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CHAPTER 1

INTRODUCTION

In this chapter I briefly review the highly successful Standard Model of particle

physics. We also identify its problems, both theoretical and experimental. This

leads us to discuss possible extensions based on both supersymmetry and left-right

symmetry. The motivations for considering these extensions are discussed in the sub-

sequent sections. Universal extra dimensional models, which can lead to alternate

solutions to the problems in Standard Model is also discussed briefly.

1.1 The Standard Model

The Standard Model of particle physics is a hugely successful model which combines

the electromagnetic and weak forces under a more unified framework. It describes

the various interactions existing in nature not including gravity. The Standard Model

is based on the gauge group SU(3)C × SU(2)L×U(1)Y [1] under which the fermions

transform as

Qi(1, 2, 1/3) =




uiL

diL


 ; Li(1, 2,−1) =




νiL

eiL


 ;

uci(3
∗, 1,−4/3); dci(3

∗, 1, 2/3); eci(1, 1, 2), (1.1)

where i = 1− 3 denotes the generation and the numbers in brackets are the SU(3)C ,

SU(2)L and U(1)Y quantum numbers respectively. The Q and L are the quark

and lepton doublets, while uc, dc and ec (with ψc = (ψc)L = Cψ
T

R) are the charge

conjugates of the right-handed up-type quark, down-type quark and charged lepton.
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We see that the left-handed fields are doublets under SU(2)L while the right-handed

fields are singlets. The hypercharge Y is defined in such a way that the electric charge

Q satisfies the relation Q = T3L + Y
2

where T3L is the third component of isospin of

the SU(2)L group.

A scalar Higgs boson doublet, which transforms as

H(1, 2, 1) =




H+

H0


 (1.2)

under the Standard Model gauge group, is required to generate mass for all the

particles via the Higgs mechanism.

The success of the Standard Model lies in the fact that essentially all of its pre-

dictions have been experimentally verified since it was first proposed. The existence

of massive charged W-bosons, massive neutral Z-boson, the charm and top quarks

were all predicted by the Standard Model before they were experimentally observed.

It can predict the anomalous magnetic moment of the electron to an accuracy of part

per billion in agreement with experiments. It can also quantitatively explain the CP

violation and mass splitting seen in the neutral K-mesons. With the recent discovery

of Higgs boson at the Large Hadron Collider, it seems that Standard Model has all the

essential ingredients to explain the observed phenomenon in High Energy colliders.

In spite of all the successes of the Standard Model, some experimental observations

compel us to think that it is not complete and may be a remnant of some higher

symmetry. The strong CP problem, which deals with the experimentally observed

fact that the weak interaction sector admits CP -violation while nothing similar has

been observed in the strong interactions although one can write down such interactions

consistent with symmetries, cannot be naturally explained in the framework of the

Standard Model. The experimentally observed neutrino oscillations suggest that the

neutrinos have finite albeit small masses while the Standard Model neutrinos are

massless. The existence of dark matter has been well established from the rotation
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curves of galaxies and gravitational lensing observations. The Standard Model has

no such invisible particle which can be considered as a dark matter candidate. The

baryonic asymmetry in the universe cannot be explained as the asymmetry produced

by Standard Model is too small compared to the observed value.

The main focus of this dissertation is dedicated to the study of models involving

the left-right supersymmetric extensions of the Standard Model. We now briefly

discuss some of the aforementioned problems of the Standard Model which can be

easily explained in framework of left-right supersymmetric models.

1.1.1 Strong CP problem

The weak interactions have been experimentally seen to violate CP -symmetry, for

example in the neutral kaon and B meson decays. One would expect such a phe-

nomenon to appear in the strong interactions as well. The QCD Lagrangian admits

a term

LQCD =
θg2

32π2
Ga
µνG̃aµν (1.3)

where G̃aµν is the dual field strength for the gluon. This term violates P and T and

hence from the conservation of CPT symmetry, it is CP violating as well.

The physically observable parameter is a combination of θ in Eq. (1.3) and the

phases of the quark masses and is given as

θ = θ + Arg [Det(Mq)] , (1.4)

where Mq is the quark mass matrix.

The experimental limits on the neutron electric dipole moment provides stringent

constraint on the value of θ to be less than 10−10 [2] [3]. A fundamental dimensionless

parameter appearing in the Standard Model Lagrangian should naturally be of order

one but its observed smallness from the experimental measurement is what is known

as the strong CP problem.

3



1.1.2 Neutrino oscillation and neutrino mass

Experiments with solar, atmospheric and reactor neutrinos have provided compelling

evidence of neutrino oscillations [4–7]. During their flight, neutrinos of different flavor

νe, νµ, ντ can oscillate into one another due to non-zero neutrino masses and neutrino

mixing. In the formalism of local quantum field theory this means that the flavor

eigenstates of neutrinos are linear combinations of three (or more) neutrinos νj, with

masses mj 6= 0 :

νlL(x) =
∑

j

UljνjL(x), l = e, ν, τ (1.5)

where νjL is the left-handed component of the field νj possessing a mass mj and U

is the neutrino mixing matrix, also known as the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix.

For a simplified version with only two flavor of neutrinos, the PMNS matrix is

parametrized by a single Euler angle θ and the oscillation probability of να → νβ with

α 6= β is given by

P (να → νβ) = 4 sin2 θ cos2 θ sin2

(
∆m2

21L

4E

)
(1.6)

where the relativistic energy-momentum relation E =
√
m2 + |~p|2 with m << |~p| has

been used. The parameter L is called the oscillation length and ∆m2
21 = m2

2 −m2
1.

A non-zero oscillation probability not only requires the neutrinos to be massive but

also non-degenerate.

From current experimental results, the mass-squared difference for the three neu-

trino mass eigenstates are [8]:

∆m2
21 = 7.59+0.20

−0.18 × 10−5 eV 2

∆m2
31 =





(2.45± 0.09)× 10−3 eV 2 for normal hierarchy;

−(2.34+0.10
−0.09)× 10−3 eV 2 for inverted hierarchy;

4



Neutrino experiments this far have not been sensitive to the sign of ∆m2
31 and hence

there are two possible cases. Of the two cases, normal hierarchy refers to the case

where m1 < m2 < m3 and inverted hierarchy is one for which m3 < m1 < m2.

These experimentally observed mass-squared differences mean that the neutrinos

must have small non-degenerate masses. In the Standard Model this is not possible

because of the absence of any right-handed neutrino. An extension of the Standard

Model with a singlet right-handed neutrino will allow us to write mass terms and

hence can solve this problem. If we consider the neutrino ν as a four-component

spinor and νL,R as it left and right chiral projections, a Dirac mass term LD coming

from the Yukawa coupling terms in the Lagrangian can be written as

LD = mDνLνR + h.c. (1.7)

where mD is a complex matrix obtained after electroweak symmetry breaking. The

singlet right-handed neutrino can have a Majorana mass term LM given as

LM = mRν
T
RC
−1νR (1.8)

where mR is the Majorana mass matrix. The Dirac mass term in the Lagrangian is

invariant under a global U(1) symmetry under which ν → eiθν. This global symmetry

can be identified as the lepton number. The Majorana mass term, on the other hand,

has no such symmetry and breaks the lepton number by two units. In presence of

LM , the ∆L = 2 type lepton-number-violating processes such as neutrinoless double

β decay will take place. Observation of such processes can be a strong indication of

Majorana character of neutrinos though presently this remains an open question.

Using these terms in the Lagrangian, the neutrino mass matrix looks like:

M =




0 mD

mT
D mR


 . (1.9)

The light neutrino mass matrix is then given as

Mν = mDm
−1
R mT

D (1.10)

5



Here mD = Yνv with Yν being the Dirac Yukawa coupling matrix and v ≡ 〈H0〉 = 174

GeV is the electroweak vacuum expectation value. This mechanism of generation of

light neutrino mass is known as the seesaw mechanism.

For a single neutrino generation the light neutrino mass will be (Yνv)2/mD. To

get the light neutrino mass to be of the order of 0.1 eV as suggested by oscillation

data, we either need the Yukawa couplings to be very small (Yν ∼ 10−12) or the

heavy neutrino to be very heavy (mR ∼ 1014 GeV) or a combination of these two

possibilities (e.g. Yν ∼ 10−6 and mD ∼ O(TeV )).

1.1.3 Dark Matter

The existence of Dark matter [9] and that its abundance in our universe is much

higher than ordinary baryonic matter is one of the most astounding revelations of

the twentieth century. Our universe consists of around 26.8% dark matter, 4.9%

baryonic matter and the rest is contributed to what we call Dark energy. One of

the earliest evidences of dark matter came from the astronomical observations that

various luminous objects move faster than one would expect if they were only affected

by the gravitational force of other visible objects. This led to the conclusion that there

must be some other form of invisible matter which exerts gravitational force on the

visible objects in the universe.

Figure 1.1: Rotation curve for M33 galaxy(Credit Queens University)

6



At the galactic scale, the evidence of dark matter can be seen from the rotation

curves of galaxies. The galactic rotation curve is a graph of circular velocities of stars

and gas as a function of their distance from the galactic center. The rotation curve

for the M33 galaxy in shown in Fig 1.1. The rotation curve exhibits a flat behavior at

large distance from the galactic center while for an inverse-square law like gravity we

expect the rotation speed of the distant stars to fall off as the mass density decreases

away from the galactic center. There must exist some other form of matter which

is almost uniformly spread over the galaxy and hence explains the flat nature of the

rotation curve.

The bullet cluster seen in 2006 consists of two colliding cluster of galaxies. It is

shown in Fig 1.2. During the collision, most of the stars easily pass each other while

the gas cloud from the merging galaxies slowed down and were concentrated mostly

at the center. Using gravitational lensing technique, astronomers measured the mass

of the stars that were now separated from the gas. This measurement showed that the

stars were much more massive compared to their calculated mass. The explanation

can be that there is some other form of matter which interacts very weakly and could

easily pass the collision and thus was contributing to the total observed mass.

Figure 1.2: The Bullet Cluster showing two colliding galaxies.(Credit nasa.gov)

7



These and other experiments have proved beyond doubt that there exists some

form of matter which exerts gravitational force but is otherwise invisible. If such a

particle exists in nature, any particle physics model should have a viable dark matter

candidate. Unfortunately Standard Model has no such particle and hence we need

to look for some other models which will have a weakly interacting particle with the

required abundance to be a dark matter candidate. Any new model though has to

eventually give us the Standard Model at low energies.

1.2 Supersymmetry

Supersymmetry is a generalization of the space-time symmetries of quantum field

theory that transforms fermions into bosons and vice verse. It extends the Poincaré

algebra through introduction of four anticommuting spinor generators into the Su-

perPoincaré algebra. Supersymmetry also provides a framework for the unification of

particle physics with gravity [10] under supergravity.

In supersymmetric models, each boson(fermion) of Standard Model has a super-

symmetric partner which is a fermion(boson). These superpartners have the same

internal quantum numbers except their spin which differs by half. Together, a par-

ticle with its supersymmetric partner forms what is called a supermultiplet. A su-

perpotential is constructed consisting of gauge invariant, holomorphic terms which

are linear, quadratic or cubic functions of the superfields as higher order terms will

lend the theory non-renormalizable. The coefficients of the quadratic functions of the

Higgs boson fields in the superpotential are known as the µ parameters and have the

dimension of mass. The cubic terms in the superpotential gives rise to three particle

vertices and are called the Yukawa coupling terms. This superpotential gives rise to

the so called F-terms in the supersymmetric Lagrangian.

In Standard Model, one can calculate the radiative corrections to the Higgs bo-

8



son mass from all the particles that couple with the Higgs boson. This calculation,

unfortunately, gives a result which is quadratically divergent with the cut-off scale.

This yields a natural Higgs boson mass which is of the order of Ultraviolet cut-off

of the theory, generically around the Planck scale (∼ 1019 GeV). We need a large

fine-tuning to get the Higgs boson mass to be the experimentally observed value of

125 GeV. This is known as the hierarchy problem. Supersymmetry has an ingenious

mechanism to bypass this problem. This resides in the fact that bosonic couplings

provide radiative corrections which are opposite in sign with respect to fermion loops.

Since supersymmetry has both bosonic and fermionic particles in the same supermul-

tiplet, there is an exact cancellation of these quadratically divergent contributions

thus solving the hierarchy problem. In any realistic model supersymmetry must be

broken in such a way so as not to introduce any quadratic divergence.

Supersymmetric models allow for the existence of renormalizable baryon and lep-

ton number violating terms is the superpotential. These terms are dangerous since

the lepton and baryon number violating processes are strongly constrained by exper-

iments, especially from proton stability. These unwanted terms can be prohibited by

requiring the superpotential to be invariant under a Z2 symmetry known as R-parity

which is defined as

R = (−1)3(B−L)+2S, (1.11)

where S is the spin of the particle and B and L are the baryon and lepton num-

ber respectively. All the Standard Model particles have R-parity of +1 while their

superpartners have R-parity −1. Hence if R-parity is conserved, the lightest super-

symmetric particle (LSP) cannot decay and can be identified as a dark matter candi-

date. The dark matter annihilation cross-section of order 0.1pb, which is natural in

supersymmetric models, leads to the correct relic abundance.

In an exact supersymmetric theory, the particles and their superpartners would

be degenerate in mass. Since no such supersymmetric particle has been observed in

9



experiments, supersymmetry must be a broken symmetry. Supersymmetry breaking

can be achieved by writing a soft supersymmetry breaking [11] potential which con-

sists of terms which are either linear, quadratic or cubic functions of the fields. These

terms break supersymmetry softly by not introducing any ultraviolet divergences in

the scalar masses, thus maintaining the cancellation of quadratic divergence as dis-

cussed earlier. The cubic terms in the soft supersymmetry breaking Lagrangian are

called the trilinear A-term and their coefficients are denoted by Ai. The µ-terms in

the superpotential along with the trilinear A-terms can lead to additional sources of

CP violation and give rise to the SUSY CP problem [12]. Experimental limits from

the electron and the neutron electric dipole moments imply that the SUSY phases

must be . 10−2, which is known as the SUSY CP problem.

Field SU(3)c SU(2)L U(1)Y

L̂ =



ν̂eL

êL


 1 2 -1

Êc 1 1 2

Q̂ =



ûL

d̂L


 3 2 1

3

Û c 3∗ 1 −4
3

D̂c 3∗ 1 2
3

Ĥu =



ĥ+
u

ĥ0
u


 1 2 1

Ĥd =



ĥ0
d

ĥ−d


 1 2 -1

Table 1.1: Matter and Higgs superfield content of the MSSM
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The minimal supersymmetric extension of the Standard Model (MSSM) consists of

extending the Standard Model particle spectrum by adding their superpartners. The

matter and the Higgs superfields of the MSSM is given in Table 1.1. An extra Higgs

boson doublet field is needed to generate masses for both the ”up”-type and ”down”-

type quarks (and charged leptons) in a way consistent with supersymmetry. The

superpotential is given by

WMSSM = YuQ̂ĤuÛ
c + YdQ̂ĤdD̂

c + YlL̂ĤdÊ
c + µĤuĤd (1.12)

where Yu, Yd and Yl are the up, down and lepton Yukawa coupling matrices. The

F-term and the soft supersymmetry breaking terms of the Lagrangian can be derived

from the superpotential while a D-term can be written for the scalar superfields. The

Lagrangian would thus consist of the Kinetic terms for all the superfields along with

the F-term, D-term and the soft supersymmetry breaking terms. This generates all

the masses and couplings of the particles except the neutrino mass which requires

either the introduction of a right-handed neutrino or R-parity violating couplings.

1.3 Left-Right Symmetry

The chiral structure of the Standard Model and its inability to explain the origin

of parity violation in weak interactions compels us to think of a theory which has

a left and right chiral symmetric structure. This left-right symmetry would extend

the gauge group of the Standard Model into SU(3)c × SU(2)L × SU(2)R × U(1)B−L

[13]. This would imply that the fundamental weak-interaction Lagrangian is invariant

under parity symmetry at scales much above the electroweak scale and the parity

asymmetry observed in nature arises from the vacuum being noninvariant under parity

symmetry. The origin of parity violation can be explained as the SU(2)R symmetry is

broken at some high scale leading to the observed parity asymmetry at lower energies.

New effects associated with the parity non-invariance of the Lagrangian are expected
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to manifest themselves as the existence of a second neutral Z ′ boson, WR bosons,

right-handed charged currents, right-handed neutrino, etc. The mass scales at which

these new effects appear is the energy scale at which the right-handed symmetry is

broken.

The existence of a non-zero albeit small neutrino mass can also be easily under-

stood in the framework of the left-right symmetric models. The existence of a heavy

right-handed neutrino is warranted by parity invariance and its spontaneous breaking

at a high scale. This heavy right-handed neutrino can produce a small left-handed

neutrino mass via the seesaw mechanism as has been explained earlier.

The chiral fermion sector in this model becomes

QL =



u

d



L

∼
(

3, 2, 1,
1

3

)
, QR=



u

d



R

∼
(

3, 1, 2,
1

3

)
,

LL =



ν

e



L

∼ (1, 2, 1,−1) , LR =



ν

e



R

∼ (1, 1, 2,−1) , (1.13)

where the numbers in the brackets denote the quantum numbers under SU(3)C ×

SU(2)L × SU(2)R × U(1)B−L gauge groups. The electric charge of a particle in left-

right symmetric models is defined as

Q = I3L + I3R +
B − L

2
(1.14)

where I3L and I3R are the third component of the isospin of the SU(2)L and SU(2)R

respectively, B and L are the baryon and lepton numbers. This definition of the

charge is physically much more attractive compared to the Standard Model definition

where the hypercharge U(1) lacks any physical meaning and is arbitrarily adjusted

according to the actual charge of a particle.

Many Grand Unified Theories as well as fundamental Planck scale theories such

as string theory can more easily lead to left-right symmetric gauge structure and thus
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it is a distinct possibility that the Standard Model will eventually become part of a

left-right symmetric structure.

1.4 Minimal Left-Right Supersymmetric Model with automatic R-parity

The minimal Left-Right Supersymmetric model [14] is a supersymmetric extension

of the left-right symmetric model of 1.3. The gauge group is extended to SU(3)C ×

SU(2)R × SU(2)L × U(1)B−L. This extended gauge symmetry allows for parity to

be defined as an exact symmetry which can only be spontaneously broken. As a

consequence of the parity invariance, the Yukawa couplings and the corresponding

SUSY breaking A terms are hermitian, and the µ term are real. This leads to a

vanishing electric dipole moment of fermions which solves the strong CP problem

and the SUSY CP problem. R-parity is part of the gauge symmetry as it is contained

in B − L. The model also has all the ingredients to explain the neutrino mass and

an unbroken R-Parity provides a stable dark matter candidate.

Unlike Standard Model, the quarks and leptons in this model consists of left-

handed and right-handed doublets. The right-handed lepton doublet has a right-

handed neutrino which is necessary for the generation of left-handed neutrino mass.

The Higgs sector, in one version, consists of two SU(2)R and two SU(2)L Higgs triplet

fields. The SU(2)R triplet fields are needed for breaking the SU(2)R × U(1)B−L

symmetry. It also has two bidoublet fields which are doublets under both SU(2)R

and SU(2)L. These generate the quark and lepton masses and the CKM mixings.

There is also an optional singlet Higgs field which makes sure that the right-handed

symmetry breaking occurs in the supersymmetric limit.

The SU(2)R×U(1)B−L symmetry is broken down to U(1)Y by the SU(2)R Higgs

triplets. This generates a Majorana term for the νc field. If this symmetry breaking

takes place at a high scale, it will generate a large mass for the right-handed neu-

trino. The heavy right-handed neutrino Majorana mass term can, through the seesaw
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mechanism, explain the small left-handed neutrino mass without the need to consider

unnaturally small Yukawa couplings. Thus, this model can explain the existence of

small neutrino mass.

The conservation of R-parity, which is a part of the gauge symmetry, prevented

the lightest supersymmetric particle from decaying and hence was considered to be

the dark matter particle. In this model, R-parity is automatically conserved and the

lightest neutralino can be considered as the dark matter.

We have seen how the Minimal Left-Right Supersymmetric model solves many

of the problems of the Standard Model and can naturally explain the existence of

neutrino mass and dark matter. As one might expect, this LRSUSY model is not

without its own set of problems. The tree-level Higgs potential in the model can be

shown to be lower for a charge breaking vacuum compared to the charge conserving

one. Also at the tree level, it can be seen that the computation of the doubly-charged

Higgs boson mass-square matrix yields a negative eigenvalue. This problem can be

solved by calculating the one loop correction to the potential and the doubly-charged

Higgs boson mass as will be discussed in details in chapter 2.

1.5 Universal Extra Dimension

Extra dimensional theories have seen a renewed interest since the advent of String

theory. String theory, the most promising theory to quantize gravity and unify it with

the other gauge forces, seems to require both extra dimensions, beyond the known

four, and supersymmetry as crucial ingredients for its consistency. The idea of extra

dimension, though, was first introduced by Kaluza and Klein [15] who were trying

to unify Electromagnetism and Gravity by assuming that the photon field originates

from the fifth component of a five dimensional metric tensor. In the Kaluza Klein

(KK) framework, the particles are free to move in the entire space formed by all the

dimensions and hence the length of the extra dimension must be small in order to be
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consistent with experimental observations. In the case of a product space formed of

the four-dimensional Minkowski space and a circle M4 × S1, the wave function of a

scalar field can be expanded in Fourier series along S1 to be

φ(x, y) =
1√
2πR

∑

nεZ

ein
y
Rφn(x) (1.15)

where x stands for the regular 4D coordinate, y is the coordinate of the extra dimen-

sion of radius R and n is the eigenvalue of the one-dimensional angular momentum

operator. The Klein-Gordon equation of the scalar field thus becomes

pµpµ = −p2
0 + ~p 2 = − n

2

R2
(1.16)

where pµ is the momentum four-vector. Thus we can see that in the four-dimensional

space, this is equivalent to a tower of particles of masses given by n/R. For energy

scales below 1/R, only massless modes with n = 0 can be excited and hence the low

energy physics is effectively four-dimensional.

Extra dimensional models with a low cutoff scale can provide a solution to the

hierarchy problem [16] [17]. The radiative corrections to the Higgs boson mass in

extra dimensional models are also quadratically divergent similar to the Standard

Model. The advantage of a low scale extra dimensional model is that the ultraviolet

cutoff scale is O(TeV) and hence the correction to the Higgs mass is of the electrowek

scale thus solving the hierarchy problem.

Recent interest in extra dimensional theories have given rise to two broad sub-

category of models. The first corresponds to those where the Standard Model fields

are confined to our regular (3+1) dimensions while only gravity can propagate in

the extra dimension. The other class of models are the ones in which some or all of

the Standard Model fields can access the extended space-time manifold. Universal

Extra dimension corresponds to the second class of models and is characterized by

flat extra dimension with small compactification radius of O(TeV−1). For the case

of minimal universal extra dimension (mUED), there is only one extra dimension
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which is compactified on a S1/Z2 orbifold. This orbifolding is crucial in generating

chiral zero modes for fermions, which would otherwise be vector-like. The UED La-

grangian, in general, has KK number conservation which is broken by the boundary

conditions in mUED leading to the conservation of KK parity defined as (−1)n. This

discrete symmetry ensures that the lightest KK particle is stable and can be a dark

matter candidate. The conserved KK parity also means that any contribution from

the KK modes to the electroweak processes is at the loop level and is thus sufficiently

suppressed to not effect the experimental observations even for a relatively small KK-

spacing. The experimental observation of the Higgs boson and its observed properties

have put severe constraints on mUED as will be discussed later.

1.6 Organisation of this Dissertation

This dissertation is organized as follows. In chapter 2, I look at several variations of

left-right supersymmetric models differentiated by their symmetry breaking mecha-

nism. I calculate the masses of the Higgs bosons and Higgsinos and show that in some

cases one can easily obtain the experimentally observed Higgs boson mass even for

a relatively light stop squark which is not possible in the Minimal Supersymmetric

Standard Model. This is a new result that we have obtained which helps to explain

the current experimental Higgs boson mass even for a relatively light supersymmetric

particle spectrum.

In Chapter 3, I study the collider phenomenology of the production and decay

of the doubly-charged Higgs boson and Higgsinos at the Large Hadron Collider. A

new channel for the observation of these doubly-charged particles is suggested. I

analyze the final signal of four leptons and missing energy. I look at the invariant

mass, missing energy and angular separation plots for the final state particles and see

that the signal produced by our model would be very easy to distinguish from other

competing models.
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In chapter 4, I study the properties of the neutral Higgs boson in the framework

of mUED and compare them to the experimental observations. I specifically look at

the constraints on the mUED model from measured Higgs boson signal strength in

its various decay channels. This helps to put a lower bound on the size parameter of

the mUED model.
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CHAPTER 2

LIGHT HIGGS BOSON MASS IN SUPERSYMMETRIC LEFT-RIGHT

MODELS

2.1 Introduction

Models based on the left–right symmetric gauge group G3221 ≡ SU(3)c × SU(2)L ×

SU(2)R × U(1)B−L [13] are attractive extensions of the Standard Model (SM) with

several interesting features. At the fundamental level Parity is a good symmetry in

these models. The observed Parity violation in weak interactions is explained by the

spontaneous breaking of SU(2)R × U(1)B−L down to U(1)Y at a scale vR well above

the masses of the W and Z bosons. The gauge structure requires the existence of

the right–handed neutrino, and thus leads naturally to small neutrino masses via the

seesaw mechanism. In fact, with the right–handed neutrino included, G3221 is the

maximal gauge symmetry that can be realized at a scale of order TeV, relevant to the

ongoing LHC experiments.∗ Because of Parity invariance these models can potentially

solve the strong CP problem [3] without introducing a global Peccei–Quinn symmetry

and the resulting axion.

Supersymmetric versions of left–right gauge models, denoted here as SUSYLR

models, preserve the merits of G3221 noted above, and in addition, solve the gauge

∗There is a natural embedding of G3221 into the Pati–Salam symmetry G422 ≡ SU(4)c×SU(2)L×

SU(2)R [18], however, the scale of G422 symmetry breaking must be of order 105 GeV, from KL → µe

decay constraints. Embedding G3221 (or G422) into the unified symmetry group of SO(10) is very

natural, but that symmetry breaking scale must be of order 1015 GeV, from constraints on nucleon

decay and gauge coupling unification.
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hierarchy problem. It has been noted that the puzzle of small phases in the SUSY

breaking sector (required by electric dipole moment constraints) has a natural ex-

planation in the SUSY left–right models, by virtue of Parity symmetry [12]. Several

versions of the SUSYLR models have been proposed and studied in the literature,

with differing Higgs boson sectors used for symmetry breaking [14, 19–23]. Here we

undertake a systematic study of the Higgs potential in various realizations of these

models, focusing on the lightest neutral Higgs boson mass mh. In many cases we find

that the tree–level constraint mh ≤ mZ of the MSSM is modified to less stringent

constraint. [19]. This difference in the upper limit arises from the non-decoupling

D–terms of SU(2)R × U(1)B−L, which occurs when the symmetry breaking scale vR

and the SUSY breaking scale are of the same order. Thus, these models would predict

additional W±
R and ZR gauge bosons within reach of LHC experiments, in addition

to SUSY particles. In the MSSM heavy stops (mt̃ > 2 TeV) with large mixing are

needed in order to accommodate the Higgs boson of mass 126 GeV discovered re-

cently at LHC. Such a large mass of the stop puts the gauge hierarchy problem in

a different perspective, since some amount of tuning would be required. With the

increased mass of mh, SUSYLR models would allow for the stops to be much lighter

and less mixed, and thus would alleviate the tuning problem.

Our analysis focuses on two basic classes of models which have been developed

in the literature. In one class Higgs triplets are introduced for SU(2)R symmetry

breaking along with SU(2)L× SU(2)R bi-doublets which break the electroweak sym-

metry [14, 21–23]. Fermion mass generation is via direct Yukawa couplings in this

class of models, including the Majorana mass of the right-handed neutrino. In a sec-

ond class, Higgs doublets are used to break SU(2)R symmetry, with doublets and/or

bi-doublets breaking the electroweak symmetry. Additional fermions are necessary

in this class for fermion mass generation, at least in the neutrino sector. A specific

example studied incorporates the inverse seesaw mechanism for neutrino masses with
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the inclusion of gauge singlet fermions. Another example, termed alternate left–right

model [19, 20], has an E6 inspired particle spectrum. A third example uses a univer-

sal seesaw mechanism for quarks and leptons by introducing vector–like gauge singlet

fermions [24].

Non–decoupling D–term effects on the lightest Higgs boson mass in extensions of

the MSSM have been studied by various authors. In Ref. [19] symmetry breaking in

SUSYLR models with an E6 inspired particle spectrum was studied and a relation

mh ≤
√

2mW was derived. In Ref. [23] symmetry breaking of SUSYLR models with

Higgs triplets was studied and an enhancement of mh compared to the MSSM result

was observed. Ref. [25] has studied extended gauge sectors, including an extra SU(2)

added to the SM gauge symmetry. In this case there is an unknown gauge coupling,

which was chosen so that it remains perturbative all the way to a GUT scale, and

significant increase in mh was observed. In Ref. [26] non–decoupling effects of an

additional U(1) gauge symmetry was studied, which also showed a modest increase in

mh. Our aim in this chapter is systematically study the Higgs boson sectors of various

realizations of SUSYLR models, which results in some overlap with earlier studies. In

one case we reproduce and generalize the results of Ref. [19]. In another case studied,

we provide an analytic formula for the upper limit on mh that interpolates between

the decoupling and non–decoupling limits of left–right symmetry, where our results

agree roughly with the numerical results of Ref. [23].

When gauge singlets that couple to the MSSM Higgs fields are present in the the-

ory, additional F–term contributions to mh arises. In several cases this contribution

is non–decoupling, a well-known case being the NMSSM [27]. Modes increase in mh

can arise from this contribution, although we find the non–decoupling D–term to be

more significant.

The remainder of this chapter is organized as follows. In Sec. 2.2 we briefly

explain the symmetry breaking mechanism, lepton mass and light neutrino mass
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generation mechanism for each of the models. In Sec. 2.3 we analyze the Higgs

potential of SUSYLR models with triplet scalars breaking the SU(2)R × U(1)B−L

symmetry. Various scenarios are discussed here. For electroweak symmetry breaking

we allow for one or two bi-doublets. We also allow for a gauge singlet that facilitates

LR symmetry breaking in the SUSY limit. We focus on the lightest neutral Higgs

boson mass and derive the tree–level constraint for mh. In Sec. 2.4, Sec. 2.5 and

Sec. 2.6 Higgs potentials involving doublet fields are studied with several variations:

inverse seesaw, E6 inspired spectrum, and universal seesaw for quarks and leptons. In

Sec.2.7 we calculate the radiative correction to the doubly-charged Higgs boson mass

and show that the one-loop corrections can make it positive. Finally, we summarize

the results.

2.2 The Left–Right Supersymmetric Model

In left-right symmetric models, the gauge group is extended to SU(3)c × SU(2)L ×

SU(2)R ×U(1)B−L. The models we consider are supersymmetric versions of the left-

right symmetric model. We consider different symmetry breaking sectors leading to

several variations of the left-right supersymmetric models. The right-handed symme-

try breaking can be achieved either by triplet or doublet Higgs boson fields while the

electroweak symmetry is broken using bidoublets or doublet Higgs boson fields. Each

model has a common chiral fermion sector consisting of three families of quark and

lepton superfields given as

Q =



u

d


 ∼

(
3, 2, 1,

1

3

)
, Qc=




dc

−uc


 ∼

(
3∗, 1, 2,−1

3

)
,

L =



ν

e


 ∼ (1, 2, 1,−1) , Lc =




ec

−νc


 ∼ (1, 1, 2, 1) , (2.1)

where the numbers in the brackets denote the quantum numbers under SU(3)C ×

SU(2)L × SU(2)R × U(1)B−L gauge groups.
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All the models discussed below must meet three main criterion. First, a right-

handed symmetry breaking mechanism consistent with the experimental limits for the

heavy gauge boson masses has to be present. Second, we must be able to generate the

fermion masses and thirdly, there must be a mechanism to generate a small neutrino

mass. We now briefly describe the models that have been studied in this work while

a detailed calculation of the Higgs sector will be discussed later.

2.2.1 Models involving triplet and bidoublet Higgs fields

This is the most straightforward way to satisfy our requirements for a consistent

model. A right-handed triplet Higgs field ∆c can couple directly to the right-handed

neutrino giving it a Majorana mass as well as break the right-handed symmetry as its

neutral component acquires a vacuum expectation value. The bidoublet field Φ can

have Yukawa couplings with the fermions generating the quark and leptons masses.

Being a supersymmetric theory the right-handed ∆c field must be accompanied by

another right-handed triplet ∆
c

field to achieve the right-handed symmetry breaking

without inducing any R-parity violating couplings. In a left-right symmetric model,

the right-handed triplets must also be accompanied by left handed triplets ∆ and

∆ for parity conservation. Additionally, one or more bidoublet fields denoted by Φa

which are needed for generation of quark and lepton masses and CKM matrices. We

consider cases with and without an extra singlet field. In the absence of the singlet

field, it is not possible to break the right-handed symmetry in the supersymmetric

limit. This is perfectly consistent as long as we consider the right-handed symmetry

breaking and the supersymmetry breaking to be at the same scale. The singlet is

only needed to decouple the two symmetry breaking scales allowing the right-handed

symmetry to be broken at a much higher scale. Thus, the Higgs boson fields in this
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model are given as

∆(1, 3, 1, 2) =




δ+√
2

δ++

δ0 − δ+√
2


 , ∆(1, 3, 1,−2) =




δ
−
√

2
δ

0

δ
−− − δ

−
√

2


 ,

∆c(1, 1, 3,−2) =




δc
−
√

2
δc

0

δc
−− − δc

−
√

2


 , ∆

c
(1, 1, 3, 2) =




δ
c+

√
2

δ
c++

δ
c0 − δ

c+

√
2


 ,

Φi(1, 2, 2, 0) =



φ+

1 φ0
2

φ0
1 φ−2



i

(i = 1, 2), S(1, 1, 1, 0). (2.2)

The fields getting non-zero vev are given by

〈
δc

0
〉

= vR,
〈
δ
c0
〉

= vR,
〈
φ0

1i

〉
= vui ,

〈
φ0

2i

〉
= vdi , (2.3)

while all other fields do not get any vacuum expectation value. We take the limit

where vR, vR >> vu, vd.

The Yukawa terms in the superpotential for these models are

LY =
2∑

j=1

Y j
q Q

T τ2Φjτ2Q
c + Y j

l L
T τ2Φjτ2L

c + ifLT τ2∆L+ if cLcT τ2∆cLc,(2.4)

where Y j
q and Y j

l are the quark and lepton Yukawa coupling matrices and f is the

Majorana neutrino Yukawa coupling matrix. This superpotential is invariant under

parity transformation under which Φ → Φ†,∆ → ∆c∗ ,∆ → ∆
c∗

, S → S∗, Q →

Qc∗ , L→ Lc
∗
, θ → θ etc. Parity invariance requires the Yukawa coupling matrices Y j

q

and Y j
l to be hermitian and f c = f . The Majorana mass term for the right-handed

neutrino is heavy and this facilitates the generation of a small left-handed neutrino

mass via the seesaw mechanism.

There are three heavy gauge bosons in these cases – two heavy right-handed W-

bosons and one heavy right-handed Z-boson. In the limit where the right-handed

vevs are much bigger than the electroweak vev, we can neglect the mixing between

the left-handed and the right-handed gauge bosons and obtain the mass of the heavy
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W-bosons as

M2
W±R
' 1

2
g2
R(2v2

R + 2v2
R + v2

ui
+ v2

di
), (2.5)

and mass of the heavy Z-boson is

M2
ZR
' g2

R

2 cos2 θW cos 2θW

[
4(v2

R + v2
R) cos4 θW + (v2

ui
+ v2

di
) cos2 2θW

]
, (2.6)

where i runs over the number of bidoublets in the model, gR is the SU(2)R gauge

coupling and θW is the Weinberg angle.

These expressions for the gauge boson masses must be consistent with the ex-

perimental limit and will be relevant in setting a lower limit for the right-handed

symmetry breaking scale.

2.2.2 Inverse seesaw model

The right-handed symmetry breaking in the previous case was achieved using SU(2)R

triplet Higgs bosons but we can also use SU(2)R doublet Higgs field for the symmetry

breaking. This simplifies the Higgs boson sector considerably. A couple of bidoublet

are also present in the Higgs spectrum which can generate the quark and lepton

masses and CKM mixing. The problem with doublet Higgs boson fields is that they

do not directly couple to the right-handed neutrino and cannot produce a Majorana

mass term for them. Hence we need to introduce an extra heavy singlet neutrino N

for each generation of leptons in addition to the chiral matter fields that are given in

Eq. (2.1). This heavy neutral singlet would get a Majorana mass and can produce

a light neutrino mass. The Higgs sector thus consists of two right-handed doublet

fields needed for anomaly cancellation and another two left-handed doublets for parity

symmetry. The Higgs sector is given by the following Higgs fields

HL(1, 2, 1,−1) =



H0
L

H−L


 , HL(1, 2, 1, 1) =



H

+

L

H
0

L


 , HR(1, 1, 2, 1) =



H+
R

H0
R


 ,
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HR(1, 1, 2,−1) =



H

0

R

H
−
R


 ,Φa(1, 2, 2, 0) =



φ+

1 φ0
2

φ0
1 φ−2



a

(a = 1, 2), (2.7)

and the vev of the neutral fields are given as

〈
H0
L

〉
= vL,

〈
H

0

L

〉
= vL,

〈
H0
R

〉
= vR,

〈
H

0

R

〉
= vR,

〈
φ0

1i

〉
= vui ,

〈
φ0

2i

〉
= vdi , (2.8)

The superpotential terms required for the quark and lepton mass generation in

this case is given as

WY =
2∑

j=1

Y j
q Q

T τ2Φjτ2Q
c + Y j

l L
T τ2Φjτ2L

c + ifLT τ2HLN + if cLcT τ2HRN +
1

2
µNNN(2.9)

where Y j
q and Y j

l are the quark and lepton Yukawa coupling matrix, f and f c are the

left-handed and right-handed neutrino Yukawa couplings matrices with the singlet

neutrino and µN is the Majorana mass term for N . Again from parity invariance, the

Yukawa coupling matrices must be hermitian, f c = f and µN is real. Here only the

heavy neutrino has a Majorana mass term while the ν and νc fields get Dirac masses

by couplings among themselves and with the heavy neutrino. For each neutrino

generation, we get a 3× 3 neutrino mass matrix given as




0 Ylv1 fvL

Ylv1 0 f cvR

fvL f cvR µN



. (2.10)

In the limit where vL and µN become zero, one of the eigenvalues of this matrix

vanishes. So, for small values of these parameters one can understand the existence of

a small neutrino mass. This is known as the inverse seesaw mechanism for generation

of neutrino mass.

The heavy gauge boson masses in this case are given as:

M2
W±R
' 1

2
g2
R(v2

R + v2
R + v2

1 + v2
2), (2.11)
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and

M2
ZR
' g2

R

2 cos2 θW cos 2θW

[
(v2
R + v2

R) cos4 θW + (v2
1 + v2

2) cos2 2θW
]

(2.12)

where gR is the SU(2)R gauge coupling, θW is the Weinberg angle and vL, vR, v2 are

the vev of the HL
0, HR

0, φ0
2 fields respectively. Comparing these masses with the

experimental limit for the heavy gauge bosons we will be able to set a lower limit for

vev of the right-handed Higgs boson fields.

2.2.3 Universal seesaw model

One can choose an even simpler Higgs boson sector in order to achieve the symmetry

breaking. We can have a right-handed doublet field HR to break the SU(2)R symme-

try and a left-handed doublet HL for SU(2)L symmetry breaking. For a supersymmet-

ric model one would also need HR and HL fields for anomaly cancellation. This Higgs

boson sector, without a bidoublet, will not be able to generate the quark and lepton

masses and we need to introduce additional heavy quark and lepton fields for this

purpose. The chiral matter sector in this case would consist of the quarks and leptons

given in Eq. (2.1) along with a set of heavy singlet quarks and leptons for each genera-

tion. There are a pair of heavy singlet quarks P (3, 1, 1,−4
3
), N(3, 1, 1, 2

3
) and a singlet

lepton E(1, 1, 1, 2) along with their conjugate fields P c(3, 1, 1, 4
3
), N c(3, 1, 1,−2

3
) and

Ec(1, 1, 1,−2) respectively. We can also include a neutral singlet lepton given as

S(1, 1, 1, 0) which can generate the light neutrino mass. This is not essential as the

neutrino mass can also be generated at the two-loop level by contribution from WL

and WR exchange.. The Higgs sector in this case is given by:

HL(1, 2, 1,−1) =



HL

0

HL
−


 , HL(1, 2, 1, 1) =



HL

+

HL
0


 ,

HR(1, 1, 2, 1) =



HR

+

HR
0


 , HR(1, 1, 2,−1) =



HR

0

HR
−


 . (2.13)
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The absence of bidoublet fields prevent any direct coupling between the left-handed

and the right-handed fermions. The only possible Yukawa interaction terms would

involve the heavy singlet fermions and the light fermions as given below:

WY = yuQHLP − ydQHLN − ylLHLE + yνLHLS

+ ycuQ
cHRP

c − ycdQcHRN
c − yclLcHRE

c + ycνL
cHRS

+ muPP
c +mdNN

c +mlEE
c +mνSS (2.14)

where yi and yci represent the 3× 3 Yukawa coupling matrices and mi are the heavy

singlet fermions Majorana mass matrices. From parity invariance, the Yukawa ma-

trices must be hermitian while yci = yi and all mi must be real. This gives a 2 × 2

mass matrix for the fermions and helps them get their masses in a way similar to the

seesaw mechanism.

The heavy gauge boson masses can be obtained from Eq. (2.11) and Eq. (2.12) by

substituting v1 and v2 to be zero.

We investigate two variations of this model with and without a singlet Higgs boson

since the mass of the lightest CP-even Higgs boson comes out to be very different in

the two cases as will be shown later.

2.2.4 E6 motivated left-right supersymmetric model

This model is motivated by the low energy manifestation of superstring theory where

the matter supermultiplets belong to the 27 representation of E6 group. The particle

content of this representation under the subgroup given by SU(3)×SU(2)×SU(2)×

U(1) is given as:

(u, d)L : (3, 2, 1,
1

3
), dcL : (3, 1, 1,

2

3
), (hc, uc)L : (3, 1, 2,−1

3
), (ec, n)L : (1, 1, 2, 1),



νe Ec

e N c
E


 : (1, 2, 2, 0), hL : (3, 1, 1− 2

3
), (νE, E)L : (1, 2, 1,−1), N c

L : (1, 1, 1, 0),

(2.15)
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where the numbers in brackets represent their quantum numbers under SU(3)c,

SU(2)L, SU(2)R and U(1)B−L groups respectively. We can define an R-parity quan-

tum number in this case under which the u, d, νe, e fields are even while the h,E, νE, N
c
E, n

fields are odd. The superpartners of these fields have opposite R-parity. The Higgs

fields can be identified as:

HL(1, 2, 1,−1) =



HL

0

HL
−


 =



ν̃E

Ẽ


 , HR(1, 1, 2, 1) =



HR

+

HR
0


 =



ẽc

ñ


 ,

Φ(1, 2, 2, 0) =



φ+

1 φ0
2

φ0
1 φ−2


 =



Ẽc Ñ c

E

ν̃e ẽ


 . (2.16)

The fermions and the gauge bosons have odd and even R-parity respectively,

except for the second W boson which must be odd as it links particles of opposite

R-parity. A small neutrino mass can be generated by the mixing of the n, νE and the

N c
E fields.

The heavy gauge boson masses can be obtained from Eq. (2.11) and Eq. (2.12) by

substituting vR to be zero.

2.3 The Left–Right Supersymmetric Model involving Triplet fields

In this section, we concentrate on the Higgs sector of the model, build the superpo-

tential and calculate the mass spectrum for the Higgs bosons and Higgsinos. We look

at the neutral CP-even Higgs boson mass and see how it gets modified with respect

to the Minimal Supersymmetric Standard Model.

2.3.1 Case with two pair of triplets, a bidoublet and a singlet

We first look at the case with the triplet Higgs fields ∆,∆,∆c,∆
c
, one bidoublet

Higgs field Φ and a singlet Higgs boson S. For a fully realistic model, we need two

bidoublet fields to generate the quark mixing but for simplicity we will only use a
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single bidoublet for our calculations. This does not significantly affect the Higgs boson

masses as will be shown in a later section. The exact structure of the individual fields

in these multiplets are given in Eq. (2.2). The most general superpotential terms

involving only the Higgs boson fields in this case is given as:

W = S

[
Tr(λ∆∆) + Tr(λc∆c∆

c
) +

λ′

2
Tr(ΦT τ2Φτ2)−M2

]

+ Tr
[
µ1∆∆ + µ2∆c∆

c
+
µ

2

(
ΦT τ2Φτ2

)]
+
µS
2
S2, (2.17)

where λc = λ∗, µ1 = µ∗2 and λ′,M2, µ and µS are real from parity invariance.

The Higgs potential consists of the F-term, D-term and soft supersymmetry-

breaking terms, and is written as:

VHiggs = VF + VD + VSoft. (2.18)

In this case, the relevant terms in the Higgs potential are given by:

VF = Tr

∣∣∣∣(λ∆∆) + (λ∗∆c∆
c
) +

λ′

2
(ΦT τ2Φτ2)−M2 + µSS

∣∣∣∣
2

+ Tr |µΦ + λ′SΦ|2

+ Tr
[
|µ1∆ + λS∆|2 +

∣∣µ1∆ + λS∆
∣∣2 + |µ2∆c + λ∗S∆c|2

+
∣∣µ2∆

c
+ λ∗S∆

c∣∣2
]
, (2.19)

VD =
g2
L

8

3∑

a=1

∣∣∣Tr(2∆†τa∆ + 2∆
†
τa∆ + Φ†τaΦ)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣Tr(2∆c†τa∆
c + 2∆c†τa∆

c
+ Φ†τaΦ)

∣∣∣
2

+
g2
V

2

∣∣∣Tr(∆†∆−∆
†
∆−∆c†∆c + ∆c†∆

c
)
∣∣∣
2

, (2.20)

VSoft = m2
1Tr(∆c†∆c) +m2

2Tr(∆
c†

∆
c
) +m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
S|S|2 +m2

5Tr(Φ†Φ) +
[
λAλSTr(∆∆ + ∆c∆

c
) + h.c.

]

+ [λ′Aλ′STr(ΦT τ2Φτ2) + h.c.] + (λCλM
2S + h.c.) +

(
µSBSS

2 + h.c.
)

+
[
µ1B1Tr

(
∆∆

)
+ µ2B2Tr

(
∆c∆

c)
+ µBTr

(
ΦT τ2Φτ2

)
+ h.c.

]
. (2.21)

We use this potential to calculate the Higgs boson mass-squared matrices for the

charged, neutral CP-even and neutral CP-odd Higgs bosons. The vacuum structure
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that we choose is given by:

〈∆c〉 =




0 vR

0 0


 ,

〈
∆
c〉

=




0 0

vRe
iφR 0


 , 〈Φ〉 =




0 v2

v1e
iφ1 0


, 〈S〉 = vSe

iφS .

(2.22)

while the ∆ and ∆ fields do not get any vacuum expectation values(or VEV). For

simplicity we assume φR = 0, φ1 = 0 and φS = 0. This choice of phases negates the

mixing between the scalar and the pseudo-scalar Higgs bosons but does not signifi-

cantly affect the mass of the lightest CP-even Higgs boson. The values of vR and vR

are of the order of the right-handed symmetry breaking while v1 and v2 are of elec-

troweak scale and hence vR, vR >> v1, v2. We first look at the CP-even Higgs boson

which is the main focus of this chapter. To easily identify the field corresponding

to the lightest eigenvalue, we take a linear combination of the Higgs fields so that

only two of the newly defined fields get a non-zero vacuum expectation value – one

at the high right-handed symmetry breaking scale and the other at the electroweak

symmetry breaking scale. The field redefinition that we use is given as:

ρ1 =
v1φ

0
1 + v2φ

0
2√

v2
1 + v2

2

, ρ2 =
v2φ

0
1 − v1φ

0
2√

v2
1 + v2

2

, ρ3 =
vRδ

c0 + vRδ
c0

√
v2
R + v2

R

, ρ4 =
vRδ

c0 − vRδ
c0

√
v2
R + v2

R

.

(2.23)

In this rotated basis we calculate the mass matrix subject to the following minimiza-

tion conditions:

0 =v1[4m2
5 + g2

L(−v2
2 + v2

1) + g2
R(−v2

2 + v2
1 − 2v2

R + 2v2
R)]− 8λ′Aλ′v2vS − 8µBv2

+ 4λ′v2(M2 − λvRvR + λ′v1v2 − µSvS) + 4v1(µ+ λ′vS)2,

0 =v2[4m2
5 + g2

L(v2
2 − v2

1) + g2
R(v2

2 − v2
1 + 2v2

R − 2v2
R)]− 8λ′Aλ′v1vS − 8µBv1

+ 4λ′v1(M2 − λvRvR + λ′v1v2 − µSvS) + 4v2(µ+ λ′vS)2,

0 =2m2
1vR + g2

RvR(−v2
1 + v2

2 + 2v2
R − 2v2

R) + 2[g2
V vR(v2

R − v2
R) + λAλvRvS + µ2B2vR

+ vR (λvS + µ2)2 + λvR(−M2 + λvRvR − λ′v1v2 + µSvS),
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0 =2m2
2vR + g2

RvR(v2
1 − v2

2 − 2v2
R + 2v2

R) + 2[g2
V vR(−v2

R + v2
R) + λAλvRvS + µ2B2vR

+ vR (λvS + µ2)2 + λvR(−M2 + λvRvR − λ′v1v2 + µSvS),

0 =2m2
SvS + 2CλM

2λ− 4λ′Aλ′v1v2 + 2λAλvRvR + 2[λ′
2
(v2

1 + v2
2) + λ2(v2

R + v2
R)]vS + 4µSBSvS

2µλ′(v2
1 + v2

2) + 2λµ2(v2
R + v2

R) + 2µS
(
−M2 + λvRvR − λ′v1v2 + µSvS

)
. (2.24)

We first look at the scalar Higgs boson mass. The neutral components of the left-

handed ∆ and ∆ fields decouple and form a 2 × 2 mass-squared matrix with heavy

eigenvalues while we get a 5×5 mass-squared matrix in the basis (Reρ1,Reρ2,Reρ3,Reρ4,ReS)

where one of the eigenvalues would remain light. The relevant terms in this 5 × 5

mass-squared matrix are given as:

M11 =
g2
L(v2

1 − v2
2)2 + g2

R(v2
1 − v2

2)2 + 8v2
1v

2
2λ
′2

2(v2
1 + v2

2)
,

M12 =
v1v2(v2

1 − v2
2)(g2

L + g2
R − 2λ′2)

(v2
1 + v2

2)
,

M13 =
−g2

R(v2
1 − v2

2)(v2
R − v2

R)− 4λλ′v1v2vRvR√
(v2

1 + v2
2)(v2

R + v2
R)

,

M14 = −2[g2
R(v2

1 − v2
2)vRvR − λλ′v1v2(v2

R − v2
R)]√

(v2
1 + v2

2)(v2
R + v2

R)
,

M15 =
2λ′[−2Aλ′v1v2 + (v2

1 + v2
2)(vSλ

′ + µ)− µSv1v2]√
v2

1 + v2
2

,

M22 =
[
(2g2

L + 2g2
R)v2

1v
2
2 + 2m2

5(v2
1 + v2

2) + λ′
2
(v2

1 − v2
2)2 + 2λ′

2
v2
S(v2

1 + v2
2)

+ 4λ′µvS(v2
1 + v2

2) + 2µ2(v2
1 + v2

2)
]
/(v2

1 + v2
2),

M23 =
2 [g2

Rv1v2(−v2
R + v2

R) + λλ′(v2
1 − v2

2)vRvR]√
v2

1 + v2
2

√
v2
R + v2

R

,

M24 =
−4g2

Rv1v2vRvR − λλ′(v2
1 − v2

2)(v2
R − v2

R)√
v2

1 + v2
2

√
v2
R + v2

R

,

M25 =
λ′(v2

1 − v2
2)(2Aλ′ + µS)√
v2

1 + v2
2

,

M33 =
2 [(g2

R + g2
V ) (v2

R − v2
R)2 + 2λ2v2

Rv
2
R]

v2
R + v2

R

,

M34 =
2vRvR(v2

R − v2
R)2 (2g2

R + 2g2
V + λ2)

v2
R + v2

R

,
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M35 =
2λ [AλvRvR + v2

R(λvS + µ2) + v2
R(λvS + µ2) + vRvRµS]√

v2
R + v2

R

,

M44 =
[
8(g2

R + g2
V )v2

Rv
2
R + (m2

1 +m2
2)(v2

R + v2
R) + λ2(v2

R − v2
R)2

+ 2(λvS + µ2)2(v2
R + v2

R)
]
/(v2

R + v2
R),

M45 = −(v2
R − v2

R)λ(Aλ + µS)√
v2
R + v2

R

,

M55 = m2
S + λ′

2
(v2

1 + v2
2) + λ2(v2

R + v2
R) + µ2

S + 2µSBS. (2.25)

From our choice of basis, we can guess that the M11 element of the mass-matrix

along with the corrections from the off-diagonal elements would approximately be the

lightest eigenvalue for this matrix. We calculate the corrections to lightest eigenvalue

coming from the off-diagonal M12,M13,M14 and M15 elements. It can be seen that

the M12 element is proportional to the square of the light vev while the diagonal M22

element comes out to be proportional to the square of the heavy vev. Hence the

M12 term gives a negligible correction to the lightest eigenvalue. Further we choose

parameters λ′, Aλ′ and Aλ such that they make M13, M15 and M35 zero respectively.

Using this choice of parameters we calculate the correction and it can be shown that

in the limit where the soft supersymmetry breaking term m1 is much bigger than the

right-handed symmetry breaking scale, the contribution vanishes and the M11 is the

lightest mass eigenvalue for this case †. This gives us:

M2
htree = 2M2

W cos2 2β + λ2v2 sin2 2β, (2.26)

where tan β = v1
v2

and v2 = v2
1 + v2

2.

Including the radiative corrections from the top and stop sector, the Higgs boson

mass is:

M2
h = (2M2

W cos2 2β + λ2 sin2 2β)∆1 + ∆2 (2.27)

†If we choose µS to be much greater than all the other mass scales in the model, we get back the

familiar result where the tree level CP-even neutral Higgs boson mass is bound by MZ .
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where

∆1 =

(
1− 3

8π2

m2
t

v2
t

)
,

∆2 =
3

4π2

m4
t

v2

[
1

2
X̃t + t+

1

16π2

(
3

2

m2
t

v2
− 32πα3

)(
X̃tt+ t2

)]
, (2.28)

and mt is the top running mass, v =
√
v2

1 + v2
2 ≈ 174 GeV, α3 is the running QCD

coupling, X̃t is stop squark mixing parameter, and t = log
M2
S

M2
t

with Mt being the top

pole mass and MS being the geometric mean of the two stop squark masses.

Figure 2.1: (a) Variation of Higgs boson mass with tan β, (b) Higgs boson mass as a

function of MS

The Higgs boson mass in this case is plotted in Fig. 2.1(a) as a function of tan β.

The red region in the figure represents the band where the mass is between 124 GeV

and 126 GeV. Anything below this has not been included as that will be ruled out

by experiments. Any point above this can always be lowered by choosing a different

set of parameters, as one must remember that we have chosen our parameter space

so as to maximize the lightest Higgs boson mass. The light blue region represents

the area where the stop squark mixing is minimum i.e. Xt = 0 while the pink upper

region is for maximal mixing where Xt = 6. The green region is for all values of Higgs

mass greater than 126 GeV and it is overlapped by the blue and the pink region.
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Fig. 2.1(b) represents the Higgs mass and as a function MS in Fig. 2.1(b). Again the

red band is where the Higgs boson mass is between 124 GeV and 126 GeV, green

region is for Xt = 0, yellow region represents Xt = 6 and blue region is for all values

of Higgs mass greater than 126 GeV which is overlapped by the green and the yellow

regions. The black dotted line in each case represents the MSSM Higgs mass. We

can see that a Higgs mass of 124 GeV can be very easily achieved in this case for a

very small mass of stop squark and even for minimal mixing between them.

The 2 × 2 mass-squared matrix corresponding to the neutral left-handed triplet

scalar Higgs fields in the original basis is given as


m2

3 +
g2L
2

(v2
1 − v2

2) + g2
V (−v2

R + v2
R) + (λvS + µ1)2 λ(M2 − λvRvR + λ′v1v2 − µSvS)− λAλvS − µ1B1

λ(M2 − λvRvR + λ′v1v2 − µSvS)− λAλvS − µ1B1 m2
4 −

g2L
2

(v2
1 − v2

2) + g2
V (v2

R − v2
R) + (λvS + µ1)2




(2.29)

We now look at the pseudo-scalar Higgs boson masses in this model. The structure

of this sector is very similar to the scalar Higgs boson in the sense that the left-handed

triplet fields decouple to form a 2 × 2 matrix which is exactly the same as given in

Eq. (2.29) while the imaginary component of the other neutral Higgs bosons form a

5× 5 matrix. We choose a basis given as

g1 =
v1φ

0
1 − v2φ

0
2√

v2
1 + v2

2

, g2 =
vRδ

c0 − vRδ
c0

√
v2
R + v2

R

, h1 =
v2φ

0
1 + v1φ

0
2√

v2
1 + v2

2

, h2 =
vRδ

c0 + vRδ
c0

√
v2
R + v2

R

.

(2.30)

The Img1 and Img2 fields can be identified as the Goldstone bosons which are absorbed

by the ZR-boson and the Z-boson to make them massive. Integrating out these

Goldstone states, the resulting 3 × 3 matrix in the basis (Imh2, Imh1, ImS) is given

as

M11 = m2
1 +m2

2 + λ2(v2
R + v2

R + 2v2
S) + 2µ2(2λvs + µ2),

M12 = λλ′
√

(v2
1 + v2

2)(v2
R + v2

R),

M13 = λ(µS − Aλ)
√
v2
R + v2

R,
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M22 = 2m2
5 + λ′

2
(v2

1 + v2
2 + 2v2

S) + 2µ(2λ′vS + µ),

M23 = λ′(2Aλ′ − µS)
√
v2

1 + v2
2,

M33 = m2
S + λ2(v2

R + v2
R) + λ′

2
(v2

1 + v2
2)− µS(2BS − µS). (2.31)

The charged Higgs boson sector has six singly-charged Higgs boson fields in this

model. Their mass-squared matrix can be split into two block diagonal matrices.

There is a 2 × 2 matrix corresponding to the δ+ and δ
−

fields which in its original

basis is given as


g2
V (v2

R − v2
R) +m2

3 + µ2
1 B1µ1

B1µ1 g2
V (v2

R − v2
R) +m2

4 + µ2
1


 . (2.32)

The other 4 × 4 block has two Goldstone bosons which are absorbed by WR and W

gauge bosons to get mass. The Goldstone eigenstates can be identified as

g+
1 =

v1φ
+
1 − v2φ

−∗
2√

v2
1 + v2

2

, g+
2 =

√
2(v2

1 + v2
2)(vRδ

c+

+ vRδ
c−
∗
) + (v2

2 − v2
1)(v2φ

+
1 + v1φ

−∗
2 )√

2(v2
1 + v2

2)2(v2
R + v2

R) + (v2
2 − v2

1)2(v2
1 + v2

2)
.

(2.33)

In the basis given by

h+
1 =

vRδ
c+ − vRδc−

∗

√
v2
R + v2

R

, h+
2 =

−
√

2(v2
1 + v2

2)(v2φ
+
1 + v1φ

−∗
2 ) + (v2

2 − v2
1)(vRδ

c+

+ vRδ
c−
∗
)√

2(v2
1 + v2

2)3 + (v2
2 − v2

1)2(v2
R + v2

R)
,

(2.34)

the 2× 2 singly-charged Higgs boson mass-squared matrix elements are given as

M11 = −g
2
R(v2

R − v2
R) [v4

1 + 2v2
1(−v2

2 + v2
R + v2

R) + v4
2 + 2v2

2(v2
R + v2

R)]

(v2
1 − v2

2)(v2
R + v2

R)
,

M12 =
2g2

RvRvR
√
v4

1 + 2v2
1(−v2

2 + v2
R + v2

R) + v2
2[v2

2 + 2(v2
R + v2

R)]

v2
R + v2

R

,

M22 =
[
g2
R

{
v4
R(−v2

1 + v2
2 − 2v2

R − 2v2
R) + v4

R(−v2
1 + v2

2 + 2v2
R + 2v2

R)− 6(v2
1 − v2

2)v2
Rv

2
R

}

+ 4g2
V (v2

Rv
4
R − v6

R − v4
Rv

2
R + v6

R)− 2(m2
1 −m2

2)(v2
R + v2

R)2
]
/(v4

R − v4
R). (2.35)

In this case, there is no constraint on the m3, m4, µ1 and B1. So there is lot of

freedom in choosing a parameter space for calculating the masses in the 2× 2 sector
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corresponding to the ∆ and ∆ fields. Instead we look at the other sectors and elimi-

nate m2, m5, B, B2 and Cλ from the minimization conditions given in Eq. (2.24). We

had also fixed the values of λ′, Aλ and Aλ′ when we were calculating the scalar Higgs

boson mass. Using all these constraints and choosing gR = gL = 0.653, gV = 0.48,

λ = 0.7, v1 = 30 GeV, v2 = 171 GeV, vR = 2.5 TeV, vR = 2 TeV, m1 = 4 TeV,

µ2 = 2 TeV, µ = 1 TeV, µS = 2 TeV, mS = 2 TeV, vS = 800 GeV and BS = 1 TeV,

we get the numerical values of the charged Higgs boson mass (denoted by Mh+i
) for

this choice of parameters are Mh+3
= 8 TeV and Mh+4

= 1.43 TeV while the masses of

the pseudo-scalar Higgs bosons (denoted by HAi) are MA3 = 7.86 TeV, MA4 = 929

GeV and MA5 = 1.19 TeV.

Chargino and Neutralino masses

The particle spectrum of this model is much richer compared to the Minimal

Supersymmetric Standard Model and hence the study of the chargino and neutralino

masses is crucial for determining the lightest supersymmetric particle. The higgsino

and the gauginos mix to form the chargino and the neutralino. The chargino mass

term in this case is written as

Lch = −1

2

(
δ̃c
−

δ̃
−

φ̃−2 λ−R λ−L

)




µ2 + λ∗vS 0 0 −
√

2gRvR 0

0 µ1 + λvS 0 0 0

0 0 µ+ λ′vS gRv2 gLv2

√
2gRvR 0 gRv1 MR 0

0 0 gLv1 0 ML







δ̃
c+

δ̃+

φ̃+
1

λ+
R

λ+
L




,

(2.36)

and the neutralino mass matrix in the basis

(
δ̃c

0
δ̃
c0

δ̃0 δ̃
0

φ̃0
1 φ̃0

2 λ0 λR3 λL3 S̃

)
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is given as




0 µ2 + λ∗vS 0 0 0 0 −
√

2gV vR
√

2gRvR 0 λ∗vR

µ2 + λ∗vS 0 0 0 0 0
√

2gV vR −
√

2gRvR 0 λ∗vR

0 0 0 µ1 + λvS 0 0 0 0 0 0

0 0 µ1 + λvS 0 0 0 0 0 0 0

0 0 0 0 0 −µ− λ′vS 0 −gRv1√
2

−gLv1√
2
−λ′v2

0 0 0 0 −µ− λ′vS 0 0 gRv2√
2

gLv2√
2
−λ′v1

−
√

2gV vR
√

2gV vR 0 0 0 0 M1 0 0 0
√

2gRvR −
√

2gRvR 0 0 −gRv1√
2

gRv2√
2

0 MR 0 0

0 0 0 0 −gLv1√
2

gLv2√
2

0 0 ML 0

λ∗vR λ∗vR 0 0 −λ′v2 −λ′v1 0 0 0 µS




.

(2.37)

2.3.2 Case with two pair of triplets, a bidoublet and a heavy singlet

We now look at the case where the single Higgs S is heavy and can be integrate it

out from the model to give the following superpotential:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) + εTr

[
∆c∆

c]2
+

1

2
µTr(ΦT τ2Φτ2). (2.38)

Here ε is proportional to 1/MS with MS being the scale at which the singlet is

integrated out. Since ε is very small, we only kept the εTr(∆c∆
c
)2 term in the

superpotential as other terms will have no significant effect to the lightest CP-even

Higgs boson mass.

The D-term of the Higgs potential is exactly same as in Eq. (2.20) but there will

be different contributions to the F-term and the soft supersymmetry breaking terms.

They are given by:

VF = |µ1|2Tr(∆†∆ + ∆
†
∆) + Tr

[∣∣µ2
2∆c + 2ε∆c∆

c
∆c
∣∣2 +

∣∣µ2
2∆

c
+ 2ε∆

c
∆c∆

c∣∣2
]

+ |µ|2Tr(Φ†Φ), (2.39)

VSoft = m2
1Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]
+m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
5Tr(∆c†∆c) +m2

6Tr(∆
c†

∆
c
) + Tr(B1µ1∆∆ + h.c.)
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+ Tr(B2µ2∆c∆
c

+ h.c.) +
[
εDεTr(∆c∆

c
)2 + h.c.

]
. (2.40)

We use the same basis field redefinition as in Eq. (2.23). The minimization con-

ditions are given as:

0 = −4Bµv2 + v1

(
4m1

2 + gL
2(v1

2 − v2
2) + gR

2
(
v1

2 − v2
2 + 2vR

2 − 2v2
R

)
+ 4µ2

)
,

0 = −4Bµv1 + v2

(
4m1

2 + gL
2
(
−v1

2 + v2
2
)

+ gR
2
(
−v1

2 + v2
2 − 2vR

2 + 2v2
R

)
+ 4µ2

)
,

0 = 2B2µ2vR +
[
2m5

2 + 2µ2
2 + gR

2
(
v1

2 − v2
2
)]
vR + 2

(
gR

2 + gV
2
)
vR
(
−vR2 + v2

R

)

+ 4εvR
[
DεvRvR + µ2(3v2

R + v2
R) + 2εvRvR(2v2

R + v2
R)
]
,

0 = 2B2µ2vR +
[
2m6

2 + 2µ2
2 + gR

2
(
−v1

2 + v2
2
)]
vR + 2

(
gR

2 + gV
2
)
vR
(
−vR2 + v2

R

)

+ 4εvR
[
DεvRvR + µ2(v2

R + 3v2
R) + 2εvRvR(v2

R + 2v2
R)
]
. (2.41)

Calculating the neutral CP-even Higgs boson mass-squared matrix subject to

these minimization conditions, the matrix elements can be obtained from Eq. (2.25)

by putting all the triplet and bidoublet couplings to the singlet Higgs to be zero

with some extra terms in the M33,M34,M44 elements. The relevant terms in the

mass-squared matrix are:

M11 =
(g2
L + g2

R)(v2
1 − v2

2)2

2(v2
1 + v2

2)
,

M13 =
g2
R(v2

R − v2
R)(v2

1 − v2
2)√

(v2
1 + v2

2)(v2
R + v2

R)
,

M14 =
2g2

RvRvR(v2
1 − v2

2)√
(v2

1 + v2
2)(v2

R + v2
R)
, (2.42)

M33 =
2(g2

R + g2
V )v3

R −B2µ2vR − 2εvR [µ2(v2
R − 3v2

R)− 8εv3
RvR]

vR
,

M34 = B2µ2 − 2(g2
R + g2

V )vRvR + ε
[
3µ2(v2

R + v2
R) + 2vRvR(Dε + 4ε(v2

R + v2
R)
]
,

M44 =
2(g2

R + g2
V )v3

R −B2µ2vR + 2εvR [µ2(3v2
R − v2

R) + 8εv3
RvR]

vR
. (2.43)

We calculate the contribution of the off-diagonal (M13,M14) entries in the mass-

squared matrix to the lightest eigenvalue using the seesaw formula. For simplicity we
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take the approximation Dε = 0 and we get the following result:

M2
htree = 2M2

W cos2 2β


1− x

2
(

g4Rx

g2R−g′
2 + y

)


 (2.44)

where

x = B2µ2(v2
R − v2

R)2 + 2ε(v2
R + v2

R)
[
µ2(v4

R − 10v2
Rv

2
R + v4

R)− 24εv3
Rv

3
R

]
,

y = 8vRvRε(B2µ
2
2(v2

R + v2
R) + µ2

2[3v4
R + 2v2

Rv
2
R + 3v4

R)ε+ 2µ2vR(7v5
R + 6v3

Rv
2
R + 7vRv

4
R)ε2

+ vRvRε(3m
2
8(v2

R + v2
R) + 16vRvR(v4

R + v2
Rv

2
R + v4

R)ε2],

tan β = v1
v2

and gR = gL. This result shows that the lightest CP-even Higgs boson

mass has an upper limit of
√

2MW in this case which can be realized if x = 0.‡ So

M2
htree = 2M2

W cos2 2β. (2.45)

Including the one and two loop corrections from the top quark and stop squark, we

get:

M2
hmax = (2M2

W cos2 2β)∆1 + ∆2, (2.46)

where ∆1 and ∆2 are defined in Eq. (2.28).

The Higgs boson mass is plotted in Fig 2.2(a) as a function of tan β. The red

region in the figure represents the band where the mass is between 124 GeV and

126 GeV. The light blue region represents the area where the stop squark mixing

is minimum i.e. Xt = 0 while the pink upper region is for maximal mixing where

Xt = 6. The green region is for all values of Higgs mass greater than 126 GeV and

it is overlapped by the blue and the pink region. Fig. 2.2(b) represents the Higgs

mass and as a function MS. Again the red band is where the Higgs boson mass is

between 124 GeV and 126 GeV, green region is for Xt = 0, yellow region represents

‡If we consider v2R − v2R ∼M2
SUSY and vR, vR >> MSUSY , we get an upper limit of MZ for the

lightest scalar Higgs boson mass.
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Figure 2.2: (a) Variation of Higgs boson mass with tan β, (b) Higgs boson mass as a

function of MS

Xt = 6 and blue region is for all values of Higgs mass greater than 126 GeV which is

overlapped by the green and the yellow regions. The black dotted line in each case

represents the MSSM Higgs mass.

The pseudo-scalar mass-squared matrix is again two 2 × 2 blocks which can be

obtained by putting all the singlet couplings to zero in Eq. (2.29) and Eq. (2.31).

The charged Higgs boson mass-squared matrix is exactly the same as in Eq. (2.35)

with some extra terms which become zero when we take Dε = 0.

Chargino and Neutralino masses

We now look at the chargino and neutralino sector in this case. The chargino

basis is exactly the same as in the case discussed in section 3.1. The chargino mass
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matrix in this case is written as

Mch =




µ2 + εvRvR 0 0 −
√

2gRvR 0

0 µ1 0 0 0

0 0 µ gRv2 gLv2

√
2gRvR 0 gRv1 MR 0

0 0 gLv1 0 ML




, (2.47)

and the neutralino mass matrix in the basis

(
δ̃c

0
δ̃
c0

δ̃0 δ̃
0

φ̃0
1 φ̃0

2 λ0 λR3 λL3

)

is given as

Mn =




εv2
R µ2 + εvRvR 0 0 0 0 −

√
2gV vR

√
2gRvR 0

µ2 + εvRvR εv2
R 0 0 0 0

√
2gV vR −

√
2gRvR 0

0 0 0 µ1 0 0 0 0 0

0 0 µ1 0 0 0 0 0 0

0 0 0 0 0 −µ 0 −gRv1√
2

−gLv1√
2

0 0 0 0 −µ 0 0 gRv2√
2

gLv2√
2

−
√

2gV vR
√

2gV vR 0 0 0 0 M1 0 0
√

2gRvR −
√

2gRvR 0 0 −gRv1√
2

gRv2√
2

0 MR 0

0 0 0 0 −gLv1√
2

gLv2√
2

0 0 ML




.

(2.48)

2.3.3 Case with two pair of triplets and a bidoublet

This is a special case of the one discussed in Section 2.3.1. We don’t have the singlet

Higgs and as a result it will be seen that the lightest Higgs boson mass becomes the

same as MSSM.

The most general superpotential relevant to our calculation is given by:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) +

1

2
µTr(ΦT τ2Φτ2). (2.49)

The D-term in the Higgs potential is exactly the same as given in Eq. (2.20), the

F-term can be obtained from Eq. (2.19) by putting all the singlet couplings to zero.
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The soft supersymmetry breaking terms are given by:

VSoft = m2
1Tr(∆c†∆c) +m2

2Tr(∆
c†

∆
c
) +m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
5Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]

+
[
B1µ1Tr(∆∆) + h.c.

]
+
[
B2µ2Tr(∆c∆

c
) + h.c.

]
. (2.50)

We use this potential to calculate the Higgs boson mass-squared matrices for

the charged, neutral CP-even and neutral CP-odd Higgs bosons. To easily identify

the field corresponding to the lightest eigenvalue, we redefine the Higgs fields. This

redefinition is the same as in Eq. (2.23).

The minimization conditions and the Higgs mass-squared in this case can again be

obtained by putting all the singlet couplings to zero in the model of Section 2.3.1.

Calculating the lightest eigenvalue for the CP-even Higgs boson mass-squared

matrix we get:

M2
htree =

g4
L(g′2 + g2

R)(v2
1 − v2

2)2

2[g2
Lg

2
R + g′2(g2

L − g2
R)](v2

1 + v2
2)
. (2.51)

If we assume that the SU(2)R gauge coupling (gR) is equal to the SU(2)L gauge

coupling (gL), tan β = v1
v2

and v2 = v2
1 + v2

2, then

M2
htree =

(g2
L + g′2)

2
v2 cos2 2β. (2.52)

The mass of the Z boson in this model is

√
g2L+g′2

2
v. So we see that the tree-level

lightest CP-even Higgs mass has an upper limit of MZ . This is same as the case of

MSSM.

The charged mass-squared matrix is the same as in Eq. (2.35) while the pseudo-

scalar mass-squared matrix is composed of two 2 × 2 block which can be obtained

from Eq. (2.29) and Eq. (2.31) by putting all the singlet couplings to zero.

The chargino mass matrix in this case is a special limit of Section 2.3.1 obtained

by neglecting all the singlet couplings while the neutralino mass matrix is obtained

from Eq. (2.48) by putting ε = 0.
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2.3.4 Case with two pair of triplets and two bidoublets

This case is a realistic model where, unlike previous cases, we can generate the CKM

matrices for quarks and leptons. The calculation of the Higgs mass, though shows

that the result is exactly the same as the case with only one bidoublet. Due to the

complexity of the calculations, we only discuss the neutral CP-even Higgs boson mass

in this case and see that it is the same as with one bidoublet. The particle content

of the Higgs sector will be exactly as in Eq. (2.2) except in this case a = 1, 2.

The superpotential of the model is given as:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) +

1

2
µabTr(ΦT

a τ2Φbτ2). (2.53)

The relevant terms in the Higgs potential is given by:

VF = |µ1|2Tr(∆†∆ + ∆
†
∆) + |µ2|2Tr(∆c†∆c + ∆

c†
∆
c
)

+
2∑

a=1

Tr|(µa1Φ1 + µa2Φ2)|2, (2.54)

VD =
g2
L

8

3∑

a=1

∣∣∣Tr(2∆†τa∆ + 2∆
†
τa∆ + (Φ†1τaΦ1) + (Φ†2τaΦ2)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣Tr(2∆c†τa∆
c + 2∆c†τa∆

c
+ (Φ†1τaΦ1) + (Φ†2τaΦ2)

∣∣∣
2

+
g2
V

2

∣∣∣Tr(∆†∆−∆
†
∆−∆c†∆c + ∆c†∆

c
)
∣∣∣
2

, (2.55)

VSoft = m2
abTr(Φ†aΦb) +

2∑

a,b=1

Babµab
[
Tr(ΦT

a τ2Φbτ2) + h.c.
]

+m2
3Tr(∆†∆) +m2

4Tr(∆
†
∆)

+ m2
5Tr(∆c†∆c) +m2

6Tr(∆
c†

∆
c
) + [B1µ1Tr(∆∆) + h.c.]

+ [B2µ2Tr(∆c∆
c
) + h.c.]. (2.56)

We use this Higgs potential for this variation of the LRSUSY model and calculate

the mass-squared matrix for the neutral CP-even Higgs boson. The vacuum structure
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for this model is given by:

〈∆c〉 =




0 vR

0 0


 ,

〈
∆
c〉

=




0 0

vR 0


 , 〈Φ1〉 =




0 vd1

vu1 0


, 〈Φ〉 =




0 vd2

vu2 0


.

(2.57)

The left-handed triplet fields ∆ and ∆ do not get any VEV. We do a field redefinition

with the φ0
11, φ

0
21, φ

0
12, φ

0
22 fields so that only one of the new fields get a non-zero

vacuum expectation value. The transformation we use is given by:

ρ1 =
vu1φ

0
11 + vd1φ

0
21 + vu2φ

0
12 + vd2φ

0
22√

v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

, ρ2 =
vd1φ

0
11 − vu1φ0

21√
v2
u1

+ v2
d1

, ρ3 =
vd2φ

0
21 − vu2φ0

22√
v2
u2

+ v2
d2

,

ρ4 =
vu1(v

2
u2

+ v2
d2

)φ0
11 + vd1(v

2
u2

+ v2
d2

)φ0
21 − vu2(v2

u1
+ v2

d1
)φ0

12 − vd2(v2
u1

+ v2
d1

)φ0
22√

(v2
u1

+ v2
d1

)(v2
u2

+ v2
d2

)(v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

)
.

The ρ1 field gets a VEV of
√
v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

, the other fields do not get any

VEV. The ∆ and ∆ fields decouple and we get a 6×6 mass-square matrix in the basis

(Reρ1,Reρ2,Reρ3,Reρ4,Reδc0,Reδ
c0

). The minimization conditions for this case are

given in the Appendix. The matrix elements for this case are not quoted here as they

are lengthy and this case is not very interesting in terms of the final result which

comes out to be exactly as section 2.3.3.

Using the minimization conditions and the assumption that the right-handed sym-

metry breaking scale is much above the electroweak scale, we get the lightest eigen-

value to be:

M2
htree =

(g2
L + g′) (v2

u2
− v2

d2
+ v2

u1
− v2

d1
)2

2(v2
u2

+ v2
d2

+ v2
u1

+ v2
d1

)
= M2

Z cos2 2β (2.58)

where tan β =

√
(v2u1+v2u2 )√
(v2d1

+v2d2
)

and v2 =
√
v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

. We have made the as-

sumption that gR = gL.

This result is the same as the previous case and gives the tree-level mass of lightest

CP-even neutral Higgs boson to be MZ .

44



2.4 Inverse seesaw model

The Higgs spectrum of this model is given in Eq. (2.7). The most general superpo-

tential terms needed for calculation of the Higgs boson mass are given as:

W = iµ1H
T
L τ2HL + iµ1H

T
Rτ2HR + λHT

L τ2Φτ2HR + λH
T

Lτ2Φτ2HR + µTr
[
Φτ2ΦT τ2

]
.

(2.59)

The relevant Higgs potential in this case is given as:

VF = Tr
[∣∣iµ1τ2HL + λτ2Φτ2HR

∣∣2 +
∣∣iµ1τ2HR + λτ2ΦT τ2HL

∣∣2

+
∣∣−iµ1τ2HL + λτ2Φτ2HR

∣∣2 +
∣∣−iµ1τ2HR + λτ2ΦT τ2HL

∣∣2

+
∣∣∣λHRH

T
L + λHRH

T

L + 2µφT
∣∣∣
2
]
, (2.60)

VD =
g2
L

8

3∑

a=1

∣∣∣H†LτaHL +H
†
LτaHL + Tr(Φ†τaΦ)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣H†RτaHR +H
†
RτaHR + Tr(Φ†τaΦ)

∣∣∣
2

+
g2
V

8

∣∣∣H†RHR −H†RHR −H†LHL +H
†
LHL

∣∣∣
2

, (2.61)

VSoft = Tr
[
m2

1

(
H†LHL +H†RHL

)
+m2

2

(
H
†
LHL +H

†
RHR

)
+m2

3Φ†Φ

+
(
λAλH

T
L τ2Φτ2HR + λAλH

T

Lτ2Φτ2HR + h.c.
)

+
(
BµΦT τ2Φτ2 + h.c.

)

+
(
iB1µ1H

T
L τ2HL + iB1µ1H

T
Rτ2HR + h.c

)]
. (2.62)

The vacuum expectation values of the Higgs fields are given as:

〈HL〉 =



vL

0


 , 〈HR〉 =




0

vR


 ,
〈
HL

〉
=




0

vL


 ,

〈
HR

〉
=



vR

0


 , 〈Φ〉 =




0 v2

v1 0


. (2.63)

We again choose a rotated basis similar to section 2.3.4 such that the four Higgs

fields getting electroweak vev mix together. Only one of the newly defined fields
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now gets a non-zero vacuum value. The right-handed doublets get vacuum values of

right-handed symmetry breaking scale. The minimization conditions in this case are

given as:

2m2
3v1 +

v1

2

[
g2
L

(
v2

1 − v2
2 − v2

L + v2
L

)
+ g2

R

(
v2

1 − v2
2 + v2

R − v2
R

)
+ 4λ2

(
v2
L + v2

R

)]

− 2λAλvLvR + 2λµ1 (vLvR − vRvL) + 4µ (λvLvR −Bv2 + 2µv1) = 0,

2m2
3v2 +

v2

2

[
g2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)
− g2

R

(
v2

1 − v2
2 + v2

R − v2
R

)
+ 4λ2

(
v2
L + v2

R

)]

− 2λAλvLvR − 2λµ1 (vLvR − vRvL) + 4µ (λvLvR −Bv1 + 2µv2) = 0,

2m2
1vL +

vL
2

[
g2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)
+ g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

1 + v2
R

)]

− 2λAλv1vR + 2λµ1vR (v1 − v2) + 2µ2
1vL + 2B1µ1vL + 4µλv2vR = 0,

2m2
1vR +

vR
2

[
g2
R

(
v2

1 − v2
2 + v2

R − v2
R

)
+ g2

V

(
−v2

L + v2
L + v2

R − v2
R

)
+ 4λ2

(
v2

1 + v2
L

)]

− 2λAλv1vL − 2λµ1vL (v1 − v2) + 2µ2
1vR − 2B1µ1vR + 4µλv2vL = 0,

2m2
2vL +

vL
2

[
g2
L

(
v2

1 − v2
2 − v2

L + v2
L

)
− g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

2 + v2
R

)]

− 2λAλv2vR − 2λµ1vR (v1 − v2) + 2µ2
1vL + 2B1µ1vL + 4µλv1vR = 0,

2m2
2vR +

vR
2

[
g2
R

(
−v2

1 + v2
2 − v2

R + v2
R

)
+ g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

2 + v2
L

)]

− 2λAλv2vL + 2λµ1vL (v1 − v2) + 2µ2
1vR − 2B1µ1vR + 4µλv1vL = 0. (2.64)

The relevant mass-matrix elements in this case are given as:

M11 =
g2
R (v2

1 − v2
2)

2
+ g2

V (v2
L − v2

L)
2

+ g2
L (v2

1 − v2
2 − v2

L + v2
L)

2
+ 8λ2 (v2

1v
2
L + v2

2v
2
L)

2 (v2
1 + v2

2 + v2
L + v2

L)
,

M12 =
vLvL (g2

V (v2
L − v2

L) + g2
L (−v2

1 + v2
2 + v2

L − v2
L) + 2 (v2

1 − v2
2)λ2)√

v2
L + v2

L

√
v2

1 + v2
2 + v2

L + v2
L

,

M13 =
[
v1

{
g2
V v

4
L − 2g2

V v
2
Lv

2
L + g2

V v
4
L + 2g2

Lv
2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)

− g2
R

(
v2

1 − v2
2

) (
v2
L + v2

L

)
+ 4v2

1v
2
Lλ

2 − 4v4
Lλ

2 + 4v2
2v

2
Lλ

2 − 4v2
Lv

2
Lλ

2
}]
/

(
2
√

(v2
L + v2

L) (v2
1 + v2

L + v2
L)
√
v2

1 + v2
2 + v2

L + v2
L

)
,

M14 =
[
v2

{
g2
V v

4
L − 2g2

V v
2
Lv

2
L + g2

V v
4
L + 2g2

Lv
2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)

− g2
R

(
v2

1 − v2
2

) (
v2
L + v2

L

)
+ 4λ2

(
2v2

1v
2
L + v2

1v
2
L + v2

2v
2
L + v2

Lv
2
L + v4

L

)}]
/
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(
2
√
v2

1 + v2
2 + v2

L + v2
L

√
(v2

1 + v2
L + v2

L) (v2
1 + v2

2 + v2
L + v2

L)

)
,

M15 =
[
g2
R

(
v2

1 − v2
2

)
vR + g2

V

(
−v2

L + v2
L

)
vR + 4λ {−Aλv1vL + µ1(−v1 + v2)vL

+ v2
1vRλ+ v2

LvRλ+ 2v2vLµ
}]
/

(
2
√
v2

1 + v2
2 + v2

L + v2
L

)
,

M16 =
[
g2
R

(
−v2

1 + v2
2

)
vR + g2

V

(
v2
L − v2

L

)
vR + 4λ

{
µ1(v1 − v2)vL − Aλv2vL + λv2

2vR

+ λv2
LvR + 2µv1vL

}]
/

(
2
√
v2

1 + v2
2 + v2

L + v2
L

)
. (2.65)

All the other elements in the mass matrix are of SUSY breaking scale or the

right-handed symmetry breaking scale. The only matrix elements that can provide

significant contributions to the lightest eigenvalue comes from M15 and M16. We

focus on the 3 × 3 sector formed by M11,M15,M16,M55,M56,M66. We choose some

of the parameters such that the M15 and M16 terms become zero and check that we

have enough freedom to consistently keep the other eigenvalues of the matrix to be

positive. The smallest eigenvalue in this case is the lightest CP-even Higgs boson in

the model and is given by:

M2
htree

=
g2R
(
v21 − v22

)2
+ g2V

(
v2L − v2L

)2
+ g2L

(
v21 − v22 − v2L + v2L

)2
+ 8λ2

(
v21v

2
L + v22v

2
L

)

2
(
v21 + v22 + v2L + v2L

) . (2.66)

We define v1 = v sin β cosφ, v2 = v cos β sinψ, vL = v cos β cosψ, vL = v sin β sinφ

and gR = gL. Now maximizing this resulting expression with respect to φ and ψ gives

M2
htree = 2M2

W sin4 β +
M4

W

2M2
W −M2

Z

cos4 β − M2
W

2
sin2 2β + λ2v2 sin2 2β. (2.67)

The Higgs boson mass including the one and two loop corrections from the top

and stop sector is given as:

M2
hmax =

(
2M2

W sin4 β +
M4

W

2M2
W −M2

Z

cos4 β − M2
W

2
sin2 2β + λ2v2 sin2 2β

)
∆1

+ ∆2, (2.68)

where ∆1 and ∆2 are defined in Eq. (2.28).

The Higgs boson mass is plotted in Fig 2.3(a) as a function of tan β.The red region

in the figure represents the band where the mass is between 124 GeV and 126 GeV.

The light blue region represents the area where the stop squark mixing is minimum
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Figure 2.3: (a) Variation of Higgs boson mass with tan β, (b) Higgs boson mass as a

function of MS

i.e. Xt = 0 while the pink upper region is for maximal mixing where X − t = 6. The

green region is for all values of Higgs mass greater than 126 GeV and it is overlapped

by the blue and the pink region. Fig. 2.3(b) represents the Higgs mass and as a

function MS. Again the red band is where the Higgs boson mass is between 124 GeV

and 126 GeV, green region is for Xt = 0, yellow region represents Xt = 6 and blue

region is for all values of Higgs mass greater than 126 GeV which is overlapped by

the green and the yellow regions. The black dotted line in each case represents the

MSSM Higgs mass.

The pseudo-scalar mass-squared matrix in this case is a 4× 4 matrix. The matrix

elements are given as:

M11 = −(v2
L + v2

L) [B1µ1vLvL − µ1(v1vLvR + v2vLvR)λ+ 2µ(λv2vLvR + λv1vLvR −Bv1v2)]

v2
Lv

2
L

M12 = −2µ (−Bv1v2 + λv2vLvR + λv1vLvR)
√

(v2
L + v2

L)(v2
R + v2

R)

vLvLvRvR

M13 = −(λµ1vLvR + 2Bµv2 − 2λµvLvR)
√

(v2
L + v2

L)[v2
Lv

2
R + v2

1(v2
L + v2

R)]

v2
LvLvR

M14 = −(λµ1vRvL + 2Bµv1 − 2λµvLvR)
√

(v2
L + v2

L)[v2
Lv

2
R + v2

2(v2
L + v2

R)

vLv
2
LvR
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M22 =
(v2
R + v2

R) [B1µ1vRvR − µ1(v2vLvR + v1vLvR)λ− 2µ(λv2vLvR + λv1vLvR −Bv1v2)]

v2
Rv

2
R

M23 =
(λµ1vRvL − 2Bµv2 + 2λµvLvR)

√
(v2
R + v2

R)[v2
Lv

2
R + v2

1(v2
L + v2

R)]

vLvRv2
R

M24 = −(λµ1vLvR − 2Bµv1 + 2λµvLvR)
√

(v2
R + v2

R)[v2
Lv

2
R + v2

2(v2
L + v2

R)]

vRvLv
2
R

M33 =
[v2
Lv

2
R + v2

1(v2
L + v2

R)] [λAλvLvR + λµ1(vLvR − vLvR) + 2Bµv2 − 2λµvLvR]

v1v2
Lv

2
R

M34 =
2µB

√
v2
Lv

2
R + v2

1(v2
L + v2

R)
√
v2
L + v2

R + v2
2(v2

L + v2
R)

vLvRvLvR

M44 =
[v2
Lv

2
R + v2

2(v2
L + v2

R)] [λAλvLvR− λµ1(vLvR − vLvR) + 2Bµv1 − 2λµvLvR]

v2v
2
Lv

2
R

(2.69)

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L φ̃+
1 λ+

R λ+
L

)




µ1 −λv2 λvL gRvR 0

−λv1 −µ1 λvR 0 glvL

λvL λvR 2µ gRv1 gLv1

gRvR 0 gRv2 MR 0

0 gLvL gLv2 0 ML







H̃
−

R

H̃−L

φ̃−2

λ−R

λ−L




,

(2.70)

and the neutralino mass matrix in the basis

(
H̃0
R H̃0

L H̃
0

R H̃
0

L φ̃0
1 φ̃0

2 λ0 λR3 λL3

)

49



is given as

Mn =




0 −λv1 −µ1 0 −λvL 0 gV vR√
2

−gRvR√
2

0

−λv1 0 0 µ1 −λvR 0 −gV vL√
2

0 gLvL√
2

−µ1 0 0 −λv2 0 −λvL −gV vR√
2

gRvR√
2

0

0 µ1 −λv2 0 0 −λvR gV vL√
2

0 −gLvL√
2

−λvL −λvR 0 0 0 −2µ 0 −gRv1√
2
−gLv1√

2

0 0 −λvL −λvR −2µ 0 0 gRv2√
2

gLv2√
2

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

0 0 M1 0 0

−gRvR√
2

0 gRvR√
2

0 −gRv1√
2

gRv2√
2

0 MR 0

0 gLvL√
2

0 −gLvL√
2
−gLv1√

2

gLv2√
2

0 0 ML




,

(2.71)

where λR, λL and λ0 are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)B−L gauge boson and MR,ML and M1 are their

soft masses respectively.

2.5 Universal Seesaw model

The particle spectrum for this case is given in Eq. (2.13) with an additional singlet

Higgs field S. The superpotential is given as:

W = S(iλHT
L τ2HL + iλcHT

Rτ2HR −M2), (2.72)

where λc = λ∗ and M2 is real from parity invariance.

The D-term, F-term and the soft supersymmetry breaking terms are given as:

VF =
∣∣λTr[iHT

L τ2HL + iHT
Rτ2HR]−M2

∣∣2

+ |λS|2Tr[H†LHL +HL
†
HL +H†RHR +HR

†
HR], (2.73)

VD =
g2
L

8

3∑

a=1

|H†LτaHL +H
†
LτaHL|2
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+
g2
R

8

3∑

a=1

|H†RτaHR +H
†
RτaHR|2

+
g2
V

8
| −H†LHL +H

†
LHL +H†RHR −H†RHR|2, (2.74)

VSoft = m2
3(H†LHL) +m2

4(HR
†HR) +m2

5(HL
†
HL) +m2

6(HR
†
HR) +m2

S|S|2

+
[
λAλS(HT

L τ2HL +HT
Rτ2H) + h.c.

]
+ (λCλM

2S + h.c.). (2.75)

We choose a rotated basis which is exactly the same as in Eq. (2.23) with φ1 →

HL, φ2 → HL, δ
c0 → HR, δ

c0 → HR, v1 → vL, v2 → vL. The minimization conditions

are slightly modified form of Eq. (2.24) and are given by:

vL[4m2
3 + g2

L(−v2
L + v2

L) + g2
V (−v2

L + v2
L − v2

R + v2
R)] + 4λAλvLvS + 4λ2vLv

2
S

+ 4λvL(−M2 + λvLvL − λvRvR) = 0,

vL[4m2
5 + g2

L(−v2
L + v2

L) + g2
V (−v2

L + v2
L + v2

R − v2
R)] + 4λAλvLvS + 4λ2vLv

2
S

+ 4λvL(−M2 + λvLvL − λvRvR) = 0,

4m2
4vR − g2

V vR(−v2
L + v2

L + v2
R − v2

R) + g2
RvR(v2

R − v2
R)

− 4λAλvRvS + 4λvR(M2 − λvLvL) + 4λ2vR(v2
R + v2

S) = 0,

4m2
6vR + g2

V vR(v2
L − v2

L − v2
R + v2

R) + g2
RvR(v2

R − v2
R)

− 4λAλvRvS + 4λvR(M2 − λvLvL) + 4λ2vR(v2
R + v2

S) = 0,

2m2
SvS + 2CλM

2λ+ 2λAλ(vLvL − vRvR) + λ2(v2
L + v2

L + v2
R + v2

R)vS = 0. (2.76)

Using this minimization and the basis (Reρ1,Reρ2,ReHR
0,ReHR

0
), the relevant

mass-squared matrix elements are given by:

M11 =
g2
L(v2

L − v2
L)2 + g2

V (v2
L − v2

L)2 + 8v2
Lv

2
Lλ

2

2(v2
L + v2

L)
,

M12 =
vLvL(v2

L − v2
L)(g2

L + g2
V − 2λ2)

(v2
L + v2

L)
,

M13 =
−g2

V (v2
L − v2

L)(v2
R − v2

R)− 8λ2vLvLvRvR√
(v2
L + v2

L)(v2
R + v2

R)
,

M14 =
−g2

V (v2
L − v2

L)vRvR + 2λ2vLvL(v2
R − v2

R)√
(v2
L + v2

L)(v2
R + v2

R)
,
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M15 =
λ[2AλvLvL + 2(v2

L + v2
L)vSλ]√

v2
L + v2

L

,

M55 = m2
S + (v2

L + v2
L + v2

R + v2
R)λ2. (2.77)

The other terms in the mass matrix are given in the appendix. We choose the

ratio between vR and vR such that the matrix element M13 vanishes and we choose the

value of Aλ such that M15 becomes zero. Then we calculate the correction from the

off-diagonal elements to the lightest eigenvalue of this mass-squared matrix. In the

limit where the soft-supersymmetry breaking parameter m6 is significantly larger vR,

we can show that this correction vanishes. Hence the tree-level mass of the lightest

neutral Higgs boson in this case becomes:

M2
htree =

M4
W

(2M2
W −M2

Z)
cos2 2β + λ2v2 sin2 2β, (2.78)

where tan β = vL
vL

and v2 = v2
L + v2

L. Including the loop corrections from the top and

stop sector, the Higgs boson mass is:

M2
h =

(
M4

W

2M2
W −M2

Z

cos2 2β + λ2 sin2 2β

)
∆1 + ∆2, (2.79)

where ∆1 and ∆2 are defined in Eq. (2.28).

The Higgs boson mass is plotted in Fig 2.4(a) as a function of tan β.The red region

in the figure represents the band where the mass is between 124 GeV and 126 GeV.

The light blue region represents the area where the stop squark mixing is minimum

i.e. Xt = 0 while the pink upper region is for maximal mixing where X − t = 6. The

green region is for all values of Higgs mass greater than 126 GeV and it is overlapped

by the blue and the pink region. Fig. 2.4(b) represents the Higgs mass and as a

function MS. Again the red band is where the Higgs boson mass is between 124 GeV

and 126 GeV, green region is for Xt = 0, yellow region represents Xt = 6 and blue

region is for all values of Higgs mass greater than 126 GeV which is overlapped by

the green and the yellow regions. The black dotted line in each case represents the

MSSM Higgs mass.
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Figure 2.4: (a) Variation of Higgs boson mass with tan β, (b) Higgs boson mass as a

function of MS

The eigenvalues of the 2×2 charged Higgs boson mass-squared matrix in this case

are given by:

M2
h+1

= m2
4 +m2

6 +
1

2
g2
R(v2

R + v2
R) + 2λ2v2

S,

M2
h+2

= m2
3 +m2

5 +
1

2
g2
L(v2

L + v2
L) + 2λ2v2

S. (2.80)

The pseudo scalar mass-squared matrix is a 3×3 matrix whose elements are given

as:

M11 = m2
4 +m2

6 +
λ2

2
(v2
R + v2

R + 2v2
S),

M12 = −λ
2

2

√
(v2
R + v2

R)(v2
L + v2

L)

M13 =
λAλ

√
v2
R + v2

R√
2

M22 = m2
3 +m2

5 +
λ2

2
(v2
L + v2

L + 2v2
S)

M23 = −λAλ
√
v2
L + v2

L√
2

M33 = m2
S + λ2(v2

L + v2
L + v2

R + v2
R) (2.81)

Here we use the minimization conditions given in Eq. (2.76) to eliminate m4, m5,

m6, M2 and Cλ. Also while calculating the mass of the CP-even Higgs boson, we have
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fixed the value of Aλ and the ratio between vR and vR. Using all these constraints on

the aforementioned parameters, we numerically calculate the masses of the charged

and pseudo-scalar Higgs boson. We choose a parameter space where λ = 0.7, vR = 1

TeV, m3 = 2 TeV, vS = 800 GeV, mS = 2 TeV, vL = 30 GeV, vL = 171 GeV and gR

and gV are 0.653 and 0.48 respectively. This choice of parameters gives us the mass

of the charged Higgs bosons to be Mh+1
= 2.25 TeV and Mh+2

= 2.41 TeV while the

masses of the pseudo-scalar Higgs boson are given as MA1 = 2.18 TeV, MA2 = 3.5

TeV and MA3 = 836 GeV.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L λ+
R λ+

L

)




λ∗vS 0 gRvR 0

0 −λvS 0 gLvL

gRvR 0 MR 0

0 gLvL 0 ML







H̃
−

R

H̃−L

λ−R

λ−L



, (2.82)

and the neutralino mass matrix in the basis

(
H̃0
R H̃0

L H̃
0

R H̃
0

L λ0 λR3 λL3 S̃

)

is given as

Mn =




0 0 −λ∗vS 0 gV vR√
2

−gRvR√
2

0 −λ∗vR
0 0 0 λvS −gV vL√

2
0 gLvL√

2
λvL

−λ∗vS 0 0 0 −gV vR√
2

gRvR√
2

0 −λ∗vR
0 λvS 0 0 gV vL√

2
0 −gLvL√

2
λvL

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

M1 0 0 0

−gRvR√
2

0 gRvR√
2

0 0 MR 0 0

0 gLvL√
2

0 −gLvL√
2

0 0 ML 0

−λ∗vR λvL −λ∗vR λvL 0 0 0 0




. (2.83)

Here λR, λL and λ0 are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)B−L gauge boson and MR,ML and M1 are their
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soft masses respectively.

2.5.1 Case without singlet

The most general superpotential involving the Higgs fields in this case is given by:

W = iµ1H
T
L τ2HL + iµ2H

T
Rτ2HR. (2.84)

The D-term in the superpotential is the same as in Eq. (2.74). The F-term and

the soft supersymmetry breaking terms in the Higgs potential are given by:

VF = µ2
1(H†LHL +H

†
LHL) + µ2

2(H†RHR +H
†
RHR), (2.85)

VSoft = B1µ1(iHT
L τ2HL + h.c.) +B2µ2(iHRτ2HR + h.c)

+ m2
3(H†LHL) +m2

4(HL
†
HL) +m2

5(HR
†HR) +m2

6(HR
†
HR). (2.86)

The vacuum structure in this case is given as:

〈HL〉 =



vL

0


 , 〈HR〉 =




0

vR


 ,
〈
HL

〉
=




0

vL


 ,
〈
HR

〉
=



vR

0


 . (2.87)

We take a rotated basis given by:

ρ1 =
vLHL

0 + vLHL
0

√
v2
L + v2

L

, ρ2 =
vLHL

0 − vLv0
L√

v2
L + v2

L

. (2.88)

The minimization conditions are given by:

0 = 2µ2
2vR + 2m2

4vR − 2B2µ2vR +
1

2
vR[g2

R(v2
R − v2

R)− g2
V (v2

L − v2
L − v2

R + v2
R)],

0 = 2µ2
2vR + 2m2

6vR − 2B2µ2vR +
1

2
vR[g2

R(−v2
R + v2

R) + g2
V (v2

L − v2
L − v2

R + v2
R)],

0 = 2µ2
1vL + 2m2

3vL + 2B1µ1vL +
1

2
vL[g2

L(v2
L − v2

L) + g2
V (v2

L − v2
L − v2

R + v2
R)],

0 = 2µ2
1vL + 2m2

5vL + 2B1µ1vL +
1

2
vL[g2

L(−v2
L + v2

L) + g2
V (v2

L − v2
L + v2

R − v2
R)].

(2.89)
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Using the potential and minimization equations, we calculate the mass-squared

matrix in the basis (Reρ1,Reρ2,ReHR
0,ReHR

0
). We get the following matrix:




(g2L+g2V )(v2L−v
2
L)2

2(v2L+v2L)

(g2L+g2V )(v2L−v
2
L)vLvL

(v2L+v2L)

g2V vR(v2L−v
2
L)

2
√

(v2L+v2L)
−g2V vR(v2L−v

2
L)

2
√

(v2L+v2L)

(g2L+g2V )(v2L+v2L)vLvL
(v2L+v2L)

M22
g2V vLvLvR√

v2L+v2L
−g2V vLvLvR√

v2L+v2L

g2V vR(v2L−v
2
L)

2
√

(v2L+v2L)

g2V vLvLvR√
v2L+v2L

(g2R+g2V )v3R+2B2µ2vR
2vR

−B2µ2 − 1
2 (g2R + g2V )vRvR

−g2V vR(v2L−v
2
L)

2
√

(v2L+v2L)
−g2V vLvLvR√

v2L+v2L
−B2µ2 − 1

2 (g2R + g2V )vRvR
(g2R+g2V )v3R+2B2µ2vR

2vR




(2.90)

where M22 =
(g2L+g2V )(v4L−6v2Lv

2
L+v4L)+8m2

1vLvL+2(m2
3−m2

5)(v2L−v
2
L)−g2v(v2L−v

2
L)(v2R−v

2
R)

2(v2L+v2L)
.

Here we have assumed vR, vR 6= 0 in obtaining the mass matrix. We calculate the

contribution of the off-diagonal elements to the lightest eigenvalue using the seesaw

formula and this gives us the result

M2
htree = M2

Z cos2 2β, (2.91)

where we have also assumed that the SU(2)R gauge coupling (gR) is equal to the

SU(2)L gauge coupling (gL), tan β = vL
vL

and v2 = v2
L + v2

L.

The eigenvalues of the 2×2 charged Higgs boson mass-squared matrix in this case

are given by:

M2
h+1

= m2
4 +m2

6 +
1

2
g2
R(v2

R + v2
R) + 2µ2

2,

M2
h+2

= m2
3 +m2

5 +
1

2
g2
L(v2

L + v2
L) + 2µ2

1. (2.92)

The pseudo scalar mass-squared matrix is also a 2 × 2 matrix whose eigenvalues

are given as:

M2
A1

= m2
4 +m2

6 + 2µ2
2, M

2
A2

= m2
3 +m2

5 + 2µ2
1. (2.93)

Here we use the minimization conditions given in Eq. (2.89) to eliminate B1, B2,

µ1 and µ2. We choose a parameter space where vR = 1.2 TeV, vR = 1 TeV, m3 = 4

TeV, m4 = 2 TeV, m5 = 2 TeV, m6 = 4 TeV, vL = 10 GeV, vL = 173 GeV and
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gR and gV are 0.653 and 0.48 respectively. Using these values for the parameters we

get the numerical values of the charged Higgs boson mass (denoted by Mh+i
) to be

Mh+1
= 8.14 TeV and Mh+2

= 3.47 TeV while the masses of the pseudo-scalar Higgs

boson (denoted by HAi) are given as MA1 = 8.11 TeV and MA2 = 3.47 TeV.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L λ+
R λ+

L

)




µ2 0 gRvR 0

0 −µ1 0 gLvL

gRvR 0 MR 0

0 gLvL 0 ML







H̃
−

R

H̃−L

λ−R

λ−L



, (2.94)

and the neutralino mass matrix in the basis

(
H̃0
R H̃0

L H̃
0

R H̃
0

L λ0 λR3 λL3

)
is

given as

Mn =




0 0 −µ2 0 gV vR√
2

−gRvR√
2

0

0 0 0 µ1 −gV vL√
2

0 gLvL√
2

−µ2 0 0 0 −gV vR√
2

gRvR√
2

0

0 µ1 0 0 gV vL√
2

0 −gLvL√
2

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

M1 0 0

−gRvR√
2

0 gRvR√
2

0 0 MR 0

0 gLvL√
2

0 −gLvL√
2

0 0 ML




. (2.95)

Here λR, λL and λ0 are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)B−L gauge boson and MR,ML and M1 are their

soft masses respectively.
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2.6 E6 Inspired Left-right Supersymmetric model

The Higgs spectrum for this model is discussed in Eq. (2.16). The relevant terms in

the superpotential involving the HL, HR and Φ fields are given as:

W = λHL
T τ2Φτ2HR + µTr

[
Φτ2ΦT τ2

]
, (2.96)

where the parameter λ and µ must be real for the superpotential to be invariant under

parity transformation.

The Higgs potential consisting of the VF , VD and VSoft terms will be given as:

VF = Tr(|λHT
Rτ2Φτ2|2 + |λHT

L τ2Φτ2|2) + Tr(|λHLH
T
R + 2µΦ|2), (2.97)

VD =
g2
L

8

3∑

a=1

|H†LτaHL + Tr(Φ†τaΦ)|2 +
g2
R

8

3∑

a=1

|H†RτaHR + Tr(Φ†τaΦ)|2

+
g2
V

8
|H†RHR −H†LHL|2, (2.98)

VSoft = m2
1Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]
+m2

3(H†RHR +H†LHL)

+ (AλλH
T
L τ2Φτ2HR + h.c.). (2.99)

Using this potential we calculate the Higgs boson mass-squared matrix. We choose

the following vacuum structure for the Higgs fields:

〈HL〉 =



vL

0


 , 〈HR〉 =




0

vR


 , 〈Φ〉 =




0 v2

v1 0


 (2.100)

To easily identify the field corresponding to the lightest eigenvalue, we take a linear

combination of the HL
0, φ0

1 and φ0
2 fields. We make sure that only one of the newly

defined fields get a non-zero vacuum expectation value(or VEV). The field redefinition

that we used is:

ρ1 =
vLHL

0 + v1φ
0
1 + v2φ

0
2√

v2
L + v2

1 + v2
2

, ρ2 =
vLφ

0
1 − v1HL

0

√
v2

1 + v2
L

,

ρ3 =
vLv2HL

0 + v1v2φ
0
1 − (v2

1 + v2
L)φ0

2√
(v2

1 + v2
2)(v2

1 + v2
2 + v2

L)
. (2.101)
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One can verify that only the ρ1 field gets a non-zero vacuum expectation value of
√
v2

1 + v2
2 + v2

L. We calculate the 4× 4 mass-squared matrix for the neutral CP-even

Higgs boson in the basis (Reρ1,ReHR
0,Reρ2,Reρ3). It is easy to identify the lightest

mass eigenvalue in this new basis. We use the minimization condition for the potential

to express the soft SUSY breaking masses and the coefficient µ in terms of the other

parameters in the model. The minimization conditions and mass-squared matrix is

given in Appendix. We assume that vR >> v1, v2, vL and using this assumption we

can get he lightest eigenvalue of the mass-squared matrix. It turns out that we can

neglect the corrections from two of the off-diagonal matrix elements as they are of

order of ∼ v41
v2R

. So we effectively have a 2 × 2 matrix. Diagonalizing this matrix, we

get the lightest neutral CP-even Higgs mass given by:

M2
htree = [g2

R(v2
1 − v2

2)2 + g2
V v

4
L + g2

L(−v2
1 + v2

2 + v2
L)2 + 8v2

1v
2
Lλ

2

− (g2
V v

2
L + g2

R(−v2
1 + v2

2 + v2
L) + 4v2

1λ
2)2/(g2

R + g2
V )]/(2(v2

1 + v2
2 + v2

L)).

(2.102)

We then choose v1 = v sin β, v2 = v cos β cosφ and vL = v cos β cosφ. Maximizing

the resulting expression with respect to λ and φ and choosing gR = gL, we get:

M2
htree = 2M2

W cos2 2β. (2.103)

This result is exactly the same as in Section 2.3.2 and has been discussed in details

in that section.

Chargino and Neutralino masses

The higgsino and the gauginos mix to form the charginos and the neutralinos.
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The chargino mass term in this case is written as

Lchargino = −1

2

(
H̃+
R φ̃+

1 λ+
R λ+

L

)




−λv2 λvL gRvR 0

λvR 2µ gRv1 gLv1

0 gRv2 MR 0

gLvL gLv2 0 ML







H̃−L

φ̃−2

λ−R

λ−L



, (2.104)

and the neutralino mass matrix in the basis

(
H̃0
R H̃0

L φ̃0
1 φ̃0

2 λ0 λR3 λL3

)
is

given as

Mn =




0 −λv1 −λvL 0 gV vR√
2

−gRvR√
2

0

−λv1 0 −λvR 0 −gV vL√
2

0 gLvL√
2

−λvL −λvR 0 −2µ 0 −gRv1√
2
−gLv1√

2

0 0 −2µ 0 0 gRv2√
2

gLv2√
2

gV vR√
2

−gV vL√
2

0 0 M1 0 0

−gRvR√
2

0 −gRv1√
2

gRv2√
2

0 MR 0

0 gLvL√
2

−gLv1√
2

gLv2√
2

0 0 ML




. (2.105)

Here λR, λL and λ0 are the superpartners of the right-handed gauge bosons, left-

handed gauge bosons and the U(1)B−L gauge boson and MR,ML and M1 are their

soft masses respectively.

2.7 Doubly-charged Higgs Mass

In the models discussed under section 2.3, the right-handed symmetry breaking was

achieved by triplet Higgs bosons. Each triplet Higgs boson has a doubly-charged

particle which should be relatively easy to detect experimentally if they can be pro-

duced at the colliders. These doubly-charged particles, if seen, can tell us a lot about

the symmetry breaking pattern and their properties can help identify the underlying

model.

Let us take a closer look at a fully realistic left-right supersymmetric model where

the SU(2)R × U(1)B−L symmetry is broken into U(1)Y by triplet Higgs boson field
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∆c, and then the SU(2)L × U(1)Y symmetry breaking is achieved via bidoublet field

Φ.

The chiral matter sector of this model is given in Eq. (2.1). Being left-right

symmetric, the lepton and quark left-handed doublets L and Q have accompanying

right-handed doublets given by Lc and Qc. A right-handed neutrino is quite naturally

present in this model and can generate a light neutrino mass.

The Higgs boson sector is given in Eq. (2.2). Although a single right-handed

triplet field ∆c is enough for the right-handed symmetry breaking, the model being

supersymmetric, we need another triplet Higgs field ∆
c

for anomaly cancellation and

to prevent R-parity violating couplings. For parity conservation these right-handed

triplet fields must be accompanied by left-handed triplet fields ∆ and ∆ as well.

Two bidoublets Φ1 and Φ2 are needed for the generation of lepton and quark masses

and the CKM mixing. A singlet field S is introduced so that the SU(2)R × U(1)BL

symmetry breaking can be achieved in the supersymmetric limit.

The superpotential of the model is given as:

W = YuQ
T τ2Φ1τ2Q

c + YdQ
T τ2Φ2τ2Q

c + YνL
T τ2Φ1τ2L

c + YlL
T τ2Φ2τ2L

c

+ i(f ∗LT τ2∆L+ fLc
T

τ2∆cLc)

+ S[Tr(λ∗∆∆ + λ∆c∆
c
) + λ

′

abTr(Φ
T
a τ2Φbτ2)−M2

R] +W ′ (2.106)

where

W ′ =
[
M∆Tr(∆∆) +M∗

∆Tr(∆
c∆

c
)
]

+ µabTr
(
ΦT
a τ2Φbτ2

)
+MSS

2 + λSS
3. (2.107)

Here Yu,d and Yν,l are the Yukawa couplings for quarks and leptons respectively and

f is the Majorana neutrino Yukawa coupling matrix. This is the most general su-

perpotential. R-parity is automatically preserved in this case. Putting W ′ = 0 gives

an enhanced U(1) R-symmetry in the theory. Under this R-symmetry, Q,QC , L, LC

fields have a charge of +1, S has charge +2 and all other fields have charge zero with
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W carrying a charge +2. Putting W ′ = 0 also helps in understanding the µ-problem

and makes the doubly-charged left-handed and right-handed Higgsinos degenerate in

mass.

We will look at the case where W ′ = 0. The left-handed triplets do not get any

vev and hence the masses of their doubly-charged particles are heavy. Thus we will

concentrate on the right-handed Higgs boson triplet sector from here on. The Higgs

potential consists of F term, D term and soft supersymmetry breaking terms which

in this case are then given as

VF =
∣∣λTr(∆c∆

c
) + λ′abTr

(
ΦT
a τ2Φbτ2

)
−M2

R

∣∣2 + |λ|2|S|2
∣∣∣Tr(∆c∆c†) + Tr(∆

c
∆
c†

)
∣∣∣

Vsoft = M2
1 Tr(∆c†∆c) +M2

2 Tr(∆
c†

∆
c
) +M2

S|S|2

+ {AλλSTr(∆c∆c†)− CλM2
RS + h.c.}

VD =
g2
R

8

∑

a

∣∣∣Tr(2∆c†τa∆
c + 2∆

c†
τa∆

c
+ Φaτ

T
a Φ†a)

∣∣∣
2

+
g′2

8

∣∣∣Tr(2∆c†∆c + 2∆
c†

∆
c
)
∣∣∣
2

. (2.108)

If we consider a charged breaking vacuum structure for the ∆c and ∆
c

fields given

as

〈∆c〉 =




0 vR

vR 0


 ,

〈
∆
c〉

=




0 vR

vR 0


 , (2.109)

it can be shown that the Higgs potential is lower compared to the charge conserving

vacuum given in Eq. (2.22). The F term and the soft SUSY breaking terms will be

the same for both vacuua whereas the D term of the potential will vanish for the

charged breaking vacuum while being positive definite for the charge conserving one.

This would lead to a charge breaking vacuum to be the stable one which is unphysical.

The solution to this problem lies in the calculation of the loop correction to the Higgs

potential and then the total potential can be shown to be lower for the physically

acceptable charge conserving vacuum.
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The doubly-charged Higgs mass-squared matrix in the basis (δc
−−∗

, δ
c++

) is given

as

M2
δ++ =



−2g2

R(|vR|2 − |vR|2)− v∗R
vR
Y ∗ Y

Y ∗ 2g2
R(|vR|2 − |vR|2)− vR

v∗R
Y


 (2.110)

where Y = λAλS+ |λ|2
(
vRvR − M2

R

λ

)
and the electroweak vev has been neglected. It

can be easily seen that if the gauge couplings are neglected, then this matrix will have

a massless mode. Thus in this limit, the loop corrections to this massless mode should

remain finite [?]. Such a Goldstone boson cannot remain in the theory and hence we

calculate the one-loop corrections to this massless doubly-charged Higgs boson in this

limit and show that it gets a positive mass. We look at the Yukawa interaction of the

doubly-charged Higgs boson and calculate the corresponding one-loop corrections.

We first identify the eigenstate corresponding to the Goldstone state. It is given

as

G++ =
v∗Rδ

c−−
∗

+ vRδ
c++

√
v2
R + v2

R

. (2.111)

The couplings that we would need to consider include the direct coupling of the

doubly-charged particles to the electron and selectron fields, doubly-charged Higgs

coupling to the neutral Higgs triplet and singlet Higgs bosons and the coupling of

these neutral fields to the neutrino and sneutrino fields. We also need to calculate

the masses of each of these particles.

The right-handed leptons and sleptons are the ones that are running inside the

loops in the one-loop corrections to the Goldstone state. It consists of an almost

massless electron, a heavy right-handed neutrino, two degenerate selectrons and two

sneutrinos. If we denote

ν̃c =
n1 + in2√

2
, ν̃c

∗
=
n1 − in2√

2
, (2.112)
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then the masses of all the particles are then given as

Mec ≈ 0, M2
ẽc1,2

= m2
Lc , Mνc = fvR,

M2
n1,2

= m2
Lc +

[
f 2v2

R ± (fλvRvS + fAfvR)
]

(2.113)

where m2
Lc is the soft mass for the sleptons and Af is the trilinear coupling.

The neutral Higgs sector relevant for our calculation would include the δc
0
, δ
c0

and

S fields. Let us write them as

δc
0

=
X1 + iY1√

2
, δ

c0

=
X2 + iY2√

2
, S =

X3 + iY3√
2

. (2.114)

If we choose all the couplings and the vevs to be real, then we will get two 3×3 mass-

squared matrices for these fields– one for the real part and another for the imaginary

part. We only need to consider the real fields as the imaginary fields will have no

relevant cubic couplings to the Goldstone field. We will look at this mass-squared

matrix a little later but first we give the relevant interaction terms in the Lagrangian

which would be necessary for our calculation. These are given as

−Lint = G++G−−
[
(|ẽc1|2 + |ẽc2|2)

f 2v2
R

v2
R + v2

R

+
√

2
λ2vRv

2
R

v2
R + v2

R

X1 +
√

2
λ2v2

RvR
v2
R + v2

R

X2

+
√

2

(
λ2vS +

λAλvRvR
v2
R + v2

R

)
X3

]
−
[
fAfvR + fλvRvS

2
√
v2
R + v2

R

(ẽc1ẽ
c
1 + ẽc2ẽ

c
2)G−−

]

+

[
fAf

2
√

2
(n2

1 − n2
2) +

f 2vR√
2

(n2
1 + n2

2)

]
X1

+
fλvS

2
√

2
(n2

1 − n2
2)X2 +

fλvR

2
√

2
(n2

1 − n2
2)X3. (2.115)

The mass-squared matrix for the neutral scalar Higgs bosons is given as

M2
h =




M2
1 + λ2(v2

S + v2
R) λ2vRvR + λAλvS − λ2M2

R 2λ2vSvR + λAλvR

λ2vRvR + λAλvS − λ2M2
R M2

2 + λ2(v2
S + v2

R) 2λ2vSvR + λAλvR

2λ2vSvR + λAλvR 2λ2vSvR + λAλvR M2
S + λ2(v2

R + v2
R)



.

(2.116)
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Usually one would need to diagonalize this mass-squared matrix and identify the mass

eigenstates. Fortunately that is not the case here. Let us choose a basis given as

X̂ = V TX (2.117)

where X =

(
X1 X2 X3

)T
, V is an orthogonal transformation matrix and X̂ rep-

resent the mass eigenbasis. Then the diagonal mass-squared matrix is given as

D2 = V TM2
hV. (2.118)

All the couplings of the neutral Higgs bosons can now be written as

−LX̂ = PiVijX̂jG
++G−− +QiVijX̂jn

2
1 +RiVijX̂jn

2
2 + TiVijX̂jν

cνc (2.119)

where P,Q,R and T are vectors given as

P =

[√
2
λ2vRv

2
R

v2R+v2R

√
2
λ2v2RvR
v2R+v2R

√
2
(
λ2vS + λAλvRvR

v2R+v2R

)]
,

Q =

[
fAf
2
√

2
+ f2vR√

2

fλvS
2
√

2

fλvR
2
√

2

]
,

R =

[
−fAf
2
√

2
+ f2vR√

2
−fλvS

2
√

2
−fλvR

2
√

2

]
,

T =

[
f√
2

0 0

]
. (2.120)

δ++ δ++

h0

ν̃c

δ++ δ++

h0

νc

Figure 2.5: Feynman diagrams for neutrino and sneutrino one-loop correction

We can now calculate the one-loop corrections to the doubly-charged Higgs boson

mass. The corrections coming from the right-handed neutrino and sneutrino sector
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are given by the Feynman diagrams in Fig. 2.5. The corresponding amplitudes are

given as

M1 = − i
2

[
P TM−2

h Q

∫
d4k

(2π)4

1

k2 −m2
n1

+ P TM−2
h R

∫
d4k

(2π)4

1

k2 −m2
n2

]
,

M2 = 2iMνcP
TM−2

h T

∫
d4k

(2π)4
Tr

(
/k +Mνc

k2 −M2
νc

)
. (2.121)

The Feynman diagrams for the electron and selectron corrections are given in Fig. 2.6

δ++ δ++
ẽc

ẽc

δ++ δ++
ec

ec
δ++

δ−−

ẽc

Figure 2.6: Feynman diagrams for electron and selectron one-loop correction

and the corresponding amplitudes are given as

M3 = − i
2

(fAfvR + fλvRvS)2

v2
R + v2

R

∫
d4k

(2π)4

1

k2 −m2
ẽc
,

M4 = − if 2v2
R

v2
R + v2

R

∫
d4k

(2π)4

1

k2
,

M5 =
if 2v2

R

v2
R + v2

R

∫
d4k

(2π)4

1

k2 −m2
ẽc

(2.122)

Summing over all the correction to the doubly-charged Higgs boson mass coming

from these diagrams we get

∆M2
G++ =

1

16π2 (v2
R + v2

R)

[
f 2v2

Rm
2
ẽc ln

(
m2
ẽc

M2
νc

)
+
f 2

2
(λvRvS + AfvR)2 ln

(
m2
ẽc

M2
νc

+ 1

)

− f

4

(
AfvR + 2fv2

R + λvRvS
)
m2
n1

ln

(
m2
n1

M2
νc

)

− f

4

(
−AfvR + 2fv2

R − λvRvS
)
m2
n2

ln

(
m2
n2

M2
νc

)]
. (2.123)

Choosing an appropriate set of parameters this correction can be made positive and

hence the Goldstone boson would become a light doubly-charged Higgs boson.
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2.8 Summary

The tree level Higgs boson mass in the Standard Model and MSSM is bounded by the

mass of the Z boson while the Standard Model-like Higgs boson observed at the LHC

has a mass of around 125 GeV. For a TeV scale supersymmeytric model, the loop

corrections to the Higgs boson mass is not particularly big and to achieve a Higgs

boson mass of 125 GeV, either the tri-linear couplings must be really big or the stop

mass must be large. This problems can be solved if the tree level Higgs boson mass

can be made larger. In this chapter we show that for the models we have described

in the previous sections, we can push the tree level mass of the lightest Standard

Model-like Higgs boson to a much higher value eliminating the need for large trilinear

couplings or very heavy stop masses.
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CHAPTER 3

NEW SIGNALS OF DOUBLY-CHARGED SCALARS AND

FERMIONS AT THE LARGE HADRON COLLIDER

3.1 Introduction

Several extensions of the Standard Model (SM) predict the existence of doubly-

charged Higgs bosons. In some cases these particles remain light, which motivates

searches for them in high energy collider experiments. The minimal left-right super-

symmetric model with automatic R-parity conservation is an example, where a light

doubly-charged Higgs boson arises as a pseudo-Goldstone boson of the SU(2)R gauge

symmetry breaking [28–31]. Models with radiative neutrino mass generation [32],

Type-II see-saw mechanism [33] for small neutrino masses, and the 3-3-1 model [?]

are some other examples of SM extensions which have doubly-charged Higgs bosons.

Supersymmetric versions of these models also have doubly-charged Higgsinos, which

are the fermionic partners of the Higgs bosons. If the doubly-charged Higgs boson is

light, its Higgsino partner cannot be much heavier and must have mass of the order a

few hundred GeV to a few TeV, in the context of low energy supersymmetry (SUSY).

In this chapter we study a new signal for the doubly-charged Higgs bosons and

Higgsinos in SUSY models which arises through the pair-production of the doubly-

charged Higgsinos. Each Higgsino decays into a doubly-charged Higgs boson and the

lightest supersymmetric particle (LSP) which escapes detection. Thus the final state

would have four leptons and missing transverse energy, with the same-sign dileptons

originating from the decays of the doubly-charged Higgs bosons showing characteristic

peaks in the invariant mass distribution. We show by detailed calculations in the
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context of left-right supersymmetric model that the reach at the LHC for both these

doubly-charged particles can be enhanced by studying this mode. While we focus

on the minimal supersymmetric left-right model, these new signals should also be

present in other SUSY models with a light doubly-charged Higgsino and a lighter

doubly-charged Higgs boson.

The focus of our analysis will be the minimal supersymmetric left-right gauge

model. Left-right symmetric models [13] have a number of attractive features which

are not naturally present in the Standard Model. Firstly, it explains the small neutrino

masses through the see-saw mechanism [35] in a compelling manner – unlike the SM,

existence of right-handed neutrinos is required by gauge symmetry here. Secondly, it

provides a natural understanding of the origin of parity violation as a spontaneous

phenomenon [13]. Thirdly, with the inclusion of supersymmetry, this model solves

the gauge hierarchy problem and in its simplest version, also provides an automatic

R-parity. This symmetry arises as remnant of the (B − L) gauge symmetry [36]

and leads to a stable light supersymmetric particle which can be a candidate for

dark matter. With supersymmetry these models also provide natural solutions to the

strong CP problem and the SUSY CP problem [37].

In the minimal left-right supersymmetric model, the gauge group is extended to

G3221 = SU(3)c × SU(2)L × SU(2)R × U(1)B−L. The SU(2)R × U(1)B−L symmetry

breaks at a high scale resulting in most of the new particles getting very heavy

masses. The right-handed neutrino mass is at this scale and facilitates the generation

of the light neutrino mass via the see-saw mechanism. The doubly-charged Higgs

supermultiplet, on the other hand, remains light and can produce new signals which

is the focus of our analysis in this chapter.

To understand why the doubly-charged Higgs boson remains light in the minimal

model, we need to look at the symmetry breaking sector. To spontaneously break

the SU(2)R gauge symmetry and to generate large Majorana mass for the right-
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handed neutrino, we need to introduce a Higgs multiplet with quantum numbers

(1, 1, 3,−2) under the group G3221. This right-handed triplet contains three complex

fields: a doubly-charged, a singly-charged and a neutral field denoted by δc
−−
, δc
−
, δc

0

respectively. The δc
−

and the phase of δc
0

are absorbed by the gauge fields via the

super-Higgs mechanism to generate masses for the W±
R and ZR gauge bosons. The

real part of δc
0

gets a mass through the Higgs potential. The δc
−−

field, on the other

hand, is not absorbed by any gauge bosons, nor does it acquire a mass from the

superpotential of the minimal model. Thus it behaves like pseudo-Goldstone boson,

acquiring its mass only after supersymmetry breaking.∗ As a result, the right-handed

doubly-charged Higgs bosons and the doubly-charged Higgsinos remain light in this

model.

The doubly-charged Higgs bosons decay to two same charge leptons, which can

be seen relatively easily in collider experiments via the invariant mass peak in the

dilepton mass spectrum. LHC has been looking for signals of doubly-charged Higgs

boson in the four lepton final states [38,39]. The experimental lower limit inferred on

the mass of such Higgs bosons would depend on the assumed branching ratios into

leptons of definite flavors. For example, CMS experiment quotes a 95% CL lower limit

of 355 GeV for the mass of a doubly-charged Higgs boson arising from an SU(2)L

triplet, if it decays with equal branching ratios of 33% into e+e+, µ+µ+ and τ+τ+.

The 95% CL lower limit on such a Higgs particle from the ATLAS experiment is 318

GeV. These limits are somewhat weaker for an SU(2)L singlet doubly-charged Higgs

boson, since its production cross section is smaller compared to the case when it is a

∗The superpotential of the model, which only has quadratic mass terms, has an enhanced global

U(3, c) (complexified U(3)) symmetry which is broken to an U(2, c) by the VEV of this Higgs

multiplet. This leads to five massless superfields of which three are absorbed to give mass to the

heavy gauge bosons and the remaining are the two doubly-charged Higgs bosons. Since SUSY is

unbroken at this stage, the doubly-charged Higgsino is degenerate with the doubly-charged Higgs

boson.
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SU(2)L triplet. For example, ATLAS collaboration quotes a lower limit on the mass

of an SU(2)L singlet doubly-charged scalar that decays with a 33% BR into µ+µ+ of

about 220 GeV, while the limit is about 210 GeV if it decays into e+e+ with the same

branching ratio. We anticipate that the lower limit, when both modes are combined,

would be somewhat smaller than 300 GeV, for an SU(2)L singlet, as in our case.†

The decay of doubly-charged Higgsino (δ̃c
±±

) through a doubly-charged Higgs

boson (δc
±±

) can produce new signals through the following process:

δ̃c
±± → δc

±±
χ̃0

1 → l±l±χ̃0
1 .

So the pair production of doubly-charged Higgsinos yields a final state consisting of

four leptons and missing transverse energy due to the LSP escaping the detector.

This process, which has not been explored before to the best of our knowledge, gives

a unique collider signature which can help improve the discovery reach of doubly-

charged particles. The invariant mass plot would show a peak at the doubly-charged

Higgs mass for the same-sign lepton while there would be no such peak for opposite-

sign leptons. The angular distributions for the final state leptons also show a peak

at a low value of ∆R (defined later in the chapter) for same-sign leptons while the

opposite-sign leptons have a peak at a much higher value. Using these distributions we

can probe deeper into the model than one could just by looking at the pair production

of the doubly-charged Higgs bosons. The cross section for pair production of doubly-

charged Higgsinos is larger compared to the cross section for the pair production

of doubly-charged Higgs bosons of the same mass. From the current data at the

LHC, we expect around 30 events for the process discussed in this chapter, if the

doubly-charged Higgs boson has a mass of about 500 GeV, and if it decays into a

doubly-charged Higgs boson of mass around 300 GeV.

In section 3.2 we describe the model and the Lagrangian needed for our analysis.

†When an SU(2)L singlet doubly-charged Higgs boson decays 100% of the time into µ+µ+ (or

e+e+), the ATLAS lower limit on its mass is about 310 (or 320) GeV [39].
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We also explain the origin of masses of the doubly-charged Higgs boson and the

Higgsino and show that they remain light. In section 3.3, we present our analysis of

the production and decay of the doubly-charged scalars and fermions and give the

collider signatures which can be observed at the LHC. Section 3.4 gives a discussion

of the results that we have obtained and how we can distinguish our signal against

the background.

3.2 A brief review of the Left-Right Supersymmetric Model

In this section, we briefly review the relevant features of the minimal supersymmetric

left-right model (LRSUSY) necessary for the analysis which follows in the later sec-

tions [28, 31].‡ The chiral matter for this model is given in Eq. (2.1) while the Higgs

sector is the same as in Eq. (2.2).

The superpotential of the model is given as

W = YuQ
T τ2Φ1τ2Q

c + YdQ
T τ2Φ2τ2Q

c + YνL
T τ2Φ1τ2L

c + YlL
T τ2Φ2τ2L

c

+ i(f ∗LT τ2∆L+ fLc
T

τ2∆cLc)

+ S[Tr(λ∗∆∆ + λ∆c∆
c
) + λ

′

abTr(Φ
T
a τ2Φbτ2)−M2

R] +W ′ (3.1)

where

W ′ =
[
M∆Tr(∆∆) +M∗

∆Tr(∆
c∆

c
)
]

+ µabTr
(
ΦT
a τ2Φbτ2

)
+MSS

2 + λSS
3 .(3.2)

Here Yu,d and Yν,l are the Yukawa couplings for quarks and leptons respectively and

f is the Majorana neutrino Yukawa coupling matrix. This is the most general super-

potential. R-parity is automatically preserved in this case, which is a consequence

of (B − L) being part of the gauge symmetry. Putting W ′ = 0 gives an enhanced

U(1) R-symmetry in the theory. Under this R-symmetry, Q,QC , L, LC fields have a

charge of +1, S has charge +2 and all other fields have charge zero with W carrying

‡For alternative versions of SUSY left-right model, see Ref. [40].
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a charge of +2. Putting W ′ = 0 also helps in understanding the µ-parameter of

MSSM since it is induced as µ ∼ λ′ 〈S〉 from Eq. (3.1), which is of the scale of SUSY

breaking, as necessary. Setting W ′ = 0 would make the doubly-charged left-handed

and right-handed Higgsinos degenerate in mass since both masses are given by λ 〈S〉,

see Eq. (3.1).§

The SU(2)R × U(1)B−L symmetry is broken at a large scale by giving a large

vacuum expectation value to the right-handed triplet Higgs boson fields ∆c and ∆
c
.

This generates a large right-handed neutrino mass, Mνc = 2fvR, where vR is the

vacuum expectation value of the δc
0

field which breaks the SU(2)R symmetry. This

helps generate a small Majorana mass for the left-handed neutrino via the see-saw

mechanism [35]. The bidoublets get VEVs of the order of electroweak symmetry

breaking scale and generate the masses of the quarks and leptons. The singlet S

gets a VEV of order the SUSY breaking scale, and helps solve the µ-problem of the

MSSM, assuming that W ′ = 0.

The terms in the Lagrangian which will be most essential for our calculation later

are the gauge kinetic terms for the triplet superfields and the quarks and leptons.

These terms will give us the interaction vertices between the Higgs boson fields and

the gauge bosons as well as the the fermions and the gauge bosons [41]. The kinetic

terms for the triplet scalar fields and the fermions are given by:

L = i
∑

Tr[qi /Dqi] + Tr[(DµΦi)
†(DµΦi)] (3.3)

where qi = Q,Qc, ∆̃, ∆̃, ∆̃c, ∆̃
c

and Φi = ∆,∆,∆c,∆
c
. The covariant derivatives are

defined as

DµQ = [∂µ − i
gL
2
~τ · ~WµL − i

gV
6
Vµ]Q

§Keeping a non-zero W ′ term does not affect the right-handed particle spectrum, but the left-

handed Higgsino becomes very heavy in this case and will not contribute to our new signal. We

present results of our analysis with and without the left-handed doubly-charge Higgsino in the light

spectrum, so this effect can be disentangled.
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DµQ
c = [∂µ + i

gR
2
~τ · ~WµR + i

gV
6
Vµ]Qc

Dµ∆ = ∂µ∆− igL
2

[~τ · ~WµL,∆]− igV Vµ∆

Dµ∆ = ∂µ∆− igL
2

[~τ · ~WµL,∆] + igV Vµ∆

Dµ∆c = ∂µ∆c + i
gR
2

[~τ · ~WµR,∆
c] + igV Vµ∆c

Dµ∆c = ∂µ∆c + i
gR
2

[~τ · ~WµR,∆c]− igV Vµ∆c . (3.4)

The covariant derivatives for ∆̃,∆̃,∆̃c,∆̃
c

have similar form as ∆,∆,∆c,∆
c

respectively.

We now turn to some details of the calculation of the masses of doubly-charged

Higgs boson [30,31,42,43] and the Higgsinos. This will show that these particles are

indeed light and will help us in our analysis later on. In the context of type-II seesaw

mechanism without supersymmetry, signatures of doubly-charged Higgs bosons at

the LHC has been studied in Ref. [44] and in Ref. [45] recently. The main difference

in our study is the inclusion of doubly-charged Higgsino, which helps enhance the

multi-lepton signals.

3.2.1 Doubly-charged Higgs boson

The doubly-charged Higgs boson mass has been studied in details in Section 2.7. Here

we briefly review some of the important results. The right-handed doubly-charged

Higgs boson mass-squared matrix is given at tree-level as:

M2
δ++ =



−2g2

R(|vR|2 − |vR|2)− vR
vR
Y Y ∗

Y 2g2
R(|vR|2 − |vR|2)− vR

vR
Y


 (3.5)

where

Y = λAλS + |λ|2(vRvR −
M2

R

λ
) .

Solving for the squared mass, it can be seen that one of the eigenvalues is negative.

Including the contribution from the one-loop correction to the mass the eigenvalues

become [31]

M2
δ±± =

−Y (|vR|2 + |vR|2)±
√

(|vR|2 + |vR|2)2|4g2
RvRvR − Y |2 + 4|vR|2|vR|2|Y |2

2|vR||vR|
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+ O(
M2

SUSY

16π2
) (3.6)

where MSUSY is the mass scale for the supersymmetry breaking which we assume to

be ∼ 1 TeV. The factor of 1/(16π2) factor comes from the one loop corrections as

can be seen in Eq. (2.123). Explicit calculation of the effective potential utilizing the

Majorana Yukawa couplings of the right-handed neutrino shows that the eigenvalue

which is negative at the tree-level can be made positive, thus making the symmetry

breaking consistent. This makes the mass of the right-handed doubly-charged Higgs

boson to be of the electroweak scale, of order few hundred GeV. It is naturally lighter

than the doubly-charged Higgsino, since there is no loop suppression for its mass.

This light doubly-charged Higgs boson will be denoted as δ±±R in this chapter.

A light doubly-charged Higgs boson can also be obtained in left-right supersym-

metric models which include non-renormalizable operators in the superpotential [29].

Terms in the superpotential of the type (∆c∆̄c)2/MPl will give mass to the doubly-

charged Higgs bosons and Higgsinos of order few hundred GeV without resort to the

Coleman-Weinberg effective potential, provided that the SU(2)R breaking scale is in

the range of vR ∼ (1011 − 1012) GeV. Our analysis will also be valid for these models

with light doubly-charged particles.

The left-handed doubly-charged Higgs boson mass-squared matrix looks very sim-

ilar to the right-handed case except that the VEVs of the right-handed neutral Higgs

boson fields are now replaced by the VEVs of the left-handed fields which we assume to

be negligible. Hence the mass of the left-handed doubly-charged Higgs boson become

of the order of MR, which is of the scale of the SU(2)R symmetry breaking and hence

large. This happens because in the Higgs boson potential, there is a cancellation be-

tween the terms |λ|2(vRvR) and
M2
R

λ
, arising from the vanishing of the F -terms, which

is not present for the left-handed doubly-charged Higgs boson mass-squared matrix.

We denote the left-handed doubly charged Higgs boson as δ±±L .
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3.2.2 Doubly-charged Higgsino

The right-handed doubly-charged Higgsino gets its mass only from the superpotential

Eq. (3.1) and has the form λ 〈S〉. In the supersymmetric limit, 〈vR〉 = 〈vR〉 (which

arises from the vanishing of the D terms) and 〈S〉 = 0 (which arises from the vanishing

of the F terms), and thus the Higgsino mass is zero in this limit. After supersymmetry

breaking, the singlet S gets a VEV which is of the order of MSUSY . Taking λ to be

of order one, we see that its mass is at the SUSY breaking scale. Thus the Higgsino

has to be relatively light if we consider supersymmetry to be broken at a scale of ∼

1 TeV.

The left-handed doubly-charged Higgsino would become heavy if we turn on the

W ′ term in the superpotential. In this chapter we will consider W ′ = 0 and hence

the left-handed and the right-handed doubly-charged Higgsinos remain degenerate.

However, the case of left-handed Higgsino being heavy can be inferred from our

results, since we separate out its contribution to the four lepton plus missing /ET final

states.

γ, Z, ZR

q

q

˜
δ++

˜
δ−−

δ++

δ−−

χ̃01

χ̃01

l+

l+

l−

l−

Figure 3.1: Direct production of δ̃±±R pair at the LHC. Subsequent decays of δ̃±±R give

rise to two leptons plus missing energy signal, if M δ±±R
< M

δ̃
±±
R

.
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3.3 Signals of doubly-charged scalars and fermions at LHC

In this section we discuss the signal for doubly charged Higgsinos at LHC and analyze

the final states coming from the pair-production of the doubly-charged Higgsinos and

their subsequent decay.¶ The doubly charged Higgsinos are pair-produced at the LHC

through the process

p p −→ δ̃++
L,Rδ̃

−−
L,R (illustrated in Fig. 3.1)

which proceeds through s-channel γ and ZL,R exchanges [46]. As the mass of ZR

is dependent on the scale at which the SU(2)R is broken, its contribution will vary

depending upon its allowed values. In the minimal left-right supersymmetric model,

there is a relation between the WR and the ZR mass where MZR ∼ 1.7MWR
. Therefore

the current limit on the WR mass of about 2.5 TeV [47] requires the ZR to be rather

heavy. This heavy ZR has very small contributions to the pair-production cross section

of the doubly charged Higgsinos. In our analysis we have fixed the ZR mass at 5 TeV

and find that the contributions from ZR exchange only become comparable to the

electroweak gauge boson exchanges for large values of the doubly charged Higgsino

mass, where the overall signal is quite suppressed.

We focus on a natural scenario where the only “light” states beyond the SM are

the doubly-charged Higgs boson, doubly-charged Higgsino and the lightest neutralino,

which is the LSP. The left-handed doubly-charged Higgsino is degenerate with the

right-handed doubly-charged Higgsino (in the case where W ′ = 0). All other SUSY

particles are assumed to be much heavier. We further assume that the doubly-charged

Higgsino is heavier than the right-handed doubly charged Higgs boson and the lightest

neutralino. Then the dominant decay channel for the doubly-charged Higgsino is to

the light doubly-charged Higgs boson and the LSP neutralino, which we assume is

allowed by kinematics. The branching ratio for this process is almost 1 in this scenario

¶The relevant Feynman rules are listed in the Appendix.
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as the next leading decay mode is into a lepton and an off-shell slepton which is highly

suppressed. The right-handed doubly-charged Higgs boson now decays almost entirely

into two same sign leptons giving rise to a final signal of 4 leptons and missing energy.

Other decay modes of the right-handed doubly-charged Higgs boson would be into

two real or virtual WR bosons or a WR and a single-charged Higgs boson. Both the

WR and the single-charged Higgs boson are very heavy in this model and hence those

decays will be forbidden or highly suppressed. The entire decay chain is then,

• δ̃±±R → δ±±R χ̃0
1

• δ±±R → `±`±

Though the right-handed doubly-charged Higgsino decays almost always into a

right-handed doubly-charged Higgs boson and a neutralino, the left-handed doubly-

charged Higgsino which is degenerate with the right-handed doubly-charged Higgsino

cannot decay through this channel as the left-handed doubly-charged Higgs boson is

much heavier. The main decay channel for the left-handed Higgsino is then given by

the three-body decay through an off-shell slepton and a lepton, where the off-shell

slepton mediates the decay into a lepton and a neutralino [46]. This produces the

same final state product as our signal and is therefore a source of background if we

consider the signal coming only from the right-handed doubly charged Higgsinos. The

left-handed doubly-charged Higgsino production cross-section is larger than the right-

handed Higgsino due to the Z-boson coupling strength being larger to the left-handed

particles and hence we also need to analyze the decay of the left-handed Higgsino and

include its contributions. We must however note that both the right-handed and left-

handed Higgsino pair production leads to a four-lepton final state with large missing

transverse momenta because of the presence of the undetected LSP passing through

the detector. Another source for the four-lepton final state would come from the pair

production of the light doubly-charged Higgs boson present in the model. Presence
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of such doubly-charged Higgs bosons have been looked for by experimentalists in the

context of various other models at Tevatron as well as LHC [51] which put strong

limits on the masses of such particles.

In Fig. 3.2 we plot the production cross-sections for the pair production of doubly-

charged Higgsinos (both chirality) as well as for the right-handed doubly-charged

Higgs boson. Note that the production cross section for the left-handed doubly-

charged Higgsino is much larger than the right-handed one. This is due to the bigger

Z boson coupling with the left-handed doubly-charged Higgsino. However for larger

values of the mass, the required center of mass energy to produce the particles in pair

also increases and therefore an s-channel suppression would appear in the case of the

left-handed doubly-charged Higgsino as the center of mass energy moves away from

the Z boson pole mass, i.e. 1
ŝ−M2

Z
→ 1

ŝ
(ŝ >> M2

Z). In comparison the ZR contribution

would increase as the center of mass energy starts approaching the ZR boson pole

mass, i.e. 1
ŝ
→ 1

ŝ−M2
ZR

(ŝ ∼ M2
ZR

) which also has larger coupling to the right-handed

doubly-charged Higgsino. This effect is visible for very large values of the Higgsino

mass (although not shown in the Fig. 3.2) where we find that the production cross

section for the left-handed Higgsino actually falls below the production cross section
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of the right-handed Higgsino. It can also be seen that the Higgsino production cross-

sections are much larger than the doubly-charged Higgs boson production rate (for

the same mass) and hence they effectively help in enhancing the 4-lepton signal at

colliders. In general, from spin arguments we might expect the production cross-

section of the fermion to be four times that of the scalar, but this is only true in the

massless limit. One can think that since the center of mass energy is much higher

than the masses of the particles the massless limit should be a good approximation,

but turning on the parton distribution function produces partons of all energies and

hence we get a cross-section ratio which is much higher. The Higgsino process also

gives a unique signal with 4`+ /ET which is not present for the doubly-charged Higgs

boson pair-production process.

Considering the decays of the doubly-charged particles discussed before, we find

that the final states coming from the pair production and subsequent decays of the

doubly-charged Higgsinos are two pairs of same-sign leptons of same or different flavor

(i.e., e or µ) and missing energy. We want to focus on all the possibilities with the

final states consisting of same flavor or different flavor leptons, with and without

missing energy.

As we have no hint of SUSY signals yet at the LHC, it can be safely assumed

that the SUSY particles are heavy and difficult to produce at the current energies at

which LHC was run. We therefore restrict ourselves to the low lying mass spectrum

of some of the SUSY particles and their decay probabilities to study its signals.

Since the model in study naturally accommodates light doubly-charged particles, we

assume all other SUSY partners as well as the Higgs scalars to be much heavier than

the doubly-charged Higgsinos and the doubly charged Higgs boson (from the right-

handed sector). The only other particle which is assumed to be lighter is the lightest

neutralino, which is the LSP. With this choice of the spectrum, the decay patterns

for the doubly charged particles are known and have already been discussed earlier.
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To highlight the signal we have considered two representative points :

• The first choice, which we call BP1 (Benchmark Point 1), we consider a doubly-

charged Higgs boson with mass 300 GeV, an LSP neutralino with a mass of 80

GeV, charged sleptons with mass of 1 TeV and doubly-charged Higgsinos with

a mass of 500 GeV. With this choice we focus our attention on two particular

scenarios. First, we analyze the situation where all the finals state leptons

coming from the decay are of the same flavor (e.g all the final state leptons are

either electrons or muons) while the other case is when each doubly-charged

particle decays to a different flavor pair (e.g. two same sign electrons and two

same sign muons).

• The second choice, which we call BP2, we consider a lower value for the mass

of doubly-charged Higgsino as 400 GeV while the other mass choices remain the

same. Note that this choice gives a larger production rate for the doubly-charged

Higgsinos, but also affects the kinematics of the final state decay products be-

cause of smaller mass splitting between the doubly-charged Higgsino and the

doubly-charged Higgs boson.

In our analysis, for the charged lepton final states we have considered the signal

consisting of either electrons or muons only and neglected the tau lepton. Nevertheless

the decay of the doubly-charged Higgs boson to tau lepton pair will be very similar

to the decay into muons and electrons and is only considered less relevant due to the

limited tau-tagging efficiency at experiments. However, the signal will also be dictated

by the decay probabilities of the doubly-charged scalar into the charged lepton pairs,

and in models where the Yukawa structure demands that the decays are maximally

to a pair of same sign taus, then one needs to consider the tau final states.

We now turn our focus to analyzing the final state signal consisting of the four

charged leptons with or without missing transverse energy. Note that when we do not
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demand any criterion for the missing transverse momenta in the final state, our signal

contributions come from three different sources, i.e. pair production of the doubly-

charged Higgsinos (both chirality) as well as the pair production of the doubly-charged

scalars. This would not only enhance the four-lepton signal when compared to indi-

vidual contributions but also help in identifying the nature of additional contributions

to such multi-lepton final states. To study the signal we demand that the final state

particles satisfy the following kinematic cuts:

• Each charged lepton must carry a minimum transverse momentum given by

pT > 15 GeV.

• The charged leptons must lie in the central rapidity region of |η`| < 2.5.

• For proper resolution to detect the final state particles we set ∆R`` > 0.2

between the final state charged leptons, where ∆R =
√

(∆φ)2 + (∆η)2 defines

the resolution of a pair of particles in the (η, φ) plane.

• We also specify an invariant mass cut between the opposite sign same flavor

leptons such that M`+`− > 10 GeV and a further cut of 80 GeV > M`+`− >

100 GeV , where the latter one is aimed at removing the SM contributions

coming from resonant Z boson decays.

With the above set of kinematic selections we perform a detailed numerical anal-

ysis of the final state events of the multilepton signal as well as the SM background.

For our numerical analysis, we have included the model description into the event

generator CalcHEP [48] and generated the event files for the production and decays

of the doubly-charged Higgsinos. These event files were then passed through the

CalcHEP+Pythia [49] interface where we include the effects of both initial and final

state radiations using Pythia switches to smear the final states. We have used the

leading order CTEQ6L [50] parton distribution functions (PDF) for our analysis.

So there are three major processes that contribute to out signal.
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• The direct pair-production of the right-handed doubly-charged Higgs bosons.

Each Higgs boson then decays into a pair of same sign leptons producing a final

state signal of 4 leptons. We call this (C1)

p p→ δ++
R δ−−R → `+

i `
+
i `
−
j `
−
j

• Pair-production of right-handed doubly-charged Higgsino. Each Higgsino de-

cays into a right-handed doubly-charged Higgs boson and a neutralino. The

doubly-charged Higgs boson then decays into a pair of same-sign leptons giving

a final state signal of 4 leptons and /ET . We call this (C2)

p p→ δ̃++
R δ̃−−R → δ++

R δ−−R χ̃0
1χ̃

0
1 → `+

i `
+
i `
−
j `
−
j
/ET

• Pair-production of left-handed doubly-charged Higgsino. The Higgsino decays

through an off-shell slepton to a same sign lepton pair and a neutralino. This

process also gives a final state signal with 4 leptons and /ET . We call this (C3)

p p→ δ̃++
L δ̃−−L → (˜̀∗+i `+

i ) (˜̀∗−j `−j )→ `+
i `

+
i `
−
j `
−
j χ̃

0
1χ̃

0
1

All the three subprocesses mentioned above lead to a signal with four charged leptons

in the final state which is a very clean signal at a hadron machine such as the LHC,

with very little SM background, and therefore should be an interesting test for the

model. Significantly one should note that the signal described by (C1) is an important

channel for the search of doubly charged particle resonances such as double charged

scalars [51] or bileptons [52] and can appear even in R-parity violating supersymmetric

models [53]. The highlight of course is that there is no source for missing transverse

momenta in the signal. However, the other two signals described by (C2) and (C3)

not only lead to four charged leptons in the final states but is also accompanied by

large missing transverse momenta due to the LSP present in the final state. There

could be numerous new physics scenarios where such a signal can be common and
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so it would be interesting to be able to identify the signal associated with our model

in a unique way. We find that our signal can in general be classified into two types,

LHC Energy C1 C2 C3
/ET (GeV) /ET (GeV) /ET (GeV)

> 0 > 100 > 0 > 100 > 0 > 100

7 TeV 0.266 fb 0.033 fb 0.275 fb 0.226 fb 0.642 fb 0.568 fb

8 TeV 0.368 fb 0.048 fb 0.430 fb 0.359 fb 0.992 fb 0.927 fb

14 TeV 1.153 fb 0.228 fb 1.859 fb 1.649 fb 4.208 fb 3.667 fb

Table 3.1: Cross-section table for a final state of `+
i `

+
i `
−
i `
−
i + X with Mδ̃±±L,R

= 500

GeV,Mδ±±R
= 300 GeV, Mχ̃0

1
= 80 GeV and Ml̃±= 1 TeV

one where we only demand four charged leptons in the final state and do not put

any requirement on the missing transverse momenta. The other type would be to

demand a minimum missing transverse momenta in the final state in addition to the

four tagged charged leptons. We list the cross-sections for the three subprocesses

(C1–C3) at different LHC energies in Table 3.1 which gives the cross section for a

final state consisting of same-sign pairs and all four of same-flavor (SF) charged

leptons in our model for BP1 where the doubly-charged Higgsino mass is taken

as 500 GeV, doubly-charged Higgs boson mass of 300 GeV, slepton mass of 1 TeV

and a neutralino mass of 80 GeV. Note that the signal cross sections are invariably

larger for the (C3) as it comes from the pair production of the left-handed doubly

charged Higgsinos which has the greater production rate. We can see that without

any missing ET requirement on the final state, a somewhat lower cross section for

the signal coming from the pair production of doubly charged scalar is found to be

enhanced considerably by including contributions from the pair production of the

doubly charged Higgsinos. This enhances the sensitivity of the experiment to exotic

doubly charged particles through the four charged lepton final state. With a minimum
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missing ET requirement of 100 GeV on the events, it is found that the signal coming

from the pair production of the doubly charged scalars is reduced drastically while

the events from the pair production of the doubly charged Higgsinos are not affected

much. This is expected because the doubly charged Higgsinos decay to final states

consisting of the undetected LSP which carries off substantial missing energy and

therefore satisfies the large /ET cut-off. In Table 3.2 we show the cross-section for

LHC Energy C1 C2 C3
/ET (GeV) /ET (GeV) /ET (GeV)

> 0 > 100 > 0 > 100 > 0 > 100

7 TeV 0.302 fb 0.032 fb 0.314 fb 0.257 fb 0.753 fb 0.672 fb

8 TeV 0.418 fb 0.047 fb 0.480 fb 0.402 fb 1.152 fb 1.078 fb

14 TeV 1.266 fb 0.216 fb 1.989 fb 1.749 fb 4.655 fb 4.051 fb

Table 3.2: Cross-section table for a final state of `+
i `

+
i `
−
j `
−
j + X with Mδ̃±±L,R

= 500

GeV,Mδ±±R
= 300 GeV, Mχ̃0

1
= 80 GeV and Ml̃±= 1 TeV

a final state consisting of same-sign pairs where each pair is of different-flavor (DF)

leptons for BP1. Here we assume that one of the doubly-charged particle decays

to one particular flavor of the charged leptons while the other decays to a different

flavor. So the final states would have four charged leptons of the type e±e±µ∓µ∓.

Note that such a combination of final state would have practically no SM background

as it requires at least four W bosons to give such a combination of charged leptons

in the final state. We neglect the τ lepton as discussed before. The cross sections are

slightly greater than those listed in Table 3.1 because we have removed the additional

kinematic cut on the invariant mass on the opposite-sign same flavor leptons given

by 80 GeV > M`+`− > 100 GeV . As our estimates rely on the assumption that the

branching fractions for the doubly charged particles decay to each flavor of charged

lepton is 1/3, we must point out that this final state will be relevant only when the
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decay rates to either e±e± or µ±µ± are not too suppressed.
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Figure 3.3: (a) /ET for doubly-charged Right-handed Higgsino and Higgs boson, (b) /ET

for doubly-charged Right-handed and Left-handed Higgsinos and Right-handed Higgs

boson.

We now consider a case where the doubly charged Higgsinos are slightly lighter

(400 GeV) while the other particles have the same mass as before (BP2). This

choice enhances the production rates for the doubly-charged Higgsinos but also gives

a compressed spectrum for its decays. Note that a bigger mass difference between

the parent particle and its decay products would lead to greater energy for the decay

products. In this case, one expects that as the LSP mass and the doubly charged Higgs

mass add up very close to the doubly-charged Higgsino mass, the missing transverse

momenta in the events due to the LSP will be less compared to the previous case.

This can be seen in Fig. 3.3 where we show the distribution for the differential

cross section as a function of the missing transverse energy. In Fig. 3.3(a) we show

the /ET distribution in the signal events coming from the contributions of the right-

handed doubly-charged Higgsino and Higgs while Fig. 3.3(b) shows /ET distribution for

contributions from both the right-handed and left-handed doubly-charged Higgsino

including the doubly charged Higgs boson. We see that differential cross section in
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Fig. 3.3(a) has a higher fraction of events at very small /ET . This is because of the

contribution from the direct pair production of the doubly-charged Higgs boson which

will have very little missing energy which might originate due to mismeasurements

of the final state particles, as there is no other source of missing energy in the form

of the neutralino in the final state. In Fig. 3.3(b) this effect is washed away because

the number of events from the left handed doubly-charged Higgsino pair-production

LHC Energy C1 C2 C3
/ET (GeV) /ET (GeV) /ET (GeV)

> 0 > 20 > 0 > 20 > 0 > 20

7 TeV 0.266 fb 0.143 fb 0.871 fb 0.823 fb 1.797 fb 1.774 fb

8 TeV 0.368 fb 0.203 fb 1.248 fb 1.183 fb 2.576 fb 2.550 fb

14 TeV 1.153 fb 0.737 fb 4.467 fb 4.309 fb 8.892 fb 8.806 fb

Table 3.3: Cross-section table for a final state of `+
i `

+
i `
−
i `
−
i + X with Mδ̃±±L,R

= 400

GeV,Mδ±±R
= 300 GeV, Mχ̃0

1
= 80 GeV and Ml̃±= 1 TeV

is now much larger compared to both the doubly-charged Higgs boson and Higgsino

pair-production and hence their contribution is suppressed.

In Table 3.3 we give the cross sections for a final state consisting of the same-

flavored charged leptons for BP2. Note that we have a slightly weaker requirement

on the missing transverse energy of 20 GeV for the events corresponding to BP2.

This is to avoid large suppression of the signal which can happen due to the smaller

mass splittings.

In Table 3.4 we give the cross sections for a final state consisting of different-

flavored charged lepton pairs for BP2. Again the kinematic characteristics for the

events remain the same as before but the cross section is slightly greater than that for

SF events because of the removal of the kinematic cut corresponding to the invariant

mass removing the Z peak for opposite sign same flavor charged lepton pairs.
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LHC Energy C1 C2 C3
/ET (GeV) /ET (GeV) /ET (GeV)

> 0 > 20 > 0 > 20 > 0 > 20

7 TeV 0.302 fb 0.149 fb 1.009 fb 0.949 fb 2.332 fb 2.308 fb

8 TeV 0.418 fb 0.213 fb 1.451 fb 1.358 fb 3.327 fb 3.288 fb

14 TeV 1.266 fb 0.721 fb 4.804 fb 4.610 fb 10.886 fb 10.767 fb

Table 3.4: Cross-section table for a final state of `+
i `

+
i `
−
j `
−
j + X with Mδ̃±±L,R

= 400

GeV,Mδ±±R
= 300 GeV, Mχ̃0

1
= 80 GeV and Ml̃±= 1 TeV

We must point out here that the corresponding SM background for the four

charged lepton final state with our selection cuts on the kinematic variables is found

to be completely negligible and therefore has not been shown or considered in our

analysis. The most dominant background which one expects for the SF charged lep-

ton signal will be from the pair production of Z bosons which we have suppressed

using the invariant mass cut on the opposite-sign same flavor lepton pairs. However,

as we have a light doubly-charged Higgs in the spectrum, we expect to see a reso-

nance in the invariant mass distributions of like-signed charge lepton pairs. We have

already shown that there are three different subprocesses for the signal contributions

for the 4`+X final state and the cross-section for (C3) is much larger than (C1) and

(C2). Note that (C3) corresponds to the signal where the left-handed doubly-charged

Higgsino is pair produced and decays through an off-shell slepton. Therefore one does

not expect any resonance behavior in the invariant mass distributions of the charged

lepton pairs but a kinematic edge is expected [46]. This would mean that a part of

the signal itself acts as a background to smear out the resonant signal for the doubly

charged Higgs boson. This is in fact the highlight of our analysis where we show that

our signal actually stands out as a resonance and is also enhanced because of the

additional contributions coming from the heavy doubly charged fermion production.
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To show some kinematic characteristics of the events for the SF signal we take

the case of e+e+e−e− in the final state and for the DF signal we take µ−µ−e+e+. We

put the aforementioned cuts and simulate the events using CalcHEP and Pythia and

look at the ∆Rll and invariant mass Mll of the final state leptons.
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Figure 3.4: (a) Illustrating the ∆Rll distribution for events coming from the doubly-

charged right-handed Higgsino and Higgs boson pair production and, (b) ∆Rll distri-

bution for events when the contributions from the pair production of the left-handed

Higgsinos is also included for BP1.

The ∆Rll for the same-sign and opposite-sign final state charged leptons of same

flavor for BP1 are shown in Fig. 3.4. Fig. 3.4(a) includes only the contribution of the

right-handed doubly-charged Higgsino and Higgs (C1 + C2) while Fig. 3.4(b) denotes

the contribution from the doubly-charged Higgs as well as both the right-handed and

left-handed doubly-charged Higgsino (C1 + C2 + C3). It is worth noting that in each

plot there is a marked difference between the same-sign lepton and the opposite-

sign leptonic final states. It can be seen that for the same-sign charged leptons the

distribution is peaked at low values of ∆R while the opposite-sign charged leptons

have a ∆R which is peaked at a much higher value. This is what is expected since
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the same-sign pair of leptons arise from the decay of a single doubly-charged Higgs

boson while the opposite-sign leptons arise from two different particles and hence are

much further apart. The measurement of ∆R at the LHC for a four lepton final state

can thus give a definite indication of the existence of a doubly-charged particle if the

distribution is similar to what we get in our analysis. Note that the ∆R distributions

are also very sensitive to the boost of the mother particle as larger boost will make

the decay products come out more closer to each other.
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Figure 3.5: Illustrating the (a) invariant mass distribution for events coming from

the doubly-charged right-handed Higgsino and Higgs boson pair production and, (b)

invariant mass distribution for events when the contributions from the pair production

of the left-handed Higgsinos is also included for BP1.

In Fig. 3.5 we show the invariant mass distributions for the same-sign and

opposite-sign final state leptons of same flavor for BP1. Note that for the opposite-

sign lepton pair invariant mass there are no events between 80 GeV and 100 GeV.

This is due to the cut that we applied to get rid of the Z peak for the SM background.

The invariant mass for the opposite-sign leptons do not show any resonant behavior.

For the same-sign lepton pairs, we see a pronounced peak at an invariant mass of 300

GeV which is the doubly-charged Higgs boson mass. As we include the contributions
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coming from the pair production of the left-handed doubly-charged Higgsino, the res-

onant peak is seen to broaden a little but is still very significant. Such a peak, though

very difficult to see without a priori knowledge of the Higgs boson mass, would be a

definite proof of a doubly-charged particle if seen in the detector. It is also worth not-

ing the distinct kinematic edge seen in the invariant mass distribution of the like-sign

charged lepton pair in both Fig. 3.5(a) and (b). The edge in Fig. 3.5(a) is at a differ-

ent Mll when compared to that in Fig. 3.5(b). Note that in Fig. 3.5(a) the resonant

peak is because of the doubly-charged Higgs decaying to two same-sign leptons while

the sharp cut-off in the distribution is because of the maximum invariant mass allowed

for the lepton pair that comes from δ±±R → `±`±. This would mean that the distribu-

tion will fall rapidly beyond the resonance which is the δ±±R mass. On the other hand,

the signal in Fig. 3.5(b) is completely dominated by the contributions coming from

the left-handed doubly-charged Higgsino production and therefore it washes away the

kinematic edge from the other subprocesses. The sharp cut-off in Fig. 3.5(b) then

appears because of δ̃±L → (˜̀∗±i `±i )→ `±i `
±
i χ̃

0
1 and is given by (in the rest frame of the

decaying particle) Mmax
l±l± =

√
M2

δ̃±±L
+M2

χ̃0
1
− 2Mδ̃±±L

Eχ̃0
1
, where Eχ̃0

1
is the energy of

the LSP. This yields an edge in the invariant mass distribution of the same-sign same

flavor charged lepton pairs at the bin around Ml±l± = Mδ̃±±L
−Mχ̃0

1
' 420 GeV. It is

interesting to observe that we find a distinct resonance in the invariant mass distri-

bution as well as a sharp kinematic edge due to the off-shell decay of the left-handed

doubly-charged Higgsino which clearly highlights an additional contribution to the

resonant signal of doubly-charged scalar production leading to four charged lepton

final states.

We can also consider the case where the right-handed doubly-charged Higgsino too

decays via off-shell doubly charged scalar which can be realized when the right-handed

doubly-charged Higgsino is not much heavier than the right-handed doubly-charged

Higgs boson such that Mδ̃±±R
< Mδ±±R

+ Mχ̃0
1
. In this case the Higgsino will decay
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Figure 3.6: Invariant mass distribution in Mll for a doubly-charged right-handed Hig-

gsino which decays through an off-shell doubly-charged Higgs boson.

into the LSP and two same sign leptons through an off-shell doubly-charged Higgs

boson. In Fig. 3.6 we show the invariant mass distribution for the charged lepton

pairs, where the doubly-charged Higgsino mass is 350 GeV, the doubly-charged Higgs

boson mass is 300 GeV and the LSP mass is 80 GeV. We see that in such a case the

resonant peak in the same-sign charged lepton pair is lost but a kinematic edge exists

at around 270 GeV. Note that we still expect a narrow resonance from the direct pair

production of the doubly-charged scalar and an enhanced signal rate but we do not

see any new enhancement at the resonance.

Experiments at the LHC are looking for doubly-charged Higgs bosons by analyzing

final states with four high pT charged leptons. Our model gives a resonant multi-

lepton signal with large missing energy depending on the mass difference between

the doubly-charged Higgs boson and the Higgsino. Such a signal accompanied by a

peak in the same-sign lepton invariant mass distribution of the same-sign charged

lepton pair. This will clearly suggest an alternative signal not restricted to the direct

production of doubly charged scalars. This can definitely be a possible channel for
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the discovery of the doubly-charged Higgsinos which might be worth looking for.

3.4 Summary

In this work we have studied the pair-production and decay of the doubly-charged

Higgsinos in the left-right supersymmetric model and looked at the possible collider

signatures at the LHC. The four lepton plus missing energy signal has a variety of dis-

tinct features which can easily distinguish itself from other signals, arising especially

from the minimal supersymmetric standard model.

We have studied the multi-lepton final state 2`+2`− + /ET arising in the left-right

SUSY model. We find that there are three distinct sub-processes that contribute to

the signal. We have shown through two representative points in the model how each

sub-process dominates the signal depending on the kinematic requirements on the

missing transverse momenta. We also show through various kinematic distributions

the highlight of the four lepton signal in this model. Using specific cuts on the final

states we find that there is very little background from SM. The major background at

the LHC where two Z bosons decay into four charged leptons is minimized by putting

an invariant mass cut which neglects events at the Z boson peak. Thus, the signal

produced by our model at the colliders would be clean and very easy to distinguish

from other competing models. Large missing transverse momenta in the final state

can be triggered upon to rule out contributions coming from the direct production

of doubly-charged scalars and therefore would give a strong hint of a supersymmetric

model with doubly-charged particles. The data collected by the LHC experiments

should already provide significant constraints on the masses of the doubly charged

Higgsino and Higgs boson through the process outlined here. Dedicated searches

for these doubly charged particles in the channel proposed here by the experimental

collaborations will be highly desirable.
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CHAPTER 4

HIGGS BOSON DECAY CONSTRAINTS ON A MODEL WITH A

UNIVERSAL EXTRA DIMENSION

4.1 Introduction

The discovery of the 125-126 GeV Higgs boson — or its close lookalike — at CERN,

Geneva, in the previous year [54], has proved to be a game-changing moment in

phenomenological studies of electroweak interactions. Gone are speculations about

Higgsless models [55], strongly-coupled Higgs sectors [56] and fears that the Higgs

boson self-coupling may hit a Landau pole at some large energy scale [57]. Instead,

today’s theoretical studies have other concerns, such as stability of the electroweak

vacuum, fine-tuning constraints and the requirement that the measured Higgs boson

mass and branching ratios be correctly explained in whatever model happens to be

the subject of the study. At the present instance, there is no compelling reason, be-

yond certain theoretical prejudices (like grand unification), to believe that we require

anything other than the Standard Model (SM) to explain all the known phenomena

on a terrestrial scale. Destabilisation of the SM vacuum at some energy scale below

the Planck scale could be one of the strongest hints of new physics [58], but at the

moment this issue is mired in uncertainties of the top quark mass measurement [59].

Nevertheless, we do require physics beyond the Standard Model, and this require-

ment arises as soon as we look outside the confines of our Earth into the cosmos

beyond. Here it is well known that the SM fails to provide explanations for (i) the

composition of dark matter [60], (ii) the nature of dark energy [61] and (iii) the

amount of CP -violation required for baryogenesis [62]. Of these, perhaps the most
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tractable problem is the first one, viz. the generation of a model for dark matter,

for all that is required is a model for a stable, weakly-interacting massive particle

(WIMP). The most famous model which provides this is, of course, supersymme-

try with conservation of R-parity, where the lightest supersymmetric particle is the

WIMP in question [63]. An alternative model, which was proposed about a decade

ago, is one with a so-called Universal Extra Dimension [64]. In the minimal model of

this kind (mUED), each five-dimensional SM field is replaced by a tower of Kaluza-

Klein (KK) modes, each labelled by a KK number n, and having masses given (at

tree-level) by Mn = (M2
0 + n2R−2)

1/2
. Here, the lightest of the n = 1 particles is sta-

ble and weakly-interacting due to a Z2 symmetry called KK parity, defined in terms

of KK number by (−1)n. This lightest KK particle, called the LKP, is an excellent

candidate for dark matter [65].

At a high energy collider, the behaviour of the mUED models is very similar

to that of supersymmetric models [66]. The n = 1 states form analogues of the

supersymmetric particles, exhibiting cascade decays ending in the LKP, which is then

a source of missing energy and momentum. A major difference from supersymmetry

is the presence of n = 2 and higher KK modes, which could perhaps be produced as

resonances in a high energy machine like the LHC [67]. However, a more significant

difference arises when we consider the ultraviolet behaviour of the mUED model (or

any model with KK modes), as was pointed out in a pioneering paper by Dienes et

al [68]. This is the fact that when we allow the SM coupling constants to run in

this model, we encounter repeated KK thresholds at every scale n/R, so that, when

considered over a large range of energies, the coupling constant exhibits a piecewise

logarithmic running closely mimicking a power law dependence. As a result, it has

been shown that (a) the electromagnetic coupling hits a Landau pole at as low a scale

as Λ ≈ 40R−1, and (b) there is approximate (but not exact) unification of the three

gauge coupling constants at an even lower scale Λ ≈ 20R−1. One therefore assumes
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that the low energy theory has a cutoff at either of these values, and phenomenological

studies are made accordingly. This has been the standard practice in mUED studies

over the past decade.

Of course, it is not only the gauge couplings that run faster in this model, but also

the scalar self coupling λ. It has been shown [69] that if the self-coupling λ = M2
H/2v

2

is less than 0.18 at the electroweak scale, then its renormalisation group evolution will

inexorably drive it to zero at some high scale, at which point the electroweak vacuum

will become unstable. Taking the experimental range 122 GeV ≤MH ≤127 GeV for

the Higgs boson mass, we obtain 0.123 ≤ λ ≤ 0.133, which is clearly below 0.180.

It follows that the electroweak vacuum in this model will indeed destabilise at some

high scale, as, in fact, happens in the Standard Model itself at very high scales. The

surprise lies in that fact that the ‘power law’ running of λ in the mUED model is

so fast that the destabilisation takes place at a scale which is always below 6R−1.

At this surprisingly low scale, new physics must come to the rescue, and hence the

destabilisation scale can be treated as a cutoff for the mUED model.

The exact value of the cutoff scale is determined by evaluating the running cou-

pling constant λ and determining where it vanishes [69]. The most important input

parameters which determine this running are the mass of the Higgs boson (MH) and

the size parameter (R−1), which is nothing but the inverse of the compactification

radius of the extra dimension. The solid (red) lines in Figure 4.1 show the variation

of the cutoff scale Λ, in units of R−1, as a function of this size parameter R−1, for two

values of Higgs boson mass MH = 122, 127 GeV (which represent the 3σ experimental

limits). The (red) hatching, therefore, represents all the intermediate values of MH .

Horizontal (blue) lines represent the different KK levels n/R, for n = 1, 2, . . . , 6. Our

results shown here correspond closely to similar results shown in Ref. [70].

Obviously, assuming tree-level masses, the number of KK modes with mass Mn ≈

n/R which can participate in any process will be given by the nearest integer lower
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Figure 4.1: Variation of Λ/R−1, where Λ is the cutoff induced by destabilisation of the electroweak

vacuum, as a function of size parameter R−1. The (red) hatched band represents variations in the

Higgs boson mass from 122 – 127 GeV, and horizontal (blue) lines represent KK levels.

than the solid (red) curve for a given value of R−1. It is clear that this number can

only vary between 3 and 5, and can never reach higher values such as 20 and 40 which

used to be assumed earlier. Note that in generating Figure 4.1, and subsequently, we

have fixed the top quark mass at mt = 172.3 GeV. Variation of the top quark mass

between its experimentally allowed limits [71] does result in some distortion of the

curves, as the related Yukawa coupling plays a role in the running of the self-coupling

λ. However, these distortions have very minor effects on the final conclusions of this

article, and hence are not shown here.

In an earlier article [75], written at a stage when the new boson discovered at the

CERN LHC had not yet been identified with any certainty as the Higgs boson, two of

the present authors had shown that this low value of cutoff (i.e. small number of KK

modes to sum over) leads to a compressed spectrum of KK modes of SM fields at any

level n ≥ 1, which presents serious difficulties for detection at the Tevatron and LHC.

However, it was not possible to impose constraints on the model from the Higgs boson

decay branching ratios, which were very imperfectly measured [54] at that stage. Now,
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however, we have better experimental results on these branching ratios [72,73], which,

though not as precise or consistent between separate experiments as we would have

liked them to be, have nevertheless reached a level where they are accurate enough

to begin to constrain the mUED model [74]. These constraints form the subject of

the present study.

Before we go on to actually study the Higgs boson decay widths, however, it

may be noted that bounds on the size parameter R−1 quoted from hadron collider

studies [78] are generally based on expanded spectra arising when we sum KK levels

up to N = 20 or even N = 40, which, as we have shown, is incompatible with

stability of the electroweak vacuum. We should set aside such hadron collider bounds

on the mUED model. The LEP bound R−1 > 260 GeV, obtained at 3σ from precision

electroweak tests [75], may, however, be taken as a certainty. In a recent work [76],

it has been shown that even if we sum up to 5 KK levels, a lower bound of R−1 >

720 GeV at 95% C.L. can be obtained by noting the non-observation by the CMS

Collaboration of dilepton signals [77] arising from the decay of n = 2 resonances of

the mUED model in the 7-8 TeV runs of the LHC. The purpose of the present study

is, therefore, to ascertain if the existing data on the Higgs boson decay channels can

provide even better constraints.

4.2 Higgs boson decay signal strengths at LHC

In the Higgs boson decays, the actual experimentally-measured quantities are the so-

called signal strengths [72, 73]. For a decay H → XX̄, the signal strength is defined

by

µXX̄ =
σ(pp→ H0)× B(H0 → XX̄)

σ(SM)((pp→ H0)× B(SM)(H0 → XX̄)
(4.1)

where B(H0 → XX̄) is the branching ratio of the Higgs boson to an XX̄ pair,

and σ(pp → H0) is the cross-section for single Higgs production at the LHC. The
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superscript (SM) denotes the SM prediction. Obviously, if the SM is the correct

theory, then the experimental data will eventually converge on the results µXX̄ ' 1

for all the channels X. On the other hand, deviations from unity will indicate new

physics. As of now, the ATLAS and CMS Collaborations at CERN have measured

signal strengths for XX̄ = WW ∗, ZZ∗, bb̄, τ−τ+, γγ. Of these, the case XX̄ = bb̄ is

not very viable yet because of large errors. The other four have been measured with

a better degree of precision. The results are given in Table 4.1 below.

µWW µZZ µττ µγγ

ATLAS 0.99+0.31
−0.28 1.43+0.40

−0.35 0.8± 0.7 1.55+0.33
−0.28

CMS 0.68± 0.20 0.92± 0.28 1.10± 0.41 0.77± 0.27

Table 4.1: ATLAS [72] and CMS [73] data on Higgs boson signal strengths, as reported in the

summer of 2013. For µττ we use the March 2013 results of ATLAS [79].

4.3 Calculation of Higgs boson decay strength and comparison with

experiments

We now discuss how to predict the values of µXX̄ in the mUED model. Using the fact

that the parton-level cross-section for gluon fusion gg → H0 is related to the decay

width of H− → gg by the linear relation

σ(gg → H0) =
π2

8M3
H

Γ(H0 → gg) , (4.2)

we can rewrite the signal strength entirely in terms of decay widths as

µXX̄ =
Γ(H0 → gg)

Γ(SM)((H0 → gg)
× Γ(H0 → XX̄)

Γ(SM)(H0 → XX̄)
× Γ

(SM)
H

ΓH
(4.3)

where

ΓH =
∑

X

Γ(H0 → XX̄) (4.4)
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and all PDF-related effects (to leading order) in the cross-section may be expected

to cancel in the ratio. All we have to do, therefore, is to calculate the decay widths

of the Higgs boson in the mUED model and the SM, and take the appropriate ratios.

All the formulae relevant for these are available in the literature, but, for the sake of

completeness and having a consistent notation, we list the most important formulae

below.

In the SM, the decay width of the Higgs boson to a pair of leptons is given by [80]

Γ(H0 → `+`−) =
α(MH)

8 sin2 θW

m2
`

M2
W

MH

(
1− 4m2

`

M2
H

)3/2

(4.5)

where α(Q) is the running QED coupling at the mass scale Q. The corresponding

decay width to a pair of quarks is given by [80]

Γ(H0 → qq̄) =
3α(MH)

8 sin2 θW

m2
q(MH)

M2
W

MH

(
1− 4m2

q

M2
H

)3/2{
1 + 5.67

αs(MH)

π

}
(4.6)

where the last factor represents the QCD corrections to the decay width [81], and the

running quark mass is given by [82]

m2
q(MH) = m2

q

{
αs(MH)

αs(mq)

}24/23

(4.7)

where αs(Q) is the running QCD coupling at the mass scale Q.

The SM decay width of the Higgs boson to a WW ∗ pair is given by [83]

Γ(H0 → WW ∗) =
3α2(MH)

32π sin4 θWMH

F (MW ) (4.8)

and that to a ZZ∗ pair by [83]

Γ(H0 → ZZ∗) =
α2(MH)

72π sin4 2θWMH

(
63− 120 sin2 θW + 160 sin4 θW

)
F (MZ) (4.9)

where

F (M) = − 1

2

(
1− M2

M2
H

)(
47M2 − 13M2

H +
2M4

H

M2

)

− 3

(
M2

H − 6M2 +
4M4

M2
H

)
ln
M2

M2
H
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+ 3

(
M2

H − 8M2 +
20M4

M2
H

)
MH√

4M2 −M2
H

cos−1 MH

2M

(
3− M2

H

M2

)
(4.10)

It is important to note that QCD corrections are significant only in the decay widths

of the Higgs boson to quarks and can be neglected for all other decay modes. Likewise,

the mUED contributions to the above decay modes is negligible, arising, as they do,

from higher order effects which are severely suppressed by the heavy masses of the

KK modes.

The decay modes which will be of most interest in the present work, are however,

those that occur at the one-loop level in the SM, viz. the decays of the Higgs boson to

a pair of gluons (H0 → gg) or a pair of photons (H0 → γγ). Formulae for the partial

decay widths in the SM are given in Ref. [80], and the extra contributions in the

mUED, which occur at the same level in perturbation theory, are given in Ref. [84].

We list, below, these formulae in a common notation, with a couple of modifications

to the formulae of Ref. [84], which will be mentioned at the appropriate juncture.

The partial decay width of the Higgs boson to a pair of gluons is given by

Γ(H0 → gg) =
α(MH)α2

s(MH)

72π2 sin2 θW

1

M5
HM

2
W

| Ω(SM)
gg + Ω(KK)

gg |2

×
{

1 + 17.92
αs(MH)

π
+ 156.8

α2
s(MH)

π2
+ 467.7

α3
s(MH)

π3

}
(4.11)

where the second line indicates the QCD corrections [81] and the loop integral func-

tions are given by

Ω(SM)
gg =

∑

q

3m2
q

{
2M2

H − (M2
H − 4m2

q)f(mq)
}

(4.12)

Ω(KK)
gg =

∑

q

N∑

n=1

3m2
q

{
4M2

H − (M2
H − 4m2

q,n,1)f(mq,n,1)− (M2
H − 4m2

q,n,2)f(mq,n,2)
}

where mq,n,1 and mq,n,2 are the two eigenvalues of the mass matrix

M(n)
q =




m
(n)
qL mq

mq −m(n)
qR


 (4.13)
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for the n’th level KK modes of the quarks, where

[
m

(n)
qL

]2

=
n2

R2
+m2

q + δ
(n)
qL

[
m

(n)
qR

]2

=
n2

R2
+m2

q + δ
(n)
qR (4.14)

in terms of the radiative corrections δ
(n)
qL and δ

(n)
qR [66]. The function f(m) is the usual

loop integral [80]

f(m) =





−2
(
sin−1 MH

2m

)2
for m > MH

2

−π2

2
for m = MH

2

1
2

(
ln

MH+
√
M2
H−4m2

MH−
√
M2
H−4m2

− iπ
)2

for m < MH

2

(4.15)

In using these formulae, we differ from Ref. [84] in two ways:

1. we consider the sum over KK modes to terminate at N , which is the largest

integer smaller than ΛR as given in Fig. 4.1, instead of summing to infinity, as

was done in Ref. [84]; and

2. we consider the splitting between mass eigenstates of KK modes of quarks at

the level n, whereas Ref. [84] assumed them to be degenerate. Of course, the

fact that the off-diagonal terms in the mass matrix of Eqn. 4.13 are mq indicates

that such splitting between these states as does occur will be perceptible only

in the third generation.

In a similar vein, the partial decay width of the Higgs boson to a pair of photons is

given by

Γ(H0 → γγ) =
α3(MH)

16π2 sin2 θW

1

M5
HM

2
W

| Ω(SM)
γγ + Ω(KK)

γγ |2 (4.16)

where the loop integral functions are given by

Ω(SM)
γγ =

∑

q

e2
qω

(SM)
q +

∑

`

e2
`ω

(SM)
` + ω

(SM)
W

Ω(KK)
γγ =

N∑

n=1

[∑

q

e2
qω

(n)
q +

∑

`

e2
`ω

(n)
` + ω

(n)
W

]
(4.17)
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in terms of [80]

ω(SM)
q = 3m2

q

{
2M2

H − (M2
H − 4m2

q)f(mq)
}

ω
(SM)
` = m2

`

{
2M2

H − (M2
H − 4m2

`)f(m`)
}

ω
(SM)
W = −3M2

W

{
M2

H − (M2
H − 2M2

W )f(MW )
}
− 1

2
M4

H (4.18)

and [84]

ω(n)
q = 3m2

q

{
4M2

H − (M2
H − 4m2

q,n,1)f(mq,n,1)− (M2
H − 4m2

q,n,2)f(m2
q,n,2)

}

ω
(n)
` = m2

`

{
4M2

H − (M2
H − 4m2

`,n,1)f(m`,n,1)− (M2
H − 4m2

`,n,2)f(m2
`,n,2)

}

ω
(n)
W = −4M2

WM
2
H +

{
4M2

W

(
M2

H − 2M2
W,n

)
−M2

W,nM
2
H

}
f(MW,n)− 1

2
M4

H(4.19)

where the lepton mass eigenvalues m`,n,1 and m`,n,2 are, for all practical purposes,

degenerate.

Using these formulae, we can now find the signal strengths predicted in the mUED

model as a function of the size parameter. To understand this behaviour, let us note

the conclusion of Ref. [84], which remain qualitatively – though not quantitatively –

true in our analysis as well. These may be summed up as follows.

• The tree-level decay widths of the Higgs boson are practically the same in the

SM and the mUED model.

• The decay width of the Higgs boson to a pair of gluons is considerably enhanced

in the mUED model, especially when R is taken close to its lower experimental

bound (see Figure 4.2).

• The decay width of the Higgs boson to a pair of photons is suppressed in the

mUED model, especially when R is taken close to its lower experimental bound

(see Figure 4.2).

In our analysis, we obtain numerically different results from Ref. [84] because of

two reasons. In the first place, we note that the sum over KK modes in our case is

truncated at values of n between 3 and 5, whereas Ref. [84] took the sum to infinity.
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Figure 4.2: Illustrating the effect of KK modes on the partial decay widths of H0 → gg and

H0 → γγ. The former is always enhanced, while the latter is always suppressed, compared to the

SM prediction.

As a result, we obtain significantly smaller mUED contributions. The second point

is that because of this low cutoff, we are able to take R−1 somewhat lower than what

the earlier collider-based bounds permit us, and these lower values could then lead to

larger mUED contributions.

If we take a closer look at Eqn. (4.3), however, we see that there are more con-

flicting effects. The three channels with XX̄ = WW ∗, ZZ∗ and ττ will all receive

enhancements in the mUED model through the first factor on the right of Eqn. (4.3).

The second factor will be practically unity, as we have explained above. The third

factor, however, will suppress the signal strength if there are large enough mUED

contributions in the first factor. Owing to these opposed effects, the enhancement in

signal strength is not as large as it might have been otherwise.

A curious fact worth noting is that the variation in the last factor arises only

because we do not yet have an accurate measurement of the total decay width of the

Higgs boson. If the Higgs boson decay width could be accurately determined from a
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line shape analysis, as was done for the W and Z bosons at LEP and Tevatron, then

that result alone could have been used to constrain any new physics model. In the

case of the γγ channel, the second factor on the right of Eqn. (4.3) will be somewhat

smaller than unity, as a result of which the signal strength will be somewhat more

suppressed than in the other cases. It is therefore difficult, in the mUED model, to

predict large excesses in the partial width of H0 → γγ. We reiterate, therefore, that

the mUED enhancement in H0 → gg and the suppression of H0 → γγ are both in

agreement with the results of Ref. [84], though the actual deviations are much more

modest in the present case — a consequence of the small number of KK modes which

contribute to these deviations.

These diverse effects together contribute to the numerical results exhibited in

Figure 4.3. The four panels in this figure correspond to the four decays H0 →

WW ∗, ZZ∗, τ+τ− and γγ, as marked on each respective panel. The solid (black)

lines represent the mUED predictions, and, as expected, these fall rapidly to the SM

expectation µXX̄ = 1 as R−1 increases, in every case. The thickness of these lines

indicates the effect of varying MH = 122 − 127 GeV. It is clear from the figure that

this is not a very significant effect∗. In fact, the solid (black) curves for µWW , µZZ and

µττ are identical, since the only effect of introducing mUED lies in the first and last

factors of Eqn. 4.3, which depend mainly on Γ(H0 → gg). The solid (black) curve

for µγγ is clearly different, as one would expect. However, the reason for showing

each signal strength separately lies in the fact that the experimental constraints are

significantly different in each of these channels. For both the ATLAS and CMS data,

the strongest constraints come, in fact, from the WW ∗ channel. For a 125-126 GeV

Higgs boson, these come out as R−1 > 463 GeV (1.3 TeV) for the ATLAS (CMS)

results, which are far more restrictive than anything we can get from precision tests,

∗The effect of varying the top quark Yukawa coupling is sub-leading to this variation, which is

why we do not show it at all in the present work.
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Figure 4.3: Illustrating the variation with R−1 of the signal strengths µWW , µZZ , µττ and µγγ ,

as marked on the respective panels. The solid (black) lines show the mUED prediction, with their

thickness representing the effect of varying the Higgs boson mass MH from 122 − 127 GeV. The

oppositely-hatched regions (blue and red) denote, as indicated in the key on the right, the 95% C.L.

limits from the ATLAS and CMS Collaborations quoted in Table 4.1.

and – at least for the CMS data – surpass the bounds from dilepton channels [76] by

a factor close to 2.

95% C.L. constraints from the other channels are illustrated, together with the

WW ∗ channel, in Figure 4.4, in the form of a bar graph. It is apparent, even from

Figure 4.3, that the CMS data provide significantly stronger constraints, at this level,

than the ATLAS data. In particular, if we consider the ATLAS data for H0 → γγ,
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where there appears to be an excess at the 1σ level over the SM prediction, this

appears to hint at lower values of R−1, though – as the graph shows – large values

of R−1 are perfectly consistent with the 95% C.L. limits. In view of the substantial

differences between the two experimental results, it may be premature to read too

much into these constraints, but it is clear that for the WW ∗ channel, at least, we

do find a reasonable level of consistency. Since this is the channel which provides the

most stringent bounds on R−1, these are perhaps the most acceptable among the four

sets of constraints, at least at the present time.

ττ

γγ

R   [TeV]−1

 0.5  1.0  1.5

Figure 4.4: 95% C.L. lower bounds (in TeV) on the size parameter R−1 arising from four different

Higgs boson decay channels. Numbers juxtaposed with the bars are the numerical value of the

bounds.

In Figure 4.4, as mentioned above, we have shown a bar graph illustrating the

individual 95% C.L. constraints on R−1 from each of these four channels. The upper

(blue) and lower (red) bars represent bounds arising from the ATLAS and CMS data

respectively. For the ATLAS data, the strongest constraint is from the WW ∗ channel,

but even the ZZ∗ and ττ channels are more restrictive than the LEP constraints. So

far as the ATLAS data is concerned, obviously no useful constraint can be expected

to arise from the γγ channel, but if the excess in this channel turns out to be a

genuine feature, it will favour the mUED model (among other rival models) with a

somewhat smaller value of R−1. The CMS data, on the other hand, are much more
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restrictive. While the WW ∗ channel pushes the lower bound to as high as 1.3 TeV,

none of the other channels permit a value of R−1 as low as 500 GeV, which is a

substantial improvement over the LEP bound of 260 GeV, but is not as restrictive as

the dilepton bound obtained in Ref. [76].

The lower bound of R−1 > 1.3 TeV obtained from our computations represents

a very strong constraint for the mUED model and would severely impact the direct

searches planned for the 14 TeV run of the LHC. It is interesting, therefore, to ask

how far these bounds can be relaxed if we consider the ATLAS and CMS data at the

3σ level rather than at 95% confidence level. These bounds are presented in Table 4.2

below, and are naturally weaker, with the strongest bound lying at R−1 > 685 GeV,

which is still a significant improvement over the precision tests†.

µWW µZZ µττ µγγ

ATLAS 369 278 248 207

CMS 685 413 306 402

Table 4.2: 3σ lower bounds (in GeV) on R−1 using the ATLAS and CMS data from Table 4.1 and

the signal strengths from Figure 4.3.

If we further relax the constraints to the 5σ level, we find that the WW ∗ channel

data imply bounds on R−1 > 280 (432) GeV from the ATLAS (CMS) data. Even

with this very loose constraint, the lower bound of 432 GeV from the CMS data is

still stronger than the LEP constraint. However, if we go by the conventional wisdom

that 2σ deviations constitute a hint, 3σ deviations – or the lack thereof – constitute a

bound, and 5σ is required for a discovery, then the stronger constraint R−1 > 1.3 TeV

may be quite credible.

It is amusing to speculate on how these bounds might improve in the 14 TeV

run of the LHC — under the somewhat pessimistic assumption that no deviations

†This is also definitely stronger than the 3σ bounds obtainable from dilepton signals, which would

certainly lie around 600 GeV or below, if we go by the results quoted in Fig. 4 of Ref. [76].
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from the SM will be discovered. Estimates [85] of the cross-section for pp → H0 at

8 TeV and 14 TeV indicate an enhancement in the cross-section by a factor around

2.5. Assuming that the integrated luminosity in the 14 TeV run will be as high as

1.5 ab−1, this represents an enhancement of 100 times over the statistics collected at

8 TeV. Thus, the number of Higgs boson events in the 14 TeV run will be around 250

times the number collected at the 8 TeV run. If we concentrate on the WW ∗ signal

and assume that the errors will scale as the inverse square root of the number of Higgs

boson decay events, then the error on the CMS measurement of µWW could go down

as low as 0.012. This is certainly an overestimate, since it does not take into account

systematic effects, but it is probably safe to assume [86] that the error could be as

low as 5%. Assuming, therefore, that we have a measured value µWW = 1.00± 0.05

(from either experiment, or from both combined), we immediately predict a 95% C.L.

limit R−1 > 1.58 TeV, which would increase to 1.90 TeV if the integrated luminosity

is doubled to 3 ab−1. For such large values of R−1, it is more or less sure that

direct searches for mUED signals will fail, and even the LKP may become too heavy

to explain the observed relic density of dark matter. In this admittedly pessimistic

scenario, there will be no real motivation to study the mUED model any further.

Of course, we do not have any compelling reason to think that the above scenario

is a true picture of the future. In fact, given the urgency with which an explanation

of the composition of dark matter is required, we may well hope for just the reverse

of this scenario, i.e. the observation of deviations in some of the Higgs boson partial

decay widths in the 14 TeV run. In that case, we can reverse some of the arguments

of the present study to show that a mUED explanation of such a deviation would be

immediately available for some value of R−1 in the range of 1− 2 TeV.
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4.4 Summary

To sum up, then, we have studied constraints on the mUED model from the measured

Higgs boson signal strengths in the decays H0 → WW ∗, ZZ∗, ττ and γγ channels.

The mUED calculations have been carried out carefully, taking into account the fact

that this model has a very low cutoff due to vacuum stability arguments. Even with

the reduced effects due to this low cutoff, however, we find that the present CMS data

can push the lower bound on the size parameter R−1 of this model as high as 1.3 TeV

at 95% C.L. (or 685 GeV at 3σ). ATLAS data are less restrictive, but in any case, do

serve to push the value of R−1 above about 500 GeV. All this represents an enormous

improvement over the 3σ bound of around 260 GeV arising from precision electroweak

tests at the LEP collider, as well as a factor close to 2 greater than the 95% dilepton

bounds obtained from the early runs of the LHC. We then go on to argue that these

signal strengths can be used to probe the mUED model up to R−1 ≈ 2 TeV in the

14 TeV run of the LHC.
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CHAPTER 5

CONCLUSIONS

This dissertation has been dedicated to the study of Higgs bosons in various models

including several supersymmetric left-right models and a minimal universal extra

dimensional model.

In Chapter 2, the Higgs boson spectrum was studied for various iterations of the

left-right supersymmetric models differentiated by the symmetry breaking sectors. In

some of the models, the lightest neutral Higgs boson tree level mass was significantly

higher than in the Standard Model or its minimal supersymmetric extension. For

these cases one can easily get the experimentally observed Higgs boson mass of 125

GeV for a relatively small stop squark mass of about 500 GeV and negligible stop

squark mixing parameter. A light stop squark can be easily produced at particle

accelerators, enhancing the chances of it being seen at the LHC. In some models

with right-handed triplet Higgs bosons, the doubly-charged scalar remains massless

at the tree level. Radiative corrections to the doubly-charged Higgs boson mass

was calculated and it was shown that loop contributions can push the mass to the

electroweak symmetry breaking scale.

In Chapter 3, the collider phenomenology of doubly-charged scalars and fermions is

studied in the framework of left-right supersymmetric model with automatic R-parity.

A new mechanism for production of doubly-charged Higgs boson is presented wherein

the pair-production of the right-handed doubly-charged Higgsino and its subsequent

decay can produce unique collider signals at the LHC which can easily distinguish

itself from other signals, arising especially from the minimal supersymmetric standard
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model. The multi-lepton final state of 2l+2l− + /ET arises through three distinct sub-

processes that contribute to the signal. Applying specific cuts, the background can

be suppressed and the signal produced at the colliders can give a strong hint about

the presence of doubly-charged particles.

In Chapter 4, the constraints on minimal universal extra dimensional model from

the experimentally measured decay strengths of the Higgs boson is studied. The

mUED calculations have been carefully done, taking into account that the model has

a very low cutoff due to vacuum stability arguments. The Higgs boson cross-section

for decays H0 → WW ∗, ZZ∗, ττ and γγ are calculated in the mUED model and

compared with the LHC data. The CMS data can push the lower bound on the size

parameter R−1 of this model as high as 1.3 TeV at 95% C.L.
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[76] L. Edelhauser, T. Fläcke and M. Kramer, JHEP 1308, 091 (2013)

[arXiv:1302.6076 [hep-ph]].

[77] CMS Collaboration], CMS-PAS-EXO-12-061 (2012).

[78] T. Kakuda, K. Nishiwaki, K. -y. Oda and R. Watanabe, Phys. Rev. D 88, 035007

(2013) [arXiv:1305.1686 [hep-ph]].

[79] [ATLAS Collaboration], ATLAS-CONF-2013-034 (2013).

[80] V. Barger and R.J.N. Phillips, Collider Physics, (Addison-Wesley, 2nd ed., 1997).

[81] M. Schreck and M. Steinhauser, Phys. Lett. B 655, 148 (2007) [arXiv:0708.0916

[hep-ph]].

[82] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

[83] W. -Y. Keung and W. J. Marciano, Phys. Rev. D 30, 248 (1984).

[84] F. J. Petriello, JHEP 0205, 003 (2002) [hep-ph/0204067].

121



[85] W. Beenakker, R. Hopker and M. Spira, hep-ph/9611232.

[86] See, for example, P. Giacomelli, LHC: future measurements and reach, Solvay

Workshop on ”Facing the Scalar Sector”, Brussels (May 2013).

122



APPENDIX A

MINIMIZATION CONDITIONS AND SCALALR HIGGS

MASS-SQUARED MATRIX

Inverse seesaw model

The minimization conditions for the potential are given as:

4m2
3(−v2

L + v2
R) = (g2

V v
4
L + g2

Lv
2
L(−v2

1 + v2
2 + v2

L) + g2
Rv

2
1v

2
R − g2

Rv
2
2v

2
R − g2

Rv
4
R − g2

V v
4
R

+ 4v2
1v

2
Lλ

2 − 4v2
1v

2
Rλ

2),

−4Bµ(v2
1 − v2

2) = −v2v1

[
g2
L(−v2

1 + v2
2 + v2

L) + g2
R(−v2

1 + v2
2 + v2

R)− 2(v2
L + v2

R)λ2)
]

− 2λAλvLvRv2 + 4v1vLvRλµ,

4m2
1(v2

2 − v2
1) = [g2

Rv
4
1 − g2

Rv
4
2 + g2

L(v2
1 + v2

2)(v2
1 − v2

2 − v2
L)− g2

Rv
2
1v

2
R − g2

Rv
2
2v

2
R

+ 4λ2v2
1v

2
L + 4λ2v2

1v
2
R − 4Aλλv1vLvR − 8λµv2vLvR + 16µ2v2

1 − 16µ2v2
2],

8µv2(
vLλ

vR
− vRλ

vL
) =

4λAλv1vL
vR

− 4λAλv1vR
vL

+ (g2
R − g2

L)(v2
1 − v2

1) + g2
Lv

2
L − g2

Rv
2
R

+ 2g2
V (v2

L − v2
R) + 4λ2(v2

R − v2
L). (A.1)

The mass-squared matrix elements Mij(= Mji) in this case can be given by:
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Case with two pair of triplets and two bidoublets

The minimization conditions for this case are given as:
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Universal seesaw model with a singlet
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The mass-squared matrix elements are given by:
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APPENDIX B

FEYNMAN RULES

Here we list down all the Feynman rules necessary for analyzing productions and

decays of doubly-charged Higgsinos in the LRSUSY model.

Fermion-Fermion-Z Boson, γ:

•γµδ̃−−L,R ¯̃δ−−L,R : 2ieγµ

•Zµ
Lδ̃
−−
L

¯̃δ−−L : i
gL cos 2θW

cos θW
γµ

•Zµ
Lδ̃
−−
R

¯̃δ−−R : −i2gL sin2 θW
cos θW

γµ

•Zµ
Rδ̃
−−
L

¯̃δ−−L : −i gL sin2 θW√
cos 2θW cos θW

γµ

•Zµ
Rδ̃
−−
R

¯̃δ−−R : i
gL(1− 3 sin2 θW )

cos θW
√

cos 2θW
γµ

•Zµ
Ruū : i

gL(3− 8 sin2 θW + 3γ5 cos 2θW )

12 cos θW
√

cos 2θW
γµ

•Zµ
Rdd̄ : −igL(3− 4 sin2 θW + 3γ5 cos 2θW )

12 cos θW
√

cos 2θW
γµ Appendix ?? data goes here
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