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Abstract:  

Maize planting is normally accomplished by hand in the developing world where 
two or more seeds are placed per hill with a heterogeneous plant spacing and density. To 
understand the interaction between seed distribution and distance between hills on grain 
yield and nitrogen (N) uptake, experiments were established in 2012 and 2013 at Lake 
Carl Blackwell (LCB) and Efaw Agronomy Research Stations, near Stillwater, OK. A 
randomized complete block design was used with three replications and ten treatments; 
and a factorial treatment structure of 1, 2 and 3 seeds per hill using inter-row spacings of 
0.16, 0.32 and 0.48m. Normalized Difference Vegetation Index (NDVI), Intercepted 
Photosynthetically Active Radiation (IPAR), grain yield and N uptake were measured.  
Results showed that, on average, NDVI and IPAR increased with number of seeds per 
hill by 9 and 14%, and decreased with plant spacing by 10 and 11%, respectively. 
However, they were not good predictors of grain yield. Significant interaction effects 
(p<0.01) for grain yield were observed at Efaw in both years but not at LCB. In 2012, 
highest grain yield of 11.68 Mg ha-1 was achieved at 0.48m spacing with 3 seeds per hill, 
while lowest grain yield of 6.51 Mg ha-1 was obtained at 0.48m spacing with 1 seed per 
hill. In 2013, highest grain yield of 8.97 Mg ha-1 was attained at 0.16m with 1 seed per 
hill while lowest grain yield of 4.01 Mg ha-1 was attained at 0.32m spacing with 1 seed 
per hill. Treatments, including interaction, in both years and locations did not have any 
influence on N uptake. However, N uptake was higher at locations with very poor yield. 
This study showed that planting up to 3 seeds per hill at 0.16m spacing can reduce maize 
yield by 12 to 15% and that planting 1 seed per hill reduces seeding rate by 66% 
compared to 3 seeds but no grain N advantage was observed. Considering seed spacing 
variability at a range used in this study, yield and economic benefits were sufficient to 
support production of maize at 0.16 m inter-row spacing with 1 seed per hill. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Background 

Maize (Zea mays L.) is one of the most important crops cultivated throughout the 

world (FAO, 2009) significantly contributing to global food security (Bekele et al., 

2011). Maize is believed to have been domesticated in central Mexico between 6,000 to 

10,000 years ago by the indigenous people (Doebley, 2004). The crop spread to other 

parts of America and later to Europe between the 15th and 16th century through trade. It 

has slowly been transformed from its early wild grass ancestor to its improved current 

state (Abdolreza et al., 2006). Today, maize is grown throughout the world primarily for 

direct human consumption and animal feedstuff among other uses.  

The global demand for maize has shown an increasing trend in the past decade. In 

2010, maize demand accounted for 40% of the world’s major cereals (wheat and rice). 

Maize is the most important staple food for poor households in the developing world 

accounting for 73% in Sub Saharan Africa, 46% in South Asia, and 44% in Latin-

America. In Developed countries, maize is mainly used as animal feeds accounting for 

70% of total usage (Bekele et al., 2011). In addition, there has been a growing interest,
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especially in the developed countries, to use maize in the bio-fuel industry for making 

ethanol in an attempt to replace fossil fuel (Persson et al., 2009). The increased demand 

for maize for ethanol production has increased maize prices globally and that are now 

near $0.3 kg-1 from about $0.1 kg-1 in the past 10 years. 

Current world production averaged over three years (2008-2010) is about 833 

million metric tons harvested from about 161 million hectares. From this yield, over 70% 

is produced in the developed countries from less than 50% of the world total cultivated 

land under maize (FAO, 2012). Third world maize grain yield are generally less than 2.0 

Mg ha-1 compared to the yield of over 4.0 Mg ha-1 in the developed world. This 

demonstrates the low maize grain yield, and a need to examine maize farming practices 

that lead to this low yield in the developing countries.  

High maize grain yield in the developed world is characterized by mechanized 

production systems, high quality seeds, and good agronomic practices. Because the level 

of mechanization is still low in the developing world, especially Sub Saharan Africa 

(FAO, 2007), maize planting is normally accomplished by hand. Consequently, two or 

more seeds are planted per hill resulting in non-equidistant increase in plant population. 

Planting more than one seed per hill will not only spur competition between plants 

(Duncan, 1984), but also increase the amount and cost for seeds.  

Use of improved seeds is a prerequisite to obtain high crop yield. However, 

improved seeds (hybrid maize) in Sub Saharan Africa cost nearly ten times more than 

open pollinated varieties (Van et al., 2011). Besides using home saved seeds, chances of 

obtaining good yield are further reduced by low or no use of fertilizer (Valerie and 
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Crawford, 2007). Bekele et al. (2011) noted that the use of germplasm alone will not 

meet the growing demand for maize unless complemented by improved agronomic 

practices.  

 

Justification and Objective 

Many studies have been conducted on crop spacing, seed distribution and N 

utilization. However, little attempt has been made to explain the relationship and 

interaction between these factors and resulting effects on maize grain yield. If maize 

grain yield can be improved by reducing plant spacing as demonstrated by Widdicombe 

and Kurt (2002), it is important to determine whether it is possible to manipulate seed 

distribution to improve N utilization and ultimately, grain yield. Seed singulation with 

equidistant spacing could reduce competition between plants and the cost of acquiring 

hybrid seeds by smallholder farmers in third world countries. 

The objective of this study was to determine the combined effects of distance 

between hills, and number of seeds planted per hill on maize grain yield and nitrogen 

uptake.  
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CHAPTER II 
 

 

LITERATURE REVIEW  

 

Plant Spacing 

Plant spacing is a practice that determines the spatial distribution of the plants, 

which affects canopy structure, light interception and radiation use efficiency and 

consequently, biomass or grain yield (Mattera et al., 2013). Different spatial 

arrangements produced by changes in row spacing can affect appropriate plant density 

and therefore, resource competition relationships which are crucial in crop productivity 

(Worku and Astatkie, 2011; Mattera et al., 2013).  

Different studies on plant spacing effects reported varying results. Widdicombe 

and Kurt (2002) reported a small grain yield increase of 4% when maize population was 

doubled by narrowing spacing from 0.76 to 0.38m. Shapiro and Wortmann (2006) 

reported a similar increase (4 %) in yield when spacing was reduced by 25%. De Bruin 

and Pedersen (2008) reported that decreasing soybean spacing from 0.76 to 0.38m, thus 

doubling plant population, increased yield by 0.25 Mg ha-1. They concluded that yield 

and other economic benefits were sufficient to support the production of soy bean  
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in a narrow spacing (0.38m) compared to larger spacing of 0.76m.  

Contrary to the above, work done by Dale (2001) showed no significant yield 

difference in maize planted at 0.76m and 0.38m spacing. Grain yield increases with 

increasing plant density comes to a plateau at some point, above which increasing plant 

population is not economical. This is because above the plant population that gives 

maximum grain yield, the reduction in grain yield due to competition or crowding stress 

cannot be compensated by the increasing plant stands (Duncan, 1984). The strongest 

possible effect of plant competition for nutrients, light, moisture and other factors is 

observed when plants are growing very near to or even in contact with each other. 

Grain yield reduction at higher plant densities is due to crowding and its 

associated effects. At an early vegetative stage, competition has minimal effect on yield 

reduction. At later vegetative and reproductive stages, competition approaches its peak 

due to increased demand for nutrients and water (Hashemi et al., 2005). The extent to 

which plant density affects grain yield depends on the hybrid and other environmental 

conditions (Duncan, 1984; Fukai and Foale, 1988; Wade and Douglas, 1990).  

Plant distributions have a profound effect on grain yield. Wade et al. (1988) noted 

that the population of plants per square meter (density) and arrangement of individual 

plants within a square meter determines nutrient use and grain yield of maize. Uneven 

distribution of plants can reduce grain yield compared to uniform distribution at the same 

density (Wade et al., 1988). Extreme uneven plant distribution can reduce grain yield up 

to 30%. (Wade et al., 1990).  
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Doerge et al. (2002) reported that yield can be increased up to 0.25 Mgha-1 for 

each inch improvement in equidistant plant spacing standard deviation. They added that 

individual plant yield was at a maximum when plants were within a 0.05 to 0.07 meter of 

perfect equidistant spacing.  However, Liu et al. (2004) noted that plant spacing which 

results in a perfectly uniform plant distribution has no yield advantage over non-

equidistant plant spacing. 

 

Intercepted Photosynthetically Active Radiation 

In a plant community, individual plants compete with neighboring plants for 

resources. Light is one of these resources. Plant population and row width determine light 

interception and consequently influence photosynthesis and yield (Stewart et al., 2003). 

Papadopoulos and Pararajasingham (1997) noted that it is possible to manipulate plant 

spacing to maximize light interception in any crop. 

Niinemets (2010) elaborated that light harvesting is of great importance to plants 

that are growing close to one another. The extent of competition for light or the efficiency 

for light harvesting depends on how close plants are to each other. Nafziger (2006) noted 

that within the normal range of crop population, the increase in crop yield from 

increasing plant population is related to the increase in light interception. He explained 

that maximizing light interception during grain production is of paramount importance to 

optimum grain yield.   

While investigating light interception and row spacing of yield in soybeans, Board 

et al. (1992) observed greater light interception in the narrow row culture (0.5m) 
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compared to the wide row culture (1m). They observed that this occurred during 

vegetative and early reproductive periods of plant growth. Similarly Zhang et al. (2008), 

in a study of light interception and utilization in relay intercrops of wheat and cotton in 

China, noted that the best distribution of light is attained in systems with narrow strips 

and high plant densities. Increasing plant density through narrow row planting of maize 

could increase light interception and consequently increase grain yield.  

 

Grain Nitrogen (N) Content 

Nitrogen (N) is by-far the most limited cereal crop nutrient in the world. Its 

application does present a number of management challenges, partly, because it is mobile 

in soil solution (Zhang and Raun, 2006). Many N fertilization studies are generally 

geared towards finding out the use efficiency of the applied fertilizer sources. This is 

termed as “N Use Efficiency”.  Ignacio and Tony (2011) defined N use efficiency (NUE) 

as “the grain produced per unit of fertilizer N applied”. It gauges the plants’ ability to 

take up applied N in fertilizer and assimilation into grain. N use efficiency measures the 

relative proportion of the amount of fertilizer N in the grain versus the quantity remaining 

in the soil and lost in the atmosphere or water.  

Moll et al. (1982) considered the concept of NUE as two interrelated components; 

the efficiency with which plants take up the applied N fertilizer and the efficiency with 

which the absorbed N is assimilated to grain. Processes aimed at improving N use 

efficiency should consider both uptake and utilization.   
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Nitrogen use efficiency worldwide for cereals is estimated at approximately 33% 

(Raun and Johnson, 1999). Low NUE is caused by a number of loss processes such as 

plant emission, ammonia volatilization, soil denitrification, leaching and surface run off. 

Garnett et al. (2009) noted that the N fertilizer that is lost poses serious environmental 

concerns coupled with the monetary value lost. These factors present a case to find better 

ways of improving NUE. Edmonds et al. (2009) showed that estimated NUE was more 

than 100% in Sub Saharan Africa, but this was due to the low fertilizer N application 

rates, and the mining of an already-N-depleted soil.  

Nitrogen uptake and use efficiency seems to be closely related to plant spacing. 

Ignacio and Vyn (2011) reported high N uptake and use efficiency in narrow row with a 

high plant density. Narrowing maize rows enables plants to occupy spaces between 

plants; utilizing the applied N fertilizer that would otherwise be lost. Similarly, a study by 

Barbieri et al. (2008) found that N Uptake increases with narrow row spacing. They 

realized a 15% increase in N uptake expressed as grain yield with narrow maize rows. 

They noted, however, that the N uptake and therefore use efficiency decreased with 

increasing N rate. The low NUE could be because of over application of N fertilizer or 

improper timing of application. The current study examined grain N concentration as 

affected by a combination of inter-row spacing and number of seeds per hill. 
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CHAPTER III 
 

 

MATERIALS AND METHODS 

 

Experimental Sites  

Experiments were conducted for two years in the summer of 2012 and 2013 to 

evaluate the effect of seed distribution and population on maize grain yield. These were 

located at Lake Carl Blackwell Research Station and Efaw Agronomy Research Station 

near Stillwater, OK.  Lake Carl Blackwell is situated on a Pulaski fine-sandy loam 

(coarse/loamy, mixed nonacid, themic Udic Ustifluvent) soil while Efaw Agronomy 

Research Station is on an Ashport silty clay loam (fine-silty, mixed, superactive, thermic 

Fluventic Haplustoll) soil.  

 

Experimental Layout and Management 

A randomized complete block design was used in all experiments with three 

replications and 10 treatments. The treatment structure consisted of a complete factorial 

of 1, 2 and 3 seeds per hill at inter-plant spacing of 0.16, 0.32 and 0.48m. Twin row and 

mechanical hand planter treatments were included in the treatment structure as the 10th 

treatment in 2012 and 2013, respectively. 
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All treatments were planted with the corn hybrid Pioneer P1498HR with row 

spacing of 0.76m. A poke stick with a metal tip similar to those used in Central and South 

America was used to open a planting hole. Seeds were placed in the hole and then 

covered by foot. In 2013, treatment 10 was planted using the hand planter developed at 

Oklahoma State University (OSU).  The OSU hand planter has a reciprocating internal 

drum that delivers single maize seeds per strike, and has a seed hopper with the capacity 

to hold 1kg of seed. With the sharp pointed shovel tip of the planter, seeds were delivered 

to a planting depth of 5cm on tilled ground.  Both the poke stick and the OSU hand 

planter were used to plant the two inner rows for the respective treatments. The stick 

planter was used to give the desired number of seeds per hill and plant spacing for the 

respective treatments. Two border rows for all treatments were planted using a John 

Deere planter.  A uniform rate of 180 and 130 kg N ha-1 as urea pre-plant was applied to 

all treatments in 2012 and 2013, respectively (Tables 1 and 2).  

Pre-emergence herbicide with atrazine, alachlor and glyphosate as active 

ingredients and post emergence herbicide with tembotrione and glyphosate as active 

ingredients were each applied at a rate of 120 L solution per hectare.  Pre- emergence 

herbicide, atrazine, alachlor and glyphosate were mixed at 1.48, 2.24 and 1.57 L as active 

ingredients per hectare, respectively while post emergence, tembotrione and glyphosate, 

were mixed at 0.14 and 2.25 L as active ingredients per hectare, respectively.  All the 

experiments were irrigated on days during the growing season when little or no rainfall 

was anticipated.  
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Data Collection and Analysis 

Experimental plots at both locations were sensed using the active GreenseekerTM 

at V4, V6 and V8 maize growth stages (Iowa State University, 1993). Photosynthetically 

active radiation (IPAR) values intercepted by plants were collected using a Line Quantum 

Sensor at the V6 maize growth stage. At maturity, experimental plots were harvested 

using a Massey Ferguson 8XP self-propelled combine in 2012. In 2013, plots were 

harvested and shelled by hand. Sub-samples were collected for each plot and dried in an 

oven at 65°C for 48 hours. The samples were then ground to pass through a 1mm sieve 

size. Finely ground samples were then achieved by rolling the samples in bottles with 

stainless steel rods for 24 hours before analysis for grain N were accomplished using a 

LECO Truspec CN dry combustion analyzer (Schepers et al., 1989). All the field 

activities including fertilization dates, sensing dates, planting, and harvest dates are 

summarized in table 10. 

To determine treatment effects on maize grain yield, grain N content, IPAR and 

NDVI values, the data were analyzed using the PROC GLM procedure of the SAS 

program (SAS institute, 2003). Treatment means were separated using the Least 

Significant Difference (LSD) mean separation procedure and the results presented in the 

following section. 
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CHAPTER IV 
 

 

RESULTS 

 

Grain Yield 

Efaw  

In 2012, emergence difference and plant death resulted to 1-10% fewer plants 

than the target population (Table 1). There was a strong positive linear relationship 

between harvest plant population and ears harvested with r2 of 0.97 (Table 3).  A 

polynomial regression of plant population on grain yield predicting maximum yield is 

shown in Figure 1. Analysis of variance showed that number of seeds per hill and the 

interaction between plant spacing and seeds per hill had a significant (P<0.01) effect on 

grain yield (Table 4). The main effect of plant spacing did not significantly affect grain 

yield. Highest grain yield (11.68Mg ha-1) was harvested at 0.48m spacing with 3 seeds 

per hill while the lowest yield (6.51Mg ha-1) was obtained at 0.48m spacing with 1 seed 

per hill. However, the former was not significantly different from yield at 0.32m spacing 

with 3 seeds per hill (11.26Mg ha-1) and 0.16m spacing with 1 seed per hill (11.06Mg ha-

1). Grain yield at 0.16m spacing decreased with number of seeds per hill while those at 

0.32 and 0.48m spacing increased with number of seeds per hill.
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The interaction between number of seeds per hill and interplant spacing is shown in 

Figure 2. The treatment structure and means in 2012 are reported in table 5.  

In 2013, emergence difference and plant death resulted in a large percent 

difference, 33-60% fewer plants, than target population (Table 2). However, there was a 

high linear relationship between harvest population and ears harvested with r2 of 0.99 

(Table 3). A polynomial regression of plant population on grain yield predicting 

maximum yield is shown in Figure 3.  Analysis of variance indicated that maize grain 

yields were significantly different (P<0.01) for the number of seeds per hill, interplant 

spacing and the interaction (Table 6). The highest maize grain yields (8.97 Mg ha-1) was 

harvested at 0.16m spacing with one seed per hill while the lowest yield (4.01 Mg ha-1) 

was obtained at 0.32m spacing with one seed per hill. Figure 4 illustrates the interaction 

for plant spacing and the number of seeds per hill on maize grain yield. Yield at 0.16m 

spacing decreased with number of seeds per hill while those at 0.32 and 0.48m spacing 

increased with number of seeds per hill, a similar trend observed in 2012. However, 

maximum yield attained with 3 seeds per hill at 0.48m spacing was less than yield with 1 

seed per hill at 0.16m spacing. In 2013, highest grain yield (8.97 Mg ha-1) did not differ 

significantly with treatment 10 (8.76 Mg ha-1) planted with the OSU planter (Table 7). 

 

Lake Carl Blackwell 

Due to extremely poor seed emergence and seedling performance, results from 

2013 for this location were not included in this report. In 2012, a comparison of harvest 

population and seeding rate indicated emergence difference and plant death of 28-42% 
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(Table 1). There was a poor linear relationship between harvest population and ears 

harvested with r2 of 0.47 (Table 3). A polynomial regression of harvest plant population 

on grain yield is shown in figure 5. Analysis of variance indicated that plant spacing, 

number of seeds per hill and the interaction did not significantly (P>0.05) affect grain 

yield (Table 8). The 0.16m spacing gave highest yield (3.80Mg ha-1) across number of 

seeds per hill compared to the 0.48m spacing with 2.75Mg ha-1 as the lowest yield 

harvested, representing about 27 % yield decrease. In general, grain yield decreased with 

increase in plant spacing while no particular pattern was observed with number of seeds 

per hill. Yield increased from 1 to 2 seeds per hill by 20% but later decreased with 3 

seeds per hill by about 9 %. Two seeds per hill had highest yield with 3.36 Mg ha-1 

compared to 1 seed per hill with 2.57 Mg ha-1.  The treatment structure and means are 

shown in table 9. Figure 6 illustrates the general trend of maize grain yields as affected 

by seeds per hill and the plant spacing.  

 

Intercepted Photosynthetically Active Radiation 

Efaw  

In 2012, analysis of variance showed that photosynthetically active radiation 

(PAR) intercepted by the plants (IPAR) was significantly different for distance between 

hills (P<0.01) but not number of seeds per hill and the interaction (Table 4). Overall, 

IPAR increased with the number of seeds per hill from 50 to 62% with 1 to 3 seeds per 

hill, respectively and decreased with plant spacing from 68 to 51 % at the 0.16m to 0.48m 

spacing, respectively. In 2013, IPAR was significantly different for both number of seeds 
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per hill (P<0.05) and distance between hills (P<0.01) but not for the interaction (Table 6).  

As was recorded in 2012, a similar trend followed with an overall increase of 18.8% in 

IPAR values as seed per hill increased from 1 to 3, meanwhile a small decrease of 1% 

was observed as plant spacing increased from 0.16m to 0.48m. In 2012, there was no 

significant linear relationship between IPAR and grain yield, with model r2 of 0.04, while 

in 2013, IPAR had poor linear relationship with grain yield with model r2 of 0.32 (Table 

3). 

 

Lake Carl Blackwell 

There was a significant effect of distance between hills and the number of seeds 

per hill on IPAR (Table 8). No significant interaction was observed. A general increase 

with number of seeds per hill was observed, and an overall decrease with plant spacing. 

There was an increase from 51 to 64% with 1 to 3 seeds per hill, respectively and a 

decrease from 65 to 53% at the 0.16m to 0.48m plant spacing, respectively.  The increase 

in IPAR values with number of seeds per hill and its decrease with plant spacing was an 

indication of bare ground effect from sparse vegetative cover as a result of lower number 

of seeds per hill and wider spacing. There was a poor linear relationship between IPAR 

and grain yield with model r2 of 0.1 (Table 3).  
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Normalized Difference Vegetation Index 

Efaw 

In 2012, Normalized Difference Vegetation Index (NDVI) sensor readings were 

collected and recorded for maize vegetative (V) growth stages V4, V6 and V8. At the V4 

growth stage, NDVI was significantly different for number of seeds per hill, plant 

spacing (P<0.01) and the interaction (P<0.05). At the V6 maize growth stage, NDVI was 

significantly different for plant spacing (P<0.01) but not number of seeds per hill and the 

interaction, while at V8, NDVI was significantly different for both plant spacing and 

number of seeds per hill but not the interaction (Table 4).  In 2013, NDVI at V4 and V6 

growth stages were significantly different for number of seeds per hill, but not plant 

spacing. At V8, NDVI was significantly different for number of seeds per hill, plant 

spacing and the interaction (Table 6). In both years, as would be expected; overall NDVI 

values increased with maize growth stages. Normalized difference vegetation index was 

best linearly related to grain yield at V8 maize growth stage with model r2 of 0.53 and 

0.61 in 2012 and 2013, respectively (Table 3). 

 

Lake Carl Blackwell 

Plant spacing, number of seeds per hill and the interaction between the two did 

not significantly (P>0.05) affect NDVI values at all three growth stages (V4, V6 and V8). 

There was a general increase in NDVI values from one maize growth stage to another 

(Table 8).  Values for NDVI increased with number of seeds per hill with the lowest 

observed with 1 seed and the highest with three seeds at all maize growth stages, and 
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decreased with plant spacing across growth stages. There was no significant linear 

relationship between NDVI at V8 maize growth stage and grain yield with a very poor 

model r2 of 0.05 (Table 3). 

 

Grain Nitrogen (N) Content 

Efaw  

In 2012, analysis of variance and treatment means showed that grain N content 

was not significantly different for the number of seeds per hill and interaction between 

plant spacing and number of seeds per hill (P>0.05). The highest grain N content (1.27%) 

was observed when maize was planted at 0.32m spacing with one seeds per hill.  The 

lowest grain N content (1.14%) was observed at 0.16m spacing with two seeds per hill 

(Table 4).  Grain N content at 0.16m spacing decreased when number of seeds increased 

from one to two (1.25 to 1.14%), and slightly increased with three seeds per hill (1.17%) 

while that at 0.32m decreased with number of seeds per hill from 1.27 to 1.21%. Grain N 

content at 0.48m spacing increased with number of seeds per hill from 1.19 to 1.25%. 

Like in 2012, grain N content for 2013 was not significantly different for number of seeds 

per hill, plant spacing and their interaction (Table 6). Highest grain N of 1.22% was 

achieved at 0.48m spacing with one seed per hill while the lowest N content of 1.04% 

occurred at 0.16m spacing with two seeds per hill. There was a general decrease in grain 

N as the number of seeds per hill increased from one to three across plant spacing but 

grain N content increased generally with plant spacing across number of seeds per hill.   
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Lake Carl Blackwell 

Plant spacing, number of seeds per hill and the interaction between the two did 

not significantly affect grain N uptake (P>0.05). Grain N content slightly decreased with 

number of seeds per hill from 1.50 to 1.48% while an increase with plant spacing from 

1.45 to 1.51% was noted (Table 8). Like at Efaw, a similar trend was noted where grain 

N content decreased with number of seeds per hill and increased with inter-row spacing.  
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CHAPTER V 
 

 

DISCUSSION 

 

Grain Yield  

Higher number of seeds per hill resulted to increased plant abortion and decreased 

ear weight. Considering all years and location, maximum grain yields were attained with 

plant population ranging from 60,000 to 90,000 plants per hectare. Grain yield decreased 

with the number of seeds when planted at the 0.16m spacing. At this narrow spacing, 

increased competition would be expected, and yield should be lower due to the excessive 

number of plants. However, at the 0.48m spacing, the opposite was observed;  as the 

number of seeds per hill increased from one to three, yield went up.  This too would be 

expected since the wider distances between plant placement would allow for less 

competitive growth and development of more plants. This trend was observed in both 

years at Efaw, but not at Lake Carl Blackwell. Figure 2 shows that  the same yield level 

can be achieved when maize is planted at 0.16m and 0.48m spacing with one and three 

seeds per hill, respectively. Figure 4  illustrates that the maximum grain yield attained at 

0.48m spacing was less than the initial yield at 0.16m with one seed per hill. At  Lake 

Carl Blackwell, grain yield was not significantly affected by plant spacing, number of 

seeds per hill and the interaction between the two. Considering all three plant spacing, 
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there was no overall decrease or increase in grain yield as the number of seeds increased 

from one to three. At the 0.16m spacing, a non significant increase in grain yield from 

one to three seeds per hill was observed. In 2013, as was hypothesized, yield levels 

between the highest treatment with 1 seed per hill at 0.16m spacing and that planted using 

the hand planter developed at OSU were not significantly different.   

 

Intercepted Photosynthetically Active Radiation 

Intercepted photosynthetically active radiation (IPAR) increased with number of 

seeds per hill and decreased with increased inter plant spacing in both years and 

locations. At lower plant spacing, there are more plants with a thicker canopy to intercept 

light. Increased number of seeds per hill, provide for a more dense plant canopy with 

comparatively more soil cover. Indeed greater light interception would be observed in 

these scenarios. In a similar study, Zhang et al. (2008) noted that light capture can be 

improved by better plant spacing. They concluded that narrow plant spacing with higher 

stand density increased light interception. However, more light capture would not 

necessarily result in increased grain yield. Keating and Carberry (1993) elaborated that 

plants could take spatial advantage due to increased soil cover and capture more light. 

This would not offset competition at a later stage of plant development, in effect, 

lowering grain yield. Sharratt and McWilliams (2005) found that crop spacing and 

canopy structure influenced light interception. They concluded that increase in IPAR at 

close spacing and/or dense plant stand means equal or more water and nutrients are used. 

According to them, competition for other resources at the thicker plant canopy is 

inevitable. These support the result from the current study that closer plant spacing and 
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increased number of seeds per hill increases light interception. However, light 

interception explained only 30% or less variability in maize grain yield, while a greater 

portion was explained by other variables.   

 

Normalized Difference Vegetation Index 

Readings for NDVI were significantly different for plant spacing and the number 

of seeds per hill. Essentially, NDVI increased with number of seeds per hill and 

decreased with plant spacing in all years and locations. As plant spacing increased, plant 

stand and ground cover decreased. The bare soil surface in between plant stands reduced 

the NDVI values. Also, increasing number of seeds per hill provided a thicker plant 

canopy; NDVI values would be expected to increase with this increased plant canopy.  A 

similar study by Lukina et al. (2000) found that NDVI decreased with an increase in plant 

spacing. They explained that decreased NDVI with plant spacing is a result of increased 

bare soil surface which has higher reflectance in the visible than near infrared region of 

the spectrum. Trout et al. (2008) found a strong linear relationship between canopy cover 

and NDVI with a correlation coefficient r2=0.95. Higher crop canopy covers indicate 

higher biomass and therefore increased NDVI values. The two studies above agree with 

this result that closer plant spacing and increased number of seeds per hill increases 

NDVI values. The regression analysis showed a fairly strong linear relationship with 

NDVI explaining up to 60% of the variability in grain yield.    
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Grain Nitrogen (N) Content 

The interaction between plant spacing and number of seeds per hill did not 

significantly affect grain N uptake. Grain N content was high at Lake Carl Blackwell 

compared to Efaw location. There was an inverse relationship between grain N content 

and yield. As yield increased, grain N content decreased and vice versa, implying that 

high grain protein was achieved with low grain yield. Grain N content decreased with 

number of seeds per hill. This could be because of increased competition between the 

increasing number of seeds per hill for the same N quantity in the soil. Grain N content 

also increased with plant spacing. Nitrogen uptake was lowest at narrow inter-row 

spacing (0.16m) compared to wider inter-row spacing (0.48m). This finding is however 

contrary to studies by Barbieri et al. (2008); Ignacio and Vyn (2011) both found that 

narrowing plant spacing, thus increasing the number of plants per square meter, resulted 

in increased N uptake. 
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CHAPTER VI 
 

 

CONCLUSION 

 

Competition between plants growing close to one another is inevitable (Duncan, 

1984; Fukai and Foale, 1988; Wade and Douglas, 1990; and Hashemi et al., 2005). 

Increasing the number of seeds per hill in the present study increased competition 

between plants and lowered grain yield. Significant differences in grain yield were 

observed among treatments. Maize grain yields obtained using the OSU hand planter was 

not significantly different from the highest yield obtained in 2013. However, there was no 

advantage in grain nitrogen concentration by varying inter-row plant spacing and/or 

number of seeds per hill within a range used in this study. High grain nitrogen 

concentration were recorded in years and/or locations with very low grain yield. 

Normalized Difference Vegetation Index and IPAR increased with number of seeds per 

hill by 9 and 14%, and decreased with plant spacing by 10 and 11%, respectively but 

were not good predictors of grain yield.  Overall, this study confirmed that maximum 

maize grain yield was observed with one seed per hill and that grain yield decreased by 

12 to 15% if more than 1 seed is placed in the same hill. Maize planting at narrow
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inter-row spacing (0.16m) with one seed per hill reduces seeding rate by 66% comapred 

to planting three seeds per hill at same spacing . This result in economic benefits through 

reduction in the quantity and cost for seeds. The combined effect of seed spacing 

variability and number of seeds per hill at a range used in this study showed that yield 

and economic benefits were sufficient to support production of maize under narrow inter-

row spacing (0.16m) with one seed per hill.  
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Table 1: Treatment structure with pre-plant N rate, seeding rate and harvest plant population at Efaw and Lake Carl 
Blackwell, OK, 2012. 
Treatment 

 

Seeds hill-1 

 

Plant 

spacing (m) 

Pre-plant N 

(kg ha-1) ¥ 

Seeding rate 

(plants ha-1) £ 

Plant Population (plants ha-1)¶ 

Efaw 

Plant Population (plants ha-1)¶ 

LCB 

     
Measured % decrease Measured % decrease 

1 1 0.16 180 82,236 74,354 10 59,514 28 

2 2 0.16 180 164,473 156,673 5 107,556 35 

3 3 0.16 180 246,710 229,093 7 169,579 31 

4 1 0.32 180 41,118 39,437 4 29,040 29 

5 2 0.32 180 82,236 81,245 1 59,514 28 

6 3 0.32 180 123,355 121,896 1 85,327 31 

7 1 0.48 180 27,412 27,215 1 19,719 28 

8 2 0.48 180 54,824 51,627 6 39,437 28 

9 3 0.48 180 82,236 74,930 9 59,156 28 

10 TR TR 180 82,236 76,364 7 47,324 42 

Seeding rate £---estimated plant population, Plant population¶—actual number of plants at harvest, pre-plant N¥---Urea 
(46-0-0) fertilizer applied. TR.—Twin row treatment  



32 

 

 
 
Table 2: Treatment structure with pre-plant N rate, seeding rate and harvest plant population at Efaw, OK, 2013. 

Treatment 

 

Seeds hill-1 

 

Plant spacing (m) 

 

Pre-plant N 

(kg ha-1) ¥ 

Seeding rate 

(seeds ha-1) £ 

Population (plants ha-1)¶ 

  

     
Measured % decrease 

1 1 0.16 130 82236 54884 33 

2 2 0.16 130 164473 68426 58 

3 3 0.16 130 246710 80050 68 

4 1 0.32 130 41118 27442 33 

5 2 0.32 130 82236 53686 35 

6 3 0.32 130 123355 40744 67 

7 1 0.48 130 27412 18694 32 

8 2 0.48 130 54824 22649 59 

9 3 0.48 130 82236 44459 46 

10 Mech. Mech. 130 82236 51649 37 

Seeding rate £---estimated plant population, Plant population¶—actual number of plants at harvest, pre-plant N¥---Urea (46-0-0) 
fertilizer applied. Mech.—Mechanical hand planter treatment. 
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Table 3: Linear regression results including coefficient of variation, r2, slope and slope significance for the relationship between grain 
yield with NDVI and IPAR, and between plant population at harvest and number of ears harvested at LCB and Efaw locations, 2012 
and 2013.  

Year 

Dependent 

Variable Independent Variable C.V (%) Slope Slope Significance  Model r2 

Efaw           

2012 Grain yield V8 NDVI 16.5 15.60 <.0001***  0.53 

2012 Grain yield IPAR 23.6 0.01 0.3201ns 0.04 

2013 Grain yield V8 NDVI 16.0 16.00 <.0001***  0.61 

2013 Grain yield IPAR 29.3 6.10 0.0011***  0.32 

2012 Plant population No. of ears 7.1 0.74 <.0001***  0.97 

2013 Plant population No. of ears 4.1 0.94 <.0001***  0.99 

LCB           

2012 Grain yield IPAR 42.0 4.14 0.1196ns 0.10 

2012 Grain yield V8 NDVI 44.0 3.10 0.2835ns 0.05 

2012 Plant population No. of ears 39.5 0.40 <.0001***  0.47 

C.V- coefficient of variation, r2-regression coefficient, *** -significant at 0.01 level of probability and ns-not significant. 
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Table 4: Analysis of Variance for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha -1) and N 
Content (%) at Efaw, 2012. 
Sources of 

NDVI V4 NDVI V6 NDVI V8 IPAR 
Grain Yield N Content  

Variation (Mg ha -1) (%) 
          

Mean Square 
    

  

          
Seeds per hill 0.0738***  0.0151ns 0.0600***  0.0334ns 11.46***  0.0025ns 

Plant spacing 0.1225***  0.0613***  0.0756***  0.0828***  6.39ns 0.0075ns 

Seeds per hill x Spacing 0.0034**  0.0054ns 0.0035ns 0.0031ns 12.58***  0.0071ns 

Seeds per hill. Spacing    Treatment Means             
1 0.16 0.4200 0.5633 0.7567 0.6133 11.06 1.25 

1 0.32 0.3100 0.6167 0.6000 0.4700 6.8 1.27 

1 0.48 0.2600 0.4800 0.5100 0.4233 6.51 1.19 

2 0.16 0.5700 0.6933 0.8100 0.6967 9.97 1.14 

2 0.32 0.4100 0.6400 0.7533 0.4933 10.58 1.26 

2 0.48 0.3333 0.4800 0.6400 0.5633 7.42 1.22 

3 0.16 0.6667 0.7167 0.8467 0.7300 9.6 1.17 

3 0.32 0.4900 0.6367 0.7833 0.5833 11.26 1.21 
3 0.48 0.3733 0.5500 0.7133 0.5500 11.68 1.25 
SED   0.02 0.05 0.03 0.09 1.27 0.06 
C.V (%)   7 11 5.7 19 16.4 6.2 

***, ** significant at 0.01 and 0.05 levels of probability respectively; ns not significant; SED – Standard Error of the difference 
between two equally replicated means; C.V. – Coefficient of Variation 
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Table 5: Treatment Structure and means for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha-
1) and N Content (%) at Efaw, 2012 

Treatment 
Seeds per 
hill 

Plant Spacing V4NDVI V6NDVI V8NDVI IPAR 
Grain Yield N Content 

(Mg ha -1) (%) 

1 1 0.16 0.4188 0.5626 0.7591 0.6162 11.06A 1.25BA 

2 2 0.16 0.569 0.692 0.8129 0.6952 9.97BA 1.14B 

3 3 0.16 0.6663 0.716 0.8454 0.7308 9.60BA 1.17BA 

4 1 0.32 0.3121 0.6189 0.5996 0.4699 6.80C 1.27A 

5 2 0.32 0.4109 0.6396 0.7543 0.4968 10.58A 1.26BA 

6 3 0.32 0.4913 0.6347 0.7838 0.5829 11.26A 1.21BA 

7 1 0.48 0.2605 0.4789 0.5118 0.422 6.51C 1.19BA 

8 2 0.48 0.3358 0.4768 0.6399 0.5636 7.42BC 1.22BA 

9 3 0.48 0.3764 0.5518 0.7111 0.549 11.68A 1.25BA 

10 TR 0.32 0.3801 0.4843 0.7126 0.5412 10.17A 1.24BA 

SED 
  

0.02 0.05 0.03 0.09 1.27 0.06 
C.V (%)     7 11 5.7 19 16.4 6.2 

TR – Twin row; SED – Standard Error of the difference between two equally replicated means; and C.V. – Coefficient of Variation; 
Means with same letter indicate LSD (α=0.05) are not significantly different.  
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Table 6: Analysis of Variance for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha-1) and N 
Content (%) at Efaw, 2013 

Source of Variation NDVI V4 NDVI V6 NDVI V8 IPAR 
Grain Yield N Content   

 (Mg ha-1) (%) 

    
Mean Square 

  

  

        
Seeds per hill 

 

0.0239***  0.0189***  0.0309***  0.0537**  9.66***  0.0142ns 

Plant spacing 
 

0.0004ns 0.0002ns 0.0584***  0.1442***  18.12***                 0.0048ns 
Seeds per hill x Spacing 0.0011**  0.0022***  0.0012***  0.0021***  5.61***  0.0109ns 
Seeds per hill  Spacing 

  
Treatment Means 

  

  

        
1 0.16 0.4135 0.5098 0.7057 0.5211 8.97 1.11 
1 0.32 0.4179 0.5649 0.5764 0.3328 4.01 1.20 
1 0.48 0.4238 0.5276 0.5163 0.3088 4.25 1.22 
2 0.16 0.5062 0.6025 0.7932 0.629 7.81 1.03 
2 0.32 0.4914 0.5952 0.6647 0.404 6.51 1.15 
2 0.48 0.4685 0.5692 0.6474 0.3614 5.55 1.12 
3 0.16 0.5493 0.6456 0.802 0.7039 7.43 1.17 
3 0.32 0.5196 0.6234 0.7288 0.5603 7.17 1.09 
3 0.48 0.5636 0.6643 0.6667 0.4582 7.02 1.09 

SED   0.01 0.01 0.01 0.1 0.52 0.06 
C.V (%)   3.6 2.5 1.6 26.2 9.1 6.6 

** and *** are significant at 0.05 and 0.01 probability level; ns not significant; SED – Standard Error of the difference between two 
equally replicated means; C.V. – Coefficient of Variation 
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Table 7: Treatment Structure and means for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha-
1) and N Content (%) at Efaw, 2013 

Treatment Seeds per hill 
Plant   

V4NDVI V6NDVI V8NDVI IPAR 
Grain Yield Grain N  

Spacing (Mg ha-1) Content (%) 

1 1 0.16 0.4135 0.5098 0.7057 0.5211 8.97A 1.11BAC 

2 2 0.16 0.5062 0.6025 0.7932 0.629 7.81BC 1.04C 

3 3 0.16 0.5493 0.6456 0.802 0.7039 7.43DC 1.17BA 

4 1 0.32 0.4179 0.5649 0.5764 0.3328 4.01F 1.20A 

5 2 0.32 0.4914 0.5952 0.6647 0.404 6.51DE 1.15BAC 

6 3 0.32 0.5196 0.6234 0.7288 0.5603 7.17DC 1.09BAC 

7 1 0.48 0.4238 0.5276 0.5163 0.3088 4.25F 1.22A 

8 2 0.48 0.4685 0.5692 0.6474 0.3614 5.55E 1.12BAC 

9 3 0.48 0.5636 0.6643 0.6667 0.4582 7.02DC 1.10BAC 

10 Mech. 0.16 0.464 0.5647 0.705 0.3971 8.76A 1.06BC 

SED 
  

0.01 0.01 0.01 0.1 0.52 0.06 
C.V (%)     3.6 2.5 1.6 26.2 9.1 6.6 

Mech. – Mechanical planter; SED – Standard Error of the difference between two equally replicated means; and C.V. – Coefficient of 
Variation; Means with same letter indicate LSD (α=0.05) are not significantly different.  
 

  



38 

 

Table 8: Analysis of Variance for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha-1) and N 
Content (%) at LCB, 2012 
Sources of NDVI V4 NDVI V6 NDVI V8 IPAR Grain Yield N Content 

Variation         (Mg ha -1) (%) 

  
Mean Square 

          

Seeds per hill 0.0082ns 0.0200ns 0.0188ns 0.0365**  1.63ns 0.0042ns 
Plant spacing 0.0001ns 0.0030ns 0.0226ns 0.0347**  3.32ns 0.0135ns 
Seeds per hill x  

     
Plant spacing 0.0040ns 0.0102ns 0.0312ns 0.0025ns 1.88ns 0.0062ns 

Seeds per hill Treatment Means 
          

1 0.244 0.277 0.3806 0.5137 2.57 1.50 
2 0.2689 0.3207 0.456 0.5953 3.36 1.50 

3 0.304 0.3712 0.4631 0.6392 3.03 1.48 

Plant Spacing  
0.16 0.2712 0.3189 0.4905 0.6522 3.8 1.45 
0.32 0.2703 0.3072 0.4112 0.5635 2.49 1.51 

0.48 0.2753 0.3428 0.3979 0.5325 2.75 1.51 

SED 0.05 0.06 0.04 0.07 1.1 0.09 
C.V (%) 20.2 24.2 34.6 15.1 44 7.6 

** Significant at 0.05 probability level; and ns not significant; SED – Standard Error of the difference between two equally replicated 
means; C.V. – Coefficient of Variation 
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Table 9: Treatment Structure and means for NDVI values, intercepted photosynthetically active radiation (IPAR), grain yield (Mg ha -

1) and N Content (%) at LCB, 2012 

Treatment 
Seeds per 
hill 

Plant 
Spacing 

V4NDVI V6NDVI  V8NDVI IPAR 
Grain Yield Grain N 

(%) (Mg ha -1) 

1 1 0.16 0.2448 0.254 0.3543 0.5789 2.83A 1.46A 

2 2 0.16 0.2917 0.3614 0.6168 0.6813 3.88A 1.5A 

3 3 0.16 0.2774 0.341 0.5005 0.6964 4.65A 1.37A 

4 1 0.32 0.2743 0.321 0.4617 0.5123 2.55A 1.54A 

5 2 0.32 0.2462 0.2758 0.3236 0.5381 1.98A 1.52A 

6 3 0.32 0.2908 0.3245 0.4484 0.6401 2.91A 1.54A 

7 1 0.48 0.2129 0.2555 0.3257 0.4499 2.32A 1.49A 

8 2 0.48 0.2689 0.325 0.4275 0.5665 3.76A 1.48A 

9 3 0.48 0.3441 0.4474 0.4404 0.5811 2.04A 1.54A 

10 TR 0.32 0.2581 0.3039 0.4775 0.6246 3.63A 1.46A 

SED 
  

0.05 0.06 0.12 0.07 1.1 0.09 
C.V (%)     20.2 24.2 34.6 15.1 44 7.6 

TR – Twin row; SED – Standard Error of the difference between two equally replicated means; and C.V. – Coefficient of Variation; 
Means with same letter indicate LSD (α=0.05) are not significantly different.  
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Table 10:  Field activities with hybrid used and planting dates, pre-plant N fertilizer dates, harvest dates, and sensing dates at  Efaw 
and Lake Carl Blackwell (LCB), OK. 2012 and 2013. 
  Year 2012 Year 2013 

Field Activity Efaw LCB Efaw 

Planting date 9-Apr-12 10-Apr-12 25-Apr-13 

Hybrid Pioneer P1498HR Pioneer P0876HR Pioneer P1498HR 

Pre-plant N Fertilization date¥ 2-Apr-13 29-Mar-12 18-Mar-13 

Harvest date 6-Aug-12 8-Aug-12 29-Aug-13 

Sensing date for NDVI at V4 7-May-12 7-May-12 28-May-13 

Sensing date for NDVI at V6 16-May-12 16-May-12 3-Jun-13 

Sensing date for NDVI at V8 23-May-12 23-May-12 11-Jun-13 

Sensing date for NDVI at V10 30-May-12 29-May-12 20-Jun-13 
¥ Pre-plant N fertilizer--urea (46-0-0) applied at uniform rate to all treatments. 
V (4, 6, 8, and 10) are maize growth stages. 
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Figure 1: Polynomial regression predicting maximum maize grain yield using final plant population at Efaw, 2012.
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Figure 2: The interaction effects of plant spacing (0.16m, 0.32m & 0.48m) and number of seeds per hill (1, 2 &3) on grain yields (Mg 

ha-1) averaged across replication at Efaw, 2012.  
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Figure 3: Polynomial regression predicting maximum maize grain yield using final plant population at Efaw, 2013. 
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Figure 4: The interaction effects of plant spacing (0.16m, 0.32m & 0.48m) and number of seeds per hill (1, 2 &3) on grain yields (Mg 

ha-1) averaged across replication at Efaw, 2013.  
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Figure 5: Polynomial regression predicting maximum maize grain yield using final plant population at LCB, 2012. 
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Figure 6: Grain yield (Mg ha-1) averaged across replications as influenced by plant spacing (0.16m, 0.32m & 0.48m) and the number 

of seeds per hill (1, 2 &3) at Lake Carl Blackwell (LCB) location, 2012. 
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APPENDICES 
 

 

Appendix 1: Treatment application with the mechanical hand planter at Efaw, 2013 
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Appendix 2: Treatment application with a poke stick at Efaw and LCB; 2012 and 2013. 
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Appendix 3: Average monthly air temperatures and rainfall at Lake Carl Blackwell and Efaw (Stillwater), Oklahoma 2013 (Mesonet 
database) 
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Appendix 4: Average monthly air temperatures and rainfall at Lake Carl Blackwell and Efaw, Oklahoma (Stillwater), 2012 (Mesonet 
database) 
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