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CHAPTER 1

INTRODUCTION

In this chapter I briefly review the highly successful Standard Model of particle
physics. We also identify its problems, both theoretical and experimental. This
leads us to discuss possible extensions based on both supersymmetry and left-right
symmetry. The motivations for considering these extensions are discussed in the sub-
sequent sections. Universal extra dimensional models, which can lead to alternate

solutions to the problems in Standard Model is also discussed briefly.

1.1 The Standard Model

The Standard Model of particle physics is a hugely successful model which combines
the electromagnetic and weak forces under a more unified framework. It describes
the various interactions existing in nature not including gravity. The Standard Model
is based on the gauge group SU(3)¢c x SU(2) x U(1)y [1] under which the fermions

transform as

Usr, vir
Q:(1,2,1/3) = ; Li(1,2,—-1) = ;
dir, €iL
ul(3%,1,-4/3); d5(3",1,2/3); e5(1,1,2), (1.1)

where i = 1 — 3 denotes the generation and the numbers in brackets are the SU(3)c¢,
SU(2) and U(1)y quantum numbers respectively. The @ and L are the quark
and lepton doublets, while u¢ d° and ¢ (with ¥¢ = (¢°) = C’E;) are the charge

conjugates of the right-handed up-type quark, down-type quark and charged lepton.



We see that the left-handed fields are doublets under SU(2),, while the right-handed
fields are singlets. The hypercharge Y is defined in such a way that the electric charge
Q satisfies the relation Q = T57, + % where T3, is the third component of isospin of
the SU(2), group.

A scalar Higgs boson doublet, which transforms as

H+
H(1,2,1) = (1.2)
HO
under the Standard Model gauge group, is required to generate mass for all the
particles via the Higgs mechanism.

The success of the Standard Model lies in the fact that essentially all of its pre-
dictions have been experimentally verified since it was first proposed. The existence
of massive charged W-bosons, massive neutral Z-boson, the charm and top quarks
were all predicted by the Standard Model before they were experimentally observed.
It can predict the anomalous magnetic moment of the electron to an accuracy of part
per billion in agreement with experiments. It can also quantitatively explain the CP
violation and mass splitting seen in the neutral K-mesons. With the recent discovery
of Higgs boson at the Large Hadron Collider, it seems that Standard Model has all the
essential ingredients to explain the observed phenomenon in High Energy colliders.

In spite of all the successes of the Standard Model, some experimental observations
compel us to think that it is not complete and may be a remnant of some higher
symmetry. The strong CP problem, which deals with the experimentally observed
fact that the weak interaction sector admits C'P-violation while nothing similar has
been observed in the strong interactions although one can write down such interactions
consistent with symmetries, cannot be naturally explained in the framework of the
Standard Model. The experimentally observed neutrino oscillations suggest that the
neutrinos have finite albeit small masses while the Standard Model neutrinos are

massless. The existence of dark matter has been well established from the rotation



curves of galaxies and gravitational lensing observations. The Standard Model has
no such invisible particle which can be considered as a dark matter candidate. The
baryonic asymmetry in the universe cannot be explained as the asymmetry produced
by Standard Model is too small compared to the observed value.

The main focus of this dissertation is dedicated to the study of models involving
the left-right supersymmetric extensions of the Standard Model. We now briefly
discuss some of the aforementioned problems of the Standard Model which can be

easily explained in framework of left-right supersymmetric models.

1.1.1 Strong CP problem

The weak interactions have been experimentally seen to violate C'P-symmetry, for
example in the neutral kaon and B meson decays. One would expect such a phe-
nomenon to appear in the strong interactions as well. The QCD Lagrangian admits

a term

09> ..
Locp = 55 560G (1.3)

where éa,w is the dual field strength for the gluon. This term violates P and T and
hence from the conservation of C'PT symmetry, it is C'P violating as well.
The physically observable parameter is a combination of 6 in Eq. (1.3) and the

phases of the quark masses and is given as
0 = 0 + Arg [Det(M,)], (1.4)

where M, is the quark mass matrix.

The experimental limits on the neutron electric dipole moment provides stringent
constraint on the value of @ to be less than 1071° [2] [3]. A fundamental dimensionless
parameter appearing in the Standard Model Lagrangian should naturally be of order
one but its observed smallness from the experimental measurement is what is known

as the strong CP problem.



1.1.2 Neutrino oscillation and neutrino mass

Experiments with solar, atmospheric and reactor neutrinos have provided compelling
evidence of neutrino oscillations [4-7]. During their flight, neutrinos of different flavor
Ve, Vy, V7 can oscillate into one another due to non-zero neutrino masses and neutrino
mixing. In the formalism of local quantum field theory this means that the flavor
eigenstates of neutrinos are linear combinations of three (or more) neutrinos v;, with

masses m; # 0 :
v(z) = Z Ujvir(z), l=e,v,T (1.5)
J

where v, is the left-handed component of the field v; possessing a mass m; and U
is the neutrino mixing matrix, also known as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix.

For a simplified version with only two flavor of neutrinos, the PMNS matrix is

parametrized by a single Euler angle 6 and the oscillation probability of v, — 5 with

a # 3 is given by

AmZ L
P (Vo — vg) = 4sin®  cos® 0 sin® ' o (1.6)
4F
where the relativistic energy-momentum relation £ = \/m? + |p]? with m << |p] has

been used. The parameter L is called the oscillation length and Am3, = m3 — m?.

A non-zero oscillation probability not only requires the neutrinos to be massive but
also non-degenerate.
From current experimental results, the mass-squared difference for the three neu-

trino mass eigenstates are [8]:
Am3, = 7.591020 x 107° eV?

(2.45+0.09) x 1073 eV? for normal hierarchy;
Am3, =
31

—(2.34%5:50) x 1073 eV2  for inverted hierarchy;



Neutrino experiments this far have not been sensitive to the sign of Am2, and hence
there are two possible cases. Of the two cases, normal hierarchy refers to the case
where m; < mq < mg and inverted hierarchy is one for which ms < m; < mo.

These experimentally observed mass-squared differences mean that the neutrinos
must have small non-degenerate masses. In the Standard Model this is not possible
because of the absence of any right-handed neutrino. An extension of the Standard
Model with a singlet right-handed neutrino will allow us to write mass terms and
hence can solve this problem. If we consider the neutrino v as a four-component
spinor and vy, g as it left and right chiral projections, a Dirac mass term Lp coming

from the Yukawa coupling terms in the Lagrangian can be written as
ﬁD :mDELI/R—i—h.C. (17)

where mp is a complex matrix obtained after electroweak symmetry breaking. The

singlet right-handed neutrino can have a Majorana mass term Lj; given as
,CM = mRV};C_IVR (18)

where mp is the Majorana mass matrix. The Dirac mass term in the Lagrangian is
invariant under a global U(1) symmetry under which v — €®v. This global symmetry
can be identified as the lepton number. The Majorana mass term, on the other hand,
has no such symmetry and breaks the lepton number by two units. In presence of
Ly, the AL = 2 type lepton-number-violating processes such as neutrinoless double
[ decay will take place. Observation of such processes can be a strong indication of
Majorana character of neutrinos though presently this remains an open question.

Using these terms in the Lagrangian, the neutrino mass matrix looks like:

0 mp
M = . (1.9)
m:f) mpg

The light neutrino mass matrix is then given as

M, = mpmz'my}, (1.10)



Here mp = Y, v with Y, being the Dirac Yukawa coupling matrix and v = (H") = 174
GeV is the electroweak vacuum expectation value. This mechanism of generation of
light neutrino mass is known as the seesaw mechanism.

For a single neutrino generation the light neutrino mass will be (Y, v)?/mp. To
get the light neutrino mass to be of the order of 0.1 eV as suggested by oscillation
data, we either need the Yukawa couplings to be very small (Y, ~ 107'?) or the
heavy neutrino to be very heavy (mpr ~ 10 GeV) or a combination of these two

possibilities (e.g. Y, ~ 107¢ and mp ~ O(TeV)).

1.1.3 Dark Matter

The existence of Dark matter [9] and that its abundance in our universe is much
higher than ordinary baryonic matter is one of the most astounding revelations of
the twentieth century. Our universe consists of around 26.8% dark matter, 4.9%
baryonic matter and the rest is contributed to what we call Dark energy. One of
the earliest evidences of dark matter came from the astronomical observations that
various luminous objects move faster than one would expect if they were only affected
by the gravitational force of other visible objects. This led to the conclusion that there
must be some other form of invisible matter which exerts gravitational force on the

visible objects in the universe.

. rotational velocity

/\'\LW__

[km/s)

50000 100000
distance from cente (light years)

Figure 1.1: Rotation curve for M33 galaxy(Credit Queens University)



At the galactic scale, the evidence of dark matter can be seen from the rotation
curves of galaxies. The galactic rotation curve is a graph of circular velocities of stars
and gas as a function of their distance from the galactic center. The rotation curve
for the M33 galaxy in shown in Fig 1.1. The rotation curve exhibits a flat behavior at
large distance from the galactic center while for an inverse-square law like gravity we
expect the rotation speed of the distant stars to fall off as the mass density decreases
away from the galactic center. There must exist some other form of matter which
is almost uniformly spread over the galaxy and hence explains the flat nature of the
rotation curve.

The bullet cluster seen in 2006 consists of two colliding cluster of galaxies. It is
shown in Fig 1.2. During the collision, most of the stars easily pass each other while
the gas cloud from the merging galaxies slowed down and were concentrated mostly
at the center. Using gravitational lensing technique, astronomers measured the mass
of the stars that were now separated from the gas. This measurement showed that the
stars were much more massive compared to their calculated mass. The explanation
can be that there is some other form of matter which interacts very weakly and could

easily pass the collision and thus was contributing to the total observed mass.

Figure 1.2: The Bullet Cluster showing two colliding galaxies.(Credit nasa.gov)



These and other experiments have proved beyond doubt that there exists some
form of matter which exerts gravitational force but is otherwise invisible. If such a
particle exists in nature, any particle physics model should have a viable dark matter
candidate. Unfortunately Standard Model has no such particle and hence we need
to look for some other models which will have a weakly interacting particle with the
required abundance to be a dark matter candidate. Any new model though has to

eventually give us the Standard Model at low energies.

1.2 Supersymmetry

Supersymmetry is a generalization of the space-time symmetries of quantum field
theory that transforms fermions into bosons and vice verse. It extends the Poincaré
algebra through introduction of four anticommuting spinor generators into the Su-
perPoincaré algebra. Supersymmetry also provides a framework for the unification of
particle physics with gravity [10] under supergravity.

In supersymmetric models, each boson(fermion) of Standard Model has a super-
symmetric partner which is a fermion(boson). These superpartners have the same
internal quantum numbers except their spin which differs by half. Together, a par-
ticle with its supersymmetric partner forms what is called a supermultiplet. A su-
perpotential is constructed consisting of gauge invariant, holomorphic terms which
are linear, quadratic or cubic functions of the superfields as higher order terms will
lend the theory non-renormalizable. The coefficients of the quadratic functions of the
Higgs boson fields in the superpotential are known as the p parameters and have the
dimension of mass. The cubic terms in the superpotential gives rise to three particle
vertices and are called the Yukawa coupling terms. This superpotential gives rise to
the so called F-terms in the supersymmetric Lagrangian.

In Standard Model, one can calculate the radiative corrections to the Higgs bo-



son mass from all the particles that couple with the Higgs boson. This calculation,
unfortunately, gives a result which is quadratically divergent with the cut-off scale.
This yields a natural Higgs boson mass which is of the order of Ultraviolet cut-off
of the theory, generically around the Planck scale (~ 10 GeV). We need a large
fine-tuning to get the Higgs boson mass to be the experimentally observed value of
125 GeV. This is known as the hierarchy problem. Supersymmetry has an ingenious
mechanism to bypass this problem. This resides in the fact that bosonic couplings
provide radiative corrections which are opposite in sign with respect to fermion loops.
Since supersymmetry has both bosonic and fermionic particles in the same supermul-
tiplet, there is an exact cancellation of these quadratically divergent contributions
thus solving the hierarchy problem. In any realistic model supersymmetry must be
broken in such a way so as not to introduce any quadratic divergence.
Supersymmetric models allow for the existence of renormalizable baryon and lep-
ton number violating terms is the superpotential. These terms are dangerous since
the lepton and baryon number violating processes are strongly constrained by exper-
iments, especially from proton stability. These unwanted terms can be prohibited by
requiring the superpotential to be invariant under a Z, symmetry known as R-parity

which is defined as
R — (_1)3(37[/)4*25’ (111)

where S is the spin of the particle and B and L are the baryon and lepton num-
ber respectively. All the Standard Model particles have R-parity of +1 while their
superpartners have R-parity —1. Hence if R-parity is conserved, the lightest super-
symmetric particle (LSP) cannot decay and can be identified as a dark matter candi-
date. The dark matter annihilation cross-section of order 0.1pb, which is natural in
supersymmetric models, leads to the correct relic abundance.

In an exact supersymmetric theory, the particles and their superpartners would

be degenerate in mass. Since no such supersymmetric particle has been observed in



experiments, supersymmetry must be a broken symmetry. Supersymmetry breaking
can be achieved by writing a soft supersymmetry breaking [11] potential which con-
sists of terms which are either linear, quadratic or cubic functions of the fields. These
terms break supersymmetry softly by not introducing any ultraviolet divergences in
the scalar masses, thus maintaining the cancellation of quadratic divergence as dis-
cussed earlier. The cubic terms in the soft supersymmetry breaking Lagrangian are
called the trilinear A-term and their coefficients are denoted by A;. The u-terms in
the superpotential along with the trilinear A-terms can lead to additional sources of
CP violation and give rise to the SUSY CP problem [12]. Experimental limits from
the electron and the neutron electric dipole moments imply that the SUSY phases

must be < 1072, which is known as the SUSY CP problem.

Field SUB). | SUQ)L | ULy
~ ﬁeL
L= 1 2 1
er
E¢ 1 1 2
R i
O=1|" 3 2 1
L
Ue 3* 1 —4
D¢ 3* 1 2
) ht
H,=| " 1 2 1
;Lo
. o
Hy=| 1 2 1
hy
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Table 1.1: Matter and Higgs superfield content of the MISSM




The minimal supersymmetric extension of the Standard Model (MSSM) consists of
extending the Standard Model particle spectrum by adding their superpartners. The
matter and the Higgs superfields of the MSSM is given in Table 1.1. An extra Higgs
boson doublet field is needed to generate masses for both the ”up”-type and ”down”-
type quarks (and charged leptons) in a way consistent with supersymmetry. The

superpotential is given by
WMSSM = YuQI{]uUC + }/dQI:IdDC + }/ZIA/HdEAC + /L]:Iu]:]d (112)

where Y,,,Y; and Y, are the up, down and lepton Yukawa coupling matrices. The
F-term and the soft supersymmetry breaking terms of the Lagrangian can be derived
from the superpotential while a D-term can be written for the scalar superfields. The
Lagrangian would thus consist of the Kinetic terms for all the superfields along with
the F-term, D-term and the soft supersymmetry breaking terms. This generates all
the masses and couplings of the particles except the neutrino mass which requires

either the introduction of a right-handed neutrino or R-parity violating couplings.

1.3 Left-Right Symmetry

The chiral structure of the Standard Model and its inability to explain the origin
of parity violation in weak interactions compels us to think of a theory which has
a left and right chiral symmetric structure. This left-right symmetry would extend
the gauge group of the Standard Model into SU(3), x SU(2), x SU(2)gr x U(1)p_1L
[13]. This would imply that the fundamental weak-interaction Lagrangian is invariant
under parity symmetry at scales much above the electroweak scale and the parity
asymmetry observed in nature arises from the vacuum being noninvariant under parity
symmetry. The origin of parity violation can be explained as the SU(2) g symmetry is
broken at some high scale leading to the observed parity asymmetry at lower energies.

New effects associated with the parity non-invariance of the Lagrangian are expected

11



to manifest themselves as the existence of a second neutral Z’ boson, Wx bosons,
right-handed charged currents, right-handed neutrino, etc. The mass scales at which
these new effects appear is the energy scale at which the right-handed symmetry is
broken.

The existence of a non-zero albeit small neutrino mass can also be easily under-
stood in the framework of the left-right symmetric models. The existence of a heavy
right-handed neutrino is warranted by parity invariance and its spontaneous breaking
at a high scale. This heavy right-handed neutrino can produce a small left-handed
neutrino mass via the seesaw mechanism as has been explained earlier.

The chiral fermion sector in this model becomes

U 1 U 1
QL = ~ <3a 2717 _) ) QR: ~ (37 172a _) ’
d 3 d 3

L R
14 14
LL = ~ (1,2;17_]-)7 LR: ~ (171727_1)7 (113)
e e
L R

where the numbers in the brackets denote the quantum numbers under SU(3)¢ %
SU(2), x SU(2)g x U(1)p_1, gauge groups. The electric charge of a particle in left-

right symmetric models is defined as

B-L

Q= Is;, + Isp + 5

(1.14)

where I3, and I3x are the third component of the isospin of the SU(2), and SU(2)g
respectively, B and L are the baryon and lepton numbers. This definition of the
charge is physically much more attractive compared to the Standard Model definition
where the hypercharge U(1) lacks any physical meaning and is arbitrarily adjusted
according to the actual charge of a particle.

Many Grand Unified Theories as well as fundamental Planck scale theories such

as string theory can more easily lead to left-right symmetric gauge structure and thus

12



it is a distinct possibility that the Standard Model will eventually become part of a

left-right symmetric structure.

1.4 Minimal Left-Right Supersymmetric Model with automatic R-parity

The minimal Left-Right Supersymmetric model [14] is a supersymmetric extension
of the left-right symmetric model of 1.3. The gauge group is extended to SU(3)c X
SU2)r x SU(2)r, x U(1)p—r. This extended gauge symmetry allows for parity to
be defined as an exact symmetry which can only be spontaneously broken. As a
consequence of the parity invariance, the Yukawa couplings and the corresponding
SUSY breaking A terms are hermitian, and the p term are real. This leads to a
vanishing electric dipole moment of fermions which solves the strong CP problem
and the SUSY CP problem. R-parity is part of the gauge symmetry as it is contained
in B — L. The model also has all the ingredients to explain the neutrino mass and
an unbroken R-Parity provides a stable dark matter candidate.

Unlike Standard Model, the quarks and leptons in this model consists of left-
handed and right-handed doublets. The right-handed lepton doublet has a right-
handed neutrino which is necessary for the generation of left-handed neutrino mass.
The Higgs sector, in one version, consists of two SU(2) g and two SU(2),, Higgs triplet
fields. The SU(2)g triplet fields are needed for breaking the SU(2)g x U(1)p-L
symmetry. It also has two bidoublet fields which are doublets under both SU(2)g
and SU(2),. These generate the quark and lepton masses and the CKM mixings.
There is also an optional singlet Higgs field which makes sure that the right-handed
symmetry breaking occurs in the supersymmetric limit.

The SU(2)g x U(1)g_r, symmetry is broken down to U(1)y by the SU(2)r Higgs
triplets. This generates a Majorana term for the v¢ field. If this symmetry breaking
takes place at a high scale, it will generate a large mass for the right-handed neu-

trino. The heavy right-handed neutrino Majorana mass term can, through the seesaw

13



mechanism, explain the small left-handed neutrino mass without the need to consider
unnaturally small Yukawa couplings. Thus, this model can explain the existence of
small neutrino mass.

The conservation of R-parity, which is a part of the gauge symmetry, prevented
the lightest supersymmetric particle from decaying and hence was considered to be
the dark matter particle. In this model, R-parity is automatically conserved and the
lightest neutralino can be considered as the dark matter.

We have seen how the Minimal Left-Right Supersymmetric model solves many
of the problems of the Standard Model and can naturally explain the existence of
neutrino mass and dark matter. As one might expect, this LRSUSY model is not
without its own set of problems. The tree-level Higgs potential in the model can be
shown to be lower for a charge breaking vacuum compared to the charge conserving
one. Also at the tree level, it can be seen that the computation of the doubly-charged
Higgs boson mass-square matrix yields a negative eigenvalue. This problem can be
solved by calculating the one loop correction to the potential and the doubly-charged

Higgs boson mass as will be discussed in details in chapter 2.

1.5 Universal Extra Dimension

Extra dimensional theories have seen a renewed interest since the advent of String
theory. String theory, the most promising theory to quantize gravity and unify it with
the other gauge forces, seems to require both extra dimensions, beyond the known
four, and supersymmetry as crucial ingredients for its consistency. The idea of extra
dimension, though, was first introduced by Kaluza and Klein [15] who were trying
to unify Electromagnetism and Gravity by assuming that the photon field originates
from the fifth component of a five dimensional metric tensor. In the Kaluza Klein
(KK) framework, the particles are free to move in the entire space formed by all the

dimensions and hence the length of the extra dimension must be small in order to be
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consistent with experimental observations. In the case of a product space formed of
the four-dimensional Minkowski space and a circle My x S!, the wave function of a

scalar field can be expanded in Fourier series along S' to be

o, y) = Z "R b (x (1.15)

V2R

where x stands for the regular 4D coordinate, y is the coordinate of the extra dimen-
sion of radius R and n is the eigenvalue of the one-dimensional angular momentum
operator. The Klein-Gordon equation of the scalar field thus becomes

n2

~ (1.16)

P'p. = —pg+ D

where p,, is the momentum four-vector. Thus we can see that in the four-dimensional
space, this is equivalent to a tower of particles of masses given by n/R. For energy
scales below 1/R, only massless modes with n = 0 can be excited and hence the low
energy physics is effectively four-dimensional.

Extra dimensional models with a low cutoff scale can provide a solution to the
hierarchy problem [16] [17]. The radiative corrections to the Higgs boson mass in
extra dimensional models are also quadratically divergent similar to the Standard
Model. The advantage of a low scale extra dimensional model is that the ultraviolet
cutoff scale is O(TeV) and hence the correction to the Higgs mass is of the electrowek
scale thus solving the hierarchy problem.

Recent interest in extra dimensional theories have given rise to two broad sub-
category of models. The first corresponds to those where the Standard Model fields
are confined to our regular (3+1) dimensions while only gravity can propagate in
the extra dimension. The other class of models are the ones in which some or all of
the Standard Model fields can access the extended space-time manifold. Universal
Extra dimension corresponds to the second class of models and is characterized by
flat extra dimension with small compactification radius of O(TeV™'). For the case

of minimal universal extra dimension (mUED), there is only one extra dimension
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which is compactified on a S'/Z, orbifold. This orbifolding is crucial in generating
chiral zero modes for fermions, which would otherwise be vector-like. The UED La-
grangian, in general, has KK number conservation which is broken by the boundary
conditions in mUED leading to the conservation of KK parity defined as (—1)™. This
discrete symmetry ensures that the lightest KK particle is stable and can be a dark
matter candidate. The conserved KK parity also means that any contribution from
the KK modes to the electroweak processes is at the loop level and is thus sufficiently
suppressed to not effect the experimental observations even for a relatively small KK-
spacing. The experimental observation of the Higgs boson and its observed properties

have put severe constraints on mUED as will be discussed later.

1.6 Organisation of this Dissertation

This dissertation is organized as follows. In chapter 2, I look at several variations of
left-right supersymmetric models differentiated by their symmetry breaking mecha-
nism. I calculate the masses of the Higgs bosons and Higgsinos and show that in some
cases one can easily obtain the experimentally observed Higgs boson mass even for
a relatively light stop squark which is not possible in the Minimal Supersymmetric
Standard Model. This is a new result that we have obtained which helps to explain
the current experimental Higgs boson mass even for a relatively light supersymmetric
particle spectrum.

In Chapter 3, I study the collider phenomenology of the production and decay
of the doubly-charged Higgs boson and Higgsinos at the Large Hadron Collider. A
new channel for the observation of these doubly-charged particles is suggested. I
analyze the final signal of four leptons and missing energy. I look at the invariant
mass, missing energy and angular separation plots for the final state particles and see
that the signal produced by our model would be very easy to distinguish from other

competing models.
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In chapter 4, I study the properties of the neutral Higgs boson in the framework
of mUED and compare them to the experimental observations. I specifically look at
the constraints on the mUED model from measured Higgs boson signal strength in

its various decay channels. This helps to put a lower bound on the size parameter of

the mUED model.

17



CHAPTER 2

LIGHT HIGGS BOSON MASS IN SUPERSYMMETRIC LEFT-RIGHT
MODELS

2.1 Introduction

Models based on the left—right symmetric gauge group G = SU(3). x SU(2)p X
SU(2)r x U(1)p_r [13] are attractive extensions of the Standard Model (SM) with
several interesting features. At the fundamental level Parity is a good symmetry in
these models. The observed Parity violation in weak interactions is explained by the
spontaneous breaking of SU(2)r x U(1)p_r down to U(1)y at a scale vy well above
the masses of the W and Z bosons. The gauge structure requires the existence of
the right—handed neutrino, and thus leads naturally to small neutrino masses via the
seesaw mechanism. In fact, with the right-handed neutrino included, Gs991 is the
maximal gauge symmetry that can be realized at a scale of order TeV, relevant to the
ongoing LHC experiments.” Because of Parity invariance these models can potentially
solve the strong CP problem [3] without introducing a global Peccei-Quinn symmetry
and the resulting axion.

Supersymmetric versions of left-right gauge models, denoted here as SUSYLR

models, preserve the merits of (G350; noted above, and in addition, solve the gauge

*There is a natural embedding of G3221 into the Pati-Salam symmetry Gyo0 = SU(4).x SU(2) 1, x
SU(2)r [18], however, the scale of G422 symmetry breaking must be of order 10° GeV, from K, — pe
decay constraints. Embedding Gs221 (or G492) into the unified symmetry group of SO(10) is very
natural, but that symmetry breaking scale must be of order 10'® GeV, from constraints on nucleon

decay and gauge coupling unification.
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hierarchy problem. It has been noted that the puzzle of small phases in the SUSY
breaking sector (required by electric dipole moment constraints) has a natural ex-
planation in the SUSY left-right models, by virtue of Parity symmetry [12]. Several
versions of the SUSYLR models have been proposed and studied in the literature,
with differing Higgs boson sectors used for symmetry breaking [14,19-23]. Here we
undertake a systematic study of the Higgs potential in various realizations of these
models, focusing on the lightest neutral Higgs boson mass my. In many cases we find
that the tree—level constraint m;, < my of the MSSM is modified to less stringent
constraint. [19]. This difference in the upper limit arises from the non-decoupling
D-terms of SU(2)g x U(1)p—r, which occurs when the symmetry breaking scale vg
and the SUSY breaking scale are of the same order. Thus, these models would predict
additional Wﬁ and Zi gauge bosons within reach of LHC experiments, in addition
to SUSY particles. In the MSSM heavy stops (m; > 2 TeV) with large mixing are
needed in order to accommodate the Higgs boson of mass 126 GeV discovered re-
cently at LHC. Such a large mass of the stop puts the gauge hierarchy problem in
a different perspective, since some amount of tuning would be required. With the
increased mass of my,, SUSYLR models would allow for the stops to be much lighter
and less mixed, and thus would alleviate the tuning problem.

Our analysis focuses on two basic classes of models which have been developed
in the literature. In one class Higgs triplets are introduced for SU(2)g symmetry
breaking along with SU(2); x SU(2)g bi-doublets which break the electroweak sym-
metry [14,21-23]. Fermion mass generation is via direct Yukawa couplings in this
class of models, including the Majorana mass of the right-handed neutrino. In a sec-
ond class, Higgs doublets are used to break SU(2)g symmetry, with doublets and /or
bi-doublets breaking the electroweak symmetry. Additional fermions are necessary
in this class for fermion mass generation, at least in the neutrino sector. A specific

example studied incorporates the inverse seesaw mechanism for neutrino masses with
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the inclusion of gauge singlet fermions. Another example, termed alternate left—right
model [19,20], has an Eg inspired particle spectrum. A third example uses a univer-
sal seesaw mechanism for quarks and leptons by introducing vector-like gauge singlet
fermions [24].

Non—decoupling D—term effects on the lightest Higgs boson mass in extensions of
the MSSM have been studied by various authors. In Ref. [19] symmetry breaking in
SUSYLR models with an Fg inspired particle spectrum was studied and a relation
my, < vV2myy was derived. In Ref. [23] symmetry breaking of SUSYLR models with
Higgs triplets was studied and an enhancement of m; compared to the MSSM result
was observed. Ref. [25] has studied extended gauge sectors, including an extra SU(2)
added to the SM gauge symmetry. In this case there is an unknown gauge coupling,
which was chosen so that it remains perturbative all the way to a GUT scale, and
significant increase in my was observed. In Ref. [26] non—decoupling effects of an
additional U(1) gauge symmetry was studied, which also showed a modest increase in
mp,. Our aim in this chapter is systematically study the Higgs boson sectors of various
realizations of SUSYLR models, which results in some overlap with earlier studies. In
one case we reproduce and generalize the results of Ref. [19]. In another case studied,
we provide an analytic formula for the upper limit on my that interpolates between
the decoupling and non—decoupling limits of left-right symmetry, where our results
agree roughly with the numerical results of Ref. [23].

When gauge singlets that couple to the MSSM Higgs fields are present in the the-
ory, additional F—term contributions to m,, arises. In several cases this contribution
is non—decoupling, a well-known case being the NMSSM [27]. Modes increase in my,
can arise from this contribution, although we find the non—decoupling D—term to be
more significant.

The remainder of this chapter is organized as follows. In Sec. 2.2 we briefly

explain the symmetry breaking mechanism, lepton mass and light neutrino mass
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generation mechanism for each of the models. In Sec. 2.3 we analyze the Higgs
potential of SUSYLR models with triplet scalars breaking the SU(2)r x U(1)p-L
symmetry. Various scenarios are discussed here. For electroweak symmetry breaking
we allow for one or two bi-doublets. We also allow for a gauge singlet that facilitates
LR symmetry breaking in the SUSY limit. We focus on the lightest neutral Higgs
boson mass and derive the tree-level constraint for my. In Sec. 2.4, Sec. 2.5 and
Sec. 2.6 Higgs potentials involving doublet fields are studied with several variations:
inverse seesaw, Fjg inspired spectrum, and universal seesaw for quarks and leptons. In
Sec.2.7 we calculate the radiative correction to the doubly-charged Higgs boson mass
and show that the one-loop corrections can make it positive. Finally, we summarize

the results.

2.2 The Left—Right Supersymmetric Model

In left-right symmetric models, the gauge group is extended to SU(3). x SU(2);, X
SU(2)r x U(1)g—r. The models we consider are supersymmetric versions of the left-
right symmetric model. We consider different symmetry breaking sectors leading to
several variations of the left-right supersymmetric models. The right-handed symme-
try breaking can be achieved either by triplet or doublet Higgs boson fields while the
electroweak symmetry is broken using bidoublets or doublet Higgs boson fields. Each
model has a common chiral fermion sector consisting of three families of quark and

lepton superfields given as

U 1 d°¢ 1
Q = ~ (3,2,1,—>7 Q= ~ (3*7172,__),
d 3 —uf 3

v e

L = ~ (1?2717_1)7 L= ~ (1717271)7 (21)
e —°

where the numbers in the brackets denote the quantum numbers under SU(3)¢ X

SU(2)p, x SU(2)gr x U(1)p_1 gauge groups.
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All the models discussed below must meet three main criterion. First, a right-
handed symmetry breaking mechanism consistent with the experimental limits for the
heavy gauge boson masses has to be present. Second, we must be able to generate the
fermion masses and thirdly, there must be a mechanism to generate a small neutrino
mass. We now briefly describe the models that have been studied in this work while

a detailed calculation of the Higgs sector will be discussed later.

2.2.1 Models involving triplet and bidoublet Higgs fields

This is the most straightforward way to satisfy our requirements for a consistent
model. A right-handed triplet Higgs field A° can couple directly to the right-handed
neutrino giving it a Majorana mass as well as break the right-handed symmetry as its
neutral component acquires a vacuum expectation value. The bidoublet field ® can
have Yukawa couplings with the fermions generating the quark and leptons masses.
Being a supersymmetric theory the right-handed A€ field must be accompanied by
another right-handed triplet A° field to achieve the right-handed symmetry breaking
without inducing any R-parity violating couplings. In a left-right symmetric model,
the right-handed triplets must also be accompanied by left handed triplets A and
A for parity conservation. Additionally, one or more bidoublet fields denoted by ®,
which are needed for generation of quark and lepton masses and CKM matrices. We
consider cases with and without an extra singlet field. In the absence of the singlet
field, it is not possible to break the right-handed symmetry in the supersymmetric
limit. This is perfectly consistent as long as we consider the right-handed symmetry
breaking and the supersymmetry breaking to be at the same scale. The singlet is
only needed to decouple the two symmetry breaking scales allowing the right-handed

symmetry to be broken at a much higher scale. Thus, the Higgs boson fields in this
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model are given as

it 5+t o 5 30
A(1,3,1,2) = | V2 CA(L3,1,-2) = 2|,
5 - -
2 V2
A 5 5C**
AC(171737_2) = vz _ 7Zc(1717372): \/% o+ )
SR P
NG) VG
+ 0
D,(1,2,2,0) = ¢10 %2 (i=1,2), S(1,1,1,0). (2.2)
o7 Oy

The fields getting non-zero vev are given by

<5CO> - <5> =T, (D) = vu> (03,) = v, (2.3)

while all other fields do not get any vacuum expectation value. We take the limit
where vg, T >> vy, V4.
The Yukawa terms in the superpotential for these models are
2
Ly = Z YIQTr®;mQ° + Y LT 13® ;7L + i fLT 1, AL + i f°L° 7 AL, (2.4)
j=1
where Y:Ij and Ylj are the quark and lepton Yukawa coupling matrices and f is the
Majorana neutrino Yukawa coupling matrix. This superpotential is invariant under
parity transformation under which & — ®f A — A A — Zc*,S — 5*0 —
QL — L, 0 — 0 etc. Parity invariance requires the Yukawa coupling matrices Y;Jj
and Ylj to be hermitian and f¢ = f. The Majorana mass term for the right-handed
neutrino is heavy and this facilitates the generation of a small left-handed neutrino
mass via the seesaw mechanism.
There are three heavy gauge bosons in these cases — two heavy right-handed W-
bosons and one heavy right-handed Z-boson. In the limit where the right-handed
vevs are much bigger than the electroweak vev, we can neglect the mixing between

the left-handed and the right-handed gauge bosons and obtain the mass of the heavy
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W-bosons as

1 _
My = Sg5(20p + 20% + vy, + vg,), (2.5)
and mass of the heavy Z-boson is
g2
M ~ R [4(v}, + %) cos Oy + (v2, + v ) cos® 20w ] (2.6)

2 cos? Oy cos 20y,

where 4 runs over the number of bidoublets in the model, gr is the SU(2)g gauge
coupling and 6y is the Weinberg angle.

These expressions for the gauge boson masses must be consistent with the ex-
perimental limit and will be relevant in setting a lower limit for the right-handed

symmetry breaking scale.

2.2.2 Inverse seesaw model

The right-handed symmetry breaking in the previous case was achieved using SU(2)r
triplet Higgs bosons but we can also use SU(2) g doublet Higgs field for the symmetry
breaking. This simplifies the Higgs boson sector considerably. A couple of bidoublet
are also present in the Higgs spectrum which can generate the quark and lepton
masses and CKM mixing. The problem with doublet Higgs boson fields is that they
do not directly couple to the right-handed neutrino and cannot produce a Majorana
mass term for them. Hence we need to introduce an extra heavy singlet neutrino N
for each generation of leptons in addition to the chiral matter fields that are given in
Eq. (2.1). This heavy neutral singlet would get a Majorana mass and can produce
a light neutrino mass. The Higgs sector thus consists of two right-handed doublet
fields needed for anomaly cancellation and another two left-handed doublets for parity
symmetry. The Higgs sector is given by the following Higgs fields

HY Hy H;,

Hp(1,2,1,—1) = JH(1,2,1,1) = JHp(1,1,2,1) = ,

h Hy Hp
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Hp(1,1,2,-1) = ,®,(1,2,2,0) = (a=1,2), (2.7)

and the vev of the neutral fields are given as

(HE) = v, (1) =0, (HR) = vn, (Hp) =0, (81) = vues (85) = vas (28)

The superpotential terms required for the quark and lepton mass generation in

this case is given as
2 ‘ 1
Wy = Z Y:IJQTTQq)jTQQC + }/ZJLTTQCDJ‘TQLC + ifLTTgﬁLN + ichCTTgﬁRN + §/LNN]\(29)
j=1

where Yqj and Yf are the quark and lepton Yukawa coupling matrix, f and f¢ are the
left-handed and right-handed neutrino Yukawa couplings matrices with the singlet
neutrino and py is the Majorana mass term for N. Again from parity invariance, the
Yukawa coupling matrices must be hermitian, f¢ = f and uy is real. Here only the
heavy neutrino has a Majorana mass term while the v and v fields get Dirac masses
by couplings among themselves and with the heavy neutrino. For each neutrino

generation, we get a 3 X 3 neutrino mass matrix given as

0 Ywv fur
Yo, 0  fOg|- (2.10)
for [Ur  pn
In the limit where v, and puy become zero, one of the eigenvalues of this matrix
vanishes. So, for small values of these parameters one can understand the existence of
a small neutrino mass. This is known as the inverse seesaw mechanism for generation
of neutrino mass.

The heavy gauge boson masses in this case are given as:

1 _
My = Sgp(Vi + U + 01 +v3), (2.11)
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and

2
9r
2 cos? Oy cos 20y,

M3~ [(v, + %) cos® Oy + (v] + v3) cos® 26| (2.12)

where gg is the SU(2)g gauge coupling, 0y is the Weinberg angle and vy, vg, vo are
the vev of the H.° Hg" ¢J fields respectively. Comparing these masses with the
experimental limit for the heavy gauge bosons we will be able to set a lower limit for

vev of the right-handed Higgs boson fields.

2.2.3 Universal seesaw model

One can choose an even simpler Higgs boson sector in order to achieve the symmetry
breaking. We can have a right-handed doublet field Hg to break the SU(2) symme-
try and a left-handed doublet Hy, for SU(2), symmetry breaking. For a supersymmet-
ric model one would also need H  and H, fields for anomaly cancellation. This Higgs
boson sector, without a bidoublet, will not be able to generate the quark and lepton
masses and we need to introduce additional heavy quark and lepton fields for this
purpose. The chiral matter sector in this case would consist of the quarks and leptons
given in Eq. (2.1) along with a set of heavy singlet quarks and leptons for each genera-
tion. There are a pair of heavy singlet quarks P(3, 1, 1, —%), N(3,1,1, %) and a singlet
lepton E(1,1,1,2) along with their conjugate fields P¢(3,1,1, %), N¢(3,1,1, —%) and
E¢(1,1,1,—2) respectively. We can also include a neutral singlet lepton given as
S(1,1,1,0) which can generate the light neutrino mass. This is not essential as the

neutrino mass can also be generated at the two-loop level by contribution from W,

and Wx exchange.. The Higgs sector in this case is given by:

H°\ _ H,"
HL<1727 17 _1) = 7HL(1727 17 1) = — 0 )
HL_ HL
Hyt\ _ Hg'
Hp(1,1,2,1) = Ha(,1,2,-1)=| " . (2.13)
Hg° Hp
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The absence of bidoublet fields prevent any direct coupling between the left-handed
and the right-handed fermions. The only possible Yukawa interaction terms would

involve the heavy singlet fermions and the light fermions as given below:

Wy = yuQFLP —yaQHLN —y LHLE + nyﬁLS
+YQHRP" — y5Q HRN® — i L HRE 4y LH 1S
+ myPP°+mygNN®+ mEE°+m,SS (2.14)

where y; and yf represent the 3 x 3 Yukawa coupling matrices and m; are the heavy
singlet fermions Majorana mass matrices. From parity invariance, the Yukawa ma-
trices must be hermitian while y§ = y; and all m; must be real. This gives a 2 x 2
mass matrix for the fermions and helps them get their masses in a way similar to the
seesaw mechanism.

The heavy gauge boson masses can be obtained from Eq. (2.11) and Eq. (2.12) by
substituting v; and vy to be zero.

We investigate two variations of this model with and without a singlet Higgs boson
since the mass of the lightest CP-even Higgs boson comes out to be very different in

the two cases as will be shown later.

2.2.4 FEg motivated left-right supersymmetric model

This model is motivated by the low energy manifestation of superstring theory where
the matter supermultiplets belong to the 27 representation of Fg group. The particle
content of this representation under the subgroup given by SU(3) x SU(2) x SU(2) x
U(1) is given as:

1 — 2 _ 1
(u,d)g, = (3,2,1, §)’ d; : (3,1, 1,5)7 (heu)g = (3,1,2, —g), (e“n)p - (1,1,2,1),

Ve ¢

2
£ (1,2,2,0), hr: (3,1,1—32), (vg, E)p: (1,2,1,—1), N¢:(1,1,1,0),

e Npg 3

(2.15)
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where the numbers in brackets represent their quantum numbers under SU(3).,
SU(2)r, SU(2)r and U(1)p_1 groups respectively. We can define an R-parity quan-
tum number in this case under which the u, d, v., e fields are even while the h, E, vg, N, n
fields are odd. The superpartners of these fields have opposite R-parity. The Higgs

fields can be identified as:

H 0 U H + &c¢
HL(172a ]-7_]-) - - = ~E s HR(l, ]_,2, 1) = r = ,
HL_ E HRO n
¢+ ¢0 Ec Nc
(1,2,2,00 = | = | = =l (2.16)
N ve €

The fermions and the gauge bosons have odd and even R-parity respectively,
except for the second W boson which must be odd as it links particles of opposite
R-parity. A small neutrino mass can be generated by the mixing of the n, vg and the
Ny, fields.

The heavy gauge boson masses can be obtained from Eq. (2.11) and Eq. (2.12) by

substituting vg to be zero.

2.3 The Left—Right Supersymmetric Model involving Triplet fields

In this section, we concentrate on the Higgs sector of the model, build the superpo-
tential and calculate the mass spectrum for the Higgs bosons and Higgsinos. We look
at the neutral CP-even Higgs boson mass and see how it gets modified with respect

to the Minimal Supersymmetric Standard Model.

2.3.1 Case with two pair of triplets, a bidoublet and a singlet

We first look at the case with the triplet Higgs fields A, A, A¢, A°, one bidoublet
Higgs field ® and a singlet Higgs boson S. For a fully realistic model, we need two

bidoublet fields to generate the quark mixing but for simplicity we will only use a
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single bidoublet for our calculations. This does not significantly affect the Higgs boson
masses as will be shown in a later section. The exact structure of the individual fields
in these multiplets are given in Eq. (2.2). The most general superpotential terms

involving only the Higgs boson fields in this case is given as:
W =S [Tr(AAZ) + Tr(A\A°A°) + %/Tr(cb%%) - MQ]
+ Tr [,ulAZ + [I/QACZC + g (@TTQ®TQ)i| + %52, (2.17)
where \¢ = \*, yuy = p3 and N, M?, i and ug are real from parity invariance.

The Higgs potential consists of the F-term, D-term and soft supersymmetry-

breaking terms, and is written as:
VHiggs = VF + VD + VSoft- (218>

In this case, the relevant terms in the Higgs potential are given by:

2

—~ e N
Ve = Tr|(AAA) + (VAA%) + 5(@%%) — M? + pgS| +Tr|ud + N SP|?

+ Tr [mlA +ASAP + A + ASZ\Q + |2 A + N SAC]?
+ |+ A*szﬂ : (2.19)
2

3
VD—%;

2 3
+ Ik Z ‘TI(QACTTGAC + QNTTQZC + ®'7,®)
8 a=1

2

Tr(2AT7,A + QZTTQZ + &'7,®)

:

2
97
T

2

Tr(ATA — AR — A“TAC + AR (2.20)

Vsore = miTr(ATA°) + m%Tr(ZCTZC) +m2Tr(ATA) + mZTr(ZTZ)
+ mg|SP + miTe(T®) + [AANSTr(AA + A°A”) + h.c.]
+ NAVSTr(®"1®7y) + hc.] + (ACA\M?S + h.c.) + (usBsS* + h.c.)
+ [ulBlTr (AZ) + pe BT (ACZC) + uBTr (@TTQ(I)TQ) + h.c.} ) (2.21)

We use this potential to calculate the Higgs boson mass-squared matrices for the

charged, neutral CP-even and neutral CP-odd Higgs bosons. The vacuum structure
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that we choose is given by:

0 UR — 0 0 0 (%) .
(A%) = ) <A > = , , (@) = ‘ {S) = vge's.
0 O VReE 0 vier 0
(2.22)

while the A and A fields do not get any vacuum expectation values(or VEV). For
simplicity we assume ¢r = 0, ¢ = 0 and ¢g = 0. This choice of phases negates the
mixing between the scalar and the pseudo-scalar Higgs bosons but does not signifi-
cantly affect the mass of the lightest CP-even Higgs boson. The values of vy and vg
are of the order of the right-handed symmetry breaking while v; and vy are of elec-
troweak scale and hence vg, U >> vy, v9. We first look at the CP-even Higgs boson
which is the main focus of this chapter. To easily identify the field corresponding
to the lightest eigenvalue, we take a linear combination of the Higgs fields so that
only two of the newly defined fields get a non-zero vacuum expectation value — one
at the high right-handed symmetry breaking scale and the other at the electroweak

symmetry breaking scale. The field redefinition that we use is given as:

—=c0 —<c0
P V18] + vagy P Ve — V1) P VR0’ + URd Py = TR0 — VRO
1= = P2 = T s 3T T e PA T T
Vi + 2 Vui 4+ v? v%—k@% U%—i—@%
(2.23)

In this rotated basis we calculate the mass matrix subject to the following minimiza-

tion conditions:

0 =vi[dm2 + g7 (—v3 + v3) + gr(—v3 + v] — 20% + 20%)] — 8N Ayvvs — 8B,
+ 4N vg(M? — Mg + Nvyvy — psvs) + dv1 (g + Nvg)?,
0 =vo[dm3 + g7 (v3 — v]) + gn(vs — v + 205 — 2U%)] — 8N Ayvivs — 8uBuy
+ 4Nv (M? — Mgtg + Nvyvy — psvs) + 4vs(p + Nvg)?,
0 =2mivg + grvr(—vi + v3 + 20% — 20%) + 2[givr(vh — UF) + AANURUs + o Bolp

+ vp (Avg + p2)? + ATR(—M? + Avgg — Nvyvs + pisvs),
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0 =2m3Tg + gavr(v — v5 — 205 + 20%) + 2[giUr(—vE + UR) + AMrvgrvs + ta Bovg

+ g (Mg + ,u2)2 + Mp(—=M? + Mgtr — Nvivg + psvs),

0 =2m%vg + 203 M2\ — 4N Ayvivy + 2AA\vgDg + 2[)\'2(11% +v3) + N2 (vh + %) |vg + 4us Bsvg

2uN (v} + v3) + 20 o (v, + 0) + 2us (—M? 4+ Aglp — Nvvs + psvs) . (2.24)

We first look at the scalar Higgs boson mass. The neutral components of the left-

handed A and A fields decouple and form a 2 x 2 mass-squared matrix with heavy

eigenvalues while we get a 5x5 mass-squared matrix in the basis (Rep;, Repa, Reps, Repy, ReS)

where one of the eigenvalues would remain light. The relevant terms in this 5 x 5

mass-squared matrix are given as:

Mo

My

g3 (v} —13)? + gh(v} — v3)? + BufuiN?
2(vf + v3)
7117]2(”2 - Uz)(gL + gR 2)‘/2)

Y

(vf +v3) ’
—gh(vi —03)(vh — TR) — 4N v10URTR
V(W 4 03)(vE, + TR) 7
2[gR( — V3)URUR — AN vve(vh — %)

Y

V(07 +v3)(v;, +7%)
2N [=2A 0109 4+ (v + v3) (Vs N + 1) — psvrvg]

b)
Vv + 03

[(292 + 292 vivs 4+ 2m2(vi 4 v3) + )\’2(7)% —v3)* + 2)\’2@?@(@% + v3)

AX (0 + 08) + 24307 + 13)] /(02 + 03,
2 [gxv1va(—v% +0%) + AN (v — v3)vRUR]
VUL 03R4+ T,

—4g%0109uRTR — AN (V3 — v3)(vh — T%)
VUi + i /v + T ’
N (0 = 8)(2Ax + ps)
Vv + 03 ’
2((g% + gv) (“R - UR) + 2)\ 20307
UR +v vR
2uRTR(vE, — UR)* (297 + 297 + %)
V% + 0%,

)

Y

Y
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2\ [A\vRTR + V5 (Avg + ) + TR(Avg + p2) + VRTRLS]

N R ’
My = [8(gh+ g0)vEbs + (m] + m3) (v + V) + N2 (vf; — %)
+ 2(\ws + p2)* (v +7%)] / (vh + UR),
My = — (v = TR)A (A + Ms)’
VU + 7%
Mss = m+N(vf + 03) + \*(vR + V%) + 1§ + 25 Bs. (2.25)

From our choice of basis, we can guess that the M;; element of the mass-matrix
along with the corrections from the off-diagonal elements would approximately be the
lightest eigenvalue for this matrix. We calculate the corrections to lightest eigenvalue
coming from the off-diagonal My, My3, M4 and M5 elements. It can be seen that
the M5 element is proportional to the square of the light vev while the diagonal Moo
element comes out to be proportional to the square of the heavy vev. Hence the
My, term gives a negligible correction to the lightest eigenvalue. Further we choose
parameters X', Ay and A, such that they make M3, M5 and M35 zero respectively.
Using this choice of parameters we calculate the correction and it can be shown that
in the limit where the soft supersymmetry breaking term m; is much bigger than the
right-handed symmetry breaking scale, the contribution vanishes and the M, is the

lightest mass eigenvalue for this case T. This gives us:

M2

htTee

= 2M, cos® 23 + A\*v? sin® 23, (2.26)

where tan § = %L and v* = vf + 3.
Including the radiative corrections from the top and stop sector, the Higgs boson

mass is:

M} = (2M}, cos? 23 + A\?sin® 28)A; + A, (2.27)

tIf we choose jug to be much greater than all the other mass scales in the model, we get back the

familiar result where the tree level CP-even neutral Higgs boson mass is bound by M.
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where

3 m}
A = (1-—=—+
' ( 87?21)2>’

3 mi[l -~ 1 3 m2 -
A, = 2 Zg g (20 g (Xt t2> 928
2 472 v? {2 IR (2 v? s e o (229

and m; is the top running mass, v = \/v? + v3 &~ 174 GeV, a3 is the running QCD
~ 2

coupling, X; is stop squark mixing parameter, and t = log% with M; being the top
t

pole mass and Mg being the geometric mean of the two stop squark masses.
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Figure 2.1: (a) Variation of Higgs boson mass with tan (8, (b) Higgs boson mass as a

function of Mg

The Higgs boson mass in this case is plotted in Fig. 2.1(a) as a function of tan .
The red region in the figure represents the band where the mass is between 124 GeV
and 126 GeV. Anything below this has not been included as that will be ruled out
by experiments. Any point above this can always be lowered by choosing a different
set of parameters, as one must remember that we have chosen our parameter space
so as to maximize the lightest Higgs boson mass. The light blue region represents
the area where the stop squark mixing is minimum i.e. X; = 0 while the pink upper
region is for maximal mixing where X; = 6. The green region is for all values of Higgs

mass greater than 126 GeV and it is overlapped by the blue and the pink region.
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Fig. 2.1(b) represents the Higgs mass and as a function Mg in Fig. 2.1(b). Again the
red band is where the Higgs boson mass is between 124 GeV and 126 GeV, green
region is for X; = 0, yellow region represents X; = 6 and blue region is for all values
of Higgs mass greater than 126 GeV which is overlapped by the green and the yellow
regions. The black dotted line in each case represents the MSSM Higgs mass. We
can see that a Higgs mass of 124 GeV can be very easily achieved in this case for a
very small mass of stop squark and even for minimal mixing between them.
The 2 x 2 mass-squared matrix corresponding to the neutral left-handed triplet
scalar Higgs fields in the original basis is given as
m3 + %(v% — ) + g2 (—vE +0%) + (s + m1)? A(M? — Mgtg + Nvjv — psvs) — AMyvg — By
A(M? = NogTg + Noyvs — psvs) — AMyvs — By m2 — L (v? — 02) + g2 (v% — B3) + (\ws + 1)
(2.29)
We now look at the pseudo-scalar Higgs boson masses in this model. The structure
of this sector is very similar to the scalar Higgs boson in the sense that the left-handed
triplet fields decouple to form a 2 x 2 matrix which is exactly the same as given in
Eq. (2.29) while the imaginary component of the other neutral Higgs bosons form a

5 x b matrix. We choose a basis given as

0 . —0
g = V1] — V29 g = VR0 — TRd e — 099 + 199 _ URO "+ uRd
== = = A hy =
V2 4 v3 VU + 0% VU3 + 3 v% + U5,
(2.30)

The Img, and Imgs, fields can be identified as the Goldstone bosons which are absorbed
by the Zgz-boson and the Z-boson to make them massive. Integrating out these
Goldstone states, the resulting 3 x 3 matrix in the basis (Imhs, Imhy, ImS) is given

as

My = mi+mi+ N (vh + 0% + 20%) + 2ua(2A\vs + p12),

My = )\)\'\/(v%—i—v%)(v%—i—ﬂé),
Mg = Mps — Ax)\/ vk + g,
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My, = 2m2+ N2 + 02 4+ 20%) + 2u(2Nvg + 1),

M23 = )\,<2A)\/ — MS)\ / U% + U%,

My = m2+ N2(v% +7%) + N2 (02 +02) — 1s(2Bs — pug). (2.31)

The charged Higgs boson sector has six singly-charged Higgs boson fields in this
model. Their mass-squared matrix can be split into two block diagonal matrices.
There is a 2 x 2 matrix corresponding to the 6t and § fields which in its original

basis is given as

2 (732 2 2 2
g (V% —v%) +m3 + 1 By
v (UR — vR) 3 1 (2.32)

By 9i (Vg — 0R) + mi + pd

The other 4 x 4 block has two Goldstone bosons which are absorbed by Wx and W

gauge bosons to get mass. The Goldstone eigenstates can be identified as

* —ct _* *
c_udf —vdy o V2] +03)([OrS +vRd” ) + (v5 — vF)(vagf +uidy )

g1 = y Yo —
Vi + 03 V203 +v3)2(vh + %) + (v3 — v})? (v} + v3)
(2.33)

In the basis given by

—c o _ —ct ok
s VRS — VRE® It —V2(v? 4+ v2) (028 + 016y ) + (V2 — v?)(TRS  + VRS )
1 vy V2007 +03) + (v — 0F2(v + %) |

(2.34)
the 2 x 2 singly-charged Higgs boson mass-squared matrix elements are given as

My, = _9R(R = TR) [l 207(—v) vk 4 Tg) + s o+ 205(v + Th)
(v} — v3)(vk + TR)

293VRVRY/ V] + 203 (—v3 4+ v} + U%) + v3[v3 + 2(v} + TR)]

Y

V% + % ’
Moy = [g5 {vR(—v] + v} — 205 — 20%) + Tp(—v + v} + 205 + 20%) — 6(v] — v3)vRTR
+ Agy (VTR — v — VTR +TR) — 2(mf —m3) (vk +7R)%] /(vg — TR). (2.35)

In this case, there is no constraint on the ms, my, p; and B;. So there is lot of

freedom in choosing a parameter space for calculating the masses in the 2 x 2 sector
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corresponding to the A and A fields. Instead we look at the other sectors and elimi-
nate moy, ms, B, By and C) from the minimization conditions given in Eq. (2.24). We
had also fixed the values of X', Ay and Ay when we were calculating the scalar Higgs
boson mass. Using all these constraints and choosing gr = g, = 0.653, g = 0.48,
A =07 v =30 GeV, vy = 171 GeV, vg = 2.5 TeV, vg = 2 TeV, m; = 4 TeV,
o =2TeV, u=1TeV, ug =2 TeV, mg =2 TeV, vg = 800 GeV and Bg =1 TeV,
we get the numerical values of the charged Higgs boson mass (denoted by M hf) for
this choice of parameters are M Wy = 8 TeV and M W = 1.43 TeV while the masses of
the pseudo-scalar Higgs bosons (denoted by Hy,) are My, = 7.86 TeV, M4, = 929
GeV and M4, = 1.19 TeV.

Chargino and Neutralino masses

The particle spectrum of this model is much richer compared to the Minimal
Supersymmetric Standard Model and hence the study of the chargino and neutralino
masses is crucial for determining the lightest supersymmetric particle. The higgsino
and the gauginos mix to form the chargino and the neutralino. The chargino mass

term in this case is written as

~ct

o + N g 0 0 —V2grvr 0 K
0 [ + Mg 0 0 0 5t
L= (50 id An A ) 0 0 pNvs  grn guvs | | Of |
V29rUR 0 9rRU1 Mp 0 Dy
0 0 gru 0 M, Af
(2.36)

~c0

and the neutralino mass matrix in the basis (ch L AS{) & B N Ar, ALy §>
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is given as

0 o + Nvg 0 0 0 0 —V2gvvr  V2grvg 0 NTg

Iy + N vg 0 0 0 0 0 V20vTr  —V29rTr 0 MNug
0 0 0 1+ A 0 0 0 0 0 0
0 0 1 + s 0 0 0 0 0 0 0

0 0 0 0 0 —p— Nvg 0 — gf/%‘ — gL\/’%l — Ny

0 0 0 0 —p— Nvg 0 0 9%2 g\L/%Q — Ny
—V2gvvr  V2qvTg 0 0 0 0 M, 0 0 0
V2grvr  —V29RUR 0 0 —4 %1 g \R/’%Q 0 Mp 0 0
0 0 0 0 v vt 0 0 My, 0
NUg Nog 0 0 — Ny X 0 0 0 s

(2.37)

2.3.2 Case with two pair of triplets, a bidoublet and a heavy singlet

We now look at the case where the single Higgs S is heavy and can be integrate it

out from the model to give the following superpotential:
J— —C X C 1
W = uTr(AA) 4+ poTr(AA") + eTr [A°A }2 + §,uTr(¢>TT2<I>TQ). (2.38)

Here € is proportional to 1/Mg with Mg being the scale at which the singlet is
integrated out. Since € is very small, we only kept the (—:Tr(ACZC)2 term in the
superpotential as other terms will have no significant effect to the lightest CP-even
Higgs boson mass.

The D-term of the Higgs potential is exactly same as in Eq. (2.20) but there will
be different contributions to the F-term and the soft supersymmetry breaking terms.

They are given by:
Ve = |uTr(ATA + ATR) + Tr [\;@AC + 2eARN + |3 + 26Z0ACZC\2}
+  |pfTr(@T®), (2.39)
Vsort = miTre(®T®) + [BuTr(®" n®7) + h.c.] + mjTr(ATA) + miTr(ZTZ)

+ m2Tr(ATA) + m%Tr(ZCTZC) + Tr(Bipn AA + h.c.)
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+ Tr(BopeA“A" + hec.) + [eD Tr(AA)? + h.c]. (2.40)

We use the same basis field redefinition as in Eq. (2.23). The minimization con-

ditions are given as:

0= —4Bpuvy + vy (412 + gr2 (01 — 02) + gr® (02 — vo® + 2052 — 20%) + 442 ,

0 = —4Bpvy + v (4my® + g1 (—01® + 12%) + gr® (—v1® + 02® — 20R% + 20%) + 44%)
0 = 2Bops¥p + [2m5” + 210° + gr* (v1° — v2%) | vr + 2 (98" + 9v?) vr (—0R + v})
+ 4€Up [DvRTR + p2(3v}, + Uy) + 260RTR(205 + U5)] |

0 = 2Bopiavg + [2me® + 2p2” + gr” (—v1® + v2°) | Dr + 2 (957 + 9v?) Uk (—vR® + V%)

+ devp [Devrlp + pa(vf + 30%) + 2evpTg(v, 4 20%)] - (2.41)

Calculating the neutral CP-even Higgs boson mass-squared matrix subject to
these minimization conditions, the matrix elements can be obtained from Eq. (2.25)
by putting all the triplet and bidoublet couplings to the singlet Higgs to be zero
with some extra terms in the Mss, M3y, My, elements. The relevant terms in the

mass-squared matrix are:

(97 + 97)(v] — v3)?

B,
(TR )
V0 +03) (0} +73)
M14 _ QQ%UR@R(U% — U%) , (2.42)
V(vf +v3) (v, + %)
My — 2(g% + g )v} — BojiaUr — 2€Ug [p2(V% — 3v%) — 8evhUg| |

VR
M34 = BQ,UQ — 2(9% + g‘Q/)URER + € [3,&2(1)]2{ + 5%%) + 21)35}{(D6 + 46(’012% + 5?{)] s
2(g% + gv )0k — Bapour + 2€vg 112 (30% — v}) + 8€Uup]

My, = = . (2.43)
UR

We calculate the contribution of the off-diagonal (M3, My4) entries in the mass-

squared matrix to the lightest eigenvalue using the seesaw formula. For simplicity we
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take the approximation D, = 0 and we get the following result:

M =2Mjcos®28 |1 —

(2.44)

where

x = Bopo(vy, — Up)* 4 2e(vy, + 03) [pa(vy — 100305 + Ug) — 24eviv’]
y = SURTRE(Bapts (v, + Tg) + p3[3vf, + 2050% + 3Up)e + 2paTr(Tvg, + 6URTR + TupTy)e”

+ vRURE(3ME (Ve + T%) + 16vRTR(VE + vE0% + Tg)e?],

tan g = z—; and gr = ¢r. This result shows that the lightest CP-even Higgs boson

mass has an upper limit of v/2My, in this case which can be realized if z = 0.} So
M; = 2Mj, cos® 23. (2.45)

Including the one and two loop corrections from the top quark and stop squark, we

get:
M} = (2M;, cos®2B) A1 + Ao, (2.46)

where A; and A, are defined in Eq. (2.28).

The Higgs boson mass is plotted in Fig 2.2(a) as a function of tan /3. The red
region in the figure represents the band where the mass is between 124 GeV and
126 GeV. The light blue region represents the area where the stop squark mixing
is minimum i.e. X; = 0 while the pink upper region is for maximal mixing where
X, = 6. The green region is for all values of Higgs mass greater than 126 GeV and
it is overlapped by the blue and the pink region. Fig. 2.2(b) represents the Higgs
mass and as a function Mg. Again the red band is where the Higgs boson mass is

between 124 GeV and 126 GeV, green region is for X; = 0, yellow region represents

If we consider ﬁ{ — v?% ~ MgUSY and vg,Ur >> Mgsysy, we get an upper limit of My for the

lightest scalar Higgs boson mass.
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Figure 2.2: (a) Variation of Higgs boson mass with tan 8, (b) Higgs boson mass as a

function of Mg

X; = 6 and blue region is for all values of Higgs mass greater than 126 GeV which is
overlapped by the green and the yellow regions. The black dotted line in each case
represents the MSSM Higgs mass.
The pseudo-scalar mass-squared matrix is again two 2 x 2 blocks which can be
obtained by putting all the singlet couplings to zero in Eq. (2.29) and Eq. (2.31).
The charged Higgs boson mass-squared matrix is exactly the same as in Eq. (2.35)

with some extra terms which become zero when we take D, = 0.
Chargino and Neutralino masses

We now look at the chargino and neutralino sector in this case. The chargino

basis is exactly the same as in the case discussed in section 3.1. The chargino mass
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matrix in this case is written as

o + €vgtp 0 0 —\/ZQRUR 0
0 w0 0 0
M, = 0 0 nu JRU2 grua | (2.47)
V29rUR 0 gru Mp 0
0 0 grvy 0 My,

~c0

and the neutralino mass matrix in the basis (gco L AS{) 5(1) (;(2) Mo Ars A Ls)

is given as
€v% po +evgtp 0 0 0 0 —V2gvvr  V2¢rvr 0
o + €VRUR ev?, 0 0 0 0 V29vTr  —V29rTr 0
0 0 0 1w 0 0 0 0 0
0 0 w0 0 0 0 0 0
M, = 0 0 00 0 —pu 0 —amy _aw
0 0 0 0 —u 0 0 i 22
—V2gvvr  V2gyTr 0 0 0 0 M, 0 0
V2gror  —V2gr0r 0 0 — gi}%l g\R/%Q 0 Mg 0
0 0 0 0 - g\L/%l g\L/%Q 0 0 My,
(2.48)

2.3.3 Case with two pair of triplets and a bidoublet

This is a special case of the one discussed in Section 2.3.1. We don’t have the singlet

Higgs and as a result it will be seen that the lightest Higgs boson mass becomes the
same as MSSM.

The most general superpotential relevant to our calculation is given by:
_ |
W = umTr(AA) + pTr(AAY) + §,U,TI'((I)T7'2(I)7'2). (2.49)

The D-term in the Higgs potential is exactly the same as given in Eq. (2.20), the

F-term can be obtained from Eq. (2.19) by putting all the singlet couplings to zero.
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The soft supersymmetry breaking terms are given by:

Vot = m2Tr(ATAC) + mgTr(ZCTZC) +m2Tr(ATA) + mZTr(ZTZ)
+ mpTr(®'®) + [BuTr (@ 1o®1) + h.c.]

+  [BiynTr(AN) + h.c.] + [BapeTr(AA") + h.c] . (2.50)

We use this potential to calculate the Higgs boson mass-squared matrices for
the charged, neutral CP-even and neutral CP-odd Higgs bosons. To easily identify
the field corresponding to the lightest eigenvalue, we redefine the Higgs fields. This
redefinition is the same as in Eq. (2.23).

The minimization conditions and the Higgs mass-squared in this case can again be
obtained by putting all the singlet couplings to zero in the model of Section 2.3.1.

Calculating the lightest eigenvalue for the CP-even Higgs boson mass-squared

matrix we get:

2
2 _ gi(9” +gp) (vt —v3)®
e 2g2 g% + 97 (97 — g3)] (v + v3)

(2.51)

If we assume that the SU(2)r gauge coupling (ggr) is equal to the SU(2), gauge

coupling (gz), tan 8 = £ and v* = vf + v3, then

2 /2
po= Wzﬂ cos® 23. (2.52)
The mass of the Z boson in this model is Mv. So we see that the tree-level

2

lightest CP-even Higgs mass has an upper limit of M. This is same as the case of
MSSM.

The charged mass-squared matrix is the same as in Eq. (2.35) while the pseudo-
scalar mass-squared matrix is composed of two 2 x 2 block which can be obtained
from Eq. (2.29) and Eq. (2.31) by putting all the singlet couplings to zero.

The chargino mass matrix in this case is a special limit of Section 2.3.1 obtained
by neglecting all the singlet couplings while the neutralino mass matrix is obtained

from Eq. (2.48) by putting € = 0.
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2.3.4 Case with two pair of triplets and two bidoublets

This case is a realistic model where, unlike previous cases, we can generate the CKM
matrices for quarks and leptons. The calculation of the Higgs mass, though shows
that the result is exactly the same as the case with only one bidoublet. Due to the
complexity of the calculations, we only discuss the neutral CP-even Higgs boson mass
in this case and see that it is the same as with one bidoublet. The particle content
of the Higgs sector will be exactly as in Eq. (2.2) except in this case a = 1, 2.

The superpotential of the model is given as:
_ —. 1
W = umTr(AA) + s Tr(AAY) + §ﬂabTr(q>§ T ®y72). (2.53)
The relevant terms in the Higgs potential is given by:

Vi = |uPTr(ATA + ATR) + |2 Tr(ATA + AR
2
+ > Tr(par 1 + fa2®2) [, (2.54)
a=1

2

3
L . 2
Vo = LY [1reainA + 38 n K + (Blrd) + (@r,0)
a=1

73 <
R
+§;

2
9v
5

Tlr(2ACT7'aAC + QACTTGA + (@ITaqh) + (@ETa@z)

e a2
Tr(ATA — AR — AAC + AR (2.55)

2
Vsopt = mapTe(@1®y) + Y Bapptay [Tr(h 1a®y72) + hoc.| + m3Tr(ATA) + m2Te(A'A)

a,b=1

+ m2Tr(ATAY) + m2Te (AR + [Bi Te(AR) + hec]

+  [BapaTr(AA") + h.cl. (2.56)

We use this Higgs potential for this variation of the LRSUSY model and calculate

the mass-squared matrix for the neutral CP-even Higgs boson. The vacuum structure
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for this model is given by:

0 VR —c
<AC> = ; <A > - ) <q)l> = ’ <CI)> =
0 0 @R 0 (%78 0 Vg 0

(2.57)

The left-handed triplet fields A and A do not get any VEV. We do a field redefinition
with the @9, #9,, 0%, #9, fields so that only one of the new fields get a non-zero

vacuum expectation value. The transformation we use is given by:

Uy ¢(1)1 + V4, ¢81 + UU2¢(1)2 + Ud2¢(2)2 Vg, ¢(1)1 — Uy ¢81 o Ud2¢81 — Uy, ¢82

P1 = 2 5 y P2 = 5 , P3 = 5 )
2 2 /042 /942
Uul + Udl + UUQ + Udz UU1 + Udl U’uz + Udz

UUI (/0132 + U§2)¢?1 + vdl (vgg + v§2)¢81 - UUQ (/031 + v§1)¢?2 - Ud2 (’Ugl + /021) (2)2

V@2, + 0302, +03,) (02, + 03, +12, +03,)

P4 =

The p; field gets a VEV of \/ v2 +v3 + 02, +v3, the other fields do not get any
VEV. The A and A fields decouple and we get a 6 x 6 mass-square matrix in the basis
(Rep1, Reps, Reps, Repy, Red<?, Regco). The minimization conditions for this case are
given in the Appendix. The matrix elements for this case are not quoted here as they
are lengthy and this case is not very interesting in terms of the final result which
comes out to be exactly as section 2.3.3.

Using the minimization conditions and the assumption that the right-handed sym-

metry breaking scale is much above the electroweak scale, we get the lightest eigen-

value to be:
, (g tg)(ve, —vh, v —va)t s
po= . 5 5 5 = M cos” 2f3 (2.58)
2(Uu2 + /Udg + /Uu1 + Udl)
(Ugl +U32) 2 ) 2 2 2
where tan § = Y——=Z% and v* = | /vZ +wv; +v;, +vg. We have made the as-

(vg, +v3,)

sumption that gr = gr.
This result is the same as the previous case and gives the tree-level mass of lightest

CP-even neutral Higgs boson to be Mj.
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2.4 Inverse seesaw model

The Higgs spectrum of this model is given in Eq. (2.7). The most general superpo-

tential terms needed for calculation of the Higgs boson mass are given as:

W = Z./,LngTQFL + Z',ungTQFR + )\HETQ(PTQHR + AHZTQ@TQFR + ,uTr [@TQ@TTQ] .

(2.59)
The relevant Higgs potential in this case is given as:
VF = Tr |:|?:/,617'2HL + ATQ@TQHR’Q + ‘i,ungﬁR + )\TQ@TTQHL‘2
+ |_Z.,L517-2HL -+ )\TQ@TQHR’Q + ‘—iﬂlTQHR -+ )\TQ(I)TTQFL‘Q
o 2
+ (AHRH{ +AHRH, + 2u¢T’ } : (2.60)
% < — = 2
Vo = LY ’H£TGHL Y HY R HL - Tr(cbffacb)‘
a=1
%< =t = 2
+ Iy ‘H;TQHR S Her Hp + Te(0r,0)
a=1
9¢ =t =7 |?
+ gv H\Hy—HpHp—H H, +H,Hy| , (2.61)

Vsose = Tr [mg (H;HL + H;HL) +m2 (ﬁgm + H;HR) +m20T
+ (AAAHETQq)TZHR ANAH o ®roH iy + h.c.> + (Bu®”ry®7, + h.c.)

+ (iBlﬂngTQFL + Z.BLLLngTQHR + h,C)] . (262)

The vacuum expectation values of the Higgs fields are given as:

Vg, 0 _ 0

<HL> = ) <HR> = 7<HL> = )
0 URr v

— 53 0 (%)

(Hr) = (@) = : (2.63)
0 U1 0

We again choose a rotated basis similar to section 2.3.4 such that the four Higgs

fields getting electroweak vev mix together. Only one of the newly defined fields
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now gets a non-zero vacuum value. The right-handed doublets get vacuum values of
right-handed symmetry breaking scale. The minimization conditions in this case are

given as:

U1

2
— 2/\AAULUR + 2)\,[11 (UL@R — UREL) + 4M ()\ELER — BUQ + 2MU1) = 0,

2

ooy 4+ 24 (g (02— vF — v} +73) + g (vF — o + v} — 78) + 402 (v} + 03]

21y 2

2m3vy + 5 9L (—vf + 03 4 v} — Ei) — g5 (vl — vy + vp — ﬁ%) + 4)\? (Ei +ﬁ%)}

— 2/\A>\6L5R — 2)\/14 (ULﬁR — UR@L) + 4,u (/\ULUR - BUl + 2/M)2) = 0,

= (g} (—o+ 0+ 0} = T3) + gb (v} — T — vk + TR) + 4N (o} + v})]

2mivy, + 5

— 2/\A/\1)11)R + 2)\#16}{ (Ul - ’02) + 2#%1)[1 + 2B1/11@L + 4/1/\1)21)3 = 0,

2mive + 5 [9k (0f — 03 + vk = R) + gy (—VL + 7L + v — V) +4N° (] + )]

— 2)\A/\1111)L — 2)\,&1@L (?}1 — ’UQ) + 2[1,%?}]{ — 231,&1@3 + 4M>\U2UL = O,

%@m+%bﬁﬁ—ﬁ—@+ﬁ}WWﬁ—ﬁ—@+ﬁywvw%ﬁ@}

— 2)\14,\UQUR — 2>\[L1UR (Ul - ’UQ) + 2#%@[/ + 2B1ILL1UL + 4,&)\11153 = O,

2m3Tn + 5 (g (—v} + 03 — vk +TR) + g (v} =T — v+ Th) + 407 (v} + 73]

— 2)\14,\U25L + 2)\M1UL (Ul - UQ) + QM%UR - ZBlulvR -+ 4M)\U1@L =0. (264)
The relevant mass-matrix elements in this case are given as:
2 912 _9\2 _
gr (vf —v3)" + gy (v} —VL)" + g7 (vf — v — vf +07)" + 8N (vivf + v3Di)

M,, = L
1 2(v2 4 v3 + 02 4+ 73)

ve¥s (g9 (v = 1) + g (—vi +v3 +vf — 1) +2(vf — v5) \?)

)

the = NG R NG R e R ’
Mz = [vi{givi — 2050707 + g3 v, + 29707 (—0f + 03 + v} —77)
— g% (vf — v%) (v% + Ei) + 40R2 N2 — 40T A% 4 4ZE N — 4U%EL)\2}] /
@¢@¢ﬁxﬁ+@+ﬁww+@+@+ﬁ)
My = [va{givi — 20507} + 637, + 29707 (=0} + 03 + v} —77)

— g2 (0 02) (V2 +T2) + 4N (20202 + 0202 + 02 + 020 4+ 7))}/
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(2\/v§ Fug 2 + T 0]+ 0} + T (07 + 03 + 07 +v§)) |

Mz = [gk (v] = 03) vr + g7 (v +07) vr + 44X {=Ayvrog + p(—v1 + v2)v

+  UuRA + v vRA + 2w )] / (2\/1}% + v+ 02 + U%) :

Mg = [g?z (—vf + vg) TUr+ g%, (v% — U%) Ugr + 4A\ {,ul(vl — vo)uy, — A\veTp + )\USER

+ AUIUR + 2uvi0L}] / <2\/v§ +v3 +vi + @%) : (2.65)

All the other elements in the mass matrix are of SUSY breaking scale or the
right-handed symmetry breaking scale. The only matrix elements that can provide
significant contributions to the lightest eigenvalue comes from M;5; and M. We
focus on the 3 x 3 sector formed by My, M5, Myg, M55, Msg, Mes. We choose some
of the parameters such that the M5 and Mg terms become zero and check that we
have enough freedom to consistently keep the other eigenvalues of the matrix to be
positive. The smallest eigenvalue in this case is the lightest CP-even Higgs boson in

the model and is given by:

o _gh(E= ) b (o ~9) 4 f (of o of 4 70)"+ 8 (hef 4 udeh) |, o0
fueree 2 (v? + v} + 02 +73) -

We define v; = wvsin S cos ¢, vy = vcosBsiny, v, = vcosfcosp, vy = vsin [sin ¢
and gr = gr. Now maximizing this resulting expression with respect to ¢ and 1 gives

M3 M?2
2]\43[/—3/]\4% COS4 /8 — TW Sil’l2 ZB + )\27}2 Sin2 26 (267)

M; —=2Myj, sin' 8+

The Higgs boson mass including the one and two loop corrections from the top
and stop sector is given as:

My,
2MZ, — M2
+ Ao, (2.68)

M = (QMV?V sin? B +

M2
cost B — TW sin? 28 + \2v? sin? 25) Ay

where A and A, are defined in Eq. (2.28).
The Higgs boson mass is plotted in Fig 2.3(a) as a function of tan 5.The red region
in the figure represents the band where the mass is between 124 GeV and 126 GeV.

The light blue region represents the area where the stop squark mixing is minimum
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Figure 2.3: (a) Variation of Higgs boson mass with tan (3, (b) Higgs boson mass as a

function of Mg

i.e. X; = 0 while the pink upper region is for maximal mixing where X —t¢ = 6. The
green region is for all values of Higgs mass greater than 126 GeV and it is overlapped
by the blue and the pink region. Fig. 2.3(b) represents the Higgs mass and as a
function Mg. Again the red band is where the Higgs boson mass is between 124 GeV
and 126 GeV, green region is for X; = 0, yellow region represents X; = 6 and blue
region is for all values of Higgs mass greater than 126 GeV which is overlapped by
the green and the yellow regions. The black dotted line in each case represents the
MSSM Higgs mass.

The pseudo-scalar mass-squared matrix in this case is a 4 X 4 matrix. The matrix

elements are given as:

(v2 +02) [Bipvrvr — 1 (010vg + vavrOR)N + 2u(Avavrvg + Avi0L0g — Buivs)]

My = —

M 2 (= Bvyvg + Avgupvg + Ay UL0R) / (V2 + 02) (V3 + 1%)
2 VLULVRVR

My = (MuTrvR + 2Bpvy — 2001 0g)/ (v +07) [Wivg + 07 (v + vp)]
3 U%@LUR

My = — (MuTgvr + 2Bpny — 2 v vg)/ (v + 03) 0710 + v3 (07, + 0%
! ’ULE%WR
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(v} + %) [Bipivrlg — p1 (020 vR + v10LTR)AN — 2u(AvavLvR + AU1TLTR — Buyvs)]

M. =
Vow — (A Trvr — 2By + 20w, TR)/ (Vg + TR [vE v + 07 (0] + v)]
2 ’UL@RU}%
Mo — (MuTrvg — 2Buvr + 2\ wrvg) / (v, +03) 0705 + 3 (01 + T3]
S ’UR@L@%
Maw — (V203 4+ vi(vE + v%)] [NANLVR + Ay (Upvg — vpOR) + 2Buvy — 2A\uvLUR|
B v1VivY
Ve 2uB\/vivd + v (v 4+ vE) /U2 + 0% + 03 (02 + V%)
o VLVRULUR
Me — [020% + v3 (0% + 0%)] [NANULUR — Ay (D vg — vL0R) + 2Bpuvy — 2\ v vg] (2.69)
4 = —2-2 :

Chargino and Neutralino masses

The chargino mass terms in this case is written as

pi —Ave Avp grvr 0O Hp

vy —uy Avg 0 gL H,
1 ~ ~+ ~

Echargino = _5 <H§ HL ¢1+ )\E )\JLF> /\@L )\’UR 2/1 grv1 gru ¢; )

grvr 0 grva Mp 0O Mg

0 grvr,  grve 0 My, AL

~ ~ ~0 ~0 ~ ~
and the neutralino mass matrix in the basis (H}O?, HY Hp H; ¢Y ¢35 X g, >\L3>
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is given as

0 —Avy — 0 -y, 0 v alliey o 0
— vy 0 0 p —dvg 0 R 0 v
— i1 0 0 —Xp 0 Ay, —%gE U 0
0 p —Ave 0 0 —Xop 7 0 e
M, =1 Xy =g 0 0 0 —2u 0 —9\1}%1 —gf/%l ;
0 0 —\U,  —AUgp  —2u 0 0 9%2 g\L/%Z
et o _ods o 0 0 M, 0 0
_ g%a 0 gz\z/%R 0 _ Q\R/%l 9\3/7%2 0 Mp 0
N 0w
(2.71)

where Ag, A, and \g are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)p_, gauge boson and Mg, My and M, are their

soft masses respectively.

2.5 Universal Seesaw model

The particle spectrum for this case is given in Eq. (2.13) with an additional singlet

Higgs field S. The superpotential is given as:
W = S@NHImHp + i NHEmHp — M?), (2.72)

where \* = \* and M? is real from parity invariance.

The D-term, F-term and the soft supersymmetry breaking terms are given as:

VF = ‘)\TI'[ZHETQ?L -+ ’ngTQHR] - M2‘2
+ NSPTY[HIH, + H, Hy + HLHg + T g, (2.73)

2 3
g N —
vV, = gL;\H;TaHLjLHLTaHLF
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Q
N

_T P
+ 2 ; |Hl7oHp + H o H )
94 7 T
4+ %\ —H H +H H, + H,Hp — HyHp|?, (2.74)

Vst = m2(HLHL) +m2(Hg Hg) +m2(H, " Hy) + m2(Hr Hg) + m3|S|?

+ [NNS(H[7H, + HimoH) + h.c] + (ACA\M?S + h.c.). (2.75)

We choose a rotated basis which is exactly the same as in Eq. (2.23) with ¢; —
Hp, ¢y — Hp, 5 — HR,ECO — Hp, vy — vp, vy — 07. The minimization conditions

are slightly modified form of Eq. (2.24) and are given by:

vp[4m3 + g1 (=07 +v1) + 9o (=07 + v} — vh +0g)] + AANANTLUs + 4N UL vE
+ 4\UL (= M? + Mo, — Mgvg) = 0,

Tp[dm? + g7 (—v7 +03) + gi (—v7 + U7 + vk — Un)] + 4ANAyvLvs + AN TLUE
+ 4 v (—=M? + Mgty — Agtg) = 0,

Amifvr — gy ur(—vi + T + v — Tg) + grvr(vk — Tg)

— ANATRUg + ANTR(M? — \vpoL) + 4\ 20R(T% +vE) =0,

AmETR + g7 TUR(VE — T7 — Vi + Uk) + 9RUR(TR — vR)

— ANAyvgrvg + 4dvp(M? — Mopor) + 4N TR(vE 4+ v3) = 0,

2mavg + 203 M\ + 20 Ay (v,0L — vpUR) + A2 (v} + 07 + v +DR)vs = 0. (2.76)

Using this minimization and the basis (Rep;, Repy, ReHR", ReFRO), the relevant

mass-squared matrix elements are given by:

gr(vi —1)* + gy (v — V7)* + 8viTi N

s 202 1 72) ,
My — v (v — @%)(g121_|_ g2 —2)%)
(v +7%) ’

My - —9PWE—73)(vh — ) — 8\ usTpvete.
V0 +77) (0} + %)

My = — g2 (v — T2 )uRTg + 22200, (v — U%)’

V(v +71) (v + T)
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A2A4 v + 2(v2 + 0% )vg )

M = ,
’ N
Mss = mz+ (Vi +77 + v +TR)A (2.77)

The other terms in the mass matrix are given in the appendix. We choose the
ratio between v and vy such that the matrix element M;3 vanishes and we choose the
value of Ay such that M5 becomes zero. Then we calculate the correction from the
off-diagonal elements to the lightest eigenvalue of this mass-squared matrix. In the
limit where the soft-supersymmetry breaking parameter mg is significantly larger vg,
we can show that this correction vanishes. Hence the tree-level mass of the lightest

neutral Higgs boson in this case becomes:

M4
2 W 2 2,2 ;2
M, = (QM%V—_M%)COS 26 + A v”sin” 203, (2.78)

where tan 3 = % and v? = v? + 2. Including the loop corrections from the top and

stop sector, the Higgs boson mass is:

M .
M? = (W cos® 23 + A? sin® 25) Ay + Ay, (2.79)

where Ay and A, are defined in Eq. (2.28).

The Higgs boson mass is plotted in Fig 2.4(a) as a function of tan 5.The red region
in the figure represents the band where the mass is between 124 GeV and 126 GeV.
The light blue region represents the area where the stop squark mixing is minimum
i.e. X; = 0 while the pink upper region is for maximal mixing where X —t¢ = 6. The
green region is for all values of Higgs mass greater than 126 GeV and it is overlapped
by the blue and the pink region. Fig. 2.4(b) represents the Higgs mass and as a
function Mg. Again the red band is where the Higgs boson mass is between 124 GeV
and 126 GeV, green region is for X; = 0, yellow region represents X; = 6 and blue
region is for all values of Higgs mass greater than 126 GeV which is overlapped by
the green and the yellow regions. The black dotted line in each case represents the

MSSM Higgs mass.
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Figure 2.4: (a) Variation of Higgs boson mass with tan (3, (b) Higgs boson mass as a

function of Mg

The eigenvalues of the 2 x 2 charged Higgs boson mass-squared matrix in this case

are given by:

1
m3 +mg + 5 gr(vg +T5) + 2070,

2

1
m3 +mi + g2 (v +77) + 2\, (2.80)

2

The pseudo scalar mass-squared matrix is a 3 x 3 matrix whose elements are given

as:

/\2
m2 4+ mg + E(Qﬁ% + 0% + 203),
)\2
~ 5 W+ TR+

)\A)\\/’U]%L —i—@%
V2
2

A
ma 4+ mZ + 5(0% + 72 4 203)

)\A)\\/U% —i—@%
V2

mg + A2 (vi + 07 + v + V) (2.81)

Here we use the minimization conditions given in Eq. (2.76) to eliminate my, ms,

meg, M? and C). Also while calculating the mass of the CP-even Higgs boson, we have
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fixed the value of A, and the ratio between vz and vg. Using all these constraints on
the aforementioned parameters, we numerically calculate the masses of the charged
and pseudo-scalar Higgs boson. We choose a parameter space where A = 0.7, vg = 1
TeV, mg =2 TeV, vg = 800 GeV, mg = 2 TeV, vy, = 30 GeV, v, = 171 GeV and ggr
and gy are 0.653 and 0.48 respectively. This choice of parameters gives us the mass
of the charged Higgs bosons to be th = 2.25 TeV and Mh2+ = 2.41 TeV while the
masses of the pseudo-scalar Higgs boson are given as My, = 2.18 TeV, My, = 3.5

TeV and M,, = 836 GeV.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Nvg 0 grvr 0 Hy
1 ~ ~+ 0 —/\’US 0 gLUL ﬁ_

£chm‘gino = _5 (HE HL )\E )\z) B R (282)
grvr 0 Mr 0 Y

0 qrvuyr, 0 ML /\Z

~ ~ ~0 ~0 ~
and the neutralino mass matrix in the basis H% H 2 Hp H; Mo Ars AL, S)

VR

is given as
0 0 —\*vg 0 9{;’; —% 0 —\Ug
0 0 0 g —Wf; 0 gLz AL
—Mug 0 0 0 —9Vj; 91?; 0 —\vg
0 v 0 0 gvuL 0 —4 Ny
M, = ° V2 V2 "l (2.83)
9\\//%1?, _ g\\//%L _ 9\\//%12 9\\//5; Ml 0 0 0
—gf;”; 0 9@?; 0 0 Mp 0 0
0 L 0 w0 0 My, 0
—)\*ER /\EL —)\*UR )\’UL 0 0 0 0

Here Agr,Ap and Ay are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)p_; gauge boson and Mg, M) and M; are their
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soft masses respectively.

2.5.1 Case without singlet

The most general superpotential involving the Higgs fields in this case is given by:
W = imHimH +ipHpmHg. (2.84)

The D-term in the superpotential is the same as in Eq. (2.74). The F-term and

the soft supersymmetry breaking terms in the Higgs potential are given by:

Ve = @d(HLH, + HyHy) + p3(HyHe + HHp), (2.85)
VSoft = Blﬂl (iH{TQﬁL —+ hC) + BQ/JQ(?;HRTQHR + hC)

+ m2(HHy) +m2(Hp Hy) + m2(Hg Hg) + m2(Hg Hg).  (2.86)
The vacuum structure in this case is given as:

vr, 0 — 0 S ER
(Hp) = . ,(Hg) = (Hy)=| |.(Hgr)= Nk (2.87)

We take a rotated basis given by:

H,0 —ﬁﬁ T H O — 00
plZUL L tupig P _ vrHp ULUL. (2.88)

2
2 | 2 ’ 2 | 2
VUL U7 \/ U + U7,

The minimization conditions are given by:

0 = 2y + 2mun — 2oyt + sonlahlvh — 7h) = g8 (v}~ 7 — vk + TR
0 = 2430n + 2miTn — 2Bopsvn + SURlgh(—vh + T) + G (% ~ T — vk + 7)),
0= 24dv, + 2mdur + 2Buynts + Juslg} (7 — ) + g} (0] — T, — v + 7)),
0= 2040y, + 2mZ0;, + 2Bymor, + %mgﬂ—vi +77) + gy (V] — vi + v — TR)].

(2.89)
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Using the potential and minimization equations, we calculate the mass-squared

matrix in the basis (Repi, Repy, ReHRg?, ReﬁRo). We get the following matrix:

(93 +9%)(v: —73)? (93 +93) (v3 =03 )vLTL g2 vr(v?—v2) _ GRR(E-T2)
2 152 22
2(vp+71) (vi+v1) 24/ (v2472) 24/ (v2+72)
(92 +9%)(vE+02 v, My, gLVLULVR _ gYVLTLUR
CEY VT Vo
2 2_—2 2, — 2. .24,3 -
gy vR(vVE —0) 9y VLULVR (95,97 )vp+2Bap2tr B 1/ 2 9 _
= L L e — — = + VRU
2/(2 +72) NG 2vR 242 = 3(9k + 9V )RR
2 2 2 Y 2, 23\-3
gy VR(v —77) JyVLVLVR B 1/,2 2 — (9% +9v )0 +2B2pgvr
— L = — — = + VRU e
Wy Cre a2 — 3(9% + 9v)URUR o |
(2.90)
where My, — (300467 +4) tsmiu o, +20m—mi)(w? ) 4308 -78)0h-Th)
2(vi +71) '

Here we have assumed vg, v # 0 in obtaining the mass matrix. We calculate the
contribution of the off-diagonal elements to the lightest eigenvalue using the seesaw

formula and this gives us the result

M2

htree

= M} cos® 203, (2.91)

where we have also assumed that the SU(2)g gauge coupling (ggr) is equal to the
SU(2), gauge coupling (gr.), tan f = % and v? = v? + 707,
The eigenvalues of the 2 x 2 charged Higgs boson mass-squared matrix in this case

are given by:

1
Mgy = mi+mg + SgR(vk + %) + 203,

1 2
1
M]f;r = mj+m;+ 59%(1)% + 7)) + 2p3. (2.92)

The pseudo scalar mass-squared matrix is also a 2 x 2 matrix whose eigenvalues

are given as:
M3, =m3 +m2+2u3, M3, =m3+m2+2ul. (2.93)

Here we use the minimization conditions given in Eq. (2.89) to eliminate By, B,
w1 and pe. We choose a parameter space where vg = 1.2 TeV, vg =1 TeV, mg =4

TeV, my = 2 TeV, ms = 2 TeV, mg = 4 TeV, v, = 10 GeV, v, = 173 GeV and
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gr and gy are 0.653 and 0.48 respectively. Using these values for the parameters we
get the numerical values of the charged Higgs boson mass (denoted by M h;r) to be
Mh1+ = 8.14 TeV and Mh; = 3.47 TeV while the masses of the pseudo-scalar Higgs
boson (denoted by H,,) are given as My, = 8.11 TeV and M4, = 3.47 TeV.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

2 0 grur 0 Hy
1/~ =+ 0 —m 0 g ||H

Echargino = _5 (HE HL )\E )\z) _ 0 I, 0 \- ) (294)
gRUR R R

0 grvg 0 My, AL

~ ~ ~0 ~0
and the neutralino mass matrix in the basis ( H% HY H r Hy X Apy A L3) is

given as

0 0 — Lo 0 9\\//’%1% _ 91\%/%1% 0
0 0 0 o =0 L

— g 0 0 0 _ gx\//gR QRZR 0

M,=1| o i1 0 0 o 0 -z (2.95)

gx\//%R _ 9\\//%L 9‘\/’/%1% g\\//%L M, 0 0

—E 0 G 0 0 Mp 0
0 L 0 —%Z 0 0 M,

Here Agr,Ap and )y are the superpartners of the right-handed gauge bosons, left-
handed gauge bosons and the U(1)p_, gauge boson and Mg, My and M, are their

soft masses respectively.
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2.6 Fg Inspired Left-right Supersymmetric model

The Higgs spectrum for this model is discussed in Eq. (2.16). The relevant terms in

the superpotential involving the Hy, Hg and ® fields are given as:
W =\ H, @ Hp + pTr [@7207 7] (2.96)

where the parameter A\ and p must be real for the superpotential to be invariant under
parity transformation.

The Higgs potential consisting of the Vr, Vp and Vg, s terms will be given as:

Ve = Te(AHimdn| + (NHIndn|?) + Tr(AH HE + 2u®[?), (2.97)

9 3 2 3
Vo = SN |HimHy+ Te(®7,@) + 2 Y | Hhr, e + Tr(0'7,)

a=1 a=1
92
+ o |HEHg — HLH.J, (2.98)
Voore = miTe(®'®) + [BuTr(®Tmdn) + hc.| + mi(HLHp + HY Hy)

+ (ANHIm®mHp + h.c.). (2.99)

Using this potential we calculate the Higgs boson mass-squared matrix. We choose

the following vacuum structure for the Higgs fields:

vrL, 0 0 v
(Hy) = (Hg) = (®) = (2.100)

0 VR U1 0

To easily identify the field corresponding to the lightest eigenvalue, we take a linear
combination of the H.?, ¢ and ¢) fields. We make sure that only one of the newly
defined fields get a non-zero vacuum expectation value(or VEV). The field redefinition

that we used is:

P v HL + 0199 + 0209 P v — v Hp'
1 — y M2 — 9

VUi + 0?4 v3 Vi + 02
vrveHr? + v1028) — (v} + v3) )

V(0 +03) (v 4 02 +03)

(2.101)

p3 =
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One can verify that only the p; field gets a non-zero vacuum expectation value of
\/m . We calculate the 4 x 4 mass-squared matrix for the neutral CP-even
Higgs boson in the basis (Repy, ReHg", Reps, Reps). It is easy to identify the lightest
mass eigenvalue in this new basis. We use the minimization condition for the potential
to express the soft SUSY breaking masses and the coefficient u in terms of the other
parameters in the model. The minimization conditions and mass-squared matrix is
given in Appendix. We assume that vg >> vy, 19, v, and using this assumption we
can get he lightest eigenvalue of the mass-squared matrix. It turns out that we can
neglect the corrections from two of the off-diagonal matrix elements as they are of
order of ~ %. So we effectively have a 2 x 2 matrix. Diagonalizing this matrix, we

get the lightest neutral CP-even Higgs mass given by:

My,.. = gr(i = v3)* + gyvp + gL (=vi + v3 +0f)* + Svjup\?

ht'ree
— (gpvi + gp(—vi +v3 + vi) + 40iN*)? /(g5 + 99)]/(2(vF + v3 + v})).
(2.102)

We then choose v; = vsinf, v = vcosfcos¢ and vy, = vcos [ cos¢. Maximizing

the resulting expression with respect to A and ¢ and choosing gr = g1, we get:
M; = 2My, cos® 2. (2.103)

This result is exactly the same as in Section 2.3.2 and has been discussed in details

in that section.

Chargino and Neutralino masses

The higgsino and the gauginos mix to form the charginos and the neutralinos.
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The chargino mass term in this case is written as

_)\UQ )\UL JrRUR 0 HL_

1/ - AR 2 g1 grn o7
;Cchargino:_§ (HE d)i’_ )\; Az) y (2104)

0 JgRrU2 MR 0 )\]_%

grvp grve 0 Mg AL

and the neutralino mass matrix in the basis ( f[lo%

given as
0 vy =Xy, 0 g‘\//%R —ngzR 0
—\v; 0 —Xg 0 —2Z 0 v
—Avr,  —Avg 0 —2pu 0 - g\R/%l N g\L/gl
M, 0 0 o0 0 = oLy (2.105)
9\\//%1% _ gf/%L 0 0 M, 0 0
—anmpn 0 i 0 Mg 0
0 mp o-up oLz o0 0

Here Agr,Ap and )y are the superpartners of the right-handed gauge bosons, left-
handed gauge bosons and the U(1)g_; gauge boson and Mg, My and M, are their

soft masses respectively.

2.7 Doubly-charged Higgs Mass

In the models discussed under section 2.3, the right-handed symmetry breaking was
achieved by triplet Higgs bosons. Each triplet Higgs boson has a doubly-charged
particle which should be relatively easy to detect experimentally if they can be pro-
duced at the colliders. These doubly-charged particles, if seen, can tell us a lot about
the symmetry breaking pattern and their properties can help identify the underlying
model.

Let us take a closer look at a fully realistic left-right supersymmetric model where

the SU(2)g x U(1)p_r symmetry is broken into U(1)y by triplet Higgs boson field
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A€ and then the SU(2), x U(1)y symmetry breaking is achieved via bidoublet field
D,

The chiral matter sector of this model is given in Eq. (2.1). Being left-right
symmetric, the lepton and quark left-handed doublets L and @) have accompanying
right-handed doublets given by L¢ and QQ°. A right-handed neutrino is quite naturally
present in this model and can generate a light neutrino mass.

The Higgs boson sector is given in Eq. (2.2). Although a single right-handed
triplet field A¢ is enough for the right-handed symmetry breaking, the model being
supersymmetric, we need another triplet Higgs field A for anomaly cancellation and
to prevent R-parity violating couplings. For parity conservation these right-handed
triplet fields must be accompanied by left-handed triplet fields A and A as well.
Two bidoublets ®; and @, are needed for the generation of lepton and quark masses
and the CKM mixing. A singlet field S is introduced so that the SU(2)g x U(1)5,
symmetry breaking can be achieved in the supersymmetric limit.

The superpotential of the model is given as:
W = YUQTTQCI)lTQQC -+ YdQTTQ(I)QTQQC —+ YVLTTQCI)lTQLC + YELTTQ(I)QTQLC
+ i(f*LTRAL + fL ALS)

+ S[Tr(VAA + MNAA) + X, Tr(®T rydyry) — M2+ W' (2.106)
where
W' = [MATr(AR) + MATr(AA")] + papTr (@) + MsS® + AsS®. (2.107)

Here Y, 4 and Y, ; are the Yukawa couplings for quarks and leptons respectively and
f is the Majorana neutrino Yukawa coupling matrix. This is the most general su-
perpotential. R-parity is automatically preserved in this case. Putting W’ = 0 gives
an enhanced U(1) R-symmetry in the theory. Under this R-symmetry, Q,Q°, L, L¢

fields have a charge of +1, S has charge +2 and all other fields have charge zero with
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W carrying a charge +2. Putting W’ = 0 also helps in understanding the p-problem
and makes the doubly-charged left-handed and right-handed Higgsinos degenerate in
mass.

We will look at the case where W’ = 0. The left-handed triplets do not get any
vev and hence the masses of their doubly-charged particles are heavy. Thus we will
concentrate on the right-handed Higgs boson triplet sector from here on. The Higgs
potential consists of F' term, D term and soft supersymmetry breaking terms which

in this case are then given as

Ve = |[ATR(AA") + X, Tr (97 758,m,) — M| + [A2[S]? ‘Tr(ACACT) + Tr(A° A
Vierk = MZTr(ATA) + M2Tr(ATAY) + M2|SP?

+ {ANSTr(AAT) — C\MZS + h.c.}

2

2
Vo = ZE3|meAtnAt + 28R + @,r] @)

9" et ey |2
iy Tr(2ATA® + 2A"AY)| . (2.108)

If we consider a charged breaking vacuum structure for the A¢ and A° fields given

as

(A9 = oo , (A% = _O o : (2.109)

vg O vr O

it can be shown that the Higgs potential is lower compared to the charge conserving
vacuum given in Eq. (2.22). The F' term and the soft SUSY breaking terms will be
the same for both vacuua whereas the D term of the potential will vanish for the
charged breaking vacuum while being positive definite for the charge conserving one.
This would lead to a charge breaking vacuum to be the stable one which is unphysical.
The solution to this problem lies in the calculation of the loop correction to the Higgs
potential and then the total potential can be shown to be lower for the physically

acceptable charge conserving vacuum.
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The doubly-charged Higgs mass-squared matrix in the basis (6,0 ) is given

as

o el Say Y 2.110)
y* 203 (Jon]? — [Bal2) — Y

where Y = AA,S + |\ (UR@R — MT’%‘> and the electroweak vev has been neglected. It
can be easily seen that if the gauge couplings are neglected, then this matrix will have
a massless mode. Thus in this limit, the loop corrections to this massless mode should
remain finite [?]. Such a Goldstone boson cannot remain in the theory and hence we
calculate the one-loop corrections to this massless doubly-charged Higgs boson in this
limit and show that it gets a positive mass. We look at the Yukawa interaction of the

doubly-charged Higgs boson and calculate the corresponding one-loop corrections.
We first identify the eigenstate corresponding to the Goldstone state. It is given

as

*6077* _ SC++

N

The couplings that we would need to consider include the direct coupling of the

G-H—

(2.111)

doubly-charged particles to the electron and selectron fields, doubly-charged Higgs
coupling to the neutral Higgs triplet and singlet Higgs bosons and the coupling of
these neutral fields to the neutrino and sneutrino fields. We also need to calculate
the masses of each of these particles.

The right-handed leptons and sleptons are the ones that are running inside the
loops in the one-loop corrections to the Goldstone state. It consists of an almost
massless electron, a heavy right-handed neutrino, two degenerate selectrons and two

sneutrinos. If we denote

. ny +in2 ~c ny — in2

v I,

=cC

(2.112)
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then the masses of all the particles are then given as

~ 2 02 _
M~ 0, M2 =m3., My = fup,

M7%1 2 = mic + [fQU?% + (fAERUS + fAfUR)] (2113)

where m3. is the soft mass for the sleptons and Ay is the trilinear coupling.
—0
The neutral Higgs sector relevant for our calculation would include the 6¢°,3° and

S fields. Let us write them as

5CO_X1+Z'Y1 SCO_X2+i3@ S_X3+Z'Y3
V2 o V2 V2o

If we choose all the couplings and the vevs to be real, then we will get two 3 x 3 mass-

(2.114)

squared matrices for these fields— one for the real part and another for the imaginary
part. We only need to consider the real fields as the imaginary fields will have no
relevant cubic couplings to the Goldstone field. We will look at this mass-squared
matrix a little later but first we give the relevant interaction terms in the Lagrangian

which would be necessary for our calculation. These are given as

22 NvRD2 A2 T
_‘Cint = G++G77 |:(’61|2 + ’62’ ) f }i2 + \/5 3 R_]Q% Xl —+ \/i—RRXz
v + T Vg T+ UR V% + %

L Va2 ()\21)5 n AA\VRUR X, JApr + fAURVS
2 +—2

(€16 + e5e) G

VR + U 2\/v% + 7%
A 2
+ [5\/{( ng)—i—f—\/g{(nfﬂLn%)} X1
B g AL/ Yo S Sy (2.115)

2v/2 2v/2
The mass-squared matrix for the neutral scalar Higgs bosons is given as

M12 + )\2(1)% + @%) >\2UR§R + )\A,\US — )\QM}% 2)\21}51}3 + )\A,\@R

M}% = )\2213@3 + MAyvg — )\2M}2% M22 + )\2(1}% + U?{) 2)\20553 + ANAyvg

2)\21}51)3 + AN\ TR 2)\22]5@3 + M, vgr Mgv + A2 (UIQ% + 5%%)

(2.116)
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Usually one would need to diagonalize this mass-squared matrix and identify the mass

eigenstates. Fortunately that is not the case here. Let us choose a basis given as
X=vTx (2.117)

T
where X = (Xl X, X3> , V' is an orthogonal transformation matrix and X rep-

resent the mass eigenbasis. Then the diagonal mass-squared matrix is given as
D? = VIMEV. (2.118)
All the couplings of the neutral Higgs bosons can now be written as
L = BV X;GTHG™ + QiVy Xjn? + RiVyy X;n + T,V X;0°0° (2.119)

where P, (), R and T are vectors given as

[ 20 pT2 2027 VT
P [vemh v (s e
— fAy f2v fv 2%
@ | 2v2 ™ ﬂR NES 2\/51 ’
— | =fAr | fPor _ fls  _ fAT
i | 2v2 + \/iR 2\/53 2\/51 ’
T = \/LE 0 0] . (2.120)
A7 AN
! \
| |
\ !
\ /
~ -
I h i hY
} }
5++ | 5++ (5++ | 5++
e O

Figure 2.5: Feynman diagrams for neutrino and sneutrino one-loop correction

We can now calculate the one-loop corrections to the doubly-charged Higgs boson

mass. The corrections coming from the right-handed neutrino and sneutrino sector
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are given by the Feynman diagrams in Fig. 2.5. The corresponding amplitudes are

given as
d*k 1 d*k 1
M, = —|P"M;? PTMQ/
' 2{ Q/ 2m) k2 —m2, B eoie- ’
d*k F+ M,
_ . T —2 v
M, = 2iM,.P"M, T/ (27T)4Tr(k2_M30). (2.121)

The Feynman diagrams for the electron and selectron corrections are given in Fig. 2.6

Figure 2.6: Feynman diagrams for electron and selectron one-loop correction

and the corresponding amplitudes are given as

M. — _i (fAfUR + f)\@Rvs)Q / d4]{3 1
’ 2 v} + T (2m)4 k2 —
M o~ if?v%, / d*k 1
YT w4y ) o)tk
if2v% / d*k 1
M; = 2.122
° v+ 0% ) (2m)4 k2 —mi ( )

Summing over all the correction to the doubly-charged Higgs boson mass coming

from these diagrams we get

2 1 2,2 2 mZ. . 2 mZ.
AMi: = 672 (0% 1 72) fropmzIn M. —i—?()\vRvS—i—Ava) In M36+1

f m2,
— 1 (Ava+2va+)\vRv5)m In M2
2

m

- £ (—Ajvg + 2fv}, — XUgvs) m2_In (M;N : (2.123)

Choosing an appropriate set of parameters this correction can be made positive and

hence the Goldstone boson would become a light doubly-charged Higgs boson.
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2.8 Summary

The tree level Higgs boson mass in the Standard Model and MSSM is bounded by the
mass of the Z boson while the Standard Model-like Higgs boson observed at the LHC
has a mass of around 125 GeV. For a TeV scale supersymmeytric model, the loop
corrections to the Higgs boson mass is not particularly big and to achieve a Higgs
boson mass of 125 GeV, either the tri-linear couplings must be really big or the stop
mass must be large. This problems can be solved if the tree level Higgs boson mass
can be made larger. In this chapter we show that for the models we have described
in the previous sections, we can push the tree level mass of the lightest Standard
Model-like Higgs boson to a much higher value eliminating the need for large trilinear

couplings or very heavy stop masses.
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CHAPTER 3

NEW SIGNALS OF DOUBLY-CHARGED SCALARS AND
FERMIONS AT THE LARGE HADRON COLLIDER

3.1 Introduction

Several extensions of the Standard Model (SM) predict the existence of doubly-
charged Higgs bosons. In some cases these particles remain light, which motivates
searches for them in high energy collider experiments. The minimal left-right super-
symmetric model with automatic R-parity conservation is an example, where a light
doubly-charged Higgs boson arises as a pseudo-Goldstone boson of the SU(2)r gauge
symmetry breaking [28-31]. Models with radiative neutrino mass generation [32],
Type-II see-saw mechanism [33] for small neutrino masses, and the 3-3-1 model [?]
are some other examples of SM extensions which have doubly-charged Higgs bosons.
Supersymmetric versions of these models also have doubly-charged Higgsinos, which
are the fermionic partners of the Higgs bosons. If the doubly-charged Higgs boson is
light, its Higgsino partner cannot be much heavier and must have mass of the order a
few hundred GeV to a few TeV, in the context of low energy supersymmetry (SUSY).

In this chapter we study a new signal for the doubly-charged Higgs bosons and
Higgsinos in SUSY models which arises through the pair-production of the doubly-
charged Higgsinos. Each Higgsino decays into a doubly-charged Higgs boson and the
lightest supersymmetric particle (LSP) which escapes detection. Thus the final state
would have four leptons and missing transverse energy, with the same-sign dileptons
originating from the decays of the doubly-charged Higgs bosons showing characteristic

peaks in the invariant mass distribution. We show by detailed calculations in the
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context of left-right supersymmetric model that the reach at the LHC for both these
doubly-charged particles can be enhanced by studying this mode. While we focus
on the minimal supersymmetric left-right model, these new signals should also be
present in other SUSY models with a light doubly-charged Higgsino and a lighter
doubly-charged Higgs boson.

The focus of our analysis will be the minimal supersymmetric left-right gauge
model. Left-right symmetric models [13] have a number of attractive features which
are not naturally present in the Standard Model. Firstly, it explains the small neutrino
masses through the see-saw mechanism [35] in a compelling manner — unlike the SM,
existence of right-handed neutrinos is required by gauge symmetry here. Secondly, it
provides a natural understanding of the origin of parity violation as a spontaneous
phenomenon [13]. Thirdly, with the inclusion of supersymmetry, this model solves
the gauge hierarchy problem and in its simplest version, also provides an automatic
R-parity. This symmetry arises as remnant of the (B — L) gauge symmetry [36]
and leads to a stable light supersymmetric particle which can be a candidate for
dark matter. With supersymmetry these models also provide natural solutions to the
strong CP problem and the SUSY CP problem [37].

In the minimal left-right supersymmetric model, the gauge group is extended to
G391 = SU(3), x SU(2);, x SU(2)p x U(1)p_;. The SU(2), x U(1)p_; symmetry
breaks at a high scale resulting in most of the new particles getting very heavy
masses. The right-handed neutrino mass is at this scale and facilitates the generation
of the light neutrino mass via the see-saw mechanism. The doubly-charged Higgs
supermultiplet, on the other hand, remains light and can produce new signals which
is the focus of our analysis in this chapter.

To understand why the doubly-charged Higgs boson remains light in the minimal
model, we need to look at the symmetry breaking sector. To spontaneously break

the SU(2)r gauge symmetry and to generate large Majorana mass for the right-
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handed neutrino, we need to introduce a Higgs multiplet with quantum numbers
(1,1,3, —2) under the group Gsgop. This right-handed triplet contains three complex
fields: a doubly-charged, a singly-charged and a neutral field denoted by 6, 8¢, 6¢
respectively. The 6 and the phase of 6 are absorbed by the gauge fields via the
super-Higgs mechanism to generate masses for the VVRi and Zr gauge bosons. The
real part of 6 gets a mass through the Higgs potential. The 0¢  field, on the other
hand, is not absorbed by any gauge bosons, nor does it acquire a mass from the
superpotential of the minimal model. Thus it behaves like pseudo-Goldstone boson,
acquiring its mass only after supersymmetry breaking.* As a result, the right-handed
doubly-charged Higgs bosons and the doubly-charged Higgsinos remain light in this
model.

The doubly-charged Higgs bosons decay to two same charge leptons, which can
be seen relatively easily in collider experiments via the invariant mass peak in the
dilepton mass spectrum. LHC has been looking for signals of doubly-charged Higgs
boson in the four lepton final states [38,39]. The experimental lower limit inferred on
the mass of such Higgs bosons would depend on the assumed branching ratios into
leptons of definite flavors. For example, CMS experiment quotes a 95% CL lower limit
of 355 GeV for the mass of a doubly-charged Higgs boson arising from an SU(2),
triplet, if it decays with equal branching ratios of 33% into eTe®, p*ut and 7777,
The 95% CL lower limit on such a Higgs particle from the ATLAS experiment is 318
GeV. These limits are somewhat weaker for an SU(2), singlet doubly-charged Higgs

boson, since its production cross section is smaller compared to the case when it is a

*The superpotential of the model, which only has quadratic mass terms, has an enhanced global
U(3,¢) (complexified U(3)) symmetry which is broken to an U(2,c¢) by the VEV of this Higgs
multiplet. This leads to five massless superfields of which three are absorbed to give mass to the
heavy gauge bosons and the remaining are the two doubly-charged Higgs bosons. Since SUSY is
unbroken at this stage, the doubly-charged Higgsino is degenerate with the doubly-charged Higgs

boson.
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SU(2), triplet. For example, ATLAS collaboration quotes a lower limit on the mass
of an SU(2), singlet doubly-charged scalar that decays with a 33% BR into u*u™ of
about 220 GeV, while the limit is about 210 GeV if it decays into e™e™ with the same
branching ratio. We anticipate that the lower limit, when both modes are combined,
would be somewhat smaller than 300 GeV, for an SU(2),, singlet, as in our case.
The decay of doubly-charged Higgsino (gcii) through a doubly-charged Higgs

boson (6 ) can produce new signals through the following process:
6 5 5 5 EIERY

So the pair production of doubly-charged Higgsinos yields a final state consisting of
four leptons and missing transverse energy due to the LSP escaping the detector.
This process, which has not been explored before to the best of our knowledge, gives
a unique collider signature which can help improve the discovery reach of doubly-
charged particles. The invariant mass plot would show a peak at the doubly-charged
Higgs mass for the same-sign lepton while there would be no such peak for opposite-
sign leptons. The angular distributions for the final state leptons also show a peak
at a low value of AR (defined later in the chapter) for same-sign leptons while the
opposite-sign leptons have a peak at a much higher value. Using these distributions we
can probe deeper into the model than one could just by looking at the pair production
of the doubly-charged Higgs bosons. The cross section for pair production of doubly-
charged Higgsinos is larger compared to the cross section for the pair production
of doubly-charged Higgs bosons of the same mass. From the current data at the
LHC, we expect around 30 events for the process discussed in this chapter, if the
doubly-charged Higgs boson has a mass of about 500 GeV, and if it decays into a
doubly-charged Higgs boson of mass around 300 GeV.

In section 3.2 we describe the model and the Lagrangian needed for our analysis.

When an SU(2);, singlet doubly-charged Higgs boson decays 100% of the time into u*u* (or
eTe’), the ATLAS lower limit on its mass is about 310 (or 320) GeV [39].
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We also explain the origin of masses of the doubly-charged Higgs boson and the
Higgsino and show that they remain light. In section 3.3, we present our analysis of
the production and decay of the doubly-charged scalars and fermions and give the
collider signatures which can be observed at the LHC. Section 3.4 gives a discussion
of the results that we have obtained and how we can distinguish our signal against

the background.

3.2 A brief review of the Left-Right Supersymmetric Model

In this section, we briefly review the relevant features of the minimal supersymmetric
left-right model (LRSUSY) necessary for the analysis which follows in the later sec-
tions [28,31].} The chiral matter for this model is given in Eq. (2.1) while the Higgs
sector is the same as in Eq. (2.2).

The superpotential of the model is given as

W = YUQTTQCI)lTQQC + YdQTTQ(I)QTQQC + YVLTTQq)lTQLC + YELTTQ(I)QTQLC
+ i(f LT AL 4 fLE 7 ACLY)

+ S[Tr(VAA + MAAY) + X, Tr(®T ry®yry) — M2+ W' (3.1)
where
W' = [MATr(AA) + MATr(AAY)] + papTr (@I 7a®ym) + MsS® + AsS%(3.2)

Here Y, 4 and Y, ; are the Yukawa couplings for quarks and leptons respectively and
f is the Majorana neutrino Yukawa coupling matrix. This is the most general super-
potential. R-parity is automatically preserved in this case, which is a consequence
of (B — L) being part of the gauge symmetry. Putting W’ = 0 gives an enhanced
U(1) R-symmetry in the theory. Under this R-symmetry, Q, Q%, L, L fields have a

charge of +1, S has charge +2 and all other fields have charge zero with W carrying

For alternative versions of SUSY left-right model, see Ref. [40].
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a charge of +2. Putting W’ = 0 also helps in understanding the p-parameter of
MSSM since it is induced as u ~ X' (S) from Eq. (3.1), which is of the scale of SUSY
breaking, as necessary. Setting W’ = 0 would make the doubly-charged left-handed
and right-handed Higgsinos degenerate in mass since both masses are given by A (S),
see Eq. (3.1).%

The SU(2)r x U(1)p_1 symmetry is broken at a large scale by giving a large
vacuum expectation value to the right-handed triplet Higgs boson fields A¢ and A°.
This generates a large right-handed neutrino mass, M, = 2fvg, where vy is the
vacuum expectation value of the 6 field which breaks the SU(2)z symmetry. This
helps generate a small Majorana mass for the left-handed neutrino via the see-saw
mechanism [35]. The bidoublets get VEVs of the order of electroweak symmetry
breaking scale and generate the masses of the quarks and leptons. The singlet S
gets a VEV of order the SUSY breaking scale, and helps solve the u-problem of the
MSSM, assuming that W’ = 0.

The terms in the Lagrangian which will be most essential for our calculation later
are the gauge kinetic terms for the triplet superfields and the quarks and leptons.
These terms will give us the interaction vertices between the Higgs boson fields and
the gauge bosons as well as the the fermions and the gauge bosons [41]. The kinetic
terms for the triplet scalar fields and the fermions are given by:

L=iY Trlgpg)+ Tr((D'®;)'(D,®;)] (3.3)

where ¢; = Q, Q°, ﬁ,ﬁ, KC,ZC and ®; = A, A, A°, A°. The covariant derivatives are

defined as

gL o 7 .g
D,Q = [0,— ZELT W — Z%VM]Q

$Keeping a non-zero W’ term does not affect the right-handed particle spectrum, but the left-

handed Higgsino becomes very heavy in this case and will not contribute to our new signal. We
present results of our analysis with and without the left-handed doubly-charge Higgsino in the light

spectrum, so this effect can be disentangled.
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Tl

D,A = 0,A— L 2 Lir W, Al —igyV,A

D,Q° = [, —f-zg;_’-W#R—i—z

D“Z = 8 A - Z 9 [T WHL,A] —H’gVVMZ
DA = 9 Ac—l—z?[ - Wor, A + igy V,A°

-,

DA = 8MF+Z’%R[F~W#R,F]—@VVHF. (3.4)

The covariant derivatives for ﬁ,i,&,? have similar form as A, A,A¢,A° respectively.

We now turn to some details of the calculation of the masses of doubly-charged
Higgs boson [30,31,42,43] and the Higgsinos. This will show that these particles are
indeed light and will help us in our analysis later on. In the context of type-II seesaw
mechanism without supersymmetry, signatures of doubly-charged Higgs bosons at
the LHC has been studied in Ref. [44] and in Ref. [45] recently. The main difference
in our study is the inclusion of doubly-charged Higgsino, which helps enhance the

multi-lepton signals.

3.2.1 Doubly-charged Higgs boson

The doubly-charged Higgs boson mass has been studied in details in Section 2.7. Here
we briefly review some of the important results. The right-handed doubly-charged

Higgs boson mass-squared matrix is given at tree-level as:

—2g%(|Jvrl* — UR[*) — 22Y v
M52++ = f & ) 9 5 . (3'5)
Y 203 (Jvrl” — [7a]%) — &Y
where
M2
Y = )\A)\S + |/\| (URUR - T) .

Solving for the squared mass, it can be seen that one of the eigenvalues is negative.

Including the contribution from the one-loop correction to the mass the eigenvalues

become [31]

—Y([vrl® + [Ur[*) £ V/([vr]* + [0r[*)*|1g5vrvR — Y|* + 4[vr*[vrY |2
2|vr|[vr|

2
M5ii -
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M2
+ O(ﬁ) (3.6)

where Mgygy is the mass scale for the supersymmetry breaking which we assume to
be ~ 1 TeV. The factor of 1/(167?) factor comes from the one loop corrections as
can be seen in Eq. (2.123). Explicit calculation of the effective potential utilizing the
Majorana Yukawa couplings of the right-handed neutrino shows that the eigenvalue
which is negative at the tree-level can be made positive, thus making the symmetry
breaking consistent. This makes the mass of the right-handed doubly-charged Higgs
boson to be of the electroweak scale, of order few hundred GeV. It is naturally lighter
than the doubly-charged Higgsino, since there is no loop suppression for its mass.
This light doubly-charged Higgs boson will be denoted as (SEjE in this chapter.

A light doubly-charged Higgs boson can also be obtained in left-right supersym-
metric models which include non-renormalizable operators in the superpotential [29].
Terms in the superpotential of the type (A°A¢)%/Mp; will give mass to the doubly-
charged Higgs bosons and Higgsinos of order few hundred GeV without resort to the
Coleman-Weinberg effective potential, provided that the SU(2)g breaking scale is in
the range of vg ~ (10! — 10'?) GeV. Our analysis will also be valid for these models
with light doubly-charged particles.

The left-handed doubly-charged Higgs boson mass-squared matrix looks very sim-
ilar to the right-handed case except that the VEVs of the right-handed neutral Higgs
boson fields are now replaced by the VEVs of the left-handed fields which we assume to
be negligible. Hence the mass of the left-handed doubly-charged Higgs boson become
of the order of Mg, which is of the scale of the SU(2)g symmetry breaking and hence
large. This happens because in the Higgs boson potential, there is a cancellation be-
tween the terms |A\|*(vgURr) and Mfg, arising from the vanishing of the F-terms, which
is not present for the left-handed doubly-charged Higgs boson mass-squared matrix.

We denote the left-handed doubly charged Higgs boson as 67~
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3.2.2 Doubly-charged Higgsino

The right-handed doubly-charged Higgsino gets its mass only from the superpotential
Eq. (3.1) and has the form A (S). In the supersymmetric limit, (vg) = (Ug) (which
arises from the vanishing of the D terms) and (S) = 0 (which arises from the vanishing
of the F' terms), and thus the Higgsino mass is zero in this limit. After supersymmetry
breaking, the singlet S gets a VEV which is of the order of Mgysy. Taking A to be
of order one, we see that its mass is at the SUSY breaking scale. Thus the Higgsino
has to be relatively light if we consider supersymmetry to be broken at a scale of ~
1 TeV.

The left-handed doubly-charged Higgsino would become heavy if we turn on the
W’ term in the superpotential. In this chapter we will consider W’ = 0 and hence
the left-handed and the right-handed doubly-charged Higgsinos remain degenerate.
However, the case of left-handed Higgsino being heavy can be inferred from our
results, since we separate out its contribution to the four lepton plus missing £ final

states.

l+

Figure 3.1: Direct production of gﬁi pair at the LHC. Subsequent decays of gﬁi give

rise to two leptons plus missing enerqy signal, if M(;]:;i < Myt
R
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3.3 Signals of doubly-charged scalars and fermions at LHC

In this section we discuss the signal for doubly charged Higgsinos at LHC and analyze
the final states coming from the pair-production of the doubly-charged Higgsinos and
their subsequent decay.¥ The doubly charged Higgsinos are pair-produced at the LHC

through the process
pp — g}f}g;j% (illustrated in Fig. 3.1)

which proceeds through s-channel v and Zj p exchanges [46]. As the mass of Zp
is dependent on the scale at which the SU(2)g is broken, its contribution will vary
depending upon its allowed values. In the minimal left-right supersymmetric model,
there is a relation between the W and the Zi mass where My, ~ 1.7Myy,,. Therefore
the current limit on the W mass of about 2.5 TeV [47] requires the Zg to be rather
heavy. This heavy Zg has very small contributions to the pair-production cross section
of the doubly charged Higgsinos. In our analysis we have fixed the Zg mass at 5 TeV
and find that the contributions from Zz exchange only become comparable to the
electroweak gauge boson exchanges for large values of the doubly charged Higgsino
mass, where the overall signal is quite suppressed.

We focus on a natural scenario where the only “light” states beyond the SM are
the doubly-charged Higgs boson, doubly-charged Higgsino and the lightest neutralino,
which is the LSP. The left-handed doubly-charged Higgsino is degenerate with the
right-handed doubly-charged Higgsino (in the case where W’ = 0). All other SUSY
particles are assumed to be much heavier. We further assume that the doubly-charged
Higgsino is heavier than the right-handed doubly charged Higgs boson and the lightest
neutralino. Then the dominant decay channel for the doubly-charged Higgsino is to
the light doubly-charged Higgs boson and the LSP neutralino, which we assume is

allowed by kinematics. The branching ratio for this process is almost 1 in this scenario

YThe relevant Feynman rules are listed in the Appendix.
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as the next leading decay mode is into a lepton and an off-shell slepton which is highly
suppressed. The right-handed doubly-charged Higgs boson now decays almost entirely
into two same sign leptons giving rise to a final signal of 4 leptons and missing energy.
Other decay modes of the right-handed doubly-charged Higgs boson would be into
two real or virtual Wx bosons or a Wx and a single-charged Higgs boson. Both the
Wp and the single-charged Higgs boson are very heavy in this model and hence those

decays will be forbidden or highly suppressed. The entire decay chain is then,
o 2t oo
° (%i — (ot

Though the right-handed doubly-charged Higgsino decays almost always into a
right-handed doubly-charged Higgs boson and a neutralino, the left-handed doubly-
charged Higgsino which is degenerate with the right-handed doubly-charged Higgsino
cannot decay through this channel as the left-handed doubly-charged Higgs boson is
much heavier. The main decay channel for the left-handed Higgsino is then given by
the three-body decay through an off-shell slepton and a lepton, where the off-shell
slepton mediates the decay into a lepton and a neutralino [46]. This produces the
same final state product as our signal and is therefore a source of background if we
consider the signal coming only from the right-handed doubly charged Higgsinos. The
left-handed doubly-charged Higgsino production cross-section is larger than the right-
handed Higgsino due to the Z-boson coupling strength being larger to the left-handed
particles and hence we also need to analyze the decay of the left-handed Higgsino and
include its contributions. We must however note that both the right-handed and left-
handed Higgsino pair production leads to a four-lepton final state with large missing
transverse momenta because of the presence of the undetected LSP passing through
the detector. Another source for the four-lepton final state would come from the pair

production of the light doubly-charged Higgs boson present in the model. Presence
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of such doubly-charged Higgs bosons have been looked for by experimentalists in the
context of various other models at Tevatron as well as LHC [51] which put strong
limits on the masses of such particles.

In Fig. 3.2 we plot the production cross-sections for the pair production of doubly-
charged Higgsinos (both chirality) as well as for the right-handed doubly-charged
Higgs boson. Note that the production cross section for the left-handed doubly-
charged Higgsino is much larger than the right-handed one. This is due to the bigger
Z boson coupling with the left-handed doubly-charged Higgsino. However for larger
values of the mass, the required center of mass energy to produce the particles in pair
also increases and therefore an s-channel suppression would appear in the case of the
left-handed doubly-charged Higgsino as the center of mass energy moves away from
the Z boson pole mass, i.e. @ — % (8 >> M2). In comparison the Zp contribution
would increase as the center of mass energy starts approaching the Zx boson pole

mass, i.e. % — ]\14%11 (§~M %R) which also has larger coupling to the right-handed

doubly-charged Higgsino. This effect is visible for very large values of the Higgsino
mass (although not shown in the Fig. 3.2) where we find that the production cross

section for the left-handed Higgsino actually falls below the production cross section

1000 — ‘ : ‘
Right-handed Higgs Boson — — -
Right-handed Higgsino
Left-handed Higgsino =-----
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Figure 3.2: Production cross sections for gfﬁ pair and (5?[ at the LHC at 14 TeV
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of the right-handed Higgsino. It can also be seen that the Higgsino production cross-
sections are much larger than the doubly-charged Higgs boson production rate (for
the same mass) and hence they effectively help in enhancing the 4-lepton signal at
colliders. In general, from spin arguments we might expect the production cross-
section of the fermion to be four times that of the scalar, but this is only true in the
massless limit. One can think that since the center of mass energy is much higher
than the masses of the particles the massless limit should be a good approximation,
but turning on the parton distribution function produces partons of all energies and
hence we get a cross-section ratio which is much higher. The Higgsino process also
gives a unique signal with 4¢ + J, which is not present for the doubly-charged Higgs
boson pair-production process.

Considering the decays of the doubly-charged particles discussed before, we find
that the final states coming from the pair production and subsequent decays of the
doubly-charged Higgsinos are two pairs of same-sign leptons of same or different flavor
(i.e., e or p) and missing energy. We want to focus on all the possibilities with the
final states consisting of same flavor or different flavor leptons, with and without
missing energy.

As we have no hint of SUSY signals yet at the LHC, it can be safely assumed
that the SUSY particles are heavy and difficult to produce at the current energies at
which LHC was run. We therefore restrict ourselves to the low lying mass spectrum
of some of the SUSY particles and their decay probabilities to study its signals.
Since the model in study naturally accommodates light doubly-charged particles, we
assume all other SUSY partners as well as the Higgs scalars to be much heavier than
the doubly-charged Higgsinos and the doubly charged Higgs boson (from the right-
handed sector). The only other particle which is assumed to be lighter is the lightest
neutralino, which is the LSP. With this choice of the spectrum, the decay patterns

for the doubly charged particles are known and have already been discussed earlier.
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To highlight the signal we have considered two representative points :

e The first choice, which we call BP1 (Benchmark Point 1), we consider a doubly-
charged Higgs boson with mass 300 GeV, an LSP neutralino with a mass of 80
GeV, charged sleptons with mass of 1 TeV and doubly-charged Higgsinos with
a mass of 500 GeV. With this choice we focus our attention on two particular
scenarios. First, we analyze the situation where all the finals state leptons
coming from the decay are of the same flavor (e.g all the final state leptons are
either electrons or muons) while the other case is when each doubly-charged
particle decays to a different flavor pair (e.g. two same sign electrons and two

same sign muons).

e The second choice, which we call BP2, we consider a lower value for the mass
of doubly-charged Higgsino as 400 GeV while the other mass choices remain the
same. Note that this choice gives a larger production rate for the doubly-charged
Higgsinos, but also affects the kinematics of the final state decay products be-
cause of smaller mass splitting between the doubly-charged Higgsino and the

doubly-charged Higgs boson.

In our analysis, for the charged lepton final states we have considered the signal
consisting of either electrons or muons only and neglected the tau lepton. Nevertheless
the decay of the doubly-charged Higgs boson to tau lepton pair will be very similar
to the decay into muons and electrons and is only considered less relevant due to the
limited tau-tagging efficiency at experiments. However, the signal will also be dictated
by the decay probabilities of the doubly-charged scalar into the charged lepton pairs,
and in models where the Yukawa structure demands that the decays are maximally
to a pair of same sign taus, then one needs to consider the tau final states.

We now turn our focus to analyzing the final state signal consisting of the four

charged leptons with or without missing transverse energy. Note that when we do not
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demand any criterion for the missing transverse momenta in the final state, our signal
contributions come from three different sources, i.e. pair production of the doubly-
charged Higgsinos (both chirality) as well as the pair production of the doubly-charged
scalars. This would not only enhance the four-lepton signal when compared to indi-
vidual contributions but also help in identifying the nature of additional contributions
to such multi-lepton final states. To study the signal we demand that the final state

particles satisfy the following kinematic cuts:

e Each charged lepton must carry a minimum transverse momentum given by

pr > 15 GeV.
e The charged leptons must lie in the central rapidity region of |n,| < 2.5.

e For proper resolution to detect the final state particles we set ARy, > 0.2

between the final state charged leptons, where AR = \/ (Ap)? + (An)* defines

the resolution of a pair of particles in the (7, ¢) plane.

e We also specify an invariant mass cut between the opposite sign same flavor
leptons such that My+,~ > 10 GeV and a further cut of 80 GeV > My+,- >
100 GeV, where the latter one is aimed at removing the SM contributions

coming from resonant Z boson decays.

With the above set of kinematic selections we perform a detailed numerical anal-
ysis of the final state events of the multilepton signal as well as the SM background.
For our numerical analysis, we have included the model description into the event
generator CalcHEP [48] and generated the event files for the production and decays
of the doubly-charged Higgsinos. These event files were then passed through the
CalcHEP+Pythia [49] interface where we include the effects of both initial and final
state radiations using Pythia switches to smear the final states. We have used the
leading order CTEQGL [50] parton distribution functions (PDF) for our analysis.

So there are three major processes that contribute to out signal.
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e The direct pair-production of the right-handed doubly-charged Higgs bosons.
Each Higgs boson then decays into a pair of same sign leptons producing a final

state signal of 4 leptons. We call this (C1)

pp— 0 0x — LIS

e Pair-production of right-handed doubly-charged Higgsino. Each Higgsino de-
cays into a right-handed doubly-charged Higgs boson and a neutralino. The
doubly-charged Higgs boson then decays into a pair of same-sign leptons giving

a final state signal of 4 leptons and F,. We call this (C2)

pp— 04 0n = RO XY = LG By

e Pair-production of left-handed doubly-charged Higgsino. The Higgsino decays
through an off-shell slepton to a same sign lepton pair and a neutralino. This

process also gives a final state signal with 4 leptons and F'r. We call this (C3)

pp— 05T = (G0 (6 07) — 66 6 R0X0

All the three subprocesses mentioned above lead to a signal with four charged leptons
in the final state which is a very clean signal at a hadron machine such as the LHC,
with very little SM background, and therefore should be an interesting test for the
model. Significantly one should note that the signal described by (C1) is an important
channel for the search of doubly charged particle resonances such as double charged
scalars [51] or bileptons [52] and can appear even in R-parity violating supersymmetric
models [53]. The highlight of course is that there is no source for missing transverse
momenta in the signal. However, the other two signals described by (C2) and (C3)
not only lead to four charged leptons in the final states but is also accompanied by
large missing transverse momenta due to the LSP present in the final state. There

could be numerous new physics scenarios where such a signal can be common and
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so it would be interesting to be able to identify the signal associated with our model

in a unique way. We find that our signal can in general be classified into two types,

LHC Energy C1 C2 C3

ET (GeV) ET (GeV) ET (GeV)
>0 > 100 >0 > 100 >0 > 100

7 TeV 0.266 b | 0.033 tb | 0.275 tb | 0.226 b | 0.642 fb | 0.568 tb

8 TeV 0.368 tb | 0.048 b | 0.430 tb | 0.359 b | 0.992 tb | 0.927 tb

14 TeV 1.153 tb | 0.228 tb | 1.859 fb | 1.649 b | 4.208 tb | 3.667 fb

Table 3.1: Cross-section table for a final state of (7 {70707 + X with Mgﬁ%: 500

(2NN 2 ]

GeV,Mélj%i: 300 GeV, Myp= 80 GeV and Mp.= 1 TeV

one where we only demand four charged leptons in the final state and do not put
any requirement on the missing transverse momenta. The other type would be to
demand a minimum missing transverse momenta in the final state in addition to the
four tagged charged leptons. We list the cross-sections for the three subprocesses
(C1-C3) at different LHC energies in Table 3.1 which gives the cross section for a
final state consisting of same-sign pairs and all four of same-flavor (SF) charged
leptons in our model for BP1 where the doubly-charged Higgsino mass is taken
as 500 GeV, doubly-charged Higgs boson mass of 300 GeV, slepton mass of 1 TeV
and a neutralino mass of 80 GeV. Note that the signal cross sections are invariably
larger for the (C3) as it comes from the pair production of the left-handed doubly
charged Higgsinos which has the greater production rate. We can see that without
any missing Er requirement on the final state, a somewhat lower cross section for
the signal coming from the pair production of doubly charged scalar is found to be
enhanced considerably by including contributions from the pair production of the
doubly charged Higgsinos. This enhances the sensitivity of the experiment to exotic

doubly charged particles through the four charged lepton final state. With a minimum
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missing Er requirement of 100 GeV on the events, it is found that the signal coming
from the pair production of the doubly charged scalars is reduced drastically while
the events from the pair production of the doubly charged Higgsinos are not affected
much. This is expected because the doubly charged Higgsinos decay to final states
consisting of the undetected LSP which carries off substantial missing energy and

therefore satisfies the large f cut-off. In Table 3.2 we show the cross-section for

LHC Energy C1 C2 C3

Er (GeV) Er (GeV) Er (GeV)
>0 > 100 >0 > 100 >0 > 100

7 TeV 0.302 tb | 0.032 fb | 0.314 tb | 0.257 tb | 0.753 tb | 0.672 tb

8 TeV 0.418 tb | 0.047 fb | 0.480 tb | 0.402 b | 1.152 fb | 1.078 tb

14 TeV 1.266 fb | 0.216 fb | 1.989 fb | 1.749 fb | 4.655 tb | 4.051 fb

Table 3.2: Cross-section table for a final state of (¢ (;(; + X with Myex = 500

GGV,M(%i: 300 GeV, M= 80 GeV and Mp.= 1 TeV

a final state consisting of same-sign pairs where each pair is of different-flavor (DF)
leptons for BP1. Here we assume that one of the doubly-charged particle decays
to one particular flavor of the charged leptons while the other decays to a different
flavor. So the final states would have four charged leptons of the type efe*uTuT.
Note that such a combination of final state would have practically no SM background
as it requires at least four W bosons to give such a combination of charged leptons
in the final state. We neglect the 7 lepton as discussed before. The cross sections are
slightly greater than those listed in Table 3.1 because we have removed the additional
kinematic cut on the invariant mass on the opposite-sign same flavor leptons given
by 80 GeV > M+~ > 100 GeV. As our estimates rely on the assumption that the
branching fractions for the doubly charged particles decay to each flavor of charged

lepton is 1/3, we must point out that this final state will be relevant only when the
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decay rates to either ete® or u*u* are not too suppressed.
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Figure 3.3: (a) Fr for doubly-charged Right-handed Higgsino and Higgs boson, (b) Er
for doubly-charged Right-handed and Left-handed Higgsinos and Right-handed Higgs

boson.

We now consider a case where the doubly charged Higgsinos are slightly lighter
(400 GeV) while the other particles have the same mass as before (BP2). This
choice enhances the production rates for the doubly-charged Higgsinos but also gives
a compressed spectrum for its decays. Note that a bigger mass difference between
the parent particle and its decay products would lead to greater energy for the decay
products. In this case, one expects that as the LSP mass and the doubly charged Higgs
mass add up very close to the doubly-charged Higgsino mass, the missing transverse
momenta in the events due to the LSP will be less compared to the previous case.
This can be seen in Fig. 3.3 where we show the distribution for the differential
cross section as a function of the missing transverse energy. In Fig. 3.3(a) we show
the J distribution in the signal events coming from the contributions of the right-
handed doubly-charged Higgsino and Higgs while Fig. 3.3(b) shows [ distribution for
contributions from both the right-handed and left-handed doubly-charged Higgsino

including the doubly charged Higgs boson. We see that differential cross section in
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Fig. 3.3(a) has a higher fraction of events at very small F;. This is because of the
contribution from the direct pair production of the doubly-charged Higgs boson which
will have very little missing energy which might originate due to mismeasurements
of the final state particles, as there is no other source of missing energy in the form
of the neutralino in the final state. In Fig. 3.3(b) this effect is washed away because

the number of events from the left handed doubly-charged Higgsino pair-production

LHC Energy C1 C2 C3
Er (GeV) Er (GeV) Er (GeV)
>0 > 20 >0 > 20 >0 > 20
7 TeV 0.266 tb | 0.143 tb | 0.871 tb | 0.823 tb | 1.797 tb | 1.774 tb
8 TeV 0.368 fb | 0.203 tb | 1.248 tb | 1.183 fb | 2.576 tb | 2.550 tb
14 TeV 1.153 tb | 0.737 tb | 4.467 b | 4.309 fb | 8.892 fb | 8.806 fb

Table 3.3: Cross-section table for a final state of (¢ ¢ ¢; + X with Mgﬁ%: 400

(2N 2 1

GGV,M(%i: 300 GeV, Myp= 80 GeV and Mp.= 1 TeV

is now much larger compared to both the doubly-charged Higgs boson and Higgsino
pair-production and hence their contribution is suppressed.

In Table 3.3 we give the cross sections for a final state consisting of the same-
flavored charged leptons for BP2. Note that we have a slightly weaker requirement
on the missing transverse energy of 20 GeV for the events corresponding to BP2.
This is to avoid large suppression of the signal which can happen due to the smaller
mass splittings.

In Table 3.4 we give the cross sections for a final state consisting of different-
flavored charged lepton pairs for BP2. Again the kinematic characteristics for the
events remain the same as before but the cross section is slightly greater than that for
SFE events because of the removal of the kinematic cut corresponding to the invariant

mass removing the Z peak for opposite sign same flavor charged lepton pairs.
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LHC Energy C1l C2 C3
Fr (GeV) Fr (GeV) Fr (GeV)
>0 > 20 >0 > 20 >0 > 20
7 TeV 0.302 fb | 0.149 fb | 1.009 b | 0.949 fb | 2.332 fb | 2.308 fb
8 TeV 0.418 fb | 0.213 fb | 1.451 fb | 1.358 tb | 3.327 fb | 3.288 fb
14 TeV 1.266 tb | 0.721 tb | 4.804 fb | 4.610 fb | 10.886 tb | 10.767 fb

Table 3.4: Cross-section table for a final state of (] (;(;(; + X with

Mgii = 400
LR

GeV,M%i{i: 300 GeV, My = 80 GeV and Mp.= 1 TeV

We must point out here that the corresponding SM background for the four
charged lepton final state with our selection cuts on the kinematic variables is found
to be completely negligible and therefore has not been shown or considered in our
analysis. The most dominant background which one expects for the SF charged lep-
ton signal will be from the pair production of Z bosons which we have suppressed
using the invariant mass cut on the opposite-sign same flavor lepton pairs. However,
as we have a light doubly-charged Higgs in the spectrum, we expect to see a reso-
nance in the invariant mass distributions of like-signed charge lepton pairs. We have
already shown that there are three different subprocesses for the signal contributions
for the 4¢ + X final state and the cross-section for (C3) is much larger than (C1) and
(C2). Note that (C3) corresponds to the signal where the left-handed doubly-charged
Higgsino is pair produced and decays through an off-shell slepton. Therefore one does
not expect any resonance behavior in the invariant mass distributions of the charged
lepton pairs but a kinematic edge is expected [46]. This would mean that a part of
the signal itself acts as a background to smear out the resonant signal for the doubly
charged Higgs boson. This is in fact the highlight of our analysis where we show that
our signal actually stands out as a resonance and is also enhanced because of the

additional contributions coming from the heavy doubly charged fermion production.
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To show some kinematic characteristics of the events for the SF signal we take
the case of e"eTe~e™ in the final state and for the DF signal we take y~u~eTe™. We
put the aforementioned cuts and simulate the events using CalcHEP and Pythia and

look at the ARy and invariant mass M of the final state leptons.
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Figure 3.4: (a) lllustrating the ARy distribution for events coming from the doubly-
charged right-handed Higgsino and Higgs boson pair production and, (b) ARy distri-
bution for events when the contributions from the pair production of the left-handed

Higgsinos is also included for BP1.

The ARy for the same-sign and opposite-sign final state charged leptons of same
flavor for BP1 are shown in Fig. 3.4. Fig. 3.4(a) includes only the contribution of the
right-handed doubly-charged Higgsino and Higgs (C1 4+ C2) while Fig. 3.4(b) denotes
the contribution from the doubly-charged Higgs as well as both the right-handed and
left-handed doubly-charged Higgsino (C1 4+ C2 + C3). It is worth noting that in each
plot there is a marked difference between the same-sign lepton and the opposite-
sign leptonic final states. It can be seen that for the same-sign charged leptons the
distribution is peaked at low values of AR while the opposite-sign charged leptons

have a AR which is peaked at a much higher value. This is what is expected since
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the same-sign pair of leptons arise from the decay of a single doubly-charged Higgs
boson while the opposite-sign leptons arise from two different particles and hence are
much further apart. The measurement of AR at the LHC for a four lepton final state
can thus give a definite indication of the existence of a doubly-charged particle if the
distribution is similar to what we get in our analysis. Note that the AR distributions
are also very sensitive to the boost of the mother particle as larger boost will make

the decay products come out more closer to each other.
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Figure 3.5: Illustrating the (a) invariant mass distribution for events coming from
the doubly-charged right-handed Higgsino and Higgs boson pair production and, (b)
invariant mass distribution for events when the contributions from the pair production

of the left-handed Higgsinos is also included for BP1.

In Fig. 3.5 we show the invariant mass distributions for the same-sign and
opposite-sign final state leptons of same flavor for BP1. Note that for the opposite-
sign lepton pair invariant mass there are no events between 80 GeV and 100 GeV.
This is due to the cut that we applied to get rid of the Z peak for the SM background.
The invariant mass for the opposite-sign leptons do not show any resonant behavior.
For the same-sign lepton pairs, we see a pronounced peak at an invariant mass of 300

GeV which is the doubly-charged Higgs boson mass. As we include the contributions
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coming from the pair production of the left-handed doubly-charged Higgsino, the res-
onant peak is seen to broaden a little but is still very significant. Such a peak, though
very difficult to see without a priori knowledge of the Higgs boson mass, would be a
definite proof of a doubly-charged particle if seen in the detector. It is also worth not-
ing the distinct kinematic edge seen in the invariant mass distribution of the like-sign
charged lepton pair in both Fig. 3.5(a) and (b). The edge in Fig. 3.5(a) is at a differ-
ent M when compared to that in Fig. 3.5(b). Note that in Fig. 3.5(a) the resonant
peak is because of the doubly-charged Higgs decaying to two same-sign leptons while
the sharp cut-off in the distribution is because of the maximum invariant mass allowed
for the lepton pair that comes from (%i — (*¢*. This would mean that the distribu-
tion will fall rapidly beyond the resonance which is the 6§i mass. On the other hand,
the signal in Fig. 3.5(b) is completely dominated by the contributions coming from
the left-handed doubly-charged Higgsino production and therefore it washes away the
kinematic edge from the other subprocesses. The sharp cut-off in Fig. 3.5(b) then

appears because of gf — (C0F) — (F07X9 and is given by (in the rest frame of the

decaying particle) M2 = \/ M%i + ng? — 2M3:Lt:t E5o, where Ego is the energy of
the LSP. This yields an edge in the invariant mass distribution of the same-sign same
flavor charged lepton pairs at the bin around M+ = Mg:Lt:t — M5 ~= 420 GeV. It is
interesting to observe that we find a distinct resonance in the invariant mass distri-
bution as well as a sharp kinematic edge due to the off-shell decay of the left-handed
doubly-charged Higgsino which clearly highlights an additional contribution to the
resonant signal of doubly-charged scalar production leading to four charged lepton
final states.

We can also consider the case where the right-handed doubly-charged Higgsino too
decays via off-shell doubly charged scalar which can be realized when the right-handed
doubly-charged Higgsino is not much heavier than the right-handed doubly-charged

Higgs boson such that Mg}j%i < M(S}i%i + Mso. In this case the Higgsino will decay
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Figure 3.6: Invariant mass distribution in My for a doubly-charged right-handed Hig-

gsino which decays through an off-shell doubly-charged Higgs boson.

into the LSP and two same sign leptons through an off-shell doubly-charged Higgs
boson. In Fig. 3.6 we show the invariant mass distribution for the charged lepton
pairs, where the doubly-charged Higgsino mass is 350 GeV, the doubly-charged Higgs
boson mass is 300 GeV and the LSP mass is 80 GeV. We see that in such a case the
resonant peak in the same-sign charged lepton pair is lost but a kinematic edge exists
at around 270 GeV. Note that we still expect a narrow resonance from the direct pair
production of the doubly-charged scalar and an enhanced signal rate but we do not
see any new enhancement at the resonance.

Experiments at the LHC are looking for doubly-charged Higgs bosons by analyzing
final states with four high pr charged leptons. Our model gives a resonant multi-
lepton signal with large missing energy depending on the mass difference between
the doubly-charged Higgs boson and the Higgsino. Such a signal accompanied by a
peak in the same-sign lepton invariant mass distribution of the same-sign charged
lepton pair. This will clearly suggest an alternative signal not restricted to the direct

production of doubly charged scalars. This can definitely be a possible channel for
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the discovery of the doubly-charged Higgsinos which might be worth looking for.

3.4 Summary

In this work we have studied the pair-production and decay of the doubly-charged
Higgsinos in the left-right supersymmetric model and looked at the possible collider
signatures at the LHC. The four lepton plus missing energy signal has a variety of dis-
tinct features which can easily distinguish itself from other signals, arising especially
from the minimal supersymmetric standard model.

We have studied the multi-lepton final state 20*2¢~ + [ arising in the left-right
SUSY model. We find that there are three distinct sub-processes that contribute to
the signal. We have shown through two representative points in the model how each
sub-process dominates the signal depending on the kinematic requirements on the
missing transverse momenta. We also show through various kinematic distributions
the highlight of the four lepton signal in this model. Using specific cuts on the final
states we find that there is very little background from SM. The major background at
the LHC where two Z bosons decay into four charged leptons is minimized by putting
an invariant mass cut which neglects events at the Z boson peak. Thus, the signal
produced by our model at the colliders would be clean and very easy to distinguish
from other competing models. Large missing transverse momenta in the final state
can be triggered upon to rule out contributions coming from the direct production
of doubly-charged scalars and therefore would give a strong hint of a supersymmetric
model with doubly-charged particles. The data collected by the LHC experiments
should already provide significant constraints on the masses of the doubly charged
Higgsino and Higgs boson through the process outlined here. Dedicated searches
for these doubly charged particles in the channel proposed here by the experimental

collaborations will be highly desirable.
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CHAPTER 4

HIGGS BOSON DECAY CONSTRAINTS ON A MODEL WITH A
UNIVERSAL EXTRA DIMENSION

4.1 Introduction

The discovery of the 125-126 GeV Higgs boson — or its close lookalike — at CERN,
Geneva, in the previous year [54], has proved to be a game-changing moment in
phenomenological studies of electroweak interactions. Gone are speculations about
Higgsless models [55], strongly-coupled Higgs sectors [56] and fears that the Higgs
boson self-coupling may hit a Landau pole at some large energy scale [57]. Instead,
today’s theoretical studies have other concerns, such as stability of the electroweak
vacuum, fine-tuning constraints and the requirement that the measured Higgs boson
mass and branching ratios be correctly explained in whatever model happens to be
the subject of the study. At the present instance, there is no compelling reason, be-
yond certain theoretical prejudices (like grand unification), to believe that we require
anything other than the Standard Model (SM) to explain all the known phenomena
on a terrestrial scale. Destabilisation of the SM vacuum at some energy scale below
the Planck scale could be one of the strongest hints of new physics [58], but at the
moment this issue is mired in uncertainties of the top quark mass measurement [59].

Nevertheless, we do require physics beyond the Standard Model, and this require-
ment arises as soon as we look outside the confines of our Earth into the cosmos
beyond. Here it is well known that the SM fails to provide explanations for (i) the
composition of dark matter [60], (i¢) the nature of dark energy [61] and (éii) the

amount of C'P-violation required for baryogenesis [62]. Of these, perhaps the most

94



tractable problem is the first one, viz. the generation of a model for dark matter,
for all that is required is a model for a stable, weakly-interacting massive particle
(WIMP). The most famous model which provides this is, of course, supersymme-
try with conservation of R-parity, where the lightest supersymmetric particle is the
WIMP in question [63]. An alternative model, which was proposed about a decade
ago, is one with a so-called Universal Extra Dimension [64]. In the minimal model of
this kind (mUED), each five-dimensional SM field is replaced by a tower of Kaluza-
Klein (KK) modes, each labelled by a KK number n, and having masses given (at
tree-level) by M, = (M2 +n2R=2)"/?. Here, the lightest of the n = 1 particles is sta-
ble and weakly-interacting due to a Zs symmetry called KK parity, defined in terms
of KK number by (—1)". This lightest KK particle, called the LKP, is an excellent
candidate for dark matter [65].

At a high energy collider, the behaviour of the mUED models is very similar
to that of supersymmetric models [66]. The n = 1 states form analogues of the
supersymmetric particles, exhibiting cascade decays ending in the LKP, which is then
a source of missing energy and momentum. A major difference from supersymmetry
is the presence of n = 2 and higher KK modes, which could perhaps be produced as
resonances in a high energy machine like the LHC [67]. However, a more significant
difference arises when we consider the ultraviolet behaviour of the mUED model (or
any model with KK modes), as was pointed out in a pioneering paper by Dienes et
al [68]. This is the fact that when we allow the SM coupling constants to run in
this model, we encounter repeated KK thresholds at every scale n/R, so that, when
considered over a large range of energies, the coupling constant exhibits a piecewise
logarithmic running closely mimicking a power law dependence. As a result, it has
been shown that (a) the electromagnetic coupling hits a Landau pole at as low a scale
as A =~ 40R™!, and (b) there is approximate (but not exact) unification of the three

gauge coupling constants at an even lower scale A ~ 20R~!. One therefore assumes
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that the low energy theory has a cutoff at either of these values, and phenomenological
studies are made accordingly. This has been the standard practice in mUED studies
over the past decade.

Of course, it is not only the gauge couplings that run faster in this model, but also
the scalar self coupling A. It has been shown [69] that if the self-coupling A = M3, /2v?
is less than 0.18 at the electroweak scale, then its renormalisation group evolution will
inexorably drive it to zero at some high scale, at which point the electroweak vacuum
will become unstable. Taking the experimental range 122 GeV < My <127 GeV for
the Higgs boson mass, we obtain 0.123 < A < 0.133, which is clearly below 0.180.
It follows that the electroweak vacuum in this model will indeed destabilise at some
high scale, as, in fact, happens in the Standard Model itself at very high scales. The
surprise lies in that fact that the ‘power law’ running of A in the mUED model is
so fast that the destabilisation takes place at a scale which is always below 6R~L.
At this surprisingly low scale, new physics must come to the rescue, and hence the
destabilisation scale can be treated as a cutoff for the mUED model.

The exact value of the cutoff scale is determined by evaluating the running cou-
pling constant A and determining where it vanishes [69]. The most important input
parameters which determine this running are the mass of the Higgs boson (Mp) and
the size parameter (R™!), which is nothing but the inverse of the compactification
radius of the extra dimension. The solid (red) lines in Figure 4.1 show the variation
of the cutoff scale A, in units of R, as a function of this size parameter R~!, for two
values of Higgs boson mass My = 122,127 GeV (which represent the 30 experimental
limits). The (red) hatching, therefore, represents all the intermediate values of My.
Horizontal (blue) lines represent the different KK levels n/R, for n = 1,2,...,6. Our
results shown here correspond closely to similar results shown in Ref. [70].

Obviously, assuming tree-level masses, the number of KK modes with mass M,, ~

n/R which can participate in any process will be given by the nearest integer lower
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Figure 4.1: Variation of A/R™!, where A is the cutoff induced by destabilisation of the electroweak
vacuum, as a function of size parameter R~'. The (red) hatched band represents variations in the
Higgs boson mass from 122 — 127 GeV, and horizontal (blue) lines represent KK levels.

than the solid (red) curve for a given value of R™!. Tt is clear that this number can
only vary between 3 and 5, and can never reach higher values such as 20 and 40 which
used to be assumed earlier. Note that in generating Figure 4.1, and subsequently, we
have fixed the top quark mass at m; = 172.3 GeV. Variation of the top quark mass
between its experimentally allowed limits [71] does result in some distortion of the
curves, as the related Yukawa coupling plays a role in the running of the self-coupling
A. However, these distortions have very minor effects on the final conclusions of this
article, and hence are not shown here.

In an earlier article [75], written at a stage when the new boson discovered at the
CERN LHC had not yet been identified with any certainty as the Higgs boson, two of
the present authors had shown that this low value of cutoff (i.e. small number of KK
modes to sum over) leads to a compressed spectrum of KK modes of SM fields at any
level n > 1, which presents serious difficulties for detection at the Tevatron and LHC.
However, it was not possible to impose constraints on the model from the Higgs boson

decay branching ratios, which were very imperfectly measured [54] at that stage. Now,
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however, we have better experimental results on these branching ratios [72,73], which,
though not as precise or consistent between separate experiments as we would have
liked them to be, have nevertheless reached a level where they are accurate enough
to begin to constrain the mUED model [74]. These constraints form the subject of
the present study.

Before we go on to actually study the Higgs boson decay widths, however, it
may be noted that bounds on the size parameter R~! quoted from hadron collider
studies [78] are generally based on expanded spectra arising when we sum KK levels
up to N = 20 or even N = 40, which, as we have shown, is incompatible with
stability of the electroweak vacuum. We should set aside such hadron collider bounds
on the mUED model. The LEP bound R~! > 260 GeV, obtained at 3o from precision
electroweak tests [75], may, however, be taken as a certainty. In a recent work [76],
it has been shown that even if we sum up to 5 KK levels, a lower bound of R~! >
720 GeV at 95% C.L. can be obtained by noting the non-observation by the CMS
Collaboration of dilepton signals [77] arising from the decay of n = 2 resonances of
the mUED model in the 7-8 TeV runs of the LHC. The purpose of the present study
is, therefore, to ascertain if the existing data on the Higgs boson decay channels can

provide even better constraints.

4.2 Higgs boson decay signal strengths at LHC

In the Higgs boson decays, the actual experimentally-measured quantities are the so-
called signal strengths [72,73]. For a decay H — X X, the signal strength is defined
by

o(pp — H°) x B(H° — X X)
BXX = —oum o S D0 = (4.1)
oM ((pp — HO) x BEM(HO — X X))

where B(H° — X X) is the branching ratio of the Higgs boson to an XX pair,

and o(pp — HY) is the cross-section for single Higgs production at the LHC. The
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superscript (SM) denotes the SM prediction. Obviously, if the SM is the correct
theory, then the experimental data will eventually converge on the results pygx ~ 1
for all the channels X. On the other hand, deviations from unity will indicate new
physics. As of now, the ATLAS and CMS Collaborations at CERN have measured
signal strengths for XX = WW*, ZZ* bb,7~7+,vy. Of these, the case XX = bb is
not very viable yet because of large errors. The other four have been measured with

a better degree of precision. The results are given in Table 4.1 below.

Hww Hzz Horr oy

ATLAS  0.99703! 1.431040 0.8 +0.7 1.551033

CMS 0.684+0.20 0.92+0.28 1.104+041 0.77+£0.27

Table 4.1: ATLAS [72] and CMS [73] data on Higgs boson signal strengths, as reported in the
summer of 2013. For ., we use the March 2013 results of ATLAS [79].

4.3 Calculation of Higgs boson decay strength and comparison with

experiments

We now discuss how to predict the values of jix 5 in the mUED model. Using the fact
that the parton-level cross-section for gluon fusion gg — HY is related to the decay
width of H~ — gg by the linear relation

2

T
o(g9 — H°) = W I(H® = g9) , (4.2)
H

we can rewrite the signal strength entirely in terms of decay widths as

. T(H° = gg) y T(HY - XX) y r(SM) (43)
HXX = TEW((HO — gg) ~ TEM(HO - XX) Ty '

where

Ty=)» T(H - XX) (4.4)
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and all PDF-related effects (to leading order) in the cross-section may be expected
to cancel in the ratio. All we have to do, therefore, is to calculate the decay widths
of the Higgs boson in the mUED model and the SM, and take the appropriate ratios.
All the formulae relevant for these are available in the literature, but, for the sake of
completeness and having a consistent notation, we list the most important formulae
below.

In the SM, the decay width of the Higgs boson to a pair of leptons is given by [80]

Mpyg) m? Am2\*?
L(H® — ¢ty :O‘(—H_L’M _ 4.
(= 00) = Snzay, 102, Mo (4.5)

where a(Q) is the running QED coupling at the mass scale (). The corresponding

decay width to a pair of quarks is given by [80]

/2
~ 3a(My) m2(Mpy) 4m2\° as(Mpg)
0 q q
PHT =00 = g5, oz Mo (-3 L5067 (4.6)

where the last factor represents the QCD corrections to the decay width [81], and the

running quark mass is given by [82]

(4.7)

ay(Mpy) }24/23

o) = {5 o

where a4(Q) is the running QCD coupling at the mass scale Q.
The SM decay width of the Higgs boson to a WW™* pair is given by [83]

2
P ww) = 0 Mn)

— F(M 48
327 sin? Oy My (M) (4.8)

and that to a ZZ* pair by [83]

042(MH)
INH® - Z27%) = 63 — 120sin% 6 160 sin? Oy ) F(M 4.9
( ) 727Tsin429WMH( sin’ By + 160 sin’ by) F(Mz)  (4.9)
where
F(M) = L4 M ATM? — 13M3 + 2Mj
- 2 M3 S VE
404 M?
— 3(M§,—6M2+ M}Q{)lnM—?{
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20 M4 M M M?
+ 3 (M}i —8M? + ) T cost A (3 94 10)

M% \/m 2M M?
It is important to note that QCD corrections are significant only in the decay widths
of the Higgs boson to quarks and can be neglected for all other decay modes. Likewise,
the mUED contributions to the above decay modes is negligible, arising, as they do,
from higher order effects which are severely suppressed by the heavy masses of the
KK modes.

The decay modes which will be of most interest in the present work, are however,
those that occur at the one-loop level in the SM, viz. the decays of the Higgs boson to
a pair of gluons (H° — gg) or a pair of photons (H® — ~v). Formulae for the partial
decay widths in the SM are given in Ref. [80], and the extra contributions in the
mUED, which occur at the same level in perturbation theory, are given in Ref. [84].
We list, below, these formulae in a common notation, with a couple of modifications
to the formulae of Ref. [84], which will be mentioned at the appropriate juncture.

The partial decay width of the Higgs boson to a pair of gluons is given by

a(Mg)a?(My) 1

FHD—) — QSM QKK 2
( 99) T2n2sin? Oy MGTE, | * |
My My o3 (My
x{1+17.9z¥+1568 (ﬂ 1) | 4677 (7T )}411)

where the second line indicates the QCD corrections [81] and the loop integral func-

tions are given by

QB = Z3m2 {2MF, — (M}, — 4m2) f(m,) } (4.12)
legiK) = Z Z 3m2 {4MH 4qu n l)f(mq,n,l) - (MH 4mqn2)f(mq,n,2>}

where my ,, 1 and mg, 2 are the two eigenvalues of the mass matrix

(4.13)
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for the n’th level KK modes of the quarks, where

@12 " 5 m) ]2 " o )
[qu} = +my + 0, [qu] = +my + O, (4.14)

in terms of the radiative corrections 5(57;) and 557;2) [66]. The function f(m) is the usual
loop integral [80]
—2 (sin™! ﬁ)z for m > =

My
2
fm)=3 —% for m = 45

2
MH+ M2 —4m2 .
(ln— Y A r for m < %

(4.15)

D=

My —+/ M2 —4m?

In using these formulae, we differ from Ref. [84] in two ways:

\

1. we consider the sum over KK modes to terminate at N, which is the largest
integer smaller than AR as given in Fig. 4.1, instead of summing to infinity, as

was done in Ref. [84]; and

2. we consider the splitting between mass eigenstates of KK modes of quarks at
the level n, whereas Ref. [84] assumed them to be degenerate. Of course, the
fact that the off-diagonal terms in the mass matrix of Eqn. 4.13 are m,, indicates
that such splitting between these states as does occur will be perceptible only

in the third generation.

In a similar vein, the partial decay width of the Higgs boson to a pair of photons is

given by

CYS(MH) 1

D(H® — y7) =
( M) = o s Oy MG ME,

| QM 4 Q) |2 (4.16)
where the loop integral functions are given by

A0 = TP+ ™l
q y4
N

QIR = Z Z epwi™ + Z 2w + Wi (4.17)
q 4

n=1
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in terms of [80]

W™ = 3m2 {2M} — (M}, — 4m2) f(m,)}
wi™ = mg {2M; — (MG — 4m7) f(mq) }
1
wip = —3Mfy { M} — (M — 2M) f(Mw)} = 5 M} (4.18)
and [84]
W = B2 {AME — (M — 4, ) Fmgs) — (M — 4m2, ) F(m2, )}
wén) = mz {4]\/[[2_1 - (Mé - 4mzn’1>f<m€,n,l) - (MI2—I - 4m?,n,2)f(mzn,2)}
1
Wiy =AM MG+ {AMy (M = 2M3,,) — My, Mi} f (M) = 5 Mf19)

where the lepton mass eigenvalues my, 1 and my, o are, for all practical purposes,
degenerate.

Using these formulae, we can now find the signal strengths predicted in the mUED
model as a function of the size parameter. To understand this behaviour, let us note
the conclusion of Ref. [84], which remain qualitatively — though not quantitatively —

true in our analysis as well. These may be summed up as follows.

e The tree-level decay widths of the Higgs boson are practically the same in the
SM and the mUED model.

e The decay width of the Higgs boson to a pair of gluons is considerably enhanced
in the mUED model, especially when R is taken close to its lower experimental

bound (see Figure 4.2).

e The decay width of the Higgs boson to a pair of photons is suppressed in the
mUED model, especially when R is taken close to its lower experimental bound

(see Figure 4.2).

In our analysis, we obtain numerically different results from Ref. [84] because of
two reasons. In the first place, we note that the sum over KK modes in our case is

truncated at values of n between 3 and 5, whereas Ref. [84] took the sum to infinity.
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Figure 4.2: Illustrating the effect of KK modes on the partial decay widths of HY — gg and
H% — ~~. The former is always enhanced, while the latter is always suppressed, compared to the

SM prediction.

As a result, we obtain significantly smaller mUED contributions. The second point
is that because of this low cutoff, we are able to take R~ somewhat lower than what
the earlier collider-based bounds permit us, and these lower values could then lead to
larger mUED contributions.

If we take a closer look at Eqn. (4.3), however, we see that there are more con-
flicting effects. The three channels with XX = WW*, ZZ* and 77 will all receive
enhancements in the mUED model through the first factor on the right of Eqn. (4.3).
The second factor will be practically unity, as we have explained above. The third
factor, however, will suppress the signal strength if there are large enough mUED
contributions in the first factor. Owing to these opposed effects, the enhancement in
signal strength is not as large as it might have been otherwise.

A curious fact worth noting is that the variation in the last factor arises only
because we do not yet have an accurate measurement of the total decay width of the

Higgs boson. If the Higgs boson decay width could be accurately determined from a
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line shape analysis, as was done for the W and Z bosons at LEP and Tevatron, then
that result alone could have been used to constrain any new physics model. In the
case of the v channel, the second factor on the right of Eqn. (4.3) will be somewhat
smaller than unity, as a result of which the signal strength will be somewhat more
suppressed than in the other cases. It is therefore difficult, in the mUED model, to
predict large excesses in the partial width of H° — ~~. We reiterate, therefore, that
the mUED enhancement in H° — gg and the suppression of H’ — 4~ are both in
agreement with the results of Ref. [84], though the actual deviations are much more
modest in the present case — a consequence of the small number of KK modes which
contribute to these deviations.

These diverse effects together contribute to the numerical results exhibited in
Figure 4.3. The four panels in this figure correspond to the four decays H® —
WW* ZZ*, 777~ and 77, as marked on each respective panel. The solid (black)
lines represent the mUED predictions, and, as expected, these fall rapidly to the SM

!increases, in every case. The thickness of these lines

expectation uyg = 1 as R~
indicates the effect of varying My = 122 — 127 GeV. It is clear from the figure that
this is not a very significant effect*. In fact, the solid (black) curves for uww, pzz and
1t are identical, since the only effect of introducing mUED lies in the first and last
factors of Eqn. 4.3, which depend mainly on T'(H® — gg). The solid (black) curve
for p. is clearly different, as one would expect. However, the reason for showing
each signal strength separately lies in the fact that the experimental constraints are
significantly different in each of these channels. For both the ATLAS and CMS data,
the strongest constraints come, in fact, from the WW* channel. For a 125-126 GeV
Higgs boson, these come out as R~ > 463 GeV (1.3 TeV) for the ATLAS (CMS)

results, which are far more restrictive than anything we can get from precision tests,

*The effect of varying the top quark Yukawa coupling is sub-leading to this variation, which is

why we do not show it at all in the present work.
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Figure 4.3: Illustrating the variation with R™' of the signal strengths puww, fizz, prr and fi,-,
as marked on the respective panels. The solid (black) lines show the mUED prediction, with their
thickness representing the effect of varying the Higgs boson mass My from 122 — 127 GeV. The
oppositely-hatched regions (blue and red) denote, as indicated in the key on the right, the 95% C.L.
limits from the ATLAS and CMS Collaborations quoted in Table 4.1.

and — at least for the CMS data — surpass the bounds from dilepton channels [76] by
a factor close to 2.

95% C.L. constraints from the other channels are illustrated, together with the
WW?* channel, in Figure 4.4, in the form of a bar graph. It is apparent, even from
Figure 4.3, that the CMS data provide significantly stronger constraints, at this level,
than the ATLAS data. In particular, if we consider the ATLAS data for H® — ~7,
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where there appears to be an excess at the 1o level over the SM prediction, this
appears to hint at lower values of R~!, though — as the graph shows — large values
of R7! are perfectly consistent with the 95% C.L. limits. In view of the substantial
differences between the two experimental results, it may be premature to read too
much into these constraints, but it is clear that for the WWW* channel, at least, we
do find a reasonable level of consistency. Since this is the channel which provides the
most stringent bounds on R~!, these are perhaps the most acceptable among the four

sets of constraints, at least at the present time.

Ww*
z7*
B ATLAS
HCMS
T
YY
0.5 1.0 15

R [TeV]
Figure 4.4: 95% C.L. lower bounds (in TeV) on the size parameter R~ arising from four different

Higgs boson decay channels. Numbers juxtaposed with the bars are the numerical value of the

bounds.

In Figure 4.4, as mentioned above, we have shown a bar graph illustrating the
individual 95% C.L. constraints on R~! from each of these four channels. The upper
(blue) and lower (red) bars represent bounds arising from the ATLAS and CMS data
respectively. For the ATLAS data, the strongest constraint is from the WW* channel,
but even the ZZ* and 77 channels are more restrictive than the LEP constraints. So
far as the ATLAS data is concerned, obviously no useful constraint can be expected
to arise from the v channel, but if the excess in this channel turns out to be a
genuine feature, it will favour the mUED model (among other rival models) with a

somewhat smaller value of R~!. The CMS data, on the other hand, are much more
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restrictive. While the WW™* channel pushes the lower bound to as high as 1.3 TeV,
none of the other channels permit a value of B! as low as 500 GeV, which is a
substantial improvement over the LEP bound of 260 GeV, but is not as restrictive as
the dilepton bound obtained in Ref. [76].

The lower bound of R~! > 1.3 TeV obtained from our computations represents
a very strong constraint for the mUED model and would severely impact the direct
searches planned for the 14 TeV run of the LHC. It is interesting, therefore, to ask
how far these bounds can be relaxed if we consider the ATLAS and CMS data at the
3o level rather than at 95% confidence level. These bounds are presented in Table 4.2
below, and are naturally weaker, with the strongest bound lying at R~ > 685 GeV,

which is still a significant improvement over the precision tests'.

bww  Mzz  Hrr Py

ATLAS 369 278 248 207

CMS 685 413 306 402

Table 4.2: 30 lower bounds (in GeV) on R~! using the ATLAS and CMS data from Table 4.1 and
the signal strengths from Figure 4.3.

If we further relax the constraints to the 5o level, we find that the W W™ channel
data imply bounds on R™' > 280 (432) GeV from the ATLAS (CMS) data. Even
with this very loose constraint, the lower bound of 432 GeV from the CMS data is
still stronger than the LEP constraint. However, if we go by the conventional wisdom
that 20 deviations constitute a hint, 30 deviations — or the lack thereof — constitute a
bound, and 5¢ is required for a discovery, then the stronger constraint R=! > 1.3 TeV
may be quite credible.

It is amusing to speculate on how these bounds might improve in the 14 TeV

run of the LHC — under the somewhat pessimistic assumption that no deviations

TThis is also definitely stronger than the 30 bounds obtainable from dilepton signals, which would

certainly lie around 600 GeV or below, if we go by the results quoted in Fig. 4 of Ref. [76].
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from the SM will be discovered. Estimates [85] of the cross-section for pp — H° at
8 TeV and 14 TeV indicate an enhancement in the cross-section by a factor around
2.5. Assuming that the integrated luminosity in the 14 TeV run will be as high as
1.5 ab™!, this represents an enhancement of 100 times over the statistics collected at
8 TeV. Thus, the number of Higgs boson events in the 14 TeV run will be around 250
times the number collected at the 8 TeV run. If we concentrate on the WW* signal
and assume that the errors will scale as the inverse square root of the number of Higgs
boson decay events, then the error on the CMS measurement of iy could go down
as low as 0.012. This is certainly an overestimate, since it does not take into account
systematic effects, but it is probably safe to assume [86] that the error could be as
low as 5%. Assuming, therefore, that we have a measured value pyyw = 1.00 + 0.05
(from either experiment, or from both combined), we immediately predict a 95% C.L.
limit R~! > 1.58 TeV, which would increase to 1.90 TeV if the integrated luminosity
is doubled to 3 ab™!. For such large values of R™!, it is more or less sure that
direct searches for mUED signals will fail, and even the LKP may become too heavy
to explain the observed relic density of dark matter. In this admittedly pessimistic
scenario, there will be no real motivation to study the mUED model any further.

Of course, we do not have any compelling reason to think that the above scenario
is a true picture of the future. In fact, given the urgency with which an explanation
of the composition of dark matter is required, we may well hope for just the reverse
of this scenario, i.e. the observation of deviations in some of the Higgs boson partial
decay widths in the 14 TeV run. In that case, we can reverse some of the arguments
of the present study to show that a mUED explanation of such a deviation would be

immediately available for some value of R~! in the range of 1 — 2 TeV.
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4.4 Summary

To sum up, then, we have studied constraints on the mUED model from the measured
Higgs boson signal strengths in the decays H® — WW*, ZZ*, 77 and v channels.
The mUED calculations have been carried out carefully, taking into account the fact
that this model has a very low cutoff due to vacuum stability arguments. Even with
the reduced effects due to this low cutoff, however, we find that the present CMS data
can push the lower bound on the size parameter R~! of this model as high as 1.3 TeV
at 95% C.L. (or 685 GeV at 30). ATLAS data are less restrictive, but in any case, do
serve to push the value of R~ above about 500 GeV. All this represents an enormous
improvement over the 30 bound of around 260 GeV arising from precision electroweak
tests at the LEP collider, as well as a factor close to 2 greater than the 95% dilepton
bounds obtained from the early runs of the LHC. We then go on to argue that these
signal strengths can be used to probe the mUED model up to R~! ~ 2 TeV in the
14 TeV run of the LHC.
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CHAPTER 5

CONCLUSIONS

This dissertation has been dedicated to the study of Higgs bosons in various models
including several supersymmetric left-right models and a minimal universal extra
dimensional model.

In Chapter 2, the Higgs boson spectrum was studied for various iterations of the
left-right supersymmetric models differentiated by the symmetry breaking sectors. In
some of the models, the lightest neutral Higgs boson tree level mass was significantly
higher than in the Standard Model or its minimal supersymmetric extension. For
these cases one can easily get the experimentally observed Higgs boson mass of 125
GeV for a relatively small stop squark mass of about 500 GeV and negligible stop
squark mixing parameter. A light stop squark can be easily produced at particle
accelerators, enhancing the chances of it being seen at the LHC. In some models
with right-handed triplet Higgs bosons, the doubly-charged scalar remains massless
at the tree level. Radiative corrections to the doubly-charged Higgs boson mass
was calculated and it was shown that loop contributions can push the mass to the
electroweak symmetry breaking scale.

In Chapter 3, the collider phenomenology of doubly-charged scalars and fermions is
studied in the framework of left-right supersymmetric model with automatic R-parity.
A new mechanism for production of doubly-charged Higgs boson is presented wherein
the pair-production of the right-handed doubly-charged Higgsino and its subsequent
decay can produce unique collider signals at the LHC which can easily distinguish

itself from other signals, arising especially from the minimal supersymmetric standard
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model. The multi-lepton final state of 2721~ 4 F; arises through three distinct sub-
processes that contribute to the signal. Applying specific cuts, the background can
be suppressed and the signal produced at the colliders can give a strong hint about
the presence of doubly-charged particles.

In Chapter 4, the constraints on minimal universal extra dimensional model from
the experimentally measured decay strengths of the Higgs boson is studied. The
mUED calculations have been carefully done, taking into account that the model has
a very low cutoff due to vacuum stability arguments. The Higgs boson cross-section
for decays H° — WW?* ZZ* r7 and 77y are calculated in the mUED model and
compared with the LHC data. The CMS data can push the lower bound on the size

parameter R~! of this model as high as 1.3 TeV at 95% C.L.

112



BIBLIOGRAPHY

1]

S. L. Glashow, Nucl. Phys. 22, 579 (1961); M. Y. Han and Y. Nambu, Phys. Rev.
139, B1006 (1965); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

V. Baluni, Phys. Rev. D 19, 2227 (1969); R. Crewther, P. di Vecchia,
G. Veneziano and E. Witten, Phys. Lett. 88B, 123 (1979); 91B, 487 (E) (1980);
C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D. van der Grinten,
P. G. Harris, P. Iaydjiev and S. N. Ivanov et al., Phys. Rev. Lett. 97, 131801
(2006) [hep-ex/0602020].

M. A. B. Beg and H. -S. Tsao, Phys. Rev. Lett. 41, 278 (1978); R. N. Mohapatra
and G. Senjanovic, Phys. Lett. B 79, 283 (1978); K. S. Babu and R. N. Mohapa-
tra, Phys. Rev. D 41, 1286 (1990); S. M. Barr, D. Chang and G. Senjanovic, Phys.
Rev. Lett. 67, 2765 (1991); R. N. Mohapatra and A. Rasin, Phys. Rev. Lett. 76,
3490 (1996); R. Kuchimanchi, Phys. Rev. Lett. 76, 3486 (1996); R. N. Mohapa-
tra, A. Rasin and G. Senjanovic, Phys. Rev. Lett. 79, 4744 (1997); K. S. Babu,
B. Dutta and R. N. Mohapatra, Phys. Rev. D 65, 016005 (2002).

Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562
(1998); Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.82,
2644 (1999); W. W. M. Allison et al. [Soudan-2 Collaboration], Phys. Lett. B 449,
137 (1999); S. Fukuda et al. [Super-Kamiokande Collaboration|, Phys. Rev. Lett.
85, 3999 (2000); M. Ambrosio et al. [MACRO Collaboration|, Phys. Lett. B 517,

59 (2001).

113



[5] B. T. Cleveland et al., Astrophys. J. 496, 505 (1998); J. N. Abdurashitov et
al. [SAGE Collaboration|, Phys. Rev. C 60, 055801 (1999); W. Hampel et al.
[GALLEX Collaboration]|, Phys. Lett. B 447, 127 (1999); Q. R. Ahmad et al.
[SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001); Q. R. Ahmad et al.
[SNO Collaboration], Phys. Rev. Lett. 89, 011301 (2002); S. Fukuda et al. [Super-
Kamiokande Collaboration], Phys. Lett. B 539, 179 (2002).

[6] K. Eguchi et al. [KamLAND Collaboration|, Phys. Rev. Lett. 90, 021802 (2003);
T. Araki et al. [KamLAND Collaboration|, Phys. Rev. Lett. 94, 081801 (2005).

[7] D. G. Michael et al. [MINOS Collaboration], Phys. Rev. Lett. 97, 191801 (2006);
P. Adamson et al. [MINOS Collaboration]|, Phys. Rev. Lett. 101, 131802 (2008).

[8] T. Schwetz, M. Tortola and J. W. F. Valle, New J. Phys. 13, 063004 (2011).

[9] G. R. Blumenthal, S. M. Faber, J. R. Primack and M. J. Rees, Nature 311 (1984)
517; G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996)
[hep-ph/9506380]; G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005)
[hep-ph/0404175]; M. Drees and G. Gerbier, arXiv:1204.2373 [hep-ph].

[10] H. P. Nilles, Phys. Reports 110, 1 (1984);P. Nath, R. Arnowitt, and
A. H. Chamseddine, Applied N = 1 Supergravity (World Scientific, Singapore,
1984);S. Weinberg, The Quantum Theory of Fields, Volume III: Supersymmetry
(Cambridge University Press, Cambridge, UK, 2000);S. P. Martin, in Perspectives
on Supersymmetry II, edited by G. L. Kane (World Scientific, Singapore, 2010)
pp. 1153; see http://zippy.physics.niu.edu/primer.html for the latest version and

errata.

[11] L. Girardello and M. Grisaru, Nucl. Phys. B bf 194, 65 (1982);L. J. Hall and
L. Randall, Phys. Rev. Lett. 65, 2939 (1990); I. Jack and D. R. T. Jones, Phys.
Lett. B 457, 101 (1999).

114



[12] R. N. Mohapatra and A. Rasin, Phys. Rev. Lett. 76, 3490 (1996); Phys. Rev. D
54, 5835 (1996); K. S. Babu, B. Dutta and R. N. Mohapatra, Phys. Rev. D 60,
095004 (1999); Phys. Rev. D 61, 091701 (2000); Phys. Rev. D 65, 016005 (2002).

[13] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); G. Senjanovic
and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975); G. Senjanovic, Nucl. Phys.
B 153, 334 (1979).

[14] C. S. Aulakh, A. Melfo, A. Rasin and G. Senjanovic, Phys. Rev. D 58, 115007
(1998); C. S. Aulakh, A. Melfo and G. Senjanovic, Phys. Rev. D 57, 4174 (1998);
C. S. Aulakh, K. Benakli and G. Senjanovic, Phys. Rev. Lett. 79, 2188 (1997);
Z. Chacko and R. N. Mohapatra, Phys. Rev. D 58, 015003 (1998);

[15] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1921, 966
(1921); O. Klein, Z. Phys. 37, 895 (1926) [Surveys High Energ. Phys. 5, 241
(1986)].

[16] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263
(1998) [hep-ph/9803315]; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and
G. R. Dvali, Phys. Lett. B 436, 257 (1998) [hep-ph/9804398];N. Arkani-Hamed,
S. Dimopoulos and G. R. Dvali, Phys. Rev. D 59,086004(1999).

[17] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [hep-th/9906064];
L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221].

[18] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974) [Erratum-ibid. D 11, 703
(1975)].

[19] K. S. Babu, X. -G. He and E. Ma, Phys. Rev. D 36, 878 (1987).

[20] E. Ma, Phys. Rev. D 36, 274 (1987).

115



[21] R. Kuchimanchi and R. N. Mohapatra, Phys. Rev. D 48, 4352 (1993); Phys.
Rev. Lett. 75, 3989 (1995).

[22] K. S. Babu and R. N. Mohapatra, Phys. Lett. B 668, 404 (2008).

[23] Y. Zhang, H. An, X. -d. Ji and R. N. Mohapatra, Phys. Rev. D 78, 011302
(2008).

[24] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev.
D 41, 1286 (1990).

[25] P. Batra, A. Delgado, D. E. Kaplan and T. M. P. Tait, JHEP 0402, 043 (2004).

[26] M. Hirsch, M. Malinsky, W. Porod, L. Reichert and F. Staub, JHEP 1202, 084
(2012).

[27] For areview see: U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496,
1 (2010).

[28] R. Kuchimanchi and R. N. Mohapatra, Phys. Rev. D 48, 4352 (1993).

[29] C. S. Aulakh, A. Melfo and G. Senjanovic, Phys. Rev. D 57, 4174 (1998);
C. S. Aulakh, A. Melfo, A. Rasin and G. Senjanovic, Phys. Rev. D 58, 115007
(1998).

[30] Z. Chacko and R. N. Mohapatra, Phys. Rev. D 58, 015003 (1998).
[31] K. S. Babu and R. N. Mohapatra, Phys. Lett. B 668, 404 (2008).
[32] A. Zee, Nucl. Phys. B 264, 99 (1986). K. S. Babu, Phys. Lett. B 203, 132 (1988).

[33] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980); G. Lazarides,
Q. Shafi and C. Wetterich, Nucl. Phys. B 181, 287 (1981); R. N. Mohapatra and
G. Senjanovic, Phys. Rev. D 23, 165 (1981).

116



[34] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992); P. H. Frampton, Phys.
Rev. Lett. 69, 2889 (1992).

[35] P. Minkowski, Phys. Lett. B67, 421 (1977); T. Yanagida in Workshop on Unified
Theories, KEK Report 79-18, p. 95 (1979); M. Gell-Mann, P. Ramond and R. Slan-
sky, Supergravity, p. 315, North Holland, Amsterdam (1979); S. L. Glashow, 1979
Cargese Summer Institute on Quarks and Leptons, p. 687, Plenum Press, New

York (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[36] R. N. Mohapatra, Phys. Rev. D 34, 3457 (1986).

[37] R. N. Mohapatra and A. Rasin, Phys. Rev. Lett. 76, 3490 (1996); R. N. Mohap-
atra, A. Rasin and G. Senjanovic, Phys. Rev. Lett. 79, 4744 (1997); K. S. Babu,
B. Dutta and R. N. Mohapatra, Phys. Rev. D 61, 091701 (2000); K. S. Babu,
B. Dutta and R. N. Mohapatra, Phys. Rev. D 65, 016005 (2002).

[38] S. Chatrchyan et al. [CMS Collaboration|, Eur. Phys. J. C 72, 2189 (2012).
[39] G. Aad et al. [ATLAS Collaboration|, Eur. Phys. J. C 72, 2244 (2012).

[40] P. Fileviez Perez and S. Spinner, Phys. Lett. B 673, 251 (2009); S. Patra,
A. Sarkar, U. Sarkar and U. Yajnik, Phys. Lett. B 679, 386 (2009).

[41] R. M. Francis, M. Frank and C. S. Kalman, Phys. Rev. D 43, 2369 (1991).

[42] K. Huitu and J. Maalampi, Phys. Lett. B 344, 217 (1995); B. Dutta and
R. N. Mohapatra, Phys. Rev. D 59, 015018 (1999); M. Frank and B. Korutlu,

Phys. Rev. D 83, 073007 (2011).

[43] H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985); K. Huitu, P. N. Pan-
dita and K. Puolamaki, arXiv:hep-ph/9904388;

[44] P. Fileviez Perez, T. Han, G. -y. Huang, T. Li and K. Wang, Phys. Rev. D 78,

015018 (2008).

117



[45] A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic and Y. Zhang, Phys. Rev. D
85, 055018 (2012).

[46] D. A. Demir, M. Frank, K. Huitu, S. K. Rai and I. Turan, Phys. Rev. D 78,
035013 (2008); D. A. Demir, M. Frank, D. K. Ghosh, K. Huitu, S. K. Rai and
I. Turan, Phys. Rev. D 79, 095006 (2009).

[47] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 109, 261802 (2012).
[48] A. Pukhov, arXiv:hep-ph/0412191.
[49] T. Sjostrand, S. Mrenna and P. Skands, JHEP 0605, 026 (2006).

[50] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung,
JHEP 0207, 012 (2002); D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai,
S. Kuhlmann and J. F. Owens, JHEP 0310, 046 (2003); T. Sjostrand, S. Mrenna
and P. Skands, JHEP 0605, 026 (2006).

[51] J. Abdallah et al. [ DELPHI Collaboration], Phys. Lett. B 552, 127 (2003); G. Ab-
biendi et al. [OPAL Collaboration|, Phys. Lett. B 577, 93 (2003); P. Achard et
al. [L3 Collaboration], Phys. Lett. B 576, 18 (2003); D. E. Acosta et al. [CDF
Collaboration], Phys. Rev. Lett. 93, 221802 (2004); D. E. Acosta et al. [CDF
Collaboration], Phys. Rev. Lett. 95, 071801 (2005); T. Aaltonen [CDF Collab-
oration], FERMILAB-PUB-07-709-E; S. Chatrchyan et al. [CMS Collaboration],
Eur. Phys. J. C 72, 2189 (2012); G. Aad et al. [ATLAS Collaboration], Eur. Phys.
J. C 72, 2244 (2012).

[52] B. Meirose, A. A. Nepomuceno and , Phys. Rev. D 84, 055002 (2011). E. Ramirez
Barreto, Y. A. Coutinho, J. Sa Borges and , Nucl. Phys. B 810, 210 (2009).
E. Ramirez Barreto, Y. A. Coutinho, J. Sa Borges, Phys. Rev. D 83, 075001
(2011).

118



[53] R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas,

P. Fayet and S. Lavignac et al., Phys. Rept. 420, 1 (2005).

[54] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)
[arXiv:1207.7214 [hep-ex]]; S. Chatrchyan et al. [CMS Collaboration|, Phys. Lett.
B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]]; TEVNPH Working Group (for
the CDF, DO Collaborations), Fermilab preprint FERMILAB-CONF-12-318-E,
arXiv:1207.0449 [hep-ex] (2012).

[55] S. Dimopoulos and L. Susskind, Nucl. Phys. B 155, 237 (1979); E. Eichten and
K. D. Lane, Phys. Lett. B 90, 125 (1980); C. Csaki, C. Grojean, H. Murayama,
L. Pilo and J. Terning, Phys. Rev. D 69, 055006 (2004) [hep-ph/0305237].

[56] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D 16, 1519 (1977).

[57] W. J. Marciano, G. Valencia and S. Willenbrock, Phys. Rev. D 40 (1989) 1725;
C. F. Kolda and H. Murayama, JHEP 0007 (2000) 035 [Lep-ph/0003170].

[58] See M. Sher, Phys. Rept. 179, 273 (1989), and references therein, for early work
on the subject; for more recent work, see J. Ellis, J. R. Espinosa, G. F. Giu-
dice, A. Hoecker and A. Riotto, Phys. Lett. B 679, 369 (2009) [arXiv:0906.0954
[hep-ph]]; J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and
A. Strumia, Phys. Lett. B 709, 222 (2012) [arXiv:1112.3022 [hep-ph]); G. De-
grassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and
A. Strumia, JHEP 1208, 098 (2012) [arXiv:1205.6497 [hep-ph]]; F. Bezrukov,
M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, JHEP 1210, 140 (2012);
M. Holthausen, K.S. Lim and M. Lindner, JHEP 1202, 037 (2012).

[59] S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B 716 (2012) 214

[arXiv:1207.0980 [hep-ph]].

119



[60] For a comprehensive discussion, see G. Bertone, J. Silk, B. Moore, J. Diemand,
J. Bullock, M. Kaplinghat, L. Strigari and Y. Mellier et al., Particle Dark Matter:

Observations, Models and Searches, (Cambridge University Press, 2010).

[61] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003) [astro-
ph/0207347].

[62] A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999) [hep-
ph/9901362).

[63] See, for example, S. P. Martin, A Supersymmetry Primer, (in Kane, G.L. (ed.):
“Perspectives on supersymmetry 117, p.1), [hep-ph/9709356]; M. Drees, R. God-
bole and P. Roy, Theory and phenomenology of sparticles (Hackensack, USA:
World Scientific, 2004); H. Baer and X. Tata, Weak scale supersymmetry, (CUP
2006).

[64] T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D64, 035002 (2001).
[65] D. Hooper and S. Profumo, Phys. Rept. 453, 29 (2007) [hep-ph/0701197].

[66] H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D66, 036005 (2002);
A K. Datta, K.C. Kong, K.T. Matchev, New J. Phys. 12, 075017 (2010); B. Bhat-
tacherjee et al, Phys. Rev. D81, 035021 (2010);

[67] A.K. Datta, K.C. Kong, K.T. Matchev, Phys. Rev. D72, 096006 (2005);
Erratum-ibid. D72, 119901 (2005); B. Bhattacherjee et al, Phys. Rev. D82,
055006 (2010).

[68] K.R. Dienes, E. Dudas, T. Gherghetta, Phys. Lett. B436, 55 (1998) and Nucl.
Phys. B537, 47 (1999).

[69] G. Bhattacharyya et al, Nucl.Phys. B760, 117 (2007).

120



[70] M. Blennow et al, Phys. Lett. B712, 419 (2012).

[71] [ATLAS Collaboration], ATLAS-CONF-2013-102 (2013).

[72] [ATLAS Collaboration], CERN preprint CERN-PH-EP-2013-103 (2013).
[73] [CMS Collaboration], CMS-PAS-HIG-13-005 (2013).

[74] G. Belanger, A. Belyaev, M. Brown, M. Kakizaki and A. Pukhov, Phys. Rev.
D 87, 016008 (2013) [arXiv:1207.0798 [hep-ph]]; U. K. Dey and T. S. Ray, Phys.
Rev. D 88, 056016 (2013) [arXiv:1305.1016 [hep-ph]].

[75] A. Datta and S. Raychaudhuri, Phys. Rev. D 87, 035018 (2013) [arXiv:1207.0476

[hep-ph]].

[76] L. Edelhauser, T. Flacke and M. Kramer, JHEP 1308, 091 (2013)
[arXiv:1302.6076 [hep-ph]].

[77] CMS Collaboration], CMS-PAS-EX0O-12-061 (2012).

[78] T. Kakuda, K. Nishiwaki, K. -y. Oda and R. Watanabe, Phys. Rev. D 88, 035007
(2013) [arXiv:1305.1686 [hep-ph]].

[79] [ATLAS Collaboration], ATLAS-CONF-2013-034 (2013).
[80] V. Barger and R.J.N. Phillips, Collider Physics, (Addison-Wesley, 2nd ed., 1997).

[81] M. Schreck and M. Steinhauser, Phys. Lett. B 655, 148 (2007) [arXiv:0708.0916

[hep-ph]].
[82] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[83] W.-Y. Keung and W. J. Marciano, Phys. Rev. D 30, 248 (1984).

[84] F. J. Petriello, JHEP 0205, 003 (2002) [hep-ph/0204067].

121



[85] W. Beenakker, R. Hopker and M. Spira, hep-ph/9611232.

[86] See, for example, P. Giacomelli, LHC: future measurements and reach, Solvay

Workshop on ”Facing the Scalar Sector”, Brussels (May 2013).

122



APPENDIX A

MINIMIZATION CONDITIONS AND SCALALR HIGGS
MASS-SQUARED MATRIX

Inverse seesaw model

The minimization conditions for the potential are given as:

Ami(—v +vgp) = (gvvL + gLvL(—vi + ) + VL) + gRVIVE — GRV2VR — JRVR — 9V VR
+ Avivi N — dvtvpA?),
—ABu(vi —v3) = —vovr [gr(=vf +v; + ) + gR(=vY + v + vR) — 2(vp + vp)AY)]
— 2MA\vLvRvUy + dvvLUR AL,
dmi(v; —vi) = [gkvi — giva + gL (v} +v3) (v — vy — Vi) — gRVIVE — gRVIVE

+ 4XN20%07 + ANP0TvR — AAN v UR — SApvuLug + 16070 — 16p203],

UL)\ UR>\ 4)\14)\1)1UL 4)\14)\1}11)3
8wy (—= — =) = — + (9 — g7) (v = vi) + givi — gRVE
UR (% UR (%
+ 2g‘2/(v% - 'Uf%) + 4)\2('0% — v%) (A.1)

The mass-squared matrix elements M;;(= M;;) in this case can be given by:

gr(vi = v3)* + gvvi + g1 (v — v3 — v)* + 8\jv]

M., —
1 2(v 4+ v3 +0?)
Men — grvR(vd — v}) — giuv? + AN(—Ayvivg + Avg (v 4 vE) + 2uvguy,
12 — )
2/ (v} +v3 +0?)
~wwp [gR(vs — 7)) + gpvi + 267 (v3 — vf 4 v7) + 4N (v — V7))
My = 2 2 N2 2 ’
2\/(7]1 + vy + UL)(Ul +v7)
v el 20— 0f — 03) + Rt~ B20f o) + 8]
2(0} + 03 +03) /(v + 0}) ’
Mo — gEUs + gEud + 20 Ayvivg, — d\pvgur,
22 — )

QUR
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Mow — (g% — g2 )vivLvg + 22 [A\ (v — %) + 2uv vy
23 — 9

2\/v3 + v

VoUR [—29%0% — (9% + g% )vi + AN} (v + 0}

— 4\, [Ayvivg + p(v — v3 4+ vi)]

M24 — )]
2¢/ (v + v3 + v) (v} +03)

(497 + g% + g )viv? + dm3vevs + 20\ Ayvg(v? + v3)? — 8N\ 23} — A puvdvyug

200 (V3 + v2)

I

Msy = [—4m3vp (v + 03 + v7) + vivavr (49707 — gy vp + gR(207 + v7)) + 4AXvovL (V] — v7),

+ Apvr(vi + v +v1)]/ [2(1}% + i)y vl + v+ v%)}

My = [g7 (=200 + 20vjv3 — 2vivy — 3vivl + 10vivav] + vyv? + Svjv + v?)

+ givR(v] — ooy +07) (0101 4 va) +v7)) + 4m3 (v 4 v+ vf (V5 + 207))
+ vp(16mavy (v + vi) + vo(v7 (4m3 + gi (30 — v3)) — SAAyvivLvR
+ 4(6@%1}% + (vf + vi)v%)/\Q)) — 16/\,111)221,;(@% + U%)UR

+ 16p2(vf 4 v] + v (v3 4+ 20%))]/ [8(@% +v7) (V2 4 v3 + v%)} .

Case with two pair of triplets and two bidoublets

The minimization conditions for this case are given as:

4m3,vg, + 4B1api1aVa, + 4mT vy, + 8By i1V, + g%vul(vﬁl — Uﬁz + Uil — 2122)

+ g0, (va, — v, + 208" = 205 + vy, — vg,) 4 [vu (i + 47) + Ve pa(pn + pe2)] =0,

4B1api10vg, + 4mfzvd2 + 8B11 4110y, + 4mi vy, + g%vw(—vﬁl + 1132 — UZl + vfm)

+ GRUus (— 03, +vg, — 2087 + 20% — v, +05,) 4 [va, (i) + pda) + vaytiaa(pian + pz2)] =0,

4m§20d1 + 8B fiooVa, + 4m%21jul + 4B1apt190y, + g%vdl (vﬁl — 2}32 + vzl — UZQ)

+ gRva, (v, — v, + 20" — 205 + v, — v, + 4 [y, ta(pn + paa) + vay (1 + p135)] = 0,

8 Byajloga, + 4miovg, + 4B1afi1ovy, + 4miyv,, + gi%(—vﬁl + 1132 — le + UZZ)

+ gRva, (—vg, + vy, — 20R% + 205 — vl + ) + 4 [Vu o (pn + pea) + vay (1 + 1135))] = 0,

2Bopia¥p + vr(2m3 + 2u5 + 297 (vg® — VR°) + gr(vy, — v3, + 205" — 205, + 02 —v2) =0,

2Bopavg + Vp(2mE + 245 + 2gv (0 — vR?) + g%(vﬁ2 — vgl — 2up® + 20% — vil + viz) =0.
(A.3)

Universal seesaw model with a singlet

124



The mass-squared matrix elements are given by:

g7 (vL? — 5L2)2 + gv? (v? — 5L2)2 + 8u 20,2 \?

M =
H 2 (vp2 +7.2) ’
M . 'UL@L (UL2 — @L2) (gL2 -+ gV2 — 2)\2)
12 vr? +6L2 ’
—gv2 (UL2 — 6[12) (UR2 — ER2) — 8UL@LU35R>\2
M13 - — 5 — > )
2\/UL2 + v \/vR2 + TR
M gv? (—vp? +0.%) vpTR + 200 (VR? — TR?) N
14 = )
\/UL2 + 0,2 \/UR2 + VR?
2\ (Ayvpop + (v +0L%) v )
Ml5 - )

Vvour? + vr?

25[/2 + 2gv2’UL

My, = 2[g’vr oL + ms® (UL2 +7.%) + ms? (UL2 + WLQ)
+ UL4)\2 — 2UL2§L2)\2 + 5[/4)\2 + QUL2U52)\2 + 25L2U52)\2]/ (UL2 + 5[,2) N

gV2ULEL (—UR2 + 632> -+ 2 (UL2 — 5[/2) UR@RA2

M23 == 7
Vur2 + 12 vg? + TR
—2gv 200 RV — (2 — UL?) (g% — UR?) A2
My, = L o |
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APPENDIX B
FEYNMAN RULES

Here we list down all the Feynman rules necessary for analyzing productions and
decays of doubly-charged Higgsinos in the LRSUSY model.

Fermion-Fermion-Z Boson, 7:

ofy“(gi;zg;;z: 2ieyt
gr cos20w

YA T ) P
r__E__ 2g1, sin? Oy
.ZgéR 6R : —ZW i
.9
~ = _ . grsin® Oy
oZL6T 07 1 —i H
ROL L \/COSQHWCOSHW7
< = 1 —3sin?6
A el ;91 sin” Ow)

cos By +/cos 20y, 7
9r(3—8 sin? Oy + 35 cos 20w)

VAT »
R 12 cos Oy v/ cos 20y
- — 4sin? 6 3 20
oZhdd: — 93 — Asin” By + 315 cos W)fy“ Appendix ?? data goes here
12 cos Oy +/cos 260y,
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metry and universal extra dimensions. In Chapter 1, I summarize the various models
studied and motivation for each. Chapter 2 is devoted to the study of Higgs boson
mass spectrum in various left-right supersymmetric models with different symmetry
breaking sectors. Chapter 3 involves the collider phenomenology of relatively light
doubly-charged Higgs bosons and Higgsinos which arise naturally in supersymmetric
left-right models. In Chapter 4, I look at the constraints on a minimal universal extra
dimensional model from the measured signal strength for Higgs boson decay at the
large hadron collider.
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SU(2)r x U(1)g_r. The constraints on the lightest neutral Higgs boson mass my, is
studied in detail. A variety of symmetry breaking scenarios is considered. Several of
these models with Higgs triplets and Higgs doublets for SU(2)g symmetry breaking
are studied, with additional bidoublets and possibly a gauge singlet. Many of these
cases lead to a much higher tree-level neutral Higgs boson mass compared to MSSM.
With this enhanced Higgs boson mass, it is possible to accommodate the experimen-
tally observed mass of 126 GeV with a relatively light stops that mix negligibly. In
Chapter 3, I look at the collider phenomenology of the doubly-charged Higgs bosons
and Higgsinos in the framework of left-right supersymmetric model with automatic
R-parity conservation. I analyze a new collider signal resulting from the pair produc-
tion and decay of a light doubly-charged Higgsino into an even lighter doubly-charged
Higgs boson. I investigate the collider signature of these particles with four leptons
and missing transverse energy final state at the Large Hadron Collider and show that
the discovery reach for both particles can be increased in this channel. In Chapter
4, I investigate the impact of the latest data on Higgs boson branching ratios on the
minimal extra dimensional model. The experimental data along with the constraints
from the vacuum stability requirements allow for a realistic prediction for the signal
strengths in this model. Comparing the calculated results with the observed data,
the size parameter R~! of the model can be shown to have a lower bound of 1.3 TeV
at 95% confidence level.



