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Abstract: In the field of multiphase flow, much research has been done on flow patterns and void 

fraction in vertical upward, vertical downward and horizontal pipes with only very little 

investigation done in inclined pipes. Experimental investigation was conducted in present study 

over six pipe orientations (+5
o
, +10

o
, +20

o
, -5

o
, -10

o
 & -20

o
) using air-water as fluid combination 

in a 12.7 mm diameter pipe. Flow visualization was conducted for flow pattern identification, 

flow pattern maps were developed showing effect of pipe orientation on flow pattern transition 

boundaries and 700 void fraction data points were measured and analyzed. Effect of pipe 

orientation on void fraction was also observed and reported. Fourteen void fraction correlations 

were selected for experimental data prediction based on previous works and the best performing 

void fraction correlation for upward inclined pipe, downward inclined pipe and near horizontal 

pipe orientation was determined. A unique phenomenon called flow reversal in co-current two 

phase flow was observed in upward inclined pipe orientation and investigated in present study. 

Flow reversal was investigated using Bernoulli’s equation and dimensionless numbers (Froude, 

Reynolds & Weber number) which gave in-depth analysis of this phenomenon. 
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NOMENCLATURE 
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CHAPTER I 
 

 

INTRODUCTION 

 

Two phase flow is the simplest form of multiphase flow and it involves the simultaneous 

movement of two distinct phases in a pipe. Two phase flow can exist in the form of gas-liquid 

flow like bubbly flow, gas-solid flow like pneumatic transport of particles and liquid-solid flow 

like slurry flow. Two phase flow can further be divided into two forms which are boiling and 

non-boiling two phase flow. Boiling two phase flow is attained when a single phase fluid 

evaporates due to heat transfer and the simultaneous flow of liquid and vapor of the same 

component in the pipe is termed single component two phase flow. Boiling two phase flow is 

observed in steam-water flow in power generating plants, flow of refrigerants in air conditioning 

systems. Non-boiling two phase flow involves two distinct components and is observed in oil 

production activities where there is flow of natural gas and crude oil through pipes. The 

application of two phase flow is found in major areas like the cooling of fuel rods in a nuclear 

reactor for power generation, enhancing mass transfer in the chemical industry, understanding 

and predicting wax deposition during crude oil and natural gas transportation in the oil and gas 

industry, condensate formation in natural gas transportation. 
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Two phase flow phenomenon has been studied since the 1930’s in four major aspects which are 

flow patterns, void fraction, pressure drop and heat transfer. Due to the very broad nature of two 

phase flow, research in each major aspect is concentrated on certain pipe orientation, fluid 

combination or range of system pressure. For example, some researchers investigate flow 

patterns, void fraction or heat transfer in specific pipe orientation or develop correlations to 

predict heat transfer, void fraction or pressure drop for certain fluid combination. The present 

study is focused on flow patterns and void fraction studies in non-boiling air-water two phase 

flow in near horizontal pipes which covers both upward and downward inclined pipes 

When liquid and gas flow through a pipe, interaction between the two phases occur due to 

difference in fluid properties, flow properties (this determines the dominant forces acting in the 

two phase flow) and pipe orientation. The two phase flow rearranges itself based on the above 

mentioned factors and the nature of the reorganization is termed flow pattern. Flow pattern plays 

an important role in void fraction, heat transfer and pressure drop analysis as they are largely 

influenced by changes in flow pattern. Thus, critical understanding of flow pattern is necessary 

for accurate modeling in two phase flow. Flow pattern maps have been investigated and 

developed over decades for the purpose of predicting change in flow pattern with respect to 

change in flow properties. However, there exist no universal flow pattern map independent of 

fluid combination and pipe orientation in two phase flow. Extensive research has been done on 

flow pattern in vertical and horizontal pipe orientations whereas very little work has been done in 

inclined systems especially near horizontal pipe orientations. For example, horizontal and 

directional drilling in oil wells has significantly increased in an attempt to efficiently reach and 

tap into oil reservoirs. Since oil wells are made of both vertical and near horizontal portions, flow 

pattern studies in near horizontal pipe orientation is necessary for accurate modeling of heat 

transfer and pressure drop in oil production activities. Hence, this justifies the need to conduct 

flow pattern studies in near horizontal pipe orientation. 



3 
 

Generally, void fraction refers to the fraction of gas to liquid and gas mixture flowing in a pipe. 

Void fraction has a direct dependence on flow pattern and it also serves as an input parameter 

needed for pressure drop and heat transfer models in two phase flow. For example, void fraction 

is needed to determine two phase density and viscosity of the system. Void fraction was measured 

in near horizontal orientation to determine the effect of pipe orientation on void fraction in 

present study. During the course of flow visualization and void fraction measurement, flow 

reversal was observed at different pipe orientations over certain liquid and gas flow rates, hence 

this phenomenon was further investigated in present study. The current work done on flow 

reversal in co-current non-boiling two phase flow serves as a framework for further investigation 

to develop a model for this phenomenon in near horizontal pipe orientation. Accurate modeling of 

flow reversal can be used to effectively design and fabricate back flow preventers applicable to 

two phase flow system which can be incorporated in oil wells and hence, significantly reduce 

pump work needed to get the two phase mixture to the surface in oil production activities. 

Present study was conducted over six pipe orientations which are +5
o
, +10

o
, +20

o
, -5

o
, -10

o
 and -

20
o
 in a 12.7 mm diameter pipe. The main objective of present study was to carry out extensive 

studies of flow pattern with the aid of photographic evidence and void fraction in these pipe 

orientations. These pictures helped to adequately understand and explain complex two phase flow 

physics resulting from the effects of buoyant, gravity and inertial forces in present study.  

Present study is divided into four chapters. Literature search was conducted in chapter II to 

review previous works on flow patterns, flow maps and void fraction in inclined and near 

horizontal two phase flow. Fourteen void fraction correlations were selected based on previous 

analysis done by different researchers and these correlations were discussed in chapter II. Chapter 

III focuses on the experimental procedure which covers procedure for flow visualization and void 

fraction. Modification of lighting arrangement was done in present study to improve picture 

quality and clarity of the two phase flow mixture in the pipe during flow visualization. Validation 
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of measured void fraction with data from other sources and predictions of the top performing void 

fraction correlations was also discussed in chapter III. The results of present study were discussed 

in chapter IV. These results consist of the effect of pipe orientation on flow patterns, effect of 

pipe orientation on flow pattern transition boundaries in flow maps, effect of pipe orientation on 

void fraction and variation of void fraction with flow pattern at different pipe orientations. 

Chapter IV discusses the performance of selected void fraction correlations in various void 

fraction regions chosen for analysis in order to come up with the best performing correlation for 

near horizontal pipe orientation. The final part of chapter IV focuses on flow reversal which was 

extensively investigated and discussed. Chapter V draws conclusions from the results obtained in 

chapters III and IV and provides recommendations for future research in two phase flow. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Previous work done on two phase flow in inclined pipes was investigated and discussed in this 

chapter. For the purpose of literature search, this chapter is divided into three parts. The first part 

focuses on the various flow patterns observed in inclined two phase flow for near horizontal pipe 

orientation. Since flow patterns are dependent on experimental apparatus used for investigation, 

the various flow patterns observed by different investigators were briefly discussed with details of 

setup and method used for flow visualization. Based on various definitions given by different 

researchers, it was observed that the major flow patterns in near horizontal pipe orientation are in 

four distinct forms which are stratified flow, slug flow, bubbly flow and annular flow. Other flow 

patterns observed are a combination of the major flow patterns. A quick review of flow maps 

developed by different investigators was done for various orientations and the comparative study 

carried out to determine a universal mapping parameter to improve flow map accuracy was 

reported.  

The third part of this literature review discusses the four models of void fraction correlation. 

Correlations are further categorized and discussed based on pipe orientation over which they are 

applicable in the order of; correlations developed for vertical orientation, correlations developed 

for horizontal orientation and void fraction correlations developed for multiple orientations and 

applicable to near horizontal orientation. 
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2.1 Flow Patterns 

When liquid and gas flow simultaneously in a pipe, spatial arrangement of liquid and gas occur 

due to difference in fluid properties (density and viscosity), pipe orientation and other forces 

acting in the two phase flow. This spatial or geometric reorganization of the liquid and gas phase 

in the pipe is termed flow pattern. Researchers have conducted flow pattern studies over the years 

and various flow patterns have been reported by different investigators. However, it has been 

proved that flow patterns observed show more dependence on pipe orientation than pipe diameter 

or fluid combination.  

Beggs and Brill (1973) conducted two phase flow studies in inclined pipe over the entire pipe 

orientation of +90
o
 to -90

o
 in 25.4 and 38.1 mm diameter pipes. They categorized the observed 

flow patterns into regions which are segregated flow, intermittent flow and distributed flow. 

Segregated flow consists of stratified flow, wavy flow and annular flow. Intermittent flow is 

made of plug and slug flow while distributed flow consists of bubble flow and mist flow. 

Spedding and Nguyen (1980) conducted extensive research on air-water two phase flow in a 4.55 

cm internal diameter pipe from vertical downward to vertical upward flow. Flow visualization 

was done by observation in the transparent pipe, measuring pressure fluctuation at the wall and by 

photography using Xrays or fluorescent light. Similar flow patterns having slight differences in 

geometry were observed in various pipe orientations and the flow patterns were categorized into 

four major types. The flow patterns are stratified flow, bubble-slug flow, droplet flow and mixed 

flow. Stratified flow was sub divided into straight stratified, stratified plus ripple, stratified plus 

roll and stratified plus inertial wave. They explained that by keeping the liquid flow rate constant 

and increasing the gas phase flow rate in horizontal pipe orientation, straight stratified flow 

progressed into stratified plus ripple waves and then to stratified plus roll waves. Further increase 

in gas flow rate led to droplets being torn from the liquid interface, the straight stratified flow was 
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observed to completely vanish under these conditions and the flow pattern was termed stratified 

flow plus inertial waves. Limited straight stratified flow was observed in upward inclined pipe 

orientation. For upward inclined pipe orientation, bubble/slug flow was reported as the dominant 

flow pattern and was observed to be independent of liquid phase flow rate. In the downward 

inclined pipe orientation, straight stratified flow was observed to persist over a very wide range of 

liquid flow rates while bubble flow was difficult to achieve. 

Weisman and Kang (1981) conducted flow pattern studies in upward inclined pipe using air-

water and air-glycerol as fluid combination. Flow visualization was carried out in a 6.1 m long 

transparent pipe having diameters of 12.7 mm, 25.4 mm and 50.8 mm with maximum pipe 

inclination of 7
o
 from horizontal.  Flow visualization was conducted over inclination angles of 0

o
 

(horizontal), 0.5
o
, 2

o
 and 7

o
. They reported that flow patterns observed in slightly inclined pipe 

orientations are very similar to horizontal flow patterns. Elimination of stratified flow in upward 

inclined pipe from horizontal was the major change in the flow patterns between these pipe 

orientations. Stratified flow was replaced by plug flow at inclination angle as low as 0.5
o 

and 

wavy flow pattern was observed at higher liquid flow rates. The flow rates initially occupied by 

wavy flow in horizontal pipe were observed to be occupied by broken slug flow in inclined pipe. 

They described broken slug flow as slug flow in which liquid phase is not in contact with top pipe 

wall surface. The major flow patterns observed in this study are stratified flow, slug flow, plug 

flow, bubbly flow, wavy flow and annular flow. 

Barnea et al. (1982) conducted experimental study of flow pattern in downward inclined two 

phase flow. The experimental apparatus used consist of two transparent plexi-glass 10 m long 

pipes with internal diameters of 2.55 and 5.1 cm. The apparatus has the capacity of variable 

inclination from horizontal to vertical. They carried out visual observation and also employed an 

oscilloscope display which uses electro conductivity probes to determine the flow patterns. Four 

major flow patterns which are stratified flow, slug flow, bubbly flow and annular flow were 
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observed. They categorized stratified flow into two types based on the nature of the interface, 

smooth stratified flow and wavy stratified flow. Smooth stratified flow was not observed for pipe 

inclinations above 5
o
 due to gravity induced waves generated at the stratified interface. Transition 

flow patterns having a combination of two or more major flow patterns were also observed which 

are intermittent and wavy/annular flow. 

Barnea et al. (1985) conducted flow pattern transition studies for upward inclined flow from 

horizontal to vertical pipe orientation using air-water as fluid combination. Eight flow patterns 

were observed in the horizontal pipe and were categorized into four types. The four categories of 

flow patterns are stratified flow, intermittent flow, annular flow and dispersed bubble flow. 

Stratified flow was observed from horizontal orientation till upward inclination of +10
o
 after 

which it disappeared. For upward inclinations from +10
o
 to +90

o
, the flow patterns observed are 

intermittent, annular and dispersed bubble flow. 

Mukherjee and Brill (1985) conducted experimental two phase flow studies in a 5.08 cm pipe 

over various pipe orientations in both upward and downward inclinations. Four major flow 

patterns were observed which are slug flow, bubbly flow, stratified flow and annular flow. They 

observed a concentration gradient of discrete bubbles across the pipe cross section due to 

gravitational effects at lower angles of upward pipe orientation, and as pipe orientation increased 

bubbles were observed to distribute over a wider cross section of the pipe. In the downward pipe 

orientation, they observed that bubble rise velocity is always counter-current to the general flow 

direction which leads to shear of large bubbles into smaller bubbles. They described the 

formation of slug in upward inclined pipe as the process by which liquid flow rate is high enough 

to push the large wedge-shaped bubbles down the pipe while in the downward inclined pipe 

orientation, they described slugs as the process by which waves bridge pipe cross section. 

Stratified flow was observed in horizontal and downward inclined pipe orientation. They reported 

that a velocity gradient exist across the liquid film in downward inclined pipe orientation for 
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stratified flow, this velocity gradient was observed to increase with further shift in pipe 

orientation in the downward direction. Annular flow was observed in both upward and downward 

inclined pipe orientation which they described as the gas phase being continuous along the pipe 

core. They also described the nature of the continuous gas phase (either concentric or not) in 

annular flow as dependent on pipe orientation in both upward and downward flows. 

Kokal and Stanislav (1989a) conducted two phase flow (air-oil) studies in a test section having 25 

m long pipe with diameters 25.8 mm, 51.2 mm and 76.3 mm, with variable inclination of ±10
o
 

from horizontal. Flow patterns were determined using volume sensor traces. Flow patterns were 

categorized into 3 major regions which are gas dominated flows, liquid dominated flows and 

intermittent flow. The gas dominated flows are stratified flow, annular flow, intermittent flow, 

elongated bubble flow, elongated bubble with dispersed bubble flow and slug flow. The liquid 

dominated flows are dispersed bubble flow and dispersed froth flow. Intermittent flow they 

described as a combination of liquid slugs and large bubbles. 

 Dezhang and Ning (1992) conducted flow pattern and heat transfer studies of boiling two phase 

flow in upward and downward inclined pipes. Flow visualization was conducted at 0
o
, ±30

o
, ±60

o
 

and ±90
o
. Various flow patterns were observed based on heat flux and pipe orientation. The major 

flow patterns observed are slug flow, annular flow, wavy flow and saturated bubble flow. Other 

flow patterns include slug/annular flow and bubble/slug flow. 

Spedding et al. (1999) carried out co-current two phase flow studies in inclined pipe. Flow 

visualization was done in a 11.28 m long and 5.08 cm internal diameter pipe over pipe orientation 

of -5
o
 to +5

o
 from horizontal and using air-water as fluid combination.  The major flow patterns 

observed are stratified flow, annular flow, slug flow and bubble flow. 

Tshuva et al. (1999) conducted two phase flow studies in parallel inclined pipes having internal 

diameters of 2.4 cm and variable inclination from 0
o
 to 90

o
. Quick closing valves were used for 
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the measurement of void fraction and it also assesses the symmetry of flow in the pipe. Flow 

patterns were divided into symmetric and asymmetric flow. Studies were conducted over 

inclination angles of 5
o
, 10

o
, 20

o
, 45

o
, 70

o
 and 90

o
. They observed that in the low liquid and gas 

flow rate region and low pipe inclinations, flow starts symmetric and progresses into asymmetric 

flow as pipe inclination increased. 

Oddie et al. (2003) conducted experimental two phase flow studies in an 11 m long and 15 cm 

diameter pipe over inclination angles of vertical upward to 2
o
 below horizontal pipe orientation 

using different fluid combinations. Six flow patterns were observed in their experimental 

procedure over the range of pipe orientations which are bubble, churn, stratified, slug, elongated-

bubble and stratified wavy flow. They observed bubble flow in vertical and 5
o
 deviation from 

vertical orientation. At 45
o
, a combination of slug flow, churn flow and elongated–bubble flow 

was observed where churn flow was the dominant flow pattern. They reported that as pipe 

inclination shifted to 70
o
 and 88

o
 from vertical, slug and elongated-bubble flow were the only 

flow patterns observed and at 90
o
 and 92

o
 from vertical, stratified and stratified wavy flows were 

observed at constant flow rates. 

Wongwises and Pipathattakul (2006) conducted two phase flow experimental studies in an 88 cm 

long inclined narrow annular channel of hydraulic diameter of 4.5 mm. Slug flow, plug flow, 

annular flow, bubbly flow and churn flow were observed. Transition flow patterns like 

annular/slug, bubbly/plug and slug/bubbly flow were also observed. Studies were conducted at 

inclination angles of 0
o
, 30

o
 and 60

o
. All the above named flow patterns were observed at 0

o
 

(horizontal orientation) at various superficial liquid and gas velocities except slug/bubbly flow 

which was observed only in the inclined channel (30
o
 and 60

o
). 

Ghajar and Tang (2007) conducted two phase flow experimental studies in horizontal and slightly 

inclined pipe having a diameter of 27.9 mm. Flow visualization was carried out in the transparent 
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portion of the pipe over inclination angles of 0
o
, 2

o
, 5

o
 and 7

o
. They reported that the flow patterns 

observed for horizontal pipe orientation (0
o
) were somewhat different from those observed in the 

slightly inclined pipe orientations (2
o
, 5

o
 and 7

o
). The major flow patterns observed in this study 

are stratified flow, slug flow, plug flow, wavy flow and annular flow. Slug/wavy flow, 

slug/bubbly flow and wavy/annular flow were observed as transition flow patterns. They 

explained that stratified flow observed in 0
o
 was replaced by slug flow at small inclination angle 

of 2
o
 and there was an increase in wave height and splashing for each flow pattern as pipe 

orientation increased beyond 2
o
 through 5

o
 then to 7

o
. 

In sum, similar flow patterns were observed by different researchers in near horizontal pipe 

orientation. The major flow patterns are slug flow, bubble flow, stratified flow and annular flow. 

These major flow patterns were observed during flow visualization and reported in present study. 

Thus, this literature review on flow pattern serves as an introduction to this concept and further 

analysis of flow pattern is discussed in chapter IV.  

 

2.2 Flow Maps 

Flow maps have been investigated and developed over decades in order to present graphical 

representation of how flow patterns change with corresponding change in flow properties in a two 

phase system. The size of flow maps have been reported to vary with capacity of experimental 

setup used. For horizontal pipe orientation, Baker (1954) developed one of the first flow maps in 

two phase flow. A few of the previous works on horizontal and near horizontal flow maps include 

Mandhane et al. (1974), Weisman et al. (1979) and Spedding and Nguyen (1980). Flow map 

comparison has been done by investigators over the years to illustrate the similarities and 

differences in flow maps developed by different researchers. 
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Mandhane et al. (1974) conducted two phase flow studies on the effect of pipe diameter and fluid 

properties on flow patterns in horizontal pipe. Pipe diameters in the range of 1.2 to 5 cm were 

used for experimentation and visual observation was supplemented with analysis of pressure drop 

fluctuation for accurate determination of flow patterns. A flow pattern map was developed for 

horizontal pipe orientation which was believed to predict flow patterns accurately.  

Spedding and Nguyen (1980) conducted comparison of regime maps for two phase flow over 

various pipe orientations. They reported that the main error from flow map comparison was due 

to inaccurate drawings of the transition lines between flow patterns and difference in flow 

parameter used to develop the flow maps to be compared. However, they observed that different 

flow maps still show similarities in certain flow regimes. For example, in horizontal flow, flow 

map by Baker (1954) show similarities with Schicht (1969) in stratified flow, slug flow, plug 

flow and bubble flow. Comparisons of flow maps in the vertical pipe orientation was also done 

and they reported that more discrepancies were observed in the vertical pipe orientation than the 

horizontal due to no formal description of the flow patterns by investigators. However, 

comparison between flow maps developed by Spedding and Nguyen (1980) and other researchers 

in vertical orientation gave better similarities than in the horizontal due to more definite transition 

and fewer flow patterns in the vertical pipe orientation. Upward and downward inclined flow 

maps were developed which illustrated the change in transition lines with pipe orientation. 

Troniewski and Ulbrich (1984) analyzed flow regime maps of two phase flow in pipes.  Based on 

theoretical considerations, a universal coordinate system was developed to analyze 31 flow maps 

in vertical pipe orientation and 21 regime maps in horizontal pipe orientation. The universal 

coordinate system was verified with experimental results measured and they reported that 

excellent agreements were observed.  
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Spedding and Spence (1993) investigated flow regimes in two phase gas liquid flow by 

conducting co-current experiments in a 93.5 mm internal diameter horizontal pipe. Visual 

observation was carried out and pressure fluctuation was measured to determine flow pattern in 

the two phase flow. Preexisting maps like the Baker (1954) map and Lin and Harranty (1987) 

were analyzed and compared with their investigation. They reported that the previous regime 

maps and theories did not satisfactorily predict their observation due to difference in flow 

parameters adopted. 

In sum, there is no universal procedure for developing flow maps and investigators develop flow 

maps based on the experimental setup used, pipe orientation and choice of flow parameter for 

analysis. Hence, flow map comparison is a difficult task. Flow maps were developed for each 

pipe orientation and comparison between flow maps developed in present study and other studies 

to illustrate the shift in flow pattern transition boundaries are discussed in chapter IV. 

 

2.3 Void Fraction Correlations 

As reported by Woldesemayat and Ghajar (2007), the correlations developed to predict void 

fraction are in four major forms based on the analysis adopted for modeling of the two phase flow 

system. They are drift flux model correlations, slip ratio correlations, empirical correlations and 

homogenous void fraction correlation (αH). 

Drift flux model 

Wallis (1969) defined the drift flux model as a separated flow model based on relative velocity 

between the phases rather than individual phase velocity. Drift flux model can be used to analyze 

both steady and unsteady two phase flow over a wide range of flow patterns such as slug flow, 

stratified flow, annular flow, bubble flow and mixed flow patterns. For gravity dominated flows, 
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Wallis (1969) explained that the drift flux model analyzes the flow regimes appropriately by 

balancing out the pressure gradient and the forces between the components. The one dimensional 

formulation of the drift flux model was first proposed by Zuber and Findlay (1965) in terms of  

  
   

        
 

Where α is void fraction, Usg is superficial velocity of gas phase, Um is superficial velocity of the 

two phase mixture (Usg + Usl), Co is distribution parameter, Ugm is the drift velocity. The drift 

velocity can either be positive or negative in value based on the direction the gas phase travels 

relative to the two phase mixture. Assuming that fluid properties do not change across pipe cross 

section, cross sectional flow averaging is applied to the drift flux model and is shown as  

〈 〉  
〈   〉

  〈  〉     
 

By definition, 

〈 〉   
 

 
∫    

Where b is the variable being analyzed. 

The distribution parameter is defined as the concentration of the gas phase across pipe cross 

section and as explained by Wallis (1969), it is also used as a correction to the one dimensional 

flow theory which does not account for concentration across pipe cross section. The mathematical 

representation of distribution parameter is given as  

   
〈   〉

〈 〉〈  〉
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As explained by Wallis (1969), the expression for distribution parameter which is the ratio of the 

average of the product of mixture superficial velocity and concentration to the product of the 

averages can be used to obtain near unity parameters in two component flows. 

The drift velocity is defined as the ratio of the averaged product of concentration and difference 

between the component velocity and the mixture velocity to the cross sectional averaged 

concentration. The mathematical representation of drift velocity is given as  

    
〈 (     )〉

〈 〉
 

Bhagwat and Ghajar (2013) explained that drift velocity is flow pattern dependent and as two 

phase flow progresses into the annular region, the drift velocity becomes negligible. They also 

explained that void fraction analysis either by cross sectional relation or volumetric relation is 

valid for non-boiling two phase flow. Hence, no distinctions exist between volumetric and cross 

sectional void fraction as it can be expressed as 〈 〉   , and analysis of the distribution 

parameter and drift velocity follows the same concept. The drift flux model can be expressed in 

the form of equation of a straight line y = mx + c given as  

   

 
             

where Co represents the slope m and Ugm represents the intercept y. Drift flux model has been 

analyzed by many investigators and comprehensive performance analysis of drift flux model 

based void fraction correlations was carried out by Woldesemayat and Ghajar (2007), Godbole et 

al. (2011) and Bhagwat and Ghajar (2013). They all reported that the top performing correlations 

are based on drift flux model. Some drift flux models were developed to have constant drift 

velocity and distribution parameter in the two phase system over the entire flow combinations of 

superficial velocities of liquid and gas phase. For example, Morooka et al. (1989) calculated 

constant values of drift velocity and distribution parameter as 0.45 and 1.08, Greskovic and 
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Cooper (1975) developed a correlation by assigning a constant value of 1 to distribution 

parameter while drift velocity is dependent on constant values of pipe diameter and pipe 

orientation. Niklin et al. (1962) calculated 1.2 as constant distribution parameter and the drift 

velocity is a function of pipe diameter and acceleration due to gravity given as     √  . Some 

correlations developed by other researchers have constant distribution parameter while the drift 

velocity varies with change in flow properties. Gomez et al. (2000) assigned a constant value of 

1.15 to the distribution parameter while the drift velocity is a function of density difference, 

surface tension, pipe orientation, void fraction and other flow parameters. Bonnecaze et al. (1971) 

gave a constant value of 1.2 to distribution parameter and drift velocity varies with density ratio 

of the liquid and gas phase at various flow conditions. Similarly, other drift flux correlations were 

developed to have both distribution parameter and drift velocity vary with flow properties. 

Examples of these correlations are Woldesemayat and Ghajar (2007), Sun et al. (1981), Rouhani 

and Axelsson (1970) and Bhagwat and Ghajar (2013). Bhagwat and Ghajar (2013) explained that 

in order to accurately develop drift flux model based void fraction correlation, drift velocity and 

distribution parameter must be accurately analyzed and modeled. Since distribution parameter is a 

function of void fraction and void fraction varies with flow pattern, then the distribution 

parameter must change with void fraction or flow pattern accordingly. They reported that in the 

annular flow region in vertical pipes, distribution parameter approaches unity as void fraction 

profile is almost flat except near wall axis. For slug and bubbly flow, void fraction profile peaks 

at pipe center and distribution parameter was observed around 1.2. Distribution parameter is 

found to be less than 1 in the near horizontal downward inclined pipe orientation at low gas 

velocities due to higher residence time of gas phase in the pipe and thus higher void fraction is 

observed. Based on all the observations discussed above, they modeled the distribution parameter 

by considering pipe diameter, liquid and gas phase superficial velocities, densities, critical 

pressure of the system, void fraction, thermodynamic quality and liquid phase dynamic viscosity. 
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They modeled the drift velocity based on various fluid properties, pipe orientation (pipe 

orientation determines the balance between gravitational and drag forces on the gas phase), pipe 

diameter and void fraction. In sum, drift flux model void fraction correlation has been verified to 

predict void fraction with highest accuracy due to the simplicity, flexibility and ability to predict 

flow physics of a two phase system. However, it has its limitations to one dimensional flow 

modeling.  

Slip ratio 

By definition, slip ratio is the ratio of cross sectional averaged gas phase velocity to liquid phase 

velocity. Mathematically, slip ratio is given as 

   
〈  〉

〈  〉
 

Where Ug and Ul are gas and liquid phase intrinsic velocities. 

From the fundamental void-quality relation, slip ratio can be expressed in terms of 

thermodynamic quality, wetness fraction, void fraction and liquid and gas phase densities given 

as 

〈 〉

  〈 〉
 

  

  
  

〈 〉

  〈 〉
 

Generally, slip ratio correlations are expressed in terms of the ratio between wetness fraction (1 - 

x), quality x and other two phase fluid properties. The performance of a few slip ratio correlations 

in predicting void fraction was analyzed in present study which are Smith (1969), Lockhart and 

Martinelli (1949) and Yashar et al. (2001). 
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Homogenous void fraction αH 

These correlations are a function of the homogenous void fraction term αH. This term is also 

referred to as the volumetric flow quality β in Guzhov et al. (1967) given as  

  
   

       
 

 A few correlations based on the αH parameter as reported by Woldesemayat and Ghajar (2007) 

are Bankoff (1960), Hughmark (1962), Greskovic and Cooper (1975) and Czop et al. (1994). 

Empirical 

As explained by Woldesemayat and Ghajar (2007), empirical correlations are referred to as 

general void fraction correlations. They explained that these general correlations are a function of 

various physical parameters which are defined from basic fluid principles and experimental data. 

Some of the empirical correlations reported by Woldesemayat and Ghajar (2007) are Minami and 

Brill (1987), Kawaji et al. (1987), Hart et al. (1989) and Wallis (1969). 

A plethora of correlations exist for calculating void fraction based on various flow conditions. 

Most void fraction correlations are developed based on pipe orientation at which experimental 

studies were conducted. Investigators are often faced with the problem of limited data from 

outside sources for appropriate modification of developed correlation to account for different 

flow conditions, pipe orientation and pipe diameters. The major pipe orientations at which void 

fraction correlations have been developed are vertical upward, vertical downward and horizontal 

pipe orientation. Beggs and Brill (1973) observed that void fraction reaches a minimum value at 

pipe inclination of approximately +50
o
 and maximum value at -50

o
 from horizontal. They 

reported that void fraction at +90
o
 and +20

o
 are approximately equal, hence this explains why 

some correlations developed for vertical upward two phase flow predict void fraction accurately 

in the horizontal orientation. For the purpose of limiting the scope of this study (near horizontal 
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pipe orientation) and based on the comprehensive void fraction correlation comparison studies 

previously done by Woldesemayat and Ghajar (2007) for horizontal and upward inclined pipes 

and Godbole et al. (2011) for vertical upward pipe orientation, fourteen void fraction correlations 

were selected for analysis in presented study (analysis are discussed in chapter IV). These 

correlations are discussed in this chapter based on the pipe orientation over which they were 

developed. Specifically, void fraction correlations are discussed for vertical upward pipe 

orientation, horizontal pipe orientation and multiple pipe orientations including near horizontal 

orientation. 

 

2.3.1 Void Fraction Correlations Developed for Vertical Pipe Orientation 

The use of Nicklin et al. (1962) was reported by Woldesemayat and Ghajar (2007) and Godbole 

et al. (2011). Nicklin et al. (1962) conducted two phase flow studies in vertical tubes and 

developed a drift flux model based correlation which is given as 

  
   

          
 

Where 

        √   

       

Rouhani and Axelsson (1970) studied two phase flow in subcooled and quality boiling regions. 

Void fraction correlation was developed based on calculated steam quality by using the 

derivations of Zuber and Findlay (1965). They reported that the correlation performed well over 

different geometries including small rectangular channel and large bundle rods for pressures from 

19 to 138 bars. The Rouhani and Axelsson correlation as reported by Woldesemayat and Ghajar 

(2007) is given as 
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Where  

        (  
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For correlation referred to as Rouhani and Axelsson – I, 

              

For correlation referred to as Rouhani and Axelsson – II, 

             (
    

 

  )

    

 

In the study of Woldesemayat and Ghajar (2007), Rouhani and Axelsson – I performed better 

than Rouhani and Axelsson – II. 

Sun et al. (1981) conducted studies on the prediction of two phase mixture level and hydro 

dynamically controlled dry out under low flow conditions and developed a model to predict void 

fraction in vertical pipe orientation based on conservation laws and loop momentum equations. 

The drift flux void fraction correlation developed by Sun et al. (1981) is given as 

  
   

(  [                  ⁄ ]
  

)       (  
     

  
 )

     

Morooka et al. (1989) conducted void fraction studies on a vertical 4 x 4 rod bundle for steam-

water two phase flow using advanced X-ray CT scanner. Two parameters were used to evaluate 

the void fraction data measured, these parameters are pressure, quality and mass flux. Based on 

the measured data, a drift flux model was developed to predict void fraction in vertical upward 

pipe which gave constant distribution parameter and drift flux velocity as given as 
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2.3.2 Void Fraction Correlations Developed for Horizontal Pipe Orientation 

One of the first void fraction correlations developed for horizontal pipe orientation was proposed 

by Lockhart and Martinelli (1949). As reported by Woldesemayat and Ghajar (2007), the 

Lockhart and Martinelli (1949) void fraction correlation is given as 

         (
     

 
)
    

(
  

  
)
    

 
  

  
         

Yashar et al. (2001) conducted experimental studies to determine void fraction for condensation 

and evaporation processes in horizontal microfin tubes using refrigerants R134a and R410A. 

Tubes having diameters of 7.3 mm and 8.9 mm with the axial and 18 degree helix which are 1.2 

m long were used for experimentation. Evaporation experiments were conducted in all four tubes 

while condensation was carried out in the 8.9 mm diameter tube. Quick closing valves were used 

for void fraction measurement and based on the experimental data a correlation was developed to 

predict void fraction which is given as 
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2.3.3 Void Fraction Correlations Developed for Multiple Pipe Orientations Including Near 

Horizontal  

The use of Guzhov et al. (1967) correlation for predicting void fraction was reported by 

Woldesemayat and Ghajar (2007) which was developed for slug and stratified flow and pipe 

orientation in the range of ±9
o
 from horizontal. Guzhov et al. (1967) correlation is given as  

                   √     

Where β is volumetric flow quality and Fr is Froude number 
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Smith (1969) developed a correlation which assumes two phase flow regime is annular flow. It is 

a slip ratio based correlation which adopts an equal velocity head model for the liquid phase and 

homogenous mixture to predict void fraction. Smith (1969) correlation can be applied over a 

range of inclined pipe orientation and is given as 

  (  
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Bonnecaze et al. (1971) conducted experimental two phase flow in a 24.4 m long and 38 mm 

diameter pipe over pipe inclination from -10
o
 to +10

o
. They developed drift flux model based 

void fraction correlation for slug flow in inclined pipes by analyzing the mass and momentum 

balance on the two phase flow. The void fraction for slug flow was related to translational 

velocity, no-slip velocity and volumetric flow fraction of the liquid phase. A constant value of 1.2 

was assigned to the distribution parameter and the correlation is given as  

  
   

(          √     
  

  
 )

 

Greskovic and Cooper (1975) conducted two phase flow studies in upward inclined pipes over 

pipe orientation from horizontal to +10
o 

using 2.54 cm and 7.94 cm diameter pipes using air-

water as the fluid combination. They developed the correlation based on the technique proposed 

by Bonnecaze et al. (1971) and the void fraction is a function of Froude number and pipe 

inclination. They reported that the correlation predicted between ±5% for high void fraction 

values and ±10% for low void fraction. The correlation developed by Greskovic and Cooper 

(1975) is given as 
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Where 

         √                    

Gomez et al. (2000) developed a correlation to predict liquid holdup for slug flow from horizontal 

pipe to vertical pipe orientation. A total of 283 data points were gathered from different sources 

for pipe diameters of 5.1 cm to 20.3 cm with fluid combinations of air-water, Freon-water, air-oil, 

and air-kerosene. They explained that void fraction is a function of pipe inclination which is 

minimum at vertical and maximum at horizontal orientation. They also reported that void fraction 

is a function of mixture velocity and viscosity of the liquid phase. The correlation developed by 

Gomez et al. (2000) is given as  

  
   

          
 

Where 

         
    

  
 

     √                 

Woldesemayat and Ghajar (2007) conducted void fraction correlation comparison for different 

flow patterns in horizontal and upward inclined pipes. 68 void fraction correlations were analyzed 

based on 2845 data points of void fraction gathered from various sources. The Dix (1971) drift 

flux model correlation was modified by Woldesemayat and Ghajar (2007) for improved 

predictive capacity based on their analysis of the 68 selected void fraction correlations for their 

study. The correlation developed by Woldesemayat and Ghajar (2007) was observed to perform 

better than all 68 correlations analyzed in the study, is independent of flow patterns and can be 

used over pipe orientations from horizontal to vertical upwards and is given as  

  
   

        
 

Where 
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The leading constant of 2.9 carries units of m
-0.25

. 

Cioncolini and Thome (2012) conducted two phase flow studies in annular flow and developed a 

correlation based on gathered data to predict void fraction. 2673 void fraction data points were 

collected from 29 sources and the data covers 8 different fluid combinations of air-water, 

nitrogen-water, argon-water, steam-water, R410a, air-kerosene, air-alcohol and water plus air-

alcohol for pipe diameters in the range of 1.05 mm to 45.5 mm for both circular and non-circular 

geometry. They developed a correlation based on biochemical kinetics used in mathematical 

physiology which is a function of vapor quality and gas to liquid density ratio given as  

                  

Where 

                    ⁄        
 

                     ⁄      
 

Bhagwat and Ghajar (2013) conducted extensive research in two phase flow to develop a drift 

flux model based void fraction correlation that is independent of flow patterns (covers both the 

major flow patterns and transition flow patterns), pipe orientation (-90
o
 ≤ θ ≤ +90

o
) and pipe 

geometry (circular, annular and rectangular) over range of 0.5 to 305 mm. The void fraction 

correlation covers fluids within viscosity range of 0.0001 Pa-s to 0.6 Pa-s, system pressure range 

of 0.1 MPa to 18.1 MPa and Reynolds number range of 10 to 5x10
6
. This highly versatile 

correlation also has the capacity to predict void fraction in fluid combinations of air-water, argon-

water, natural gas-water, air-kerosene, air-glycerin, argon-acetone, argon-ethanol, argon-alcohol, 
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refrigerants (R11, R12, R22, R134a, R114, R410A, R290 and R1234yf), steam-water and air-oil. 

The correlation was verified with 8255 data points collected from more than 60 sources and was 

determined to perform consistently accurate and satisfactorily over the collected data. The void 

fraction correlation developed by Bhagwat and Ghajar (2013) is given as  
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In sum, the fourteen void fraction correlations discussed in this literature review were used to 

predict measured void fraction in all six pipe orientations to determine the top performing 

correlation for the specified void fraction region. Analysis was further conducted based on 

upward pipe orientation, downward pipe orientation and the entire pipe orientation (near 

horizontal) as discussed in chapter IV. 
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CHAPTER III 
 

 

EXPERIMENTAL SETUP 

 

The experimental setup used in present study is discussed in this chapter with all the major 

components used alongside for its operation. The test section which encompasses void fraction, 

pressure drop, heat transfer and flow visualization section is briefly discussed. Flow visualization 

procedure for flow pattern identification is discussed and the technique for taking still-pictures 

developed by Cook (2008) was modified to improve picture quality by changing both the 

orientation and type of light source used. The procedure taken for experimentation and data 

acquisition process using LabVIEW are briefly discussed. Also, the effect of pipe orientation on 

void fraction calibration parameter was observed.  

 Validation of measurement technique (quick closing valve) was done by comparison with other 

void fraction measurement techniques existing in literature. Measured void fraction data was 

validated by comparison of  experimental void fraction data measured in present study with data 

gathered from other sources and also by predictions of the four top performing correlations 

selected for analysis in present study (chapter IV). Experimental uncertainty for all six pipe 

orientations was calculated and presented to determine the accuracy of measured void fraction in 

present study. 
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3.1 Details of Experimental Setup 

The experimental setup used in present study is situated at the Two Phase Flow Lab, Oklahoma 

State University and it was designed, fabricated, tested and validated by Cook (2008). The 

experimental setup has a robust capacity to measure data for the three major aspects of two phase 

flow which are void fraction, pressure drop and heat transfer in both smooth and rough pipe, with 

variable inclinations from vertical downward (-90
o
) to vertical upward (+90

o
). The test branches 

are supported by a platform made from aluminum sheet which measures 3.35 m (11 ft) in length 

and 0.61 m (2 ft) in width. The test platform is supported by the variable inclination frame which 

is made of a heavy outer frame and lighter inner rolling frame. The heavier outer frame measures 

4.57 m (15 ft) in length, 0.84 m (33 in) in width and 3.66 m (12 ft) in height and made from 

rectangular steel tubing. The lighter inner rolling frame is made of steel angle and allows for 

adjustment of test platform inclination over 180 degrees from vertical downward to vertical 

upward. 

The test section is divided into two branches, the flow visualization/ void fraction branch and the 

heated test branch. Smooth transparent pipe was used for the flow visualization/ void fraction 

branch for ease of identification of flow patterns through the pipe. Still-pictures of flow patterns 

were taken in this section to better assist investigator in flow pattern identification. The smooth 

pipe is made of polycarbonate material and the rough pipe is made of stainless steel both having 

internal diameter of 0.0127 m. The fluid combination used in present study is water and air and 

the schematic diagram of the experimental setup is shown as Figure 3.1 
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Figure 3.1 Schematic diagram of experimental setup adapted from Cook (2008) 

The schematic diagram in Figure 3.1 shows the test section and the major components required 

for transporting the liquid and gas phases into the test branches. The liquid and gas phases have 

different flow circuits and are mixed at test section entrance to give the two phase mixture needed 

for experimentation. 

Water flow circuit 

Distilled water was used as working fluid for the setup which was stored in a 208.2 L (55 gallon) 

polyethylene cylindrical tank. A Bell and Gosset 1535 series Coupled Centrifugal Pump was used 

to pull water from the tank, the pump model number is 3545 D10. The pump can generate water 

flow rate up to 0.226 kg/s which was sufficient for both single phase and two phase flow 
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experimental purposes on this setup. An Aqua-Pure AP12T water purification system was 

installed right after the pump to prevent growth of organic matter and also trap foreign objects 

introduced in the water system. The maximum operating temperature of the water purification 

system is 38
o 

C (100
o 

F) and maximum pressure of 862 kPa (125 psi). After filtration, the water 

runs through a shell and tube heat exchanger (ITT Model BCF 4063) which was incorporated in 

the water transport system in order to maintain constant water temperature through the 

experimental setup. Cooling water was obtained from tap water, and the temperature varied based 

on outside temperature usually between the range of 18
o 

C (64.4
o 

F) and 26
o 

C (78.8
o 

F). The 

water goes through the Coriolis flow meter which controls the flow rate by a gate valve located 

just after the flow meter assembly. After water flow rate has been fixed by the flow meter as it 

runs through it, the water then mixes with air as it passes through the test section and then returns 

to the 208.2 L cylindrical tank. 

Air flow circuit 

Ingersoll-Rand T30 Model 2545 air compressor provides the air for the experimental process. The 

maximum air pressure attained by compressor is 862 kpa and maximum flow rate of 0.25 kg/min. 

The air passes through a filter-drier assembly/ regulator immediately after leaving the compressor 

in order to maintain constant air pressure, remove moisture from the air and trap unwanted 

objects. The air then passes through a simple copper coil heat exchanger submerged in running 

water. The heat exchanger was used to remove heat generated by the compressor and maintain 

close inlet water and air temperature. The air was further dried by passing through another filter-

drier assembly and regulated by a Parker Model 24NS 82(A) – V8LN-SS needle valve. After air 

regulation, it then goes through either the high or low (Micro Motion Elite Series model CMF 

025 or LMF 3M) flow meter before being mixed with purified water in the mixing section of the 

experimental setup. Figure 3.2 shows the schematic diagram of void fraction section, flow 

visualization section, mixing section and thermocouple array adapted from Cook (2008). 
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Figure 3.2 Flow visualization/ Void fraction branch adapted from Cook (2008) 

 

Mixing section 

Static mixers installed at the inlet and exit of test section are Koflo Model 3/8-40C-4-3V-2. The 

primary purpose of the two mixers was to ensure mixing of the two phases so that the inlet and 

exit thermocouples could sense the representative temperature of the two phase mixture entering 

and leaving the test section. The inlet mixer also served the purpose of eliminating the effect of 

inlet geometry on flow patterns observed in the test section. 

Thermocouple probes 

Thermocouple probes were installed at test section entry and exit. They serve the purpose of 

sensing the temperature of two phase mixture at inlet and exit of test section. The thermocouple 

probes were placed after the static mixers to sense the two phase mixture temperature 

immediately after mixing. They are Omega TMQSS-06U-6 models.  
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Void fraction branch 

Three quick closing solenoid valves are used in this section. The solenoid valves are W.E. 

Anderson model ABV1DA101 pneumatically operated ball valves. Two of the valves are 

normally open and were installed in entry and exit of the test section while the third solenoid 

valve is a normally closed valve installed in the bypass line of the test section. When the switch 

controlling the valves is triggered, the normally open solenoid valves which have a shut time of 

0.03 seconds closes to trap the two phase mixture in the test section while the normally closed 

solenoid valve opens to allow continuous flow of the two phases through the bypass line. 

Compressed air was used to ensure maximum removal of trapped liquid from the test section. 

Flow visualization 

This section is located in the central portion of the void fraction section. Optical clarity of this 

section is highly important in order to accurately observe flow patterns developed in the test 

section, hence two phase flow was observed inside transparent polycarbonate pipe during flow 

visualization. The arrangement of photography lighting also plays a key role in flow visualization 

because poor lighting, wrong proximity and orientation of light source and type of backdrop 

affect the quality of still-pictures taken. Arrangement for photography lighting for this 

experimental setup was developed by Cook (2008).  However, the arrangement was modified and 

was observed to produce improved picture quality in present study. The schematic diagram for 

photography lighting developed by Cook (2008) and the modified arrangement are given in 

Figures 3.3 and 3.4. 
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Figure 3.3 Photography lighting and backdrop arrangement adapted from Cook (2008) 

 

Figure 3.4 Modified lighting arrangement used in present study 

In the modified arrangement shown as Figure 3.4, the light source was supplied using a 14 Watt 

linear fluorescent tube and placed behind the flow visualization section. This light source was 

easier to fit and maneuver due to portability and was placed about 50 mm from the flow 

visualization section unlike the previous method shown in Figure 3.3. This proximity of the light 

source to the flow visualization section helped to adequately concentrate the light to the portion 

of the transparent pipe needed for photography. White translucent plastic plate was placed in 
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between the 14 Watt fluorescent light source and the transparent pipe. This arrangement helped to 

filter the scattered light rays coming from the source and also create the adequate backdrop for 

the required background lighting. Crystal clear pictures were observed due to reduced reflection 

off the transparent pipe and clear distinction between the two phases in the pipe was observed. 

 

3.2 Procedure for Flow Visualization 

Flow visualization was conducted in a 154.7 cm long pipe portion of the void fraction section. 

Flow visualization was done several times to ensure repeatability and consistency with observed 

flow patterns. Observing the transition between flow patterns was the most challenging task 

because this determines the nature of the boundaries on the flow map and how they shift with 

respect to change in pipe orientation.  Visual observations were supported with various 

definitions available in the literature and with the aid of high resolution 14 megapixels Nikon 

D3100 camera with shutter speed of 1/4000
th
 of a second. The use of the camera was necessary 

because at high liquid and gas mass flow rates, flow pattern identification with ordinary eyes 

became very difficult. Four major flow patterns were observed in the upward inclined pipe 

orientation and five major flow patterns were observed in the downward. Details of these flow 

patterns are fully discussed in chapter IV.  

 

3.3 Procedure to Measure Void Fraction 

The procedure for void fraction measurement was followed as developed by Cook (2008). This is 

a four step procedure which includes pre-operation checks, system warm up, data collection and 

shut down. The calculated volume of test section is 277.5 cc and can hold 276.9 g of water. As 

reported by Cook (2008), liquid phase gets trapped in the fittings of the solenoid valves and 
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pressure taps in the test section. Calibration of void fraction section was necessary to prevent 

inaccurate void fraction measurements due to the trapped liquid mass. Single phase liquid is run 

through the test section, trapped, drained into a 9.8L tank and then weighed. Trapped mass was 

calculated with the relation,              . This process was repeated at least 3 times and 

the average value was taken as the actual trapped mass for the pipe orientation. Calibration for 

every pipe orientation was necessary because trapped mass was observed to change with pipe 

orientation. The calculated trapped mass for each pipe orientation is given as Table 3.1 

Table 3.1 Calculated trapped mass for each pipe orientation 

Pipe Orientation (θ) Trapped Mass (g) 

+20
o
 14.9 

+10
o
 13.9 

+5
o
 13.1 

-5
o
 14.4 

-10
o
 15.4 

-20
o
 14.9 

 

Void fraction was measured by fixing the flow rates of the liquid and gas phase followed by 

trapping the mixture in the void fraction/ flow visualization section. The trapped liquid was then 

drained and weighed. This was repeated four times for very small variation in drained liquid for 

the same flow combination, or repeated 6 times when very high variation was observed in liquid 

drained from the test section i.e., non-uniform slug flow pattern region. The average of the 

recorded drained liquid was taken as the actual mass of the liquid phase at the given flow rates. 

Hence, this gave a better representative value of the mass of the liquid phase drained from the 

void fraction section. The measured void fraction for the given flow rates for all six pipe 
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orientations was calculated by the expression,     
       

    
 , where mliq, mT and mtot are the mass 

of liquid drained from the test section at the given flow rates, trapped mass for the pipe 

orientation and total mass of liquid the test section can hold. mtot was taken constant for 276.9 g 

for all six pipe orientations. 

Data acquisition system 

The components of the data acquisition system were products of National Instruments. The data 

acquisition system consisted of three major parts: chassis, modules and terminal blocks. The 

chassis with model number SCXI 1000 serves as a housing of the components. Two 32 channel 

analog modules of model number SCXI 1102 and 8 channel analog modules with model number 

SCXI 1125 were connected to the chassis for signal processing. The terminal blocks were 

connected to the end of the modules. The terminal blocks model numbers were SCXI 1303 for the 

32 modules and SCXI 13138 for the 8 modules. LabVIEW was developed as a graphical interface 

between the user and the program for the data acquisition process. The program was developed 

by Jae-Yong Kim, a former PhD student and modifications were made by Clement Tang, another 

former PhD student and former member of two phase flow research team.   

 

3.4 Uncertainty Analysis of Void Fraction Data 

Uncertainty analysis of measured void fraction was calculated to evaluate the accuracy of 

measured void fraction and performance of experimental setup. The uncertainty associated with 

void fraction was calculated using the relation, 

   √(
    

    
)
 
 (

    

    
      

)
 
 , where mliq represents the mass of liquid trapped in the test 

section and mtot is the total mass that can be trapped in the test section (276.9 g). Considering the 

worst case scenario, the value of mtot had an estimated uncertainty of ±2.0 g and mliq had an 



37 
 

estimated uncertainty of ±3.0 g. Readers should kindly refer to Cook (2008) for more information 

about these uncertainties.    

Hence, uncertainty calculated with this equation is dependent on liquid flow rate and it was 

observed that uncertainty increased for decrease in void fraction. Uncertainty was calculated for 

all measured void fraction data in six pipe orientations. The minimum and maximum uncertainty 

for each pipe orientation is given in Table 3.2.  

Table 3.2 Void fraction uncertainty for six pipe orientations 

Pipe 

Orientation 

Uncertainty 

(Min) 

Uncertainty 

(Max) 

Liquid flow rate 

Max (kg/min) 

Gas flow rate 

(kg/min) 

 

Void fraction 

+20
o
 ±1.3% ±42% 12.3 0.0015 0.03 

+10
o
 ±1.3% ±13.8% 11.4 0.0015 0.09 

+5
o
 ±1.3% ±16.5% 11.4 0.0015 0.08 

-5
o
 ±1.3% ±14.3% 11.4 0.0015 0.13 

-10
o
 ±1.3% ±12.7% 11.4 0.0015 0.1 

-20
o
 ±1.3% ±10.1% 11.4 0.0015 0.09 

 

As shown in Table 3.2, minimum uncertainty of ±1.3% was calculated at the lowest liquid mass 

flow rate of 1.36 kg/min and high gas mass flow rate of 0.2 kg/min for all pipe orientations in 

present study. Percentage uncertainty is calculated based on the ratio of calculated uncertainty to 

measured void fraction and low values of void fraction give very high percentage uncertainty. As 

developed by Cook (2008),  

                        
  

 
       

Where wa is the calculated uncertainty associated with measured void fraction α. As stated above, 

calculated uncertainty is dependent on liquid flow rate and for high liquid flow rate of 12.3 



38 
 

kg/min at +20
o 
pipe orientation, the measured void fraction is 0.03 and calculated uncertainty of 

0.013 thereby giving percentage uncertainty of ±42% as shown in Table 3.2. It should be noted 

that maximum uncertainty was ±16.5% or less in present study for void fraction void fraction 

values ≥ 0.08. Similarly, the percentage uncertainty for +5
o
 pipe orientation of ±16.5% is greater 

than ±13.8% of +10
o
 at the same liquid and gas flow rates. This increase in percentage 

uncertainty was due to lower value of void fraction in +5
o
 and thus percentage uncertainty is 

higher. 

 

3.5 Accuracy of Void Fraction Data 

Quick closing valve method of void fraction measurement was compared with other existing 

methods in literature. This was done to eliminate the dependency of measured void fraction on 

technique adopted. Kawanishi et al. (1990) conducted experimental study on co-current and 

counter-current steam-water two phase flow by using 102.3 mm and 10.9 mm diameter pipes. 

They compared measured void fraction data by using quick closing valves and electrical 

conductivity probe, they observed that the comparisons were within ±15% error bands. They 

reported that void fraction measured using quick closing valves also helped in developing drift 

flux parameters needed for two phase flow modeling. Yijun and Rezkallah (1993) carried out 

comparison on measured void fraction by using quick closing valves and Gamma densitometer. 

They observed that both methods gave void fraction values within ±10% error bands. Figures 3.5 

and 3.6 give the graphical representation of measurement technique comparison developed by 

Kawanishi et al. (1990) and Yijun and Rezkallah (1993). 
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Figure 3.5 Comparison of void fraction measurement techniques adapted from Kawanishi 

et al. (1990) 

 

 

 

 

 

 

 

 

Figure 3.6 Comparison of void fraction measurement techniques adapted from Yijun and 

Rezkallah (1993) 
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Accuracy of measured void fraction was validated based on void fraction correlation predictions 

and direct comparison with void fraction data gathered from other investigators. From the void 

fraction correlation analysis done in chapter IV, four top performing correlations based on lowest 

percent RMS error for 700 measured void fraction data for all six pipe orientations in present 

study were selected for experimental validation. The selected void fraction correlations are 

Bhagwat and Ghajar (2013), Gomez et al. (2000), Guzhov et al. (1967) and Smith (1969) having 

14.2%, 13.4%, 12.4% and 12.2% RMS error. Validation of measured void fraction data by using 

these correlations was divided into two void fraction regions which are 0 < α < 0.5 and 0.5 ≤ α < 

0.1. The selected void fraction correlations predicted measured void fraction data within ±15% 

error for 0 < α < 0.5 region and ±7.5% error for 0.5 ≤ α < 0.1 as shown in Figures 3.7 and 3.8.  

 

Figure 3.7 Comparison of measured void fraction with four top performing correlations (0 

< α < 0.5 region) 
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High percentage error in the 0 < α < 0.5 region shown in Figure 3.7 was observed due to low 

values of void fraction and more explanation on prediction performance of void fraction 

correlations for different regions is provided in chapter IV. Validation of measured void fraction 

in the 0.5 ≤ α < 0.1 region is shown as Figure 3.8. 

 

Figure 3.8 Comparison of measured void fraction with four top performing correlations 

(0.5 ≤ α < 0.1) 

Void fraction data was selected in the range of 0 < α ≤ 0.25, 0.25 < α ≤ 0.75 and 0.75 < α < 1 

(based on analysis done in chapter IV) for all 6 pipe orientations making a total of 18 void 

fraction data points to be predicted by each of the top performing correlations. Selected void 

fraction data points from all six pipe orientations cover values from 0.1 to 0.87 and the 

uncertainty associated with each data point is illustrated with the vertical error bars on the plots as 

shown in Figures 3.7 and 3.8. It can be observed that all four correlations predicted the measured 

void fraction data satisfactorily. Hence, this validates the accuracy of measured void fraction data 
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in present study. Further validation of measured void fraction was done by direct comparison 

with data gathered from other sources. These sources include Beggs (1972) and Mukherjee 

(1979). Beggs (1972) conducted void fraction measurements using 25.4 and 38.1 mm diameter 

pipes, Mukherjee (1979) conducted measurements in a 38.1 mm diameter pipe while a 12.7 mm 

diameter pipe was used in present study. For the purpose of direct comparison of data from other 

sources with present study, dependence of void fraction on pipe diameter must be eliminated. 

Mass flow rate is the parameter used for experimentation in present study and mass flow rate is a 

function of cross sectional area. However, mass flux eliminates dependence on pipe diameter as it 

depends only on superficial velocity and density of the fluid. Thus, the mass fluxes of these 

sources are identical to present study and comparison was done. Comparison was sub divided into 

upward pipe orientation and downward pipe orientation. Comparison of data in the upward pipe 

orientation was observed to be within ±10% error as shown in Figure 3.9. 

 

Figure 3.9 Comparison of measured void fraction with other studies (upward pipe 

orientation) 
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It should be noted that exact values of mass fluxes in present study and other sources was not 

observed as measurements were done at different flow rates or parameters. However, identical 

mass fluxes of the gas phase were observed and compared as shown in Figure 3.9. Details of void 

fraction comparison between present study and other sources showing their corresponding gas 

flux for upward pipe orientation is shown as Table 3.3.   

Table 3.3 Void fraction comparison for upward pipe orientation 

Present study Other study 

Pipe 

orientation 
Gas flux (kg/m

2
s) 

Void 

fraction 
Investigator Gas flux (kg/m

2
s) 

Void 

fraction 

+5
o
 

18.6 0.81 Beggs (1972) 18.04 0.76 

 

19.9 0.84 Beggs (1972) 18.32 0.80 

+10
o
 1.31 0.27 Beggs (1972) 2.42 0.30 

+20
o
 

19.69 0.81 Beggs (1972) 18.23 0.742 

 

4.00 0.52 Mukherjee (1979) 5.04 0.55 

 

9.84 0.71 Mukherjee (1979) 10.68 0.70 

 

13.39 0.74 Mukherjee (1979) 13.90 0.76 

 

Table 3.3 gives the number of void fraction data points compared for each pipe orientation and 

the name of investigator whose data is used for comparison. Slight variation in the gas mass flux 

for the compared void fraction data points can be seen in Table 3.3. Similar analysis was done for 

downward pipe orientation and is shown as Figure 3.10 and Table 3.4. 

 

 

 



44 
 

 

Figure 3.10 Comparison of measured void fraction with other studies (downward pipe 

orientation) 

 

Table 3.4 Void fraction comparison for downward pipe orientation 

Present study Other study 

Pipe 

orientation 

Gas flux 

(kg/m
2
s) 

Void 

fraction 
Investigator Gas flux 

(kg/m
2
s) 

Void 

fraction 

-5
o
 

9.84 0.80 Mukherjee (1979) 8.59 0.80 

 

6.69 0.61 Mukherjee (1979) 7.76 0.58 

-10
o
 

6.69 0.68 Beggs (1972) 6.79 0.66 

 

9.97 0.71 Beggs (1972) 8.64 0.68 

-20
o
 

9.97 0.72 Beggs (1972) 8.69 0.69 

 

4.07 0.42 Mukherjee (1979) 4.36 0.43 

 

16.40 0.80 Mukherjee (1979) 16.11 0.84 
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Direct comparison of measured void fraction data with other sources are within ±7.5% error for 

downward pipe orientation as shown in Figure 3.10 and the details of the compared void fraction 

data are shown in Table 3.4. Worthy of note, the compared void fraction data between present 

study and other sources do not have exactly the same values of gas mass flux and hence 

comparison is not 100% accurate, but this is an acceptable form of analysis to compare data 

between different investigators and is sufficient to support and validate the experimental void 

fraction data measured in present study. 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

Experimental results discussed in this chapter cover six different pipe orientations (+5
o
, +10

o
, 

+20
o
, -5

o
, -10

o
 and -20

o
) referred to as near horizontal pipe orientation. For ease of comparison 

and analysis, these pipe orientations were further categorized as upward inclined pipe orientation 

(+5
o
, +10

o
 and +20

o
) and downward inclined pipe orientation (-5

o
, -10

o
 and -20

o
). Flow patterns 

were identified and flow maps were developed for all six pipe orientations. Comparison between 

upward and downward inclined flow patterns and flow maps was conducted due to distinctions 

that exist in these orientations. These distinctions are due to the simultaneous effects of 

gravitational, buoyant, inertial and surface tension forces acting on the two phase flow. A shift in 

transition boundaries of flow patterns was observed with change in pipe orientation. 

Void fraction measurement was conducted for all six pipe orientations and analyzed. A total of 

700 void fraction data points were measured, with upward and downward inclined orientations 

having 350 data points apiece. Variation of void fraction with flow pattern at different pipe 

orientations was observed and the effect of pipe orientation on void fraction was analyzed and 

discussed. Fourteen void fraction correlations were selected from literature and the best 

performing correlation based on specific void fraction range and pipe orientation (upward or 

downward inclined) was determined. A unique phenomenon called flow reversal was observed in 

upward inclined pipe orientation and discussed extensively in this chapter. 
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4.1 Flow Patterns and Flow Maps 

Flow patterns are described as geometric distribution or arrangement of liquid and gas phase in a 

two phase flow system. Flow patterns have been investigated over decades and several flow 

patterns exist in literature yet there is not a universal procedure for identification of flow patterns. 

The simplest and most popular method of flow pattern identification is by flow visualization 

where the investigator observes the two phase flow in a transparent pipe. Video recordings and 

still-pictures of flow are taken to better assist in the identification. Hence, it is a highly subjective 

procedure which is based exclusively on the discretion of the investigator. Major two phase flow 

parameters such as void fraction, pressure drop and heat transfer are highly influenced by flow 

patterns and in order to accurately model two phase flow system, a thorough understanding of the 

flow patterns is of great importance. Flow visualization was conducted in this study using a 12.7 

mm pipe and flow pattern map showing transition from one flow pattern to the other was 

developed for six pipe orientations (+5
o
, +10

o
, +20

o
 -5

o
, -10

o
 & -20

o
). As reported by Brennen 

(2005), flow pattern boundaries in flow maps are not distinctive lines but a transition zone in 

which flow is unstable due to change in flow properties of either one or both phases and the 

growth of this instability leads to a change in flow pattern. 

 

4.1.1 Flow Patterns in Upward and Downward Inclined Pipe Orientations 

There are four distinct flow patterns in the upward inclined pipe orientation in present study 

which are slug flow, bubbly flow, wavy flow and annular flow while there are 5 distinct flow 

patterns in the downward inclined pipe orientation which are stratified flow, slug flow, bubbly 

flow, wavy flow and annular flow. The other flow patterns observed in present study are a 

combination of two or more of the distinct flow patterns named above. These flow patterns result 

from transition from one major flow pattern to the other and they occupy a wide range of flow 
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combination which justifies their documentation on the map.  For example, slug-wavy flow is a 

combination of slug flow and wavy flow which serves as a transition flow pattern from ideal slug 

flow to fully established wavy flow. This change in flow pattern is achieved by keeping the liquid 

mass flow rate constant and gradually increasing the flow rate of the gas phase and vice versa. 

The pictures of the distinct flow patterns observed in present study for +5
o
 are given as Figure 4.1 

(A) Slug flow           (B) Bubbly flow  

(C) Wavy flow           (D) Annular flow 

Slug flow: ṁl = 4.6 kg/min & ṁg = 0.006 kg/min, Bubbly flow: ṁl = 10.3 kg/min & ṁg = 0.006 

kg/min, Wavy flow: ṁl = 4.6 kg/min & ṁg = 0.075 kg/min, Annular flow: ṁl = 3.4 kg/min & ṁg 

= 0.2 kg/min. 

Figure 4.1 Representative pictures of the four major flow patterns for +5
o
 (Slug, Bubbly, 

Wavy and Annular flows) 

 

Slug flow 

Slug flow is characterized by the gas phase existing as long cylindrical bubble with a 

hemispherical nose. Taitel and Dukler (1976) described slug flow as agitation in a two phase 

system causing the liquid column to rise and touch the top pipe wall surface thereby leading to a 

break in gas phase column. Simmons and Harantty (2001) described the formation of slug in 
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horizontal two phase flow as the process by which waves grow intermittently on a stratified 

interface causing the liquid phase to fill the pipe cross section. In present study, slug flow was 

observed at very low liquid and gas flow rates. Slug length is directly influenced by flow rate of 

the gas phase, where increase in gas flow rate increases slug length at constant liquid flow rate 

and slug length was observed to vary between 4 – 20 inches during flow visualization. Slug flow 

occupies 0.14 – 0.58 void fraction range in present study and non-uniform slug length was 

observed for the high void fraction slug flow. However, in horizontal and near horizontal pipe 

orientations, the nose of the slug appears not completely hemispherical. This is due to 

gravitational force which keeps the liquid phase at the bottom pipe wall and buoyant force which 

keeps the gas phase in contact with the top pipe wall surface thereby giving a rather flat nose as 

shown in Figure 4.1 (A). Slug flow with hemispherical nose is observed in vertical upward 

orientation and a representative picture taken from Godbole (2009) is shown as Figure 4.2. 

 

Figure 4.2 Representative picture of an ideal slug flow in vertical upward orientation by 

Godbole (2009) 
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Bubbly flow 

Bubbly flow is characterized by the gas phase existing as bubbles while the liquid phase is 

continuous in the pipe. Bubbly flow is observed at high liquid flow rates and moderate gas flow 

rates. Bubbly flow exist in two forms, bubbly and dispersed bubbly flow. For horizontal and near 

horizontal pipe orientations, the bubbles were observed to be in contact with top pipe wall surface 

due to effects of buoyant force acting on the gas phase as shown in Figure 4.1 (B). Dispersed 

bubbly flow was attained at higher liquid flow rates where increase in flow rate increases the 

inertial force of the liquid phase. This leads to increase in shear force on the gas phase which 

reduces large bubbles into tiny bubbles and they are forced towards the pipe axis. In vertical 

upward and downward pipe orientations, bubbles were observed to be distributed throughout the 

pipe cross section due to uniform gravitational force acting on both phases. Bhagwat (2011) 

reported that in downward bubbly flow, the bubbles follow the path of least resistance in a zigzag 

spiraling motion due to dominant buoyant force as flow progresses downward in the pipe. It was 

observed that the bubbles are concentrated around the pipe axis and the liquid phase was 

observed continuous near the pipe wall. Oshinowo (1971) called this phenomenon coring bubbly 

flow. Models exist in literature for prediction of transition from slug and intermittent flow to 

bubbly flow. Taitel and Dukler (1976) reported that for horizontal and near horizontal pipe 

orientations, transition from intermittent to dispersed bubbly flow occurs at high liquid flow rates 

when the turbulent oscillations are strong enough to overcome the buoyant force acting on the gas 

phase. A transition criterion was developed for this theory and given as Equation (4.1) 

    [
   

  
 
     

  
    

  

  
 ]

   

         (4.1) 

Kokal and Stanislav (1989a) adopted a slightly different approach from Taitel and Dukler (1976) 

for modeling of transition from intermittent to dispersed bubbly flow where they assumed that a 



51 
 

balance must exist between the turbulence and buoyant force in order for transition to occur. 

Given as Equation (4.2) is the transition criterion developed by Kokal and Stanislav (1989a)  

         
     

  
 
    

  
       

              (4.2) 

In present study bubbly flow was observed to occupy void fraction range of 0.08 – 0.4, the higher 

limit of void fraction range (0.4) was observed in +20
o
 pipe orientation where gravitational forces 

acting on the liquid phase become dominant and shear gas slugs to large bubbles at high void 

fraction. 

 

Stratified flow 

Stratified flow is characterized by complete separation of the liquid phase and gas phase in the 

pipe where the liquid phase is at the bottom pipe surface and gas phase at the top. Stratified flow 

can also be categorized into smooth stratified and wavy-stratified flow. Smooth stratified flow 

occurs at very low gas flow rates. However, high gas flow rates generate waves at the two phase 

interface as the gas phase tries to accelerate the liquid phase and hence, wavy-stratified flow. This 

phenomenon is referred to as the Kelvin-Helmholtz instability which describes the occurrence of 

shear at wavy interface of concurrent fluids due to difference in phase density and phase velocity. 

The magnitude and frequency of waves increase with increase in gas phase flow rate and waves 

begin to touch pipe wall top surface thereby partly eliminating the stratification. Wavy-stratified 

flow can also be referred to as wavy flow in present study and this flow pattern was observed in 

negative pipe orientations. Extensive research has been done on stratified flow over decades due 

to simplicity of flow geometry. There exist a plethora of models for calculating interfacial friction 

factor between the two phases, pressure drop, void fraction and other two phase parameters in 
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stratified flow. However, modeling of wavy-stratified flow has been reported to be very complex 

due to presence of waves at the interface. 

Taitel and Dukler (1976) explained that waves are generated in stratified flow when viscous 

dissipation in waves are overcome by shear work and pressure, a criterion for transition from 

smooth to wavy stratified flow was developed and given as Equation (4.3)  

    
                  

      
            (4.3) 

Asante (2002) conducted experimental studies for air-water two phase flows in steel pipe 

diameters ranging from 1 – 3 inches and developed a correlation for interfacial friction factor 

with liquid and gas Reynolds number, liquid holdup (liquid holdup = 1 – void fraction) and liquid 

film thickness based on geometry of stratification (either flat or curved stratified flow). He 

reported that the transition from homogenous flow to stratified flow was observed at liquid 

holdup greater than 0.005, curved stratification was observed at liquid holdup less than 0.06 and 

flat interface at liquid holdup higher than 0.06. The interfacial friction factor developed for 

smooth and curved stratified flows by Asante (2002) are given as Equations (4.4) and (4.5). 

For curved interface, 

      [   
            

          ]              (4.4) 

For flat interface, 

        [   
            

          ]             (4.5) 

Wavy flow 

Also referred to as wavy-stratified flow, wavy flow pattern is formed at high flow rates of gas 

phase and moderate or low flow rates of liquid phase. In upward inclined pipe orientation, this 
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flow pattern was identified as wavy flow because of complete elimination of stratified flow. 

Wavy flow pattern shown in Figure 4.1 (C) represents the onset of instability as flow is in 

transition to turbulent flow as illustrated in Kelvin Helmholtz instability theory. The 

representative picture of wavy flow in Figure 4.1 (C) occupies superficial liquid and gas 

Reynolds number of 8200 and 6800. 

 

Annular flow 

In Annular flow, the liquid phase exist as a thin continuous film in contact with the entire pipe 

wall and the gas phase exist as a core. This can be compared to concentric tubes where the inner 

tube is the gas phase and the outer is the liquid phase. Annular flow was observed at very high 

gas flow rates and at low and moderate liquid phase flow rates. During flow visualization, annular 

flow pattern was observed to give a fuzzy two phase flow picture because of the continuous liquid 

film being sheared at the gas-liquid interface due to very high gas flow rates as shown in Figure 

4.1 (D). High gas flow rates induce high interfacial shear which necessitates the modeling of 

annular flow in two phase systems. The relatively distinct flow regime (radial separation of the 

two phases) makes it possible to develop separated flow models in annular flow and a great deal 

of research in form of experimental and modeling work has been done in this area over the years.  

Kokal and Stanislav (1989a) developed an equation to predict transition from intermittent to 

annular flow which is given as Equation (4.6). 

                , where         
  (     )

  
         (4.6) 

The four major flow patterns in +5
o
 were also observed as the major flow patterns in +10

o
 and 

+20
o
, representative pictures of flow patterns for +10

o
 and +20

o
 are shown as Figures 4.3 and 4.4. 
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(A) Slug flow              (B) Bubbly flow 

(C) Wavy flow               (D) Annular flow 

Slug flow: ṁl = 2.3 kg/min & ṁg = 0.003 kg/min, Bubbly flow: ṁl = 8 kg/min & ṁg = 0.0045 

kg/min, Wavy flow: ṁl = 4.6 kg/min & ṁg = 0.075 kg/min, Annular flow: ṁl = 4.6 kg/min & ṁg 

= 0.132 kg/min. 

Figure 4.3 Representative pictures of the four major flow patterns +10
o
 (Slug, Bubbly, 

Wavy and Annular flows) 

(A) Slug flow             (B) Bubbly flow 

(C) Wavy flow             (D) Annular flow 

Slug flow: ṁl = 5.7 kg/min & ṁg = 0.003 kg/min, Bubbly flow: ṁl = 9 kg/min & ṁg = 0.0045 

kg/min, Wavy flow: ṁl = 2.3 kg/min & ṁg = 0.05 kg/min, Annular flow: ṁl = 2.3 kg/min & ṁg = 

0.115 kg/min. 

Figure 4.4 Representative pictures of the four major flow patterns +20
o
 (Slug, Bubbly, 

Wavy and Annular flows) 
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As shown in Figures 4.1, 4.3 and 4.4, the major flow patterns observed for all three upward 

inclined pipe orientations remain the same as inclination had no significant effect in changing the 

distribution of both phases in the major flow patterns. 

 

4.1.2 Flow Maps 

Flow pattern maps are graphical representations of flow patterns and are plotted based on 

different flow parameters. For example, most flow maps available in literature were developed 

based on mass flow rate, superficial velocity or Reynolds number. One of the first flow maps 

developed in two phase flow was proposed by Baker (1954) for horizontal pipe where the flow 

parameter used is the volumetric flow rate of the two phases. Due to dependence of flow map on 

experimental setup utilized, Taitel and Dukler (1976) reported that various data with different 

fluid combination and pipe diameters can be collapsed on the same region on a map and 

compared by simply choosing a suitable dimensionless parameter on the coordinate axis. In order 

to eliminate dependence of flow parameter on fluid properties, mass flow rate was adopted for the 

coordinate axis of flow maps developed for all six pipe orientations. As earlier mentioned, flow 

visualization is highly subjective but considerable effort was made in present study to develop 

flow maps based on flow pattern identification procedure and definitions given by previous 

researchers who worked in the same group and used the same experimental setup. This served as 

the basis for developing flow maps for different pipe orientations from previous studies. Hence, it 

amounts to a buildup of research on previous works done by the same group. Ghajar and Tang 

(2007) conducted investigation on flow visualization and flow pattern maps in horizontal and 

slightly inclined pipes with pipe diameter of 25.4 mm and superficial Reynolds number of each 

phase as coordinate axis. Their flow map for horizontal pipe is shown as Figure 4.5. 
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Figure 4.5 Horizontal flow pattern map by Ghajar and Tang (2007). 

Flow map showing similar trend in transition boundary was developed by Ghajar and Bhagwat 

(2013) using mass flow rate as coordinate axis and 12.7 mm diameter pipe, the flow map is 

shown as Figure 4.6 

 

Figure 4.6 Horizontal flow pattern map Ghajar and Bhagwat (2013) mass flow rate 

coordinate axis. 
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Upward Inclined Flow Map (+5
o
, +10

o
 & + 20

o
) 

At +5
o
 pipe orientation, stratified flow was not observed during flow visualization and similar 

observations have been reported by various investigators. Taitel and Dukler (1976) observed 

transition from stratified flow to intermittent flow at inclination angle of 0.1
o
 for low flow rates 

combination of liquid and gas phase. Perez (2008) conducted a study on gas-liquid (air-water) 

two phase flow in inclined pipes with an experimental setup of 6.5 m long test pipe with 

diameters of 37 mm and 67 mm having variable inclination angles from -20
o
 to +90

o
.  At low 

liquid superficial velocity of 0.2 m/s and gas velocity of 0.15 m/s, stratified flow was observed 

for horizontal flow (0
o
 inclination) and noticed to change into slug flow at inclination angle less 

than 5
o
. Kokal and Stanislav (1989a) conducted experimental studies of two phase flow in 

slightly inclined pipes. They reported that very limited stratified flow was observed in uphill flow 

and inclination angles as low as 0.03
o
 from horizontal considerably affected the transition from 

stratified to intermittent flow. 

 Ghajar and Tang (2007) reported that the flow pattern transition boundaries for horizontal flow 

were found to be slightly different from that of inclined flow pattern boundaries. And at small 

inclination angle of 2
o
, stratified flow observed in horizontal orientation was replaced by slug and 

slug-wavy flow. They also observed that as pipe orientation shifted from +2
o
 through +5

o
 to +7

o
, 

the transition boundaries between distinct flow patterns on the map shifted accordingly. Figure 

4.7 shows the flow map for slightly inclined two phase flow developed by Ghajar and Tang 

(2007). 
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Figure 4.7 Change of flow pattern transition boundaries as pipe inclined upward from 

horizontal position by Ghajar and Tang (2007). 

Having established the basis for flow visualization, flow pattern identification and flow map 

coordinate axis in the above discussion, the flow map for +5
o
 pipe orientation was developed as 

shown in Figure 4.8. Letters L and G on +5
o
 flow map represent mass flow rates in kg/min of 

liquid and gas phase for the corresponding flow pattern picture displayed therein.  

 

 

 

 

 

 

 

 

 

Figure 4.8 Flow map for +5
o
 pipe orientation. 
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The flow map shown in Figure 4.8 for +5
o
 was compared with the horizontal flow pattern map 

(Figure 4.6) developed by Ghajar and Bhagwat (2013). The flow maps were superimposed to 

observe the distinctions in flow pattern transition boundaries as shown in Figure 4.9. 

 

 

 

 

 

 

 

Figure 4.9 Flow map showing comparison between +5
o 
and horizontal developed by Ghajar 

and Bhagwat (2013). 

Stratified flow was observed in the horizontal flow map and gets completely eliminated in the 

+5
o
. Also, intermittent flow characterized by combination of slug flow and bubbly flow, observed 

at high flow rates of liquid  and gas phase in horizontal flow map was termed slug/bubbly flow in 

+5
o
 map. As discussed above, annular flow pattern involves radial separation of the two phases in 

the pipe where the liquid phase exists in a continuous film surrounding the gas phase. The shift in 

transition boundary of annular flow to lower gas flow rate is attributed to decrease in inertial 

force needed for the gas phase to generate and maintain a core in the pipe. Since inertial force is a 

function of velocity and velocity is a function of mass flow rate, the mass flow rate needed by the 

gas phase for transition to annular flow region is reduced and hence the boundary shifts to the 

left. It was also observed from Figures 4.3 to 4.7 that annular flow region transition boundary is a 
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vertical line indicating that the flow regime is independent of the liquid phase flow rate (flow 

pattern was observed at both  high and low liquid flow rates) and occurs only at high gas flow 

rate. Flow maps were developed for +10
o
 and +20

o
 pipe orientations in present study and 

superimposed on the +5
o
 flow map to show how the transition boundaries shift with respect to 

pipe inclination as shown in Figure 4.10. 

 

Figure 4.10 Flow map showing effect of upward inclined pipe orientation on transition 

boundaries 

The transition boundaries shift to lower liquid flow rates (for bubbly flow, slug-bubbly flow and 

wavy flow patterns) and to lower gas flow rates (for annular, wavy-annular and slug-wavy flows) 

as pipe inclination progresses from +5
o
 through +10

o
 all the way to +20

o
. There is a major shift in 

transition boundaries for all major flow patterns from +10
o
 to +20

o
 when compared with shift in 

transition boundaries from +5
o
 to +10

o
 as indicated in Figure 4.10. This is attributed to the 

significant rise in gravitational force acting on the liquid phase as inclination angle increases i.e., 

sin20
o
 is approximately twice the value of sin10

o
, hence the magnitude of the gravitational force 

in +20
o
 is twice of +10

o
. This increase in gravitational force reduces the liquid phase velocity as 
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the gas phase rises in the pipe. Interfacial shear plays an important role in flow pattern transition 

which is increased by increasing the inertial force of the two phases (mass flow rates). Since 

interfacial shear is a function of relative velocity of the phases, the decrease in liquid phase 

velocity (slippage) due to gravity increases the magnitude of the relative velocity of the two phase 

flow. This increase in relative velocity increases the interfacial shear which in turn decreases the 

inertial force (mass flow rate) required for transition between the above mentioned flow patterns 

and hence, the boundaries shift downward. 

Oddie et al. (2003) conducted an experimental study on two and three phase flows in large 

diameter inclined pipes, having a test section that is 11 m long, 150 mm diameter transparent pipe 

and inclination angles from -2
o
 to +90

o
. Major flow patterns were observed and it was reported 

that some of the flow patterns in this study have distinctions when compared to small diameter 

pipes. For example, elongated-bubble flow was reported to appear more like churn-slug flow as 

opposed to large bubbles. The representative pictures of the flow patterns observed by Oddie et 

al. (2003) are given in Figure 4.11. 

 

 

 

 

 

 

Figure 4.11 Flow patterns observed at variable inclination measured from horizontal by 

Oddie et al. (2003). 
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The flow maps developed by Oddie et al. (2003) showing effect of inclination angle on flow 

patterns observed are also given as Figure 4.12. 

 

Figure 4.12 Flow map for air-water two phase flow by Oddie et al. (2003) 

By analysis of Figure 4.12, similar trends were observed in the flow maps therein by Oddie et al. 

(2003) and present study. The upward 20
o
 flow map in Figure 4.12 showed that elongated bubble 

flow is the dominant flow pattern and slug flow being the less dominant of the two flow patterns 

(refer to elongated bubble and slug flow in Figure 4.11) at constant superficial velocities of liquid 

and gas phase. As inclination angle decreased to upward 10
o
, slug flow dominated elongated 

bubble flow in the flow map presented (Figure 4.12). This reveals that for the same flow rates 

combination of liquid and gas phase, increase in pipe inclination shifts the transition boundary 

from slug flow to elongated bubble flow downwards as observed in present study slug to bubbly 

flow transition boundary.  
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Wongwises and Pipathattkul (2006) conducted two phase studies in a narrow annular channel 

with hydraulic diameter of 4.5 mm, they reported that the onset of transition from slug flow 

region to plug flow region and plug flow region to bubbly flow region shift to lower values of 

superficial air velocity when pipe inclination was increased. 

Perez (2008) also reported that for constant superficial velocity of liquid and gas phase of 0.2 m/s 

and 0.15 m/s, 38 mm pipe diameter and +5
o
 pipe orientation, slug was found to be discretized into 

bubbles as pipe inclination increased and fully established bubbly flow was observed at +80
o
. 

Simmons and Harantty (2001) conducted experimental two phase flow studies in an inclined pipe 

with test section of 76.3 mm diameter and length of 23 m over inclination angles of 0.05
o
, 0.2

o
, 

0.4
o
 and 1.2

o
. A critical superficial velocity was determined below which stratified flow 

disappeared due to instability generated by Kelvin Helmholtz theory for concurrent flow. They 

observed transition from stratified to slug flow at pipe inclination above 0.2
o
 from horizontal. All 

these observations reported by investigators over the years validate the claim that regardless of 

pipe diameter and flow parameter adopted for developing of flow maps, increase in pipe 

inclination angle at constant flow combination of liquid and gas phases shift transition boundaries 

between flow patterns to lower values of adopted flow parameter as observed in present study. 

 

 Downward Inclined Flow Map (-5
o
, -10

o
 and -20

o
) 

The only distinct flow pattern seen in the downward pipe orientation and not observed in the 

upward pipe orientation was stratified flow. Stratified and wavy-stratified flow patterns were 

observed in the downward pipe orientation and were found to occupy larger area on flow map as 

pipe inclination increased from -5
o
 through -10

o
 to -20

o
. Extensive studies have been carried out 

on flow map in horizontal, vertical upward, vertical downward and upward inclined two phase 

flow but very little work has been done on downward inclined pipe orientation. This justifies the 
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need to investigate the effect of inclination angle on flow map in downward inclined two phase 

flow. Barnea (1987) carried out flow pattern studies in downward inclined two phase flow with a 

setup having 10 m long transparent pipe and 25.5 mm and 51 mm diameter pipes. Barnea (1987) 

expressed that smooth stratified flow was not observed in the study as the stratified flow was 

always ripply for inclination angle above 1
o
 for 25.5 mm pipe and 5

o
 for 51 mm pipe. 

Tzotzi et al. (2011) conducted experimental studies of two phase flow using a 2 mm diameter 

pipe and reported that smooth stratified flow disappeared in the downward orientation at pipe 

inclination as low as -1
o 

due to gravity-driven instabilities independent of interfacial shear. This 

theory was supported by calculations developed for a critical Reynolds number which determines 

the stability of inclined liquid films and an estimated value of 48 was taken for the critical 

Reynolds number. Above this value of Recr, liquid film was observed to be unstable for pipe 

inclination of -1
o
 and smooth stratified flow disappeared even at very low liquid phase flow rates. 

Similar observation was made in the downward inclined pipe orientation in present study where 

the stratified flow is full of ripples and twists as flow progressed downstream in the test section. 

However, the twists observed at the stratified flow interface in these orientations are largely due 

to the amplified effect of two phase mixer at test section entrance by increased gravitational force. 

A representative picture of ripply stratified flow for -5
o
 is given in Figure 4.13. 

 

ṁl = 1.4 kg/min & ṁg = 0.0016 kg/min 

Figure 4.13 Representative picture of ripply stratified flow -5
o 

Based on the procedure for flow map analysis discussed in upward inclined pipe orientation, the -

5
o
 flow map was developed and superimposed on the horizontal flow map developed by Ghajar 
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and Bhagwat (2013) to illustrate the shift in transition boundaries between horizontal and -5
o
 pipe 

orientation as shown in Figure 4.14.
 

 

Figure 4.14 Comparison of -5
o
 flow map with horizontal developed by Ghajar and Bhagwat 

(2013) 

Stratified flow for -5
o
 pipe orientation progresses into wavy-stratified flow by maintaining low 

liquid flow rates and increasing the gas flow rate. The change in flow pattern was attributed to 

generation of waves at the interface which grows to touch top pipe wall surface due to increase in 

gas flow rate. Between the ranges of 0.005 – 0.01 kg/min of gas phase flow rates and at low 

liquid flow rates, three different flow patterns were observed (stratified, stratified-wavy and slug-

wavy flows). This observation was attributed to the role of buoyant force between superficial gas 

Reynolds number of 530 - 1040 and superficial liquid Reynolds number between 4100 – 6100. 

Buoyant force becomes more dominant within this range and opposes flow of gas phase in the 

downward direction. This behavior acts as a resistance to flow of liquid phase leading to buildup 

of liquid column in the pipe causing discontinuity in gas phase and hence slug flow is observed. 
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Further increase of gas flow rate increases the interfacial shear which leads to generation of 

waves on the stratification and hence wavy-stratified flow. Flow progresses into annular region 

with further increase in gas flow rate and it was observed that the annular flow transition 

boundary shifted to higher values of gas flow rate from horizontal. This was due to increased 

inertial force needed by the gas phase to overcome gravitational pull on the liquid to generate an 

annulus in the pipe. Barnea (1987) reported that the liquid phase in stratified flow moves more 

rapidly in the downward inclined orientation than horizontal and has a reduced liquid film 

thickness in the pipe cross section for same fluid combination due to gravitational force acting in 

the direction of flow. Hence, higher liquid and gas flow rates are required to induce transition 

from stratified flow. These flow rates also increase as angle of inclination increases downwards 

thereby leading to the expansion of the flow map as transition boundaries shifts to higher values 

of liquid and gas flow rate as shown in Figure 4.14. By adopting the same identification 

techniques discussed in upward inclinewd pipe orientation, the flow maps for -10
o
 and -20

o
 were 

developed and superimposed on the -5
o
 as shown in Figure 4.15.  

 

Figure 4.15 Downward flow map showing -5
o
, -10

o
 & -20

o 
flow pattern transition boundaries 
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The stratified to slug flow transition boundary was observed to shift to higher liquid flow rate and 

likewise the transition boundary from slug to bubbly flow. Annular and wavy flow pattern 

transition boundaries were observed to shift to higher gas phase flow rate, therefore the map 

expands as pipe inclination goes from -5
o
 to -20

o
. 

Similar observation was made by Tzotzi et al. (2011) in the downward pipe orientation where 

transition line of stratified flow shift upwards as pipe inclination angle is changed from -0.25
o
 to -

1
o
, this was due to reduced height of liquid film and increased liquid phase velocity attributed to 

gravitational force acting in flow direction. The effect of pipe orientation on flow map developed 

by Tzotzi et al. (2011) is given as Figure 4.16.  

 

K-H = Kelvin Helmholtz instability waves and 2-D = Two dimensional waves 

Figure 4.16 Effect of pipe orientation on flow pattern lines adapted from Tzotzi et al. (2011), 

Ө = 0.25
o
 for continuous line, Ө = 1

o
 for dashed line. 
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4.1.3 Effects of Pipe Orientation on Flow Pattern and Flow Maps 

Figure 4.17 Comparisons between upward and downward inclined flow maps 

The flow map developed for upward inclined pipe orientation contracts while that of the 

downward expands as shown in Figure 4.17. The liquid phase is more dominant in flow pattern 

formation than the gas phase because of very high liquid density when compared to gas density 

and the effects of gravitational force on the liquid phase plays an important role in both the type 

of flow pattern observed and the transition between distinct flow patterns. 

 For the upward inclined flow, gravitational force acts in opposite direction of liquid phase flow, 

this eliminates stratified flow and also increases the shear on the gas phase depending on the 

magnitude of the gravitational force due to pipe inclination. At lower angles of inclination, the 

gravitational pull is low but increases as pipe orientation increases upwards. The increase in 

gravitational force reduces the inertial force needed to transform the flow patterns and hence the 

transition boundaries shift to lower liquid and gas flow rates and the map contracts. 

In the downward inclined flow, the gravitational force acts in the same direction as the liquid 

phase thereby increasing the inertial force (mass flow rate) needed to transform the flow patterns 
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and hence the transition boundaries shift to higher liquid and gas flow rate and the map expands 

as pipe orientation shifts further downwards. 

Physical structure of the flow patterns remain the same for both upward and downward inclined 

flow except the slug flow that showed distinct properties in the downward inclined pipe 

orientation. Generally, slug flow is characterized by the gas phase existing in long cylindrical 

bullet shaped bubble with a hemispherical nose and a flat tail. Given in Figure 4.18 are 

representative pictures of slug flow in +20
o
 and -20

o
 pipe orientations. 

 

     

 

 (A) Slug flow +20
o
                  (B) Slug flow -20

o
 

 

 

(C) Slug flow -20
o
 

 (A) ṁl = 2.3 kg/min & ṁg = 0.003 kg/min, (B) ṁl = 6.8 kg/min & ṁg = 0.003 kg/min, (C) ṁl = 

6.8 kg/min & ṁg = 0.003kg/min. 

Figure 4.18 Representative pictures of slug flow pattern for +20
o
 and -20

o
 pipe orientations. 

The arrows in Figure 4.18 specify the flow direction for each pipe orientation as flow moves from 

right to left. Distinct characteristics can be observed in the slug flow pattern due to simultaneous 

effects of gravitational and buoyant forces acting in the two phase flow. For the upward inclined 

pipe orientation, the buoyant force acts in the flow direction while gravitational force opposes it. 
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This effect tends to pull the liquid phase downwards as the gas phase accelerates upwards 

resulting in slug flow pattern as shown in Figure 4.18 (A). While in the downward inclined pipe 

orientation, the gravitational force acts in flow direction which accelerates the liquid phase 

downwards while buoyant force acting on the gas phase opposes the flow. This effect slows down 

the velocity of the gas phase and generates laterally inverted slug which has the nose pointing in 

opposite flow direction as shown in Figure 4.18 (B) and (C). 

 

4.2 Void Fraction 

Void fraction is a critical parameter in two phase flow modeling as heat transfer and pressure 

drop calculations require two phase density and velocity which can only be determined by void 

fraction. As stated by Thome (2006), void fraction is defined based on method adopted for 

measurement. For example, chordal void fraction is defined as 

         
  

     
 where Lg and Ll are the lengths of liquid and gas phase in the two phase system 

Cross sectional void fraction is defined as 

    
  

     
 where Al and Ag are the cross sectional areas occupied by liquid and gas phase 

Volumetric void fraction is defined as 

     
  

     
 where Vl and Vg are the volumes of the liquid and gas phases 

Void fraction calculation method employed in present study is the volumetric void fraction where 

quick closing valves are used to trap liquid and gas phase mixture in the test section.  
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4.2.1 Variation of Void Fraction with Flow Pattern 

Void fraction is flow pattern dependent as bubbly flow was observed to occupy the lower void 

fraction range and wavy and annular flows observed in the higher void fraction range. The 

variation of void fraction with flow patterns is a logarithmic growth as void fraction notably 

increases with increase in gas phase flow rate in the low void fraction section (bubbly and slug 

flow). A relatively horizontal line showing small difference in values of void fraction with 

increase in gas flow rate was observed in the high void fraction region (wavy and annular flows).  

This indicates that void fraction is sensitive to increase in flow rates in the low gas flow region 

and has low sensitivity to increase in gas flow rate in the high gas flow region. Similar 

observation was made by Bhagwat (2011) and Godbole et al. (2011).  Void fraction was plotted 

against the gas mass flow rate at constant liquid flow rates to observe the void fraction trends 

with increasing gas flow rates as shown in the Figure 4.19. Note that mass flow rate was used in 

the plot as opposed to Reynolds number or superficial velocity because Reynolds number 

depends on viscosity which changes with temperature while superficial velocity depends on pipe 

diameter and system pressure. However mass flow rate is a function of two independent 

properties (mass and time) which can easily be fixed on the flow meter regardless of change in 

temperature, pressure and pipe diameter. Variation of void fraction with flow pattern was plotted 

for each pipe orientation and they were observed to follow the same trend as shown in Figures 

4.19 to 4.24. The range of void fraction for the distinct flow patterns are shown in Tables 4.1 to 

4.6. The upward inclined pipe orientation plots for variation of void fraction with flow pattern are 

first discussed and given as Figures 4.19 to 4.21. Likewise Tables 4.1 to 4.3 give the range of 

void fraction for the distinct flow patterns for upward inclined pipe orientation. 
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Figure 4.19 Variation of void fraction with flow pattern +5
o 

 

Table 4.1 Range of void fraction for distinct flow patterns observed in present study for +5
o
 

Flow Pattern Range of Void Fraction 

Bubbly 0.08 – 0.24 

Slug 0.23 – 0.58 

Wavy 0.66 – 0.79 

Annular 0.72– 0.87 
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Figure 4.20 Variation of void fraction with flow pattern +10
o 

 

Table 4.2 Range of void fraction for distinct flow patterns observed in present study for 

+10
o
 

Flow Pattern Range of Void Fraction 

Bubbly 0.09 – 0.27 

Slug 0.17 – 0.57 

Wavy 0.64 – 0.79 

Annular 0.72 – 0.86 
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Figure 4.21 Variation of void fraction with flow pattern +20
o 

 

Table 4.3 Range of void fraction for distinct flow patterns observed in present study for 

+20
o
 

Flow Pattern Range of Void Fraction 

Bubbly 0.08 – 0.40 

Slug 0.14 – 0.45 

Wavy 0.65 – 0.79 

Annular 0.66 – 0.87 

 

Figures 4.19 to 4.21 show the various void fraction sections the major flow patterns occupy in 

present study. This was achieved by maintaining constant liquid phase flow rate and increasing 
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the flow rate of the gas phase.  For the bubbly flow section in Tables 4.1 to 4.3, the upper limits 

of void fraction can be seen to change with increase in inclination angle (0.24, 0.27, and 0.4 with 

uncertainty of ±5.1%, ±4.7% and ±2.9% for +5
o
, +10

o
 and +20

o
). The accuracy of measured void 

fraction is determined by calculated experimental uncertainty based on flow properties. Refer to 

Chapter III for more information on experimental uncertainty. The upper limits of void fraction 

for bubbly flow for +5
o
 and +10

o
 are within experimental uncertainty, whereas the upper limit of 

+20
o
 is not. This validates the claim in the upward inclined flow map in Figure 4.10 which 

showed downward shift in transition boundary (lower liquid flow rate) from slug to bubbly flow. 

Hence, bubbly flow was observed at higher void fraction when pipe inclination was increased. 

The lower limit of slug flow was observed to decrease with increase in inclination angle. The 

void fraction data for the lower limit of slug flow were measured at the lowest mass flow rates 

combination of ṁl= 1.36 kg/min & ṁg= 0.0015 kg/min. This reduction in void fraction is 

attributed to increase in gravitational force with inclination angle which increases slippage of 

liquid phase thereby reducing void fraction for the slug flow (0.23, 0.17 and 0.14 with 

experimental uncertainty of ±5.3%, ±7.5% and ±8.7% for +5
o
, +10

o
 and +20

o
). The lower limits 

of void fraction for slug flow are not within experimental uncertainty, hence this confirms the 

claim that slug flow was observed at lower void fraction values with increase in pipe inclination. 

Due to mixing and disturbance waves observed in wavy flow, the void fraction did not follow a 

constant trend for lower and upper limits from +5
o
 through +20

o
. For instance, the lower limits of 

void fraction for wavy flow are 0.66, 0.63 and 0.65 with experimental uncertainty of ±1.7%, 

±1.8% and ±1.7% for +5
o
, +10

o
 and +20

o
. Since these values of void fraction for wavy flow are 

not within experimental uncertainty, void fraction of wavy flow was observed to increase from 

+5
o
 to +10

o
 then decreased at +20

o
. The upper limit of void fraction of wavy flow was observed 

to be constant at approximately 0.79 with experimental uncertainty of ±1.4% for all three 

orientations. For annular flow, the lower limits of void fraction were measured as 0.72, 0.72 and 

0.65 with uncertainty of ±1.5%, ±1.5% and ±1.7% for +5
o
, +10

o
 and +20

o
. This also corroborates 
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the observation in the upward inclined flow map shown in Figure 4.10 that annular flow transition 

boundary shifts to the left (lower gas flow rate) as pipe inclination changed to +20
o
. The 

downward void fraction plots are given as Figures 4.22 to 4.24. Range of void fraction covered 

by distinct flow patterns in downward inclined pipe orientation are given as Tables 4.4 to 4.6. 

 

Figure 4.22 Variation of void fraction with flow pattern -5
o 

 

Table 4.4 Range of void fraction for distinct flow patterns observed in present study for -5
o
 

Flow Pattern Range of Void Fraction 

Bubbly 0.11 – 0.16 

Slug 0.17 – 0.51 

Stratified 0.28 – 0.67 

Wavy 0.66 – 0.85 

Annular 0.68 – 0.86 
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Figure 4.23 Variation of void fraction with flow pattern -10
o
 

 

Table 4.5 Range of void fraction for distinct flow patterns observed in present study for -10
o
 

Flow Pattern Range of Void Fraction 

Bubbly 0.11 – 0.16 

Slug 0.15 – 0.52 

Stratified 0.35 – 0.73 

Wavy 0.67 – 0.84 

Annular 0.73 – 0.87 
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Figure 4.24 Variation of void fraction with flow pattern -20
o 

 

Table 4.6 Range of void fraction for distinct flow pattern observed in present study for -20
o
 

Flow Pattern Range of Void Fraction 

Bubbly ≤ 0.12 

Slug 0.14 – 0.54 

Stratified 0.43 – 0.79 

Wavy 0.66 – 0.86 

Annular ≥ 0.74 
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As stated earlier, five distinct flow patterns were observed in the downward inclined pipe 

orientation (-5
o
, -10

o
 & -20

o
) as listed in Tables 4.4, 4.5 and 4.6. The upper limits of void fraction 

range for stratified flow are 0.67, 0.73, and 0.79 with experimental uncertainty of ±1.7%, ±1.5% 

and ±1.4% for -5
o
, -10

o
 and -20

o
. Hence, void fraction values are not within experimental 

uncertainty.  The increase in upper void fraction limit for stratified flow was due to increase in 

liquid phase velocity and decrease in liquid film height. Hence, this increases void fraction. This 

effect was indicated in the downward flow map (Figure 4.15) which showed upward shift in 

transition boundary of stratified to slug flow. Unlike the upward inclined pipe orientation, the 

lower limit of void fraction in annular region for the downward inclined pipe orientation was 

observed as 0.68, 0.73, and 0.74 with uncertainty of ±1.6%, ±1.5% and ±1.5% for -5
o
, -10

o
 and -

20
o
. Since lower void fraction limits of 0.68 and 0.73 for -5

o
 and -10

o
 are not within experimental 

uncertainty, the claim that annular flow was observed at higher flow rates from -5
o
 to -10

o
 was 

verified. Hence, transition boundary shifts to higher gas flow rates and flow map expands as 

indicated in Figure 4.15. 

 

4.2.2 Performance Analyses of Void Fraction Correlations 

A total of 700 void fraction data points were measured in present study with 350 points in the 

upward inclined pipe orientation and 350 points in the downward inclined pipe orientation. These 

data points were used to evaluate the prediction performance of selected void fraction correlations 

mentioned in the literature. Comprehensive analyses to come up with the best performing 

correlation in the upward, downward and all six pipe orientations was conducted. As reported by 

Godbole et al. (2011), the statistical parameter adopted for correlation performance comparison is 

based on the discretion of investigator due to ease of calculation and analyses. Different statistical 

parameters exist in literature which includes fractional deviation, logarithmic ratios, relative 
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performance factor and many more. Dukler et al. (1964) carried out the first void fraction 

correlation comparison for horizontal pipe orientation with different pipe diameters and the 

parameter employed for correlation analysis were standard deviation and arithmetic mean 

deviation. Palmer (1975) conducted inclined pipe comparison with a 51 mm diameter pipe for 

+4.2
o
, +7.1

o
 & +7.5

o
 in the upward pipe orientation and -3.8

o
, -4.3

o
 & -6.3

o
 in the downward pipe 

orientation, percentage error and standard deviation were the parameters used for comparison. 

The comparison parameter adopted in present study has been used by previous investigators in 

the same research group, hence this same type of analysis is deemed satisfactory for void fraction 

correlation performance. The performance of individual correlation was determined by 

percentage error (±10% & ±20%) and Root Mean Square error expressed as  

           √
 

   
∑ [

                 

        
]
 

 
   X 100% 

Each of the six pipe orientations (+5
o
, +10

o
, +20

o
 -5

o
, -10

o
 & -20

o
) was analyzed individually 

followed by their categorization as upward and downward inclined pipe orientations as done 

previously in this chapter for flow maps and variation of void fraction with flow pattern. This was 

followed by analysis of the total data set to determine the best performing correlation. In this 

study, the void fraction data was divided into three regions of 0 < α ≤ 0.25, 0.25 < α ≤ 0.75 and 

0.75 < α < 1. This division was based on sensitivity of void fraction to gas flow rates and the 

specific flow patterns that occupy these particular regions. For example, bubbly and slug flow 

were observed to occupy the low void fraction region. Slug-bubbly, slug-wavy, wavy and wavy-

annular flows were observed in the mid void fraction region while annular flow occupies the high 

void fraction region. Division of entire void fraction data into specific regions eliminates partial 

interpretation analysis based on the entire data set by revealing the specific regions of void 

fraction where correlations perform with higher accuracy. This ultimately helps in coming up 
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with detailed and appropriate conclusions for performance of each correlation. Fourteen 

correlations were chosen for analysis based on the following criteria. 

1. Flow pattern and pipe orientation independent correlations: Different flow patterns and 

combination of two or more flow patterns were observed in present study. Flow pattern 

dependent correlation would ultimately fail in predicting void fraction in the transition 

flow pattern regions because of change in two phase structure in pipe cross section. Also 

pipe orientation independent correlation would ensure continuity in use of correlation for 

analyses of all six pipe orientations in present study. 

2. Drift flux model correlations: As reported in the literature, drift flux model based void 

fraction correlations are the top performing correlations due to their ability to predict 

most accurately the flow physics of two phase flow. Woldesemayat and Ghajar (2007) 

conducted comparison of void fraction correlations for horizontal and upward inclined 

pipes. 68 correlations were selected for comparison and 6 correlations performed best, 5 

out of the 6 correlations were based on drift flux model. Godbole et al. (2011) also 

conducted void fraction correlations comparison for vertical upward flow, 52 void 

fraction correlations were analyzed and only 8 correlations performed satisfactorily, all of 

which are drift flux models. 

3. Empirical correlations: Some empirical correlations have been reported in the literature to 

perform satisfactorily for horizontal and near horizontal pipe orientations e.g., Guzhov et 

al. correlation (1967). 

4. Separated flow model or slip ratio correlations: Separated flows were observed in present 

study (stratified and annular flows) and some correlations have been reported to perform 

better than other correlations in the separated region. Bhagwat and Ghajar (2013) 

conducted correlation comparison for 4227 air-water data points and reported a few top 
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performing separated flow model correlations. Woldesemayat and Ghajar (2007) also 

reported the top performing correlations in horizontal and upward inclined pipes. 

Based on the above listed criteria, the following fourteen correlations were selected for prediction 

and analysis of experimental void fraction data in present study. 

1. Bhagwat and Ghajar (2013) 

2. Bonnecaze et al. (1971) 

3. Cioncolini and Thome (2012) 

4. Gomez et al. (2000) 

5. Greskovic and Cooper (1975) 

6. Guzhov et al. (1967) 

7. Lockhart and Martinelli (1949) 

8. Morooka et al. (1989) 

9. Nicklin et al. (1962) 

10. Rouhani and Axelsson (1970) 

11. Smith (1969) 

12. Sun et al. (1981) 

13. Woldesemayat and Ghajar  (2007) 

14. Yashar et al. (2001) 

The mathematical representations of the fourteen correlations are presented in Table 4.7. 
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Table 4.7 Void fraction correlations selected for present study 

Author/Source Void Fraction Correlation 

 

 

 

 

 

 

1. Bhagwat and Ghajar (2013)D 
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3. Cioncolini and Thome (2012)B 
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11. Smith  (1969)S 

 

 

 

12. Sun et al. (1981)D 

 

 

 

13. Woldesemayat and Ghajar  

      (2007)D 

 

 

 

 

 

 

14. Yashar et al. (2001)S 

  (  
  

  
(
   

 
) [       (

    ⁄           ⁄

          ⁄  
)

   

])

  

 

 

   [                  ⁄ ]
  

,         (  
     

  
 )

    

 

 

 

   
   

       
[  (

   

   
)

     ⁄     

] 

                                ⁄ [
                  

  
 ]

    

 

 

 

  [  √
         

 

     (
   

 
)
   

(
  

  
)
   

(
  

  
)

   

]

      

 

 
S = Slip ratio correlation, D = Drift flux correlation, B = Biochemical kinematics mathematical function. 

 

Scatter plots used in analyses help to easily identify the trends and outliers of predicted data, the 

±10% and ±20% error bands on the plots assist to visually recognize the range within which 

correlation is more accurate in predicting experimental data. Scatter plots for all fourteen 

correlations are presented as Figures 4.25 to 4.27 for +5
o
 pipe orientation. 

  
 

Figure 4.25 Void fraction data prediction for (1) Bhagwat and Ghajar (2013) and (2) 

Bonnecaze et al. (1971).  



85 
 

  

  

  

Figure 4.26 Void fraction data prediction for (3) Cioncolini and Thome (2012), (4) Gomez et 

al. (2000), (5) Greskovic and Cooper (1975), (6) Guzhov et al. (1967), (7) Lockhart and 

Martinelli (1949), and (8) Morooka et al. (1989) 
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Figure 4.27 Void fraction data prediction for (9) Nicklin et al. (1962), (10) Rouhani and 

Axelsson (1970), (11) Smith (1969), (12) Sun et al. (1981), (13) Woldesemayat and Ghajar 

(2007) and (14) Yashar et al. (2001). 
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123 void fraction data points were analyzed for +5
o
 pipe orientation, 105 data points were 

analyzed for +10
o
 and 122 data points for +20

o
. The scatter plots for +10

o
 and +20

o
 follow similar 

trend as Figures 4.25 to 4.27 for the selected correlations, therefore their presentation in present 

study was not necessary.  A more detailed analysis of performance of each correlation is given in 

Tables 4.8 to 4.11. The highlighted (bolded and underlined) values in Tables 4.8 through 4.11 

represent the percentage accuracies of top performing correlations within the corresponding void 

fraction region and error bands. Each Table has a total of 9 columns of prediction for each 

correlation and the first 2 columns show predictions for the entire void fraction data measured for 

the given pipe orientation in ±10% and ±20% error bands.  Percent RMS error was calculated for 

each pipe orientation in column 3 which is based on the total void fraction data points analyzed in 

columns 1 and 2. Further analyses based on prediction of void fraction correlations for the given 

void fraction region (0 < α ≤ 0.25, 0.25 < α ≤ 0.75 and 0.75 < α < 1) are shown in columns 4 to 9.  

The error bands for 0.75 < α < 1 void fraction region was reduced to ±5% and ±7.5% from ±10% 

and ±20% due to high accuracy of void fraction correlations in predicting experimental data. The 

results for upward inclined pipe orientation are shown in Tables 4.8 to 4.11.



88 
 

 

Table 4.8 Void fraction correlation comparison for 123 data points for +5
o
 

Pipe Orientation: +5
o
 

123 Data Points RMS Error 0 < α ≤ 0.25 (17 points) 0.25 < α ≤ 0.75 (79 points) 0.75 < α < 1 (27 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 65 94 10.8 6 65 66 99 59 93 

Bonnecaze et al. (1971) 75 89 11.1 0 29 84 99 93 100 

Cioncolini and Thome (2012) 55 63 51.9 0 0 53 63 52 93 

Gomez et al. (2000) 50 97 10.8 24 76 41 100 48 70 

Greskovic and Cooper (1975) 26 48 19.8 59 82 28 39 0 0 

Guzhov et al. (1967) 85 94 9.1 6 53 96 100 85 93 

Lockhart and Martinelli (1949) 39 70 16.6 0 47 27 66 100 100 

Morooka et al. (1989) 43 75 17.8 0 6 39 80 11 41 

Nicklin et al. (1962) 75 89 11.1 0 29 82 99 93 100 

Rouhani and Axelsson (1970) 52 90 12.8 0 35 46 98 56 93 

Smith (1969) 87 99 6.9 35 94 99 100 11 67 

Sun et al. (1981) 68 75 14.4 0 0 71 89 85 96 

Woldesemayat and Ghajar (2007) 65 85 18.4 6 24 65 91 15 96 

Yashar et al. (2001) 51 80 17.6 53 71 34 75 100 100 
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Table 4.9 Void fraction correlation comparison for 105 data points for +10
o 

Pipe Orientation: +10
o
 

105 Data Points RMS Error 0 < α ≤ 0.25 (16 points) 0.25 < α ≤ 0.75 (68 points) 0.75 < α < 1 (21 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 59 96 10.9 19 67 56 100 62 81 

Bonnecaze et al. (1971) 73 92 11.2 0 50 84 100 100 100 

Cioncolini and Thome (2012) 54 63 54.4 0 0 53 68 48 91 

Gomez et al. (2000) 54 95 10.8 25 69 49 100 62 81 

Greskovic and Cooper (1975) 29 53 18.6 56 81 31 44 0 0 

Guzhov et al. (1967) 85 94 9.3 19 63 96 100 81 100 

Lockhart and Martinelli (1949) 37 70 16.4 0 63 27 62 100 100 

Morooka et al. (1989) 45 69 18.2 0 0 43 75 14 48 

Nicklin et al. (1962) 73 92 11.2 0 50 85 100 100 100 

Rouhani and Axelsson (1970) 59 90 12.6 0 50 60 96 57 95 

Smith (1969) 89 97 7.3 56 81 94 100 10 62 

Sun et al. (1981) 64 78 14.8 0 0 69 91 76 100 

Woldesemayat and Ghajar (2007) 64 83 16.4 0 19 68 93 24 91 

Yashar et al. (2001) 50 77 17.2 44 69 35 72 100 100 
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Table 4.10 Void fraction correlation comparison for 122 data points for +20
o 

Pipe Orientation: +20
o
 

122 Data Points RMS Error 0 < α ≤ 0.25 (26 points) 0.25 < α ≤ 0.75 (76 points) 0.75 < α < 1 (20 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 81 99 10.3 85 96 75 100 55 85 

Bonnecaze et al. (1971) 89 99 8.6 50 92 100 100 95 100 

Cioncolini and Thome (2012) 49 57 104.9 0 0 53 67 40 90 

Gomez et al. (2000) 78 98 11.0 80 96 71 100 55 75 

Greskovic and Cooper (1975) 26 66 19.0 73 96 17 57 0 0 

Guzhov et al. (1967) 89 98 8.9 80 96 97 100 85 95 

Lockhart and Martinelli (1949) 47 84 19.3 54 92 30 73 100 100 

Morooka et al. (1989) 47 89 14.3 4 69 100 100 15 45 

Nicklin et al. (1962) 89 98 8.6 50 96 100 100 95 100 

Rouhani and Axelsson (1970) 63 92 12.8 4 84 70 93 70 85 

Smith (1969) 87 97 11.8 69 85 91 100 5 60 

Sun et al. (1981) 70 95 10.9 16 80 82 99 85 95 

Woldesemayat and Ghajar (2007) 65 75 40.8 4 8 74 91 15 100 

Yashar et al. (2001) 44 71 39.5 27 39 37 75 100 100 
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Table 4.11 Void fraction correlation comparison for 350 data points for upward inclined pipe orientation
 

Upward Inclined Pipe Orientation (+5
o
, +10

o
 and +20

o
) 

350 Data points RMS Error  0 < α ≤ 0.25 (59 points) 0.25 < α ≤ 0.75 (223 points) 0.75 < α < 1 (68 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 69 96 10.6 44 79 66 100 59 87 

Bonnecaze et al. (1971) 79 93 10.3 22 62 89 100 96 100 

Cioncolini and Thome (2012) 53 61 75.1 0 0 53 66 47 92 

Gomez et al. (2000) 61 97 10.8 49 83 54 100 54 75 

Greskovic and Cooper (1975) 27 56 19.1 64 88 25 47 0 0 

Guzhov et al. (1967) 86 95 9.1 42 75 96 100 84 96 

Lockhart and Martinelli (1949) 41 75 17.5 24 71 28 67 100 100 

Morooka et al. (1989) 45 78 16.7 2 32 61 85 13 44 

Nicklin et al. (1962) 79 93 10.3 22 64 89 100 96 100 

Rouhani and Axelsson (1970) 58 91 12.7 2 61 58 96 60 91 

Smith (1969) 88 98 9 56 87 95 100 9 63 

Sun et al. (1981) 67 83 13.4 7 35 74 93 82 97 

Woldesemayat and Ghajar (2007) 65 81 27.9 3 16 69 92 18 96 

Yashar et al. (2001) 48 76 27.2 39 56 35 74 100 100 
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Performance of Correlations for 0 < α ≤ 0.25 

Low accuracy was observed for selected correlations in this region due to low values of measured 

void fraction. Slight difference between measured and predicted void fraction yields high 

percentage error of prediction. For example, measured void fraction of 0.07 and predicted void 

fraction of 0.1 gives difference of 0.03 and 43% percent error. Greskovic and Cooper (1975) 

predicted total data points in this region with highest accuracy of 59% and 56% within ±10% 

error bands for +5
o
 and +10

o
 as shown in Tables 4.8 and 4.9, column 4. However, accuracy of 

correlations improved as pipe orientation shifted to +20
o
 (Table 4.10, column 4) as Bhagwat and 

Ghajar (2013) performed best by predicting 85% of data points within ±10% error bands. Gomez 

et al. (2000) and Guzhov et al. (1967) also predicted 80% of data in this region. This was 

followed by Greskovic and Cooper (1975) which predicted 73% of data points in +20
o
 within 

±10% error bands. For the total of 59 data points for this void fraction region in upward inclined 

pipe orientation, Greskovic and Cooper (1975) performed best by predicting 64% of data points 

in ±10% error bands (Table 4.11, column 4). Even though this value is relatively low, it is 

acceptable since most correlations perform below 50% accuracy in this region. The second top 

performing correlation is Smith (1969) which predicted 56% of data followed by Gomez et al. 

(2000) which predicted 51% of total data points. Accuracy of correlations improve in the ±20% 

error bands as Greskovic and Cooper (1975), Smith (1969) and Gomez et al. (2000) predicted 

90%, 87% and 85% in this region respectively. Cioncolini and Thome (2012), Morooka et al. 

(1989), Rouhani and Axelsson (1970), Sun et al. (1981) and Woldesemayat and Ghajar (2007) all 

predicted less than 10% of data within ±10% error bands for this void fraction region. 

Performance of Correlations for 0.25 < α ≤ 0.75 

Accuracy of void fraction correlations was observed to significantly increase in the 0.25 < α ≤ 

0.75 region as most of the correlations perform satisfactorily. Guzhov et al. (1967) performed 
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consistently accurate in the +5
o
, +10

o
 and +20

o
 (Tables 4.8 to 4.10, column 6) by predicting 96%, 

96% and 97% of data points within ±10% error bands in this void fraction region. Smith (1969) 

also predicted 99%, 94% and 91% for +5
o
, +10

o
 and +20

o
 pipe orientation. Other correlations like 

Bonnecaze et al. (1971), Nicklin et al. (1962) and Morooka et al. (1989) all showed increased 

accuracy with inclination angle as they all predicted a little above 80% of data points in the +5
o
 

and +10
o
, and 100% in ±10% error bands for +20

o
. For the total of 223 data points in this void 

fraction region in upward inclined pipe orientation (Table 4.11, column 6), Guzhov et al. (1967) 

performed best by predicting 96% of data within ±10% error bands, followed closely by Smith 

(1969) which predicted 95% of data in this region. Bonnecaze et al. (1971) and Nicklin et al. 

(1962) also performed satisfactorily by predicting 89% of data in this region. Greskovic and 

Cooper (1975) performed least by predicting only 47% of 223 data points within ±10% error 

bands in this void fraction region. Hence the best performing void fraction correlation in present 

study for upward inclined pipe orientation in 0.25 < α ≤ 0.75 region is Guzhov et al. correlation 

(1967). 

Performance of Correlations for 0.75 < α < 1 

As shown in the void fraction plot in Figures 4.19 to 4.24, the higher void fraction region has 

very low sensitivity to changes in superficial velocity or flow rate of gas phase. This effect makes 

the correlations predict void fraction with very high accuracy. In +5
o
 (Table 4.8, column 8), 

Lockhart and Martinelli (1949) and Yashar et al. (2001) predicted 100% of data points within 

±5% error bands for this void fraction region. Bonnecaze et al. (1971) and Nicklin et al. (1962) 

predicted 93% of data within ±5% error bands. However, Smith (1969) and Morooka et al. (1989) 

predicted only 11% of data points in this region within ±10% error bands. Greskovic and Cooper 

(1975) performed least by predicting none of the data points in this region. In +10
o
 pipe 

orientation (Table 4.9, column 8), Bonnecaze et al. (1971), Nicklin et al. (1962), Yashar et al. 

(2001) and Lockhart and Martinelli (1949) all predicted 100% of data points within ±5% error 
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bands. However, Greskovic and Cooper (1975) performed least by predicting none of the data 

points in this region. In +20
o
 pipe orientation (Table 4.10, column 8), Lockhart and Martinelli 

(1949) and Yashar et al. (2001) performed best by predicting 100% of data in this void fraction 

region within ±5% error bands. Bonnecaze et al. (1971) and Nicklin et al. (1962) predicted 95% 

of void fraction data in this region. For the total of 68 void fraction data points measured in this 

region, Lockhart and Martinelli (1949) and Yashar et al. (2001) predicted 100% of void fraction 

data within ±5% error bands for upward inclined pipe orientation while Greskovic and Cooper 

(1975) predicted none of the data points in this void fraction region as shown in Figure 4.11, 

column 8. 

4.2.3 Best Performing Correlation for Upward Inclined Pipe Orientation 

The top performing correlation based on percent RMS error was determined for each pipe 

orientation and for the entire upward inclined pipe orientation. As shown in Table 4.8 and column 

3, the best performing correlation having lowest RMS error for +5
o
 is Smith (1969) with 6.9% in 

RMS error. This was followed by Guzhov et al. (1967) having 9.1% RMS error and Bhagwat and 

Ghajar (2013) having 10.8% in RMS error. The highest percent RMS error was calculated for 

Cioncolini and Thome (2012) with 51.9% in RMS error.  

The best performing correlation in +10
o
 (Table 4.9, column 3) based on lowest percent RMS error 

was Smith (1969) with 7.3% followed by Guzhov et al. (1967) having 9.3% in RMS error. 

Gomez et al. (2000) had RMS error of 10.8% followed by Bhagwat and Ghajar (2013) with 

10.9% in RMS error. Cioncolini and Thome (2012) had the highest percent RMS error of 54.4%. 

In +20
o
 pipe orientation, Nicklin et al. (1962) and Bonnecaze et al. (1971) gave lowest percent 

RMS error  of 8.6%. Guzhov et al. (1967) gave 8.9% in RMS error followed by Bhagwat and 

Ghajar (2013) which gave 10.3% in RMS error as shown in Table 4.10, column 3.  Complete 

performance analyses of the three upward inclined pipe orientations (+5
o
, +10

o
 & +20

o
) is shown 
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in Table 4.11. A total of 350 void fraction data points were measured in these orientations (+5
o
, 

+10
o
, and +20

o
), and the best performing correlation was selected. The lowest RMS error of 9% 

was calculated for Smith (1969) which was followed closely by Guzhov et al. (1967) having 

9.1% in RMS error. Bonnecaze et al. (1971) and Nicklin et al. (1962) both gave RMS error of 

10.3%, Bhagwat and Ghajar (2013) had 10.6% in RMS error followed by Gomez et al. (2000) 

with 10.8% of RMS error. The highest RMS error of 75.1% was calculated for Cioncolini & 

Thome (2012). Hence the best correlation for predicting void fraction in present study for upward 

inclined pipe orientation is Smith (1969) followed closely by Guzhov et al. (1969) having a 

difference of 0.1%. 

In downward inclined pipe orientation (-5
o
, -10

o
, and -20

o
), Greskovic & Cooper (1975) 

completely failed to predict the void fraction data and was removed from the list of selected 

correlations for comparison leaving 13 correlations. Regardless of void fraction model i.e., drift 

flux or slip ratio, it was observed that void fraction correlations under-predict the data points for 

stratified flow in the downward inclined pipe orientation. The high void fraction in stratified flow 

region was attributed to liquid phase acceleration downstream due to gravity thereby significantly 

increasing void fraction. The number of under-predicted void fraction data points was observed to 

increase with increase in pipe orientation in the downward direction. The effect of pipe 

orientation on Gomez et al. (2000) which was observed as the top performing correlation in the 

downward inclined pipe orientation is shown in Figures 4.28 to 4.30. 
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Figure 4.28 Gomez et al. (2000) predictions of 115 data points for -5
o
 pipe orientation 

 

Figure 4.29 Gomez et al. (2000) predictions of 119 data points for -10
o
 pipe orientation 
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Figure 4.30 Gomez et al. (2000) predictions of 116 data points for -20
o
 pipe orientation 

Only 2 data points were under-predicted (below the -20% error band) by the Gomez et al. (2000) 

for -5
o
 as shown in Figure 4.28. These under-predicted points were observed to increase to 5 

points in -10
o
 and 15 points in -20

o
 pipe orientations (Figures 4.29 and 4.30). All other 

correlations were observed to under-predict more points than Gomez et al. (2000) as pipe 

inclination was increased from -5
o
 through -10

o
 to -20

o
. Beggs and Brill (1973) conducted 

extensive study of inclined air-water two phase flow in 1 and 1.5 inch diameter pipes over the 

entire pipe orientation of -90
o
 to +90

o
.  The statistical average percent error of the liquid holdup 

correlation developed by Beggs and Brill (1973) showed for downhill inclinations of -5
o
, -10

o
, -

15
o
 and -20

o
 are +0.13%, -0.84%, +1.16% and +0.29%, respectively. This indicates that highest 

value over-prediction of liquid holdup was observed at -15
o
 before reducing at -20

o
. Since 

       then the highest value for void fraction under-prediction for Beggs and Brill (1973) 

was observed at -15
o
 whereas in present study highest percentage of under-predicted data points 

was observed at -20
o
. Detailed analyses of performance of the selected correlations in downward 

inclined pipe orientation are given in Tables 4.12 to 4.15. 
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Table 4.12 Void fraction correlation comparison for 115 data points for -5
o
 

Pipe Orientation: -5
o
 

115 Data Points RMS Error 0 < α ≤ 0.25 (18 points) 0.25 < α ≤ 0.75 (74 points) 0.75 < α < 1 (23 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 59 71 19.5 22 33 55 72 57  83  

Bonnecaze et al. (1971) 69 85 14.4 0 44 76 91 96 100 

Cioncolini and Thome (2012) 56 68 51.3 0 0 61 74 48 94 

Gomez et al. (2000) 50 95 11.4 44 78 39 97 43 78 

Guzhov et al. (1967) 77 89 12.0 6 50 88 95 83 100 

Lockhart and Martinelli (1949) 40 62 19.2 6 33 28 57 100 100 

Morooka et al. (1989) 44 70 20.9 0 6 43 77 17 44 

Nicklin et al. (1962) 69 85 14.4 0 44 76 91 96 100 

Rouhani and Axelsson (1970) 60 72 19.6 0 11 62 78 57 87 

Smith (1969) 82 94 9.7 44 83 87 94 0 78 

Sun et al. (1981) 62 76 17.9 11 39 72 85 83 100 

Woldesemayat and Ghajar (2007) 70 76 20.3 6 6 72 87 9 96 

Yashar et al. (2001) 49 75 19.8 44 72 33 68 96 100 

                    

 

 

 



99 
 

 

Table 4.13 Void fraction correlation comparison for 119 data points for -10
o
 

Pipe Orientation: -10
o
 

119 Data Points RMS Error 0 < α ≤ 0.25 (19 points) 0.25 < α ≤ 0.75 (70 points) 0.75 < α < 1 (30 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 63 81 15.4 16 42 60 84 73  100  

Bonnecaze et al. (1971) 69 81 16.8 5 42 71 81 93 100 

Cioncolini and Thome (2012) 60 71 49.3 0 0 59 71 20 100 

Gomez et al. (2000) 59 92 12.2 58 79 41 93 43 77 

Guzhov et al. (1967) 72 86 14.3 5 58 79 87 77 93 

Lockhart and Martinelli (1949) 40 67 21.2 0 68 27 53 97 97 

Morooka et al. (1989) 43 71 22.7 0 21 37 74 23 57 

Nicklin et al. (1962) 69 81 16.8 5 42 71 81 93 100 

Rouhani and Axelsson (1970) 60 73 21.6 0 26 60 74 53 67 

Smith (1969) 79 88 12.5 53 79 77 86 10 90 

Sun et al. (1981) 62 71 20.1 0 16 63 76 73 97 

Woldesemayat and Ghajar (2007) 66 74 21.7 5 5 67 80 27 100 

Yashar et al. (2001) 47 72 21.6 32 58 33 64 93 93 
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Table 4.14 Void fraction correlation comparison for 116 data points for -20
o
 

Pipe Orientation: -20
o
 

116 Data Points RMS Error 0 < α ≤ 0.25 (16 points) 0.25 < α ≤ 0.75 (75 points) 0.75 < α < 1 (25 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 53 85 16.0 13 63 43 85 64  96  

Bonnecaze et al. (1971) 62 72 24.0 0 25 67 75 76 84 

Cioncolini and Thome (2012) 50 67 39.8 0 0 48 73 52 84 

Gomez et al. (2000) 35 81 19.4 25 63 19 80 48 72 

Guzhov et al. (1967) 37 72 22.0 0 38 67 75 72 84 

Lockhart and Martinelli (1949) 39 65 26.8 6 38 32 64 76 76 

Morooka et al. (1989) 41 66 28.8 0 6 39 72 24 44 

Nicklin et al. (1962) 62 71 24.0 0 25 67 75 76 84 

Rouhani and Axelsson (1970) 52 66 28.0 0 13 56 73 44 48 

Smith (1969) 63 77 20.2 6 63 67 76 16 64 

Sun et al. (1981) 61 66 26.7 6 6 67 71 56 76 

Woldesemayat and Ghajar (2007) 52 68 22.8 6 13 52 73 12 72 

Yashar et al. (2001) 42 72 25.0 38 75 67 75 72 76 
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Table 4.15 Void fraction correlation comparison for 350 data points for downward inclined orientation
 

Downward Inclined Pipe Orientation (-5
o
, -10

o
, and -20

o
) 

350 Data Points RMS Error 0 < α ≤ 0.25 (53 points) 0.25 < α ≤ 0.75 (219 points) 0.75 < α < 1 (78 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 58 79 17 17 45 52 80 65 94 

Bonnecaze et al. (1971) 67 79 18.8 2 38 71 82 88 95 

Cioncolini and Thome (2012) 55 69 47 0 0 56 73 39 93 

Gomez et al. (2000) 48 89 14.7 43 74 33 90 45 76 

Guzhov et al. (1967) 62 82 16.6 4 49 78 86 77 92 

Lockhart and Martinelli (1949) 40 65 22.6 4 47 29 58 91 91 

Morooka et al. (1989) 43 69 24.3 0 11 40 74 22 49 

Nicklin et al. (1962) 67 79 18.8 2 38 71 82 88 95 

Rouhani and Axelsson (1970) 57 70 23.3 0 17 59 75 51 67 

Smith (1969) 75 86 14.8 36 76 77 85 9 78 

Sun et al. (1981) 62 71 21.8 6 21 67 77 71 91 

Woldesemayat and Ghajar (2007) 63 73 21.6 6 8 64 80 17 90 

Yashar et al. (2001) 46 73 22.2 38 68 45 69 87 90 
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Performance of Correlations for 0 < α ≤ 0.25 

For -5
o
 void fraction data, all correlations perform unsatisfactorily as the highest prediction of 

void fraction data in this region was given by Gomez et al. (2000), Smith (1969) and Yashar et al. 

(2001) with only 44% accuracy in ±10% error bands as shown in Table 4.12, column 4. All other 

correlations predict 6% or less of data points except Bhagwat and Ghajar (2013) which predicted 

22% and Sun et al. (1981) which predicted 11% of data. Similar poor performance was observed 

in -10
o
 and -20

o
 (Tables 4.13 and 4.14, column 4). Gomez et al. (2000) predicted with highest 

accuracy of 58% of the void fraction data in this region for -10
o
 and Yashar et al. (2001) having 

highest accuracy of 38% for -20
o
. For the downward inclined pipe orientation and a total of 53 

data points in this region, none of the correlations performed satisfactorily as Gomez et al. (2000) 

had the highest accuracy of only 43% of data within ±10% error bands. 

Performance of Correlations for 0.25 < α ≤ 0.75 

Accuracy of correlations improved in this region as observed in upward inclined pipe orientation 

as Guzhov et al. (1967) predicted 88% of data within ±10% error bands for -5
o
 (Table 4.12, 

column 6), followed by Smith (1969) which predicted 87% in this region. They both gave the 

highest accuracy in -10
o
 and -20

o
 by predicting 79% and 77% for -10

o
, and 67% each for -20

o
 

pipe orientation. Bonnecaze et al. (1971), Nicklin et al. (1962) and Sun et al. (1981) all predicted 

67% of data within ±10% error bands for -20
o
. Lockhart and Martinelli (1949) and Cioncolini and 

Thome (2012) predicted only 32% of data in this region in -20
o
. For a total of 219 void fraction 

data points in this region, Guzhov et al. (1967) performed best with accuracy of 78% followed 

closely by Smith (1969) which predicted 77% of data as shown in Table 4.15, column 6. 

Performance of Correlations for 0.75 < α < 1 

Lockhart and Martinelli (1949) predicted 100% of data for -5
o
 pipe orientation in this region 

within ±5% error bands. Bonnecaze et al. (1971), Nicklin et al. (1962) and Yashar et al. (2001) 
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predicted 96% of data in this region. Smith (1969) performed least by predicting none of the data 

points within the ±5% error bands as shown in Table 4.12, column 8. For -10
o
, Lockhart and 

Martinelli (1949) predicted 97% of data within this region followed by Bonnecaze et al. (1971), 

Nicklin et al. (1962) and Yashar et al. (2001) all predicting 93% of data in this region as shown in 

Table 4.13, column 8. Accuracy of void fraction correlations decreased in the -20
o
 pipe 

orientation as shown in Table 4.14, column 8 as the highest accuracy was 76% for Lockhart and 

Martinelli (1949), Bonnecaze et al. (1971) and Nicklin et al. (1962). 72% of data was predicted 

by Guzhov et al. (1967) and Yashar et al. (2001) in this void fraction region. Woldesemayat and 

Ghajar (2007) performed least by predicting only 12% of data within the ±5% error bands. For 

the total of 78 void fraction data points measured in this region for downward inclined pipe 

orientation, Lockhart and Martinelli (1949) predicted the data with highest accuracy of 91% 

within ±5% error bands. Bonnecaze et al. (1971) and Nicklin et al. (1962) predicted 88% of data 

in this region followed closely by Yashar et al. (2001) which predicted 87% of data in this void 

fraction region within ±5% error bands. Lowest accuracy of prediction was observed for Smith 

(1969) having only 9% in this void fraction region. 

 

4.2.4 Best Performing Correlation for Downward Inclined Pipe Orientation 

For -5
o
 pipe orientation, Smith (1969) performed best with the lowest percent RMS error of 9.7% 

followed by Gomez et al. (2000) having RMS error of 11.4%. Guzhov et al. (1967) gave 12% in 

RMS error and Cioncolini and Thome (2012) had highest RMS error of 51.3% as shown in Table 

4.12, column 3. 

For -10
o
 pipe orientation, Gomez et al. (2000) performed best with 12.2% in RMS error followed 

by Smith (1969) having 12.5% in RMS error. Bhagwat and Ghajar (2013) came third with RMS 
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error of 15.4% while Cioncolini and Thome (2012) gave highest RMS error of 49.3% as shown in 

Table 4.13, column 3. 

Bhagwat and Ghajar (2013) performed best in -20
o
 pipe orientation with lowest RMS error of 

16% followed by Gomez et al. (2000) having 19.4% in RMS error. Once again, Cioncolini and 

Thome had highest RMS error of 39.8% as shown in Table 4.14, column 3. 

Based on lowest value of RMS percent error calculated for each correlation as shown in Table 

4.15, the best performing correlation in predicting void fraction data in downward inclined pipe 

orientation is the Gomez et al. (2000) with 14.7% RMS error. This was followed by Smith (1969) 

with RMS error of 14.8% and then Guzhov et al. (1967) having 16.6% RMS error while the least 

performing correlation was found to be Cioncolini and Thome (2012) with RMS error of 47%. 

Detailed analysis of measured void fraction for near horizontal pipe orientation (+5
o
, +10

o
, +20

o
, -

5
o
, -10

o
 and -20

o
) is given in Table 4.16. 
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Table 4.16 Void fraction correlation comparison for 700 data points for all six pipe orientations (near horizontal)
 

All Orientations 

700 Data Points RMS Error 0 < α ≤ 0.25 (112 points) 0.25 < α ≤ 0.75 (442 points) 0.75 < α < 1 (146 points) 

Correlation ±10% Error ±20% Error % ±10% Error ±20% Error ±10% Error ±20% Error ±5% Error ±7.5% Error 

Bhagwat and Ghajar (2013) 64 88 14.2 31 62 59 90 62 90 

Bonnecaze et al. (1971) 73 86 15.1 12 50 80 91 92 97 

Cioncolini and Thome (2012) 54 65 62.6 0 0 54 69 43 92 

Gomez et al. (2000) 55 93 12.9 46 78 43 95 49 75 

Guzhov et al. (1967) 74 89 13.4 23 62 87 93 80 94 

Lockhart and Martinelli (1949) 40 70 20.2 14 59 29 63 96 96 

Morooka et al. (1989) 44 74 20.9 1 22 50 80 17 47 

Nicklin et al. (1962) 73 86 15.1 12 51 80 91 92 97 

Rouhani and Axelsson (1970) 58 81 18.8 1 39 59 85 56 79 

Smith (1969) 81 92 12.2 46 81 86 93 9 71 

Sun et al. (1981) 65 77 18.1 6 28 71 85 76 94 

Woldesemayat and Ghajar (2007) 64 77 24.9 5 12 66 86 17 93 

Yashar et al. (2001) 47 74 24.8 38 62 40 72 94 95 
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4.2.5 Best Performing Correlation for Near Horizontal Pipe Orientation (six inclination 

angles) in Present Study 

After conducting comprehensive analyses of selected void fraction correlations, the top 

performing correlations for 112 data points of void fraction in region of 0 < α ≤ 0.25 was 

observed to be Gomez et al. (2000) and Smith (1969) which predicted 46% within ±10% error 

bands as shown in Table 4.16, column 4. This was followed by Yashar et al. (2001) which 

predicted 38% of data points in the ±10% error bands. 

 442 void fraction data points were measured in the 0.25 < α ≤ 0.75 region and the correlation 

with most accurate prediction was found to be Guzhov et al. (1967) which predicted 87% of data 

points within ±10% error bands followed by Smith (1969) with 86% accuracy in predicting the 

442 data points. Bonnecaze et al. (1971) and Nicklin et al. (1962) also performed satisfactorily by 

predicting 80% of data in this region as shown in Table 4.16, column 6.  

146 experimental data points were measured in the region of 0.75 < α < 1, Lockhart and 

Martinelli (1949) had the highest accuracy by predicting 96% of void fraction data within ±5% 

error bands. This was followed by Yashar et al. (2001) which predicted 94% of data within ±5% 

error bands. Bonnecaze et al. (1971) and Nicklin et al. (1962) also performed satisfactorily by 

predicting 92% of data in this region.  Smith (1969) performed least by predicting only 9% of 

data within this error band as shown in Table 4.16, column 8.  

In sum, the best performing correlation in near horizontal pipe orientations based on percent RMS 

error in present study is Smith (1969) with 12.2% RMS error as shown in Table 4.16, column 3. 

This was followed by Gomez et al. (2000) with RMS error of 12.9% and then Guzhov et al. 

(1967) with RMS error of 13.4%. High RMS error was observed for Yashar et al. (2001) having 

24.8% and Woldesemayat and Ghajar (2007) having 24.9%. The least performing correlation for 

near horizontal orientations was observed to be Cioncolini and Thome (2012) with RMS error of 
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62.6%. The poor performance of Cioncolini and Thome (2012) confirms that the correlation was 

developed exclusively for annular flow with α > 0.7. For measured void fraction data above this α 

value, the correlation predicted 92% of data within ±10% error bands for near horizontal pipe 

orientation. 

4.3 Effect of Pipe Orientation on Void Fraction 

To determine the effect of pipe orientation on void fraction, specific flow rates combination 

which cover all flow patterns were selected for void fraction measurement and repeated for each 

pipe orientation. At low flow rates of liquid and gas phase, void fraction in the upward inclined 

pipe orientation was observed to decrease with inclination angle while in the downward inclined 

pipe orientation, void fraction was observed to increase with inclination angle. However at high 

flow rates combination of liquid and gas phase, void fraction was independent of pipe orientation 

as there were no unique trends observed in either upward or downward inclined orientation. 

Variation of void fraction with pipe orientation at low flow rate combination of liquid and gas 

phase is shown in Figure 4.31. 

  
 

Figure 4.31 Effect of pipe orientation on void fraction (low mass flow rate combination) 

Effect of pipe orientation can be observed for the lowest flow combination selected for void 

fraction measurement in present study (1.36 kg/min & 0.0015 kg/min of liquid and gas phase).  
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Void fraction increases as pipe orientation shifts in the negative direction and decreases as pipe 

orientation shifts in positive direction. Effect of pipe orientation on void fraction was observed to 

be significant in the negative pipe orientation while only a slight constant decrease was observed 

in the positive orientation.  Kokal and Stanislav (1989b) conducted experimental two phase flow 

studies in inclined pipe for -9
o
 to +9

o 
and reported that higher liquid holdup was observed in 

uphill flow due to effect of gravity and the reverse was observed in downhill flow. Slight effect of 

pipe orientation was observed in liquid holdup which they attributed to bubble rise velocity which 

only changes slightly with inclination angle. A similar trend in upward inclined orientation was 

observed by Wongwises and Pipathattakul (2006). Beggs and Brill (1973) also reported that as 

inclination angle shifted downwards from horizontal, gravitational force reduced liquid phase 

velocity and increased slippage and liquid holdup, and as angle increased further the liquid fills 

the entire pipe cross section thereby reducing slippage and liquid holdup. They also observed that 

the degree of liquid holdup changes with inclination angle was different for different flow rates. 

Effect of pipe orientation on liquid holdup developed by Breggs and Brill (1973) is shown in 

Figure 4.32. λ in Figure 4.32 represent input liquid content. 

 

Figure 4.32 Liquid holdup vs pipe orientation by Beggs & Brill (1973) 
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By definition,      , where   is liquid holdup and α is void fraction. This indicates that the 

void fraction vs pipe orientation plot would be an inverted plot of liquid holdup vs angles shown 

in Figure 4.32. The effect of pipe orientation on void fraction at high flow rate combinations is 

given as Figure 4.33. 

  
Figure 4.33 Effect of pipe orientation on void fraction (high flow rate combination) 

By comparing Figures 4.31 and 4.33, the difference in void fraction for each orientation was 

eliminated as void fraction vs pipe orientation was observed to flatten out as gas phase flow rate 

increased. Hence, due to mixing and presence of high frequency disturbance waves in two phase 

flow, void fraction is independent of pipe orientation for high flow rate combinations. Similar 

observation was made by Perez (2008) who reported that slight increase in liquid holdup 

(decrease in void fraction) was detected for low superficial velocities of liquid phase for upward 

inclined pipe which increased with increase in pipe orientation. 

 

 

 

 



110 
 

4.4 Flow Reversal 

Flow reversal also known as backward flow is a unique phenomenon often encountered in co-

current upward two phase flow where the liquid phase is observed to flow backwards due to 

effects of gravity. Investigators have conducted research over decades on flooding in counter-

current two phase flow in vertical pipes where the liquid phase is injected either from the top or 

mid pipe level while gas phase is injected from the bottom of the pipe. Consequently, the liquid 

phase flows downwards due to gravity as the gas phase flows upwards. The liquid phase flow rate 

is kept constant while gas flow rate is gradually increased until the gas phase inertial force is 

sufficient to overcome the gravitational pull on the liquid phase. Thus, the gas phase lifts the 

liquid phase and both phases move in the upward direction. The transition point from counter-

current two phase flow to co-current two phase flow is identified as the onset of flooding. 

Flooding is observed at very high gas flow rates, therefore flow is always in the annular region. 

Based on the flow pattern at which flooding occurs (annular flow), mathematical models have 

been developed to predict flooding by accounting for interfacial shear, friction factor, liquid film 

thickness and other two phase parameters required for accurate modeling. Thus, based on the 

flow configuration used by these researchers (counter-current flow), flooding is the inverse of 

flow reversal and the models developed to predict flooding suitably predict flow reversal in 

vertical upward annular two phase flow. 

Taitel et al. (1982) described flow reversal in vertical upward pipes as inverse of flooding which 

is observed as gas phase is changed from high flow rate to low flow rates which leads to partial 

down flow of liquid phase, hence the term downward counter-current two phase flow. Stability 

analysis based on dimensionless interfacial shear and relative film thickness were used to develop 

a model to further analyze the relation developed by Bharathan et al. (1979) to predict flooding 

and flow reversal in vertical upward pipes given as Equation (4.7). 
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And as developed by Bharathan et al. (1979),  
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Where A, B and n are constants and are pipe diameter dependent. For 2.5 cm pipe, A = 0.005, B 

= 280 and n = 2.13. For 5.1 cm pipe, A = 0.005, B = 406 and n = 2.04. 

McQuillan et al. (1985) conducted experimental studies on flooding in vertical two phase flow 

and were able to observe flooding by altering various flow parameters like system pressure, gas 

flow rate and amplitude of injected artificial wave to stimulate flooding. A model was developed 

to predict flooding based on dimensionless superficial velocity given as Equation (4.9). 

   
       

   [  (     )]
    

       (4.9) 

Zabaras and Dukler (1988) conducted extensive studies on the mean film thickness at transition 

point from backward flow to flooding which they described that waves become unstable and 

grow explosively to force the liquid phase upwards, hence flooding is the onset of instability. 

Wall shear stress was measured by electro chemical probes and interfacial friction factor was 

calculated and analyzed with mean film thickness to plot the flooding curve and locate the 

transition points.  

Various correlations exist in literature to predict flooding as discussed above and the most 

popular correlation for predicting flooding and flow reversal in vertical pipes was developed by 

Hewitt and Wallis (1963) and given as Equation (4.10). 
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The nature of flow reversal in present study can be described as gas phase interfacial acceleration 

of liquid phase due to high velocity and low density. The high gas phase velocity forces a portion 

of the low velocity liquid phase up the inclined pipe, but this portion of liquid phase falls back 

under gravity due to high density. And in a continuous process the liquid phase rises and falls at 

constant flow rates of liquid and gas phase. This sequential process describes the term flow 

reversal in co-current two phase flow in upward inclined pipes. In present study, flow reversal 

was observed in non-separated flow regimes (slug, slug/wavy and wavy flows). Models to 

calculate interfacial shear for these flow patterns do not exist due to very complex geometry 

resulting from discontinuities in the liquid and gas phase in the two phase flow. Simmons and 

Hanratty (2001) also observed reversed flow for liquid slug during their two phase flow 

experimental studies in small angle upflow. Since there exist no model to analyze these flow 

patterns, alternate mode of analysis was adopted in present study. The alternate mode of analysis 

is divided into two methods. The first method being Bernoulli’s equation using actual liquid and 

gas phase velocities for analysis and the second method being dimensionless numbers using 

superficial velocities to analyze and predict flow reversal in inclined two phase flow system. 

Method 1, Bernoulli’s equation 

After careful observation of the flow reversal points during experimentation, it was noted that 

flow reversal has very small dependence on system pressure, i.e., pressure of the liquid and gas 

phase for specified flow rates in a smooth pipe. For example, at the lowest liquid and gas flow 

rates of 1.36 kg/min and 0.0015 kg/min having the lowest system pressure of 103.5 kPa, flow 

reversal was not observed for +5
o
. However, by increasing the gas flow rate to 0.003 kg/min and 

keeping the liquid flow rate constant, system pressure increased to 104.7 kPa and flow reversal 

was observed. The system pressure stays relatively constant over the flow reversal points for each 

pipe orientation and no notable trend was observed. Instinctively, it is expected that flow reversal 

occurs below a certain system pressure for each pipe orientation in a smooth pipe. However, the 



113 
 

results of measured system pressure were counter intuitive because flow reversal was observed 

within a certain range of system pressure. This range of system pressure was observed to be 

different for each pipe orientation. Thus, leaving room to explore how the individual phase actual 

velocity changes in the flow reversal region by using the Bernoulli equation. 

Bernoulli’s equation for single phase fluid is given by  

 

 
                   , where 

 

 
    is termed the dynamic pressure of the system and U 

is actual velocity of individual phase. 

For two phase flow, 

       
 

 
                         

 

 
          

         
 

 
[                       ]   

Usl and Usg are superficial velocities of liquid and gas phase, ρl and ρg are densities of liquid and 

gas phase. 

The actual velocities of the liquid and gas phases were used for calculating the system dynamic 

pressure because no trend in dynamic pressure plot was noticed by using superficial velocities in 

calculations. This was due to the constant values of liquid phase flow rates over which flow 

reversal was observed. In the +5
o
 pipe orientation, flow reversal was observed over a certain 

range of gas flow rates for a fixed liquid flow rate (1.36 kg/min) and the resulting dynamic 

pressure vs gas flow rate was plotted and shown as Figure 4.34. 
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Figure 4.34 Dynamic pressure plot showing flow reversal points for +5
o 

Dynamic pressure for the liquid phase was observed to decay exponentially with gas flow rate 

because increase in gas flow rate at constant liquid flow rate increases void fraction and the 

dynamic pressure of the liquid phase is a function of 1 – α, hence it decays. Likewise, the gas 

phase dynamic pressure grows exponentially with increase in void fraction since void fraction 

increases with increase in gas flow rate at constant liquid flow rate as shown in Figure 4.34. Flow 

reversal was observed to occupy the shaded portion of the plot for +5
o
 pipe orientation. Increase 

in pipe inclination increased the area occupied by flow reversal on the dynamic pressure plot as 

gravity becomes more significant and liquid phase falls further downwards in the pipe under 

gravity. The dynamic pressure plot for +10
o
 is shown as Figures 4.35. 
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Figure 4.35 Dynamic pressure plot showing flow reversal points for +10
o 

By comparing Figures 4.34 and 4.35, the effect of pipe orientation can easily by observed as the 

flow reversal curve goes deeper and wider in +10
o
. As a result, flow reversal points occupy a 

larger area on the dynamic pressure plot for +10
o
 than +5

o
 pipe orientation. It should be noted that 

flow reversal was observed at constant liquid flow rate of 1.36 kg/min in +5
o
 and +10

o
 as shown 

in Figures 4.34 and 4.35. More back flow points were observed in +20
o
 pipe orientation and the 

representative dynamic pressure vs gas flow rate plot for +20
o
 is shown as Figure 4.36. 

 



116 
 

  

 

 

Figure 4.36 Dynamic pressure plot showing flow reversal points for +20
o 

As pipe orientation shifted to +20
o
, the dynamic pressure plot for constant liquid flow rate of 1.36 

kg/min showed further increase in area from +10
o
 as shown in Figure 4.36. However, flow 

reversal was also observed at higher liquid phase flow rates of 2.27 kg/min and 3.41 kg/min in 

+20
o
 which was not the case for +5

o
 and +10

o
. It was noted that at constant liquid phase flow rate, 

flow reversal curve goes deeper and increases in area over the range of gas phase flow rates 

which it is observed. Whereas for +20
o
 pipe orientation, flow reversal curve at higher liquid phase 

flow rates of 2.27 kg/min and 3.41 kg/min was observed to decrease in area and flatten out over 
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the range of gas flow rates. Flow reversal was further investigated for +45
o
 and this phenomenon 

was observed at higher void fraction, liquid phase flow rates and predominantly over the wavy 

flow pattern. Dynamic pressure plot for flow reversal points in +45
o
 are shown in Figure 4.37.  

  

  

Figure 4.37 Dynamic pressure plot showing flow reversal points for +45
o 

From Figure 4.37, flow reversal plot for +45
o
 at constant liquid flow rate of 1.36 kg/min follow 

similar trend as that shown for +5
o
, +10

o
 and +20

o
. At higher liquid flow rates of 2.27 kg/min, 

3.41 kg/min and 4.55 kg/min observed for +20
o
 and +45

o
, similar trends were observed as shown 

in Figures 4.36 and 4.37. It should be noted that as pipe orientation increases from +5
o
 to +45

o
, 
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the dynamic pressure below which flow reversal is observed for the specified gas flow rate 

increases. Since dynamic pressure is a function of gas flow rate and pipe orientation increases the 

required flow rate to overcome flow reversal, increase in pipe orientation increases the range of 

void fraction over which flow reversal occurs. Thus, increase in pipe orientation shifts flow 

reversal points from slug flow to wavy flow in present study. And it is expected that as pipe 

orientation increases beyond +45
o
, flow reversal will progress into the annular flow region as 

reported by investigators who conducted research on flooding and flow reversal for counter 

current two phase flow in vertical pipes.  Void fraction measured for flow reversal points in each 

pipe orientation was plotted against the gas flow rate and is shown as Figure 4.38. 

 

Figure 4.38 Void fraction vs gas flow rate at different pipe orientations in flow reversal 

region 
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A specific shape is assigned to each pipe orientation as shown in Figure 4.38, square represents 

+5
o
, diamond represents +10

o
, inverted triangle represents +20

o
 and circle represents +45

o
. The 

solid lines represent constant liquid flow rate of 1.36 kg/min, broken lines represent 2.27 kg/min, 

dotted lines represent 3.41 kg/min and center line represents 4.55 kg/min. Figure 4.38 shows the 

void fraction at given gas phase flow rate for each pipe orientation and the corresponding flow 

pattern observed. It can be observed that increase in pipe orientation increases the range of void 

fraction over which flow reversal occurs. More flow reversal points were observed with increase 

in pipe inclination due to increased effects of gravity on the liquid phase and higher gas flow rate 

is required to overcome it. The range of void fraction and number of flow reversal points 

analyzed for each pipe orientation is shown in Table 4.17. 

Table 4.17 Range of measured void fraction for flow reversal region 

Pipe orientation Liquid flow rate (kg/min) Number of data points Range of void fraction 

+5
o
 1.36 5 0.58-0.74 

+10
o
 1.36 8 0.35-0.73 

+20
o
 

1.36 8 0.32-0.74 

2.27 5 0.45-0.71 

3.41 3 0.44-0.65 

+45
o
 

1.36 9 0.28-0.77 

2.27 8 0.21-0.73 

3.41 6 0.39-0.69 

4.55 5 0.37-0.68 

 

A total of 57 void fraction data points were measured in the flow reversal region. 5 points for +5
o
, 

8 points for +10
o
, 16 points for +20

o
 and 28 points for +45

o
 as shown in Table 4.17. The range of 

void fraction (difference between high and low limits) at constant liquid flow rate of 1.36 kg/min 

increases as pipe orientation shifts from +5
o
 to +45

o
. Similar observations were made for higher 

liquid flow rates of 2.27 kg/min and 3.41 kg/min. Therefore, increase in pipe orientation increases 
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both the number of flow reversal points and range of void fraction at constant liquid flow rate as 

shown in Table 4.17.  

Method 2, Dimensionless numbers 

Three dimensionless numbers were used for analyzing flow reversal and they are Froude number, 

Reynolds number and Weber number. 

Froude number gives the relationship between inertial force and gravitational force in a flowing 

fluid system. Froude number based on superficial gas velocity and superficial liquid velocity can 

both be calculated in two phase flow depending on the standpoint chosen by investigator for 

analysis. Since flow reversal in present study was observed at constant liquid phase flow rate 

while increasing the gas flow rate, superficial gas velocity was used for calculating Froude 

number. Thus, by interpretation Froude number in present study gives the critical relationship 

between the gas phase inertial force and the gravitational force acting on the liquid at different 

pipe orientations. Froude number for an inclined system is given as Equation (4.11)  

     √
  

     

   

                   (4.11) 

It should be noted that the Hewitt and Wallis (1963) correlation and McQuillan et al. (1985) 

relation shown in Equations (4.9) and (4.10) for predicting flooding and flow reversal in vertical 

pipe are in the form of Froude number, therefore sin θ was incorporated in Equation (4.11) to 

account for pipe inclination. The plots showing the effect of gas flow rate on Froude number is 

shown as Figure 4.39. 
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Figure 4.39 Froude number vs gas flow rate in flow reversal region 

The plots in Figure 4.39 show an exponential growth in Froude number with increase in gas flow 

rate. The steeper curve in +5
o
 was observed to stretch out in length and decrease in values as pipe 

orientation changed to +10
o
 all the way to +45

o
. This indicates that the dominance of gravitational 

force over inertial force at constant liquid flow rate increases with increase in pipe orientation. 

Froude number was observed to be ≤ 1for the flow reversal region at constant liquid flow rate of 

1.36 kg/min over pipe orientations from +5
o
 through +45

o
. This shows that gravitational force is 

always ≥ inertial force in order for flow reversal to occur. At higher liquid flow rates of 2.27 

kg/min and 3.41 kg/min in +20
o
, and 2.27 kg/min, 3.41 kg/min and 4.55 kg/min in +45

o
, the 

Froude number was observed to be < 1 in both pipe orientations. This also confirms that the 
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gravitational force acting on the liquid phase increases with pipe orientation even at higher liquid 

phase flow rates. Details of flow reversal for each pipe orientation based on maximum Froude 

number at constant liquid flow rates is given as Table 4.18. 

Table 4.18 Maximum Froude number at constant liquid flow rates for each pipe orientation 

Pipe orientation Liquid flow rate (kg/min) Gas flow rate (kg/min) Froude number (Max) 

+5
o
 1.36 0.03 1.13 

+10
o
 1.36 0.04 1.01 

+20
o
 

1.36 0.05 0.89 

2.27 0.03 0.53 

3.41 0.02 0.35 

+45
o
 

1.36 0.07 0.86 

2.27 0.05 0.59 

3.41 0.05 0.56 

4.55 0.04 0.45 

 

From Table 4.18, simultaneous effect of pipe orientation and liquid flow rate can be seen on the 

maximum Froude number below which flow reversal occurs. For example, the maximum Froude 

number constantly decreases from 1.13 to 0.86 at liquid flow rate of 1.36 kg/min as pipe 

orientation shifted from +5
o
 to +45

o
. Similarly, at +20

o
 and 3.41 kg/min of liquid flow rate, the 

maximum Froude number is 0.35. Based on earlier discussion that increase in pipe orientation 

increases gravitational force on the liquid phase and Froude number becomes smaller, it is 

expected that at +45
o
 and 3.41 kg/min the maximum Froude number should be less than 0.35 for 

+20
o
. However, increase in pipe inclination also increases the required gas flow rate needed to lift 

the reversing liquid phase. Hence, the maximum Froude number in +45
o
 is higher than +20

o
 

because of higher gas flow rate of 0.05 kg/min needed to overcome gravitational force as shown 

in Table 4.18. 
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Reynolds number gives the relationship between the inertial forces of a flowing fluid with respect 

to its viscous force. Analysis with Reynolds number basically determines if flow is laminar, 

turbulent or simply in transition from laminar to turbulent flow. The superficial Reynolds number 

of the flow reversal region was recorded to come up with another dimensionless parameter to 

analyze flow reversal over the different pipe orientations in present study. The range of 

superficial Reynolds number for liquid and gas phase over the flow reversal region for each pipe 

orientation is given as Table 4.19. 

Table 4.19 Range of gas phase superficial Reynolds number for each pipe orientation 

Pipe orientation Liquid flow rate (kg/min) Resl Range of Resg 

+5
o
 1.36 2600 300 - 2900 

+10
o
 1.36 2400 140 - 4800 

+20
o
 

1.36 2400 140 - 4700 

2.27 3700 400 - 2800 

3.41 5700 600 - 1900 

+45
o
 

1.36 2300 140 - 6500 

2.27 3900 140 - 4700 

3.41 5900 400 - 4700 

4.55 7800 600 - 3800 

 

The superficial Reynolds number for liquid and gas phase was rounded to the nearest hundred as 

shown in Table 4.19. It should be noted that the lower limit of superficial gas Reynolds number 

was rounded to the nearest ten because of the low values observed and also to minimize errors of 

approximation. Effect of pipe orientation can be seen on liquid phase superficial Reynolds 

number shown in Table 4.19. At constant liquid flow rate of 1.36 kg/min, superficial liquid 

Reynolds number was observed to decrease from 2600 to 2300 as pipe orientation shifted from 

+5
o
 to +45

o
 due to increased slippage of liquid phase. Decrease in liquid phase superficial 

Reynolds number with pipe orientation subsequently increases the necessary superficial gas 

Reynolds number required to overcome liquid back flow in the pipe. And as pipe orientation 
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shifted from +5
o
 to +45

o
, the higher limit of superficial gas Reynolds number increased from 

2900 to 6500. It should also be noted that at higher constant liquid flow rates of 2.27 kg/min, 3.41 

kg/min and 4.55 kg/min, there was a corresponding decrease in superficial gas Reynolds number 

required to overcome flow reversal. This explains that elimination of flow reversal is not a 

function of gas phase flow rate alone but liquid and gas phase as they both play an important role 

to overcome flow reversal. In sum, analysis by superficial Reynolds number of the liquid and gas 

phase gave the range over which flow reversal was observed and the effect of pipe orientation on 

liquid and gas superficial Reynolds number as shown in Table 4.19. 

Weber number gives the relationship between the inertial force acting on a fluid and the surface 

tension of the fluid. Weber number is generally used in multiphase flow to analyze fluid 

conditions having curved surfaces and often used to predict transition to bubbly flow. By 

definition, surface tension of a fluid is the contractive tendency of that fluid which enables it to 

resist external force. Thus, analysis using Weber number in present study was believed to give 

more information on the physics of flow reversal. The ratio of inertial force imposed by the gas 

phase to liquid phase surface resistance over the flow reversal region for the each pipe orientation 

was calculated and interpreted for increasing gas flow rate.  Weber number relation and the 

representative plot for Weber number vs gas flow rate is given as Equation (4.12) and Figure 

4.40. 

         
   ⁄          (4.12) 
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Figure 4.40 Weber number vs gas flow rate in flow reversal region 

As shown in Figure 4.40, Weber number can be observed to increase exponentially with increase 

in gas flow rate. At the onset of flow reversal for each pipe orientation at constant liquid flow rate 

of 1.36 kg/min, surface tension of liquid phase was observed to dominate the inertial force of the 

gas phase and Weber number was observed to be << 1. Weber number stays relatively constant in 

the low gas flow rate region and grows exponentially at high gas flow rates. Hence, the inertial 

force of gas phase dominates the surface tension as flow reversal is eliminated and Weber number 

is > 1. Weber number curve shown in Figure 4.40 can be observed to stretch over the x-axis of the 

plots (gas flow rate) as pipe orientation shifted from +5
o
 all the way to +45

o
. This specifies that 
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increase in pipe orientation increases the inertial force needed to overcome the surface tension in 

the flow reversal region. At higher liquid flow rates of 2.27 kg/min, 3.41 kg/min and 4.55 kg/min, 

similar curves were observed for Weber number vs gas flow rate. The plot of Weber number vs 

gas flow rate shown as Figure 4.40 follows the same trend as Froude number vs gas flow rate plot 

shown as Figure 4.39, but subtle distinctions still exist between the two plots. A critical look at 

both plots will reveal that the maximum Froude number for each pipe orientation at constant 

liquid flow rate decreases with increase in pipe orientation while the maximum Weber number for 

each pipe orientation increases with increase in pipe orientation in the flow reversal region. 

Details of the maximum Weber number below which flow reversal occurs for each pipe 

orientation is shown as Table 4.20. 

Table 4.20 Maximum Weber number at constant liquid flow rate for each pipe orientation  

Pipe orientation Liquid flow rate (kg/min) Gas flow rate (kg/min) Weber number (Max) 

+5
o
 1.36 0.03 2.42 

+10
o
 1.36 0.04 3.79 

+20
o
 

1.36 0.05 5.85 

2.27 0.03 2.06 

3.41 0.02 0.9 

+45
o
 

1.36 0.07 11.25 

2.27 0.05 5.48 

3.41 0.05 4.96 

4.55 0.04 3.06 

    

As shown in Table 4.20, it can be observed that at constant liquid flow rate, the maximum Weber 

number above which flow reversal ceases to occur increases with pipe orientation. 

In sum, analysis using Bernoulli’s equation and dimensionless numbers gave thorough 

investigation in present study and can be used to effectively predict flow reversal in smooth 

inclined pipes. It should be noted that observation of flow reversal points were based on visual 
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identification and are somewhat subjective but the comprehensive analysis discussed above 

provides consistency in observation. Improved flow reversal identification should be carried out 

by measuring pressure drop in the inclined two phase system where negative pressure drop 

signifies back flow. Also, present study on flow reversal is pipe surface (smooth) and diameter 

dependent, hence analysis can be integrated over rough and larger diameter pipes to develop a 

correlation to predict flow reversal.  
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

A comprehensive study on flow patterns and void fraction was conducted in near horizontal pipe 

orientation. The work done in present study is divided into three areas: flow patterns and flow 

maps, void fraction and flow reversal. Studies were conducted in six pipe orientations: +5
o
, +10

o
, 

+20
o
, -5

o
, -10

o
 and -20

o
. Experiments were conducted using air-water as working fluid in a 12.7 

mm diameter pipe and 700 void fraction data points were measured. Analysis in present study 

was divided into two: upward inclined pipe orientation and downward inclined pipe orientation. 

Similar major flow patterns were observed in the three upward inclined pipe orientation and they 

are slug flow, bubbly flow, wavy flow and annular flow. Flow pattern maps plotted for the three 

pipe orientations in the upward direction show similar trends in transition boundaries. However, 

change in pipe orientation shifted the transition boundaries accordingly and these shifts were 

illustrated by superposition of the flow maps developed for each pipe orientation. Similar analysis 

was done for the downward inclined pipe orientation. Flow patterns in the upward and downward 

inclined pipe orientations were compared, flow maps developed were also compared and the 

effect of pipe orientation was observed. Measured void fraction was validated with data from 

other sources and by prediction with the top correlations in present study. Void fraction 

correlation comparison was also carried out to determine the best performing correlation in 

present study for near horizontal pipe orientation and within specific regions of void fraction. The 

conclusions and recommendations for the three main areas in present study are discussed below. 
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5.1 Conclusions of Flow Patterns and Flow Maps 

Stratified flow observed in the downward inclined pipe orientation was not observed in the 

upward pipe orientation due to the role played by gravitational force on the liquid phase. In the 

case where gravitational force acts in opposite direction of flow (upward inclined pipe), slippage 

occurs at low liquid flow rates as the liquid phase fills the pipe cross section leading to 

discontinuity of the gas phase and hence, stratified flow is eliminated. However, in the downward 

inclined pipe orientation, gravity acts in same direction as flow and complete separation of liquid 

and gas phase was observed in the pipe known as stratified flow. Similar observations were made 

by Oddie et al. (2003), Wongwises and Pipathattkul (2006), Ghajar and Tang (2007) and Tzotzi et 

al. (2011). 

The physical structure of slug flow was observed to be different in the downward inclined pipe 

orientation due to the simultaneous effects of gravitational and buoyant forces acting in the two 

phase flow. In the upward inclined pipe orientation, gravity opposes the flow while buoyant force 

acts in flow direction while in the downward inclined orientation, gravity acts in the flow 

direction while buoyant force tries to oppose it. The slug flow observed in the upward inclined 

pipe orientation has its nose pointing in the flow direction while a laterally inverted slug flow 

which has a nose pointing in opposite flow direction was observed in the downward inclined pipe 

orientation due to buoyant force. 

The flow maps developed for the upward and downward inclined pipe orientations were 

compared and it was observed that for the upward inclined pipe orientation, the flow map 

contracted as transition boundaries shifted to lower flow rate of liquid and gas phase as pipe 

orientation progressed from +5
o
 to +20

o
 while in the downward inclined pipe orientation, the flow 

map expanded as transition boundaries shifted to higher flow rate of liquid and gas phase. Similar 

observations were made by Barnea (1987) and Tzotzi et al. (2011). In sum, observations on flow 
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patterns and flow maps in present study are consistent with the observation reported by different 

investigators over the years. 

 

5.2 Conclusions of Void Fraction Measurement and Analysis 

Void fraction measurement was carried out using air-water as working fluids in a 12.7 mm 

diameter pipe with the aid of quick closing valves. 700 void fraction data points were measured in 

six pipe orientations and experimental uncertainty was calculated. Maximum uncertainty of ±42% 

was calculated in +20
o
 pipe orientation for very low void fraction of 0.03, however for void 

fraction values above 0.08 the maximum uncertainty was in the range of ±10% to ±16%. The 

minimum uncertainty calculated for all pipe orientations in present study was found to be ±1.3%. 

Variation of void fraction with flow patterns was observed at different pipe orientations as the 

range of measured void fraction for individual flow pattern was observed to either increase or 

decrease with respect to change in pipe orientation.  

Effect of pipe orientation on void fraction was also observed for low liquid and gas flow rate 

region at different pipe orientations in present study and this effect disappeared at high liquid and 

gas flow rates. Hence, it was concluded that void fraction reduces as pipe orientation shifted 

upwards due to increased slippage of the liquid phase while in the downward inclined pipe 

orientation, void fraction increases with increase in pipe orientation. However, void fraction was 

independent of pipe orientation at high liquid and gas flow rates. Similar observations were 

reported by Beggs and Brill (1973) and Wongwises and Pipathattakul (2006). 

Validation of measured void fraction data was done by comparison with inclined void fraction 

data obtained from Beggs (1972) and Mukherjee (1979) for upward and downward inclined pipe 

orientation. For the upward pipe orientation, compared data was found to be within ±10% error 

with present study and ±7.5% error in downward pipe orientation. Further comparison was done 
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by predictions of the top performing correlations. Validation was divided into two void fraction 

regions which are 0 < α < 0.5 and 0.5 ≤ α < 1. The selected correlations predicted measured void 

fraction in the region of 0 < α < 0.5 within ±15% error and 0.5 ≤ α < 1 within ±7.5% error. 

Prediction performance of fourteen void fraction correlations was done to come up with the top 

performing void fraction correlation for the upward inclined pipe orientation, downward inclined 

pipe orientation and near horizontal pipe orientation. Based on the least RMS error in present 

study, the most successful void fraction correlation in upward inclined pipe orientation is Smith 

(1969), the most successful void fraction correlation in the downward inclined pipe orientation is 

Gomez et al. (2000) and for near horizontal pipe orientation, the top performing correlation in 

present study is Smith (1969). 

 

5.3 Conclusions on Flow Reversal 

Flow reversal in co-current two phase flow in upward inclined pipes was observed, investigated 

and thoroughly analyzed in present study. Since flow reversal was observed in slug, slug/wavy 

and wavy flows, modeling of interfacial shear was impossible due to non-uniform two phase 

geometry in pipe cross section. Hence, Bernoulli’s equation and dimensionless numbers were 

adopted for analysis of flow reversal. The dynamic pressure from the Bernoulli’s equation was 

used to indicate the trend of flow reversal with the corresponding gas flow rates for each pipe 

orientation and the effect of pipe orientation on dynamic pressure plots were observed. Froude 

number, Reynolds number and Weber number are the dimensionless numbers selected for 

analysis of flow reversal. Each dimensionless number gave the range over which flow reversal 

was observed for each pipe orientation and this comprehensive analysis can be used to effectively 

predict flow reversal in smooth pipe for +5
o
, +10

o
, +20

o
 and +45

o
. 
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5.4 Recommendations for Void Fraction Correlations Analysis 

Based on the prediction performance of void fraction correlations selected for comparison in 

present study, the following void fraction correlations are recommended for upward inclined pipe 

orientation, downward inclined pipe orientation and near horizontal pipe orientation for 0 < α ≤ 

0.25, 0.25 < α ≤ 0.75 and 0.75 < α < 1 regions. The recommendations are given in Tables 5.1 to 

5.3. 

Table 5.1 Recommendation of the best performing correlation for specific void fraction 

regions for upward inclined pipe orientation. 

Void Fraction Region Correlation 

0 – 0.25 Greskovic and Cooper (1975) 

0.25 – 0.75 Guzhov et al. (1967) 

0.75 – 1 

Lockhart and Martinelli (1949) & Yashar 

et al. (2001) 

 

 

Table 5.2 Recommendation of the best performing correlation for specific void fraction 

regions for downward inclined pipe orientation. 

Void Fraction Region Correlation 

0 – 0.25 Gomez et al. (2000) 

0.25 – 0.75 Guzhov et al. (1967) 

0.75 – 1 Lockhart and Martinelli (1949) 
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Table 5.3 Recommendation of the best performing correlation for specific void fraction 

regions for near horizontal pipe orientation. 

Void Fraction Region Correlation 

0 – 0.25 Gomez et al. (2000) & Smith (1969) 

0.25 – 0.75 Guzhov et al. (1967) 

0.75 – 1 Lockhart and Martinelli (1949) 

 

It should be noted that the selected correlations in Tables 5.1 to 5.3 predicted measured void 

fraction with the highest accuracy within ±10% error bands for void fraction regions of 0 < α ≤ 

0.25 and 0.25 < α ≤ 0.75, and ±5% error for void fraction region of 0.75 < α < 1. 

 

5.5 Recommendations for Flow Reversal 

Flow reversal in co-current two phase flow should be further investigated at pipe inclinations 

above +45
o
 to verify the major flow pattern over which flow reversal occurs above +45

o
. Flow 

reversal should be investigated in rough and larger diameter pipes in order to have sufficient data 

needed to develop a correlation to predict flow reversal in inclined pipes. 
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