascular changes, mouse models have 

shown that a compromise in bone structure, biomechanics, and metabolism occurs with 

obesity and T2DM.  Parhami et al. (Parhami et al., 2001) reported that an atherogenic 

high fat diet (i.e., 1.25% cholesterol, 15.8% fat, and 0.5% cholate) fed for 4 and 7 mo to 

C57BL/6 mice resulted in decreased bone mineral content and density.  Patsch and 

colleagues (Patsch et al., 2011) showed that a high fat diet (i.e., 60% lipid) fed to 

C57BL/6 mice for short and long term (i.e., 3 or 24 wk) periods decreased BMD and 

attributed this response to increased bone resorption or an increase in serum cross-linked 

telopeptides of type I collagen (CTX).  Moreover, a high fat diet (i.e., 60% kcal from fat) 

administered for 16 wk to young (3 wk) and aged (15 wk) C57BL/6 mice resulted in 

compromised biomechanical properties (e.g., lower bone strength, stiffness, and 

toughness) (Ionova-Martin et al., 2011).  More recently, Lu et al. (Lu et al., 2013) 

presented data showing that a high fat diet also impacts bone acquisition in young male 

mice.  The authors reported that a high fat diet (i.e., 45% total calories from fat) fed for 8 

wk to 17 day old male C57BL mice resulted in lower bone mineral content that was 

attributed to decreased osteoblast differentiation (i.e., as evidenced by a reduction in β-
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catenin and Runx2 mRNA) and reduced colony-forming osteoblasts (CFU-Ob) (Lu et al., 

2013).  These studies provide important evidence that mouse models of high fat diet-

induced obesity are invaluable tools for studying mechanistic alterations occurring in 

bone metabolism during glucose intolerance.   

 

Glucose Homeostasis and Insulin Signaling 

 As described previously, T2DM is a condition in which hyperglycemia occurs due 

to diminished ability for insulin to stimulate cellular glucose uptake.  Under normal 

conditions, blood glucose is controlled by an efficient homeostatic mechanism that is 

dependent on various hormonal responses including cortisol, sex hormones, and insulin 

(Hedeskov, 1980).  Of these hormones, insulin is considered to be the primary regulator 

of blood glucose by enhancing peripheral glucose uptake and down-regulating hepatic 

glucose liberation (WINEGRAD et al., 1958; Exton et al., 1973).  Insulin is secreted from 

pancreatic β-cells into the circulation when blood glucose reaches a threshold 

concentration of 4 mM (Ashcroft, 1976).  Insulin secretion has been described as a 

“square wave pulse” pattern, which ensures insulin is secreted in a biphasic manner 

(Curry et al., 1968; Grodsky et al., 1968).  The first or rapid phase, typically lasts from 1-

8 min, with a spike occurring after approximately 4 min (Grodsky et al., 1969).  This is 

followed by second, prolonged phase, that has been compared to a large compartment of 

stored insulin being released at a much slower rate and lasts from ~8-30 min postprandial 

(Grodsky et al., 1969).  Circulating insulin interacts with cells that express its membrane-

bound receptor (IR) to regulate many cellular processes, including glucose transport and 
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metabolism, protein translation, cell cycle, as well as autophagy and apoptosis (Figure 1) 

(Chalhoub et al., 2009).  Although profound changes occur in β-cell function, number, 

and insulin secretion, it is widely accepted that the initiation of T2DM results from 

peripheral insulin resistance.    

Under normal circumstances, insulin binds to its receptor tyrosine kinase (RTK) 

and a conformational change occurs that allows for activation or autophosphorylation of 

the receptor.  These activated tyrosine residues are than recognized by the docking 

protein, insulin receptor substrate (IRS) via their phosphotyrosine binding domain (PTB) 

Figure 1. 

Chalhoub and Baker, 2009 

IR
S1

 

Figure 1:  Activated receptor tyrosine kinases (RTKs) recruit and activate PI3K, leading to increased 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels. PIP3 recruits many proteins to the membrane 

by binding to their pleckstrin homology (PH) domains, including the serine/threonine kinases AKT, 

3-phosphoinositide-dependent kinase (PDK1), and the phosphatase PH domain and leucine rich 

repeat protein phosphatase (PHLPP). Membrane-bound AKT is rendered fully active through its 

phosphorylation by PDK1 and the rapamycin-insensitive mammalian target of rapamycin (mTOR) 

complex (mTORC2), and it is inactivated when dephosphorylated by PHLPP. Activated AKT may 

phosphorylate a range of substrates, thereby activating or inhibiting these targets and resulting in 

cellular growth, survival, and proliferation through various mechanisms. Abbreviations: AMPK, 

AMP-activated protein kinase;  TSC, tuberous sclerosis complex; GSK, glycogen synthase kinase; 
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(Avruch, 1998) (Figure 1).  With IRS1 located at the plasma membrane, docked on the 

cytoplasmic portion of IR, it may be phosphorylated at multiple tyrosine residues.  Next, 

phosphatidylinositol 3 kinase (PI3K) is recruited to IRS1 via the Src homology 2 (SH2) 

domain, and phosphorylates phosphatidylinositol 4, 5-bisphosphate (PIP2) at the 3’ 

position, yielding phosphatidylinositol 3, 4, 5-triphosphate (PIP3).  Akt (or protein kinase 

B) is then phosphorylated at Thr308 and Ser473 by 3-phosphoinositide dependent protein 

kinase (PDK) and mechanistic target of rapamycin complex 2 (mTORC2), respectively.  

Activated Akt then translocates from the plasma membrane to the cytosol where it acts to 

regulate many cellular processes via multiple protein targets (Chalhoub et al., 2009).  It is 

this signaling cascade that has been proposed to be attenuated in some capacity in T2DM, 

affecting multiple cellular responses such as the translocation of insulin-sensitive glucose 

transporters (i.e., GLUT4) from cytoplasmic vesicles to the plasma membrane, resulting 

in the inability of glucose uptake by skeletal muscle and adipose tissue.  It has been 

speculated that the impaired insulin signaling that occurs with T2DM is due to defects in 

the IR docking protein, IRS (Copps et al., 2012).  For example, the systemic knockout of 

IRS1 and IRS2 results in insulin resistance and impaired glucose tolerance (Araki et al., 

1994; Abe et al., 1998; Burks et al., 2000; Previs et al., 2000).  However, the newer 

paradigm that IR has the potential to act as a nuclear transcription factor may provide 

further insights into the molecular mechanisms responsible for T2DM (Sarfstein et al., 

2013).  Factors that have been proposed to contribute to the development of insulin 

resistance include changes in fatty acid uptake and lipogenesis, alterations in 

adipocytokines (e.g., leptin, resistin, and adiponectin), and systemic chronic, low grade 

inflammation. 
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Inflammation Induced via TLR-4 and its Impact on Insulin Signaling  

Clues as to a relationship between inflammation and diabetes have existed since 

1876 when the non-steroidal anti-inflammatory drug (NSAID), sodium salicylate, was 

shown to diminish sugar excretion (Ebstein, 1876).  This connection between diabetes 

and inflammation was further demonstrated in 1957 when Reid and colleagues (REID et 

al., 1957) reported an insulin-dependent diabetic patient treated with a high dose of 

aspirin for rheumatic fever, no longer needed daily insulin injections.  More recently, 

mechanistic studies have described how activation of some inflammatory pathways, 

especially toll-like receptor-4 or TLR-4, can impact insulin signaling (Shi et al., 2006).  

Toll receptors were first described in Drosophila and shown to exhibit a means for the 

host to detect invasions by microorganisms (Lemaitre et al., 1996).  Currently, 13 

mammalian homologues of the receptor have been identified (i.e., TLR1-TLR13) all of 

which have specific immunological responses belonging to the family of pattern 

recognition receptors (PRR) (Tilich et al., 2011).   

Medzhitov and et al. (Medzhitov et al., 1997) was the first to show that a Toll 

receptor, now termed TLR-4, was able induce the expression of genes involved in 

inflammatory responses.  TLR-4 is a transmembrane protein containing repeated leucine-

rich motifs in its extracellular portion and a cytoplasmic domain that is homologous to 

the signaling domain of the IL-1 receptor.  Known ligands for TLR-4 include LPS found 

in the wall of gram negative bacteria, heat shock protein (HSP) 60 and 70, hyaluronic 

acid, oxidized low density lipoprotein (LDL), fibrinogen, amyloid protein, fetuin A 
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(FetA)-bound saturated free fatty acids (sFFA), and some glycoproteins located on viral 

envelopes (Pal et al., 2012; Tilich et al., 2011).  Interestingly, in T2DM and obesity, 

TLR-4 and two of its ligands, LPS and sFFA, are up-regulated, leading to increased 

levels of both tissue specific and circulating  pro-inflammatory cytokines (e.g., TNF-α,  

IL-1β, and IL-6) (Dasu et al., 2012; Pal et al., 2012; Lee et al., 2001; Schaeffler et al., 

2009; Reyna et al., 2008; Medvedev et al., 2007).   

Stimulation of TLR-4 by both LPS and sFFA leads to the activation of MyD88 

dependent and/or MyD88 independent (i.e., TIR domain-containing adaptor inducing 

IFN-β or TRIF dependent) pathway.  For example, LPS circulates bound to LPS binding 

protein (LBP) and interacts with the anchored protein, CD14 (cluster of differentiation 

14), which facilitates the transfer LPS to the TLR-4/MD2 complex (Figure 2) (Kim et 

al., 2010).  While genetic models confirm that TLR-4 is essential for LPS-induced 

immune response, it is not clear if LPS directly binds to TLR-4.  Understanding how 

these signaling pathways function normally versus during the initiation and progression 

of T2DM could provide mechanistic explanations related to impaired insulin sensitivity 

and may lead to novel therapeutic interventions.   

As shown in Figure 2, once LPS is bound to the TLR-4/MD2 complex, MyD88 

dependent or MyD88 independent signaling cascades can be elicited.  Upon ligand 

binding, TLR-4, MyD88, along with the toll/interleukin-1 receptor (TIR) adaptor protein, 

TIRAP or MAL (MyD88-adaptor-like) recruit IL-1 receptor-associated kinase (IRAK)  
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through the interaction of death domains (Takeda et al., 2007).  Activated IRAK1 

phosphorylates TNF receptor-associated factor 6 (TRAF6) forming a large, cytoplasmic 

complex with TGF-β-activated kinase 1 (TAK1), and TAK1 binding proteins, which in  

 

Figure 2. 

Kim and Sears, 2010 

Figure 2.  Schematic of TLR-4 signaling cascades. The My88 dependent pathway is responsible for 

the up-regulation of many pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α, whereas 

the MyD88 independent pathway, sometimes referred to as the TIR domain-containing adaptor 

inducing IFN-β (TRIF) pathway, activates the transcription factor interferon regulatory factor (IRF) 

3. Upon stimulation, MyD88, along with the adaptor protein TIRAP or MAL (TIR domain-

containing adaptor protein or MyD88-adaptor-like) recruit IL-1 receptor-associated kinase (IRAK) 

through the interaction of death domains between both proteins. TGF-β-activated kinase 1 (TAK1), 

and TAK1 binding proteins, TAB1 and TAB2, form a large cytoplasmic complex that 

phosphorylates the IKK (IKKα, IKKβ, and NEMO/IKK γ) and MAP kinases such as JNK. In 

contrast to the MyD88 pathway, the TRIF dependent pathway is responsible for regulating type 1 

interferons, which modulate the innate immune response. Upon activation, TRIF acts on two 

different proteins, receptor-interacting protein 1 (RIP1) and TRAF3. Unique to this pathway is the 

recruitment of TRAF3 by TRIF and the association of TRAF3 with TRAF family member-

associated NF-κB activator (TANK), TANK binding kinase 1 (TBK1), and Ikki. It is through this 

pro-inflammatory/TLR-4 signaling cascade that the insulin signaling pathway may be impaired due 

to NF-κB and JNK activation. 
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turn, activates a heterodimeric complex composed of IκBs kinases (i.e., Ikka, Ikkb, and 

NEMO/IKKγ).  This IKK complex primes IκB for proteasomal degradation, allowing for 

the dissociation and translocation of NF-κB to the nucleus where it can function as a 

transcription factor, up-regulating many pro-inflammatory genes (e.g., TNFα, IL-1β, and 

IL-6) that are critical for the innate immune response elicited by TLR-4.  In contrast to 

the MyD88 pathway, the MyD88 independent pathway or TIR domain-containing 

adaptor inducing IFN-β (TRIF) dependent pathway is responsible for regulating type 1 

interferons.  Unique to this pathway is the recruitment of TRAF3 by TRIF and the 

association with TRAF family member-associated NF-κB activator.  This complex is 

important for the dimerization and translocation of IRF3 to the nucleus, where it can 

regulate transcriptional targets (e.g., Cxcl10 and Ifit1) central to the function and role of 

TLR-4 modulating of the immune system.  While these TLR-4 signaling cascades are 

critical for the immune system to respond to foreign microorganisms, chronic or 

unwarranted activation of this pathway may lead to adverse side effects, including 

alterations in insulin response. 

Both of the pathways downstream of TLR-4, MyD88-dependent and MyD88-

independent, can result in phosphorylation of IRS1 at Ser307 as opposed to tyrosine 

residues (Kim et al., 2010).  This alternative phosphorylation leads to the attenuation of 

IRS function and the corresponding signaling cascade, ultimately impairing the activation 

of downstream targets (e.g., Akt, GLUT-4, and mTORC1) (Kim et al., 2010).  Moreover, 

two specific inflammatory signal cascades stimulated via TLR-4, NF-κB and c-Jun 

NH(2)-terminal protein kinases (JNK), have also been shown to be activated with 

increased adiposity and have been implicated in insulin resistance (Tilich et al., 2011).  
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For example, when NF-κB is activated as a result of TLR-4 stimulation, a subunit of the 

IKK complex (i.e., IKKβ) has been shown to phosphorylate IRS1 at serine 307.  

Moreover, TLR-4 signaling can also increase the activation of the serine-threonine 

kinase, JNK, and similar to NF- κB, results in the alternative phosphorylation of IRS1 

(Ser307).  In addition to these two mechanisms through which TLR-4 activation alters 

IRS1 phosphorylation, suppressor of cytokines (Socs) 1 and 3 can ubiquitinate IRS1, 

resulting in its degradation, and thereby attenuating the insulin signaling pathway.  Thus, 

in addition to the classic innate immune response, stimulation of TLR-4 can also result in 

the attenuation of the insulin signaling cascade, thereby contributing to the onset of 

glucose intolerance.  

 

TLR-4 Signaling Involved in T2DM: Lessons from Animals Models 

Animal models have provided direct evidence linking various metabolic 

alterations associated with T2DM to TLR-4.  In 1968, Sultzer showed that the inbred 

mouse strain, C3H/HeJ, was immune to a lethal challenge of LPS in vivo (Sultzer, 1968).  

Upon further investigation and genotyping it was determined that C3H/HeJ mice have a 

naturally occurring point mutation (P712H) in the cytoplasmic TIR domain of TLR-4, 

which attenuates the downstream signaling cascade (Medvedev et al., 2007; Piao et al., 

2008).  While the C3H/HeJ and TLR-4 knockout (Tlr4
-/-

) models have classically been 

valuable tools for immunological and microbial research, recent studies have 

demonstrated an altered metabolic response to a high fat diet in this strain (Poggi et al., 

2007; Shi et al., 2006; Tsukumo et al., 2007).  Poggi et al. (Poggi et al., 2007) provided 
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the first evidence that the C3H/HeJ mice were protected from a high fat diet induced 

insulin resistance.  This study compared the C3H/HeJ mice to their control, C3H/HeOuJ 

mice, which have a functional TLR-4, on a high fat diet (i.e., 42 or 35% kcal fat) (Poggi 

et al., 2007).  The study showed that the C3H/HeJ mice on a high fat diet had lower 

serum insulin and higher glucose utilization rate after 22 weeks compared to 

C3H/HeOuJ.  Interestingly, in this same study mRNA from epididymal and adipose 

tissue revealed that the C3H/HeJ mice had lower TNF-α and IL-1β expression compared 

to controls (Poggi et al., 2007).  Histological evaluation also showed that the C3H/HeJ 

mice were protected from non-alcoholic fatty liver disease (NAFLD).  A subsequent 

study showed that the C3H/HeJ mice on a high fat diet (i.e., 55% kcal from fat) were 

protected from decreased activation of the IR and IRS in white adipose tissue and skeletal 

muscle, two proteins that are critical for proper insulin signaling (Tsukumo et al., 2007).  

Moreover, Davis et al. (Davis et al., 2008) showed that C57BL/10ScN mice with a 

deletion of TLR-4 are completely protected from diet-induced obesity by a saturated fatty 

acid diet vs. a high unsaturated fat diet.  These studies present convincing evidence that 

mice, with a non-functional or deleted TLR-4, are protected from many of the metabolic 

changes classically induced by a high fat diet.  

 

Bone Metabolism and Turnover  

Bone tissue is continually remodeled throughout life and this process maintains 

the integrity and function of the skeleton.  Bone metabolism is a tightly coupled process 

primarily involving bone resorbing cells or osteoclasts, and bone forming cells or 
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osteoblasts.  The osteoblast-derived, mechanosensing osteocyte has been described as 

playing a role in this process, however, far less is known about these cells (Lanyon, 

1993).  Osteoclasts are members of the monocytic-macrophage family, derived from 

hematopoietic stem cells (HSC).  Differentiation of osteoclasts is initiated by the 

activation of receptor activator for NF-κB (RANK), a membrane-bound homotrimeric 

protein from the TNF receptor family.  RANK’s ligand, RANKL, can be detected 

circulating in a secreted form from activated T-cells as well as expressed on the 

membrane on osteoblasts.  Similar to the MyD88 dependent- TLR-4 pathway, activation 

of RANK recruits TRAF6 to form a complex, which induces the translocation of NF-κB 

to the nucleus.  Activated, nuclear NF-κB up-regulates a component of the dimeric 

transcription factor activator protein-1 (AP-1), known as c-Fos, which then interacts with 

nuclear factor of activated T-cells (NFAT)-c1.  This activation leads to the induction of 

various osteoclast-related genes including, Hmgb1, tartrate resistant acid phosphatase 

(TRAP or Acp5), Fos-related antigen 1 (Fra1 or Fosl1), and cathepsin K (CTSK or Ctsk).  

The induction of osteoclastogenesis results in mature, multinucleated, TRAP positive 

cells that have a ruffled border, due to actin reorganization.  The mature osteoclast can 

then form a sealing zone with the bone, often through integrins.  For example, the αvβ3 

integrin recognizes the arginine-glycine-aspartate (RGD) amino acid motif of osteopontin 

(OPN encoded by the Spp1 gene) and bone sialoprotein (BSP encoded by the Ibsp gene), 

whereas the β1 family integrins recognize collagen and fibronectin.  When the osteoclast 

attaches to the surface of the bone, it creates an acidic microenvironment by an 

electrogenic proton pump and a chloride channel, reducing the pH to ~4.5.  This acidic 

milieu mobilizes the mineralized component, where calcium and phosphorus are 
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endocytosed and released into the extracellular fluid (ECF).  Cathepsin K then degrades 

type 1 collagen and TRAP acts to hydrolyze OPN and BSP, which in turn releases the 

osteoclast from the bone.  The process of resorption is estimated to take approximately 3 

weeks in humans and approximately 7 days in mice.   

In contrast to osteoclasts, osteoblasts are derived from mesenchymal stem cells 

(MSC) by initially signaling through the Indian hedgehog (Ihh) pathway, which commits 

the cells to an osteoblast lineage.  Runt-related transcription factor 2 (Runx2 or Cbfa1) 

and osterix (or Sp7), along with Wnt/ β-catenin signaling, act to differentiate these 

progenitor cells to osteoblast precursors and bone-secreting osteoblasts.  Bone 

morphogenic proteins (BMPs) belong to the transforming growth factor (TGF) β 

superfamily and were first identified as the active component in bone extracts that could 

induce ectopic calcification.  BMP-2,-4,-5,-6, and -7 all have strong osteogenic capacity.  

Early markers of osteoblast differentiation include alkaline phosphatase (ALP), BSP, and 

collagen type 1 alpha 1 (Col1a1), whereas parathyroid hormone/PTH-related peptide 

(PTH/PTHrP) and osteocalcin (OCN encoded by the Bglap gene) are considered markers 

of mature osteoblasts (Chatakun et al., 2014).  Another protein important for 

osteoblastogenesis is OPN, which peaks during differentiation and then again at later 

stages of osteoblast maturation.  While OPN has been shown to be important for many 

cellular responses (e.g., apoptosis, autophagy, and the immune response), in bone it is 

critical for the regulation of matrix mineralization.  Mature osteoblasts lay down the 

matrix portion of bone that will become mineralized with the aid of ALP, acting to 

hydrolyze inhibitors of mineral deposition (i.e., pyrophosphates) and BSP, which initiates 

mineralization.  The mineralized portion of bone or the osteoid is composed of 
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hydroxyapatite, Ca10(PO4)6(OH)2, and this mineralization process has been shown to be 

halted by OCN as the osteoblast becomes entombed by calcified bone matrix.  Mature 

osteoblasts also regulate osteoclastogenesis through their expression of RANKL, and 

their secretion of osteoprotegerin (OPG), a receptor decoy for RANKL.  Although the 

mechanisms are not fully understood, the osteoblast has been shown to have three 

potential fates; (1) become a bone lining cell, (2) undergo apoptosis, or (3) become an 

embedded osteocyte (Nakashima et al., 2003).   

Osteocytes are regularly dispersed throughout the mineralized matrix and make 

up about 90-95% of bone cells in the adult skeleton.  The cell body is encased in a lacuna 

while the dendritic processes extend in to the bone through tiny canals called canaliculi.  

This unique niche of mineralized matrix along with the complex morphology of the 

osteocyte, make it a difficult cell to study, and many of their functions have remained 

elusive.  Recent advances in the field, however, have shown that one of the functions of 

the osteocyte is to act as a sensory cell mediating the effects of mechanical loading 

(Lanyon, 1993; Lanyon, 1992).  For example, a novel protein secreted by osteocytes, 

sclerostin (Sost1), responds to load-bearing by decreasing Sost1 production, resulting in 

an increase in BMD (Li et al., 2005).  Likewise, in the absence of load-bearing activity 

(e.g., bed rest and microgravity), sclerostin exerts its effect by binding to low density 

lipoprotein receptor-related protein (LRP) 5/6 and attenuating the Wnt/β-catenin pathway 

(Li et al., 2005).  In fact, results from a multicenter phase II clinical trial demonstrated 

that the sclerostin monoclonal antibody, Romosozumab (Amgen, Thousand Oaks, CA) 

increases BMD and bone formation, and reduces bone resorption in postmenopausal 

women (McClung et al., 2014).  In addition to their function as sensory cells, osteocyte 
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cell death, triggered by trauma or apoptosis, has been shown to act as a stimulus for 

osteoclast migration and resorption (Emerton et al., 2010).  These orchestrated signals 

between osteoclasts, osteoblasts, and osteocytes that contribute to the maintenance of a 

healthy skeleton.  Therefore, the uncoupling of these processes due to inflammation or 

altered glucose homeostasis may contribute to the pathophysiology of increased fracture 

risk.  

 

Inflammation and TLR-4’s Impact on Bone Metabolism  

 Recent evidence has provided insights into the connection between skeletal 

metabolism and the immune response, termed “osteoimmunology”.  For instance, it is 

established that post-menopausal woman experience an uncoupling of bone turnover, 

resulting in accelerated bone resorption and increased risk of osteoporotic-related fracture 

(Manolagas et al., 2010).  In conjunction with bone loss, post-menopausal women have 

been shown to have high circulating pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-

6), demonstrating that estrogen has anti-inflammatory characteristics (Pacifici et al., 

1989; Abrahamsen et al., 2000; Scheidt-Nave et al., 2001; Pfeilschifter, 2003).  Further 

evidence of the regulation of bone turnover by the immune response is evidenced by the 

fact that bone loss and fracture are complications associated with rheumatoid arthritis 

(RA), chronic obstructive pulmonary disease (COPD), periodontal disease, human 

immunodeficiency virus (HIV), and systemic lupus erythematosus (SLE) (Agusti et al., 

2008; Grassi et al., 1998; Anastos et al., 2007; Almehed et al., 2007; Geurs, 2007).  These 

clinical observations provided some of the early evidence that bone turnover was 
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regulated by the immune response, and the subsequent inflammation.  Confounding 

factors such as the use of corticosteroids, which are known to be detrimental to bone, 

made it difficult to determine if bone loss was a result of the disease pathology or side-

effects of treatment.  However, the development of rodent models and in vitro studies 

with osteoclasts and osteoblasts have provided insights into the regulation of bone 

metabolism by inflammatory mediators including those inflammatory mediators induced 

by TLR-4 activation. 

The osteoclast is essentially a specialize macrophage, derived from cells of the 

monocytic lineage and as such, is inherently regulated by the immune response.  

Stimulation of the MyD88 dependent pathway through TLR-4 interaction recruits 

TRAF6, which in turn potentiates osteoclastogenesis by NFATc1 translocation to the 

nucleus (Mabilleau et al., 2011; Lamothe et al., 2007).  Activation of the NF-κB pathway 

has also been shown to be essential for RANK-mediated osteoclast differentiation 

(Ogasawara et al., 2004).  Furthermore, TAK1 deficient monocytes do not differentiate 

into osteoclasts in the presence of RANKL, demonstrating that TAK1 activation via 

TLR-4 signaling is indispensable for RANKL-stimulated osteoclastogenesis (Lamothe et 

al., 2013).  Not only do the various intracellular pathways activated by TLR-4 signaling 

alter osteoclast function, subsequent cytokines produced downstream of TLR-4 also 

impact osteoclastogenesis.  For example, it has been demonstrated that TNF-α up-

regulates RANKL, increasing osteoclast differentiation and number, as well as enhancing 

osteoclast activity (Zou et al., 2002; Wei et al., 2005).  Moreover, Wei et al (Wei et al., 

2005) established that IL-1β is a potent stimulator of bone resorption, and exerts this 

effect by enhancing stromal cell expression of RANKL.  Furthermore, the development 
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of a novel rodent model of chronic, systemic inflammation supported these mechanistic, 

in vitro studies by demonstrating that a low dose LPS pellet was able to induce bone loss 

in conjunction with the up-regulation of IL-1β and TNF-α in the bone (Smith et al., 

2006).  These data demonstrate that the activation of TLR-4 and the downstream 

signaling pathways contribute to altered bone turnover by increasing osteoclast 

differentiation and activity. 

In addition to osteoclasts, osteoblasts have also been shown to constitutively 

express TLR-4 and be responsive to TLR-4 ligands, as well was cytokines produced from 

this activation.  Previous in vitro and in vivo studies have shown that LPS suppresses the 

transcription of Cbfa2 and Sp7 as well as activating transcription factor 4 (Atf4), thereby 

down-regulating osteoblast differentiation (Bandow et al., 2010).  It has been proposed 

that the mechanism involves TLR-4 signaling, as Myd88
-/-

 primary osteoblasts do not 

appear to respond to LPS stimulation (Bandow et al., 2010).  LPS has also been shown to 

stimulate osteoblast apoptosis by increasing caspase 3 (Casp3) mRNA and protein 

abundance in MC3T3-E1 cells (Guo et al., 2013).  Moreover, TNF-α has also been shown 

to decrease osteoblast differentiation via means downstream of insulin-like growth factor 

(IGF-1) and BMPs (Gilbert et al., 2000).  Collectively, these studies indicate that TLR-4 

stimulation leads to decreased osteoblast differentiation and mineralization, as well as 

increased apoptosis, resulting in impaired bone formation.  

Various animal models have also supported the role TLR-4 plays on regulating 

bone metabolism in vivo, impacting bone structure, microarchitecture, and biomechanics.  

For example, in 1996 Beamer et. al (Beamer et al., 1996) reported that the C3H/HeJ mice 

have higher bone density of the femur, vertebra, and the proximal phalanges compared to 
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all other strains examined (i.e., AKR.J, BALB/cByJ, C57BL/6J, C57L/J, DBA/2J, 

NZB/B1NJ, SM/J, SJL/BmJ, SWR/BmJ, and 129/J) (Beamer et al., 1996).  This elevated 

BMD was explained by the fact that the C3H/HeJ mice have fewer osteoclast precursor 

cells compared to C57BL/6J and A/J mice (Gerstenfeld et al., 2010).  The C3H/HeJ mice 

demonstrated an attenuated response to LPS-induced bone resorption compared to 

control, C3H/HeN mice (Nakamura et al., 2008).  Furthermore, it has been shown that 

C3H/HeJ mice have a higher bone formation rate, increased osteoblast activity, and lower 

apoptosis of osteoblasts compared to C57BL/6J mice (Linkhart et al., 1999; Sheng et al., 

2002; Sheng et al., 2004; Sheng et al., 2006).  Not only do these animals exhibit a high 

BMD, 3-pt bending revealed that the C3H/HeJ mice have improved biomechanical 

properties (e.g., ultimate force, yield force, and stiffness) when compared with C57BL/6 

(Schriefer et al., 2005).  Additionally, Johnson and colleagues (Johnson et al., 2004) 

demonstrated that mice harboring mutations in TLR-4 (i.e., C57Bl/10SnJ and C3H/HeJ) 

or in its co-receptor, CD14 (i.e., B6.129S-Cd14
tm1Frm

), exhibit a high BMC, BMA, and 

BMD.  Collectively, these results provide evidence that TLR-4 mediated signaling has an 

integral role in bone metabolism.  

  

Implications of RAGE Signaling and Accumulation of AGE’s on Bone Strength 

Cross-talk has been shown to occur between the downstream signaling cascades 

initiated by TLR-4 and another well-characterized PRR, the receptor of advanced 

glycation end-products (RAGE).  Similar to TLR-4, RAGE interacts with many damage-

associated molecular pattern (DAMP) molecules including advanced glycation end-

products (AGEs), S-100s, HMGB1, β-amyloid, and adhesion molecules (Mac-1 and 
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ICAM1), all of which have been demonstrated to be up-regulated during T2DM 

(Gonzalez et al., 2013).  In addition to the similarity in ligands, the downstream 

inflammatory response resembles that of TLR-4 response in bone, as well.  For example, 

the RAGE ligand, HMGB1, has been shown to be essential for RANKL-induced terminal 

differentiation of osteoclasts (Zhou et al., 2008).  Conversely osteoblast proliferation, 

differentiation, and mineralization are inhibited when cultured with AGEs (Ogawa et al., 

2007; Cortizo et al., 2003).  Consistent with these in vitro studies, Rage
-/-

 mice 

demonstrate elevated bone mass along with decreased osteoclast number compared to 

wild type controls (Zhou et al., 2006).  The convergence of the TLR-4 and RAGE 

signaling cascades and their known effects on bone metabolism under normal conditions 

raises the question as to pathway’s contribution to the bone phenotype in T2DM.  

The primary ligands for RAGE are AGEs, and have been shown to be elevated 

during T2DM through a series of dehydrogenation and oxidation reactions.  While all 

proteins are prone to AGE formation, deleterious AGE accumulation occurs in tissues 

with lower turnover, such as bone.  Collagen is the most abundant protein in bone and is 

susceptible to glycation at arginine and lysine residues, forming the AGE pentosidine.  

Diabetic rats have been shown to exhibit increased bone pentosidine, in conjunction with 

a decrease in bone strength (Saito et al., 2006).  Ionova-Martin et. al (Ionova-Martin et 

al., 2011) showed increased accumulation of pentosidine in the tibia of older animals 

after 16 weeks on a high fat diet (60% kcal from fat).  The increased glycation of proteins 

such as collagen can reduce the elastic properties of bone, translating to clinical 

applicability and would allow for a maintained or even increased BMD, with an increase 

in fracture incidence.  Although compelling evidence exists to support the role of TLR-4 
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and RAGE as critical factors contributing to the dysregulation of bone metabolism during 

T2DM, other mechanisms and cellular responses downstream of the IR may play a 

central role. 

 

Regulation of Macroautophagy  

 Alterations occurring in cellular processes regulated by insulin sensitivity and 

glucose transport in osteoblasts and osteoclasts during T2DM may contribute to the 

dysregulation of bone metabolism.  One such cellular process, macroautophagy, referred 

to hereafter as autophagy, is controlled by proteins downstream of the IR and is involved 

in energy (i.e., glucose) sensing, effectively regulating cell survival or cell death by 

means of organelle recycling (Bursch et al., 2008).  This multi-step cellular process 

involves initiation, membrane nucleation, phagophore formation, sequestration and 

autophagosome formation, followed by autophagosome-lysosome fusion.  Autophagy is 

centrally regulated by mTORC1 or AMPK.   

As the name suggests, mTOR was first described as a target protein for the 

immunosuppressant drug, rapamycin, and was originally developed as an anti-fungal 

agent.  In recent years mTOR and one of its associated complexes, mTORC1, has been 

demonstrated to act as a central regulator of autophagy as well.  In addition to mTOR, the 

mTORC1 complex consists of adaptor proteins known as Raptor (regulatory-associated 

protein of mTOR) and mLST8 (mammalian lethal with SEC13 protein 8 or sometimes 

referred to as G protein β subunit-like protein; GβL) (Yang et al., 2010; Ravikumar et al., 

2010) (Figure 3).  Upon insulin binding to IR, Akt becomes activated (Ser473, Thr308), 
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which leads to the inhibition of TSC1/2 (tuberous sclerosis complex) and Rheb (ras 

homology enriched in brain), ultimately leading to the phosphorylation of mTORC 

(Ser2448).  Phosphorylated mTORC1 regulates mRNA translation by activating 

ribosomal s6 kinase (RSK) and blocking the translational repressors, eIF4EBP1 and eEF2 

kinase, and therefore promoting cell growth.  Conversely, mTORC1 can exist as an 

inactive complex via multiple mechanisms including being bound to inhibitors known as 

Pras40 (proline-rich AKT1 substrate 1) and/ or Deptor (DEP domain-containing mTOR-

interacting protein), or by the displacement of Raptor.  It is this inactive form of 

mTORC1, which dissociates from the lysosome, thereby initiating autophagy by 

activating unc-like kinase (ULK1) (dephosphorylation at Ser757).   

AMPK is another protein altered in various tissues during T2DM which can 

regulate autophagy, both by direct and indirect mechanisms.  AMPK exists as an obligate 

Figure 3. 

Figure 3.  Schematic diagram of autophagy initiation, membrane nucleation and 

phagophore formation, sequestration of proteins and/ or organelles, autophagosome 

formation and autophagosome-lysosomal fusion resulting degradation and ATP 

production. 
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heterotrimer consisting of a catalytic α subunit and two regulatory subunits (β and γ) 

(Figure 3).  When intracellular energy or concentrations of ATP are low, AMP binds to 

the γ subunit promoting the phosphorylation and activation of AMPKα (Thr172).  This 

phosphorylation catalyzes the reaction of 2 ADP molecules into 1 ATP and 1 AMP, 

thereby sustaining cellular function.  Activated AMPK due to low cellular energy or a 

high [AMP]/[ATP] ratio, can also phosphorylate TSC1/2 (Ser1387) and/ or Raptor, 

directly controlling mTORC1 and autophagy.  Regulation of autophagy from AMPK also 

occurs independent of mTORC1, by phosphorylating ULK1 (Ser317, 555, and 777) and 

Beclin1.  Activation of the ULK1 complex is the critical step for the initiation of 

canonical autophagy.   

 One of the first autophagy related proteins, Atg1, described in yeast (S. cerevisae) 

coordinates the initiation of autophagy and downstream protein conjugation systems 

(Chan, 2012).  The mammalian homologue of Atg1, ULK1/2, is a serine/threonine kinase 

found in a complex with FIP200 (focal adhesion kinase family-interacting protein of 200 

kDa), Atg13, and Atg101 (Wirth et al., 2013).  In addition to phosphorylation, ULK1/2 

can be acetylated by TIP60 (HIV-1 Tat interactive protein, 60 kD) (Lys162 and 606), 

thereby activating autophagy.  Although the mechanism is not entirely clear, this core 

machinery orchestrates the downstream events prior to autophagy initiation.  Membrane 

nucleation and assembly of the initial phagophore membrane requires the class III 

phosphatidylinositol 3-kinase (PtdInsK) complex, composed of the PtdInsK, Beclin1, 

Barkor (beclin 1-associated autophagy-related key regulator or Atg14L), and Vps34 

(vacuole protein sorting).   
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Beclin1 was discovered in the late 1990’s to interact with the anti-apoptotic B-cell 

lymphoma-2 (Bcl-2) protein, hence the name (Bcl-2-interacting myosin-like coiled-coil 

protein).  More recently, however, Beclin1 has been identified as a key regulator of 

autophagy.  Beclin1 is a multifunctional protein with many post-translational fates, 

including phosphorylation, calpain-mediated cleavage, ubiquitination, and existence in 

multi-protein complexes.  Pro-autophagic Beclin1 complexes include Barkor-Vps34-

Vps15-Beclin1-AMBRA (activating molecule in beclin-1 regulator autophagy) and 

Vps34-Vps15-Beclin1-Bif-1-UVRAG (UV radiation resistance-associated gene), 

whereas Rubicon (RUN domain protein as Beclin1 interacting and cysteine-rich 

containing) bound Vps34-Vps15-Beclin1-UVRAG complex negatively functions in 

autophagosome maturation (Figure 4) (Kang et al., 2011).  Two phosphorylation sites 

that regulate autophagy have been identified on Beclin1, Thr119 and Ser91/94.  DAPK 

(death-associated protein kinase) has been demonstrated to phosphorylate Beclin1 at 

Thr119 position, thereby dissociating it from Bcl-xL, initiating membrane nucleation and 

autophagosome formation.  Additionally, Gurkar et al. (Gurkar et al., 2013) demonstrated 

that activated ROCK1 or ROKβ (Rho kinase 1) promotes autophagy by phosphorylating 

Beclin1 at Thr119.  The authors went on to describe that inactive ROCK1 leads to 

autophagy impairment, resulting in cell death in glucose-starved HeLa cells (Gurkar et 

al., 2013).  In addition to cytokinesis and cytoskeletal arrangement, ROCK1 has been 

studied due to its implications on IRS phosphorylation and glucose metabolism (Chun et 

al., 2012; Lee et al., 2014; Lee et al., 2009a).  Lee et al. (Lee et al., 2014) recently 

showed that the enzymatic activity of ROCK1 is elevated in obese mice (e.g., diet-

induced, db/db, and ob/ob), which could activate autophagy by means of Beclin1 
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phosphorylation.  Moreover, AMPK has been shown to activate the pro-autophagy Vsp34 

complex by phosphorylating Beclin1 at the Ser91/94 position in mouse embryonic 

fibroblasts (MEFs), and this phosphorylation was critical for AMPK induced autophagy 

(i.e., glucose starvation) vs. mTORC1 (i.e., rapamycin treatment) (Kim et al., 2013a).  

These two, newly identified phosphorylation sites on Beclin1, appear to be dependent on 

autophagy induction and provide another means by which to study this process.  

Although little is known about the transcriptional regulation of Beclin1, there is evidence 

that Becn1 mRNA is controlled by several transcription factors (e.g., EF1, c-jun, NF-κB, 

FoxO3, and HIF1α), microRNAs (e.g., miRNA30a), and epigenetic silencing due to 

hypermethylation.  Furthermore, the critical role of Beclin1 in membrane nucleation and 

phagophore formation has demonstrated robust cross-talk between autophagy and 

apoptosis.  

Following autophagy initiation and membrane nucleation, two ubiquitin-like 

conjugation systems are used to isolate and sequester cargo to the autophagosome.  Atg12 

Figure 4. 

Kang et al., 2011 

Figure 4.  Post-translational fates of Beclin1. 
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is conjugated to Atg5 by Atg7 to form an isopeptide bond between Atg12-glycine and 

Atg5-lysine (i.e., Atg12-Atg5) and then interacts with Atg16.  The Atg8 or mammalian 

homolog microtubule associated protein light chain 3 (LC3) exists as an A and B form 

(other mammalian homologues for Atg8 include GABARAP-1 and GATE16) and is 

essential for autophagosome formation as well as autophagosome-lysosome fusion 

(Tanida et al., 2004).  ProLC3 is processed by the protease Atg4, which results in the 

cleavage of proLC3 to its cytosolic form LC3-I.  Similar to Atg12 conjugation, Atg7 is 

conjugated to LC3I, followed by Atg3, ultimately resulting in the conjugation LC3I to 

phosphatidyl ethanolamine (PE) or LC3-II.  This step initiates the sequestration process 

and leads to the fusion of the autophagosome to the lysosome, where LC3-II and 

autophagosome contents are degraded to nucleotides, amino acids, and free fatty acids.  

This material can then be recycled for macromolecular synthesis and ATP generation.  

Although LC3-II is a larger protein than LC3-I, interestingly, LC3-II has greater mobility 

in SDS-PAGE than LC3-I, which allows for a methods to indirectly observe 

autophagosome formation.  It should be noted that since LC3-II is located on the 

membrane of the autophagosome and this protein is degraded upon lysosomal fusion.  

Therefore, it is necessary to inhibit lysosomal degradation (i.e., bafilomycin A1 or 

chloroquine) if LC3-II is going to be used as an indicator of autophagy.  Although great 

strides have been made in the field of autophagy many questions and gaps in knowledge 

remain, bringing this complex cellular process to the forefront of research related to 

cancer, aging, neurodegenerative diseases, as well as obesity and T2DM.   

Transmission electron microscopy (TEM) continues to be the “gold standard” for 

monitoring autophagy since the term was first coined by Christian D Duve in 1963; 
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however, other techniques and assays have been and are continuing to be developed.  One 

of the earliest assays was established in yeast following the observation that these 

autophagosomal vacuoles contain high amounts of ALP (Noda et al., 1995).  Assessing 

ALP is based on the premise that upon starvation conditions (i.e., glucose and amino 

acids), ALP was processed from its inactive precursor to the mature form (Noda et al., 

1995).  Measurement of ALP activity, however, would prove to be a non-specific 

indicator in cells such as hepatocytes and osteoblasts, which express high levels of ALP.  

Therefore, aside from TEM, the most commonly used techniques to monitor autophagy 

includes western blot analysis of the molecular weight shift in LC3-I (14 kDa) to LC3-II 

(16 kDa) and translocation of green fluorescence protein (GFP)-LC3 from the cytoplasm 

(LC3-I) to the distinct puncta (LC3-II).  Although these tools have been critical for the 

advancement of the field of autophagy they do have limitations.  For example, LC3-II is 

generally accepted as an appropriate indicator of autophagosome formation, but it is 

readily degraded in the lysosome, making in vivo assessment challenging (Mizushima et 

al., 2007).  While it is not commonly used, Iwai-Kanai et al., (Iwai-Kanai et al., 2008) 

utilized the anti-malaria drug, chloroquine, to prevent LC3-II degradation in cardiac 

tissue, allowing for data interpretation of autophagic flux.  Transgenic models can also be 

used to observe autophagy in vivo, but due to the cost, these models are not always an 

option.  Other techniques have been reported (e.g., acridine orange fluorescence, indirect 

immunofluorescence, and western blot of various proteins), but they are not specific and 

require a combination of methods to validate conclusions.  As the science continues to 

advance in the field of autophagy, so too does the development and refinement of 

methods suitable for monitoring this dynamic process. 
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Evidence of Altered Autophagy during T2DM  

Due to the control of autophagy by proteins involved in insulin signaling and 

intracellular energy sensors (e.g., mTORC1 and AMPK), investigation as to how this 

process is altered in T2DM has yielded novel and seemingly conflicting results.  For 

example, in the pancreas autophagy has been shown to be essential for maintenance of β-

cell mass, structure, and function (Masini et al., 2009; Chen et al., 2011).  Contrary to 

initial expectations, β-cells experience a decrease in autophagy during diabetes, which 

has been speculated to be a contributing factor in the progression from obesity to T2DM.  

Autophagy is activated in myocardial tissues from diet-induced obesity model of T2DM; 

however,  a disruption in the autophagic flux (i.e., autophagosome-lysosome fusion) was 

shown to contribute to cardiac injury (Iwai-Kanai et al., 2008).  Lastly, white adipose 

tissue has been shown to undergo increased autophagy in animal models and in patients 

with T2DM.  Adipocytes from human subjects with T2DM demonstrate decreased 

mTORC1 activity and increased autophagosomes as evidenced by TEM and LC3-II (Ost 

et al., 2010).  Nunez et al (Nunez et al., 2013) confirmed the observation of enhanced 

autophagy in subcutaneous adipose tissue from an animal model of diet-induced obesity 

and in obese-diabetic patients.  Interestingly, a subset of human obese-diabetic patients 

who underwent bariatric surgery exhibited a decrease in autophagy with decreasing BMI 

(Nunez et al., 2013).  While no reports have been published regarding bone cells 

undergoing altered autophagy in type 2 diabetics, osteoblasts are derived from the same 

MSC population as adipocytes and may therefore act in a similar manner.  In should be 

noted that in all of these tissues and cells it remains unclear whether autophagy is playing 
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a protective or a harmful role during diabetes.  However, making a general, all-

encompassing statement may not be appropriate since autophagy can be beneficial and 

function as a pro-survival mechanism to deal with acute stress, or has the potential to be 

lethal when autophagic activity persists.  

 

Autophagy in Osteoblasts, Osteocytes, and Osteoclasts  

While limited work has been published on the role of autophagy in osteoblasts, 

osteocytes, and osteoclasts, some advances have been made within the past 5 years.  

Results from in vitro osteoblast cultures have implicated alterations of autophagy as a 

cellular response to nitric oxide, estradiol treatment, and palmitate-induced cell death.  

For example, glutathione-depleted human osteoblastic osteosarcoma cells (U2-OS) 

treated with the vasodialating drug, sodium nitroprusside (SNP), induced large increases 

in LC3-II protein expression and autophagosome formation (i.e., TEM) (Son et al., 2010).  

These data suggest that during excessive, uncontrolled oxidative stress, osteoblasts will 

undergo increased autophagy.  Although the authors discuss a modest increase in LC3-II 

protein abundance following SNP treatment, the data was expressed as LC3-II/ LC3-I, 

which has been described to be an inaccurate approach (Mizushima et al., 2007; Klionsky 

et al., 2008).  Recently, Yang et al. (Yang et al., 2013) induced autophagy in osteoblast-

like MC3T3-E1 cells by serum deprivation and noted increased autophagosome 

formation, along with increased abundance of Beclin1, LC3-II, and ULK1 after 48 hrs.  

Interestingly, estradiol treatment decreased the apoptotic events (e.g., caspase 3 cleavage 

and Hoechst staining of fragmented DNA) in these cells, while enhancing autophagy (i.e., 

decreased p-mTORC1 and increased LC3-II).  These findings suggest that estrogen plays 
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a cellular protective role in osteoblasts by increasing autophagy, and therefore, offers a 

novel means by which postmenopausal osteoporosis is induced when estrogen levels 

decline (Yang et al., 2013).  While no studies to date have investigated autophagy in bone 

during obesity or T2DM, a recent publication has shown that sFFA, palmitate, can induce 

cell death of human osteoblasts via apoptosis and autophagy as demonstrated by LC3 

puncta and TEM (Gunaratnam et al., 2013).  Recent interest has also focused on 

autophagy’s role in osteocytes during glucocorticoid treatment (Xia et al., 2010).  This 

publication showed that the osteocyte-like cell line of MLO-Y4 cells transfected with 

GFP-LC3 increased GFP-LC3 puncta following 10
-6

 M of dexamethasone treatment for 

24 hr, consistent with increased autophagosome formation.  Similar to Son and 

colleagues’ (Son et al., 2010) report on SNP’s effect on osteoblasts, LC3-II protein 

expression was also reported as a ratio of LC3-I form, although actin appears to be an 

appropriate control in this publication (Xia et al., 2010).  While the work of Xia et. al., 

undeniably advanced the field of how glucocorticoids affect osteocytes, there are major 

limitations that make data interpretation and understanding the implications difficult.  

While the prior literature reviewed was designed to investigate autophagy, other 

studies have described how osteoblasts respond to rapamycin treatment.  Rapamycin, also 

known as sirolimus, is an immunosuppressant drug isolated from the bacterium S. 

hygroscopicus that is commonly utilized in autophagy research due to its ability to 

inactivate mTORC1.  Specifically, rapamycin binds to the FKBP12–rapamycin-binding 

(FRB) domain of mTOR, directly blocking substrate recruitment (i.e., Raptor) of 

mTORC1, thereby up-regulating autophagy.  A review of the literature reveals 

conflicting data as to how rapamycin affects osteoblasts.  For example 10 nM of 

http://en.wikipedia.org/wiki/Streptomyces_hygroscopicus
http://en.wikipedia.org/wiki/Streptomyces_hygroscopicus
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rapamycin for 12, 24, 28, and 72 hr has been shown to impair osteoblast differentiation 

by decreasing Runx2 and cyclin D1 protein expression in osteoblastic MC-4 (MC3T3-E1 

subclone 4) cells (Singha et al., 2008).  Conversely, 1 nM rapamycin has been shown to 

induce osteogenic differentiation of human embryonic stem cells (hESC) by up-

regulating Bmp2 and Runx2 mRNA, as well as increasing nodule formation (Lee et al., 

2009b).  The osteogenic potential was attributed to rapamycin’s ability to regulate 

TGFβ/BMP signaling by blocking the interaction of FKBP12 and the TGFβ type 1 

receptor to induce BMP4 expression and Smad activity.  It is important to note that 

although rapamycin was used in both of these experiments, autophagy was never 

assessed.   

Some of the most informative data related to autophagy and bone come from 

conditional knockout models.  The work of Onal et al. (Onal et al., 2013) described the 

generation of a dentin matrix protein (DMP)-1-Cre transgenic mouse crossed with a 

floxed Atg7 allele, resulting in suppressed Atg7 expression in osteocytes (~75% 

reduction).  As anticipated, autophagy was suppressed in these animals based on a 

decrease in LC3-II protein abundance (Onal et al., 2013).  Interestingly, these animals 

exhibited decreased BMD of the femur, spine and whole body, presumably due to a 

decrease in trabecular bone (vertebral and femoral BV/TV) (Onal et al., 2013).  

Suppression of autophagy in osteocytes was sufficient to mimic the osteopenia associated 

with advanced age even in young adult mice.  Further insight was provided by another 

transgenic mouse model which was generated to express an osteoblast specific (Osx or 

Osterix-Cre) deletion of FIP200 (Liu et al., 2013).  The authors described an increase in 

LC3-II abundance during the differentiation of primary osteoblasts, which suggested that 
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autophagy was involved in the terminal differentiation of osteoblasts (Liu et al., 2013).  

This conditional knockout model confirmed that these animals had dramatically lower 

trabecular and cortical bone at 1, 2, and 6 mo of age (Liu et al., 2013).  These bone 

structural changes were attributed to decreased bone formation as determined by static 

and dynamic bone histomorphometry (Liu et al., 2013).  Together, these two 

groundbreaking studies demonstrate that basal autophagy promotes osteocyte function, 

supports nodule formation by osteoblasts and contributes to the terminal differentiation of 

osteoblasts.   

While the direct role autophagy plays in osteoclast differentiation and/or 

osteoclast function in the context of T2DM remains unclear, it has been suggested that 

autophagy is a pivotal regulator for osteoclastogenesis induced by hypoxia, Paget’s 

disease of bone, and TNF-α mediated joint destruction (Zhao et al., 2011; Tresse et al., 

2010; Lin et al., 2013).  However, it has recently been discovered that autophagic 

proteins (i.e., Atg5, Atg7, Atg4B, and LC3) are involved in the polarized secretion of 

lysosomal contents by the osteoclast (DeSelm et al., 2011).  These proteins are essential 

for proper bone resorption by the osteoclast in what has been described as “non-

canonical” autophagy.  The description of autophagic proteins being involved in cellular 

processes aside from canonical autophagy (e.g., actin-ring organization and resorption of 

osteoclasts as well as phagocytosis and degradation of photoreceptor outer segments of 

retinal pigment epithelium), makes the osteoclast particularly difficult to study especially 

given the current validated methods in the field (Kim et al., 2013c).   
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Glucose Transporters (GLUTs) on Osteoblasts and Osteoclasts 

It is reasonable to conceive that autophagy can be induced during T2DM due to 

the impaired ability to transport glucose for cellular utilization.  For autophagy to be 

activated due to inadequate cellular glucose, the subcellular localization of the cell’s 

major glucose transporter (GLUT) would need to be dependent upon insulin, similar to 

GLUT4.  Therefore, characterization of the major GLUTs expressed on osteoblasts and 

osteoclasts is fundamental to understanding how these cells may be impacted during 

T2DM.  In 1989, Ituarte et al. (Ituarte et al., 1989) showed that rat osteosarcoma cells 

(e.g., UMR 106-01) possessed a stereospecific, saturable, active glucose transport system, 

similar to that of insulin sensitive cells (i.e., myocytes and adipocytes).  Further 

investigation using this osteosarcoma cell line revealed that both GLUT1 and GLUT3 

were expressed by osteoblast-like cells and were responsible for glucose up-take 

(Thomas et al., 1996).  Moreover, Hahn et al., (Hahn et al., 1988) showed that insulin 

rapidly stimulated 2-deoxyglucose uptake in osteoblast-enriched rat bone explant 

preparations.  Although GLUT3 was originally considered the “neuronal glucose 

transporter” several studies have shown that GLUT3 is expressed on osteoblasts (e.g., 

UMR 106-01, UMR 201-10B, PyMS, and primary osteoblasts) and its expression 

increases with maturation of the osteoblasts (Zoidis et al., 2011; Ma et al., 2011; Thomas 

et al., 1996; Fang et al., 2006; Ituarte et al., 1989).  Additionally, subcellular fractionation 

has shown that L6 myotubes exhibit an intracellular pool of GLUT3 that is redistributed 

to the plasma membrane upon insulin stimulation (Bilan et al., 1992).  More recently, 

insulin has been shown to increase the expression of GLUT3 on the plasma membrane in 

human monocytes and B-lymphocytes (Maratou et al., 2007).  While homozygous 
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mutations in GLUT3 (Glut3
-/-

) are embryonic lethal, male heterozygous Glut3
+/-

mice 

develop adult-onset adiposity with insulin resistance (Ganguly et al., 2008).  These 

studies provide evidence that GLUT3 is an insulin-sensitive transporter, and tissues that 

express this GLUT (i.e., bone, testes, and brain) should be considered as contributing 

sources to the hyperglycemia observed during T2DM.   

More recently, preliminary data presented by Li and colleagues (Zhu Li et al., 

2013) demonstrated that primary mouse osteoblasts isolated from the calvaria express 

GLUT1, GLUT3, and GLUT4.  It is important to note that given the relatively low Km of 

GLUT3 (Km=1.4 mM) compared to GLUT1 (Km= 6.9 mM) and GLUT4 (Km = 4.6 mM), 

GLUT3 may still act as the primary glucose transporter in osteoblasts due to its high 

affinity for glucose.  Due to the evidence that osteoblasts express GLUTs (i.e., GLUT3 

and GLUT4) whose subcellular localization  is regulated by insulin, the potential exists 

that osteoblasts experience increased autophagy due to inadequate intracellular energy 

during T2DM.   

In contrast to osteoblasts, glucose transport in osteoclasts or their precursor cell 

population (i.e., monocyte/macrophage lineage) has not been extensively studied.  One of 

the only publications related to GLUTs and these bone resorbing cells showed that 

osteoclasts differentiated from peripheral blood mononuclear cells (PBMC) increase 

GLUT1 protein expression in response to hypoxia (Knowles et al., 2008).  Previous 

research has shown that cell lines of human monocytic lineage express GLUT1, GLUT3, 

and GLUT5 (Fu et al., 2004).  Due to the lack of evidence describing the molecular 

mechanism by which osteoclasts transport glucose, additional research is needed.   
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Alterations that occur in insulin sensitivity during T2DM have been observed in 

peripheral tissues such as skeletal muscle and adipose tissue to diminish glucose 

transport, contributing to elevated blood glucose.  If GLUT4 is expressed on osteoblasts 

as reported (Zhu Li et al., 2013) and/or if GLUT3 acts in a similar manner to GLUT4, it 

is conceivable that bone may also contribute to the systemic hyperglycemia that occurs in 

T2DM.  Furthermore, if glucose uptake is attenuated in osteoblasts, osteoclasts, as well as 

osteocytes, these cells may be metabolically stressed, resulting in the up-regulating 

autophagy.  Given the protective nature of autophagy, it is plausible that during T2DM a 

cell such as the osteoblast could experience an increase maturation and activity due to 

autophagy initially, but chronic activation of autophagy would eventually result in cell 

death by means of apoptosis (Bursch et al., 2008).  This unique scenario, of accelerated 

osteoblast maturation followed by cell death, could provide a novel explanation for the 

apparent paradox in T2DM of having an increased risk of fracture with increasing 

duration in type 2 diabetics, while simultaneously maintaining BMD. 

 

Summary of Potential Mechanisms in the Dysregulation of Bone Metabolism in 

T2DM 

Based on this review of the literature, it is apparent that investigation into the role 

of TLR-4 and autophagy in bone metabolism could provide new insights into the 

alterations in bone microarchitecture and biomechanical properties that ultimately result 

in increased fracture risk with T2DM.  Given the literature supporting the potential for 

increased TLR-4 signaling in the development and progression of glucose intolerance, 
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and the potential negative effects of these pro-inflammatory mediators on bone cell 

differentiation, activity and apoptosis, it is imperative to investigate the role of TLR-4 on 

the skeletal response over time in T2DM.  Due to the fact that autophagy is regulated by 

both the insulin signaling pathway (mTORC1) and intracellular energy (AMPK), the 

potential exists for this cellular process to be altered in osteoblasts and osteoclasts during 

hyperglycemia.  Although information on how autophagy impacts osteoblast and 

osteoclast differentiation and function is limited, the literature supports the notion that 

autophagy may initially provide protection from cellular stresses occurring with T2DM 

(Liu et al., 2013; Eisenberg-Lerner et al., 2009).  If the autophagy is increased during the 

early stages of T2DM and hyperglycemia, this dynamic process may provide a protective 

role, maintaining bone metabolism, however, prolonged hyperglycemia could alter bone 

metabolism, resulting in increased fracture risk.  Therefore, a series of studies have been 

designed to investigate the role of TLR-4 and autophagy in an animal model of T2DM.  

The findings from these studies will advance the field of bone and mineral research 

related to TLR-4 signaling and the role of autophagy, and may lead to the identification 

of potential therapeutic targets to decrease fracture incidence in the population.  
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CHAPTER III 
 

 

A COMPARATIVE STUDY OF THE METABOLIC AND SKELETAL RESPONSE 

OF C57BL/6J AND C57BL/6N MICE IN A DIET-INDUCED MODEL OF TYPE 2 

DIABETES. 

The following manuscript has been submitted for publication in Metabolism 
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Abstract: 

Objective:  Type 2 diabetes mellitus (T2DM) represents a complex clinical scenario of altered 

energy metabolism and increased fracture incidence.  The C57BL/6 mouse model of diet-induced 

obesity has been used to study the mechanisms by which glucose intolerance alters bone mass 

and quality, but genetic variations in substrains of C57BL/6 may confound the interpretation of 

results.  Therefore, this study was designed to investigate the long-term metabolic and skeletal 

response of two commonly used C57BL/6 substrains to a high fat (HF) diet.  

Methods:  C57BL/6J and C57BL/6N and the negative control strain, C3H/HeJ mice, were fed a 

control or HF diet for 24 wks.   Blood glucose, plasma insulin, and a glucose tolerance test were 

determined to characterize the metabolic response of each strain.  The skeletal response was 

determined by assessing trabecular and cortical bone microarchitecture.   

Results:  C57BL/6N mice on a HF diet demonstrated an increase in plasma insulin and blood 

glucose as early as 4 wk, whereas the hyperinsulinemic and hyperglycemic response of the 

C57BL/6J mice to the HF diet was delayed until 16 and 24 wks, respectively.  Only the 

C57BL/6N mice lost significant trabecular bone in the vertebra in response to the high fat diet.  

The C3H/HeJ mice were protected from bone loss.   

Conclusions:  These data show that the C57BL/6J and C57BL/6N on a high fat diet differ in 

their metabolic and skeletal response, which could have implications for data interpretation and 

should be considered when designing animal studies. 

 

Keywords:  glucose, insulin, osteocalcin, substrain, bone 

Abbreviations:  Type 2 diabetes mellitus, T2DM; high fat, HF; bone mineral density, BMD; 

bone mineral area, BMA; bone mineral content, BMC; toll-like receptor 4, TLR-4; 
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lipopolysaccharide, LPS; saturated free fatty acids, sFFAs; nicotinamide nucleotide 

transhydrogenase, NNT; white blood cells, WBC; dual energy x-ray absorptiometry, DXA; 

intraperitoneal glucose tolerance test, IGTT; area under the curve, AUC; osteocalcin, OCN; 

gamma carboxylated OCN, Gla-OCN; undercarboxylated OCN, Glu-OCN; micro-computerized 

tomography, microCT; volume of interest, VOI; bone volume/ total volume, BV/TV; trabecular 

number, Tb.N.; trabecular thickness, Tb.Th.; trabecular separation, Tb.Sp.; connectivity density, 

ConnDens; structural model index, SMI; non-alcoholic fatty liver disease, NAFLD; fatty acid 

synthase, Fasn; sterol regulatory element-binding protein, Srebp1c; glucose transporter 2 or 

solute carrier family, Slc2a2; peroxisome proliferative-activator α, Ppara; glutathione 

peroxidase, Gpx1; peptidylprolyl isomerase B, Ppib; leptin receptor, Lepr; ribonucleic acid, 

RNA; complementary deoxyribonucleic acid, cDNA; quantitative real-time polymerase chain 

reaction, qPCR; statistical analysis software, SAS; standard error, SE; kilocalorie, kcal; 

adenosine triphosphate, ATP. 
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1. Introduction 

Increasing prevalence of type 2 diabetes mellitus (T2DM) has stimulated research 

focused on the pathogenesis and treatment of T2DM and its complications.  Initial studies 

examining fracture as a possible complication of T2DM indicated that type 2 diabetics were not 

at risk of fracture based on bone mineral density (BMD), the clinical standard for screening [1-

3].  However, data analyzed from clinical trials with fracture as an outcome variable instead of 

BMD revealed that both men and women with T2DM experience an increase in fracture (i.e., 

1.5-3 fold) beginning 5-10 years post diagnosis [4-8].  Collectively, the clinical evidence 

indicates that independent of BMD, type 2 diabetics are at increased risk of fracture that is 

exacerbated over time. 

Rodent models have enabled investigators to study the molecular mechanisms 

contributing to the alterations in bone quality associated with T2DM.  One of the most 

commonly utilized models has been the C57BL/6J mouse fed a high fat (HF) diet, which exhibit 

an increase in adiposity, hyperinsulinemia, hyperglycemia, and dyslipidemia similar to humans 

[9-11].  Additionally, C57BL/6J mice exhibit decreased BMD in response to long-term intake of 

a HF diet, which results from altered adipokines and/or hormones [12-15].  Alterations in bone 

mass in these animals are also accompanied by impaired bone quality as evidenced by 

compromised biomechanical properties [13;15-19].  In contrast, C3H/HeJ mice, which have a 

nonfunctional toll-like receptor (TLR) 4 due to a point mutation in the toll-interleukin 1 receptor 

domain, exhibit a blunted metabolic and skeletal response to HF diets [20-22].  TLR-4 is 

expressed on bone forming osteoblasts and bone resorbing osteoclasts, and TLR-4 ligands (e.g., 

lipopolysaccharide or LPS, and saturated free fatty acids or sFFAs) as well as downstream 

inflammatory mediators may uncouple bone turnover [23;24].  Because of interest in sFFAs and 
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gut-derived LPS in the pathophysiology of T2DM and its complications, the C3H/HeJ strain has 

become an important research tool.  Other rodent models of T2DM have included the Zucker 

fatty diabetes mellitus rat and the fat-fed, streptozotocin-treated rat, but mouse models are often 

preferred due to the lower cost of housing and the range of available genetically modified models 

[25;26]. 

A review of published reports revealed that studies utilizing different C57BL/6 substrains 

(e.g., C57BL/6J and C57BL/6N) are often discussed without mention of genetic variations that 

could have important implications on the results and their interpretation.  For example, the 

C57BL/6J mouse (Jackson Laboratory) has a missense mutation in the gene encoding 

nicotinamide nucleotide transhydrogenase (Nnt) that alters RNA splicing and leads to the 

deletion of exons 7-11 [27-29].  The C57BL/6J mouse’s genetic alteration may contribute to the 

discrepancies in the literature in regards to metabolic alterations and corresponding 

complications using a diet-induced obesity model of T2DM [9;11;12;15].  To date, the metabolic 

and skeletal responses of the C57BL/6J substrain to a HF diet has not been directly compared to 

other substrains.  If, as we hypothesized, the metabolic response to a HF diet in these two 

substrains differs due to genetic variations, this may alter hormones and adipokines that can 

subsequently affect the skeletal response. Such differences would be important relative to the 

interpretation of results and could assist researchers in selecting the most appropriate model. 

 

2. Methods 

2.1. Animal Care and Diets 
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Eight-week old male mice, C57BL/6N from Charles River (Wilmington, MA) and 

C57BL/6J and C3H/HeJ mice form Jackson Labs (Bar Harbor, ME), were obtained (n = 30 mice/ 

strain) for these studies.  The C3H/HeJ mice served as a negative control based on reports of 

their resistance to diet-induced obesity and TLR-4 mutation [20;21].  Animals were acclimated 

for 7 days and then randomly assigned to a control AIN-93M (10 % kcals from fat) or a HF 

(45% kcals from fat; Harlan Teklad, TD.06415) diet for 24 wk.  Body weight and food intake 

were recorded throughout the study and venous tail blood was collected following a 6 hr fast for 

evaluation of glucose and insulin at 4 wk intervals.  After 24 wks, mice were anesthetized 

(ketamine/xylazine cocktail 70 and 30 mg/kg body weight, respectively) as previously reported 

and whole body DXA (LunarPIXI, GE Medical Systems, Madison, WI) scans were performed.  

Mice were exsanguinated via the carotid artery.  An aliquot of blood was collected for total white 

blood cell (WBC) counts and the remainder processed for plasma in EDTA coated tubes and 

stored at -80˚C.  All procedures were approved by the Institutional Animal Care and Use 

Committee of Oklahoma State University.   

 

2.2.Intraperitoneal Glucose Tolerance Test 

 One week prior to the end of the study (23
rd

 wk), mice were fasted for 6 hrs and an 

intraperitoneal (IP) glucose tolerance test (IGTT) was performed.  Mice were administered an IP 

glucose solution (2 g glucose/ kg bodyweight) followed by blood glucose monitoring at 15, 30, 

60, 90, and 120 min.  Area under the curve (AUC) was determined by calculating the sum of 

rectangular area between each time point. 
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2.3.Analysis of Insulin, Adipokines, and Osteocalcin 

Plasma insulin was assessed at 4 wk intervals, whereas plasma leptin, adiponectin and 

osteocalcin (OCN), both total -OCN (GlaOCN) and undercarboxylatedOCN (Glu-OCN), were 

determined only at the final time point.  All assays were performed using commercially-available 

ELISA kits including ( Crystal Chem, Downers Grove, IL),  leptin and adiponectin (EMD 

Millipore, Billerica, MA) and Gla-OCN and Glu-OCN, Clontech Takara Bio, Mountain View, 

CA), following the manufacturer’s protocol.  The ratio of Glu-OCN/ Gla-OCN is commonly 

reported as a means to indicate whether carboxylation status of OCN is being altered.  

 

2.4.Body Composition and Bone Densitometry 

Whole body DXA scans were performed to determine body composition, bone mineral 

area (BMA), content (BMC), and BMD.  All scans were analyzed using PIXImus Series 

Software version 1.4x (GE Lunar Pixi, Madison, WI). 

 

2.5.Micro-Computerized Tomography (MicroCT) 

MicroCT (microCT40, SCANCO Medical, Switzerland) was used to evaluate bone 

microarchitecture at the proximal tibial metaphysis, tibial mid-diaphysis as well, and 4
th

 lumbar 

vertebra.  Analysis of trabecular bone was performed at the proximal tibial metaphysis on high 

resolution scans (2048 x 2048 pixels) and the volume of interest (VOI) included 750 μm of 

secondary spongiosa. The VOI was analyzed using a threshold of 300, a sigma of 0.7, and 

support of 1.0.  Trabecular bone of the vertebra was assessed on images 80 μm from the dorsal 

and caudal growth plates at medium resolution (1024 x 1024 pixels) and included only secondary 
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spongiosa.  Images generated from the scans of the vertebrae were analyzed at a threshold of 

340, and a sigma and support of 1.2 and 2.0, respectively.  Trabecular parameters evaluated 

included trabecular bone volume expressed as a percentage of total volume (BV/TV), trabecular 

number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.) connectivity 

density (ConnDens) and structural model index (SMI).   

Cortical bone was evaluated by analyzing a 120 μm section at the mid-diaphysis of the 

tibia.  Assessment of cortical bone parameters included cortical porosity, thickness, area, and 

medullary area of the tibial mid-diaphysis.  The acquired images were analyzed at a threshold of 

300, a sigma of 0.7, and support of 1.0. 

 

2.6.Analysis of Biomechanical Properties of the Tibia 

Tibias were cleaned of soft-adhering tissue and stored in phosphate buffered saline (PBS) 

at 4°C until analyses were performed.  Reference point indentation (RPI) was applied laterally at 

the tibia-fibula junction using a BioDent (Active Life Scientific, Inc, Santa Barbara, CA), and the 

first cycle indentation distance and touchdown distance was recorded.  Each tibia was subjected 

to a testing protocol of 2 N force, 2 Hz, and 10 cycles. 

 

2.7.Histology of the Liver 

Fixed (10% neutral buffered formalin) liver samples were processed and sectioned (5µm) 

for staining with hematoxylin and eosin to assess histological changes associated with 

nonalcoholic fatty liver disease (NAFLD) that occurs in obesity and/or diabetes.  Steatosis and 

fibrosis were scored on a scale from 0-4, with 0 indicating the absence of hepatic lipid droplets 
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or fibrosis, whereas 4 indicated of pronounced steatosis or fibrosis.  Lobular and portal 

inflammation was scored using a range of 0-3, with 0 indicating the absence of macrophage 

infiltration and 3 corresponding to severe inflammation.  Balloon degeneration was scored using 

a 0-2 system, with 0 defined as the lack of degeneration and 2 indicating modest presence of 

parenchymal cell death. All scoring was performed by the study pathologist who was blinded to 

treatments. 

 

2.8.RNA Isolation and Gene Expression Analysis 

 Total RNA was isolated from the liver and bone marrow tissues using TriZol Reagent 

(Invitrogen, Grand Island, NY) as previously described [30;31].  cDNA was synthesized 

following a standardized laboratory protocol [30;31] and qPCR was performed using SYBR 

green chemistry (7900HT Fast Real-Time, Applied Biosystems, Foster City, CA).  Hepatic genes 

of interest included fatty acid synthase (Fasn), sterol regulatory element-binding protein 

(Srebp1c), glucose transporter 2 or solute carrier family (Slc2a2), peroxisome proliferative-

activator α (Ppara), and glutathione peroxidase (Gpx1), and in the bone marrow Fasn, Ppara 

and Gpx1 (Table S1).  All qPCR results were evaluated by the comparative cycle number at 

threshold (CT) method (User Manual #2, Applied Biosystems) using peptidylprolyl isomerase B 

or cyclophilin B (Ppib) as the invariant control. 

 

2.9.Statistical Analysis 

Statistical analyses were performed using Statistical Analysis Software version 9.3 (SAS 

Institute, NC).  The primary objective was to determine the difference in response to a HF diet of 

a given strain and therefore, student’s paired t-test was used unless stated otherwise.  
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Furthermore, when the C57BL/J and C57BL/6N substrains exhibited a response to the HF diet, 

the magnitude of the response (i.e., percent change) was calculated and comparisons were made 

between  strains using one-way ANOVA.  When the F value was < 0.05, post hoc analyses were 

performed with the Fischer’s least square means separation test.  Chi-squared tests were used for 

histological scoring of liver specimens.  All data are presented as mean ± standard error (SE) and 

a P < 0.05 was considered statistically significant. 

 

3. Results 

3.1. Body and Fat Pad Weight, Body Composition, and Food Intake 

 At baseline, body weight between strains differed with the C57BL/6J, C57BL/6N, and 

C3H/HeJ; however, no differences existed between the two dietary treatment groups (i.e., Con or 

HF) within a given strain (data not shown).  After 5 wk on the HF diet, the C57BL/6J  exhibited 

a significant increase in bodyweight compared to the C57BL/6J Con, whereas the C57BL/6N on 

the HF diet had a higher (P < 0.05) body weight after only 3 wk (Figure 1).  The C3H/HeJ mice 

on the HF diet also exhibited a more rapid increase in body weight after only 1 wk compared to 

their respective Con (Figure 1).  Analysis of body composition revealed the increase in body 

weight was due to a significant increase in both lean and fat mass for the two C57BL/6 

substrains and the C3H/HeJ mice (Table 1).  The amount of food consumed was lower for the 

mice on the HF diet in each strain (Table 1), however, the C57BL/6N mice on the HF diet 

consumed+2.1 kcal/day compared to C57BL/6N-Con.  The C57BL/6J and C3H/HeJ on the HF 

diet consumed +1.2 kcal/day compared to their respective controls (data not shown). 
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3.2.Tissue Weights and White Blood Cells 

After 24 wk on a HF diet the C57BL/6N mice exhibited splenomegaly, thymic 

hypertrophy, and decreased WBC, but the C57BL/6J mice failed to demonstrate these 

immunological changes (Table 1).  C3H/HeJ mice had a similar response to HF diet in terms of 

tissue weights and total WBC’s compared to the C57BL/6N mice (Table 1).   

 

3.3.Blood Glucose, Plasma Insulin, and Glucose Tolerance Test,  

C57BL/6N mice on the HF diet were the only strain that had elevated fasting blood 

glucose (Figure 2A) and plasma insulin (Figure 2B) after 4, 8, 12, 16, 20, and 24 wk of 

treatment compared to their Con counterparts.  The C57BL/6J substrain on the HF diet was 

hyperglycemic at 16 and 20 wk (Figure 2A) and hyperinsulinemic at 24 wk (Figure 2B).  

Similar to the C57BL/6J substrain, the C3H/HeJ mice on the HF diet exhibited delayed-onset of 

hyperglycemia (Figure 2A), while their plasma insulin was increased at 12, 20 and 24 wk 

(Figure 2B).   

At the end of the study, IGTT showed that the C57BL/6J and C57BL/6N, as well as the 

C3H/HeJ mice on the HF diet exhibited glucose intolerance (Figure 3A & B).  The C3H/HeJ 

mice also exhibited glucose intolerance after 24 wk on a HF diet (Figure 3).  It should be noted 

that despite elevated AUC, the C3H/HeJ mice on the HF diet maintained the ability to restore 

blood glucose by the final IGTT time point.  The percent difference in AUC of the HF animals 

compared to their respective Con demonstrates that that the magnitude of response was similar 

across the C57BL/6J and C57BL/6N (data not shown).  
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3.4.Plasma Adipokines and Osteocalcin 

Both the C57BL/6J and C57BL/6N substrains had elevated plasma leptin after 24 wk on 

a HF diet (Table 1).  Similarly, the C3H/HeJ mice on the HF diet also had higher plasma leptin 

(Table 1).  Interestingly, at 24 wk the C57BL/6J mice, but not the C57BL/6N substrain, 

exhibited a decrease in plasma adiponectin in response to a HF diet (Table 1).   

The carboxylation status of OCN (i.e., Glu/Gla-OCN ratio), which has been shown to 

influence systemic energy metabolism, was reduced only in the C57BL/6N mice after 24 wk on a 

HF diet (Figure 4).   

 

3.5.Histological Evaluation of Hepatic Tissue 

 Representative micrographs of liver sections from each group show that the C57BL/6J 

and C57BL/6N strains as well as the C3H/HeJ strain experienced some degree of hepatic 

steatosis in response to the HF diet (Figure 5).  Ninety-two percent of the C57BL/6N mice on 

the HF diet had lobular inflammation, while 77% had portal inflammation (Table 2).  The 

frequency of the inflammatory response was markedly lower in the C57BL/6J mice (54% lobular 

and 23% portal inflammation) (Table 2).  While none of the C57BL/6J mice on the HF diet 

exhibited liver fibrosis, 23% of the treated C57BL/6N mice had fibrotic changes (Table 2).  

Balloon degeneration was also more severe in the C57BL/6N mice on the HF diet compared to 

the C57BL/6J (Table 2).  Despite a lack of lobular and portal inflammation and fibrosis in the 

C3H/HeJ mice, balloon degeneration was severe in this strain (Table 2).   

 

3.6.Whole Body Bone Densitometry 
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Both the C57BL/6J and C57BL/6N mice demonstrated a decrease in whole body BMC 

and BMA, but no change in whole body BMD in response to the HF diet after 24 wk (Table 3).  

When BMD was expressed relative to body weight, differences due to diet were observed 

suggesting that the bone did not increase relative to the increase in body weight (Table 3).   

 

3.7.Microarchitectural Changes in Trabecular and Cortical Bone 

MicroCT analyses of the lumbar vertebra revealed significant loss of trabecular bone or 

BV/TV with the HF diet in C57BL/6N, while the C57BL/6J did not reach the level of statistical 

significance (P < 0.0579) (Figure 6A).  In contrast, the C3H/HeJ mice were protected from 

vertebral bone loss (Figure 6) or non-morphometric parameters with HF diet (Table 3).  Both 

the C57BL/6J and C57BL/6N mice on the HF diet had a higher SMI indicative of a weaker, 

more rod-like trabecular bone in the vertebra (Table 3).   

In contrast to the vertebra, no changes were observed in trabecular or cortical parameters 

analyzed at the proximal tibial metaphysis or the tibial mid-diaphysis in the C57BL/6J or the 

C57BL/6N mice.  The C3H/HeJ mice failed to demonstrate alterations in trabecular bone of the 

proximal tibia but did exhibit an increase in the medullary area at the mid-diaphysis (Table 5). 

3.8.  Changes in Biomechanical properties of the Tibia 

Based on reference point indentation testing at the tibia-fibula junction, no changes were 

observed in first cycle indentation distance or touchdown distance in any strain following 24 wk 

on a HF diet when compared to their respective Con (Table 3).   
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3.9.Characterization of Genes Involved in Energy Metabolism and Inflammation from the 

Liver and Bone Marrow 

Determination of genes involved in hepatic metabolism and inflammation revealed that 

the C57BL/6N mice on the HF diet had altered metabolic processes, including the up-regulation 

of glucose uptake (Slc2a2) and triglyceride storage (Fasn and Srebp1c), adipogenesis (Ppara), as 

well as antioxidant capacity (Gpx1)  (Table 4).  Interestingly, none of these alterations in gene 

expression were observed in the C57BL/6J mice after 24 wk on the HF diet.   

To determine the degree to which oxidative stress and adipogenesis contributed to bone 

loss with the HF diet model, Gpx1 and Pparg mRNA abundance was determined in the bone 

marrow.  Similar to the hepatic tissue, the abundance of Gpx1 mRNA was increased in the 

C57BL/6N mice on the HF diet, suggesting an increase in antioxidant capacity (Table 4).  In 

contrast, the C57BL/6J mice on the HF diet demonstrated a decrease in the relative abundance of 

Gpx1 (Table 4).  Additionally, no alterations were observed in the transcriptional regulator of 

adipogenesis, Pparg, in any strain after 24 wk (Table 4).   

4. Discussion 

 The findings of this study show that the C57BL/6J and the C57BL/6N mouse differ in 

their metabolic response to a HF diet over a 24 wk study period.  Discrepancies in the metabolic 

response between the two strains are most likely attributed to the missense mutation (M35T) in 

exon 1 and a multi-exon deletion of Nnt in the C57BL/6J mice [32;33].  This mutation in Nnt has 

been reported to uncouple β cell mitochondrial metabolism leading to less ATP production in 

pancreatic islets, enhanced KATP channel activity, and consequently, impaired glucose-stimulated 

insulin secretion [28;32;34].  Only fasting insulin was assessed in the current study, however, 
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early onset of hyperinsulinemia with HF diet was only observed in the C57BL/6N mice with an 

intact, functional Nnt.   

The C57BL/6J and C57BL/6N mice had a markedly different hepatic response to the HF 

diet after 24 wk.  Increased mRNA abundance of Fasn and a modest increase in Srebpc1, in the 

presence of severe liver steatosis in the C57BL/6N mice on the HF diet suggests an increase in 

hepatic triglyceride synthesis and storage.  Conversely, the C57BL/6J substrain, which has lower 

glucokinase activity and thus impaired glucose sensing, may explain the lack of transcription 

regulation of Fasn and Srebp1c [32].  Furthermore, C57BL/6N mice on the HF diet 

demonstrated an increase in Slc2a2 gene expression, which encodes for the non-insulin-sensitive 

glucose transporter 2, and has been reported to be up-regulated in response to a HF diet [35].  

Histological evaluation suggests that the C57BL/6N mice on the HF diet also experienced the 

most pronounced hepatic inflammation, compared to the C57BL/6J mice.   

The findings of this study also demonstrate that the C3H/HeJ mice may not be 

completely resistant to diet-induced obesity and the subsequent metabolic changes.  Differences 

in the C3H/HeJ strain’s response to a high fat diet compared to previous reports may be 

attributed to the difference in the control strain used [21;22].  Specifically, previous studies have 

compared the C3H/H3J response to HF diet to C3H/HeOuJ or C3H/HeN, both of which have a 

functional TLR-4 [21;22].  No comparisons were made with C3H/HeJ mice on a control diet.  

Therefore, it is not possible to determine if the differences in metabolic response to a HF diet are 

a result of TLR-4 or genetic variability in the control substrain background.  Furthermore, the 

C3H/HeJ strain has recently been shown to have a genetic variation in the leptin receptor gene 

(Lepr) [36].  This mutation may account for the impaired metabolic response observed in the 
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C3H/HeJ strain on a HF diet due to the central role leptin has on regulating energy intake and 

expenditure as well as having implications on bone [16;17;37].   

In conjunction with the metabolic comparisons, the other primary objective of this study 

was to compare the skeletal response of the two commonly used C57BL/6 substrains’ to a HF 

diet.  The C57BL/6J mice on the HF diet exhibited a 13.6% reduction in trabecular bone of the 

vertebra, although not statistically significant.  The C57BL/6N was the only strain that exhibited 

significant trabecular bone loss which occurred only in the vertebra.  In the absence of alterations 

in tibia trabecular and cortical bone microarchitecture, it is conceivable that the increase in 

adiposity loaded the skeletal at sites exposed to greater weight-bearing and offset some of the 

negative effects of glucose intolerance on bone [38;39].  The C57BL/6N mice had more 

prolonged exposure to hyperglycemia and hyperinsulinemia in response to the HF diet compared 

to the C57BL/6J substrain, and C57BL/6N were the only substrain to lose significant trabecular 

bone.  While there have been conflicting reports on how a HF diet impacts bone in C57BL/6 

mice [11-15], the results of this study indicate the skeletal response may be linked to the duration 

of disrupted insulin signaling and glucose intolerance.  This idea is further supported by the 

response of the C3H/HeJ mice in which case an attenuated glucose, leptin and insulin response to 

the HF diet failed to induce bone loss.  Several reports have shown that a high fat diet uncouples 

bone turnover by increasing bone resorption and decreasing bone formation in various rodent 

models [14;15;19].  Future studies are needed to investigate the mechanism involved in the site-

specific loss of bone observed in this animal model. 

Based on recent literature describing the hormone OCN as a regulator of systemic energy 

metabolism [40-42], the role of OCN on both metabolic and skeletal changes induced by HF 

were investigated.  After 24 wk, the C57BL/6N mice on the HF diet had a lower ratio of plasma 
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Glu-OCN/ Gla-OCN. Because circulating under-carboxylated (Glu-OCN) can act directly on 

pancreatic β cells to stimulate insulin secretion [18;43-45], it would be expected that a reduction 

in Glu-OCN would lead to a decrease in insulin secretion.  Instead, fasting plasma insulin was 

elevated in the C57BL/6N mice on the HF diet compared to their respective controls.  Plasma 

insulin in the C57BL/6N mice was reduced at 24 wks relative to earlier time points (i.e., 16 and 

20 wk), but the role of OCN on bone and energy metabolism during glucose intolerance warrants 

further investigation.   

To date, this is the first study to directly compare the C57BL/6J and C57BL/6N 

substrains’ response to a HF diet from a metabolic and skeletal perspective.  The data presented 

here show that C57BL/6N mice exhibit an earlier metabolic response to the HF diet compared to 

the C57BL/6J mice.  Moreover, the skeletal response followed that of the metabolic changes in 

that significant trabecular bone loss occurred in the C57BL/6N substrain with only a trend 

observed in the C57BL/6J mice.  Whole body BMC and BMA was also lower following a HF 

diet than control in both of the C57BL/6 substrains and C3H/HeJ.  (In large part, the C3H/HeJ 

strain was protected from the metabolic and skeletal changes induced by a HF diet.  While a 

number of questions remain including how bone metabolism is being altered in response to a 

high fat diet on a molecular level.  This study highlights the need to consider not only the most 

appropriate strain but the most appropriate substrain of mouse when designing experiments.  

Other important factors to consider when studying the relationship between glucose intolerance 

and bone include the site-specific skeletal response and the study duration.  These decisions 

could significantly impact data interpretation and the translational implications as they relate to 

understanding how bone metabolism is altered in the context of T2DM. 
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Table 1.  Body Composition, Tissue Weights, Food Intake, Total White Blood Cell Counts and Adipokines 

Final body weight, body composition, food intake, tissue weight, and total white blood cell counts (WBC) and adipokines after 24 wk 

on a fed a control (Con=AIN-93M) or a high fat diet (HF=45% kcal from fat) in C57BL/6J, C57BL/6N, C3H/HeJ mice.  Values are 

means ± SE, n = 15 mice in each group.  Symbol, *, represents a significant difference (P < 0.05) between dietary treatments within a 

given strain 

  

7
7

 

     C57BL/6J   C57BL/6N        C3H/HeJ   

  Con HF   Con HF   Con HF 

Final Bodyweight (g) 32.4 ± 0.7 41.2 ± 0.9*   33.7 ± 0.7 47.5 ± 0.7*   30.5 ± 0.6 39.3 ± 1.1* 

                  

Body Composition  
        

         

   Lean (g) 21.8 ± 0.4 24.9 ± 0.3* 
 

22.1 ± 0.3 27.7 ± 0.5* 
 

19.8 ± 0.3 23.9 ± 0.5* 

         

   Fat (g) 7.1 ± 0.4 12.0 ± 1.2* 
 

9.6 ± 0.6 18.3 ± 0.6* 
 

6.7 ± 0.3 11.1 ± 0.6* 

         

   Percent Fat (%) 24.2 ± 1.0 31.8 ± 1.4* 
 

29.4 ± 1.2 39.7 ± 0.9* 
 

25.2 ± 0.8 31.5 ± 0.8* 

         
Fat Pad (g) 0.68 ± 0.08 1.67 ± 0.13* 

 
1.14 ± 0.11 1.69 ± 0.07* 

 
0.52 ± 0.07 0.90 ± 0.06* 

         
Food Intake (g/day) 3.17 ± 0.04 2.74 ± 0.06* 

 
3.22 ± 0.04 2.98 ± 0.04* 

 
3.19 ± 0.04 2.78 ± 0.06* 

         
Thymus (g) 0.042 ± 0.002 0.048 ± 0.003 

 
0.055 ± 0.004 0.076 ± 0.006* 

 
0.019 ± 0.002 0.024 ± 0.002 

         
Spleen (g) 0.091 ± 0.005 0.098 ± 0.004 

 
0.106 ± 0.006 0.132 ± 0.009* 

 
0.101 ± 0.004 0.123 ± 0.006* 

         
Total White Blood Cells (1 x 10

5
) 17.04 ± 1.80 18.55 ± 1.61   21.69 ± 1.55 16.14 ± 1.72*   7.60 ± 0.71 11.48 ± 1.05* 

         

Adipokines         

         

   Leptin (ng/mL) 3.64 + 1.14 16.13 + 3.67*  8.92 ±1.87 44.96 ± 5.06*  0.84 ± 0.15 11.08 ± 2.72* 

         

   Adiponectin (µg/mL) 9.94 ± 0.76 7.45 ± 0.72*  6.36 + 0.34 6.97 + 0.25   5.05 + 0.40 5.13 + 0.17 
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Table 2.  Pathological Scoring of Hepatic Tissue after 24 wk on a Control or High Fat Diet 

 

Frequency of steatosis (0-4), lobular and portal inflammation (0-3), fibrosis (0-4), and balloon degeneration (0-2), along with mean scores and P-

values for control vs. high fat diet within a given strain based on chi-squared statistical analyses. 

 

  

7
8

 

  C57BL/6J   C57BL/6N   C3H/HeJ 

  0 1 2 3 4   Mean P-value   0 1 2 3 4   Mean  P-value   0 1 2 3 4   Mean P-value 

Steatosis 

                               Con 10 1 0 0 0 

 

0.09 0.0028 

 

6 2 3 0 0 

 

0.73 0.0020 

 

10 0 0 0 0 

 

0.00 0.0001 

     HF 2 4 6 1 0 

 

1.46 

  

0 2 1 2 8 

 

3.23 

  

1 4 5 4 0 

 

1.86 

 

                           Fibrosis 

                               Con 0 0 0 0 0 

 

0.00 - 

 

11 0 0 0 0 

 

0.00 0.0885 

 

10 0 0 0 0 

 

0.00 - 

     HF 0 0 0 0 0 

 

0.00 

  

10 3 0 0 0 

 

0.23 

  

14 0 0 0 0 

 

0.00 

 

                           

 
0 1 2 3 

     
0 1 2 3 

     
0 1 2 3 

    Lobular 

Inflammation 

                        

  

     Con 11 0 0 0 

  

0.00 0.0038 

 

11 0 0 0 

  

0.00 <0.0001 

 

10 0 0 0 

  

0.00 0.0641 

     HF 6 7 0 0 

  

0.54 

  

1 12 0 0 

  

0.92 

  

10 4 0 0 

  

0.29 

 

                           Portal 

Inflammation 

                               Con 11 0 0 0 

  

0.00 0.0885 

 

11 0 0 0 

  

0.00 0.0001 

 

10 0 0 0 

  

0.00 - 

     HF 10 3 0 0 

  

0.23 

  

3 10 0 0 

  

0.77 

  

14 0 0 0 

  

0.00 

 

                           

 
0 1 2 

      
0 1 2 

      
0 1 2 

     Balloon 

Degeneration 

                               Con 0 0 0 

   

0.00 0.0062 

 

11 0 0 

   

0.00 <0.0001 

 

10 0 0 

   

0.00 <0.0001 

     HF 5 7 1       0.69     0 0 13       2.00     1 3 10       1.64   
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Table 3.  Bone Densitometry of the Whole Body and Bone Microarchitectural Parameters of the Spine and Tibia 

Whole body bone densitometry and trabecular and cortical bone microarchitecture after 24 wk on a control (AIN-93M) or a HF (45% kcal from 

fat).  Values are means ± SE, n = 10-15 mice per group for bone densitometry and n = 6 mice per group for MicroCT data.  Symbol, *, represents 

a significant difference (P < 0.05) between dietary treatments within a given strain. Values are means ± SE.    

7
9

 

  C57BL/6J   C57BL/6N   C3H/HeJ 

  Con HF   Con HF   Con HF 

Whole Body Bone Densitometry 

           BMC (mg) 731.2 ± 30.3 622.8 ± 23.6*  614.5 ± 24.1 492.9 ± 11.8*  878.5 ± 25.1 810.1 ± 14.3* 

   BMA (cm
2
) 12.31 ± 0.40 10.87 ± 0.42*  11.03 ± 0.33 8.91 ± 0.12*  12.90 ± 0.15 11.76 ± 0.22* 

   BMD (mg/cm
2
) 59.0 ± 0.8 57.2 ± 0.6 

 

55.9 ± 0.8 55.4 ± 0.6 

 

69.5 ± 0.7 68.6 ± 0.7 

   BMD/ body weight [(mg/cm
2
)/g]    1.84 ± 0.05 1.39 ± 0.05* 

 

1.67 ± 0.04 1.17 ± 0.02* 

 

2.29 ± 0.05 1.76 ± 0.05* 

Lumbar Vertebra Trabecular                 

   Connectivity Density (1/mm
3
) 232.45 ± 13.37 249.77 ± 10.96   221.21 ± 14.25 214.62 ± 16.73   145.78 ± 18.26 116.81 ± 10.83 

   SMI  0.30 ± 0.09 0.67 ± 0.02*   0.59 ± 0.10 1.00 ± 0.09*   1.10 ± 0.11 1.07 ± 0.09 

   Apparent Density (mg HA/ ccm) 395.86 ± 20.97 364.38 ± 7.04   358.84 ± 7.84 318.54 ± 8.85*   279.49 ± 10.48 287.93 ± 11.99 

  Material Density (mg HA/ ccm) 1093.1 ± 6.7 1084.0 ± 8.9   1078.5 ± 8.3   1076.9 ± 8.2   1123.5 ± 10.2  1135.5 ± 11.1  

Tibial Midshaft                 

   Cortical Porosity (%) 4.30 ± 0.26 4.35 ± 0.13   4.50 ± 0.14 4.71 ± 0.10   3.07 ± 0.08 3.69 ± 0.45 

   Cortical Thickness (mm) 0.17 ± 0.04 0.19 ± 0.04   0.14 ± 0.03 0.16 ± 0.03   0.18 ± 0.05 0.20 ± 0.04 

   Cortical Area (mm
2
) 0.011 ± 0.001 0.010 ± 0.001   0.010 ± 0.001 0.011 ± 0.001   0.014 ± 0.001 0.013 ± 0.001 

   Medullary Area (mm
2
) 0.035 ± 0.001 0.032 ± 0.001   0.034 ± 0.004 0.037 ± 0.002   0.030 ± 0.001 0.034 ± 0.001* 
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Table 4.  Relative Fold Change of Gene Expression in the Liver and Bone Marrow in Mice Fed a High Fat Diet Compared to the 

Control Diet 

Mean fold regulation of genes involved in systemic metabolism and inflammation are presented for the animals on the high fat diet 

(45% kcal from fat) relative to their control (AIN-93M).   All target genes were normalized to invariant control (Ppib).  Symbol, *, 

represents a significant difference (P = 0.05) between dietary treatments within a given strain. 
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  C57BL/6J    C57BL/6N   C3H/HeJ 

  HF P-value   HF P-value   HF P-value 

Liver 

 

              

Fasn 1.55 ± 0.31 0.1748 

 

2.20 ± 0.36* 0.0248 

 

1.23 ± 0.35 0.5934 

Gpx1 0.89 ± 0.12 0.6197 

 

1.54 ± 0.15* 0.0127 

 

1.31 ± 0.14 0.1653 

Ppara 1.10 ± 0.16 0.5427  1.41 ± 0.11* 0.0478  0.98 ± 0.10 0.8582 

Slc2a2 0.99 ± 0.10 0.9792 

 

1.56 ± 0.14* 0.0096 

 

1.08 ± 0.21 0.7756 

Srebp1c 1.20 ± 0.26 0.4985  2.07 ± 0.51 0.0997  0.93 ± 0.21 0.8329 

Tnf 1.76 ± 0.40 0.2237 

 

1.12 ± 0.28 0.7238 

 

2.09 ± 0.51 0.0703 

Bone Marrow 
 

       Fasn 0.94 ± 0.05 0.6811 

 

0.94 ± 0.07 0.5619 

 

1.20 ± 0.15 0.2388 

Gpx1 0.56 ± 0.08* 0.0053 

 

1.45 ± 0.13* 0.0228 

 

1.05 ± 0.18 0.7983 

Pparg 1.35 ± 0.39 0.4349 

 

0.78 ± 0.10 0.1829 

 

1.21 ± 0.18 0.3279 
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Figure Legends. 

Figure 1.  Weekly Body Weights.  Body weights of C57BL/6J, C57BL/6N, and C3H/HeJ mice 

fed a control (Con; AIN-93M) or a high fat diet (HF; 45% kcal from fat) were recorded weekly.  

Data is presented as the mean ± SE, n = 15 mice in each group.  Symbols, * for C57BL/6J, † for 

C57BL/6N, or § for C3H/HeJ indicate significant differences (P < 0.05) of dietary treatment 

within a given mouse strain. 

Figure 2.  Fasting Blood Glucose and Plasma Insulin Over Time.  Blood glucose (A) and 

plasma insulin (B) was determined at 4 wk intervals in mice from each of the three strains fed a 

control (Con; AIN-93M) or a high fat diet (HF; 45% kcal from fat).  Symbols, * for C57BL/6J, † 

for C57BL/6N, or § for C3H/HeJ indicate significant differences (P < 0.05) of dietary treatment 

for a given mouse strain. 

Figure 3.  Glucose Tolerance Test Results Following 24 wk on Control or High Fat Diet.  

One week prior to the end of the study, an intraperitoneal glucose tolerance test was administered 

(2 g glucose/ kg body weight) in the C57BL/6J, C57BL/6N, and C3H/HeJ mice fed a control 

(Con; AIN-93M) or a high fat diet (HF; 45% kcal from fat).  (A) Tail blood was collected 

following 15, 30, 60, 90, and 120 min following glucose injection and symbols, * for C57BL/6J, 

† for C57BL/6N, or § C3H/HeJ indicate significant differences (P < 0.05) of dietary treatment 

for a given mouse strain.  (B) Area under the curve (AUC) was calculated for the IGTT and 

symbol, *, represents a significant difference (P < 0.05) between dietary treatments for a given 

strain. 
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Figure 4.  Alterations in Plasma Osteocalcin due to a High Fat Diet.  Plasma osteocalcin 

(OCN) expressed as percent of undercarboxylated (Glu)-OCN per total (Gla)-OCN in C57BL/6J, 

C57BL/6N, and C3H/HeJ mice on a control (Con; AIN-93M) or a high fat diet (HF; 45% kcal 

from fat) after 24 wk.  Symbol, *, represents a significant difference (P < 0.05) between dietary 

treatments for a given strain. 

Figure 5.  Representative Micrographs of Liver Histology Sections of liver were harvested, 

processed and stained with hematoxylin and eosin from C57BL/6J, C57BL/6N, and C3H/HeJ 

mice following 24 wk on a control (Con; AIN-93M) or a high fat diet (HF; 45% kcal from fat).  

Representative images were photographed and are presented at a 10 x magnification.   

Figure 6.  Alterations in Trabecular Bone Microarchitecture in the Lumbar Vertebra.  

MicroCT analyses of trabecular bone in the lumbar vertebra (L4) in C57BL/6J, C57BL/6N, and 

C3H/HeJ mice on a control (Con; AIN-93M) or a high fat diet (HF; 45% kcal from fat) for 24 

wk.  Parameters include (A) bone volume/ total volume (BV/TV), (B) trabecular number 

(Tb.N.), (C) Trabecular thickness (Tb.Th.), and (D) trabecular separation (Tb.Sp.).  Symbol, *, 

represents a significant difference (P < 0.05) between dietary treatments for a given strain. 
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Figure 1.  Weekly Body Weight  
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Figure 2.  Blood Glucose and Plasma Insulin Over Time 

 

 

A.) 

B.) 
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Figure 3.  Glucose Tolerance Test Results After 24 Weeks on a High Fat Diet 

 

 

A.) 

B.) 
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Figure 4.  Strain Comparison of Carboxylation Status of Plasma OCN After 24 Wk on a Control or High Fat Diet 



 
 

Figure 5.  Representative Micrographs of Liver Histology 
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Figure 6.  Alterations in Trabecular Bone Microarchitecture in the Lumbar Vertebra 
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Supplemental Table 1. qPCR Primer List  
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NCBI Gene 

Accession 

Reference Symbol Name Sequence 

NM_007988.3 Fasn Fatty acid synthase QF 5'- GCT GCG GAA ACT TCA GGA AAT -3' 

QR 5'- AGA GAC GTG TCA CTC CTG GAC TT -3' 

NM_008160.6 Gpx1 Glutathione peroxidase QF 5'- CGG TTT CCC GTG CAA TC -3' 

QR 5'- GAG GGA ATT CAG AAT CTC TTC AT -3' 

XM_006520619.1 Ppara Peroxisome proliferator activated receptor alpha QF 5'- CGT ACG GCA ATG GCT TTA TC -3' 

QR 5'- AAC GGC TTC CTC AGG TTC TT -3' 

XM_006505737.1 Pparg Peroxisome proliferator activated receptor gamma QF 5'- CAA GAA TAC CAA AGT GCG ATC AA -3' 

QR 5'- GAG CTG GGT CTT TTC AGA ATA ATA AG -3' 

NM_011149.2 Ppib Peptidylprolyl isomerase B QF 5'- TGG AGA GCA CCA AGA CAG ACA -3' 

QR 5'- TGC CGG AGT CGA CAA TGA T -3' 

NM_031197.2 Slc2a2 Solute carrier family 2 (facilitated glucose 

transporter), member 2 

QF 5'- CAA CTG GGT CTG CAA TTT TGT C -3' 

QR 5'- GAA CAC GTA AGG CCC AAG GA -3' 

XM_006532716.1 Srebp1c Sterol regulatory element-binding protein QF 5'- GGA GCC ATG GAT TGC ACA TT -3' 

QR 5'- GGC CCG GGA AGT CAC TGT -3' 

NM_001278601.1 Tnf Tumor necrosis factor QF 5'- CTG AGG TCA ATC TGC CCA AGT AC -3' 

QR 5'- CTT CAC AGA GCA ATG ACT CCA AAG -3' 
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CHAPTER IV 
 

 

THE ATTENUATION OF BONE ACCRUAL IN YOUNG, GROWING MICE IN A 

DIET-INDUCED OBESITY MODEL OF TYPE 2 DIABETES MELLITUS INVOLVES 

TLR-4 
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Abstract  

It has previously been demonstrated that activation of toll-like receptor (TLR)-4 is involved in 

the initiation and progression of T2DM.  TLR-4 has also been shown to coordinate bone 

metabolism by decreasing osteoblast differentiation, activity, and survival while increasing 

osteoclastogenesis.  Therefore, the current study aimed to investigate the role TLR-4 contributes 

to the dysregulation of bone metabolism during the initiation and progression of T2DM.  Four-

week old male C3H/HeJ mice, which possess a non-functional TLR-4, and C57BL/6 control 

were randomly assigned to a control (Con=10% kcal fat) or high fat (HF=60% kcal fat) diet for 

2, 8, or 16 wk.  Metabolic changes including fasting blood glucose, plasma insulin, and glucose 

tolerance were monitored over time in conjunction with alterations occurring in bone structure 

and metabolism.  Elevated fasting blood glucose was observed in both the C57BL/6 and 

C3H/HeJ strains on the HF diet at 2 and 8 wk, but only in the C57BL/6 strain at 16 wk.  Both 

strains on the HF diet demonstrated impaired glucose tolerance at 2, 8, and 16 wk.  The C57BL/6 

mice on the HF diet exhibited lower whole body BMD by 8 and 16 wk, but C3H/HeJ strain had 

no evidence of bone loss until 16 wk.  Analyses of bone microarchitecture revealed that the 

C57BL/6 mice on the HF diet experienced attenuated trabecular bone accrual in the distal femur 

metaphysis at 8 and 16 wk.  Interestingly, the C3H/HeJ mice were protected from the deleterious 

impact of the HF diet on trabecular bone, suggesting TLR-4-mediated mechanisms responsible 

for attenuated bone formation in T2DM.  These structural changes were accompanied with a 

decrease in osteoblastogenesis after 8 and 16 wk on the HF diet only in the C57BL/6 mice.  Both 

the C57BL/6 and C3H/HeJ mice on a HF diet demonstrated an increase in osteoclastogenesis 

after 8 wk on HF diet, however, bone turnover was apparently decreased in the C57BL/6 during 

prolonged hyperglycemia.  Further investigation is needed to understand the effects of TLR-4 
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signaling on osteoblasts and osteoclasts and changes that occur in bone microarchitectural and 

biomechanical properties in the context of T2DM.  
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Introduction 

 Current estimates indicate that approximately 35% of adults are obese and 17% of 

children and adolescents are overweight [1].  One of the most striking health consequences 

related to the prevalence of obesity has been the increase in the incidence of type 2 diabetes 

(T2DM), especially among children [2].  Classic complications associated with T2DM in adults 

have included micro- and macro vascular diseases, and more recently increased risk of fracture 

with increasing duration of diabetes has recently been added to the list [3-5].  Accumulating 

evidence suggests that overweight and obese children also experience an increased risk of 

fracture, but it is not clear whether these fractures result from compromised bone mass and 

quality or issues related to balance and risk of falls [6-10].  Similar to observations among 

overweight and obese adults, studies reporting DXA results suggest that obese children have a 

higher BMD compared to non-obese children [11;12].  However, when bone mass is expressed 

relative to bone size and body weight this is not the case [10].  Because bone accrual takes place 

in the first 2-3 decades of life, obese children are both at greater risk of fracture in their youth as 

well as being predisposed to greater risk of osteoporotic fractures later in life [10;13].  The 

increasing prevalence of T2DM among children and potential increase in lifetime fracture risk 

highlights the need for more research to understand the mechanisms through which altered 

glucose homeostasis affects bone. 

Complications associated with T2DM usually require several years to develop.  

Therefore, animal models provide important tools for studying the molecular aspects and 

pathological effects of obesity-induced changes in glucose homeostasis and progression to severe 

glucose intolerance.  Diet-induced obesity models of T2DM have been reported to have 

decreased bone mineral density (BMD), compromised trabecular and cortical bone, and reduced 
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bone strength, but the mechanisms involved have remained unclear [14-17].  For example, 

increased bone resorption due to the up-regulation of osteoclastogenesis has been proposed to be 

the central mechanism contributing to the deleterious effects on bone [15;16].  Conversely, Lu et 

al. [17] demonstrated that bone accrual is attenuated in young mice consuming a high fat diet in 

response to decreased osteoblast differentiation and subsequent impaired bone formation.  

Discrepancies in the findings related to bone metabolism may be attributed to differences in the 

duration of hyperglycemia and glucose intolerance, age at which the onset of impaired glucose 

tolerance is initiated, and alterations in insulin sensitivity.  For instance, the insulin receptor (IR) 

is found abundantly expressed on the osteoblast [18;19].  Insulin has been shown to exert an 

anabolic effect on bone, increasing markers of osteoblast function (i.e., collagen synthesis and 

alkaline phosphatase or ALP) as well as to increase osteoclastogenesis by up-regulating the 

expression of receptor of NF-κB ligand (RANKL) on the osteoblast [20;21].  Thus, with T2DM 

osteoblasts and osteoclasts are potentially exposed to scenarios of hyper- and hypo- glycemia 

and insulinemia.  The described complexity of the metabolic profile during the initiation and 

progression of T2DM has contributed to the illusiveness of the mechanisms involved in 

dysregulating of bone metabolism. 

Clues as to a relationship between inflammation and diabetes have existed since 1876 

when the non-steroidal anti-inflammatory drug (NSAID), sodium salicylate, was shown to 

diminish sugar excretion [22].  More recently, mechanistic studies have described how activation 

of inflammatory pathways, such as toll-like receptor-4 or TLR-4 signaling, diminishes insulin 

sensitivity [23].  Interestingly, two ligands of TLR-4 (i.e., lipopolysaccharide or LPS and 

saturated free fatty acids or sFFA) have been shown to be up-regulated during the initiation and 

progression of T2DM [24-29] as well as many of the downstream inflammatory cytokines (e.g., 
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tumor necrosis factor or TNF-α, interleukin or IL-1β, and IL-6) [24-29].  Further evidence of the 

link between the immune response and insulin resistance has come from animal models such as 

the C3H/HeJ mouse, which possess a non-functional TLR-4.  This mouse strain has been 

reported to be protected from developing insulin resistance in response to a high fat diet, as 

demonstrated by lower plasma insulin, higher glucose utilization, and preserved insulin 

sensitivity compared to control strains [30;31].   

Bone cells, including bone resorbing osteoclasts and bone forming osteoblasts, 

constitutively express TLR-4 and are responsive to TLR-4 ligands, as well as cytokines produced 

from TLR-4 activation [32-34].  A novel rodent model of chronic, systemic inflammation 

induced by a slow release LPS pellet demonstrated that these animals experience a compromise 

in bone structure and microarchitecture [32;35-37].  LPS activation of the TLR-4 pathway has 

also been shown to increase osteoclastogenesis and osteoclast resorption activity.  In addition to 

enhancing osteoclast differentiation and activity, TLR-4 stimulation has a profound impact on 

osteoblasts.  LPS has not only been shown to suppress osteoblast differentiation and 

mineralization, but also stimulate osteoblast apoptosis [33;38].  The C3H/HeJ mice which fail to 

respond to LPS, exhibit a high BMD relative to other mouse strains [39] and have a higher bone 

formation rate and reduced osteoblast apoptosis [40-42].  Moreover, the C3H/HeJ strain appears 

to be protected from a bone phenotype in response to a high fat/ atherogenic diet [14].  

Collectively, these data suggest that TLR-4 signaling has potent effects on bone metabolism. 

To date, no study has investigated how the initial phases of impaired glucose tolerance 

and increasing duration of glucose intolerance associated with T2DM impact skeletal 

metabolism during a critical stage of bone accrual and how TLR-4 contributes to this bone 

phenotype.  Therefore, the purpose of the current study was to investigate (1) how bone structure 
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and metabolism are altered over time in response to a diet-induced obesity model of T2DM in 

young, growing mice and (2) whether TLR-4 is contributing to the increase in fracture incidence 

during T2DM. 

 

Materials and Methods 

Animal Use and Care Procedures 

 Four-week old male C57BL/6N (Charles Rivers, Wilmington, MA), referred to hereafter 

as C57BL/6, and C3H/HeJ (Jackson Labs, Wilmington, MA) mice were utilized for the current 

study.  The rationale for choosing the C57BL/6 mice was due to their responsiveness to high fat 

diet treatment [43], while the C3H/HeJ mice were utilized given their non-functional TLR-4 

[29;44].  Following a one-week acclimation period, mice were divided into six groups (n = 16 

mice/group) within each strain and assigned to a control (Con; AIN-93M, 10 % kcals from fat) 

or the high fat (HF; 60% kcals from fat) diet for 2, 8, or 16 wks.  Bodyweight and food intake 

were monitored weekly throughout the duration of the study.  Three to five days prior to the 

termination of each study (i.e., 2, 8, and 16 wk), mice were fasted for 6 hr and blood glucose was 

determined.  At the end of each time point mice were anesthetized (ketamine/xylazine cocktail 

70 and 30 mg/kg body weight, respectively) and whole body DXA scans (LunarPIXI, GE 

Medical Systems, Madison, WI) were performed with mice placed in the prone position.  Mice 

were exsanguinated via the carotid artery, and blood was processed for plasma using EDTA and 

stored at -80˚C for further analysis.  Left femurs were cleaned of soft-adhering tissue and stored 

in phosphate buffered saline (PBS) at 4°C until microCT analyses and biomechanical testing was 

performed.  PBS was also used to flush the bone marrow from the iliac crest for ex vivo cell 
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culture experiments and from the femur for bone marrow RNA extraction.  Calvaria samples 

were collected at the time of sacrifice and frozen immediately in liquid nitrogen until RNA 

extraction procedure was carried out.  All procedures performed in this study were approved by 

the Institutional Animal Care and Use Committee of Oklahoma State University.   

 

Evaluation of Body Composition and Whole Body BMD by DXA 

 Body composition and whole body bone mineral area (BMA), bone mineral content 

(BMC) and BMD were determined using PIXImus Series Software version 2.10 (Lunar 

Corporation, Madison, WI).  

 

Fasting Blood Glucose, Intraperitoneal Glucose Tolerance Test (IGTT), and Plasma Insulin 

 To determine if glucose tolerance was affected by treatment, mice received an 

intraperitoneal injection of glucose solution (2 g glucose/ kg bodyweight) and blood glucose was 

monitored at 15, 30, 60, 90, and 120 minutes.  Area under the curve (AUC) was calculated by 

determining the sum of each rectangular area between two time points.  

 Fasting plasma insulin was determined at 2, 8 and 16 wks using a commercially available 

ELISA kit (Crystal Chem, Downers Grove, IL) and the manufacturer’s protocol was followed.  

  

Determination of Trabecular and Cortical Bone by MicroCT 
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Micro-computerized tomography (microCT40, SCANCO Medical, Switzerland) was 

performed to determine changes in the trabecular and cortical bone microarchitecture.  The distal 

femur metaphysis and mid-diaphysis were used to evaluate trabecular and cortical bone within 

the appendicular skeleton, and were scanned at a resolution of 2048 x 2048 pixels.  The 

trabecular bone volume of interest (VOI) was identified as a 900 μm region of secondary 

spongiosa within the distal femur metaphysis.  The trabecular parameters evaluated included 

trabecular bone volume expressed as a percentage of total volume (BV/TV), trabecular number 

(Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.) connectivity density 

(ConnDens) and structural model index (SMI).  Evaluation of cortical bone was performed by 

analyzing a 270 μm section at the mid-point of the femur.  Cortical bone parameters assessed 

included cortical porosity, thickness, area, and medullary area.  All of the acquired images of 

cortical and trabecular bone were analyzed at a threshold of 340, and a sigma and support of 1.2 

and 2.0, respectively. 

Analysis of trabecular bone of the axial skeleton was accomplished by evaluating the 

lumbar vertebra.  Images were acquired at a resolution of 1024 x 1024 pixels, beginning 80 μm 

from the dorsal and caudal growth plates.  Similar to the femoral analysis, trabecular bone was 

determined based on analysis of secondary spongiosa only within the VOI.  The images obtained 

of the vertebra were analyzed at a threshold of 310, and a sigma of 1.2 and support of 2.0. 

 

Analysis of Biomechanical Properties of the Femur 

Reference point indentation (RPI) was used (BioDent, Active Life Scientific, Inc, Santa 

Barbara, CA) to determine alterations in the biomechanical properties of the femur due to altered 
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glucose homeostasis [45;46].  Testing was performed at two sites, the anterior surface of the 

femur mid-diaphysis, a primarily cortical bone site, and the lateral region of the distal femur 

metaphysis, a site that consists of both cortical and trabecular bone.  At both sites a testing 

protocol of 2 N force, 2 Hz, and 10 cycles was used.  The first cycle indentation distance (ID) 

was reported as a distance parameter reflective of the touchdown distance to the retraction 

distance on the initial cycle, indicative of bone biomechanical properties.   

 

Ex vivo Osteoblastogensis and Osteoclastogenesis Experiments 

 Bone marrow cells were harvested from the iliac crest using sterile phosphate buffered 

saline (PBS) for evaluation of the effect of treatment on osteoblast and osteoclast precursor cells.  

Bone marrow samples were pooled from 4-5 animals in each experimental group and pelleted by 

centrifugation at 4°C for 5 min at 1000 x g.  The cells were then resuspended in 20 mL of 

complete alpha MEM (10 % FBS, 1% penicillin/ streptomycin, 20 mM L-glutamine), plated in 

flasks, and maintained at 37.0°C in 5% CO2.  Following 2 days in culture, the adherent stromal-

cell population was harvested for osteoblast experiments while the non-adherent cells were used 

for osteoclastogenesis experiments.  

 For osteoblast experiments, stromal cells were plated at a density of 1 x 10
6
 cells/mL.  

Cells were allowed to become 80-100% confluent and then changed to an osteogenic medium 

(i.e., complete αMEM supplemented with 50 μg/mL ascorbic acid and 10 mM β-glycerol 

phosphate).  Following 7 days in culture, cells were stained for alkaline phosphatase (ALP) using 

a commercially available kit (Sigma-Aldrich, St. Louis, MO) and photographed.  ALP activity 

was also measured by a colorimetric assay using nitro-blue tetrazolium chloride and 5-bromo-4-
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chloro-3’-indolyphosphate p-toluidine salt (NBT/ BCIP).  Quantification of ALP (n=9 wells/ 

group) was performed by releasing the stain and determining the absorbance as previously 

reported [47].  For nodule formation experiments, stromal cells were allowed to differentiate in 

the presence of osteogenic medium for 21 days.  Mineralized nodules were stained for calcium 

salts using Von Kossa stain, counterstained with nuclear fast red, and photographed (n=9 wells/ 

group). 

 Osteoclast experiments were performed with the non-adherent hematopoietic cell 

populations and plated at a density of 4 x 10
6
 cells/mL.  Cells were allowed to adhere for 24 hr, 

and then treated with 30 ng/ mL M-CSF and 50 ng/ mL RANKL to stimulate osteoclast 

differentiation.  On the fifth day of M-CSF and RANKL exposure, cells were stained for tartrate 

resistant acid phosphatase (TRAP) and counterstained with hematoxylin.  Osteoclasts were 

identified as large, multinucleated, TRAP positive cells (TRAP
+
) and counted per well (n=6 

wells/group). 

 

Characterization of Genes Involved in Osteoblastogenesis, Osteoclastogeneis and TLR-4 

Signaling by qPCR  

 The calvaria was  used as a tissue source rich in osteoblasts while the bone marrow was 

flushed with sterile PBS and pelleted via centrifugation and used as a niche for osteoclasts and 

osteoclast progenitor cells.  RNA was extracted from the calvaria using TriZol Reagent 

(Invitrogen, Grand Island, NY) as previously reported [48;49].  Briefly, 2 µg of total RNA was 

DNase treated and reverse transcribed (Superscript II, Invitrogen) [48;49].  qPCR was then 

performed using SYBR green chemistry (7900HT Fast Real-Time, Applied Biosystems, Foster 
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City, CA).  All qPCR results were evaluated by the comparative cycle number at threshold (CQ) 

method (User Manual #2, Applied Biosystems) using peptidylprolyl isomerase B (Ppib) as the 

invariant control.  Target genes involved in osteoblastogenesis included Cbfa1 (F: 

5’CGACAGTCCCAACTTCCTGT; R: 5’CGGTAACCACAGTCCCATCT), Sp7 (F: 

5’GAAGTTCACCTGCCTGCTCTGT; R: 5’CGTGGGTGCGCTGATGT), Col1a1 (F: 

5’CGTCTGGTTTGGAGAGAGCAT; R: 5’GGTCAGCTGGATAGCGACATC), Atf4 (F: 

5’GCAGTGTTGCTGTAACGGACA; R: 5’TCGCTGTTCAGGAAGCTCATC), Bmp2 (F: 

5’GGACATCCGCTCCACAAA; R: 5’GGCGCTTCCGCTGTTT), while Socs3 (F: 

5’CACCTGGACTCCTATGAGAAAGTG; R: 5’GAGCATCATACTGATCCAGGAACT) and 

Tlr4 (F: 5’ACTGTTCTTCTCCTGCCTGACA; R: 5’TGATCCATGCATTGGTAGGTAATA) 

were investigated due to their involvement in TLR-4 signaling.  The master regulator of 

osteoclastogenesis, Nfatc1, (F: 5’GCGAAGCCCAAGTCTCTTTCC; R: 

5’GTATGGACCAGAATGTGA) was also assessed. 

 

Statistical Analyses 

Statistical analyses were performed using Statistical Analysis Software version 9.3 (SAS 

Institute, NC).  Student’s paired t-test was used to determine the difference in response to the 

high fat diet of a given strain at each time point.  To determine changes occurring over time in 

bone mass, trabecular and cortical bone (BMD, BV/TV, and cortical area), a factorial analysis 

was performed with time and diet as factors.  When F values were < 0.05, post hoc analyses were 

performed with Fischer’s least square means separation test.  Data are presented as mean ± 

standard error (SE) and a P < 0.05 was considered statistically significant. 
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Results 

Bodyweight and Body Composition 

 To determine changes occurring in body weight due to a high fat (HF) diet, weekly body 

weight and body composition data were determined.  Both the C57BL/6 and C3H/HeJ mice on 

the HF diet exhibited an increase in body weight (P<0.05) compared to their Con counterparts at 

2, 8, and 16 wks (Table 1).  In particular, after 2 wk on the HF diet, the C57BL/6 mice weighed 

8% more than the mice on the control diet, while the C3H/HeJ had an 18% increase in body 

weight with the HF diet compared to Con.  By week 8, the C57BL/6 and C3H/HeJ mice on the 

HF diet weighed ~35% more than their Con counterparts.  However, at 16 wks the C57BL/6 

mice on the HF diet weighed ~70% more than their Con counterparts, whereas the C3H/HeJ 

animals on the HF diet weighed 44% more than their respective Con (Table 1).   

Body composition analysis using DXA revealed that at the 2 wk time point, weight gain 

was primarily attributed to a significant increase in fat mass in both mouse strains (Table 1).  Fat 

mass was also increased in the C57BL/6 mice on the HF diet at 8 wk, whereas the C3H/HeJ mice 

on the HF diet exhibited an increase in lean mass in addition to fat mass (Table 1).  After 16 wk 

on the HF diet, both strains demonstrated an increase in lean and fat mass compared to their 

respective controls (Table 1).   

The mean food intake was 2.9 and 2.5 g/mouse/day for the C57BL/6 mice on the Con and 

HF, and 3.2 and 3.0 g/mouse/day for the C3H/HeJ mice consuming the Con and HF diets (data 

not shown). 
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Alterations in Blood Glucose, Plasma Insulin, and IGTT 

 Both the C57BL/6 and C3H/HeJ mice on the HF diet exhibited signs of impaired glucose 

tolerance as early as 2 wk based on elevated fasting blood glucose and an increase in AUC 

during an IGTT (Table 2).  Interestingly, at the 2 wk time point the C57BL/6 on the HF diet had 

a lower fasting plasma insulin (P<0.05), whereas no differences were observed in plasma insulin 

in the C3H/HeJ mice (Table 2).  At 8 wk both the C57BL/6 and C3H/HeJ strains on the HF diet 

exhibited hyperglycemia, elevated AUC and although final blood glucose (120 min) of the IGTT 

remained elevated, there was an apparent “normalization” (Table 2).  A marked increase in 

fasting blood glucose and plasma insulin was observed at 16 wk in the C57BL/6 on the HF diet 

compared to their Con (Table 2).  After 16 wk on a HF diet, the C57BL/6 mice also 

demonstrated severe glucose intolerance as evidence by the increased AUC and the inability for 

their blood glucose to normalize at 120 min of the IGTT, which was ~3-fold higher than the Con 

group (Table 2).  This data shows that diet-induced obesity in the C57BL/6 mice results in 

impaired glucose tolerance and hyperglycemia after 2 and 8 wk on a HF diet, indicative of a pre-

diabetes state.  Conversely, at the 16 wk time point, blood glucose remained elevated throughout 

the duration of the IGTT, despite hyperinsulinemia, which suggests the impaired blood glucose 

clearance was attributed to altered insulin sensitivity.  These data show that the metabolic 

changes occurring in response to a HF diet for 16 wk are similar to the pathophysiology observed 

during the early stages of T2DM.  In contrast to the C57BL/6 mice, after 16 wk on the HF diet, 

fasting blood glucose was not elevated in the C3H/HeJ mice, but they had elevated plasma 

insulin (Table 2).  Although AUC from the IGTT remained high in the C3H/HeJ mice on a HF 

diet at the 16 wk time point, it was evident that their blood glucose at the final time (i.e., 120 

min) was able to normalize to some degree (Table 2).  These data suggest that the C3H/HeJ mice 
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are able to counter long term hyperglycemia induced by a HF diet by increasing plasma insulin, 

and, given their ability to maintain insulin sensitivity, resulting in the clearance of blood glucose. 

 

Bone Growth and Bone Mineral Density 

 Long term hyperglycemia observed in the C57BL/6 mice on the HF diet at 16 wk was 

accompanied with an apparent decrease (3.6%) in longitudinal bone growth of the tibia (Figure 

1a).  However, no changes were observed in bone growth in the C3H/HeJ mice on the HF diet 

(Figure 1a).  Furthermore, whole body BMD was lower in the C57BL/6 mice with prolonged 

hyperglycemia at 8 and 16 wk (Figure 1b). Similar to the delayed-onset of the metabolic 

changes consistent with T2DM, the C3H/HeJ mice were also protected to some extent from bone 

loss as they only demonstrated a decrease in whole body BMD compared to their Con at the 

later, 16 wk time point (Figure 1b).   

Given the alterations in bone density occurring in response to diet in the two strains at 

each time point, changes in bone growth and BMD were evaluated using a factorial analysis with 

time and diet as factors.  As shown in Figure 2a, the C57BL/6 mice demonstrate a diminished 

rate of bone accrual in conjunction with altered glucose homeostasis in the mice consuming the 

HF diet compared to the Con diet.  Similar to the delayed metabolic and skeletal response 

observed in the C3H/HeJ mice, bone accrual did not appear to be impacted until the 16 wk time 

point (Figure 2a).  These results demonstrate prolonged hyperglycemia attenuates bone 

mineralization as evidenced by whole body BMD. 
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Microarchitectural Changes in Trabecular and Cortical Bone 

 Trabecular and cortical bone were assessed to further characterize how glucose 

intolerance affects the different bone compartments.  After 8 and 16 wk of hyperglycemia the 

C57BL/6 mice on the HF had reduced trabecular bone (i.e., BV/TV) in the distal femur 

metaphysis (Figure 1c) compared to their respective Con, but not in the vertebra (Figure 1d).  

This lower BV/TV in the femur metaphysis was primarily attributed to a decrease in trabecular 

thickness with a correspondingly higher Tb.Sp. (data not shown).  In contrast to the C57BL/6 

strain, BV/TV of the C3H/HeJ mice on the HF diet did not differ from mice on the control diet at 

the 2, 8 or 16 wk time point (Figure 1c).   

Impaired glucose tolerance at 8 wk in the C57BL/6 mice on a HF diet demonstrate a 

decrease in cortical thickness (Figure 1e) and cortical area (Figure 1f), when compared to their 

respective Con.  In contrast, the C3H/HeJ mice on a HF diet exhibited higher cortical thickness 

at the 16 wk (Figure 1e)  

When trabecular BV/TV in the distal femur metaphysis was plotted over time, it is 

apparent that bone accrual was attenuated in the C57BL/6 mice on the HF diet, as the Con 

animals increased BV/TV between wk 2 and 8 (Figure 2b).  Furthermore, these mice exhibited a 

decrease in BV/TV between the 8 wk and the 16 wk time points (Figure 2b).  In the C3H/HeJ 

strain, BV/TV of the distal femur metaphysis was not altered in the mice on the HF compared to 

Con diet at any time point (Figure 2b).  These data suggest that the C3H/HeJ mice, with a 

nonfunctional TLR-4, are protected from the negative effects of the high fat diet on trabecular 

bone at this site.  Within the lumbar vertebra, both the C57BL/6 and C3H/HeJ mice continued to 

accrue trabecular bone irrespective of diet (Figure 2c).   
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Analyses of cortical bone area of the femur mid-diaphysis over time revealed the impact 

of hyperglycemia to be less severe in this bone compartment.  However, the attenuation of 

cortical bone accrual primarily occurred within the early phase of impaired glucose homeostasis 

(i.e., 8 wks) in the C57BL/6 mice on a HF diet (Figure 2d).  A time effect across all time points, 

was the only observed alteration in cortical area in the C3H/HeJ mice (Figure 2d). 

 

Alterations in Bone Quality by Bone Microindentation Testing 

 Determination of the effects of glucose homeostasis on bone biomechanical properties 

was accomplished by assessing the initial cycle indentation distance (ID) at two sites.  Consistent 

with changes occurring in trabecular bone of the distal femur metaphysis, only the C57BL/6 

receiving the HF diet demonstrated an increase in ID, suggesting compromised bone strength at 

8 and 16 wks (Figure 1g).  Despite the less pronounced alterations occurring in cortical bone 

parameters, the C3H/HeJ mice on the HF diet exhibited an improvement in mid-diaphysial 

strength (i.e., decreased ID) at the 2 wk time point (Figure 1h).  By 16 wk, both the C57BL/6 

and C3H/HeJ mice on the HF diet had a weaker bone as evidenced by an increase in ID of the 

femur mid-diaphysis (Figure 1h).   

 

Ex vivo Osteoblastogenesis and Osteoclastogenesis Experiments  

 Further mechanistic insight into the influence of hyperglycemia on bone was gained by 

evaluating osteoblastogenesis and osteoclastogenesis ex vivo.  No changes occurred in 

osteoblastogenesis at the earliest time point of impaired glucose tolerance investigated (i.e., 2 wk 
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on a HF diet) determined visually by staining for ALP (Figure 3a) and by quantification 

techniques (Figure 3b).  Von Kossa staining revealed that osteoblast mineralization was also not 

altered in the C57BL/6 mice at this time point (Figure 3c).  However, beginning at the 8 wk 

(Figure 3e) time point and throughout the 16 wk time point (Figure 3h), the C57BL/6 mice on 

the HF diet had impaired osteoblast differentiation potential as evidenced by lower ALP 

compared to their respective Con.  Representative images of ALP stain following 8 wk (Figure 

3d) and 16 wk (Figure 3g) are shown to depict staining pattern.  Consistent with changes 

occurring in ALP staining, increasing duration of glucose intolerance in the C57BL/6 mice 

resulted in decreased osteoblast nodule formation at the 8 wk (Figure 3f) and 16 wk (Figure 3i) 

time point.  Furthermore, no differences were observed in osteoblast differentiation and nodule 

formation determined by ALP staining (Figure 3a, 3d and 3g) and quantification (Figure 3b, 

3e, and 3h) as well as Von Kossa (Figure 3c, 3f, 3i) staining in the C3H/HeJ mice on the Con 

and HF diet at 2, 8, and 16 wk  

 While altered bone accrual is primarily a phenotype associated with the osteoblast, ex 

vivo osteoclastogenesis experiments were performed with hematapoitic bone marrow populations 

to investigate how the potential for forming bone resorpting osteoclasts was affected due to 

altered metabolism induced by a high fat diet.  No changes were observed visually (Figure 4a) 

or quantitatively (Figure 4b) in the number of TRAP+ cells at the 2 wk time point in either the 

C57BL/6 or C3H/HeJ mice on the HF diet compared to their respective Con group.  However, 

impaired glucose tolerance at the 8 wk time point resulted in an increase in TRAP+ cells based 

on visual observation (Figure 4c) and confirmed by actual quantification (Figure 4d) in both the 

C57BL/6 and C3H/HeJ mice.  Interestingly, prolonged hyperglycemia and elevated plasma 

insulin observed at the 16 wk time point in the C57BL/6 was also accompanied a decrease in the 
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presence of large, multinucleated TRAP+ cells depicted by representative images (Figure 4e) 

and confirmed by quantification (Figure 4f).  This decrease in osteoclastogenesis combined with 

suppressed osteoblastogenesis, suggests that the longer duration of glucose intolerance may be 

associated with an overall decrease in bone turnover. 

 

Transcriptional Regulation of Genes Involved in Osteoblastogenesis, Osteoclastogenesis and 

TLR-4 Signaling  

 Given the differences in bone accrual following prolonged hyperglycemia (i.e., 8 and 16 

wk on a HF diet), along with the ex vivo data suggesting an altered osteoblast phenotype, mRNA 

abundance of genes involved in osteoblast differentiation and activity were assessed.  At the 2 

wk time point, osteoblast differentiation and activity was down-regulated in the C57BL/6 as 

evidenced by the decrease in mRNA abundance of Cbfa1 and Col1a1 (Table 3).  The decrease in 

Col1a1 mRNA abundance was apparent with increasing duration of hyperglycemia (i.e., 2, 8 and 

16 wks on HF diet) in the C57BL/6 mice (Table 3).  This apparent down-regulation of 

osteoblastogenesis was also noted at the 8 wk time point in the C57BL/6 mice, given a decrease 

in the transcription factor involved in osteoblast differentiation (i.e, Sp7) and, Alpl, a gene 

encoding the ALP protein responsible for mineralization (Table 3).   

 Although no change was observed in bone structure or the number of TRAP+ during 

impaired glucose tolerance at the 2 wk time point in the C57BL/6 mice, mRNA abundance of 

Nfatc1 was down-regulated (0.56 fold) when compared to Con (data not shown).  Furthermore, 

no changes were observed in Nfatc1 mRNA at any other time points, in either strain (data not 

shown). 
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Due to the data suggesting that TLR-4 contributes to the dysregulation of bone 

metabolism during hyperglycemia, mRNA abundance of genes involved in TLR-4 signaling in 

the osteoblast were determined.  Genes involved in TLR-4 activation including Atf4, Bmp2, and 

Socs3 were up-regulated in the C57BL/6 mice experiencing mild or short-term glucose 

intolerance (Table 3).  Interestingly, the C57BL/6 mice on a HF diet demonstrated lower mRNA 

expression of Tlr4 (Table 3).  Conversely, the C3H/HeJ mice did not exhibit any of these 

changes in genes involved in osteoblast-regulation or TLR-4 signaling during the development or 

progression of impaired glucose tolerance (Table 3).   

 

Discussion 

The current study demonstrates that the prolonged hyperglycemia and impaired glucose 

tolerance attenuate bone mass accrual in young, growing mice and at some time points may 

promote bone loss.  Additionally, these data provide evidence that this skeletal phenotype 

involves TLR-4.  Characterization of changes occurring in blood glucose, glucose tolerance, and 

plasma insulin overtime revealed that the C57BL/6 and C3H/HeJ mice respond differently to a 

high fat diet.  While the C3H/HeJ mice have been reported to be protected from diet-induced 

obesity and the corresponding glucose intolerance, these previous studies [30;31] made 

comparisons back to different control strains, C3H/HeOuJ and C3H/HeN.  Both of these strains 

have an intact and functional TLR-4, therefore, comparisons between these control strains to the 

C3H/HeJ mice on a high fat diet were confounded by genetic differences.  Thus, it remained 

unclear whether the C3H/HeJ mice on a high fat diet would differ in their metabolic response 

when compared back to the same strain on a control diet.  The findings from the current study 
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show that the C3H/HeJ mice on a high fat diet gained weight and experienced hyperglycemia, 

hyperinsulinemia, and impaired glucose tolerance when compared to their respective control.  

However, when the metabolic response to a HF diet was compared to that of the C57BL/6 mice, 

it was apparent that the C3H/HeJ mice were protected from the development of glucose 

intolerance and diminished insulin sensitivity.  This ability for the C3H/HeJ mice to clear blood 

glucose in response to the hyperinsulinemic state after 16 wk on a high fat diet is consistent with 

the maintenance of insulin signaling in the skeletal muscle and adipose tissue [31].  It was also 

evident that while both the C57BL/6 and C3H/HeJ mice demonstrated hyperinsulinemia after 16 

wk on a HF diet, this increase in insulin was only able to normalize blood glucose in C3H/HeJ 

mice.  These data demonstrate insulin sensitivity was maintained in the C3H/HeJ mice despite 

being on a HF diet for 16 wk.  The difference in metabolic response between the C57BL/6 and 

C3H/HeJ are consistent with changes that have been previously observed in our lab over a 24 wk 

time course (manuscript under review).  An interesting and unexpected finding from the current 

study was that the C57BL/6 mice on a high fat diet for 2 wk were hypoinsulinemic; however, 

there is precedence in the literature for the hypoglycemic response.  For example, insulin 

secretion has been described as a “square wave pulse” pattern, which ensures insulin is secreted 

in a biphasic manner (i.e., a first or rapid phase, followed by second, prolonged phase) [50-52].  

Both the first and second phase of insulin secretion are lower in type 2 diabetic patients 

compared to controls [53;54].  Furthermore, C57BL/6 mice fed a high fat diet have been shown 

to demonstrate hyperglycemia and hypoinsulinema after 15 wk, attributed to impaired insulin 

secretion [55].  This study goes on to describe that an attenuation of insulin secretion due to the 

dissociation of voltage gated Ca
2+ 

channels impairs exocytosis in pancreatic β-cells.  
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The skeletal changes that occurred in conjunction with the development and progression 

of impaired glucose tolerance and glucose intolerance provides new insight into the mechanism 

of which T2DM impacts bone metabolism.  Moreover, the unique aspect comparing the skeletal 

response of the C57BL/6 mice to that of the C3H/HeJ mice allowed for the investigation of TLR-

4’s contribution to the skeletal phenotype.  The deleterious impact of a high fat diet was 

consistent with previously published data [14-17].  However, of these studies, only one 

investigated how metabolic changes occurring after 8 wk on a HF diet affected an immature, 

growing skeleton [17].  The results from this study demonstrated that a high fat diet resulted in 

the attenuation of bone accrual, leading to lower bone mineral content.  Consistent with the data 

presented in the current study, during later stages of impaired glucose tolerance (i.e., 8 wk) 

osteoblast differentiation and activity are decreased.  As impaired glucose tolerance progresses 

and glucose intolerance develops (i.e., 8 and 16 wk on HF diet) in the C57BL/6 mice, bone 

accrual is impaired, resulting in lower whole body BMD and trabecular BV/TV.  While insulin 

has been shown to exert an anabolic effect on bone, high glucose concentrations have been 

reported to decrease osteoblast mineralization in vitro [56].  Furthermore, the ex vivo 

osteoblastogenesis and osteoclastogenesis cell cultures suggest that a decrease in bone turnover 

is occurring during glucose intolerance at the 16 wk time point in the C57BL.6 mice.  It is 

interestingly that this later 16 wk time point represented the most similar metabolic profile to that 

of a human during the onset of T2DM, and that suppressed bone turnover has been demonstrated 

to contribute to the increased risk of fragility fractures in type 2 diabetic patients [4].  The 

difference in transcriptional regulation of osteoclastogenesis and the primary cell culture 

experiments indicate that while osteoclastogenesis may not have been elevated at a given time 

point, their progenitor cell populations were being altered.  Contrary to the C57BL/6 mice, the 
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C3H/HeJ mice were able to accrue trabecular bone in the distal femur metaphysis demonstrating 

that the delayed-progression of impaired glucose tolerance to glucose intolerance plays an 

osteoprotective role.  While it is recognized that the C3H/HeJ mice exhibit altered bone 

mineralization partly attributed to a mutation in their leptin receptor (Lepr), given TLR-4‘s 

ability to modulate bone metabolism, further investigation was carried out to tease apart its 

contribution.   

The characterization of genes involved in TLR-4 signaling suggested that this receptor 

was in fact contributing to the dysregulation of bone metabolism, and provided a further 

explanation between the difference in skeletal phenotype observed between the C57BL/6 and 

C3H/HeJ mice.  Although Cbfa1, Sp7 and Alpl are critical for osteoblast differentiation and 

matrix mineralization, these genes have also been shown to be down-regulated in response to the 

TLR-4 ligand, LPS [33;57].  Furthermore, osteoblasts treated with LPS up-regulate Socs3 

expression [58;59] and it has recently been shown that osteoblast differentiation is suppressed 

through LIF/STAT3/SOCS3 signaling pathways [60].  The approximately 5-fold increase in 

Socs3 mRNA abundance occurring after 8 wk on a high fat diet, only in the C57BL/6 mice, 

suggests that activation of the TLR-4 pathway may contribute to the attenuated osteoblast 

phenotype.  Interestingly SOCS3 has been shown to alter intracellular insulin signaling, resulting 

in attenuated insulin sensitivity [61].  Given that it has recently been shown that osteoblasts can 

function as global regulators of metabolism [20;62-64], the up-regulation of Socs3 mRNA may 

be contributing to development of glucose intolerance in the C57BL/6 mice.  In addition to 

Socs3, ligands for TLR-4 have been shown to regulate Atf4 and Bmp2 in the osteoblast.  For 

example, it has been demonstrated that ATF4 is down-regulated in osteoblasts challenged with 

LPS [57].  However, ATF4 can also co-localize with FoxO1 in osteoblasts to increase blood 
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glucose and decrease glucose tolerance [65].  Therefore, given the opposite effects TLR-4 

signaling and glucose homeostasis exert on ATF4 in the osteoblast, the interpretation of changes 

occurring in this gene is complicated in a high fat diet induced model of T2DM.  In the current 

study, the increase in Atf4 mRNA expression in the C57BL/6 mice on the high fat diet after 8 wk 

could be an indication of alterations in glucose regulation of the osteoblast as opposed to direct 

implications of TLR-4.  Similar to Atf4, conflicting data exist about how TLR-4 activation 

impacts Bmp2 expression in the osteoblast [38;66].  The increase observed in Bmp2 mRNA 

during impaired glucose tolerance at the 8 wk time point in the C57BL/6 mice may also be 

explained by the coordination of BMP2 by the master regulator of the cellular energy stress 

response, AMP kinase (AMPK) [67].  Therefore, given the complexity of genes involved in 

osteoblast function versus how they are regulated by glucose homeostasis or TLR-4 signaling, 

further studies should be developed to tease apart these pathways.   

The findings of these studies depict differences in the metabolic and skeletal response 

between C57BL/6 and C3H/HeJ mice throughout the progression of impaired glucose tolerance 

and the development of glucose intolerance.  The diminished bone accrual due to prolonged 

hyperglycemia in the C57BL/6 mice was attributed to a decrease in bone turnover, and regulated, 

in part, by TLR-4.  This study provides novel insight into how metabolic changes induced by a 

high fat diet (i.e., hyperglycemia, impaired glucose tolerance, and hyperinsulinemia) can impact 

the young, growing skeleton over time.  While future studies are warranted to determine the 

precise mechanisms involved, the results presented herein suggest TLR-4 contributes to impaired 

bone metabolism during the development and progression of T2DM.   
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Figure Captions 

Fig. 1  Changes in tibia length (A), whole body bone mineral density (BMD) (B), trabecular 

bone volume/ total volume (BV/ TV) of the distal femur metaphysis (C) and vertebra (D), 

cortical thickness (E) and area (F), first cycle indentation distal (ID) of the distal metaphysis (G) 

and mid-diaphysis of the femur (H) in C57BL/6 and C3H/HeJ mice on a control (Con; AIN93M) 

or high fat (HF; 60% kcal from fat) for 2, 8, or 16 wk.  Data presented as the mean ± SE.  

Symbol * represents a significant difference (P < 0.05) between dietary treatments for a given 

strain, at a given time point.   

Fig. 2  Alterations occurring overtime in  whole body bone mineral density (BMD) (A), 

trabecular bone volume/ total volume (BV/ TV) of the distal femur metaphysis (B) and vertebra 

(C), and cortical area (D) for C57BL/6 and C3H/HeJ mice on a control (Con; AIN93M) or high 

fat (HF; 60% kcal from fat).  Data are presented as the mean ± SE.  Comparisons were made 

using 2-way ANOVA to determine the effect of diet, time, and diet by time interactions.  Points 

that share the same superscript letter are not significantly different from each other (P<0.05). 

Fig. 3  Primary osteoblastogenesis experiments performed using stromal cell population from 

bone marrow of C57BL/6 and C3H/HeJ mice on a control (Con; AIN93M) or high fat (HF; 60% 

kcal from fat) for 2, 8, or 16 wk.  Following 7 days in osteogenic medium, alkaline phosphatase 

(ALP) activity was measured by a colorimetric assay using nitro-blue tetrazolium chloride and 5-

bromo-4-chloro-3’-indolyphosphate p-toluidine salt (NBT/ BCIP), representative images of ALP 

staining are shown (A, D,G) as well as quantification data (B, E, H).  After 21 days in osteogenic 

medium, nodule formation was visualized by Von Kossa (C, F, I).  Data presented as the mean ± 



124 
 

SE.  Symbol * represents a significant difference (P < 0.05) between dietary treatments for a 

given strain, at a given time point. 

Fig. 4 At 2, 8, and 16 wk on a control (Con; AIN93M) or high fat (HF; 60% kcal from fat) bone 

marrow was harvested from C57BL/6 and C3H/HeJ mice.  Non-adherent cells were plated and 

differentiated in the presence of 30 ng/ mL M-CSF and 50 ng/ mL RANKL.  On day 5, cells 

were stained for tartrate resistant acid phosphatase (TRAP) and counterstained with hematoxylin.  

TRAP positive (TRAP+) cells were, representative images were captured (A, C, E) and TRAP= 

cells were quantified by counting each well (B, D, F).  Data presented as the mean ± SE.  

Symbol * represents a significant difference (P < 0.05) between dietary treatments for a given 

strain, at a given time point. 
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Table 1.  Final Bodyweight and Body Composition of C57BL/6 and C3H/HeJ mice Following a Control of High Fat Diet 

  C57BL/6   C3H/HeJ 

  Control HF   Control HF 

2 Week   
 

  
   Bodyweight (g) 21.8 ± 0.2 23.6 ± 0.3* 

 

23.1 ± 0.3 27.2 ± 0.5* 

   Body Composition  
     

         Lean (g) 17.1 ± 0.2 17.6 ± 0.3 
 

17.5 ± 0.4  18.2 ± 0.3 

         Fat (g) 4.56 ± 0.1 5.47 ± 0.2* 
 

4.56 ± 0.2 6.28 ± 0.3* 

        Percent Fat (%) 21.1 ± 0.4 23.7 ± 0.6* 
 

20.6 ± 0.7 25.6 ± 0.6* 

 
  

   
8 Week 

     
   Bodyweight (g) 25.7 ± 0.4 34.7 ± 1.0* 

 
27.0 ± 0.5 36.6 ± 0.8* 

   Body Composition  
     

         Lean (g) 20.4 ± 0.6 20.5 ± 0.5 
 

19.6 ± 0.5 23.6 ± 0.6* 

         Fat (g) 6.14 ± 0.2 13.14 ± 1.0* 
 

5.30 ± 0.2 12.22 ± 0.4* 

        Percent Fat (%) 23.1 ± 0.8 38.6 ± 1.6* 

 

21.1 ± 0.5 34.1 ± 0.4* 

      16 Week 

        Bodyweight (g) 26.6 ± 0.5 45.1 ± 1.7* 

 

27.6 ± 0.6 39.6 ± 1.1* 

   Body Composition  

              Lean (g) 19.4 ± 0.4 24.4 ± 0.62* 

 

19.7 ± 0.4 25.0 ± 0.5* 

         Fat (g) 6.53 ± 0.2 21.25 ± 1.1* 

 

6.36 ± 0.3 13.92 ± 0.4* 

        Percent Fat (%) 25.1 ± 0.5 46.2 ± 3.1*   24.3 ± 0.6 34.9 ± 0.9* 

Control (Con; AIN93M) and high fat (HF; 60% kcal from fat).  Values are expressed as mean ± SE.  Symbol * indicates 

significant differences (P<0.05) between dietary treatments within either the C57BL/6 or C3H/HeJ mouse strains at a given 

time point. 

 

  

1
2

5
 



126 
 

Table 2.  Plasma Insulin and Indicators of Glucose Homeostasis 

Fasting (6 hours) blood glucose, plasma insulin, and intraperitoneal glucose tolerance test (IGTT) at 2, 8, and 16 weeks on a control 

(Con=10 % kcal from fat) or HF (60% kcal from fat) diet.  IGTT was performed by injecting (IP) glucose solution and blood glucose 

was tracked at 0, 15, 30, 60, and 120 min.  Calculated area under the curve (AUC) and the final (120 min) blood glucose are reported.  

Values are expressed as mean ± SE.  Symbol * indicates significant differences (P<0.05) between dietary treatments within mouse 

strain at a given time point.  

1
26

 

  C57BL/6   C3H/HeJ 

  Con HF   Con HF 

2 Week      
     Fasting Glucose (mg dL) 156.1 ± 7.2 185.9 ± 5.5*  163.8 ±4.4 195.3 ± 6.2* 

     Fasting Insulin (pg/mL) 206.4 ±13.2 148.0 ± 9.5* 
 

202.0 ± 34.1 199.3 ± 9.6 

  IGTT      

     Final Glucose at 120 min (mg/dL) 169.2 ± 6.7 237.7 ± 15.3*  177.5 ± 11.5 254.1 ± 20.5* 

     AUC [(mg/dL)*min] (1 x 10
3
) 29.3 ± 1.2 52.8 ± 2.8* 

 
30.6 ± 4.1 41.1 ± 2.7* 

      

8 Week 
     

     Fasting Glucose (mg dL) 151.1 ±5.4 182.3 ±7.3*  132.5 ± 4.8 161.3 ±5.9* 

     Fasting Insulin (pg/mL) 248.9 ± 31.6 257.3 ± 27.9  245.7 ± 35.3 382.9 ± 56.9 

  IGTT      

     Final Glucose at 120 min (mg/dL) 188.1 ± 8.4 280.3 ± 19.6*  131.6 ± 9.8 202.5 ± 6.3* 

     AUC [(mg/dL)*min] (1 x 10
3
) 29.4 ± 1.2 53.8 ± 3.3* 

 
20.4 ± 0.7 36.4 ± 1.7* 

 
     

16 Week 
     

     Fasting Glucose (mg dL) 147.9 ± 2.1 178.2 ± 6.1*  129.3 ± 3.4 134.9 ± 6.0 

     Fasting Insulin (pg/mL) 370.8 ± 144.1 736.5 ± 161.2*  189.0 ± 20.9 485.8 ± 104.0* 

  IGTT      

     Final Glucose at 120 min (mg/dL) 204.8 ± 13.2  617.3 ± 37.6*  148.7 ± 7.3 220.0 ± 10.1* 

     AUC [(mg/dL)*min] (1 x 10
3
) 36.1 ± 1.9 74.0 ± 2.6* 

 
25.8 ± 1.4 40.1 ± 2.4* 
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Table 3. Transcriptional Fold Changes of Genes Involved in Osteoblastogenesis and TLR-4 

Signaling 

  C57BL/6 

 
C3H/HeJ 

 

2 Wk 8 Wk 16 Wk 

 
2 Wk 8 Wk 16 Wk 

   Cbfa1 0.31 0.80 0.64  1.29 1.40 0.73 

   Sp7 0.83 0.55 0.56  0.92 1.28 0.64 

   Col1a1 0.78 0.48 0.42  0.78 0.97 1.05 

   Alpl 0.84 0.68 0.27 
 

0.63 1.16 1.24 

   Atf4 1.08 1.89 0.97  1.33 0.87 1.03 

   Bmp2 1.53 2.30 1.11  1.82 1.76 0.95 

   Socs3 1.80 5.15 1.04  1.69 1.12 1.08 

   Tlr4 0.97 1.27 0.30 

 

0.86 0.95 1.38 

Total RNA was extracted from the calvaria of the C57BL/6 and C3H/HeJ mice after 2, 8, and 16 

weeks on a control (Con; AIN93M) or high fat (HF; 60% kcal from fat).  cDNA was then used to  

determine gene expression.  All target genes were normalized to invariant control (Ppib) and fold 

change was calculated using the 2
-ddCQ  

method at a given time point within a given strain.  Bold, 

italisized font corresponds to a statistically significant (P< 0.05) difference in gene expression in 

the HF diet realtive to Con.  

.
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Figure 1.  

 

 

 

 

1
28

 

A.) B.) C.) D.) 

E.) F.) G.) H.) 



129 
 

Figure 2. 

  

1
29

 

A.) B.) 

C.) 
D.) 



130 
 

Figure 3. 
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Figure 4.  
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CHAPTER V 
 

 

GLUCOSE INTOLERANCE ATTENUATES BONE ACCRUAL IN YOUNG 

GROWING SKELETON BY PROMOTING THE MATURATION OF OSTEOBLASTS 

THROUGH BECLIN1-MEDIATED AUTOPHAGY 
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Abstract  

Patients with type 2 diabetes mellitus (T2DM) have demonstrated a 1.5-3.5 fold increase in 

fracture risk, but the mechanisms responsible for these skeletal changes remain elusive.  

Macroautophagy, referred to hereafter as autophagy, is regulated by signaling downstream of the 

insulin receptor.  Metabolic changes associated with the initiation and progression of glucose 

intolerance have been shown to alter autophagy in various tissues, but limited information is 

available in relation to bone cells.  The aim of this study was to (1) investigate whether 

autophagy is altered in the bone during the initiation and progression of T2DM and (2) determine 

how autophagy impacts osteoblast differentiation, activity, and maturation.  To accomplish this 

aim, 4-week old, male C57BL/6 mice were fed a control (Con) or high fat (HF) diet for 2, 8, and 

16 wks.  Consistent with reduced insulin sensitivity, mice on the HF diet demonstrated elevated 

fasting blood glucose and impaired glucose tolerance.  Micro-computerized tomography 

(microCT) analyses revealed reduced trabecular bone at 8 and 16 wks in the femoral neck, which 

resulted in lower trabecular bone volume compared to Con mice.  Histological evaluation of the 

tibia and characterization of osteoblast-related genes in the flushed femur suggested that 

hyperglycemia decreased bone mineralization and may promote terminal osteocyte 

differentiation.  This shift of the osteoblasts towards a non-mineralizing, osteocyte phenotype 

appears to be coordinated by Beclin1 mediated autophagy during impaired glucose tolerance.  

However, long-term glucose intolerance resulted in an increase in apoptosis of the osteoblast 

based on an increase in Casp3 mRNA. Consistent with changes occurring in the osteoblast in 

vivo, the induction of autophagy by rapamycin was able to direct MC3T3-E1 cells towards a 

more mature osteoblast phenotype.  The current study provides evidence that glucose intolerance 

contributes to the skeletal dysregulation of bone metabolism by up-regulating autophagy in 



135 
 

osteoblasts, directing this cell towards a non-mineralizing osteocyte, ultimately attenuating bone 

accrual.  Further investigation is warranted to determine if Beclin1-mediated autophagy is 

essential for the terminal differentiation of the osteoblasts and whether autophagy is having a 

protective or deleterious effect on bone in T2DM. 
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Introduction 

Type 2 diabetes mellitus (T2DM) is a major public health problem in the U.S. affecting 

~25 million adults [1].  The CDC has projected that the prevalence of T2DM will double or even 

triple, affecting 1 in 3 adults, by 2050 if current trends continue [1].  In addition to classic 

complications associated with T2DM (e.g., peripheral vascular disease, retinopathy, 

nephropathy, impaired wound healing, and neuropathy) it has recently been determined that type 

2 diabetics are also at greater risk of fracture, primarily at the hip region [2-6].  Furthermore, it 

was demonstrated that the clinical determinant of fracture risk, bone mineral density (BMD), and 

the World Health Organization Fracture Risk Algorithm (FRAX) underestimates fracture risk in 

adults with T2DM [7].  Recent studies have described the attenuation of bone accrual in mice 

during the development and progression of glucose intolerance, and attribute this observation, in 

part, to an altered osteoblast phenotype [8].  Therefore, to begin to understand why T2DM 

increases skeletal fragility, it is imperative that alterations in bone metabolism be investigated 

both during the progression of hyperglycemia and glucose intolerance.   

The hyperglycemia associated with T2DM is attributed, in part, to diminished insulin 

sensitivity and alterations in the downstream signaling cascade.  Although several different types 

of autophagy exist (i.e., microautophagy, chaperone mediated autophagy and macroautophagy), 

macroautophagy is the most studied and is, therefore, commonly referred to simply as 

“autophagy”.  Autophagy is a cellular process that is controlled by proteins downstream of the 

insulin receptor (IR) and is involved in energy (i.e., glucose) sensing and effectively regulates 

cell survival or cell death by means of organelle recycling [9].  This multi-step cellular process 

involves initiation, membrane nucleation, phagophore formation, sequestration and 

autophagosome formation, followed by autophagosome-lysosome fusion.  Like many other cells, 
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bone forming osteoblasts express the IR; therefore, during glucose intolerance osteoblasts may 

experience alterations in insulin signaling, resulting in the up-regulation of autophagy.  Although 

changes in autophagy have been demonstrated in β-cells, hepatocytes, cardiac myocytes, and 

adipocytes in type 2 diabetics, no published reports have examined whether autophagy is altered 

in bone cells during glucose intolerance [10-14].   

While significant advances in the field of autophagy as it relates to bone has made in the 

past 5 yr, conflicting evidence exists on how alterations in the autophagic process will impact 

osteoblast differentiation, maturation, and activity.  For example, Yang et al. [15] described a 

serum-deprivation model of autophagy in osteoblast-like MC3T3-E1 cells in which growth 

factors and insulin are absent from the culture and noted increased initiation of autophagy and 

autophagosome formation as evidenced by increased Beclin1, LC3-II, and ULK1 protein 

abundance.  Interestingly, when osteoblasts were treated with estradiol apoptotic events were 

decreased while autophagy was enhanced [15].  In this case autophagy induction by estradiol is 

associated with a cytoprotective process, however, publications on glucocorticoid treatment and 

the free fatty acid, palmitate, describe autophagy as a means by which osteoblasts and osteocytes 

undergo cell death [16;17].  Two ground-breaking studies related to autophagy and bone have 

utilized conditional knockout models.  For example, Onal et al. [18] knocked out the autophagic 

protein, Atg7, in terminally differentiated osteocytes.  Interestingly, these animals exhibited a 

decrease in femoral, spinal, and total BMD, which was attributed to a decrease in both trabecular 

and cortical bone.  Further insight into how autophagy impacts bone metabolism was provided in 

an osteoblast conditional knockout of FIP200, in which the animals demonstrated dramatically 

lower trabecular and cortical bone at 1, 2, and 6 mo of age [19].  These structural changes in the 

bone were attributed to decreased bone formation as determined by dynamic bone 
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histomorphometry [19].  Together, these two studies demonstrate that basal autophagy promotes 

osteocyte function, supports nodule formation by osteoblasts and contributes to the terminal 

differentiation of osteoblasts.  Moreover, one of the earliest assays established to assess 

autophagy involved determining alkaline phosphatase (ALP) activity in yeast [20].  However, the 

measurement of ALP would prove to be a non-specific indicator in cells such as the osteoblast, 

which express high levels of ALP to aid in the mineralization of bone.  Given that the attenuation 

of bone formation associated with the progression of glucose intolerance is primarily attributed 

to altered osteoblastogenesis, alterations in autophagy in the osteoblasts may contribute to the 

skeletal phenotype. 

Based on the regulation of autophagy by the insulin signaling pathway, insulin resistance 

during T2DM may increase autophagy in osteoblasts initially providing protection from cellular 

stress and, possibly, induce cellular maturation.  Although information on how autophagy 

impacts osteoblast differentiation and function is limited, previous studies have supported the 

notion that autophagy may initially provide protection from cellular stresses occurring during 

T2DM [19;21].  If the autophagy is increased during the early stages of T2DM and 

hyperglycemia, this dynamic process may provide a protective role and maintaining normal bone 

turnover.  However, prolonged hyperglycemia could uncouple bone metabolism, resulting in a 

compromised bone structure and ultimately increased fracture risk.  Therefore, this study was 

designed to (1) investigate whether autophagy is altered in the bone during the initial 

development and progression of glucose intolerance; and (2) determine how autophagy impacts 

osteoblast differentiation, activity, and maturation. 
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Materials and Methods 

Animal Use and Care 

Four week old male C57BL/6N (Charles Rivers, Wilmington, MA), referred to hereafter 

as C57BL/6, were utilized for the current study.  The rationale for choosing this strain was based 

on their metabolic and skeletal response to high fat diet, which was more similar to clinical 

pathophysiology of T2DM versus the C57BL/6J strain (unpublished data).  These animals were 

allowed to acclimate for 1 wk and then divided into six groups (n = 8-10 mice/group) to receive 

the control (Con; AIN-93M, 10 % kcals from fat) or a high fat (HF; 60% kcals from fat) diet for 

2, 8, or 16 wk.  Bodyweight and food intake were recorded throughout the study.  At the end of 

each time point, mice were anesthetized (ketamine/ xylazine cocktail 70 and 30 mg/kg body 

weight, respectively) and exsanguinated via the carotid artery.  At the time of sacrifice tibia and 

femurs were disarticulated and cleaned of surrounding soft tissue.  Femurs to be used for 

microCT were stored in phosphate buffered saline (PBS) at -4°C, while femurs used for RNA 

and protein extraction were flushed of their bone marrow and stored in a cryotank (-140°C).  

Tibias were stored in 10% neutral buffered formalin (NBF) until histological processing.  All 

procedures were approved by the Institutional Animal Care and Use Committee of Oklahoma 

State University.   

Intraperitoneal Glucose Tolerance Test and Plasma Insulin 

 Three to five days prior to the termination of each study period, mice were fasted for 6 

hrs and blood glucose was determined at baseline.  Mice then received an intraperitoneal 

injection of glucose solution (2 g glucose/ kg bodyweight) and their blood glucose was 
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monitored at 15, 30, 60, 90, and 120 min.  Plasma insulin was determined at 2, 8 and 16 wks 

using a commercially available ELISA kit (Crystal Chem, Downers Grove, IL).   

 

Determination of Alterations in Microarchitecture by MicroCT 

Given the profound impact glucose intolerance has on fracture occurring in the hip, 

micro-computerized tomography (microCT40, SCANCO Medical, Switzerland) was performed 

to determine changes occurring in the microarchitecture of the femoral neck.  Trabecular bone of 

the femoral neck was determined by scanning each specimen at a resolution of 2048 x 2048 

pixels, followed by identifying an approximately 280 µm volume of interest (VOI) beginning 

30µm distal from the femoral neck growth plate.  The analyses focused exclusively on secondary 

spongiosa.  Trabecular bone parameters evaluated included bone volume expressed as a 

percentage of total volume (BV/TV), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), 

trabecular separation (Tb.Sp.) connectivity density (Conn.Dens.) and structural model index 

(SMI).  All of the acquired images for trabecular and cortical bone were analyzed at a threshold 

of 340, and a sigma and support of 1.2 and 2.0, respectively. 

 

Morphological Changes in the Tibia 

Fixed tibia samples were processed by exposure to sequential dehydration steps with 

ethanol, cleared with toluene, and paraffin embedded.  Tibial sections were cut on a longitudinal 

axis (5 μm each) using a microtome (Leica RM2165, Wetzlar, Germany) and sections were 

stained with hematoxylin and eosin.  Tibia specimens were then read by the study pathologist 
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and changes in morphology were noted for osteoblasts (e.g., lining trabeculae and on the 

endocortical surface) and osteocytes (e.g., in developed lacuna). 

  

Cell Culture Experiments 

 Mouse pre-osteoblast MC3T3-E1 cells (Riken BioResource Center, Ibaraki, Japan) were 

maintained in complete αMEM containing 10% fetal bovine serum (FBS), 100 U/L penicillin G 

and 100 mg/L streptomycin, and 2 mM L-glutamine at 37°C in a humidified atmosphere of 5% 

CO2.  For osteoblast differentiation experiments, osteogenic medium containing complete 

αMEM supplemented with 10 mM β-glycerophosphate and 25 μg/ mL ascorbic acid.  

Rapamycin and bafilomycin A1 was purchased from Cayman Chemical Company (Ann Arbor, 

MI), and both were dissolved in DMSO purged with N2 according to the manufacture’s 

specifications. 

 Undifferentiated pre-osteoblastic MC3T3-E1 cells were plated (2.0 x 10
6
 cells/ mL) and 

allowed to adhere for 24 hrs in complete αMEM (i.e., 0 day differentiation).  Cells were than 

subjected to treatment with 0 µM (Con and DMSO) or 10 µM rapamycin for 24 hr.  Due to the 

lysosomal degradation of LC3B-II protein 0 or 200 nM of bafilomycin A1 (BafA1) was added to 

cultures 2 hr prior to RNA and protein harvest (e.g., 22 hr).  To determine changes induce by 

autophagy in a more mature osteoblast, osteogenic medium was added to MC3T3-E1 cultures, 

and cells were allowed to differentiate for 7 days.  Following this differentiation period, cells 

were treated with 0 or 10 µM rapamycin for 24 hr, while bafilomycin was added 2 hr before the 

RNA and protein was extracted.  

 

RNA Extraction and qPCR Analyses 
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Total RNA was extracted from pulverized, flushed femurs (Spex 6770 Freezer Mill, 

Metuchen, NJ) and MC3T3-E1 cells using TriZol Reagent (Life Technology, Rockville, MD), 

following the manufacturers protocol.  RNA was quantified using a Nanodrop 

Spectrophotometer (Rockland, DE) while gel electrophoresis was carried out to verify the 

quantity and quality of all RNA samples.  cDNA was synthesized using 2 μg of total RNA pre-

treated with DNase I and subjected to reverse-transcription (Superscript II, Invitrogen, Carlsbad, 

CA).  Each qPCR reaction was performed in duplicate or triplicate using SYBR green chemistry 

(SABiosciences, Valencia, CA) on the Applied Biosystems 7900HT Fast Real-Time PCR 

System (Foster City, CA).  All qPCR results were evaluated by the comparative cycle number at 

threshold (CQ) method (User Manual #2, Applied Biosystems), using peptidylprolyl isomerase B 

(Ppib) as the invariant control.  Primer sets for target genes can be found in supplemental 

materials. 

 

Protein Extraction and Western Blot Analyses 

 Crude protein was prepared from femur tissues with the bone marrow flushed and 

MC3T3-E1 cells.  Both the homogenized flushed femur and cell pellet were lysed using RIPA 

buffer containing a protease/ phosphatase inhibitor cocktail (Cell Signaling Technologies, 

Dancers, MA).  Lysates were incubated on ice for 40 min, with vortexing and sonication every 

10 min.  Samples were then centrifuged at 16,000 x g for 15 min at 4°C, supernatant containing 

total protein was then aliquoted and stored at -80°C.  Prior to western blot analyses, protein 

concentration was determined by bicinchoninic acid (BCA) assay.  Primary antibodies for 

Beclin1 (Novus Biologicals, Littleton, CO), pBeclin1 (EMD Millipore, Billerica, MA), β-Actin 
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(Santa Cruz Biotechnology, Dallas, TX), and LC3B and ROCK1 (Cell Signaling Technology, 

Danvers, MA). 

 

Statistical Analyses 

Statistical analyses were accomplished using SAS Version 9.3 (SAS Institute, NC).  

Comparisons were made between dietary treatment groups across all time points using one-way 

ANOVA, followed by post hoc analysis with Fischer’s least square means separation test when F 

values were significant (P< 0.05), unless otherwise stated.  Results from the IGTT were 

analyzed by performing student’s paired t-test to make comparisons at a given time point 

following glucose administration (e.g., 15, 30, 60, 90, 120 min) for a given treatment period 

(e.g., 2, 8, or 16 wk).  Randomized control block design (RCBD) was used for western blot 

analyses to account for blot-to-blot variability.  Similar to ANOVA, when F values were 

significant (P< 0.05) post hoc analysis was performed with Fischer’s least square means 

separation test.  All data are presented as mean ± standard error (SE) and α was set at 0.05.   

 

Results 

Metabolic and Skeletal Changes Occurring in Response to a High Fat Diet Overtime 

 Mice on the HF diet exhibited elevated fasting blood glucose at the 2, 8, and 16 wk time 

point prior to administration of IGTT (Figure 1A-C).  At the 2 (Figure 1A) and 8 (Figure 1B) 

mice on the HF diet were able to restore blood glucose to some extent which suggests s impaired 

glucose tolerance, often referred to as pre-diabetes.  However, given the results of the IGTT at 16 
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wk, it was evident that mice on the HF diet were unable to restore blood glucose, exhibiting a 

phenotype consistent with glucose intolerance (Figure 1C).  As we have previously shown, mice 

on the HF diet were hypoinsulinemic at the 2 wk time point (Con=206.4 pg/mL; HF=148.0 

pg/mL). Fasting plasma insulin was similar between dietary groups at 8 wk (Con=248.9 pg/mL; 

HF=257.3 pg/mL) and after 16 wk these mice demonstrated elevated plasma insulin (Con=370.8 

pg/mL; HF=736.7 pg/mL).  Therefore, mice at the 2 and 8 wk time on the HF diet demonstrated 

metabolic changes corresponding to pre-diabetes, while the metabolic response at the later 16 wk 

time point  (i.e.,  hyperglycemia, hyperinsulinemia, and glucose intolerance) was consistent with 

T2DM,  

 Trabecular BV/TV in the femoral neck was the highest in the Con groups after 8 and 16 

wk, while the lowest BV/TV was observed in the 2 wk Con, as well as in the animals that 

received the HF diet for 2, 8, and 16 wk (Table 1).  Based on this data, it is evident that 

trabecular bone accrual stopped as early as 2 wk on the high fat diet and remained impaired 

through the duration of the study, suggesting that the initiation of glucose intolerance halts bone 

formation.  A similar trend was observed in Tb.Th., Conn.Dens., and SMI (Table 1).  Cortical 

bone (i.e., cortical thickness) was previously shown to be reduced by 7.4% at the femur mid-

diaphysis. 

Interestingly, histological evaluation of the proximal tibia metaphysis in the 2 wk Con 

group demonstrated cuboidal, active osteoblasts (Figure 2A).  In contrast, mice on the HF diet 

for 2 wk had a marked decrease in osteoblasts and a notable increase in number of osteocytes, 

suggestive of decreased bone formation (Figure 2A).  Consistent with changes occurring in 

femoral BV/TV over time, the 8 wk Con animals appeared to have increased calcification than 

previously reported at the 2 wk time point. Mice on the HF diet had fewer active osteoblasts, 
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more inactive, spindle-shaped osteoblasts, and an apparent marked increase in osteocyte number 

(Figure 2A).  In agreement with the microCT data, at the 16 wk time point mice on the HF diet 

had noticeably thinner trabeculae, in addition to the rare observation of active osteoblasts 

(Figure 2A).   

During the altered metabolic state consistent with pre- and early stage diabetes, there was 

an increase in the relative abundance of Ccnd1 (Figure 2B), Bmp4 (Figure 2D), and Col1a1 

mRNA (Figure 2F).  While the  change in Atf4 did not reach the level of statistical significance 

(P=0.0643),  the relative mRNA abundance of Atf4 was the highest in the 2 wk HF group, and 

the lowest in the 2 wk Con group (Figure 2E).  These changes in transcriptional regulation of 

osteoblastogenesis were not present between Con animals and those experiencing progressive 

stages of glucose intolerance at the 16 wk time point.  Moreover, no dietary change was observed 

in Spp1 (Figure 2I) and Bglap (Figure 2J) mRNA, which may be a reflection of the mixed cell 

population in the flushed femur.  No changes were observed in Bmp2 (Figure 2C). 

Determination of Altered Autophagy in Bone during Pre-, Short, and Long Glucose Intolerance 

 To test the hypothesis that autophagy is up-regulated during impaired glucose tolerance 

and contributing to the induction of osteoblast maturation, proteins involved in autophagy 

regulation were visualized in the flushed femur (Figure 3A).  Total Beclin1 protein expression 

was highest at the 8 and 16 wk time point in mice fed the HF diet (Figure 3B), however further 

analysis was needed due to the variation in post-translational modifications and functions of 

Beclin1.  pBeclin1 (Thr119) protein abundance was shown to be the highest at 8 wk in the 

control group and both the Con and HF diet groups at the 16 wk time point (Figure 3C).  No 

changes were observed in LC3B-II abundance, however this was predicted as LC3B-II was 
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presumably degraded in the lysosome (Figure 3D).  No consistent changes were observed in 

protein abundance of ROCK1 (Figure 3E).  While no changes were observed in Maplc3a 

(Figure 3F) the induction of autophagy by Maplc3b (Figure 3G) and Becn1 (Figure 3H) 

appeared to be initiated during the early stages of impaired glucose tolerance (i.e., after 2 wk on 

HF diet), preceding the changes in pBeclin1 protein abundance.  Furthermore, autophagy 

induction during early hyperglycemia appears to lower apoptosis given the Casp3 mRNA 

abundance, while apoptotic events appears to be elevated in the bone due to prolonged glucose 

intolerance (Figure 3I). 

 

In vitro Model of Autophagy Induction and Transcriptional Regulation of Osteoblastogenesis 

 To determine how the up-regulation of autophagy with glucose intolerance affects 

osteoblastogensis, MC3T3-E1 cells were cultured with 10 uM Rapamycin with the addition of 

200 nM BafA1 for the last 2 hrs of the study.  Although it appears that immature (Figure 4A) 

and mature osteoblasts (Figure 4B) have high levels of basal autophagy based on the abundance 

of LC3B-II in control cells (i.e., Con and DMSO), the addition of 10 µM rapamycin for 24 hr 

was able to increase autophagy as evidenced by LC3-II protein abundance (Figure 4C) and 

Maplc3a (Figure 4D) and Maplc3b (Figure 4E) mRNA.  However, no changes were observed 

in Becn1 mRNA or protein abundance of pBeclin1 or Beclin1 in undifferentiated (0d) or 

differentiated (7d) MC3T3-E1 cells (data not shown). 

 Once this model autophagy induction in the osteoblast was established, genes involved in 

osteoblast differentiation, activity, and maturation were determined.  Immature, osteoblast 

MC3T3-E1 cells undergoing autophagy induced via rapamycin treatment demonstrated a 
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decrease in mRNA abundance of genes critical for osteoblast differentiation and early osteoblast 

activity including Atf4 (Figure 5D), Cbfa1 (Figure 5E). Alpl (Figure 5F), and Col1a (Figure 

5G).  Conversely, an up-regulation was noted in the cell cycle regulator Ccnd1 (Figure 5A) and 

the gene that encodes osteopontin, Spp1, an indicator of late osteoblast activity (Figure 5H).  

While a similar pattern was observed when autophagy was up-regulated in a more mature 

osteoblasts (i.e., 7 day differentiation), Ccnd1 mRNA (Figure 5A) was lower in the rapamycin 

treated group compared to controls (Con and DMSO) and no changes were observed in Cbfa 

(Figure 5E), Alpl (Figure 5F) and Col1a1 (Figure 5G).  In these more mature osteoblasts, a 

significant increase in osteocalcin gene expression (Bglap) was also noted (Figure 4).  The 

differences in the regulation of these genes are presumably indicative of the difference in 

transcriptional machinery essential during the different stages of osteoblastogenesis.  However, 

in both the undifferentiated and differentiated MC3T3-E1 cells, enhanced autophagy appears to 

drive the osteoblast towards a more mature, non-mineralizing phenotype. 

 

Discussion 

These data demonstrate that during the onset and progression of impaired glucose 

tolerance and early stages of T2DM, bone accrual is attenuated.  This phenotype is observed 

concurrently with alterations in osteoblast maturation and up-regulated autophagy.  These 

findings suggest that autophagy appears to be driving the terminal differentiation of osteoblasts 

towards a non-mineralizing cell, via Beclin1-mediated mechanism.  While bone accrual appeared 

to be normal during up until 2 wk, trabecular bone accrual was halted as impaired glucose 

tolerance progressed.  These microarchitecture changes from the femoral neck are consistent 
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with our previous observations in this model in that bone accrual was attenuated in the distal 

femur metaphysis.  Although it has been shown by our lab and others that hyperglycemia 

attenuates bone accrual due to decreased osteoblast differentiation, elaboration of the possible 

mechanisms or fates of the osteoblasts has not investigated [8].  Histological evaluation of the 

proximal tibia revealed that while osteoblast number and activity was apparently decreased 

during glucose intolerance, it appeared that osteocyte numbers were increased in these young 

animals. Given that the primary role of the osteocyte is to function as a mechanosensing cell, 

although it is differentiated from an osteoblast, the osteocyte does not form bone [22;23].  

Therefore, these data suggest that the apparent increase in osteocyte number during the initiation 

of glucose intolerance was driven by an increase in osteoblast maturation, and is detrimental to 

bone accrual.   

The possible rationale for a scenario of increased autophagy contributing to osteoblast 

maturation is two-fold.  First, due to the control of autophagy by proteins involved in insulin 

signaling and intracellular energy sensors (e.g., mTORC1 and AMPK) this process is could to be 

altered during different stages of glucose intolerance [10;13;24].  Second, autophagy has been 

suggested to be essential in the terminal differentiation of osteoblasts to osteocytes [19].  While, 

one of the most widely accepted indicators of autophagosome formation is LC3-II protein 

abundance, a major limitation in using this method is that LC3-II is readily degraded in the 

lysosome, making in vivo assessment a challenge [25].  Due to these limitations, Beclin1 protein 

expression was determined given its recently identified function as a key regulator of membrane 

nucleation and autophagosome formation [26].  Beclin1 protein abundance was shown to be 

elevated in the flushed femur following the more prolonged periods of glucose intolerance.  

Beclin1 has been demonstrated to regulate autophagy by its existence in pro-autophagic 
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complexes including Barkor-Vps34-Vps15-Beclin1-AMBRA and Vps34-Vps15-Beclin1-Bif-1-

UVRAG, whereas Rubicon bound Vps34-Vps15-Beclin1-UVRAG complex negatively functions 

in autophagosome maturation [27].  Given the multi-functionality of Beclin1, protein abundance 

of pBeclin1 (Thr119) was identified to be a specific indicator of autophagy activation and 

demonstrated to be increased following 8 wk on a HF diet in the flushed femur.  Active ROCK1 

has been previously described to phosphorylate Beclin1 at Thr119, up-regulating Beclin1-

mediated autophagy by dissociated the Beclin1-Bcl-xL complex [28].  Moreover, ROCK1 kinase 

activity has been shown to be increased during glucose intolerance, making it a suitable protein 

of interest in the current model.  Although, no changes were observed in ROCK1 protein 

abundance, ROCK1 activity was not assessed and may still provide an explanation for the up-

regulated Beclin1-mediated autophagy in this model.  The fact that no changes were observed in 

LC3B-II protein abundance, along with the changes occurring in Beclin1 and Maplc3a, 

Maplc3b, suggests an increase in autophagic flux or the degradation and turnover of sequestered 

cargo.  Therefore, in the flushed femur, a sample enriched for osteoblasts and osteocytes, 

autophagy appears to be increased in response to early and short term glucose intolerance, 

however, a prolonged hyperglycemic state results in apoptosis these cells. 

The up-regulation of autophagy in osteoblast-like MC3T3-E1 cells resulted in their 

maturation and terminal differentiation.  This in vitro model was able to confirm some of the 

changes occurring in the femur which was importance because the flushed femur preparations 

likely represent a heterogeneous cell population.  Although we attempted to enrich for osteoblast 

and osteocyte cell populations by flushing the bone marrow, these cells are expected to be at 

different stages of differentiation, ranging from osteoblast progenitor cells, to terminally 

differentiated osteocytes.  This difference in cell populations from the flushed femur versus the 
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isolated MC3T3 cells may be the reason some conflicting results are reported.  The mechanism 

for autophagy induction in  impaired glucose tolerance in the bone appears to involve a different 

mechanism than rapamycin-induced autophagy in the MC3T3-E1 cells.  Beclin1 mediated 

autophagy has previously been reported to be a mechanism that is critical during glucose 

deprivation in mouse embryonic fibroblasts (MEFs), and not essential for autophagy initiated by 

rapamycin [29].  Furthermore, the addition of BafA1 to the MC3T3-E1 cell cultures allowed for 

the reliable visualization and quantification LC3B-II, however no lysosomal inhibitor was used 

in vivo.  

This study is the first to provide date that suggests that glucose intolerance contributes to 

the skeletal dysregulation of bone metabolism by up-regulating autophagy in osteoblasts, 

directing this cell towards a non-mineralizing osteocyte, ultimately attenuating bone accrual.  

Further investigation is warranted to determine if Beclin1-mediated autophagy is essential for the 

terminal differentiation of the osteoblasts and whether the promotion of autophagy during T2DM 

results in lower bone volume.  Moreover, given the biphasic nature of autophagy (i.e., 

cytoprotective vs. cell death), it may be possible that this process exerts different mechanisms on 

these bone cells resulting in different alterations in bone structure and/or biomechanics.  

Therefore, these data provide evidence of an the up-regulation of autophagy during T2DM, 

which dysregulates osteoblast maturation, and possibly fate, altering the bone phenotype. 
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Figure 1.  Alterations in glucose tolerance was determined by injecting (IP) glucose solution and 

tracking blood glucose in mice that were maintained on a control (Con; AIN93M) or high fat 

(HF; 60% kcal from fat) for 2 (A), 8 (B), and 16 (C) wk.  Data is presented as the mean ± SE.  

Symbol * represents a significant difference (P < 0.05) between dietary treatments at a given 

time point.   

Figure 2.  Histological evaluation of hematoxylin and eosin (H&E) stained tibias were read for 

changes in osteoblast abundance and morphology, along with osteocyte development in mice 

maintained on a control (Con; AIN93M) or high fat (HF; 60% kcal from fat) for 2, 8, and 16 wk, 

representative images are shown (A).  qPCR was performed on flushed femur samples to 

determine alterations occurring in genes involved in osteoblast differentiation and activity, to 

characterize osteoblast maturation.  Genes of interest included Ccnd1 (B), Bmp2 (C), Bmp4 (D), 

Atf4 (E), Cbfa1 (F), Alpl (G), Col1a1 (H), Spp1 (I), and Bglap (J).  All qPCR results were 

evaluated by the comparative cycle number at threshold (CQ) method, and genes of interest were 

normalized to the invariant control, peptidylprolyl isomerase B (Ppib) and expressed as relative 

mRNA abundance.  Data is presented as the mean ± SE (n=6).  Bars that share the same 

superscript letter are not significantly different from each other (P<0.05). 

Figure 3.  Western blot analyses and qPCR was performed to determine changes in proteins and 

genes involved in autophagy from flushed femur samples after mice were fed a control (Con; 

AIN93M) or high fat (HF; 60% kcal from fat) for 2, 8, and 16 wk,.  Representative images (n=5) 

of western blots probed for Beclin1, pBeclin1 (Thr119), LC3B, ROCK1 and β-Actin (A).  

Quantification of Beclin1 (B), pBeclin1 (C), LC3B-II (D), and ROCK1 (E) was carried out by 

determining density light units (DLU) for a given protein, and expressed normalized back to β-

Actin (n=5).  qPCR results for Maplc3a (F), Maplc3b (G), Becn1 (H), and Casp3 (I) are 
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normalized to peptidylprolyl isomerase B (Ppib) and expressed as relative mRNA abundance 

(n=6).  Data is presented as the mean ± SE.  Bars that share the same superscript letter are not 

significantly different from each other (P<0.05). 

Figure 4.  An in vitro model of increased autophagy in undifferentiated (0d) and differentiated 

(7d) MC3T3-E1 cells was developed by subjecting them to treatment with 0 µM (Con and 

DMSO) or 10 µM rapamycin for 24 hr.  Bafilomycin (BafA1) of was added to cultures 2 hr prior 

(e.g., 22 hr) to protein and RNA extraction.  Representative images of western blot analyses of 

LC3B-II abundance from undifferentiated (A) and differentiated (B) MC3T3-E1 cells are shown.  

LC3B-II protein abundance was determined by quantifying density light units (DLU) normalized 

to γ-tubulin DLU (C).  qPCR analysis of Maplc3a (D) and Maplc3b (E), normalized to 

peptidylprolyl isomerase B (Ppib) and expressed as relative mRNA abundance.  Data is 

presented as the mean ± SE (n=3).  Points that share the same superscript letter are not 

significantly different from each other (P<0.05). 

Figure 5.  To determine how autophagy would impact undifferentiated (0d) and differentiated 

(7d) MC3T3-E1 cells were treated with 0 µM (Con and DMSO) or 10 µM rapamycin for 24 hr.  

RNA was extracted and qPCR was performed to characterize genes involved in osteoblast 

differentiation, activity, and maturation including; Ccnd1 (A), Bmp2 (B), Bmp4 (C), Atf4 (D), 

Cbfa1 (E), Alpl (F), Col1a1 (G), Spp1 (H), and Bglap (I).  All qPCR results were evaluated by 

the comparative cycle number at threshold (CQ) method, and genes of interest were normalized 

to the invariant control, peptidylprolyl isomerase B (Ppib) and expressed as relative mRNA 

abundance.  Data is presented as the mean ± SE (n=6).  Bars that share the same superscript letter 

are not significantly different from each other (P<0.05).    
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Table 1.  Alterations in Trabecular Microarchitecture of the Femoral Neck after 2, 8, and 16 Wk 

  2 Wk   8 Wk   16 Wk 

  Con HF   Con HF   Con HF 

BV/TV (%) 39.1 ± 1.8
B
 41.2 ± 3.4

B
 

 

58.6 ± 3.7
A
 45.4 ± 3.0

B
 

 

54.8 ± 2.7
A
 46.7 ± 1.7

B
 

Tb.N. (1/mm) 8.7 ± 0.2
A
 8.8 ± 0.2

A
 

 

8.8 ± 0.3
A
 8.4 ± 0.3

A
 

 

8.1 ± 0.2
AB

 7.6 ± 0.2
B
 

Tb.Th. (µm) 56.3 ± 1.9
E
 60.2 ± 2.9

DE
 

 

80.8 ± 4.9
AB

 66.5 ± 2.4
CD

 

 

85.7 ± 4.6
A
 74.6 ± 1.8

BC
 

Tb.Sp. (µm) 101.5 ± 2.7 99.3 ± 4.9 

 

89.7 ± 4.5 100.8 ± 7.0 

 

102.1 ± 4.9 112.3 ± 3.1 

Conn.Dens. (1/mm
3
) 453.3 ± 33.5

A
 404.3 ± 21.2

A
 

 

253.6 ± 13.2
BC

 284.3 ± 24.4
C
 

 

179.2 ± 14.3
D
 215.7 ± 8.7

BD
 

SMI 0.56 ± 0.13
A
 0.41 ± 0.33

AB
   -1.73 ± 0.36

C
 -0.28 ± 0.23

BD
   -1.10 ± 0.23

C
 -0.44 ± 0.11

D
 

MicroCT analyses of trabecular bone in the femoral neck at 2, 8, and 16 weeks on a control (Con=10 % kcal from fat) or HF (60% 

kcal from fat) diet.  Trabecular parameteres includes bone volume/ total volume (BV/TV), trabecular number (Tb.N.), thickness 

(Tb.Th.), and separation (Tb.Sp), as well as connectivity denisty (Conn.Dens.) and structural model index (SMI).  Values are 

expressed as mean ± SE.  Rows that share the same superscript letter are not significantly different from each other (P<0.05). 

 1
5

6 
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Table 2.  Target genes used for qPCR Analyses

1
5

7
 

NCBI Accession 

Number Protein/ Gene Name 

Gene 

Symbol Primer Sequence 

NM_007431 Alkaline phosphatase, liver/ bone/ 

kidney 

Alpl QF 5'- GGT ATG GGC GTC TCC ACA GT -3' 

QR 5'- GCC CGT GTT GTG GTG TAG CT -3' 

NM_009716 Activating transcript factor 4 Atf4 QF 5'- GCA GTG TTG CTG TAA CGG ACA -3' 

QR 5'- TCG CTG TTC AGG AAG CTC ATC -3' 

NM_019584 Beclin1 Becn1 QF 5'- TTC AAT GCC ACC TTC CAC AT -3' 

QR 5'- AAG CGA CCC AGT CTG AAA TTA TT -3' 

NM_0074541 Osteocalcin/ Bone gamma 

carboxyglutamate protein 

Bglap QF 5'- TGA GCT TAA CCC TGC TTG TGA CGA -3' 

QR 5'- AGG GCA GCA CAG GTC CTA AAT AGT -3' 

NM_007553 Bone morphogeneticic protein 2 Bmp2 QF 5'- GGA CAT CCG CTC CAC AAA -3' 

QR 5'- GGC GCT TCC GCT GTT T -3' 

NM_007554 Bone morphogenetic protein 4 Bmp4 QF 5'- GCC GAG CCA ACA CTG TGA -3' 

QR 5'- TGG TCC CTG GGA TGT TCT C -3' 

NM_009810 Caspase 3 Casp3 QF 5'- CAT AAG AGC ACT GGA ATG TCA TCT C -3' 

QR 5'- CCC ATG AAT GTC TCT CTG AGG TT -3' 

NM_001146038 Core-binding factor subunit alpha-1/ 

Runt-related transcription factor 2  

Cbfa1/ 

Runx2 

QF 5'- CGA CAG TCC CAA CTT CCT GT -3' 

QR 5'- CGG TAA CCA CAG TCC CAT CT -3' 

NM_07631 Cyclin D1 Ccnd1 QF 5'- GCC CTC CGT ATC TTA CTT CAA G -3' 

QR 5'- GCG GTC CAG GTA GTT CAT G -3' 

NM_007742 Collagen, type 1, alpha 1 Col1a1 QF 5'- CGT CTG GTT TGG AGA GAG CAT -3' 

QR 5'- GGT CAG CTG GAT AGC GAC ATC -3' 

NM_025735 Microtubule-associated protein light 

chain 3 alpha 

Maplc3a QF 5'- CTG TAA GGA GGT GCA GCA GAT -3' 

QR 5'- CCC TTG TAG CGC TCG ATG AT -3' 

NM_026160 Microtubule-associated protein light 

chain 3 beta 

Maplc3b QF 5'- TTT CTC TCC TGG TTT GAA TTC TGT -3' 

QR 5'- TAA GGC CAG CGC TTG CT -3' 

NM_011149 Peptidylproyl isomerase B Ppib QF 5'- TGG AGA GCA CCA AGA CAG ACA -3' 

QR 5'- TGC CGG AGT CGA CAA TGA -3' 

NM_001204201 Osteopontin/ Secreted 

phosphoprotein 

Spp1 QF 5'- ACT CCA ATC GTC CCT ACA GTC G -3' 

QR 5'- TGA GGT CCT CAT CTG TGG CAT -3' 
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Figure 4. 
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Figure 5. 
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CHAPTER VI 
 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

 

 

Summary 

 The purpose of this project was to advance our understanding of the molecular 

mechanism contributing to dysregulation of bone metabolism during the development 

and progression of T2DM.  To accomplish the overarching purpose, three studies were 

carried out.  Study 1 was designed to investigate the long-term metabolic and skeletal 

response of two commonly used C57BL/6 substrains (i.e., C57BL/6 and C57BL/6N) to a 

high fat diet.  The findings of this study show that the C57BL/6J and the C57BL/6N 

mouse differ in their metabolic and skeletal response to a high fat diet (i.e., 45 % kcal 

from fat) over a 24 wk study period.  The aim of Study 2 was to investigate 
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the role TLR-4 contributes to the dysregulation of bone metabolism during the initiation 

and progression of T2DM.  The C3H/HeJ mice with a non-functional TLR-4, were 

somewhat protected from the metabolic changes induced by a HF diet as evidenced by 

their IGTT response and ability to normalize blood glucose with a hyperinsulinemic 

response at week 16.  These animals also demonstrated a delay in the development of a 

skeletal phenotype characterized as a decrease in BMD after 16 wk and no changes in 

trabecular bone.  By comparison, the C57BL/6 mice on a HF diet exhibited early 

impaired glucose tolerance (i.e., 2 wks) and glucose intolerance at 8 and 16 wks.  The 

mice on the HF diet demonstrated a lower whole body BMD and trabecular BV/TV of 

the distal femur metaphysis, attributed to decreased osteoblastogenesis and 

osteoclastogenesis at 8 wks and suppression of bone turnover by 16 wks.  Together, these 

findings show that impaired glucose homeostasis results in lower trabecular bone in 

young, growing mice compared to vontrols and suggests a role for TLR-4 in the 

dysregulation of bone metabolism in this T2DM model.  Study 3 was designed to 

determine the role of autophagy focused on the osteoblasts during hyperglycemia and 

altered insulin signaling.  Autophagy appeared to be initiated in the bone as early as 2 wk 

on a high fat diet, and as impaired glucose tolerance progresses, autophagic flux was 

enhanced as evidenced by the increased protein abundance of pBeclin1 (Thr119) and no 

change in LC3B-II.  Histological evaluation and characterization of genes involved in 

osteoblast maturation revealed that the development and progression of impaired glucose 

tolerance was associated with osteoblast maturation and an apparent increase in 

osteocytes.  The ability of autophagy to drive osteoblast maturation was further 

confirmed by the ability of rapamycin-mediated autophagy to shift the phenotype of 
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MC3T3-E1 towards that of a more mature osteoblast.  These findings provide evidence 

that suggest that Beclin1 mediated autophagy contributes to the attenuation of bone 

accrual during hyperglycemia by shifting the osteoblast towards a non-mineralizing, 

mature phenotype. 

 

Conclusions  

The purpose of this project is to:  1) determine the alterations in bone metabolism and 

their effects on bone microarchitectural and biomechanical properties during the 

development and progression of T2DM in a young, growing animal; 2) determine the role 

of TLR-4 in this skeletal response; and (3) explore the extent to which the autophagic 

pathway in bone cells is altered in response to impaired insulin signaling and glucose 

availability.   

 

Hypothesis 1:  The young growing C57BL/6 mice will exhibit compromised bone mass, 

structure and quality with increasing time on the high fat diet compared to their C3H/HeJ 

counterparts. 

The C57BL/6 exhibited lower whole body BMD during the progression of 

impaired glucose tolerance to glucose intolerance (i.e., after 8 and 16 wk on a high fat 

diet), and longitudinal bone growth was attenuated at the 16 wk time point, the time at 

which a metabolic profile similar to that of T2DM was observed.  However, the C3H/HeJ 

mice on a high fat diet demonstrated a delayed skeletal response, only exhibiting a lower 



166 
 

whole body BMD at the 16 wk time point.  Moreover, the C57BL/6 mice had less 

trabecular bone at the distal femur metaphysis compared to their respective control 

groups that was explained by the attenuation of bone accrual (i.e., between 2 and 8 wk), 

whereas this was not observed in C3H/HeJ animals.  Furthermore, biomechanical 

properties determined by reference point ID suggested that the C57BL/6 mice have a 

weaker bone after 8 and 16 wk on a high fat diet in the distal femur metaphysis.  By 16 

wk, both the C57BL/6 and C3H/HeJ mice on the high fat diet had compromised bone 

strength in the femur mid-diaphysis as evidenced by an increase in ID.  These structural 

and biomechanical changes were accompanied with a decrease in osteoblastogenesis after 

8 and 16 wk on the HF diet only in the C57BL/6 mice.  Both the C57BL/6 and C3H/HeJ 

mice on a HF diet demonstrated an increase in osteoclastogenesis after 8 wk on HF diet, 

however, bone turnover was apparently decreased in the C57BL/6 during prolonged 

hyperglycemia.  Based on the difference in skeletal response (i.e., bone structure, 

microarchitecture, and biomechanical properties) between the C57BL/6 and C3H/HeJ 

mice in a diet-induced obesity model, we fail to reject Hypothesis 1.   

 

 

Hypothesis 2:  Autophagy associated with the metabolic changes occurring in T2DM will 

contribute to the dysregulation of skeletal metabolism, resulting in deterioration of bone 

quality 

Based on the increase in Maplc3b and Becn1 mRNA at 2 wk, along with pBeclin1 

protein abundance in the femur at 8 wk, autophagy appears to be up-regulated in the bone 
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during impaired glucose tolerance.  Although autophagy is provides an acute protective 

role, prolonged autophagy at the 16 wk time point begins to induce apoptosis as 

evidenced by Casp3 mRNA abundance.  Histological evaluation revealed that there was 

an apparent decrease in active, osteoblasts and an increase in osteocyte number during 

impaired glucose tolerance at the 2 and 8 wk time point.  Furthermore, in vitro studies of 

undifferentiated and differentiated osteoblast-like MC3T3-E1 cell line confirmed that 

rapamycin-induced autophagy drives osteoblast maturation.  Given these results 

demonstrating that glucose intolerance promotes osteoblast maturation and impairing 

bone accrual due to Beclin1-mediated autophagy, we fail to reject Hypothesis 2. 

  

Recommendations 

The current project provides new insight into how the development and 

progression of impaired glucose tolerance attenuates bone accrual and in certain phases 

of the metabolic changes may promote bone loss in young growing animals.  Impaired 

bone accrual in young, growing children not only has the potential to lead to an increase 

in fracture risk during childhood and adolescence, but also predisposes these children to 

fragility-related fracture later in life (Valerio et al., 2012).  This data suggest that bone 

accrual is attenuated in obese children experiencing mild hyperglycemia, and implies that 

longitudinal bone growth is impaired.  Given that the alterations on bone growth and 

accrual appear to partly be reflective of impaired osteoblastogenesis, fracture repair may 

also be impaired in this population.  Therefore, the results of these studies raise the issue 

of whether or not dietary and/or mechanical interventions, specifically geared to alleviate 
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the deleterious skeletal impact of impaired glucose tolerance, should be developed for 

this young population.  Furthermore, questions arise about how altered glucose 

homeostasis during pregnancy (i.e., gestational diabetes mellitus) impacts fetal skeletal 

development.  Due to the increased prevalence of childhood obesity and T2DM, the 

results from the current study emphasis the importance of maintaining glucose 

homeostasis during these critical years of bone accrual. 

The fact that the C3H/HeJ mice were protected from the attenuated trabecular 

bone accrual suggests a role of TLR-4.  Further studies of the activation of TLR-4 

signaling should be carried out in osteoblasts and osteoclasts during impaired glucose 

tolerance and glucose intolerance.  This could be accomplished by extracting protein 

from flushed femur or calvaria specimens (i.e., samples enriched for osteoblasts) and 

bone marrow (i.e., population enriched for osteoclasts and progenitor cells) at the 2, 8, 

and 16 wk time point and assessing key proteins involved in TLR-4 signaling (i.e., 

MyD88, TRIF, IRAK1, TRAF6, etc.).   

We have shown that impaired bone accrual coincides with enhanced autophagy, 

presumably, shifting the osteoblast towards a more mature, non-mineralizing phenotype.  

However, the precise mechanism by which the metabolic alterations occurring within the 

diet-induced obesity model are regulating autophagy in bone remains elusive.  First and 

foremost, experiments should be conducted using dynamic and static histomorphometry 

to determine whether actual alterations occurred in bone mineralization and to quantify 

osteocytes.  While it is hypothesized that autophagy is altered by impaired intracellular 

glucose availability or insulin signaling, further studies are warranted to determine the 

pathway by which autophagy is regulated in this model.  One approach would be to 
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administer an intraperitoneal injection of insulin prior to the end of the study, as opposed 

to fasting animals.  This would allow for the quantification of proteins involved in the 

insulin signaling pathway (e.g., pIRS1, pAkt, etc.), which could offer insight in to the 

alterations occurring in the flushed femur during impaired glucose tolerance.  Although 

ROCK1 protein abundance was not altered in the current study, given this kinase’s ability 

to phosphorylate Beclin1 at Thr119, the enzymatic activity of ROCK1 should be 

determined (Gurkar et al., 2013).  Lastly, future studies should include the osteoblast-

specific knockout of Becn1 to determine whether pBeclin1 is sufficient and necessary to 

mediate autophagy, leading to the maturation of the osteoblast.  Driving the osteoblast 

towards a more mature, non-mineralizing phenotype resulting in the attenuation of bone 

formation is also a novel concept in the field of bone and mineral research.  It puts into 

question the current opinion of anabolic agents, and whether they act by up-regulating 

osteoblast mineralization or maturation, which could have profound and opposing 

consequences.  The terminal differentiation of an osteoblast into an osteocyte provokes 

more questions about the osteocyte.  For example, does an increase in osteocyte number 

render the skeleton more sensitive to mechanical loading, and if so, why would it be 

associated with osteopenia?  Studies aimed to further investigate the role of autophagy 

associated glucose intolerance and alterations in bone metabolism, may lead to the 

potential development of therapeutic treatments. 

To test the hypothesis that autophagy is up-regulated in the osteoblast due to 

impaired intracellular glucose, the primary GLUT would need to be to be regulated in an 

insulin sensitive manner.  Previously, GLUT1 and GLUT3 were identified as the primary 

GLUTs reported on osteoblasts and osteoblast-like cells (i.e., mice, rats, and humans) 
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(Thomas et al., 1996).  While our preliminary experiment revealed that MC3T3-E1 cells 

differentiated over a time course expressed GLUT1 and GLUT3, both GLUT3 and 

GLUT4 are present (mRNA and protein) in the flushed femur.  This unexpected 

observation created a scenario in which we questioned the use of MC3T3-E1 cells as an 

appropriate model to study GLUTs relative to the osteoblast in vivo.  Given that MC3T3-

E1 cells were derived from a newborn calvaria sample, we evaluated mouse calvaria 

samples for GLUT3 and GLUT4, to which it was confirmed that both of these GLUTs 

are expressed at a transcriptional level.  A possible confounding factor that was not 

considered was the age of the mice of the samples tested in the current study compared to 

the neonatal origin of the MC3T3-E1 cell line, which could account for the differences in 

GLUT expression.  It has been hypothesized, however, that GLUT3 functions as the 

primary GLUT on osteoblasts given its low Km (Simpson et al., 2008).  While osteoblast-

specific knockout of GLUT4 does not result in a bone phenotype (Zhu Li et al., 2013), 

further investigation of GLUT3 is needed.  For example, it remains to be determined if 

GLUT3’s subcellular localization is dependent on insulin stimulation on the osteoblast.  

Experiments would need to be designed to include primary osteoblasts cultured with and 

without insulin, and the subcellular location of GLUT3 would need to be determined by 

indirect immunofluorescence, subcellular fractionation and western blot analyses.  

Moreover, flushed femur samples are believed to provide a mixed cell population 

enriched for osteoblasts and osteocytes, therefore, the characterization of GLUTs on the 

osteocyte is warranted.  If, as the MC3T3-E1 cell lines suggest, pre-/immature osteoblasts 

only express GLUT1 and GLUT3, and the osteocyte expresses GLUT3 and GLUT4, 

these discrepancies may be explained.  An initial approach would be to culture the 
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immortalized MLO-Y4 cell line and/or primary osteocytes for transcriptional and protein 

abundance of GLUT1-4. 

 The results from the current project advance that field of bone and mineral 

research by providing mechanistic insight in to how the development and progression of 

impaired glucose tolerance exerts a detrimental impact to bone, and suggests the 

involvement of TLR-4 and autophagy.  Based on the findings from these studies it 

appears that TLR-4 activation during glucose intolerance down-regulates bone turnover, 

resulting in the attenuation of longitudinal bone growth and bone accrual in young male 

mice.  Furthermore, we provide mechanistic data suggesting that increased autophagy in 

the bone coincides with advanced osteoblast maturation, resulting in a non-mineralizing 

phenotype.  In vitro studies confirm that autophagy induced by rapamycin treatment in 

osteoblastic-like cells decreases mineralization and promotes cellular maturation.  
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APPENDIX A 

 

SUPPLEMENTAL MATERIALS FOR CHAPTER III 

 

Table 1.  Plasma Total (Gla-) and Undercarboxylated (Glu-) OCN  

Figure 1.  Blood profile of cholesterol (A), high-density lipoprotein (HDL) (B), non-esterified 

fatty acids (NEFA) (C), and fructosamine (D) were determined in C57BL/6J, C3H/HeJ , and 

C57BL/6N mice following 24 wk on a control (Con=AIN 93M) or high fat (HF=45% kcal from 

fat).  Values are means ± SE.  Symbol, *, represents a significant difference (P < 0.05) between 

dietary treatments within a given strain.  
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Table 1.  Plasma Total (Gla-) and Undercarboxylated (Glu-) OCN  

  C57BL/6J   C57BL/6N   C3H/HeJ 

  Con HF p-value   Con HF p-value   Con HF p-value 

Gla-OCN (ng/mL) 46.77 ± 6.73 43.84 ± 3.65 0.7072 

 

35.83 ± 2.31 40.51 ± 4.35 0.3583 

 

35.02 ± 1.56 31.96 ± 2.09 0.2594 

Glu-OCN (ng/mL) 1.28 ± 0.16 1.21 ± 0.10 0.7015 

 

1.11 ± 0.7 1.01 ± 0.13 0.5152 

 

0.89 ± 0.14 0.95 ± 0.18 0.8038 

Glu-OCN/Gla-OCN (%) 2.86 ± 0.31 2.79 ± 0.15 0.8304   3.18 ± 0.25 2.48 ± 0.13* 0.0254   2.56 ± 0.37 3.02 ± 0.61 0.5252 

Total (Gla-) and undercarboxylated (Glu-) osteocalcin (OCN) was determined in the plasma from C57BL/6J, C57BL/6N, and 

C3H/HeJ mice following 24 wk on a control (Con=AIN 93M) or high fat (HF=45% kcal from fat) using a commercially available 

ELISA kit (Clontech Takara Bio, Mountain View, CA).  Values are means ± SE.  Symbol, *, represents a significant difference (P < 

0.05) between dietary treatments within a given strain. 
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Figure 1. 
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APPENDIX B 

 

SUPPLEMENTAL MATERIALS FOR CHAPTER IV 

 

Table 1.  Whole Body DXA Analysis and Tibia Length after 2, 8, and 16 wk on a Control or 

High Fat Diet. 

 

Table 2.  Cortical Bone Parameters of the Femur Mid-Diaphysis  

 

Table 3.  Aleterations in Biomecnical Properties of the Distal Femur Metaphysis and Mid-

Diaphysis 

 

Table 4.  Trabecular Bone Parameters of the Distal Femur Metaphysis 

 

Table 5.  Plasma Leptin and Adiponectin in C57BL/6 and C3H/HeJ Mice 

 

Figure 1.  Intraperitoneal glucose tolerance test (IGTT) was performed on C57BL/6 and 

C3H/HeJ mice receiving a control (Con; AIN93M) or high fat (HF; 60% kcal from fat) diet for 2, 

8, and 16 wk by administering an intraperitoneal injection of glucose solution (2 g glucose/ kg 

bodyweight) and blood glucose was monitored at 15, 30, 60, 90, and 120 minutes.  Symbol (*, 

C57BL/6; +, C3H/HeJ) represents a significant difference (P < 0.05) at a given time point 

between dietary treatments within a given strain.     

 

Figure 2.  The advanced glycation end product (AGE), pentosidine, was determined in the 

humerus from C57BL/6 and C3H/HeJ mice on control (Con; AIN93M) or high fat (HF; 60% 

kcal from fat) diet for at 2, 8, and 16 wk, and expressed as total pentosidin (A), collagen (B), 

pentosidine or AGEs/ collagen (C), and AGEs/ wet weight of the humerus (D).  Values are 

means ± SE.  Comparisons were made at a given time point between dietary treatments within a 

given strain.     
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Table 1.  Whole Body DXA Analysis and Tibia Length after 2, 8, and 16 wk on a Control or High Fat Diet. 

  C57BL/6   C3H/HeJ 

  Control HF   Control HF 

2 Week   
 

  
   BMA (cm

2
) 9.17 ± 0.14 8.89 ± 0.19 

 

10.01 ± 0.11 9.84 ± 0.27 

   BMC (mg) 385.3 ± 8.3 381.8 ± 8.9 

 

486.9 ± 9.2 482.3 ± 18.5 

   BMD (mg/cm
2
) 42.0 ± 0.4 42.9 ± 0.4 

 
48.6 ± 0.6 48.9 ± 0.6 

   Tibia Length (mm) 16.3 ± 0.1 16.2 ± 0.1 
 

16.2 ± 0.1 16.34 ± 0.2 

      
8 Week 

     
   BMA (cm

2
) 10.29 ± 0.44 8.40 ± 0.18* 

 
12.05 ± 0.14 10.8 ± 0.16* 

   BMC (mg) 513.7 ± 31.4 393.9 ± 12.1* 
 

700.7 ± 14.1 598.7 ± 10.0* 

   BMD (mg/cm
2
) 49.6 ± 0.9 46.9 ± 0.5* 

 
58.1 ± 0.5 57.1 ± 0.4 

   Tibia Length (mm) 17.4 ± 0.2 17.0 ± 0.2 
 

17.3 ± 0.2 17.4 ± 0.2 

      
16 Week 

        BMA (cm
2
) 10.61 ± 0.17 8.28 ± 0.13* 

 

12.46 ± 0.11 10.92 ± 0.11* 

   BMC (mg) 529.0 ± 11.7 401.4 ± 8.4* 

 

782.3 ± 10.1 657.8 ± 10.0* 

   BMD (mg/cm
2
) 49.8 ± 0.4 48.5 ± 0.4* 

 

62.7 ± 0.5 60.2 ± 0.4* 

   Tibia Length (mm) 18.2 ± 0.2 17.6 ± 0.2*   17.9 ± 0.2 17.7 ± 0.1 

Whole body bone mineral area (BMA), content (BMC), and density (BMD) determined by dual-energy x-ray absorptiometry (DXA) 

and tibia length from C57BL/6 and C3H/HeJ on control (Con; AIN93M) or high fat (HF; 60% kcal from fat) diet.  Values are 

expressed as mean ± SE.  Symbol * indicates significant differences (P = 0.05) between dietary treatments within mouse strain at a 

given time point. 
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Table 2.  Cortical Bone Parameters of the Femur Mid-Diaphysis  

  C57BL/6   C3H/HeJ 

  Con HF   Con HF 

2 Week           

   Porosity (%) 5.68 ± 0.27 5.30 ± 0.16   3.73 ± 0.23 3.91 ± 0.08 

   Cortical Thickness (mm) 0.155 ± 0.004 0.163 ± 0.0035   0.240 ± 0.007 0.235 ± 0.003 

   Cortical Area (mm
2
) 0.042 ±0.001 0.043 ± 0.001   0.057 ± .0019 0.057 ± 0.002 

   Medullary Area (mm
2
) 0.040 ± 0.001 0.038 ±0.001   0.035 ± 0.002 0.036 ± 0.001 

8 Week 
          

   Porosity (%) 4.27 ± 0.17 4.59 ± 0.14   2.61 ± 0.08 2.71 ± 0.08 

   Cortical Thickness (mm) 0.202 ± 0.004 0.187 ± .002*   0.325 ± 0.003 0.326 ± 0.005 

   Cortical Area (mm
2
) 0.059 ± 0.003 0.051 ± 0.001*   0.088 ± 0.001 0.081 ± 0.002 

   Medullary Area (mm
2
) 0.042 ± 0.003 0.038 ± 0.001   0.033 ±  0.001 0.035 ±  0.001 

            

16 Week           

   Porosity (%) 4.22 ± 0.15 4.45 ± 0.18   3.15 ± 0.29  2.65 ± 0.08 

   Cortical Thickness (mm) 0.195 ± 0.003 0.192 ± 0.003   0.329 ± 0.007 0.348 ± 0.005* 

   Cortical Area (mm
2
) 0.055 ± 0.001 0.052 ± 0.001   0.088 ± 0.003 0.088 ± 0.002 

   Medullary Area (mm
2
) 0.038 ± 0.001 0.039 ± 0.002   0.045 ± 0.004 0.038 ± 0.002 

Table 2.  Alterations in cortical bone were assessed by microCT analyses of the femur mid-diaphysis at 2, 8, and 16 wk on control 

(Con; AIN93M) or high fat (HF; 60% kcal from fat) diet in C57BL/6 and C3H/HeJ mice.  Values are expressed as mean ± SE.  

Symbol * indicates significant differences (P = 0.05) between dietary treatments within a mouse strain at a given time point. 
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Table 3.  Aleterations in Biomecnical Properties of the Distal Femur Metaphysis and Mid-Diaphysis 

  C57BL/6   C3H/HeJ 

  Con HF   Con HF 

2 Week 

        ID Distal Metaphysis(µm) 75.6 ± 13.3 89.5 ± 9.9 

 

129.3 ± 13.5 125.8 ± 9.7 

   ID Mid-Diaphysis(µm) 53.1 ± 1.7 54.5 ± 2.6 

 

42.6 ± 2.8 37.9 ± 0.6* 

      8 Week 

        ID Distal Metaphysis(µm) 68.3 ± 5.6 91.5 ± 8.1* 

 

58.2 ± 5.6 62.6 ± 6.8 

   ID Mid-Diaphysis(µm) 36.2 ± 0.7 38.3 ± 0.8 

 

33.1 ± 0.5 34.7 ± 1.6 

      16 Week 

        ID Distal Metaphysis(µm) 73.7 ± 3.0 95.2 ± 9.1* 

 

58.6 ± 2.1 59.0 ± 2.8 

   ID Mid-Diaphysis(µm) 32.5 ± 1.2 35.7 ± 1.2*   28.9 ± 0.6 33.3 ± 1.7* 

Table 3.  First cycle indentation distance (ID) was determined by refernce point indentation (RPI) performed on the 

lateral surface of the distal femur metaphysis and anterior surface of the femur mid-diaphysis in C57BL/6 and C3H/HeJ 

mice on control (Con; AIN93M) or high fat (HF; 60% kcal from fat) diet for at 2, 8, and 16 wk.  Values are expressed as 

mean ± SE.  Symbol * indicates significant differences (P = 0.05) between dietary treatments within a mouse strain at a 

given time point. 
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Table 4.  Trabecular Bone Parameters of the Distal Femur Metaphysis 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.  MicroCT analyses of the trabecular bone in the distal femur metaphysis C57BL/6 and C3H/HeJ mice on control 

(Con; AIN93M) or high fat (HF; 60% kcal from fat) diet for at 2, 8, and 16 wk.  Parameters include bone volume/ total volume 

(BV/TV), trabecular number (Tb.N.), thickness (Tb.Th.), and separation (Tb.Sp.).  Symbol, *, represents a significant 

difference (P < 0.05) between dietary treatments for a given strain. 

 

  

  C57BL/6   C3H/HeJ 

  Con HF   Con HF 

2 Week 
  

 
  

   BV/TV (%) 13.29 ± 0.43 15.51 ± 1.74 

 

22.85 ± 2.74 23.83 ± 2.9 

   Tb.N. (mm) 5.43 ± 0.19 5.52 ± 0.16 

 

5.64 ± 0.21 5.56 ± 0.27 

   Tb.Th. (mm) 0.0382 ± 0.0006 0.0421 ± 0.0019 

 

0.0564 ± 0.0021 0.0546 ± 0.0023 

   Tb.Sp. (mm) 0.177 ± 0.004 0.175 ± 0.006 

 

0.166 ± 0.007 0.172 ± 0.010 

 
  

   
8 Week 

     
   BV/TV (%) 16.33 ± 1.78 11.70 ± 0.55* 

 
19.98 ± 2.67 18.41 ± 1.36 

   Tb.N. (mm) 5.01 ± 0.19 4.38 ± 0.97 
 

4.30 ± 0.31 4.16 ± 0.16 

   Tb.Th. (mm) 0.0500 ± 0.0031 0.0467 ± 0.0017* 
 

0.0610 ± 0.0021 0.0622 ± 0.0024 

   Tb.Sp. (mm) 0.191 ± 0.007 0.220 ± 0.005 
 

0.223 ± 0.019 0.228 ± 0.010 

      16 Week 

        BV/TV (%) 10.92 ± 1.31 6.82 ± 0.54* 

 

17.47 ± 1.70 15.36 ± 0.84 

   Tb.N. (mm) 3.02 ± 0.32 2.06 ± 0.18 

 

3.95 ± 0.27 3.30 ± 0.14 

   Tb.Th. (mm) 0.0360 ± 0.0097 0.0334 ± 0.0014* 

 

0.0437 ± 0.0018 0.0465 ± 0.0014 

   Tb.Sp. (mm) 0.318 ± 0.043 0.468 ± 0.044   0.215 ± 0.018 0.259 ± 0.013 

1
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Table 5.  Plasma Leptin and Adiponectin in C57BL/6 and C3H/HeJ Mice 

  C57BL/6   C3H/HeJ 

  Con HF   Con HF 

2 Week 
  

 
  

   Plasma Leptin (ng/mL) 1.80 ± 0.36 4.08 ± 0.57* 

 

0.62 ± 0.10 4.09 ± 0.71* 

   Plasma Adiponectin (µg/mL) 5.98 ± 0.39 5.02 ± 0.31 

 

2.78 ± 0.25 3.18 ± 0.24 

 
  

   
8 Week 

     
   Plasma Leptin (ng/mL) 4.21 ± 0.83 29.92 ± 3.20* 

 
0.93 ± 0.35 24.93 ± 2.44* 

   Plasma Adiponectin (µg/mL) 5.89 ± 0.37 8.50 ± 0.80* 
 

3.85 ± 0.21 4.57 ± 0.19* 

      16 Week 

        Plasma Leptin (ng/mL) 6.44 ± 1.25 96.94 ± 10.58* 

 

1.60 ± 0.20 25.03 ± 1.98* 

   Plasma Adiponectin (µg/mL) 8.71 ± 0.37 9.87 ± 0.53   5.27 ± 0.39 4.81 ± 0.21 

Table 5.  Plasma leptin and adiponectin after 24 wk on a control (Con=AIN-93M) or a high fat diet (HF=45% kcal from fat) in 

C57BL/6 and C3H/HeJ mice, assessed by commercially ELISA kits (EMD Millipore, Billerica, MA) following the manufacturer’s 

protocol.  Values are means ± SE, n = 15 mice in each group.  Symbol, *, represents a significant difference (P < 0.05) between 

dietary treatments within a given strain.     
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Figure 1. 

   

A) 

B) 

C) 
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Figure 2.   
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APPENDIX C 

 

SUPPLEMENTAL MATERIALS FOR CHAPTER V 

Figure 1.  Alterations occurring in autophagy of the flushed femur samples from mice 

(C57BL/6N) on a control (Ø=Con; AIN93M) or high fat (HF; 60% kcal from fat) diet for at 2, 8, 

and 16 wk was assessed by determining protein abundance by western blot technique.  

Quantification was performed using OptiQuant software and density light units (DLU, 1 x 10 
3
) 

are reported under each blot and correspond to a given sample.   

 

Figure 2.  Initial experiments for an in vitro model for autophagy induction in MC3T3-E1 cells 

began with treatments including 55µM rapamycin (Rap), 200nM bafilomycin A1 (BafA1), and 

500µM H2O2 for 4, 8, 16, and 24 hr, followed by LC3b-II protein abundance.  Quantification 

was determined by OptiQuant Software and LC3B-II protein abundance is expressed relative to 

γ-tubulin abudance, and normalized to control. 

 

Figure 3.  MC3T3-E1 cells treated with nothing (Con), vehicle (DMSO), and 10, 30, or 55 µM 

rapamycin for 4 (A) or 8 (B) hr.  Bafilomycin A1 (200 nM) was added to each treatment 2 hr 

prior to the termination of each time point to stabilize LC3B-II protein expression.  PARP and 

cleaved PARP (cPARP) was also determined to monitor apoptosis.  γTubulin was used as the 

loading control.Representative images are shown from an n=3. 

 

Figure 4.  Rapamycin (Rap) (0 µM, Con and DMSO or 10 µM) was added to MC3T3-E1 

cultures for 4 (A), 8 (B), or 24 (C) hrs.  Bafilomycin A1 (BafA1) was also added 2 hours prior to 

protein harvest.   LC3B-II protein abundance was determined to as an indicator of autophagy 

while PARP cleavage was monitored for apoptosis.  γTubulin was used as the loading control 

. 

Figure 5.  Established in vitro model of increased autophagy in undifferentiated (0d) and 

differentiated (7d) MC3T3-E1 cells was developed by subjecting them to treatment with 0 µM 

(Con and DMSO) or 10 µM rapamycin for 24 hr.  Bafilomycin (BafA1) of was added to cultures 

2 hr prior (e.g., 22 hr) to protein extraction.  Representative images (n=3) of western blot 

analyses of LC3B-II abundance from undifferentiated (A) and differentiated (B) MC3T3-E1 

cells are shown.  No changes in cPARP, Beclin1 or pBeclin1 (Thr119) were noted.   
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Figure 6.  Following de-calcification and fixation in 2% glutaraldyhyde, 0.15 M EDTA, 1M 

sodium cacodylate, tibias to be processed for TEM were washed 3 times for 20 min each in wash 

buffer, followed by post-fixation in 1% osmium tetroxide (60 min).  After fixation, the samples 

were washed 3 times for 20 min each wash with buffer and then dehydrated by passing through 

multiple ethanol dehydration steps (e.g., 50%, 70%, 80%, 90%, 95%, and 100% for 3 changes).  

Tissues were then washed three times for 20 minutes each in propylene oxide.  Tissues were 

infiltrated by 1:1 propylene oxide and Poly/Bed resin for five days.  Propylene oxide was 

allowed to evaporate off, and then tissues were embedded in 100% poly/bed resin and placed in a 

60°C oven for 48 hr.  Thin sections (75 nm) were cut using a Reichert-Jung UltraCut E 

microtome and a Diatome diamond knife.  Thin sections were positioned on grids and stained 

with uranyl acetate and Reynold's lead citrate.  These sections were then imaged on a JEOL 

JEM-2100 TEM (JEOL USA, Inc, Peabody, MA).  Representative images are shown at 4000x 

direct magnification. 

 

Figure 7.  Characterization of glucose transporter (GLUT)1 or Slc2a1(A), GLUT2 or Slc2a2 (B), 

GLUT3 or Slc2a3 (C), and GLUT4 or Slc2a4 (D) in MC3T3 cells cultured in complete (control) 

αMEM or osteogenic (complete αMEM supplemented with 10 mM β-glycerophosphate and 25 

μg/ mL ascorbic acid)  over time.  All qPCR results were evaluated by the comparative cycle 

number at threshold (CQ) method, and genes of interest were normalized to the invariant control, 

peptidylprolyl isomerase B (Ppib) and expressed as relative mRNA abundance.  Data is 

presented as the mean ± SEM.  Bars that share the same superscript letter are not significantly 

different from each other (P<0.05).   

 

Figure 8.  Characterization of glucose transporters (GLUTs) in the flushed femur at the mRNA 

and protein level from C57BL/6N mice on a control (Con; AIN93M) or high fat (HF; 60% kcal 

from fat) diet for at 2, 8, and 16 wk.  qPCR was performed to determine GLUT3 or Slc2a3 (A) or 

GLUT4 or Slc2a4 (B) mRNA abundance,  normalized to the invariant control, peptidylprolyl 

isomerase B (Ppib).  Protein abundance of GLUT3 and GLUT4 from flushed femur samples (C-

E). 

 

  



201 
 

Figure 1. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Abbreviation Description 

ADP adenosine diphosphate 

AGE advanced glycation end-products 

Alp/ Alpl alkaline phosphatase  

AMBRA activating molecule in beclin-1 regulator autophagy 

AMP adenosine monophosphate 

AMPK AMP-activated protein kinase 

Ap-1/ cFos activator protein-1  

Atf4 activating transcription factor 4  

ATG/ Atg autophagy related protein 

ATP  adenosine triphosphate 

AUC area under the curve 

BafA1 bafilomycin A1 

Barkor/ Atg14L beclin 1-associated autophagy-related key regulator 

Bcl-2 B-cell lymphoma-2  

Beclin1/ Becn1 Bcl-2-interacting myosin-like coiled-coil protein 

BMA bone mineral area 

BMC bone mineral content 

BMD bone mineral denisty 

BMI body mass index 

BMP/ Bmp bone morphogenic proteins  

BSP/ Ibsp bone sialoprotein/ integrin binding sialoprotein 

BV/TV bone volume/ total volume 

Casp3 caspase 3  

CD14  cluster of differentiation 14 

CDC Center for Disease Control and Prevention 

cDNA complementary DNA 

CFU colony forming units 

Col1a1/ Col1a1 collagen type 1 alpha 1  

Con control 

ConnDens connectivity density 

COPD chronic obstructive pulmonary disorder  

Cre causes recombination 

CTSK/ Ctsk cathepsin K  

CTX cross-linked telopeptides of type I collagen  

Cxcl10 chemokine (C-X-C motif) ligand 10 

DAMP damage-associated molecular pattern  

DAPK death-associated protein kinase 

Deptor DEP domain-containing mTOR-interacting protein 

DMP dentin matrix protein  

DNA deoxyribonucleic acid 
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DXA dual energy x-ray absorptiometry 

ECF extracellular fluid  

EF1 translational elongation factor 1 

ELISA enzyme-linked immunosorbent assay  

Fasn fatty acid synthase 

FetA fetuin A  

FIP200 focal adhesion kinase family-interacting protein of 200 kDa 

FoxO3 forkhead box O3 

Fra1/ Fosl1 Fos-related antigen 1  

FRAX Fracture Risk Algorithm  

FRB FKBP12–rapamycin-binding domain  

GABARAP GABA(A) receptor-associated protein 

GABARAPL2/ 

GATE16 GABA(A) receptor-associated protein-like 2 

GFP green fluorescence protein  

Gla-OCN total carboxylated OCN 

Glu-OCN undercarboxylated OCN 

GLUT/ Slc2a glucose transporter/ solute carrier family 2 

Gpx1 glutathione peroxidase 

hESC human embryonic stem cells  

HF high fat 

HIF hypoxia inducible factor 

HIV human immunodeficiency virus  

HMGB1 High-mobility group protein B1 

HSC hematopoietic stem cells  

HSP heat shock protein  

ICAM1 Intercellular Adhesion Molecule 1 

Ifit1 interferon-induced protein with tetratricopeptide repeats 

IFN interferon 

IGF-1 insulin-like growth factor  

IGTT intraperitoneal glucose tolerance test 

Ihh Indian hedgehog  

IKK  IκB kinase  

IL interleukin 

IR insulin receptor 

IRAK IL-1 receptor-associated kinase  

IRF interferon regulatory factor 

IRS insulin receptor substrate 

JNK c-Jun NH(2)-terminal protein kinases  

kcal kilocalorie 

Km Michaelis constant 

http://en.wikipedia.org/wiki/I%CE%BAB_kinase
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LC3/ Maplc3 microtubule-associated protein 1 light chain 3 

LDL low density lipoprotein  

Lepr leptin receptor 

LOX lysyl oxidase 

LPS lipopolysaccharide 

LRP low density lipoprotein receptor-related protein  

Mac-1  macrophage adhesion molecule-1 

MAL MyD88-adaptor-like 

MEFs mouse embryonic fibroblasts  

microCT/ µCT micro-computerized tomography 

mLST8/ GβL 

mammalian lethal with SEC13 protein 8/ G protein β subunit-like 

protein 

MSC mesenchymal stem cells  

mTORC mechanistic target of rapamycin complex  

MyD88 myeloid differentiation primary response 88 

NAFLD non-alcoholic fatty liver disease  

NFATc1 nuclear factor of activated T-cells  

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NNT nicotinamide nucleotide transhydrogenase 

NSAID non-steroidal anti-inflammatory drug  

Ø control 

OCN/ Bglap osteocalcin/ bone gamma-carboxyglutamate (gla) protein 

OPG osteoprotegerin  

OPN/ Spp1 osteopontin/ secreted phosphoprotein 1 

Osx/ Sp7 osterix/ Sp7 transcription factor 7 

PBMC peripheral blood mononuclear cells  

PDK phosphoinositide dependent protein kinase  

PE phosphatidyl ethanolamine  

PI3K phosphatidylinositol 3 kinase  

PIP phosphatidylinositol 4, 5-bisphosphate 2 

Ppara peroxisome proliferative-activator α 

Ppib/ Cyclo peptidylprolyl isomerase B/ cyclophilin 

Pras40  proline-rich AKT1 substrate 1 

PRR pattern recognition receptors  

PTB phosphotyrosine binding domain  

PtdInsK class III phosphatidylinositol 3-kinase  

PTH parathyroid hormone 

PTHrP PTH-related peptide  

qPCR quantitative real-time polymerase chain reaction 

RA rheumatoid arthritis 

RAGE receptor for advanced glycation end-products 



221 
 

RANK receptor activator for NF-κB  

RANKL RANK ligand 

Rap rapamycin 

Raptor regulatory-associated protein of mTOR 

Rheb  ras homology enriched in brain 

RNA ribonucleic acid 

ROCK1/ ROKβ Rho kinase 1 

RR relative risk 

RTK receptor tyrosine kinase 

Rubicon 

RUN domain protein as Beclin1 interacting and cysteine-rich 

containing 

Runx2/ Cbfa1 runt-related transcription factor 2/ core binding factor alpha 1 

SAS statistical analysis software 

SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SE standard error 

sFFA saturated free fatty acids  

SH2 Src homology 2  

SLE systemic lupus erythematosus  

Smad  small body size,  mothers against decapentaplegic 

SMI structural model index 

SNP sodium nitroprusside  

SOF Study of Osteoporotic Fracture 

SOST/ Sost1 sclerostin 

Srebp1c sterol regulatory element-binding protein 

T1DM type 1 diabetes mellitus 

T2DM type 2 diabetes mellitus 

TAK1 tranforming growth factor (TGF)-β-activated kinase 1  

Tb.N. trabecular number 

Tb.Sp trabecular separation 

Tb.Th. trabecular thickness 

TEM transmission electron microscopy  

TIP60 HIV-1 Tat interactive protein, 60 kD 

TIR toll/interleukin-1 receptor  

TIRAP toll/interleukin-1 receptor TIR adaptor protein 

TLR-4 Toll-like receptor 4 

TNFα tumor necrosis factor alpha 

TRAF TNF receptor-associated factor  

TRAP/ Acp5 

tartrate resistant acid phosphatase/ acid phosphatase 5, tartrate 

resistant  

TRIF TIR domain-containing adaptor inducing IFN-β  

TSC1/2  tuberous sclerosis complex 
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TZD thiazolidinediones  

ULK unc-like kinase  

UVRAG UV radiation resistance-associated gene 

VOI volume of interest 

Vps34 vacuole protein sorting 

WBC white blood cells 

Wnt wingless-related 
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