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Abstract: Switchgrass (Panicum virgatum L.) is a perennial warm season grass native to a 

large portion of North America. Because of its low input requirements, broad adaptation, 

and high yield potential, switchgrass has been used for forage production and soil 

conservation and is considered an ideal renewable biomass feedstock crop for biofuel 

production. However, switchgrass can be affected by several fungal diseases. One of these 

is rust, caused by Puccinia emaculata, an obligate parasitic fungus. Puccinia emaculata 

has been observed on agronomic switchgrass causing chlorosis and necrosis of leaf tissues, 

lodging, and plant death, reducing feedstock quality and biomass yield of switchgrass up 

to 60% and 50%, respectively. Currently, little is known about switchgrass rust, and its 

unclear etiology complicates the development of effective management strategies. In order 

to better understand the biology of the pathogen, this study focused on two main objectives: 

1) generate a multilocus phylogeny to determine the species’ phylogenetic status and to 

assess its genetic diversity across five US states (MS, OK, VA, IA, and SD) and 2) develop 

and characterize de novo simple sequence repeats (SSRs) and expressed sequence tag 

(EST)-SSRs to study the population biology of P. emaculata.  Since DNA from bulked 

urediniospores produced mixed templates, PCR products of three phylogenetically 

informative genomic loci, the ribosomal internal transcribed spacer (ITS) region, and the 

β-tubulin (bTub) and translation elongation factor-1α (TEF1a) genes, were cloned prior to 

sequencing.  Differences in haplotype diversity was observed among loci (ITS=13; 

bTub=24; TEF1a= 27), with large variation in the patterns of distribution of haplotypes 

across states.  Distribution of bTub and TEF1a haplotypes were mostly local, while ITS 

haplotypes were distributed both across multiple states and locally. In order to perform 

multilocus phylogenetic analyses, a single spore whole genome amplification (ssWGA) 

protocol was standardized, which produced sufficient single cell DNA for PCR of single 

copy genes. Single gene and multilocus phylogenies supported the monophyletic status of 

P. emaculata.  Using a P. emaculata di- and trinucleotide repeat-enriched library, 49 SSR 

loci were identified, of which 8 were informative for multispore DNA samples and 6 were 

informative for a collection of 25 ssWGAs from five states.  To develop EST-SSRs, RNA 

was isolated from germinated and non-germinated urediniospores from OK and VA using 

a novel modified method, cDNAs were generated and submitted for RNA sequencing 

(RNA-Seq).  Thirty three EST-SSRs were identified, 12 of which were informative for a 

multistate collection of 25 ssWGAs.  Genetic diversity was observed across single spore 

collections from five states using 18 microsatellite loci. Future studies will examine genetic 

variation, population structure and pathogenicity variation among multistate P. emaculata 

populations.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Switchgrass (Panicum virgatum, L., Poaceae), is a warm-season (C4) perennial grass 

native to the prairies of North America.  In the last 25 years or so, switchgrass has been 

considered an ideal candidate for development as a renewable, herbaceous biomass fuel by the 

US. Department of Energy (16; 22; 23; 26; 27).  Switchgrass has been used for livestock pasture 

and forage, habitat conservation, and erosion control due to its deep roots, foliar architecture and 

ability to fix carbon with high water usage efficiency. Switchgrass is adapted to and established in 

huge ranges of North America east of the Rocky Mountains, from Quebec to Central America 

(20). Currently in the United States, switchgrass yields average 10-15 metric tons per hectare (4-6 

dry tons/acre) per year.  Common varieties include “Alamo”, “Cave in Rock”, and “Kanlow”. 

Today, switchgrass breeding programs are focused on increasing plant cellulose content 

and yield; however, seed yields, forage quality, and biomass of switchgrass can be negatively 

affected by diseases (11-14; 19; 23). Many fungal diseases have been reported to affect 

switchgrass. In previous studies surveying the fungal species present on switchgrass, 42 species 

of fungi were identified in the United States (12; 13). Fungi are present in all parts of the 

switchgrass plant; however, many fungi cause economically damaging diseases of foliar plant 

parts. Switchgrass leaf rust is the most common and important fungal disease and reported to be 

caused by three species: Uromyces graminicola Burril, Puccinia graminis Pers.: Pers., and 

Puccinia emaculata Schwein (1; 4; 6; 8; 13; 21). Other damaging diseases of switchgrass include   
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smut of the seedheads caused by Tilletia maclagani (Berk. G.P Clinton) and T. pulcherrima (Syd. 

& P.Syd), anthracnose and bipolaris leaf spot. 

Outbreaks of switchgrass rust caused by P. emaculata have been reported throughout the 

US.  During the 2000 and 2001 growing seasons, incidence of rust caused by P. emaculata was 

high in Iowa (11). In July and August 2007, P. emaculata pustules were found on leaf surface of 

switchgrass plants in eastern Tennessee, which was the first official report identifying the causal 

fungus using molecular methods (i.e. sequencing the nuclear ribosomal internal transcribed 

spacer [ITS] region) (28). Switchgrass rust caused by P. emaculata has also been reported from 

the southeastern United States, west to Texas, south into Mexico and as far north as South 

Dakota. Oklahoma is also one of the states that was severely impacted by switchgrass rust in 

2012 (26).  Puccinia. emaculata has been reported from many other Panicum species (e.g. 

Panicum capillare) from Canada to Brazil (8). Maximum yield reductions of switchgrass due to 

rust range from 50 to 60% (10; 24; 26)   

Puccinia emaculata is an obligate parasitic basidiomycete fungus of the order 

Pucciniales (7). In nature, this pathogen is believed to be heteroecious (two hosts are necessary to 

complete its life cycle) and macrocyclic (five spores life cycle). Switchgrass is the uredinial-telial 

host and spurges (Euphorbia spp.) are reported to act as the aecial host (affected by P. pammelii 

(Trel.) Arth. and P. panici Diet., which are now considered synonymous with P. emaculata) (3; 

27). However, attempts to inoculate P. emaculata on Euphorbia corollata were without success 

(2), and the alternate (aecial) host of P. emaculata is still unknown (28). 

The polycyclic disease cycle of leaf rust is caused in the field by urediniospores (asexual 

spores) repeatedly infecting switchgrass plants. In many rust fungi, urediniospore germination 

occurs optimally at temperatures from 17°C to 27°C, 1-4 hours after deposition of pathogen 

spores on switchgrass leaves. Following deposition, infection occurs over a wide temperature 
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range, 10°C to 27°C, with at least 6 hours of free moisture from dew or rainfall (6; 18).  During 

infection, urediniospore germ tubes form appressoria over stomata, penetrating leaves through 

these natural leaf openings. Seven to 10 days post inoculation, urediniospores in uredinial sori 

erupt through the cuticle (4; 5; 6)).  

Extended periods of leaf wetness (>18 h) promote spore germination and have been 

reported to increase disease severity in many rust species (13; 28). New pustules, including sori 

(spore masses) and surrounding chlorotic or necrotic leaf tissue, become visible 7-15 days post 

inoculation after growing to approximately 1 mm in diameter (28). Later plant symptoms can 

include chlorotic or pigmented leaf spots, general chlorosis of leaf tissue, necrosis, lodging, and, 

if severe, plant death.  

Different levels of rust disease severity have been reported among switchgrass cultivars 

(15) and result in biomass yield reductions from 17 to 62% in switchgrass infected plants (14; 

25), which are dramatic losses for a potential biofuel crop. Switchgrass can produce an average of 

75 gallons of ethanol/ton. Due to the high demand for biofuels, large acreages of switchgrass are 

expected to be planted in monoculture throughout the southern United States.  Because of the 

favorable environmental conditions for fungal diseases in the southeastern United States (high 

humidity and warm temperatures), outbreaks of switchgrass rust will likely occur.  If such 

outbreaks occur where the alternate host is present, the resulting genetic recombination due to 

sexual reproduction may cause more virulent races of P. emaculata to emerge (26). While other 

rust fungi have been reported on switchgrass, all recent reports consider P. emaculata to be the 

only rust pathogen infecting switchgrass (28).  

As with most rust fungi, identification of P. emaculata has relied on host species 

(Panicum) and morphological characteristics, especially of the teliospores. For example, 

teliospores of P. emaculata are two-celled (27-[33-44]-49 × 15-[17-21]-24 μm), with chestnut-
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brown walls and pedicels (≤80 μm) (1; 2; 6; 12).  Identification of P. emaculata based on 

morphological characteristics can be ambiguous, as morphology alone fails to distinguish it from 

other Puccinia species.  Two sequences of the nuclear ribosomal internal transcribed spacer (ITS) 

region are available in the online nucleotide database of the National Center for Biotechnology 

Information (NCBI) (accessions numbers: EU915294; KC515382). Uppalapati et al. (2012) 

reported a preliminary phylogenetic analysis of P. emaculata, based on ITS sequences obtained 

from collected urediniospores in Oklahoma and adding a selected set of other rust fungi as 

outgroups. Results showed that ITS sequences from P. emaculata were distinct from sequences 

from Puccinia graminis and instead P. emaculata fell into a highly supported cluster containing 

Puccinia asparagi, Puccinia andropogonis, and Puccinia sorghi (26). Uppalapati et al., described 

P. emaculata as a possible monophyletic group, based on ITS sequences only. Variations in 

pathogenicity of P. emaculata have been reported as well.  Ornamental switchgrass appeared to 

be more virulent than agronomic switchgrass (17). Also, ten polymorphic microsatellites have 

been reported for P. emaculata and tested on urediniospores collected in Tennessee, Arkansas, 

Mississippi, North Carolina and Louisiana (27).  

Little is known about switchgrass rust. Since identification of rusts based on morphology 

can be ambiguous, molecular tools should be incorporated to confirm host- and morphology-

based identifications (6; 21; 27). Developing such tools will allow accurate identifications of 

species, timely detection, and a more accurate reporting of P. emaculata incidences around the 

states (23).  All of these would facilitate the development of switchgrass rust management 

practices that can be incorporated into a broader integrated pest management program for 

switchgrass (9). 

Thus, the objectives of this thesis research were: i) study the phylogeny and haplotype 

diversity of switchgrass rust from urediniospores collected in five different states in the United 

States (Iowa, Mississippi, Oklahoma, South Dakota, and Virginia) using three phylogenetically 
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informative loci: ITS, β-tubulin (bTub), and translation elongation factor-1α (TEF1a); and ii) 

develop and characterize P. emaculata simple sequence repeats markers (SSRs; i.e. 

microsatellites) de novo from genomic DNA and from RNA-seq gene expression data (i.e. 

expressed sequence tag [EST]-SSRs). 
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CHAPTER II 
 

 

LITERATURE REVIEW 
 

Switchgrass 

 

Switchgrass (Panicum virgatum L.) is a warm-season (C4) perennial grass in the family 

Poaceae with some genotypes growing by rhizomes (22). The native range of switchgrass 

includes most of North America, with the exception of west of the Rocky Mountains (47). Due to 

the widespread ecological adaptation of switchgrass (climate and environment range), it has been 

adopted as a forage and pasture crop, an ornamental plant, to control erosion while providing 

habitat for wildlife, and holds promise as a biofuel feedstock crop (38). 

The demand for cellulosic ethanol as a supplement to conventional fossil fuels and 

ethanol derived from food crops (e.g. corn, sorghum, sugarcane) has increased, resulting in a need 

for improved varieties for use in the biofuel industry. Initially, 34 herbaceous species were 

screened to assess their potential for biofuel production. Panicum virgatum was determined to be 

the best adapted crop plant, with high biomass yield and quality (64).  The longevity and high 

yielding production of switchgrass, elevated switchgrass over other grasses such as sorghum or 

sorghum × sudangrass hybrids (64). Switchgrass is considered an energy crop by the United 

States Department of Energy (DOE), because of its potential for high cellulosic content and its 

facility to grow without intensive fertilization or crop management (10). Due to its extensive root 

system, switchgrass has been planted for soil stabilization and forage for cattle.  However, 
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switchgrass phytochemical components (flavonoids and saponins) can be toxic in sheep, horses, 

and goats, causing photosensitivity and liver damage (53).   

Switchgrass cultivation 

Switchgrass is a warm season crop and the majority of its growth occurs during the 

summer months of June, July and early August. It is a perennial crop that can grow in large 

clumps to a height of 1.8 to 2.2 m. Switchgrass is adapted to wide-ranging climatic conditions 

and a variety of soils, tolerating moderate soil salinity and pH levels ranging from about 4.5 to 

7.6, but, prefers deep sandy loams.  Thus, switchgrass is found in dry, as well as, wet habitats and 

can tolerate winter temperatures as low as -30°C (64).   

Switchgrass genotypes are classified into two ecotypes: upland and lowland types. 

Genotypes within either ecotype range in growth habit from caespitose (dense tufts) to 

rhizomatous (sod-forming).  Lowland types favor bottomland and sandy loam soils and reach 

heights of 3.6 meters, while upland types are better suited to well-drained soils and grow to 

heights of 1.8 meters and are cold tolerant. Due to its higher yield potential, the lowland 

switchgrass ecotype has been considered optimal for biofuel production in the United States. 

Lowland cultivars, such as “Alamo” and “Kanlow”, have been recommended by the University of 

Tennessee (27) for this purpose. Switchgrass can be propagated vegetatively (clonally) and 

through seed. Although self-pollination is possible (~1% fertile seed), switchgrass is considered 

an obligate ‘outcrosser’, and different genotypes must be present to act as male and female plants 

for efficient fertilization and seed production (38). The ability to produce switchgrass clones 

through vegetative propagation and, more recently, selfed inbred lines (42) have been important 

factors for improving the yield and cellulosic content of cultivars.  
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Switchgrass rust caused by Puccinia emaculata Schw. 

Classification 

Puccinia emaculata Schw. is an obligate parasite and a member of the order Pucciniales 

(Kingdom Fungi, Phylum Basidiomycota, Class Pucciniomycetes) (38, 60). The Pucciniales are 

parasites of plants, insects, or other fungi. The most species-rich group in this order are important, 

well-known plant pathogens causing rust diseases, named after the reddish color of their 

urediniospores. Before the availability of DNA sequence data, the Pucciniales were placed in 

various positions on the fungal tree of life. For instance, based on some of their ultrastructural 

characters (lack of clamp connections) and parasitic life style, Pucciniales and their relatives were 

often thought to represent an early diverging lineage of Basidiomycota. Rusts were often 

classified together with the smuts (Ustilaginales) and jelly fungi (Dacryomycetales, Tremellales 

and Auriculariales) (44; 63) or placed with the smuts in the class Teliomycetes, subclass 

Teliomycetidae (Teliosporae) (7; 59). Ultrastructural studies demonstrated that rusts are not 

closely related to smuts (2; 23). Also, in all cases of successful axenic culture of rust fungi, 

mycelial-type colonies were produced.  There was no sign of the yeast-like growth, characteristic 

of smuts in artificial culture (59). 

Molecular phylogenetic studies based on ribosomal DNA (rDNA) have shown that rusts 

and their closest relatives in the class Pucciniomycetes are a derived group within the subphylum 

Pucciniomycotina (2). However, the relationships between the orders in Pucciniomycetes and 

even between Pucciniomycetes and other classes in Pucciniomycotina remain unresolved and 

additional phylogenetic studies are needed.  Species of Puccinia and the related genus Uromyces 

are the most abundant of the rust fungi. They occur on a large number of plants and can be 

collected anywhere in the world.  
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Species concept 

Rust fungi are obligate parasites of vascular plants with highly complex life cycles. A 

distinctive characteristic of rust fungi is a life cycle with up to five morphologically and 

functionally different spore states. However, many species possess fewer spore stages.  While 

many require two unrelated host plants to complete their life cycles (heteroecious life cycle), 

many species complete their life cycles on a single host plant (autoecious life cycle) (20).  Rust 

fungi (Pucciniales) cause some of the most devastating and economically important plant 

diseases, and therefore, have been studied in greater detail than other members of the 

Pucciniomycotina. Approximately 7800 species of the Pucciniales have been described. The 

majority of described species occur in temperate regions of North America, Europe, Australia and 

New Zealand.  Many new genera and species are still expected to be found in tropical and 

subtropical regions of South America, Africa and Southeastern Asia (11). Many species of rust 

fungi cause internationally important plant diseases of crucial crops, such as, stem rust (Puccinia 

graminis Pers.), leaf rust (P. triticina Erikss.), and stripe rust (P. striiformis Westend.) of wheat, 

coffee rust (Hemileia vastatrix Berk. & Broome) and many others (35).   

Rusts occur on a broad range of host plants from ferns to gymnosperms to angiosperms, 

including many dicots and monocots. As obligate parasites, rust fungi are largely host-specific 

and recent studies suggest close coevolutionary relationships between rusts and their host plants.  

Through sophisticated parasitism, rust fungi obtain nutrients from living host cells causing little 

or no harm, at least in the early stages of development.  Host-rust fungus relationships often give 

useful information for the phylogeny and classification of higher plants (50). Many well-studied 

species of rusts have been cultured successfully on artificial media, though not permanently (e.g. 

Uromyces hobsoni) (17; 31; 55; 62).  In nature, rust fungi appear to survive only as obligate 

parasites of living plants.  
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Identification 

Aspects of teliospore morphology have been used as major defining traits of genera of 

rust fungi (48). Teliospore septation has long been regarded as a distinguishing generic character 

in several rust families.  On Panicum spp., Uromyces graminicola forms a single-celled 

teliospore, while P. emaculata forms a two-celled teliospore (29; 56).  Reports of U. graminicola 

on switchgrass have been published; however, these reports were not well documented and 

consequently the reported diseases may have been caused by P. emaculata (65). 

Uredinia of P. emaculata were described as epiphyllous to caulicolous, adaxial to 

amphigenous, with oblong urediniospores possessing cell walls cinnamon brown in color, 1.5 to 

2.0 μm thick, finely echinulate with three to four equatorial pores (29; 56; 65). As well, telia were 

described as adaxial to amphigenous, epiphyllous to caulicolous, densely crowded to scattered, 

oblong, and dark brown to black. Teliospores were dark brown, two-celled, ellipsoid to oblong, 

33.6 ± 4.8 μm long with an apical cell width of 17.5 ± 1.2 μm and basal cell width of 15.9 ± 2.5 

μm. Teliospore walls were 1.5 to 2.0 μm thick at the sides and 4 to 6 μm apically.  Teliospore 

pedicels were brown or colorless and up to approximately one length of the teliospore, 28.5 ± 7.4 

μm (65). Teliospore morphology-based identification was confirmed by sequencing of the nuclear 

ribosomal internal transcribed spacer (ITS) region. Results showed that ITS sequences from P. 

emaculata were distinct from sequences for Puccinia graminis and Puccinia striiformis and it fell 

into a highly supported cluster containing Puccinia asparagi, Puccinia andropogonis, and 

Puccinia sorghi (56; 65). Currently, two sequences are available for P. emaculata in GenBank 

(accessions numbers: EU915294; KC515382), while no sequences are available from U. 

graminicola.  

The aecial state of P. emaculata has not been observed recently, although several putative 

specimens from the 1890s-1900s are housed at the US National Fungus Collections (BPI).  
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Teliospores have been observed on switchgrass plants in nature, but sexual reproduction through 

spermagonia and aecia on an alternate host has not been reported (65). Puccinia emaculata is 

probably heteroecious and macrocyclic (five-spore life cycle) (Figure. 2.1).  Although P. 

emaculata has not been confirmed to infect an alternate host (29; 60), flowering spurge 

(Euphorbia corollata L.) has been reported to be an aecial host of P. panici and P. pammelii, 

which are now considered synonymous with P. emaculata. Little is known about P. emaculata.  

The historically unclear etiology of this fungus has complicated the development of effective 

disease management strategies (24; 60). 

 

 

 

 

 

 

 

 

 

  

 

Figure 2.1.  Adapted P. emaculata life cycle (S. Marek, unpublished) 

Biology 

The basic terminology of the five spore states of rust fungi was proposed by Anton de 

Bary and Edmond Tulasne during the 19th century and have since been modified by many 

mycologists (3; 21; 33; 49). However, the currently accepted spore names (spore-bearing 
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structure in parentheses) are as follows: basidiospores (produced on basidia), spermatia (produced 

in spermagonia), aeciospores (produced in aecia), urediniospores (produced in uredinia), and 

teliospores (produced in telia).  

In heteroecious species, basidiospores and aeciospores must be disseminated between 

hosts and can only infect the other host. Urediniospores repetitively infect the same host, 

producing more uredinia, and exponentially increasing inoculum. This allows rapid asexual 

spread during a single growing season and also enables heteroecious species to persist on one 

host, even when the alternate host is not present (1; 4).  This type of reproduction results in the 

characteristic polycyclic disease cycle of many grass rusts.  As host tissues senesce at the end of a 

growing season, telia replace uredinia, and thick-walled, melanized teliospores are formed for 

survival in the absence of viable host tissue.  As teliospores age, their nuclear state changes from 

dikaryotic to diploid.  Environmental cues break teliospore dormancy resulting in the formation 

of basidia, meiosis, and haploid basidiospores production. Basidiospores are spread by the wind 

and infect the alternate host forming spermagonia and spermatia, haploid gametes. Fusion of 

spermatia with haploid receptive hyphae of compatible spermagonia restores the dikaryotic state 

of hyphae (19). Dikaryotic aecia are then formed on the underside of leaves and release 

aeciospores that are wind disseminated to the telial host. Aeciospores are often thicker-walled 

than the urediniospores.  

Species of rust fungi are host-specific, being restricted to a single host species or closely 

related host species at particular stages of the life-cycle.  When some populations within a species 

of a rust fungus attempt to infect closely related host species, minor morphological and/or 

physiological differences in the host may prevent successful infection (19; 20). Such specialized 

strains within a species may be designated as a "forma specialis" (plural: formae speciales) based 

on the host species on which it is still pathogenic, such as Pucccinia striiformis f. sp. tritici.  
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Phylogeny 

In recent years, the taxonomy of basidiomycetes has been under major revision due to the 

application of molecular systematic techniques (54; 67). In the case of rust fungi, relatively few 

phylogenetic studies have been performed, compared to other fungi. This may be due to the 

obligate parasite life style, which makes isolating and maintaining pure cultures difficult. The 

first phylogenetic studies of rust fungi were based on 5.8S rDNA region sequences (28). 

Subsequently, studies were performed utilizing ITS sequences, generating information related to 

specific genera, such as Puccinia, Uromyces, Cronartium and Peridermium (37). 

Aime et al. (2006) conducted a detailed study to determine the phylogenetic relationships 

among 52 rust fungi collected in Europe from the families: Pucciniaceae, Phragmidiaceae, 

Sphaerophragmiaceae, Uropyxidaceae, Chaconiaceae, Coleosporaceae, Cronartiaceae, 

Pucciniastraceae and Melampsoraceae. This work used a 535 bp region of the nuclear ribosomal 

large subunit (LSU) to infer relationships among rust fungi.  The results confirmed the order 

Uredinales (now Pucciniales) is monophyletic. The genera Puccinia, Uromyces, Cumminsiella 

and Endophyllum have a common ancestor and separate from rust fungi that are pathogens of the 

Rosaceae family (Phragmidium, Kuehneola, Triphragmium and Trachyspora), which constitute 

another monophyletic group. Additionally, the genera Puccinia, Uromyces, Pucciniastrum, 

Thekopsora and Uromyces were demonstrated to be polyphyletic (2). In consequence, to clarify 

the polyphyletic or monophyletic nature of the genera Puccinia and Uromyces, two independent 

studies were completed using multilocus phylogenies comprised of the translation elongation 

factor 1α (TEF1a), β-tubulin, and LSU genes.  These studies concluded that at least two major 

lineages can be inferred, which both include mixtures of Puccinia and Uromyces species.  One 

lineage forms telia on plants of the family Poaceae, while the other forms telia on plants of the 

family Cyperaceae (43; 57). These studies suggest that rusts have coevolved with their hosts, and 

‘jumps’ from one host to another have led to the evolution of new rust groups. Furthermore, some 
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studies suggest that host jumps could take place between unrelated hosts that occupy similar 

ecological niches (8; 57). 

Uppalappati et al. (2012) reported the first phylogenetic study for P. emaculata. 

Switchgrass rust urediniospores were collected at several locations in Oklahoma from 2007 to 

2011. Urediniospores were isolated from fields and maintained on susceptible upland switchgrass 

genotypes under growth chamber conditions.  The ITS region was amplified from bulked 

urediniospores DNA, cloned and sequenced. The resulting sequences were distinct from 

sequences of P. graminis. Phylogenetic analyses were performed with similar ITS sequences 

from other rust fungi.  This study reported that P. emaculata fell into a highly supported cluster 

with P. asparagi, P. andropogonis, and P. sorghi (56). Nonetheless, only a limited number of ITS 

sequences of rust fungi that infect native grasses are available and P. emaculata etiology is still 

unclear (1; 8).   

DNA barcoding 

Correct identification of a pathogen is essential for accurate disease diagnosis and 

implementation of crop management decisions (25; 26).  Examination of microscopic features 

among similar species for identification of pathogenic fungi can be challenging due to the scarcity 

and/or plasticity of useful morphological features (6). Over the past 20 years, PCR and DNA 

sequencing have permitted phylogenetics-based classification of fungi (52). The enormous 

increase in the use of molecular methods to identify fungi and study their systematics has been 

attributed to the adoption of a rapid, cost-effective, and standardized PCR methods that allow 

amplification and sequencing of the ITS region of fungi (6; 25). The ITS region is now 

considered the ´DNA barcode´ for fungi (51), just as the mitochondrial cytochrome C oxidase I 

(COI) gene is considered the barcode for animals (32) and the plastid genes rbcL and matK are 

the barcodes for land plants (34). The term ‘DNA barcode’ refers to a locus occurring in a 

kingdom or phylum of organisms, which is sufficiently conserved to permit a high rate of 
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successful PCR amplification using ‘universal’ primers, but sufficiently variable to distinguish 

between species, facilitating identification, and with little variation within species (12; 51; 52).  A 

comprehensive database of barcode sequences from diverse, representative species must also be 

available and maintained (e.g. NCBI).  DNA barcodes are usually short DNA sequences (400-600 

bp), just long enough to identify a particular organism to species (or at least genus) and a 

convenient length for optimal Sanger sequencing.  Generally, the short lengths of the barcodes 

permit pairwise identification of species and can resolve some phylogenetic relationships at the 

family, genus and species levels. However, phylogenetic trees based on single barcode loci often 

lack sufficient support to be informative (6; 36).  

In fungi, few genetic loci have been considered as barcodes. Initial phylogenetic and 

molecular identification studies of fungi used nuclear ribosomal genes (52). Bruns et al. (1991) 

described universal primers that are still used, especially for the amplification of three main 

components of the fungal ribosomal operon:  1) the large subunit of the ribosomal DNA (LSU; 

also referred to as 26S or 28S rDNA, which includes two variable subregions called D1 and D2; 

2) the rDNA small subunit (SSU or 18S) (9); and 3) the rDNA ITS region, comprised of three 

sections: two variable transcribed spacers, ITS-1 and ITS-2, bracketing a conserved 5.8S region. 

Since the ITS region from some species can have a relatively large length (>1,000 bp), resulting 

in problems obtaining bidirectional sequences, some recent metagenomic studies have focused on 

either the ITS-1 or ITS-2 spacers (12; 52).  The ITS barcode is an informative marker for species-

level studies for most fungi, with some exceptions, such as cryptic species of genus 

Debaryomyces (14). ITS region varies in length among major taxonomic groups, due to abundant 

indels (insertions/deletions) among genera and species. In some species, these indels can be 

useful for molecular diagnostics. In some clades (e.g. species), it may be difficult to do 

alignments of ITS sequences, restricting their utility for phylogenetic reconstruction. This may 

due to non-uniform evolutionary selection pressure, influenced by the highly-conserved adjacent 
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rDNA (26). However, this problem has been corrected by analyzing additional loci, such as the 

following single-copy genes encoding proteins: β-tubulin (bTub), DNA-dependent RNA 

polymerase II subunits (RPB1, RPB2), chitin synthases, translation elongation factors (TEF1a), 

histone H3 and actin (39); as well as, two additional mitochondrial genes: cytochrome b (Cytb) 

and cytochrome c oxidase1 (CO1), which have been informative in numerous phylogenetic 

studies (11). 

DNA barcodes, have the potential to resolve polyphyletic taxonomic groups and can be 

used to detect misidentifications due to imprecise morphological characters utilized to define 

species (25; 52). Thanks to years of DNA barcode studies, over 620,000 ITS sequences from 

fungi are available in on-line databases such as GenBank. Effectively using DNA barcodes for 

fungal identification requires integration of sequence analysis tools with field and laboratory data. 

Numerous software packages have been developed to analyze DNA barcodes, such as Geneious, 

ClustalX, Chromas Pro and SNAP.  Such sequence analyses can be used to search world-wide 

fungal identification databases, create phylogenetic trees, and analyze intraspecific variation (12).  

cDNA libraries, expressed sequence tags (ESTs), and RNA-seq 

 

Messenger RNA (mRNA) isolated from cells, tissues, organisms or ecosystems, can be 

reverse transcribed to synthesize complementary DNA (cDNA) from the relevant biomaterials 

being investigated.  The cDNA can then be labeled and used to probe microarrays or directly 

sequenced using next generation sequencing technology.  The result is a catalog gene expression 

referred to as a transcriptome.  Usually this process begins with total RNA, rather than mRNA, 

extracted from cells and used directly for cDNA generation. However, sometimes mRNA is 

selectively purified from total RNA prior to reverse transcription, so that cDNA will be enriched 

for protein-coding genes (41; 46).  Creating cDNA is the essential first step of gene expression 

analysis, since all current sequencing methods require DNA and cannot sequence RNA directly. 
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cDNA production consists of two basic steps. First, separating and cleaning mRNA 

molecules from total cellular RNA.  Second, mRNA molecules are reverse transcribed to cDNA 

using a reverse transcriptase (RNA-dependent DNA polymerase), usually purified from a 

retrovirus.  Several methods exist for isolating and purifying mRNA from biological sources.  A 

typical procedure would include, TRIzol® extraction of total RNA followed by purification on 

columns containing bound oligomeric deoxythymine nucleotides [oligo(dT)], which only binds 

mRNAs with poly(A) tails.  The rest of the non-bound RNAs (tRNAs, rRNAs, snRNAs, etc.) are 

washed off the column. The bound mRNA is then eluted using a low salt elution buffer or, in 

some cases, heated RNAse-free water to break the hydrogen bonds between A-T base pairs.  

Eluted mRNA molecules are stored at -80C or used immediately for cDNA synthesis.  The 

mRNA is reverse transcribed into cDNA using a reverse transcriptase (RT) and oligo (dT) 

primers, which bind to the mRNAs’ poly(A) tails, providing exposed 3'-OH groups required for 

the initiation of cDNA synthesis by RT. The RT enzyme synthesizes complementary DNA 

strands resulting in a mRNA-DNA hybrid.  The mRNA is removed with alkali or RNAse H 

treatment and single-stranded cDNAs (sscDNAs) are released.  Adapter-mediated second strand 

synthesis then converts the sscDNA into double-stranded DNA using a DNA polymerase (13; 

15).  Libraries are created when double-stranded cDNAs are cloned into plasmids or phage 

particles and maintained in E. coli.  By sequencing thousands or tens of thousands of these 

clones, a partial profile of gene expression, comprised of expressed sequence tags (ESTs), can be 

created.   

ESTs are fragments of cDNA (mRNA) sequences derived from single sequencing 

reactions performed on randomly selected clones from cDNA libraries. ESTs are single-pass 

reads of approximately 200–800 base pairs (bp). Since they represent the expressed portion of a 

genome, ESTs have proven extremely useful for gene identification and verification of gene 

predictions.  EST sequencing projects were often used as an alternative to whole genome 
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sequencing because of their lower costs (45).  EST sequencing also has been shown to be an 

important genomic tool for identifying and characterizing traditionally 'anonymous' SSRs (16; 30; 

40). 

The concept of cDNA libraries has been extended and applied in RNA-Seq technology 

(18), a next generation DNA sequencing platform that sequences all of the cDNAs in a massively 

parallel process that can produce billions of reads simultaneously (Illumina.com). Thus, cDNA 

libraries of clones no longer have to be contructed.  This new technology provides accurate 

quantitative measurements of each gene’s expression and differential gene splicing, and facilitates 

the discovery of novel genes and gene regulation. However, individual cDNA sequence reads 

from RNA-Seq are often still referred to as ESTs. RNA-Seq has dramatically changed how 

transcriptomes are studied. 

RNA-Seq technology has been used in various fungal studies, including the rust, such as 

Puccinia triticina and the closely related P. striiformis (41). In the case of P. striiformis, a full-

length library was constructed from urediniospores, 196 random clones were sequenced, and the 

functions 51 genes were inferred to be involved in amino acid metabolism, cell defense, cell 

cycle, cell signaling, cell structure and growth were identified.  Additionally, an EST sequencing 

project for P. striiformis identified potentially useful microsatellites and assessed their 

polymorphisms.  Of the resulting 15 primers sets tested, 13 successfully amplified fragments of 

the sizes predicted from the ESTs (5).  However, because the first strand of cDNAs represented in 

EST libraries are typically generated from the 3’-poly(A) end of mRNAs, the 5’-ends of 

transcripts can be missing resulting in partial cDNA sequences (41).  

 

Simple Sequence Repeats (SSRs) 

Simple sequence repeats (or microsatellites) are stretches of DNA, consisting of tandem 

repeats of mono, di, tri, tetra or pentanucleotide units, which are arranged throughout the 
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genomes of most eukaryotic species. Weber 1990 (60) developed a general approach for detecting 

polymorphic (variable length) microsatellites by PCR amplification from total genomic DNA 

using two unique primers that flank a defined microsatellite locus (61).  

The standard methods for the isolation of SSRs involve the following: 1) the creation of a 

small insert genomic library, 2) library screening by hybridization, 3) DNA sequencing of 

positive clones, 4) primer design, and 5) locus-specific PCR analysis to identify polymorphisms. 

For the efficient generation of SSR-enriched libraries, various methods have been developed. 

These include a fragmentation of genomic DNA by sonication or endonuclease digestion, 

followed by ligation of adaptors, degenerate (nonspecific) primers and PCR analysis. 

Microsatellites containing fragments are enriched by hybridization to short length biotinylated 

SSR probes and hybridized SSRs subsequently isolated on streptavidin-conjugated magnetic 

beads.  Bound single stranded SSRs are converted to double stranded DNA, primed by an 

oligonucleotide repeat, and are subsequently cloned and sequenced. Finally, locus specific 

primers are designed.  

The two main advantages of microsatellites are the high informational content and the 

ease of genotyping. The ability to distinguish between closely related individuals is particularly 

important for many fungal species. Because of their simplicity, effectiveness, abundance, 

hypervariability and high reproducibility, SSRs can be used in the identification of genes 

responsible for special characteristics such as pathogenicity (16). SSRs have showed to be more 

effective than other molecular markers (e.g. Restriction fragment polymorphism [RFLP], 

Amplified fragment length polymorphism [AFLP]) in population genetic assays due to high 

levels of polymorphism. Microsatellites can be used to identify heterokaryons and have high 

discriminatory power for analyzing variation in the gene pools of fungi (66).  
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Wadl et al. 2011 (60), developed two microsatellite enriched libraries for P. emaculata. 

Microsatellite loci were characterized in the genomic DNA from bulked urediniospores collected 

from 20 single pustule isolates. Ten primer pairs were identified to amplify loci in the 20 P. 

emaculata isolates.  All loci were polymorphic and allele numbers per locus ranged from 2 to 5. 

Observed heterozygosity ranged from 0.21 to 0.77.  In preliminary experiments, the 10 SSR 

primer pairs described by Wadl et al. were tested on P. emaculata populations collected from five 

states during this investigation, and only three of the ten primer pairs produced amplifiable bands.  
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CHAPTER III 
 

 

MULTILOCUS PHYLOGENY AND HAPLOTYPE DIVERSITY OF DNA 

BARCODES IN Puccinia emaculata  

 

ABSTRACT 

 

Rust disease caused by Puccinia emaculata can significantly reduce the biomass yield and biofuel 

feedstock quality of switchgrass. Four other Puccinia species have been reported as causing 

switchgrass rust, but two are now considered synonyms of P. emaculata.  The purpose of this 

study was to use three “DNA barcodes” loci, ITS, TEF1a, and bTub, to assess the phylogenetic 

status, genetic diversity and haplotype distribution of P. emaculata urediniospores collected from 

cultivated switchgrass grown in Iowa, Mississippi, Oklahoma, South Dakota, and Virginia.  

Barcodes were amplified and the PCR products cloned and sequenced. At least five clones per 

spore collection were sequenced. Phylogenetic analyses based on single spore multilocus 

sequences strongly supported the monophyletic status of P. emaculata. Intraspecific variation 

among and within populations was observed. Numerous haplotypes of each barcode were present 

in each state population (ITS=14; bTub=24; TEF1a= 27), which differed in geographic 

distribution. The bTub and TEF1a haplotypes displayed mostly local distributions; while ITS 

haplotypes were distributed both in multiple states and locally. Prolonged propagation of 

urediniospores on plants under growth chamber conditions appeared to reduce barcode haplotype 

diversity.  Future studies will examine the phylogeography, population structure, and 

pathogenicity variation within P. emaculata. 
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INTRODUCTION 

 

The switchgrass rust fungus, Puccinia emaculata Schw., is an obligate parasite and a 

member of the order Pucciniales (3; 5). Switchgrass (Panicum virgatum L.) is a perennial warm-

season grass native to North America.  Switchgrass is used for forage production, erosion control, 

and as a renewable biomass feedstock source for cellulosic biofuel production. Epidemics of rust 

on switchgrass can reduce feedstock quality, biomass quantity, and seed production, resulting in 

economic losses (16) 

The uredinial stage of P. emaculata is commonly observed on switchgrass and 

urediniospores can act as primary inoculum after long distance dissemination, and as secondary 

(repeating) inoculum within fields and regions.  A first report of P. emaculata rust pustules on 

switchgrass in Tennessee was published in December 2008 (39). Subsequently, rust has been 

reported in Arkansas on ‘Alamo’ where 25% to 100% of switchgrass leaves were infected with P. 

emaculata (20). Rust has also been observed in numerous states throughout the southeastern 

United States, west into Texas and as far north as South Dakota. Oklahoma, a state with major 

cellulosic bioenergy research, has been impacted severely by switchgrass rust in the past five 

years (35). 

Infection of switchgrass (primary or uredinial-telial host) by P. emaculata occurs when 

wind-blown aeciospores or urediniospores land on switchgrass leaves. Following deposition on 

switchgrass leaves, a spore forms a dikaryotic germ tube, which penetrates through stomatal 

openings (24).  Uredinia usually form 7-10 days after inoculation. Telia form on senescing leaves 

in the late summer and fall.  In telia, teliospores form and mature and nuclei within teliospores 

undergo karyogamy.  In the spring, overwintered teliospores germinate, undergo meiosis, forming 

basidia, and air borne, haploid basidiospores that infect the alternate host. The alternate host is 

believed to be a species within the family Euphorbiacae (spurges), which, presumably, is infected 
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by the basidiospores resulting in formation of spermatia in spermagonia.  Fusion of compatible 

spermatia and receptive hyphae re-establishes dikaryotic hyphae, completing the sexual life cycle 

of P. emaculata, resulting in aeciospores. Later in the spring or summer, windborne aeciospores 

apparently re-infect switchgrass plants, resulting in more urediniospores (29; 39).  Two other 

species of rust fungi, P. pammelii (Trel.) Arthur and P. panici Dietel & Holw., also have been 

reported to infect switchgrass and the alternate hosts, Euphorbia corollata L. and E. marginata 

Pursh.  Both P. pammelii and P. panici are now considered synonyms of P. emaculata (4).  

However, attempts to inoculate E. corollata with P. emaculata were not successful (4).  

Host species and aspects of teliospore morphology have been used to define species of 

rust fungi. However, teliospore morphology can vary within species and overlap across species of 

rust fungi, making identification ambiguous for many species.  Teliospores of P. emaculata are 

described as dark brown, two-celled, ellipsoid to oblong, 33.6 ± 4.8 μm long with an apical cell 

width of 17.5 ± 1.2 μm and basal cell width of 15.9 ± 2.5 μm. Teliospore walls are 1.5 to 2.0 μm 

wide at the sides and 4 to 6 μm apically.  Teliospore pedicels are brown or colorless and up to 

approximately one length of the teliospore, 28.5 ± 7.4 μm (17; 29).  

Due to the difficulty of identifying rust fungi to species, molecular techniques have been 

developed to accurately identify rust fungi.  Two nuclear ribosomal internal transcribed spacer 

(ITS) region sequences are available for P. emaculata at NCBI (EU915294; KC515382).  

Uppalapati et al. (2012) reported a phylogenetic analysis of P. emaculata based on ITS sequences 

from urediniospores collected from Oklahoma and included other Puccinia spp. with similar ITS 

sequences as outgroups.  Results showed P. emaculata is distinct from P. graminis, P. triticina 

and P. striiformis (cereal rusts) and grouped in a well-supported clade with P. asparagi, P. 

andropogonis, and P. sorghi (35).  More molecular information is required to understand P. 

emaculata evolution, population structure and geographic distribution. Thus, the objectives of this 

study were to use sequences of three “DNA barcode” loci (ITS, β-tubulin [bTub], and translation 
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elongation factor-1α [TEF1a]) from urediniospores collected from cultivated switchgrass plants 

grown in five of the United States: Iowa, Mississippi, Oklahoma, South Dakota, and Virginia to 

assess the phylogenetic status, genetic diversity, and haplotype distribution of P. emaculata. 

MATERIALS AND METHODS 

 

Collection and maintenance of rust fungi  

Puccinia emaculata urediniospores were collected from symptomatic switchgrass leaves 

from fields in Iowa, Mississippi, Oklahoma, South Dakota, and Virginia, in 2011 (Table 3.1) 

using vacuum spore collectors.  Urediniospores were collected into 2 ml screw cap microfuge 

tubes attached to the spore collectors with tygon tubing. Collected urediniospores were dried for 2 

days at room temperature over silica gel for long term storage at -80°C. Oklahoma urediniospores 

were collected in 2009, and since then urediniospores have been propagated under growth 

chamber conditions as described below. In this study, Oklahoma urediniospores harvested from 

symptomatic switchgrass plants under growth chambers in 2011 were used.  

To increase P. emaculata urediniospores of collected populations, urediniospores were 

inoculated onto switchgrass seedlings, as follows.  Urediniospores were suspended in inoculation 

solution (spreader sticker 0.05% [Hi-Yield, VPG, Bonham, TX], 10 mg/L Benlate SP [E.I. du 

Pont de Nemours and Co. Wilmington, DE], 1 mM nonanol) and sprayed onto switchgrass (cv. 

Dacotah) plants (5 weeks old) using a spore suspension atomizer (7). Inoculated plants were 

covered by porous plastic bags (measuring 15x25x25 cm; microperforated polypropylene bread 

bags) (Figure 3.1, A), then incubated in a dew chamber at 22-27°C overnight and transferred to a 

growth chamber at 27°C with a 12-h photoperiod, for symptom development.  

After 15 days, single pustules were isolated from each population and re-inoculated under 

axenic conditions on switchgrass seedlings (a month old; cv. Dacotah) planted in autoclaved soil 

and magenta boxes (two coupled GA-7 Magenta boxes) (Figure 3.1, B, C). Inoculated axenic 
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seedlings in magenta boxes were incubated in a dew chamber and then in a growth chamber, as 

described previously. Urediniospores produced on axenic seedlings were then inoculated onto 

another set of switchgrass seedlings (cv. Dacotah) under the same conditions. The resulting 

increased urediniospores from each population were collected and stored dry over silica gel at 

−80°C. Urediniospores of P. andropogonis (PA), P. sorghi (PS) P. striiformis f. sp. tritici (PST), 

and P. triticina (PT) were collected in Oklahoma and stored, as above.  These rust fungi were 

used as outgroups in phylogenetic analyses (Table 3.1).  

 

 

 

 

 

 

Figure 3.1. Cultural methods used in this study. A. Switchgrass seedlings (cv. Dacotah) 

inoculated with urediniospores and covered with porous plastic bags. B. Isolation of single 

pustules using a microvaccum spore collector. C.  Inoculated plants growing in magenta boxes.  
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Table 3.1. Descriptions of urediniospore collections of Puccinia emaculata and other rust fungi 

used in this study and DNA isolation methods used.  

Puccinia 

emaculata 

collections 

Code 
Switchgrass 

cv. or host 
Origin 

Collection 

year 

DNA Isolation 

Genomic 

DNAa 

Single 

sporeb 

Pe-ISU 

ISU1 

Cave in Rock 

ISU Woodruff Farm, 

Story Co., IA 
2011  

ISU9 
ISU Sorenson Farm, 

Story Co., IA  
2011  

Pe-MISS 

MISS1 Alamo MSU H.H. Leveck 

Animal Research 

Center, Starkville, 

MS 

2011  

MISS2  
Alamo 

Lowland 
2011  

Pe-SD SDSU Dacotah 

SDSU Experiment 

Station Farm (Felt 

Farm), Brookings, 

South Dakota, USA 

2011  

Pe-OK 

OSU09-1 

Kanlow, Cave 

in Rock, 

Blackwell, 

Dacotah 

OSU Agronomy 

Farm 2009, 

maintained 2 years in 

growth chamber, 

Stillwater, OK 

2011  

OK-NF Dacotah 

Noble Foundation 

Agricultural Farm, 

Ardmore , OK  

2011  

Pe-VT VT1-1 Cave in Rock 
VT, Kentland Farm 

Research Center, VA 
2011  

Outgroup 

rust species 
            

P. 

andropogonis 
PA 

Andropogon 

gerardii 

Robber’s Cave State 

Park, Wilburton, OK 
2013    

P. sorghi PS Zea mays Eakley, OK 2013    

P. striiformis 

f. sp. tritici 
PST 

Triticum 

aestivum 

OSU Agronomy 

Farm, Stillwater, OK 
2013    

P. triticina PT 
Triticum 

aestivum 

OSU Agronomy 

Farm, Stillwater, OK 
2013    

a Genomic DNA extracted from multiple bulked urediniospores 

b Whole genome amplification of DNA from single germinated urediniospores 
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Isolation of genomic DNA  

DNA was extracted from urediniospores according to Weising (38), with slight 

modifications. One mL of extraction buffer (140 mM sorbitol, 220 mM Tris-HCl, pH 8.0, 22 mM 

EDTA, 800 mM NaCl, 0.8% cetyltrimethylammonium bromide [CTAB], and 1% sodium dodecyl 

sulfate [SDS]) was added to 10 mg of collected urediniospores in 2 ml screwcapped microtubes 

containing 3 mm glass beads and 0.5 mm zirconium beads.  Samples were then homogenized in a 

bead beating instrument (FastPrep®-24 Instrument, MP Biomedicals, Santa Ana, CA) for 20 sec 

at 4 m/s.  Bead beating was repeated three times.  To each tube, 0.5 mL of chloroform: isoamyl 

alcohol (24:1, v/v) was added and incubated in a Thermomixer (Eppendorf AG, Hamburg, 

Germany) at 55°C shaking at 350 RPM for 30 min. The organic phase was separated by 

centrifugation at 12,000×g at 4°C for 20 min. The upper aqueous phase was transferred to a new 

tube, to which 700 µL isopropanol was added, mixed gently and DNA precipitated at -20°C for 

30 min. DNA was pelleted by centrifugation (12,000×g at 4°C for 20 min), washed with 1 ml 

70% ethanol and centrifuged again.  The pellet was air dried and resuspended in 100 µL of TE 

(10 mM Tris-HCl, pH 7.4; 1 mM EDTA) (38). DNA quantity and quality were quantified by 

spectrophotometry using a NanoDrop ® 1000 (Thermo Fisher Scientific, Waltham, MA, USA) 

and confirmed by TAE-agarose (1.5%) gel electrophoresis. 

Single spore isolation and whole genome amplification  

A modified cylinder loop-needle method was adapted from Heldebrand (19) and used to 

isolate single urediniospores of P. emaculata. Briefly, micropipettes were constructed from glass 

capillary tubing (Globe Scientific, Inc. Paramis, NJ, USA), which was exposed to a microflame 

and drawn out to a very fine bore, and fitted with a pipette bulb (Globe Scientific, Inc. Paramis, 

NJ, USA).  Collected urediniospores were spread on 2% water agar in 9 cm petri dishes.  After 2 

hours, the petri dish was moved to the stage of a microscope and germinating single 

urediniospores were identified.  Five single spores from each of the five populations (n = 25) 
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were collected and individually transferred to 10 µL of whole genome amplification (WGA) 

sample buffer. 

WGA of single spores was carried out using Illustra GenomiPhi V2 DNA Amplification 

Kit (GE Healthcare Life Sciences, Buckinghamshire, UK) per manufacturer’s instructions with 

modifications.  Briefly, a germinated single spore was suspended in 10 µL of sample kit buffer 

and heated to 95°C for 10 minutes, then cooled on ice. Reaction buffer (9 µL) and enzyme mix (1 

µL) were added as described for the kit. After the WGA reaction finished, 5 μl of the product 

were run on a TAE 1.5% agarose gel to verify WGA had occurred. A subsample of WGA 

products were treated with ExoSAP-IT® reagent (USB Corporations, Cleveland, OH, USA), 

according to manufacturer’s instructions, to remove WGA primers, and stored at -20°C. 

PCR, amplicon cloning, and sequencing 

 Three genetic loci were amplified from genomic DNA and single spore WGA DNA.  

Total PCR reaction volume was 20 µL (10 µL of GoTaqGreen Master Mix [Promega, 

Madison, WI], 1 µL of each primer [5 µM, Table 3.2], 2 µL of DNA [25 ng/µL] and 6 µL of 

sterile nuclease-free water). First, a ~1,250 bp region of the rDNA (partial 5.8S-ITS-2-partial 

LSU) was amplified using the primer pair, Rust1 (26) and PuccF2 (B. Olson, unpublished data; 

14) with the following 2-stage program: 95°C for 10 min, followed by 10 cycles of 94°C for 1 

min, 52°C for 1 min, and 72°C for 4 min, followed by 20 cycles of 94°C for 30 s, 52°C for 45 s, 

and 72°C for 2 min, and a final extension at 72°C for 10 min.  Primers used to amplify bTub 

(1000 bp) and TEF1a (870 bp) loci were published previously (2; 15; 22; 37).  The bTub locus 

was amplified in a 20 µL PCR with the following 2-stage program: 95°C for 10 min, followed by 

10 cycles of 94°C for 1 min, 62°C for 1 min, and 72°C for 4 min, followed by 20 cycles of 94°C 

for 30 s, 62°C for 45 s, 72°C for 1 min, and a final extension at 72°C for 10 min. The TEF1a 

locus was amplified in 20 µL reactions using the following program: 96°C for 7 min, followed by 

31 cycles of 94°C for 40 s, 56°C for 40 s and 72°C for 1.4 min, and a final extension of 72°C for 
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10 min. PCR products were confirmed by electrophoresis on a 1.5% agarose TAE gel.  PCR 

products were cleaned using ExoSAP-IT® reagent (USB Corporations, Cleveland, OH, USA) 

and stored at -20°C. 

Table 3.2. Primer sequences and source references used to amplified barcode genes from 

Puccinia species in this study.   

 

Gene Primers              References 

ITS2-LSU Rust1: 5’-GCTTACTGCCTTCCTCAATC -3’ 

PuccF2: 5’- CAATGGATCTCTAGGCTCTC -3’ 

(14 ; 25) 

bTub Tub1510: 5’-GGTCCGATCTGGCGCCTTCG -3’ 

Tub2435: 5’-GAGGAGCAATGTCACAGTGGGCA -3’ 

(37) 

TEF1a EfBasidF1: 5’-GTGCGGTGGTATCGACAAGC -3’ 

EfBasidR: 5’-CATGTTGTCACCGTGCCATCC -3’ 

(37) 

 

In order to obtain homologous bidirectional sequences PCR products amplified from 

genomic DNA samples were gel purified using a GeneJET Gel Extraction Kit (Thermo Fisher 

Scientific Biosciences, Inc., Pittsburgh, PA, USA) and TA-cloned into a pGEM®-T Easy Vector 

System (Promega Corporation, Madison, WI, USA), each performed according to manufacturer’s 

instructions.  Plasmids containing clones were transformed into E. coli DH5α competent cells 

(18). For each locus from each rust sample at least five independent plasmid clones were selected.  

Plasmid clones (n = 40) were screened by colony PCR using vector promoter primers SP6 and 

T7.  Transformant products were confirmed by electrophoresis on 1.5% agarose TAE gel, cleaned 

with ExoSAP-IT® reagent (USB Corporations, Cleveland, OH, USA), and then submitted to the 

Recombinant DNA/Protein Resource Facility at Oklahoma State University for automated 

sequencing.  

Haplotype and phylogenetic analyses 

Sequences from cloned loci amplified from genomic DNA from spore collections were 

used for haplotype analyses.  Multiple sequence alignments of each locus were created in MEGA 
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5.05 (34) and sequences were collapsed into unique haplotypes using the SNAP Map tool within 

SNAP Workbench 2.0 (by Price et al., 2005) and used to construct maximum likelihood (ML) 

phylogenies.   

Sequences from cloned loci amplified from single-spore WGAs were used in multilocus 

phylogenetic analyses.  Non-coding DNA sequences (ITS) were aligned using Muscle (12) and 

refined manually. Protein-coding sequences (bTub, TEF1a) were aligned using MEGA 5.05 (34), 

with the amino acid option of Muscle (12).  Ambiguous alignments for each locus were excluded 

using Gblocks 0.91b with default parameters on the Gblocks server (8).  ITS, bTub, and TEF1a 

sequences from single-spore WGAs were partitioned by locus and concatenated into a single 

matrix using SequenceMatrix 1.7.8 (36).  Phylogenetic trees based on aligned single loci and 

concatenated loci were created and analyzed in MEGA 5.05 using maximum likelihood (ML) and 

Bayesian algorithms.  A general time reversible model with gamma distributed rate heterogeneity 

and an inferred proportion of invariable sites (GTR+GAMMA+I) was used in all the analyses. 

ML analysis was performed using RAxML v 7.3.1 (32) online at the CIPRES science gateaway 

(27) where a fast bootstrapping analysis and the search for the best-scoring ML tree was 

performed in a single program run and Bayesian analysis.  

RESULTS 

Barcode loci amplification 

All barcode loci amplified successfully using either genomic DNA of collected 

urediniospores or single spore WGAs as template DNA.  ITS, bTub, and TEF1a PCRs produced 

amplicon lengths of ~1,200 bp, ~1,000 bp, and ~800 bp, respectively, and each resolved as single 

bands on agarose gels.  However, efforts to obtain high quality bidirectional gene sequences 

(complementary contigs) of the three loci amplified directly from the genomic DNA of bulked 

urediniospores resulted in partial sequences. Single-strand sequences formed poor quality, 
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disrupted contigs even though PCR products formed uniform single bands on gels.  It was 

hypothesized that heterogeneous templates, due to heterozygous alleles present in collected spore 

populations, created competing amplicons with frame shifting indels, which disrupted 

sequencing.  To reduce the heterogeneity of the template DNA, the following two approaches 

were assessed to produce high quality homozygous sequencing templates: 1.) PCR products were 

TA-cloned and clones sequenced or 2.) obtain single-spore cultures of P. emaculata and directly 

amplify and sequence barcodes.  

In the first approach, PCR products were subcloned into a TA-cloning plasmid. Single 

colonies containing the expected insert were re-amplified and sequenced.  This approach resulted 

in high quality, bidirectional contigs that permitted analysis of P. emaculata barcodes.  For 

example, alignment of twenty-five ITS contigs, covering part of the ITS region and LSU, from 

sample OSU09-1 (multispore DNA sample), resulted in a consensus of polymorphic sequences 

with 37 single nucleotide polymorphisms (SNPs) and 8 indels and showed 98.9% identity with 

the P. emaculata ITS sequence EU915294 available in GenBank (NCBI).  On the other hand, 

alignment of five contigs of bTub and five contigs of TEF1a from sample OSU09-1 produced 

consensus sequences with no polymorphisms among clones (i.e. monomorphic).   

The second approach was to propagate homogeneous cultures of rust fungus through 

repeated, axenic single-pustule transfers, which should approximate single-spore isolation.  

However, after amplifying and sequencing each barcode locus from several single pustule 

urediniospore collections from OSU09-1 and VT1-1 no bidirectionally high quality contigs at any 

of the loci could be obtained (data not shown).  Therefore, efforts were refocused on obtaining 

sequences from single spore WGAs. 

All barcode loci successfully amplified directly from each single spore WGA (25/25).  

However, upon sequencing, partial-contig coverage of loci was observed in some single-spore 
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barcoding products, again preventing assembly of bidirectionally high quality contigs.  This result 

implied some single spores were heterozygous at the barcode loci, with different alleles present in 

each haploid nucleus comprising its dikaryotic genome (i.e. N+N per urediniospore).  In these 

cases, PCR products were TA-cloned and sequenced as previously described. 

Sequence similarity of Puccinia emaculata loci to rust fungi in Genbank. 

All TA-cloned barcode loci were used to perform BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) searches of Genbank (NCBI).  ITS sequences from 

collected switchgrass rust urediniospores identified the unique rDNA sequence of P. emaculata 

(EU915294; KC515382) as the most similar (99% identity). No sequences of bTub and TEF1a 

from P. emaculata are currently available at NCBI.  However, BLAST searches using bTub 

sequences of P. emaculata identified rust fungi Uromyces inaequialtus (97%, host: Silene spp., 

EF570855.1), P. sorghi (96%, host Zea mays, HM452904.1), and U. polygoni-avicularis (95%, 

host: Polygonum spp., EF570857.1) as the most similar.  BLAST searches of TEF1a from P. 

emaculata identified U. polygoni-avicularis (93% ID, EU982006.1) as the most similar. 

Phylogenetic analyses and haplotype diversity and geographic distribution of three DNA 

barcodes from genomic DNA of urediniospores  

Phylogenetic analyses of individual barcode loci amplified, cloned, and sequenced from 

genomic DNA from bulked urediniospores from switchgrass rust specimens strongly supported 

the monophyletic status of P. emaculata. As sequences originated from multiple urediniospores, 

barcode loci could not be concatenated for a multilocus phylogeny.  A phylogenetic tree 

constructed from ITS sequences showed P. emaculata formed a well-supported (maximum 

likelihood bootstrap proportion [MLBP] 97%) monophyletic group among switchgrass rust 

collections and formed another well-supported (MLBP 88%) group with P. sorghi and P. 

andropogonis, rust fungi infecting C4 grass hosts and P. asparagi, which infects asparagus 
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(Figure. 3.2).  The group into which P. emaculata fell was only distantly related to the rust fungi 

infecting C3 grasses (e.g. cereals).  ML trees based on TEF1a and bTub sequences also strongly 

supported (MLBP 100%) the monophyly of P. emaculata (data not shown).  In the TEF1a 

phylogeny, P. emaculata formed a well-supported (MLBP 100%) group with U. polygoni-

avicularis. And, in the bTub phylogeny, P. emaculata formed a well-supported (MLBP 100%) 

group with U. inaequialtus, P. sorghi, and U. polygoni-avicularis.   

  

Figure 3.2. Simplified ITS-rDNA PHYML tree. General groupings of rust fungi by monocot host 

type are indicated.  Topology of P. emaculata isolates from Oklahoma (OK), Virginia (VA), and 

Tennessee (TN, EU915294) populations also are indicated. Node support with MLBP >70% are 

indicated by double lines.  

 

Haplotypes of the three barcode loci from P. emaculata were generated by SNAP Map 

(SNAP Workbench v 2.0), which collapsed sequences to informative positions, creating unique 

haplotypes.  Relationships among haplotypes and their states of origin were analyzed using ML.  

The number of haplotypes observed for each locus varied: 14 of ITS (Figure 3.3A), 24 of bTub 
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(Figure 3.3B), and 27 of TEF1a (Figure 3.3C). Haplotype diversity by locus and state is shown in 

Tables 3.3, 3.4, and 3.5.  The bTub and TEF1a haplotypes displayed mostly local distributions; 

while ITS haplotypes were distributed either in multiple states or locally. Furthermore, the TEF1a 

barcode showed the highest number of haplotypes followed by bTub and ITS, Fig 3.4.  

Table 3.3. Puccinia emaculata ITS haplotypes present in 6 different states, Oklahoma (OK), 

South Dakota (SD), Iowa (IA), Virginia (VA), Mississippi (MS), and Tennessee (TN, EU915294)  

Haplotype IA MS SD OK VA TN TOTALb 

H1 3 4 1 1 - - 9 

H2 - - - - 4 - 4 

H3 - - - 1 - - 1 

H4 - - - 1 - - 1 

H5 - - - - 1 - 1 

H6 - - - 3 - - 3 

H7 - - - - - 1 1 

H8 - - - 2 - - 2 

H9 - - - 1 - - 1 

H10 - - - 1 - - 1 

H11 1 2 - - - - 3 

H12 - 1 - - - - 1 

H13 4 3 3 - - - 10 

H14 2 - 1 - - - 3 

TOTALa 10 10 5 10 5 1 41 

a Total number of cloned sequences analyzed per state. 
b Total number of times a particular haplotype was observed 
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Table 3.4. Puccinia emaculata bTub haplotypes present in 5 different states, Oklahoma (OK), 

South Dakota (SD), Iowa (IA), Virginia (VA), and Mississippi (MS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Total number of cloned sequences analyzed per state. 
b Total number of times a particular haplotype was observed 

  

Haplotype IA MS SD OK VA TOTALb 

H1 1 - - - - 1 

H2 2 - - - - 2 

H3 - - - 1 - 1 

H4 - - 1 - - 1 

H5 - 1 - - - 1 

H6 - - - 1 - 1 

H7 1 - - - - 1 

H8 1 - - - - 1 

H9 - 1 - - - 1 

H10 - 1 - - - 1 

H11 -  - - 1 1 

H12 - 2 - - - 2 

H13 - 1 - - - 1 

H14 - 1 - - - 1 

H15 - 1 - - - 1 

H16 5 - - - - 5 

H17 - 2 - 2 - 4 

H18 - - - 1 - 1 

H19 - - - 5 - 5 

H20 - - - - 1 1 

H21 - - - - 1 1 

H22 - - 3 -  3 

H23 - - - - 2 2 

H24 - - 1 - - 1 

TOTALa 10 10 5 10 5 40 
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Table 3.5. Puccinia emaculata TEF1a haplotype diversity present in 5 different states, 

Oklahoma (OK), South Dakota (SD), Iowa (IA), Virginia (VA), and Mississippi (MS). 

Haplotypes IA MS SD OK VA TOTALb 

H1 1 - - - - 1 

H2 - 1 - - - 1 

H3 - 1 - - - 1 

H4 - - 1 - - 1 

H5 - - - - 1 1 

H6 - - - 1 - 1 

H7 - 1 - - - 1 

H8 - 2 - - - 2 

H9 1 - - - - 1 

H10 1 - 1 - - 2 

H11  - - 1 - 1 

H12 1 - - - - 1 

H13 - - - 1 1 2 

H14 - - - - 1 1 

H15 - - - - 2 2 

H16 - - - 1 - 1 

H17 - - - 1 - 1 

H18 - 1 - 1 - 2 

H19 - 1 - 1 - 2 

H20 2 - - - - 2 

H21 - - - 2 - 2 

H22 - - 1 - - 1 

H23 - 3 1 - - 4 

H24 1 - - - - 1 

H25 3 - - - - 3 

H26 - - 1 - - 1 

H27 - - - 1 - 1 

TOTALa 10 10 5 10 5 40 

 
a Total number of cloned sequences analyzed per state. 
b Total number of times a particular haplotype was observed 
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Figure 3.3. Maximum likelihood (ML) trees of haplotypes of three DNA barcode loci: (A) ITS (14 haplotypes), (B) bTub (24 haplotypes), (C) 

TEF1a (27 haplotypes), Oklahoma (OK, green), South Dakota (SD, yellow), Iowa (IA, blue), Virginia (VA, orange), and Mississippi (MS, pink). 

Each tree branch represents one haplotype and each color describes the five populations evaluated during this study.  
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Figure 3.4. Comparison of the haplotype diversity of three barcode loci among five different 

states: Oklahoma (OK), South Dakota (SD), Iowa (IA), Virginia (VA), and Mississippi (MS).  

 

In Figure 3.5, pie charts reflect individual haplotype diversity and proportions per state. 

This plot shows that haplotype diversity declines moving north and east along “Puccinia 

Pathway” (9; 13; 28; 30; 31). The high diversity of haplotypes present in the southern states may 

indicate genetic recombination is occurring, leading to new genotypes.  
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Figure 3.5. Haplotype distribution of Puccinia emaculata barcode loci (ITS, bTubulin, and TEFIa) in 5 states: Oklahoma (OK), South 

DaGFGkota (SD), Iowa (IA), Virginia (VA), and Mississippi (MS). Solid red ovals in states indicate general location of sampling sites.  Pie charts 

depict DNA barcode loci haplotype diversity (number of wedges) and proportions of haplotypes (size of wedges) per state. 
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Multilocus phylogenetic analyses of three DNA barcodes from single spore whole genome 

amplifications 

A total of 25 P. emaculata single urediniospore WGAs, five from each state (Table 3.1), 

were prepared and successfully used as templates for PCR amplification of three barcode loci 

(ITS, bTub, and TEF1a). PCRs and product sequencing were performed as previously described. 

Of a total of 25 single urediniospore WGAs attempted, 17 (68%) produced high quality 

bidirectional contigs for all three barcodes and were used to develop a concatenated multilocus 

alignment for phylogenetic tree construction. Sequences of the three barcode loci from the rust 

fungi uredinispores, P. andropogonis, P. sorghi, P. striiformis f. sp. tritici, and Puccinia triticina 

were included as outgroups.  As individual gene trees were more or less congruent with one 

another, the aligned loci were concatenated and a supermatrix containing 2352 nucleotide 

positions (bTub- 803, TEF1a - 698, and ITS-rDNA - 851) was created. The best ML tree had a 

log likelihood of −21357.02.  The resulting multilocus ML tree (Figure 3.6) strongly supported 

(MLBP/Bayesian Posterior Probability [BPP] 100/0.99) P. emaculata as a monophyletic species. 

Topology of the multilocus ML tree was congruent with the ML trees based on single loci (bTub 

[MLBP/BPP 100/0.99]), TEF1a [MLBP/BPP 100/0.99]), and ITS-rDNA [MLBP/BPP 100/1]), 

which provided strong support of P. emaculata as a monophyletic group.  P. emaculata grouped 

strongly (MLBP/BPP 100/1) with P. sorghi and P. andropogonis, which infect C4 grass hosts 

(e.g. maize and big bluestem, respectively). P. emaculata diverged as a distinct lineage separate 

from P. striiformis f. sp. tritici and P. triticina, which infect C3 grasses (e.g. cereals).   
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Figure 3.6. Multilocus ML tree (node supports presented MLBP/BPP; ≥75%/≥0.95) using 

concatenated ITS, bTub and TEF1a sequences from 17 single spores of P. emaculata (accession 

codes: Pe-ISU, Iowa; Pe-MISS, Mississippi; Pe-OK, Oklahoma; Pe-SD, South Dakota; Pe- VT, 

Virginia) and selected Puccinia spp. (P. andropogonis, PA; P. sorghi, PS; P. striiformis f.sp. 

tritici, PST; P. triticina, PT). 
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DISCUSSION 

Phylogeny 

Two of the approaches described in this study were helpful for obtaining high quality 

DNA sequences from P. emaculata. First, cloning of PCR products prior to sequencing greatly 

increased the quality of the sequences from multi-urediniospore samples. Second, single spore 

WGAs were useful for obtain single urediniospore multilocus genotypes, which allowed 

multilocus phylogenetic analysis of this biotrophic fungus. In all cases, the three loci, ITS, bTub, 

and TEF1a, were amplified without major difficulties and single bands were observed on gels. 

However, sequencing was challenging because of the apparent presence of heterogeneous 

templates in some of the samples.  This was likely due to heterozygous alleles at these loci, 

within the two haploid nuclei of the dikaryotic urediniospores, indicating these urediniospores 

were heterokaryons.  Either cloning amplicons prior to sequencing or single spore collection 

before WGA can be challenging and added significant time to these investigations. However, 

combining these approaches led to high quality bidirectional sequence contigs usable for 

multilocus phylogenetic and haplotype analyses. 

The phylogenetic analyses of urediniospores collected from rust-infected leaf samples 

from cultivated switchgrass in five states, confirmed the conclusion of Uppalapati et al. (35) that 

P. emaculata is a monophyletic species. However, significant genetic variability of barcode loci 

haplotypes exists among P. emaculata urediniospore populations. This genetic variability and 

heterokaryosis has been reported in other Puccinia species and was shown to be a mechanism for 

variation (25).  Also, P. emaculata is shown to be closely related to two species of rust fungi 

found on maize and big bluestem, two North American C4 grasses in the same subfamily 

(Panicoideae) as switchgrass. This close relationship may indicate rust species infecting different 

panicoid grasses coevolved with their hosts.  However, if phylogenies of the rust fungi are 

incongruent with the phylogenies of their hosts, then host jumps may be inferred.  Potential host 
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jump scenarios could include: 1) from a telial host to a new telial (alternative) host(s) via 

urediniospores, 2) from a telial host to a new aecial (alternate) host via basidiospores, or 3) from 

an aecial host to a new telial host via aeciospores (21; 23; 35).  These different scenarios have 

been described for many rust pathogens (1). For example, Szabo (2006) reported that speciation 

of the P. andropogonis complex occurred via jumps involving new telial and aecial hosts (33). 

Puccinia emaculata is not closely related to the rust fungi infecting the Eurasian C3 

grass, wheat.  Thus, recent ancestors of P. emaculata likely did not infect C3 grass hosts in the 

subfamily Pooideae.  Some heteroecious rust have been suggested as not following a continuous 

path of coevolution, such as the case of black stem rust (1; 6; 10; 11).  

The role of an aecial host in the phylogeny of P. emaculata remains unclear. Puccinia 

emaculata may subsist as a microcyclic rust fungus (4), as it does not need an aecial host for 

survival, as green switchgrass (or alternative Panicum spp.) may be available year-round in 

sub/tropical regions of North America.  Although sexual recombination would not possible 

without aecia and an aecial host, other mechanisms of variation may be involved.  Flowering 

spurge (Euphorbia corollata L.) is considered a likely aecial host. However, the life cycle and 

host range of P. emaculata must be studied further. 

Distribution and spread 

It was suggested that P. emaculata urediniospores were blown into Tennessee from gulf 

coast states making primary infection by aeciospores unnecessary (5).  Puccinia emaculata Schw. 

was first reported in Tennessee in 2008, when the pathogen was observed on upper leaf surfaces 

and to a lesser extent on the undersides of switchgrass leaves (cvs. Alamo, Blackwell, Grenville, 

Falcon, Kanlow, and Miami) (39). The aecial stage reportedly found on species of the family 

Euphorbiacae (spurge) has not been observed recently.  
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The high diversity of P. emaculata haplotypes observed in the southern U.S compared to 

northern and eastern U.S. suggests a possible southern center of diversity. The high haplotype 

variability of urediniospores in Mississippi suggests this state is near such a center.  Assuming the 

genetic diversity of a species is highest in its geographic origin (1), the high number of 

haplotypes present in Mississippi and Oklahoma suggests that the center of origin is located in the 

southern regions of North America, perhaps as far south as Mexico.  Sexual recombination of P. 

emaculata on an alternate host might be occurring in these southern regions. Puccinia emaculata 

urediniospores may be following the “Puccina Pathway”, described for P. graminis f.sp. tritici, 

P. triticina, and P. coronata, where spores are dispersed south-to-north from northern 

Mexico/Texas to the US/Canadian border (9; 28; 30; 31). For example, in stem rust, the first 

spores infecting wheat differ based on the region in which the wheat is grown. In warm climates, 

wheat is planted in late fall and harvested in early summer. The first spores to infect the young 

wheat plants in fall are urediniospores. These generally come from infected volunteer wheat 

plants. These plants can become infected by spores produced on late-maturing wheat plants still 

in the field. However, in regions with temperate climates wheat may be planted either in the fall 

(winter wheat) or the spring (spring wheat). Few winter wheat varieties can survive well through 

the severe winters of Minnesota, North Dakota, and Manitoba, so most of the wheat grown there 

is spring wheat. The first rust spores to infect spring wheat in temperature regions may be 

aeciospores from barberry, the alternate host, or urediniospores from infected wheat in distant 

regions. Therefore, two disease cycles for stem rust are possible (28; 31). This mixture of disease 

cycles could be occurring with P. emaculata on switchgrass and its possible alternate and 

alternative host(s). However, this is difficult to determine, since P. emaculata’s alternate host is 

still unclear. The probability of viable spores reaching a target and causing infection after a long 

distance dispersal is in general very low, but considering the large numbers of rust spores released 

each year, cumulative probabilities may favor successful infections (9; 28; 30; 31).  The back-
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and-forth movement between source and target has been shown to promote the rapid evolution of 

pathogenic forms of rust.  

This is the first haplotype diversity study of P. emaculata urediniospores around the 

United States. However, it is not a comprehensive study and larger numbers of samples from 

different states within the geographic range of the pathogen need to be examined to confirm these 

observations. 

Phylogeny 

The multilocus phylogeny shows that P. emaculata is a monophyletic species, in 

agreement with previous literature (35).  The ITS sequences obtained from urediniospore 

collections from six different states were nearly identical to the previously published sequences of 

P. emaculata (GenBank Accession No: EU915294; KC515382) and distinct from ITS sequences 

of other Puccinia species. This is the first study of bTub and TEF1a sequences from P.emaculata.  

At present, a limited number of ITS (n = 3,795), bTub (n = 302), and TEF1a (n = 164) sequences 

from rust fungi are available, making it difficult to generate multilocus phylogenetic analyses 

(35). Furthermore, this is the first multilocus phylogenetic analysis of P. emaculata.  However, 

future phylogenetic work would greatly benefit from additional urediniospore collections and 

sequences of bTub and TEF1a genes. Additionally, sequences of P. emaculata from alternate 

hosts would improve the understanding of the evolution and host range of this species. In order to 

understand the population dynamics and epidemiology of this rust fungus, future research must  

define the roles of asexual and sexual reproduction in the disease cycle of P. emaculata and their 

contribution to its genetic variability, host range, and pathogenicity.  
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CHAPTER IV 
 

 

IDENTIFICATION AND CHARACTERIZATION OF SIMPLE SEQUENCE REPEATS (SSRs) 

AND EXPRESSED SEQUENCE TAG (EST) - SSRs FOR Pucccina emaculata AND 

POTENTIAL USE IN OTHER SPECIES OF Puccinia 

 

ABSTRACT 

Puccinia emaculata causes switchgrass rust, an important disease reducing the biomass 

production and biofuel feedstock quality of switchgrass. Attempts to study the population biology 

of P. emaculata using ten microsatellite markers developed previously by Wadl et al., 2011 

resulted in no amplification (seven loci) or low levels of polymorphism (three loci). This study 

reports the development and characterization of 20 novel simple sequence repeat (SSR) 

microsatellite loci developed from a microsatellite-enriched library and expressed sequence tags 

(ESTs) from P. emaculata.  Microsatellites were characterized using single urediniospores of P. 

emaculata from rust samples collected in Iowa (IA), Mississippi (MS), Oklahoma (OK), South 

Dakota (SD) and Virginia (VA). Five urediniospores per sampled state were used (n = 25).  Most 

identified microsatellite markers were highly polymorphic (PIC average 0.7181), with a mean of 

8.3 alleles per locus (range 3 to 17) and a mean expected heterozygosity of 0.1390 (range 0.04 to  

0.16). Genetic diversity analysis was possible in single spore samples based on 18 polymorphic  

SSR loci.  Analyses showed moderate genetic variation between states (Fst = 0.123) and frequent
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gene flow (Nm > 1.858).  Evaluation of allelic patterns across P. emaculata populations displayed 

a high number of private alleles in VA, IA, SD and lower numbers in OK and MS, which 

indicated that a high level of migrant exchange and gene flow occurred from these latter two 

states. Additionally, of the 49 SSRs initially identified in P. emaculata, 18 were transferable to P. 

striiformis f. sp. tritici, 23 to P. triticina, 20 to P. sorghi and 31 to P. andropogonis. Thus, these 

markers should be useful for population structure assessment, QTL mapping, and ecological 

studies of P. emaculata and potentially other Puccinia species. 

INTRODUCTION 

Switchgrass (Panicum virgutum L.) is a perennial warm season prairie grass native to North 

America and is a promising biomass crop for renewable energy production (4). In 1991, 

switchgrass was chosen as a model species for the Bioenergy Feedstock Development Program 

by the United States Department of Energy (DOE) (21).  However, switchgrass production can be 

limited by a variety of diseases caused by fungi (14; 39). Rust, caused by Puccinia emaculata 

Schw., is one of the most common switchgrass diseases that can occur at high incidence levels, 

causing economic losses (25). Infection by this pathogen reduces biomass yield, seed production, 

and forage and feedstock quality of switchgrass (32). Puccinia emaculata has been reported in 

numerous states throughout the eastern United States, west into Texas and north into South 

Dakota (11; 40). Switchgrass in Arkansas and Oklahoma is frequently affected by P. emaculata 

(17; 41). In Arkansas, P. emaculata has been reported on “Alamo” switchgrass, where 25% to 

nearly 100% of switchgrass leaves were infected (25), and in Tennessee, high rust severity 

reduced ethanol yield up to 60% (25).   

Puccinia emaculata is an obligate biotrophic parasite and is likely heteroecious, requiring two 

different hosts to complete its life cycle.  Puccinia emaculata reproduces asexually on 

switchgrass plants, repetitively infecting and forming urediniospores every 7-10 days throughout 
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the growing season and forming resting teliospores when leaves senesce in late summer and fall. 

Presumably teliospores germinate in the spring, undergo meiosis, and form basidiospores that 

should infect the alternate host (29). Sexual reproduction in P. emaculata has not been well 

documented and presumably occurs on Euphorbia species; however, this has not been confirmed 

(1; 11). Additional studies, have reported variation in virulence among P. emaculata isolates from 

ornamental switchgrass cultivars, which appeared to be more susceptible than agronomic 

switchgrass cultivars (19). Potential race specificities and virulence determinants of P. emaculata 

are required for accurate analysis of host-pathogen interactions and detailed information on 

intraspecific pathogen diversity in different states is required for appropriately deploying resistant 

varieties (41). Understanding the genetic diversity of P. emaculata will be useful to breeders for 

the development of durable resistance in switchgrass cultivars.  

Information on the genetic variation within P. emaculata is limited. Molecular markers have 

been widely used to map important resistance genes in crops and to study the population genetics 

of pathogens. One type of molecular marker used in population biology studies are simple 

sequence repeats (SSRs) or microsatellites. Microsatellites are regions of DNA consisting of 

short, tandemly repeated units (1-6 bp in length) found within the coding and noncoding regions 

of all eukaryotic organisms (28). Multiple SSRs can be used to characterize individuals in a 

population, creating a genetic profile or “fingerprint”. Two approaches can be used to generate 

SSRs. In the first approach, SSR markers are identified and isolated from a repeat-enriched DNA 

library, while in the second approach SSRs are identified among expressed sequence tags (ESTs) 

generated in gene expression studies. To generate ESTs, mRNA from the organism of interest is 

isolated and used to synthesize cDNA by reverse transcription.  This cDNA is then cloned into 

plasmid libraries and sequenced individually (24; 42). Or, the cDNA is directly sequenced using 

next generation sequencers in a massively parallel process referred to as RNA-Seq (13).  Both 

approaches result in ESTs, though the latter approach produces many orders of magnitude more. 
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Microsatellites were selected for this P. emaculata genetic study, because of many beneficial 

characteristics. First, microsatellites reveal genetic variation and identify genes responsible for a 

special characteristic (e.g. pathogenicity). Second, microsatellites are conserved within species 

and between closely related species, allowing the use of SSR primer sets across species. Third, 

microsatellites analyses are relatively simple and easier to score than conventional genetic 

markers (e.g. RFLP [restriction fragment length polymorphism], AFLP [amplified fragment 

length polymorphism]). SSR band patterns are easy to detect, reproducible, and easy to compare 

accurately across gels (27). Also, Puccinia emaculata urediniospores and hyphae produced on 

switchgrass are dikaryotic, and codominant markers like SSRs are the most informative for the 

study of genetic diversity in such organisms (i.e. dikaryotic or diploid) (41). Many microsatellite 

markers have been described for rust fungi (2; 5-8; 10; 35; 36), but transferability to related rust 

fungi is low.  

Wadl et al., 2011 reported ten microsatellite loci for P. emaculata (41). However, only three 

of the 10 microsatellite loci showed amplification and correct band sizes in the P. emaculata 

collections used in this study. The remaining primers did not produce amplicon or resulted in 

multiple bands.  Thus, more molecular markers are required to study P. emaculata populations. 

The objectives of this study were to (i) develop and characterize new microsatellites for P. 

emaculata, (ii) evaluate the microsatellites in P. emaculata populations, and (iii) assess the 

transferability of microsatellite primers to other Puccinia species.  

MATERIALS AND METHODS 

Fungi material 

Puccinia emaculata urediniospores were vacuum collected from symptomatic switchgrass 

leaves collected from fields in Iowa (IA), Mississippi (MS), South Dakota (SD) and Virginia 

(VA) in 2011 (Table 4.1).  Collected urediniospores were dried over silica gel for 2 days at room 
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temperature and then flash frozen in liquid nitrogen for long term storage at -80°C. Oklahoma 

(OK) urediniospores were collected from field grown switchgrass leaves in 2009 and inoculated 

onto switchgrass plants (cvs. Kanlow, Blackwell, and Cave in Rock) by shaking sporulating 

leaves onto non-infected leaves, and inoculated plants were incubated in dew chamber at 25°C for 

16 to 24 hours.  A continuous uredinial culture of this Oklahoma rust population (OSU09-1) was 

maintained on switchgrass plants (same 3 cultivars mentioned above) in a growth chamber at 

27°C, with a 12-h photoperiod.  Occasionally, plants were re-inoculated with urediniospores 

shaken from sporulating leaves, incubated in a dew chamber and returned to the growth chamber 

to increase urediniospore loads. OSU09-1 urediniospores (OK) were regularly harvested since 

2009, and stored long-term at -80°C.  In this study Oklahoma urediniospores harvested in 2011 

were used.  

Genetic material 

Genomic DNA was extracted according to Weising et al. (43), with some modifications.  

About 10 mg of urediniospores from each population were transferred into 2 mL screwcap tubes 

containing three 3 mm glass beads and ~0.2 ml 0.5 mm zirconium beads (BioSpec Products, Inc., 

Bartlesville, OK) and 1 mL of extraction buffer [140 mM Sorbitol, 220 mMTris-HCl, pH8.0, 22 

mM EDTA, 800 mM NaCl, 0.8%  cetyltrimethylammonium bromide (CTAB), and 1% Sodium 

Dodecyl Sulfate (SDS)] was added. Samples were homogenized in a bead beater (FastPrep®-24 

Instrument, MP Biomedicals, Santa Ana, CA) for 20 sec at 4 m/s, three times. Then, 0.5 mL of 

chloroform: isoamyl alcohol (24:1, v/v) was added, and incubated at 58°C for 30 min. Phases 

were separated by centrifugation at 4°C for 20 min at 12,000 x g. The upper aqueous phase was 

transferred to a new tube, 700 µL isopropanol added, tubes gently mixed and placed at −20°C for 

30 min. Precipitated DNA was pelleted by centrifugation, supernatant discarded, and the pellet 

washed with 70% ethanol.  The pellet was air dried for 20 min and then suspended in 100 µL of 

TE (10mM Tris-HCl, pH 7.4; 1mM EDTA) (43).  The quality of DNA was checked on TAE-1% 
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agarose gels and DNA concentrations were estimated using a NanoDrop ® 1000 (Thermo Fisher 

Scientific, Waltham, MA, USA) spectrophotometer. 

Table 4.1. Puccinia emaculata accessions used in this study, switchgrass cultivar, origin and 

collection year. 

 
a maintained in growth chamber as urediniospores on cvs. Kanlow, Blackwell and Cave in Rock 

until 2011 when it was collected for this study. 

 

Total RNA was extracted from four source materials, nongerminated and germinated OK and 

VA urediniospores, using a modified protocol of the RNeasy Plant Mini Kit (Qiagen Inc., 

Valencia, CA). Approximately 30 mg urediniospores were flash frozen with liquid nitrogen and a 

subsample of urediniospores were germinated after exposure to 0.01 ppm nonanol solution. 

Separately samples were placed in  2 mL microcentrifuge tubes containing beads (as described 

above) and used immediately, or stored at -80°C, until used for RNA isolation.,Immediately after 

Puccinia emaculata 

collections 
Code 

Switchgrass 

cv. or host 
Origin 

Collection 

year 

Pe-Iowa ISU1 Cave in Rock 
Woodruff Farm, Iowa State 

University, Story Co., IA  
2011 

Pe-Mississippi MISS1 Alamo 

H.H. Leveck Animal 

Research Center,  

Mississippi State 

University, Starkville, MS 

2011 

Pe-South Dakota SDSU Dacotah 

SDSU Experiment Station 

Farm (Felt Farm), 

Brookings, SD 

2011 

Pe-Oklahoma OSU09-1 
Lowland 

genotype 

Oklahoma State University 

Agronomy Farm, 

Stillwater, OK 

2009a 

Pe-Virginia VT1-1 
Alamo × 

Dacotah 

Kentland Farm, Virginia 

Tech, Blacksburg, VA 
2011 
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liquid nitrogen was allowed to evaporate, 450 µL RLC buffer (guanidine hydrochloride) was 

added to urediniospores.  β-mercaptoethanol was not added in RLC buffer.  Then, samples were 

incubated for 5 min at 65°C, followed by bead beating three times at 4 m/s for 20 sec, and then 

incubated on ice for 2 min.  The lysate was transferred to a QIAshredder spin column and a 0.5 

volume of 96% (v/v) ethanol was added to the flow-through.  Next, 650 µL of the ethanol-flow-

through solution was transferred to a RNeasy spin column and centrifuged at 8,000 x g for 15 sec 

at 4°C. The flow-through was discarded and 700 µL Buffer RW1 was added to the column. The 

flow-through was discarded and the column was washed twice with 500 µL Buffer RPE, and 

centrifuged at 8,000 x g for 15 sec at 4°C. RNA was eluted with 50 µL of RNase-free water and 

stored at -80°C (15).  

Construction of genomic DNA libraries and isolation of microsatellites 

Genomic DNA libraries highly enriched for SSR loci were constructed based on the biotin-

labeled Dynabead enrichment strategy described by Glenn and Schable (13).  Briefly, 20 µL OK 

(OSU09-1) urediniospore genomic DNA (100 ng/ µL) was digested with 10 U of RsaI (New 

England Biolabs, Ipswich, MA), and separated on a 2% agarose-TAE gel. DNA fragments 

ranging from 300 to 1000 bp were gel purified using GeneJET gel extraction kit (Thermo 

Scientific,Waltham, MA, USA) and ligated to linkers SuperSNX24 F+4PR. To perform 

Dynabead enrichment for the microsatellite-containing DNA fragments, DNA was incubated with 

each of the following 3’-biotinylated microsatellite probes (10 µL): (AG)12, (TG)12, (AAC)6 

(AAG)8, (AAT)12, (ACT)12, and (ATC)12, (mix of oligos at 1 µM each).  Dynabeads (Invitrogen, 

Carlsbad, CA) were washed twice with TE (10 mM Tris pH 8.2, 2 mM EDTA) and twice with 1× 

Hyb solution (6× SSC, 0.1% SDS).  Digested genomic DNA was incubated with the washed 

Dynabeads in Hyb solution at room temperature for 1 h. Beads were captured using a Dynal 

magnetic particle concentrator (MPC®-S, Invitrogen, Carlsbad, CA) and rinsed four time with 

washing solution (2x SSC, 0.1% SDS), followed by two more washes (1x SSC, 0.1% SDS), with 



65 
 

each of these solutions cooled to 5 to 10°C below the Tm for the oligo mix.   The enriched 

fragments were denatured from beads by incubating beads in TLE (10 mM Tris, 0.1 mM EDTA, 

pH 8.0) at 95°C for 10 min. Enriched fragments were PCR amplified using the primers to the 

SuperSNX24 linkers and products ligated into cloning vector pCR2.1- TOPO, as described by the 

manufacturer (Invitrogen, Carlsbad, CA).  Clones were transformed into E. coli cells (competent 

TOP10 cells, Invitrogen) and transformants selected on LB agar supplemented with ampicillin 

(50 µg/mL), X-gal (50 µg/mL) and incubated overnight at 37°C.  Positive colonies (white) were 

each hand-picked into 50 µL water and boiled for 10 min at 90°C.  Plasmid inserts were screened 

by PCR with M13 primers (M13-F: GTAAAACGACGGCCAG, M13-R: 

CAGGAAACAGCTATGAC) before sequencing.  PCR products were purified using ExoSAP-

IT® reagent (USB Corporations, Cleveland, OH, USA) and submitted for automated sequencing 

using the M13 primers at the Recombinant DNA/Protein Resource Facility (Oklahoma State 

University, Stillwater, OK). Sequences were assembled using Geneious 6.0.1.R (Biomatters, 

Aukcland, NZ) and contigs used later for primer design. 

Construction and sequencing of cDNA library for EST-SSRs 

Purification of mRNA and cDNA synthesis were performed using TruSeq RNA Sample 

Preparation Kit v2 (Illumina Inc., San Diego, CA).  Four hundred ng total RNA was diluted with 

nuclease-free water to a final volume of 50 µL.  Fifty microliters of RNA Purification (oligoT) 

beads were added to the total RNA and the entire volume was pipetted up and down gently 6 

times. RNA was denatured at 65°C for 5 min, to facilitate binding of the poly-A RNA to the 

beads, and the suspension placed on the magnetic stand at room temperature for 5 min to allow 

RNA to bind to the beads. Without disturbing the beads, the supernatant was removed and 

discarded and the beads were washed with 200 µL Bead Washing Buffer by gently pipetting the 

entire volume up and down 6 times. Then the solution was placed again on the magnetic stand at 

room temperature for 5 min and the supernatant was removed and discarded, without disturbing 
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the beads. Then 50 µL elution buffer was added to the beads, which were suspended by gently 

pipetting up-and-down 6 times. This suspension was incubated at 80°C for 2 min to elute mRNA 

from the beads. Fifty microliters of Bead Binding Buffer was added to the solution and the 

solution was gently mixed, incubated at 8°C  for 5 min and then placed on the magnetic stand at 

room temperature for 5 min. The supernatant was removed and discarded and 200 μL Bead 

Washing Buffer were added to the beads, mixed gently, incubated at 4°C and the suspension once 

again placed on the magnetic stand at room temperature for 5 min.  The supernatant was removed 

and discarded and 19.5 μL of Elute, Prime, and Fragment Mix (1st cDNA synthesis reaction 

buffer) was added to clean beads, gently mixed, and incubated at 94°C for 8 minutes. First strand 

cDNA was prepared at Oklahoma State University using a TruSeq RNA Sample Preparation Kit 

v2 (Illumina Inc., San Diego, CA) following manufacturer’s instructions. The resulting single 

stranded cDNAs were shipped to the Center for Genome Research and Biocomputing (Oregon 

State University, Corvalis, OR) on dry ice where second strand synthesis of the cDNA was 

performed and the cDNA libraries were sequenced using a Illumina HiSeqTM 2000.  Sequences 

were filtered by source, assembled and potential SSRs identified. 

EST-SSR sequences of less than 100 bp were discarded and sequences above that size were 

aligned using Geneious 6.0.1.R, to determine which EST-SSRs occurred in both OK and VA 

urediniospores. Obtained contigs also were screened for similarities against GenBank’s database. 

BLASTX (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Primer design  

SSR primers (from SSR-enriched DNA library n = 49 and EST-SSRs n = 33) were designed 

from regions flanking at least six di, tri, tetra and pentanucleotide repeats using the Websat 

software (http://wsmartins.net/websat) (22) and  Primer 3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3.cgi) (31).  Primer design considerations included: an amplicon size from 100 
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to 350 bp, a Tm between 50°C to 65°C, GC content between 40 and 60%, and primer sizes 

between 18 and 21 bp (30; 34).  Microsatellite primers designed from sequences of clones from 

the repeat-enriched genomic library were named with a three-letter code “OPE” followed by a 

number (Table 4.2). OPE is an abbreviation for OSU Puccinia emaculata.  Primers developed 

from EST-SSRs were abbreviated “OEPE” for OSU EST P. emaculata, followed by a number 

(Table 4.3).   

Table 4.2. Loci, primer sequences, repeat motifs, (Tm), and fragment sizes of Puccinia 

emaculata SSR loci (n= 49) developed from repeat enriched DNA libraries. 

 

Locus Repeat Motif   Primer sequences (5' to 3')  Tm 
Size 

(bp) 

OPE1 (CATC)5 

F: ATCCATCCATCCATCCACTC 
60 183 

R: CCAGGGCAGTATTTGCTT 

OPE2 (GA)10 

F: TGATGGGGAAACAGTGAAAG 
59 126 

R: AAGGCAAAGACGAAAGCAAA 

OPE3 (CA)22 

F: CAAGCAATAAAATGGGGACA 
58 157 

R: TGTGTGTGTGTGAGGGAGAG 

OPE4 (AT)4 

F: CCTTCTTTCCTTTCTTTGGA 
56 273 

R: AGGCTAAGTTGAGTATGAGG 

OPE5 (TAG)10 

F: AAAGGTTGAGTGGTAGTGGT 
54 174 

R: GCTAATGATGACGAAGTTGT 

OPE6 (TAC)9 

F: TGAAGAGGAAGGTGTTGCTG 
59 138 

R: GAGGAGAAGAACGATGAGGA 

OPE8 (TG)12 

F: ATCACCTCTGTTTCCGTCCA 
61 348 

R: CACACACACACACACACACA 

OPE10 (TAG)5 

F: CCTCAATCCAACTTTTCCA 
56 296 

R: ATGGTGGGTGATGATGTT 

OPE11 (GT)8 

F: GGCGTGGATGAAATGTGT 
58 154 

R: GAGAAGAGACCCTCAGAAGA 

OPE12 (GAT)7 

F: GCTTTCTTTGAGGGGGCTA 
59 178 

R: GCTACAGGAGGGGTTAGTGG 

OPE13 (TC)8 

F: CGAACGCCCTACATCTTATG 
58 233 

R: GGGAAAATCTGGACACCACT 

OPE14 (TTC)15 

F: GTGGTGGGTCTTGTATTC 
51 129 

R: CAGTATCCATCCCTTTCCTG 

OPE15 (AC)7 

F: GATTCTCTTGCTCGTCAT 
51 107 

R: GAGTGTGTGTGTGTGTTA 

OPE17 (TTC)5 F: GCGGCAAGAACAGTAGATGT 50 205 
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Locus Repeat Motif   Primer sequences (5' to 3')  Tm 
Size 

(bp) 

R: TGATGACTCCGATGAGGATG 

OPE18 (TGA)4 

F: CTTGTGGGTCTCGTTGTGTC 
55 101 

R: TCCTCATTCGTGCCTTTC 

OPE19 (TAC)8 

F: GATGGCAGATTACAAGACAGAG 
57 228 

R: CAACTTCGTCAAAAACAGTCC 

OPE21 (TAC)10 

F: TGGCTGATTACAAGACAGAGTT 
57 390 

R: GGTTGAGTGGTAGTGGTAGAGA 

OPE28 (TG)10 

F: CCCGAAATGACACATCAAAA 
59 328 

R: ACACACACACACACACAGCAC 

OPE29 (TG)12 

F: CGTAGAAAAATCATAAAAATGC 
54 208 

R: CACACACACACACACACACA 

OPE30 (TG)12 

F: TGTTTCTAGGGGCTTTGCTG 
60 192 

R: ACTGGCCATAAGCCCATATT 

OPE32 (GAT)12 

F: ACAAGCCATCCAAGGGAGT 
60 171 

R: CAAGTTCATCGGCATCGTT 

OPE34 (TCT)13 

F: TTTGTGGTGGGTCTTGTATTC 
57 153 

R: TGTCATTCCTGTTTTTCGTG 

OPE44 (ACT)4 

F: GACTGTTGTTGACGAAGTTGTTG 
60 250 

R: ATGTAAAACGAGGCCAGTGAAT 

OPE45 (TGA)6 

F: GAAAAGAAAAGAAGAGTCGCTG 
58 375 

R: AGTTTGTGAGTGCTTGCGT 

OPE46 (TAG)6 

F: GCAGTAAATGACCAGCAAAA 
56 396 

R: AGACCCAACACAAACTCCTAAT 

OPE47 (TATCA)2 
F: ACTCATCTACTCATCACGCATC 

57 349 
R: CATACCACAGGATTCTATCACG 

OPE48 
(AGA)4 

F: TATGGTAGCCCAGAGAACGA 
58 339 

R: GCCTTTCGGGATGAGGAT 

OPE49 
(TAC)7 

F: GATGGCAGATTACAAGACAGAG 
57 245 

R: CAACTTCGTCCAAAACAGTCC 

OPE50 
(TA)8 

F: GAGAGAGTAGACACGGACTTCA 
56 399 

R: TACCTTGAGACTTCCATACCAG 

OPE51 (TG)54 

F: GCTCCACAAGATAAATGTGTGC 
60 292 

R: CCTTGAGACTTCCATACCAGGA 

OPE52 (AG)10 

F: TACATCACAAATCCTAAGACCC 
56 361 

R: CACTATCCTCATGCTTCAGTTT 

OPE53 (AC)5 

F: CCAATTTAGGGAATCTGAACTC 
57 312 

R: TTCATCACTATCCTCATGCTTC 

OPE53b (TCA)5 

F: CACACCACACCTCTCATTACTC 
57 285 

R: GTGATGCCTCTGTCTTCTGTAA 

OPE54 (TCT)7 

F: GCAGGTTGTTATGAAGCTAATC 
56 164 

R: GTGTGGTGTCCTCTCAATCTAT 
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Locus Repeat Motif   Primer sequences (5' to 3')  Tm 
Size 

(bp) 

OPE55 (AC)5 

F: ACACACACAGACACACACACAT 
57 232 

R: AGCATGTTCCAGTCCTTAATCT 

OPE56 (TGA)7 

F:  CTAGCAGAATCACATCAACAAC 
55 383 

R: ATGGCAGATTACAAGACAGAGT 

OPE57 (TAC)7 

F: GCCCTTAAATCACTTGTAACCT 
57 124 

R: CCTTGTTTGAGTCGTAGTTAGC 

OPE58 (ATT)7 

F: AGATGGTATGCCTTGAGGTAG 
56 266 

R: TTAGTTTTCCTCTCACGAGTGT 

OPE59 (TAC)7 

F: ATGGCAGATTACAAGACAGAGT 
56 378 

R: CTAGCAGAATCACATCAACAAC 

OPE60 (AC)44 

F: TTGCTTAGAGGAGGCTGAAA 
58 346 

R: TTTTTGGTTAGCGGAGAAGG 

OPE61 (TG)25 

F: GTTTTGAGGAGGGAGGGAGT 
60 246 

R: GGCTGTGGTGTAGTGAGAGAA 

OPE62 (TCT)3 

F: TCAGCGAGATTGCCGTTAC 
60 236 

R: TGAAGATGGCTCAGAAAAGG 

OPE62' (ATTT)3 

F: TCGTCTTCTTCTGTGCATGTCT 
60 345 

R: TGATGACTCGTTGGCTCATTAC 

OPE65 (ATAAT)2 

F: GGTGATGATGAGGAGTAGGAGT 
57 355 

R: CGCATTAAACTGACTAACTTGC 

OPE66 (TATTA)2 

F: GCTCTGAATTAACCCCTCACTA 
58 342 

R: CGAATGAAGAAAAGACAACTCC 

OPE67 (TCA)9 

F: GTCCAAACCCTTGCTTGTTC 
60 399 

R: GGCTCCATCACTCTTCTCTACA 

OPE68 (AG)35 

F: ACGAGGATAAACTACTGCCAT 
56 397 

R: ACTGGCCGACTATGTTACG 

OPE69 (TAC)7 

F: ATAAGTAGCCCCTATCAGACCT 
55 439 

R: GATTACGCCAACGCTCAGA 

OPE70 (TCA)8 

F: GCAACTCCCTTGGATGGAT 
60 236 

R: CTGCTTGGTTCATTTTACCC 
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Table 4.3. Loci, primer sequences, repeat motifs, melting temp (Tm), and fragment sizes of 

Puccinia emaculata SSR loci (n= 33) developed from RNA-Seq expressed sequence tags (ESTs). 

Locus Repeat Motif   Primer sequences 5' to 3' Tm 
Size 

(bp) 

OEPE2 (ATTCA)8 

F: CGTGAGTGAAAGATAACGAGTTG 
60 195 

R: TTTCTTACTTCGCCTATTTCGG 

OEPE6a (AAACT)12 

F: GTAATAAGAGCCAACACGGAGG 
60 381 

R: TAGGATTAGGCATGGCGTACTT 

OEPE6b (TG)7 

F: AACTTTTCCTGCACCCTTTT 
59 244 

R: CTGTGATTAGCCCTTGAAACAC 

OEPE7a (GAG)6 

F: GGACGATGGAATACCGCTC 
60 383 

R: GAGAGAGAGTCAAGAGCCTTCG 

OEPE8b (GTT)7 

F: GGTGGTTTGGGCATTATCAG 
60 

319 

R: ACTCACTACAGCACTCACTCGG  

OEPE26b (TTA)6 

F: CTATAAATCGTCCAAAGCAGGG 
60 

162 

R: GCAGCGAAACTATGATGTGTGT  

OEPE28 (GGT)6 
F: AACGTCTCCAAAAGCTGATCTC 

60 278 
R: GATTGCAGTAAGACAAGGGGAC 

OEPE37 (CAG)7 
F: CAAGCTCATTCTTCCAGTTTCA 

59 299 
R: CTTTGCTGTGGTACTTGCTGAT 

OEPE47 (AG)7 
F: AAAAGTACAGGAAATCGCAAGC 

60 167 
R: CCTAGTATGAGCACCAGCTTCA 

OEPE48 (TA)8 
F: ATCACAACCCAACAGTAAATCG 

59 226 
R: AGACCTTCCATTTTCCCTCC 

OEPE55 (GGT)6 
F: GTGGTGGTGTTGATGATGATG 

59 139 
R: CGACAAGGAGATATGGAGGTTT 

OEPE58 (CTG)7 
F: GAACCAAGTTAGAGGGGAGGTT 

60 337 
R: TACGTCTTCTTTGATCCCATGA 

OEPE66 (ATACC)10 
F: TTAGACCTTTACACACCTACCCC 

60 396 
R: GAGATGTTCTGCGAGGTACAGA 

OEPE67 (AT)7 
F: GCGTATGGTTTTGTAGCTTGTG 

60 245 
R: TTTCGCTTCTCTCTTCGACTCT 

OEPE68 (GTT)8 
F: TGGAGAGATAGACCCAATAGCC 

60 313 
R: CAACTCATCAACACACAACCCT 

OEPE71 (AG)8 
F: AGCGTGACAAGTGAACAAGAGA 

60 345 
R: TACAACCCGAAACTCCTCAACT 

OEPE78 (GGA)6 
F: TTCCTATTGAAGCTAGTGGGGA 

60 176 
R: TACTACTACGCACAGACACCGC 

OEPE79 (ATG)6 
F: TGGACAAAGGGTGTGTAGAATG 

60 125 
R: TTTACCATCCCAACCGATTAAG 

OEPE92 (GA)18 
F: TTGTTAAAGGATACGAGCCGAT 

60 167 
R: ACCAAACCAGATTGAGCAGATT 

OEPE103 (CAA)7 F: AGGCAACCCAACAGACAGTAGT 59 173 
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Locus Repeat Motif   Primer sequences 5' to 3' Tm 
Size 

(bp) 

R: TTGATGTACGAAGCACCATGTA 

OEPE104 (CCT)6 
F: GCAGAGACTGAACATCCTGTGA 

60 270 
R: AAACAACTCTTCCAGCCAAAAC 

OEPE106 (AC)7 
F: TCCTACACAAACAGGAAGACGA 

61 308 
R: GATGATGAGCGTCGATGAAAC 

OEPE109 (GAA)8 
F: TAGCATTACGGAAACTGAAGCA 

60 283 
R: GTGAAGTGGTTGGATTTGATGA 

OEPE111 (GCT)6 
F: TATGATTGAGGAGATGCTGGTG 

59 346 
R: GAGACGGACTTCCAGGTGAT 

OEPE115 (ATC)8 
F: GCCAGAATACTACCATCAACCC 

60 201 
R: AGGTTAAGCCGAATGTGGTG 

OEPE118 (GAA)6 
F: GATCCTCCACAACAAACCAGAC 

60 283 
R: GTGCAGAACTTTCAGGGGATAA 

OEPE128 (GAG)7 
F: TTTGCGACGACCGAGGGG 

67 128 
R: TCACCAACCGCTGCCCTATCTT 

OEPE141 (TGA)6 
F: ATCGGCTTCACATCTGGTATCT 

61 275 
R: ATCAGGTTCTGCGTCTTCTGTC 

OEPE156 (GA)7 
F: GAAAGAGCAACCAAGTGAAACC 

60 271 
R: CCTCATCAACATCCACAACAAC 

OEPE159 (CTT)7 
F: GTTGCGGCTGCTTCTTCTT 

60 106 
R: CAAGATCCAACGAACTCAAGG 

OEPE160 (TG)7 
F: TACCGAGAGCTTTTGAGAGACC 

60 126 
R: TTTCCACCAAGAACCACTACAA 

OEPE161 (GA)10 
F: ATCAATGTAAGCACCAAAGCAG 

60 123 
R: CAGGAACCATACAAGCCTAACC 

OEPE162 (CT)8 
F: CTCCTCTCGCTTCCCAGTC 

60 263 
R: TTACCTACATCTTCATCCGCCT 

 

Microsatellite validation 

Microsatellite primers were pre-screened using genomic DNA isolated from bulked P. 

emaculata urediniospores collected in five different states: Iowa, Mississippi, Oklahoma, South 

Dakota, and Virginia (Table 4.1).  PCR was performed in a total volume of 20 µL with 2 µL of 

DNA (30 ng), 10 µL of GoTaqGreen Master Mix (Promega, Madison, WI), and 1 µL of each 

forward and reverse primer (5 µM) and 6 µL of sterile nuclease-free water. The following PCR 

program was used: 5 min initial denaturation at 94°C, followed by 35 cycles of 40 s at 94°C, 40 s 

annealing at the optimal Tm for each primer (Tables 4.2 and 4.3), and 30 s at 72°C. PCR was 
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completed with a 10 min final extension at 72°C.  Allele amplicons were resolved and visualized 

by electrophoresis on a 2.5% agarose-TAE gel. 

Microsatellites that amplified DNA fragments and were informative (variable fragment sizes) 

for urediniospore populations from the five states were tested on whole genome amplifications 

(WGAs) from 25 single urediniospores of P. emaculata isolated from the same five state 

populations, IA, MS, SD, VA and OK (5 singles spores/state). WGAs were prepared from single 

urediniospores as described previously (see Chapter 3). Briefly, single germinated urediniospores 

were isolated using a modified cylinder loop-needle method adapted from Hildebrand (1938) 

(16). WGAs were carried out using an Illustra GenomiPhi V2 DNA Amplification Kit (GE 

Healthcare Life Sciences, Buckinghamshire, UK) following the manufacturer’s instructions with 

minor modifications (see Chapter 3).  PCR conditions for amplifying microsatellites were the 

same as described above. Allele sizing was determined using a 2100 Bioanalyzer with a DNA 

1000 kit (Agilent Technologies, Inc., Santa Clara, CA) located at Recombinant DNA/Protein 

Resource Facility (OSU). 

Cross-species amplification of SSR markers 

Cross-transferability of microsatellites (16 from SSR-enriched DNA library and 33 from 

EST-SSRs) was examined using genomic DNA from four multi-urediniospore samples of 

Puccinia spp. (Table 4.4): P. andropogonis (PA-01), P. sorghi (PS-01), P. striiformis f.sp. tritici 

(PST-01), and P. triticina (PT-01). The identifications of these Puccinia species were previously 

confirmed using sequences of the ITS region (see Chapter 3). Microsatellite PCR conditions were 

identical to those described for P. emaculata.  Alleles were visualized after electrophoresis on 

2.5% agarose-TAE gels. 
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Table 4.4. Isolates of four Puccinia species used to test cross transferability of microsatellites. 

Isolate Code Host Origin 
Collection 

year 

Puccinia striiformis f.sp. 

tritici 
PST-01 Triticum aestivum Stillwater, OK  2013 

Puccinia triticina PT-01 T. aestivum Stillwater, OK 2013 

Puccinia andropogonis PA-01 
Andropogon 

gerardii 

Wilburton, 

Oklahoma 
2013 

Puccinia sorghi PS-01 Zea mays 
Eastern 

Oklahoma 
2013 

 

Data Analysis 

Estimation of polymorphism informativeness, measured as polymorphism information 

content (PIC), and gene diversity of individual SSR loci were determined using PowerMarker 

version 3.25 (20). Additionally, individual population distribution and genetic analyses were 

performed using GenAlex 6.5 (26). Genetic differentiation (difference in allele frequencies 

among populations) within P. emaculata single spores was analyzed using FST statistic estimates 

(FST value of 0 to 0.05 = low, 0.05 to 0.15 = moderate, 0.15 to 0.25 = high, >0.25 = very high 

genetic differentiation) (44). Gene flow between populations was assessed by estimation of the 

number of migrants per generation (Nm  < 0.5, no gene flow, populations isolated; 0.5 > Nm > 1, 

gene flow is weak; Nm > 1, frequent gene flow among populations) (44). Genotype clustering 

based on genetic distances, illustrated by principal coordinate analysis (PCoA), allelic patterns 

across P. emaculata populations, and private alleles were estimated using GenAlex 6.5. 

RESULTS 

Isolation of SSR loci from enriched libraries 

Transformation of E. coli was successful and of the 630 positive colonies,150 colonies were 

selected for PCR amplification, of which 60 were sequenced. From the 60 sequences obtained, 56 
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transformants contained unique sequences. A total of 54 sequences contained microsatellites, of 

which, 49 contained a number of repeat motifs ranging from 5 to 12.  

Assembly and characterization of P. emaculata ESTs 

A total of 704 SSR containing sequences were obtained from RNA-seq of cDNA libraries 

from OK and VA urediniospores (germinated and nongerminated). These sequences assembled 

into 163 contigs. Similarity searches (BLASTx) returned hits with significant identities. Most of 

the P. emaculata contigs showed hits to hypothetical proteins in the genomes of Puccinia 

graminis (>78% identity) and P. horiana (>80% identity). From these 163 contigs, 33 SSRs were 

found to occur in both OK and VA and were used to design microsatellite primers.  

Microsatellite validation 

SSR primers were designed only for the clones and ESTs carrying more than 6 dinucleotide 

or trinucleotide repeats. A total of 82 SSR primer pairs (49 from genomic library and 33 from 

EST- SSR) were initially developed and screened with P. emaculata genomic DNA from 

urediniospores collected in IA, MS, OK, SD, and VA (Table 4.1). Developed primers are listed in 

Tables 4.2 and 4.3. In all five P. emaculata urediniospore populations, 16 out of 49 primers pairs 

from the SSR-enriched library (32.7%) and 32 out of 33 primer pairs generated from EST-SSR 

sequences (97.0%) produced amplicons of the expected sizes.  The rest of the primers did not 

produce amplicons or produced multiple bands.  Of these 48 SSR primer pairs, 20 primer pairs 

identified polymorphic microsatellite loci in multispore genomic DNAs from the five state 

populations (8 from the SSR-enriched library and 12 from the EST-SSRs), and 18 primer pairs 

identified polymorphic SSRs in single spore WGAs (two SSR primers, OPE19 and OPE21, were 

monomorphic in WGAs ). The sizes of SSR alleles ranged from 120 to 380, with most of the 

alleles being 100 to 350 bp long. The average observed heterozygosity of P. emaculata SSR 
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markers was 0.1390, and the polymorphic information content (PIC) value ranged from 0.65 to 

0.91, (Table 4.5). 

Table 4.5. Allele diversity and genetic characteristics of 18 polymorphic SSR loci for single 

Puccinia emaculata urediniospores. 

a. SSR loci for P. emaculata, OPE (from repeat enriched library OEPE (from EST sequences) 

b. P: major allele frequency, H: heterozygosity, and PIC: polymorphic information content 

 

The genetic analyses of the 18 SSR loci among 25 single urediniospores of P. emaculata 

showed moderate genetic variation among states ((Fst=0.123)) and frequent gene flow between 

populations (Nm>1.858) (Table 4.6).  SSR genotypes among the five single urediniospores from 

each state tightly clustered together, with IA and SD appearing most similar, and VA most 

 Locus namea Sample No. Allele No. Availability Pb Heterozygosityb PICb 

re
p

ea
t-

en
ri

ch
ed

 l
ib

ra
ry

  

OPE2 25 9 1.0000 0.7622 0.1250 0.7289 

OPE5 25 17 1.0000 0.9123 0.1667 0.9062 

OPE19 25 3 0.9583 0.5709 0.0000 0.4977 

OPE21 25 4 0.9583 0.3062 0.0000 0.2907 

OPE28 25 4 0.9583 0.7108 0.0000 0.6550 

OPE32 25 7 1.0000 0.7622 0.0833 0.7223 

OPE59 25 4 1.0000 0.6424 0.0000 0.5827 

OPE60 25 6 1.0000 0.7292 0.0833 0.6816 

fr
o

m
 E

S
T

s 
 

OEPE6a 25 6 1.0000 0.7257 0.0833 0.6784 

OEPE6b 25 6 1.0000 0.7786 0.1250 0.7438 

OEPE28 25 7 0.9583 0.6853 0.0435 0.6383 

OEPE68 25 10 1.0000 0.8646 0.0833 0.8501 

OEPE71 25 6 1.0000 0.7986 0.2500 0.7690 

OEPE92 25 14 1.0000 0.8429 0.9583 0.8272 

OEPE128 25 11 0.9167 0.8399 0.3182 0.8252 

OEPE141 25 9 1.0000 0.7865 0.1250 0.7620 

OEPE156 25 9 0.9583 0.7836 0.0435 0.7580 

OEPE160 25 12 1.0000 0.8628 0.0833 0.8490 

OEPE161 25 10 1.0000 0.8325 0.0833 0.8139 

OEPE162 25 12 1.0000 0.7977 0.1250 0.7818 

 Mean 25 8 0.9854 0.7497 0.1390 0.7181 
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distinct (Figure 4.1). The highest numbers of private alleles were found in VA, SD, and IA 

(Figure 4.2).  

 

Table 4. 6. Genetic diversity within Puccinia emaculata populations Iowa (IA), Mississippi 

(MS), Oklahoma (OK), South Dakota (SD) and Virginia (VA). 

Pop1 Pop2 Fsta Nma 

OK VA 0.155 1.362 

OK MS 0.119 1.851 

VA MS 0.117 1.879 

OK IA 0.134 1.619 

VA IA 0.147 1.456 

MS IA 0.094 2.422 

OK SD 0.146 1.461 

VA SD 0.13 1.68 

MS SD 0.085 2.685 

IA SD 0.104 2.16 

 

a. Fst: genetic variation (FST value of 0 to 0.05 = low, 0.05 to 0.15 = moderate, 0.15 to 0.25 = 

high, >0.25 = very high genetic differentiation;; Nm: gene flow (Nm < 0.5 isolation of the 

groups, 0.5 > Nm > 1 gene flow is weak, Nm > 1 indicates constant gene flow) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Principal coordinate analysis of 25 Puccinnia emaculata single spores from Iowa 

(IA), Mississippi (MS), Oklahoma (OK), South Dakota (SD) and Virginia (VA)  using 18 

polymorphic microsatellite loci.
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Figure 4.2. Allelic patterns across P. emaculata populations, Oklahoma (OK), Virginia (VA), Mississippi (MS), Iowa (IA) and South Dakota 

(SD). Na = No. of Different Alleles, Na (Freq >= 5%) = No. of Different Alleles with a Frequency >= 5%, I = Shannon's Information Index = -1* 

Sum (pi * Ln (pi), No. Private Alleles = No. of Alleles Unique to a Single Population, No. LComm Alleles (<=25%) = No. of Locally Common 

Alleles (Freq. >= 5%) Found in 25% or Fewer Populations, No. LComm Alleles (<=50%) = No. of Locally Common Alleles (Freq. >= 5%) Found 

in 50% or Fewer Populations, He = Expected Heterozygosity = 1 - Sum pi^2. 
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Transferability of SSR markers across related Puccinia species 

Of the 16 enriched library SSR primer pairs tested, 11 were transferable to other Puccinia 

species (68.8%) and 2 primer pairs, OPE5 and OPE21, produced PCR products in all the Puccinia 

species evaluated. Higher marker transferability was found among EST-SSRs. Of the 33 EST-

SSR primer pairs tested, 27 were transferable to other Puccinia species (81.71%), and 8 (OEPE2, 

6b, 26b, 58, 66, 106, 160, and 161) were transferable to all Puccinia species tested (Table 4.7).   

 

Table 4.7. Transferability of SSR loci from Puccinia emaculata to four Puccinia species. SSR 

primers amplifying a band or bands in those species are indicated with an “X”. 

SSR Locusa 

P. graminis 

f.sp. tritici 
P. triticina P. sorghi P. andropogonis 

OPE2    X  X X 

OPE5 X   X  X X  

OPE19      X X 

OPE21 X  X  X X  

OPE28    X  X   

OPE32         

OPE46       X  

OPE49 X        

OPE50   X      

OPE52   X    X  

OPE54 X        

OPE58   X  X    

OPE59         

OPE60         

OPE67         

OPE69         

OEPE2 X  X  X  X  

OEPE6a X   X   X  

OEPE6b X  X  X  X  

OEPE7a       X  

OEPE8b       X  

OEPE26b X  X  X  X  

OEPE28   X  X  X  

OEPE37  X   X  X  

OEPE47   X  X  X  

OEPE48         

OEPE55         

OEPE58 X  X X  X  



79 
 

SSR Locusa 

P. graminis 

f.sp. tritici 
P. triticina P. sorghi P. andropogonis 

OEPE66 X  X  X  X  

OEPE67         

OEPE68   X  X  X  

OEPE71       X  

OEPE78         

OEPE79         

OEPE92       X  

OEPE103   X    X  

OEPE104 X      X  

OEPE106 X  X  X  X  

OEPE109   X    X  

OEPE111       X  

OEPE115       X  

OEPE118 X        

OEPE128 X      X  

OEPE141         

OEPE156       X  

OEPE159 X  X  X    

OEPE160 X  X  X  X  

OEPE161 X  X  X  X  

OEPE162   X    X  

Total 18 23 20 31 
a OPE (from repeat enriched libraries) and OEPE (from EST sequences) 

 

DISCUSSION 

SSR markers have been widely used for genetic studies in plants and animals, because of the 

advantages they present. SSRs are informative markers revealing genetic variation in diploid or 

dikaryotic organisms, such as Puccinia species (35; 36; 41; 45).  The characterization of SSR 

markers requires isolating genome fragments with repetitive sequence motifs, designing primers 

to amplify randomly selected SSR loci, and screening these with a representative collection of 

individuals to assess SSR polymorphisms (28).  

More recently, ESTs have begun to be used not only for gene discovery, but also as a 

resources to identify useful molecular markers, such as SSRs.  EST libraries are already among 
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the most diverse and abundant type of sequence data available (3; 9; 18). The number of EST-

SSRs reported in Puccinia species are 47,500 and 168,200 ESTs from Pucciniales (NCBI 

database) (2; 7; 35; 36; 42; 45). Once SSR markers are developed either from repeat-enriched 

DNA libraries or from ESTs, they provide an effective means to study the population genetics of 

the target organism. 

Prior to the present study, Wadl et al. 2011 (41) characterized 10 SSR markers in 20 single-

pustule isolates of P. emaculata from AR, LA, MS, NC, and TN. However, P. emaculata 

urediniospores from IA, MS, OK, SD, and VA, collected during this study, resulted in 

amplification with only three (Pe2-005, Pe2-018 and Pe4-032) of the 10 SSR primer pairs. In 

order to assess the population genetics of switchgrass rust, more SSR markers were needed. Thus, 

twenty polymorphic SSR markers for P. emaculata from a repeat-enriched genomic library and 

RNA-Seq EST libraries were developed in this study.  

Short repeats can produce monomorphic PCR products displaying very low polymorphism 

(44), for example microsatellite OPE55 (AC5) and OPE44 (ACT4), demonstrated this effect when 

evaluated with multispore DNA.  Also, of the 60 sequenced microsatellite clones from the repeat-

enriched library, primer design was not possible for 11 clones, which had poor quality sequences 

or contained SSRs either too near the start or end of the clone insert, leaving insufficient flanking 

DNA for primers.  The 49 microsatellites captured from the repeat-enriched library possessed 

perfect di, tri, tetra and pentanucleotide repeats, with trinucleotide repeats being the most 

common. Di- and trinucleotide repeats have been demonstrated to be common in some Puccinia 

species, such as P. triticina and P. graminis f.sp. tritici (36; 45)  

Molecular diversity among the different urediniospore populations from five states all show 

high levels of polymorphism with all SSRs.  Among the 25 single spores of P. emaculata, two 

primer pairs, OPE19 and OPE21, identified only monomorphic alleles. SSR primer set OPE5 
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identified as many as 17 alleles per locus, while OEPE92 identified 14 alleles and primer sets 

OEPE160 and OPE162 each identified 12 alleles. Sizing alleles using the Bioanalyzer identified 

four samples showing an absence of bands.  This may be due to low concentrations of PCR 

products. Or, the concentration and integrity of DNA in these four samples may have affected the 

amplification of alleles (12). 

PIC value is an indicator predicting the usefulness of DNA markers for gene mapping, 

molecular breeding, and germplasm evaluation (33). Markers with higher PIC values possess 

greater potential to reveal allelic variation.  The average PIC value of SSR markers tested by 

different researchers for crops varies based on the number of SSR markers used and the number 

of genotypes tested. The PIC values of SSRs in the present study were 0.7893 and 0.6646 from 

the repeat-enriched library and from ESTs, respectively. SSR markers are able to detect genetic 

polymorphism better than other molecular markers because the allelic diversity is caused by 

repeated sequences rather than single nucleotide substitutions or indels (37; 38). The 

polymorphisms seen in the present study are high and could be due to the following:  1) the large 

number of SSRs used, 2) adequate genome coverage, and 3) variability among populations used.  

The 18 SSRs used to analyze the 25 single spores of P. emaculata collected from five 

different state populations show significant genetic differentiation among populations.  VA single 

spores differed from OK single spores by 15% and from MS single spores by 12%.  The least 

genetic differentiation (10%) occurred between single spores from IA and SD, which was 

expected because both states and sample sites within these states were near one another. MS also 

had less genetic variation with IA (9%) and SD (8%), which corroborated the “Puccinia 

Pathway” hypothesis established in previous wheat rust studies (23). Likewise, phylogenetic 

analyses using the three conserved loci, ITS, bTub, and TEF1a revealed that P. emaculata 

haplotype diversity declines moving north and east along “Puccinia Pathway” (see Chapter 3). 

This, along with higher numbers of haplotypes in southern states OK and MS, suggests a possible 
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southern inoculum source. Also, allelic patterns show fewer private alleles in OK and MS, 

suggesting that these two states have gene flow and high migrant exchange occurring each 

generation.  

Also, many of the SSRs developed for P. emaculata were transferable to other Puccinia 

species. Transferability of microsatellites appears to be proportional to the phylogenetic 

relatedness to P. emaculata, with 36.7% of microsatellite markers amplifying in P. striiformis f. 

sp. tritici DNA, 46.9% in P. triticina, 40.8% in P. sorghi, and 63.3% in P. andropogonis, without 

any modification to the PCR conditions. The higher percentage of transferability to P. 

andropogonis could be due to its close phylogenetic relationship with P. emaculata (see Chapter 

3).  While these results represent progress in the population studies of rust fungi, further studies 

using a broader collection of rust fungi with other Puccinia species, especially those specializing 

on C3 or C4 grasses, will be necessary to further assess questions of transferability and 

polymorphism.  

Two different sources for SSR marker isolation were used in this study, 1) repeat-enriched 

DNA libraries and 2) ESTs.  The enriched library technique may seem more labor-intensive. 

However, to successfully sequence ESTs using RNA-seq with the Illumina HiSeqTM 2000, very 

high quality RNA is required, the isolation of which is also very labor intensive.  

In this study, highly polymorphic SSR markers in P. emaculata were identified and evaluated 

for application in population genetic studies. These SSR markers are highly transferable to related 

taxa and provide useful tools for assessing genetic diversity within and among species. The 

highly informative SSR markers in P. emaculata should serve as valuable molecular tools to 

understand the etiology of switchgrass rust, for tracking races in switchgrass production fields, 

and to initiate the development of effective management strategies.  
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