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Abstract:

i. The aim of this study was to determine if methicillin-resistant Staphylococcus aureus
(MRSA) strains could be identified in the milk of dairy cattle in a Paso Del Norte region
dairy. Using physiological and PCR-based identification schemes, 40 S. aureus strains
were isolated from 133 milk samples analyzed. This investigation also included the
production of draft genome sequences of a MRSA and a methicillin-susceptible isolate.
Genomic analysis of these strains demonstrate that strains H29 and PB32 represent novel
clones of sequenced human and/or bovine-related strains of S. aureus.

ii. The draft genomes of a heterogeneous vancomycin-intermediate resistant
Staphylococcus aureus (VISA) strain MM66 and strain MM66RVI-4 expressing reduced
vancomycin-intermediate resistance harbored the same mutation in graS of a two-
component regulatory system. MMO66RVI-4 has also lost staphylococcal cassette
chromosome, SCCmec, corroborating methicillin-resistance in this strain and harbored
mutations present in vraG, encoding an ATP-binding cassette transporter. The observed
genetic alterations in both strains have been shown to affect vancomycin resistance levels
in VISA.

iii. Elizabethkingia species are environmental isolates that exhibit a multidrug-resistance
phenotype and are a cause of life-threatening infections in immunocompromised
individuals. To date, most studies have focused on the clinical aspects of this organism,
and little is known regarding its antimicrobial resistance mechanisms. In addition, the
phylogenetics and speciation of this genus is still highly controversial and has yet to be
thoroughly defined. In an effort to clear up confusion surrounding the speciation of this
genus as well as identifying possible antimicrobial resistance mechanisms, we report the
draft genome sequence of the E. meningoseptica type strain ATCC 13253".
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CHAPTER I

INTRODUCTION

1.1 Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is a Gram-positive pathogen that is responsible for
infections in both the hospital setting as well as in the community. S. aureus causes a
wide array of infections ranging from moderate skin infections to more life-threatening
infections such as endocarditis. In the early 1940s the B-lactam antibiotic penicillin was
first made commercially available to treat S. aureus infections. Today, greater than 80%
of S. aureus isolates are resistant to penicillin (113). The emergence of penicillin
resistance led to introduction of the semi-synthetic penicillin, methicillin. However, in
1961, methicillin-resistant S. aureus (MRSA) were reported (83). The MRSA phenotype
results from the acquisition of a mobile genetic element known as the staphylococcal
cassette chromosome mec (SCCmec) (65, 78). To date, 11 different SCCmec types have
been described and range from 21 kb to 58 kb in size (http://www.sccmec.org/). SCCmec
is comprised of a mec region containing the mecA gene (encodes an alternative penicillin

binding protein PBP2a), mec regulatory genes mecRI and mecl, two cassette



chromosome recombinase genes (ccr) responsible for site-specific integration/excision from

the chromosome and a “junkyard” region consisting of variable genes (79).

S. aureus isolates demonstrate resistance to the majority of antimicrobials used to
treat infections. S. aureus was reported to colonize the nasal nares of ~28% of the U.S.
population in 2004 (54) and if it contaminates a normally sterile site, it can cause infection. It
was estimated that in 2011, there were 80,461 invasive MRSA infections in the U.S. of
which resulted in 11,285 deaths (33). Risk factors for hospital-acquired MRSA infections
include MRSA colonization, prolonged or history of hospitalization, long-term care residence

and history of surgery (94).

Several molecular typing techniques are used to determine the spread of specific S.
aureus strains, which include multi-locus sequence typing (MLST) and pulsed-field gel
electrophoresis (PFGE). MLST uses sequencing of 7 housekeeping gene amplicons to group
MRSA strains into clonal complexes (CC) using “based upon related sequence types”
(BURST) analysis (43). The majority of S. aureus strains isolated worldwide belong to a
handful of CCs that include CC1, CCS5, CC8, CC9, CC15, CC22, CC25, CC30, CC45, and
CC51 (37, 143) with the rest belonging to smaller, less common clonal complexes. To date,
the largest clonal complex described is CC8 represented by 248 strains of both hospital-
acquired and community-acquired human isolates as well as animal isolates
(http://saureus.mlst.net/). PFGE is a method that uses specific infrequent cutting restriction
endonuclease enzymes (eg. Smal) to cleave genomic DNA into different sized fragments that
give distinct banding patterns for specific strains. This allows for the capability of
determining the possible gain or loss of mobile genetic elements and/or mutations via the

introduction or removal of restriction enzyme sites as determined by the number of bands
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seen on an agarose gel (183). Based on this method, the majority of S. aureus clones in the
U.S. are from twelve lineages, PFGE types USA100 — USA1200, which are representative of

hospital-acquired and community-acquired S. aureus strains (126).

S. aureus 1is also a pathogen of swine, horses, cattle and domestic animals. S. aureus
is the major cause of bovine mastitis (infection within the mammary gland), infecting
between 7% and 40% of all dairy cows in the United States (119). Bovine mastitis from
MRSA was first reported in 1972 and MRSA transmission appears to occur between animals,
and from animals to humans (39, 102, 114, 193). S. aureus mastitis causes scarring and
fibrosis of the mammary gland along with excretion of pus, thereby reducing the volume and
quality of the milk produced by the animal (12). In addition to the burden of reduced milk
production, the difficulty of treating S. aureus infections means that the primary strategy for
dealing with an infected animal is quarantine with antibiotic treatment, and in the case of
treatment failure, the animal will be culled (162). The economic impact of bovine mastitis S.
aureus infections is also difficult to estimate (~$2 billion in the US (192)) with losses coming
from reduced milk yield, replacement of culled animals, additional labor, and veterinary and
antibiotic costs (164). Carriage of MRSA by livestock has been shown to correlate with the
MRSA colonization of farmers and farm families, veterinarians and healthcare workers (85,
193, 202). There is also concern about the potential of MRSA to be transmitted to humans
through contaminated food products although what risk is actually posed remains a matter of
debate (20, 35, 95). MLST analyses have shown that livestock-associated MRSA belong to a
small number of CC with the most prevalent being CC398 and it is known that CC398 strains
also cause infections in humans (115, 160, 193). A recent report suggests that CC398 strains
emerged from a human evolved methicillin-susceptible S. aureus (MSSA) strain and that

3



livestock-associated MRSA sublineages arose during antimicrobial selection in livestock

(152).

1.2 Vancomycin

The evolution of methicillin resistance led to the pursuit of alternative treatments for
MRSA infections (43). In 1958, the glycopeptide antibiotic vancomycin was first used
clinically to fight infections caused by Gram-positive bacteria (103). Vancomycin, a
bactericidal drug, binds to the D-alanyl-D-alanine residues in growing peptidoglycan chains,
preventing the cross-linking of these chains and thus inhibiting peptidoglycan synthesis.
Vancomycin is currently the antibiotic of choice for treating serious MRSA infections in the

United States (103, 111).

1.3 Vancomycin-intermediate resistant Staphylococcus aureus

In 1997, the first vancomycin-intermediate resistant S. aureus (VISA) strain was
reported in Japan exhibiting a vancomycin minimum inhibitory concentration (MIC) of 8
pg/ml and since then, many more have been described globally (66). Heterogeneous
vancomycin-intermediate resistant S. aureus (hVISA) are strains that demonstrate a
vancomycin MIC within the susceptible range (MIC < 2 pg/ml) but have a subpopulation of
cells within the vancomycin-intermediate range (MIC = 4 - 8§ pg/ml) that are not detected by
standard broth and disk diffusion techniques. In 1996, Mu3 was the first hVISA strain
described in Japan from a patient with unsuccessful vancomycin treatment (64). Mu3
exhibits a vancomycin MIC of 3 pg/ml with a subset of cells that demonstrate vancomycin-
resistance up to 9 pg/ml vancomycin. In 2002, the first vancomycin-resistant S. aureus

(VRSA, MIC > 32 pg/ml) strain was isolated in the U.S. (23, 25). VRSA strains have been
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shown to carry van genes acquired from vancomycin-resistant enterococci that exhibit high-
level vancomycin resistance (197). The VISA mechanism in S. aureus differs from the van-
mediated resistance mechanism of VRSA. Several phenotypic changes exhibited by
hVISA/VISA strains have been described, which include reduced autolysis, thicker cell
walls, reduced peptidoglycan cross-linking and overexpression of PBP2 and PBP2a (14, 15,
30, 31, 34, 47, 62, 71, 86, 96, 118, 133, 146, 155, 171, 172). Comparative genomic studies
have identified several genetic changes associated with the hVISA/VISA phenotype,
however, the exact mechanisms of resistance are still poorly understood. The mechanism
behind vancomycin-intermediate resistance are sequential mutations (or a single mutation)
that fully or partially changes the function of a specific gene(s) (73). Mutations in genes
associated with the hVISA/VISA phenotype include rpoB, walKR, vraSR, graRS, agr, yycH,
yvqF, isdE (29, 50, 74, 81, 90, 121, 136, 142, 168, 205). Mutations in regulatory genes
involved in cell wall metabolism such as vraSR, graRS and walKR have most frequently been
associated with the VISA phenotype, however, the exact mutations found within these genes
can differ between S. aureus strains (32, 70, 72, 74, 89, 136, 137). Therefore, based on the
reported VISA descriptions to date, the VISA phenotype can result from multiple mutations

and/or mutation combinations.

1.4 Staphylococcus aureus genomics

The first S. aureus genomes were sequenced in 2001, which were MRSA strain N315
and VISA strain Mu50 (99). Sequencing of these genomes revealed that the majority of the
antibiotic and virulence genes of S. aureus reside on mobile genetic elements, i.e. plasmids,
bacteriophages, and pathogenicity islands (99). S. aureus genomes are ~2.8 to 2.9 Mbp in

size and have similar chromosomal synteny. The majority of the genome (~75%), known as
5



the “core genome,” is comprised of essential genes that encode proteins needed for cell
growth, cellular metabolism and replication (110). The other ~25% of the S. aureus genome
is considered the “accessory genome” which contains mobile genetic elements such as
plasmids and bacteriophages that can be transferred between strains (110). As of March
2014, a total of 50 S. aureus genomes have been completely sequenced with another 2,710
genomes in the draft genome state. Sequencing of whole genomes allows for the comparison
of genetic differences between organisms down to single nucleotide changes. Several studies
have used comparative genomics of closely related S. aureus strains, such as a parent strain
compared to the antimicrobial-resistant strain, to determine what mutations, if any, may be
responsible for the variations in susceptibilities. For example, Mwangi et al. was able to use
whole-genome sequencing to track the development of genetic mutations of a S. aureus strain
originally isolated as MRSA, and after undergoing vancomycin therapy, evolving to VISA
(136). The first S. aureus strain sequenced (JH1) was susceptible to vancomycin and was
isolated prior to vancomycin treatment. After the start of vancomycin treatment, a second S.
aureus strain (JH9) was isolated and exhibited a VISA phenotype. This method identified 35
mutations between the two S. aureus genomes that contributed to both the multidrug-resistant
and VISA phenotype of JH9 (136). In another study, Neoh ef al. used comparative genomics
of two closely related hVISA/VISA strains (Mu3/Mu50) to determine which mutations
contribute to their hVISA/VISA phenotype (137). In this study, 16 mutations were found
between the Mu3 and Mu50 genomes including a mutation in graR, the response regulator of
a two-component regulatory system, which shown to convert the hVISA strain Mu3 into a

full VISA strain, similar to that of Mu50 (137). As a whole, these studies demonstrate the



ability of using whole-genome sequencing as a means to ascertain the genetic basis of

antibiotic resistance of S. aureus.

1.5 Elizabethkingia species

The genus Elizabethkingia (formerly Chryseobacterium and Flavobacterium) belongs
to the phylum Bacteroidetes, within the Flavobacteriaceae family. Currently, the genus
consists of three species, E. meningoseptica, E. miricola and E. anophelis, with the latter
being the most recent addition. E. meningoseptica was isolated in 1958 from a case of
neonatal meningitis (17, 92), E. miricola from condensation water in the space station Mir in
2003 (105), and E. anophelis from the midgut of the mosquito, Anopheles gambiae, in 2011

(87).

Elizabethkingia species are Gram-negative, non-motile, non-spore-forming rods (17,
87, 91, 105). Colonies are circular, translucent, smooth, off-white in color and range from 1
um to 2 um in size (17, 87, 91, 105). Optimal growth is seen at 25 - 37°C but not at 5 or
42°C and growth on MacConkey agar is variable (17, 87, 91, 105). All species are oxidase,
catalase, and indole positive. Acid is produced from glucose, lactose, mannitol, maltose and
trehalose (17, 87, 91, 105). Acid is not produced from arabinose, xylose, adonitol, dulcitol,
raffinose, and salicin (17, 87, 91, 105). Acid production from rhamnose, sucrose, and
cellobiose is seen for E. anophelis, however no acid production is seen for E. meningoseptica
and E. miricola (17, 87, 92, 105). Aesculin hydrolysis is positive and starch hydrolysis is
negative for all three species, however urea hydrolysis is negative for E. meningoseptica and
E. anophelis and positive for E. miricola (17, 87, 92, 105). H,S production is positive for E.

miricola and negative for E. meningoseptica and E. anophelis (17, 87, 92, 105).



1.6 Clinical aspects of Elizabethkingia species

Elizabethkingia are opportunistic pathogens that have been found to be the cause of
many different types of infections in both adults and children. Infections are mainly found in
neonates and immunocompromised adults. The majority of infections reported are
presumably caused by E. meningoseptica, however, due to difficulties in speciation of the
members of this genus, the exact organism causing the infection is most likely unknown.
Infections reportedly caused by E. meningoseptica include meningitis (17, 92), sepsis (176),
endocarditis (13), pneumonia (106), bacteremia (107), cellulitis (176), sinusitis (174),
endophthalmitis (45), septic arthritis (97), peritonitis (145), keratitis (2), osteomyelitis (101),
pericarditis (112), pyoventriculitis (187) and necrotizing fasciitis (100). Several different
antibiotic therapies have been used in the treatment of infections caused by putative E.
meningoseptica that include ciprofloxacin, levofloxacin, gentamicin, vancomycin, rifampin,
piperacillin/tazobactam and linezolid (4, 24, 59, 60, 75). However, most infections are
unsuccessfully treated with the above therapies due to a multidrug-resistant (MDR)
phenotype exhibited by E. meningoseptica. To date, there has been only one report of an
infection caused by E. miricola and in that case it was originally misidentified as E.
meningoseptica (55). In 2013, the first case of infection caused by E. anophelis was
reported in Africa and identified through the utilization of 16S rRNA gene sequence
comparisons of type strains within the Chryseobacterium, Bergeyella, Riemerella,
Empedobacter and Elizabethkingia genera (48). Soon after the initial description of the first
E. anophelis infection, additional infections were reported in Singapore. These strains were
originally thought to be E. meningoseptica on the basis of matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF) (184). However, whole genome

8



alignments and 16S rRNA gene sequencing demonstrated that the isolates were more closely

related to E. anophelis than E. meningoseptica (184).

Elizabethkingia infections in humans have been linked to a wide variety of sources
that include contaminated sinks (21, 68), pasteurizers (31), aerosolizers (167), garden hoses
(167), humidifiers (174), chlorhexidine gluconate solution (28) and povidone iodine prep
pads. It has also been found in the pharynx, nose and throat of healthy babies, suggesting the
ability of humans to be asymptomatic carriers of Elizabethkingia (165, 186, 195). In addition
to clinical sources, Elizabethkingia have been isolated from a variety of other environmental

niches that include soil (188), water (188) and spent nuclear fuel pools (26).

Elizabethkingia are not only human pathogens but also have been isolated from many
different species of diseased animals. The first documented case in an animal was in 1974
from meningitis in a cat (173). Since then, many more infections have been documented in
animals including different species of frogs, freshwater fish, snakes, turtles, birds and dogs
(52, 56, 80, 124, 128, 203). Elizabethkingia have also been isolated from several different
species of insects that include the fowl tick Argas persicus and mosquitoes species Aedes
aegypti, Anopheles gambiae, Anopheles stephensi and Anopheles sinensis (41, 104, 108, 131,

154, 185).

1.7 Speciation of Elizabethkingia species

Since the initial isolation of E. meningoseptica, there have been some uncertainties
surrounding classification of new Elizabethkingia strains. Before the popularity/ease of
whole-genome sequencing, the DNA-DNA hybridization technique was used for defining

bacterial species. DNA-DNA relatedness of 70% or greater was recommended as the
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standard in delineating species (196). Parallel studies by Ursing and Bruun (1987) used
DNA-DNA hybridization and phenotypic characterization to separate several E.
meningoseptica strains into two genomic groups (18, 188). Group I, which included 3
isolates, demonstrated 90% or greater hybridization to the type strain of E. meningoseptica
(ATCC 13253"), while group II demonstrated 36-48% hybridization to ATCC 13253,
Despite these genetic differences seen with DNA-DNA hybridization, all strains were still
considered E. meningoseptica in the databases and even in recent publications. In 1994, six
Flavobacterium species, including FE. meningoseptica, were reclassified into the
Chryseobacterium genus based upon 16S rRNA similarities (189). In 2005, phylogenetic
(16S rRNA) and phenotypic data demonstrated that E. meningoseptica and E. miricola could
be differentiated from other Chryseobacterium species, therefore transferring these species to
the new genus Elizabethkingia (91). Additionally, in that same study, DNA-DNA
hybridizations of several Elizabethkingia strains were confirmed (91). However, in all studies
to date, the decision to not separate the genetically different E. meningoseptica type strain
from other Elizabethkingia strains is due to no distinct phenotypic variations or differences
seen in 16S rRNA sequences among the strains. Today, 16S rRNA sequencing is continually
being used for the speciation of Elizabethkingia strains despite the inability of this
methodology to differentiate between the species of this genus. In an effort to demonstrate
why 16S rRNA sequence comparison is a poor predictor for speciation of Elizabethkingia, a
phylogenetic tree was constructed using 59 publicly available Elizabethkingia 16S rRNA
gene sequences (1287 bp in length). Figure 1 clearly demonstrates that the species within
this genus cannot be separated from each other on the basis of 16S rRNA sequence due to the

fact that all three species within this genus are intermingled. In addition, the species names
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already given may be incorrect due to speciation being determined primarily using the 16S
rRNA sequences. Genomic differences seen with the DNA-DNA hybridization studies
demonstrate that the E. meningoseptica type strain is clearly a different species from the
majority of the other reported E. meningoseptica strains (91, 188). Since there is little, if any,
discernible phenotypic differences between Elizabethkingia species and 16S rRNA
sequencing does not effectively discern Elizabethkingia species, this has led us to complete
and compare the draft genomes of E. meningoseptica and the recently characterized E.

anophelis organisms in an effort to further delineate evolutionary relatedness.
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PINT (E. meningoseptica)
AMA (E. meningoseptica)
DBP-WUST (E. meningoseptica)
- GEO (E. meningoseptica)
- pp5b (E. meningoseptica)
HO1J100 (E. meningoseptica)
AB1572 (E. meningoseptica)

CIP 7830 (E. meningoseptica)
I— GTC 862 (E. miricola type strain)

R3-4A (E. meningoseptica)
CheO1 (E. meningoseptica)
1F4 (E. meningoseptica)

ATCC 33958 (E. miricola)
—*Clp 79.5 (E. meningoseptica)
LDVH 337.01 (E. meninaoseptica)
NTU 870424-IL (E. meningoseptica)
W2 (E. meningoseptica)

W1 (E. meningoseptica)

W3 (E. meningoseptica)
CS 2-1 (E. meningoseptica)
LMG 4027 (E. meningoseptica)
ATCC 13253 (E. meningoseptica type strain)
—— D14018 (E. meningoseptica)

— BAB-227 (E. meningoseptica)

- 12420 (E. meningoseptica)

- CIP 6057 (E. meningoseptica)
JL1 (E. meningoseptica)

L99 (E. miricola)

M58791 (E. meningoseptica)

UW101 (Flavobacterium johnsoniae)

Figure 1. Maximum likelihood tree based on 16S rRNA gene sequences from
sequenced Elizabethkingia in the NCBI database (http://www.ncbi.nlm.nih.gov/).
Flavobacterium johnsoniae UW101 was used as an outgroup. Bar represents
0.02 substitutions per nucleotide position over 1287 bp.

12



1.8 Goals of these studies

i. The purpose of this study was to characterize numerous S. aureus strains isolated from raw
milk samples collected from mastitic and healthy dairy cattle from a Paso Del Norte region
dairy. This investigation also included the production of draft genome sequences of a MRSA
and a MSSA isolate, and the comparison of these draft genomes with S. aureus genomic

sequences present in the databases.

ii. Previously, a clinical hVISA strain, MM66, was isolated from the Memorial Medical
Center in Las Cruces, New Mexico (38). In an effort to provide more information on the
nature of the hVISA mechanism in MM66, we have completed the draft genomes of MM66

and a MM66 isolate (MM66RVI-4) expressing reduced vancomycin-intermediate resistance.

iii. FElizabethkingia species are environmental isolates that exhibit a multidrug-resistance
phenotype and are a cause of life-threatening infections in immunocompromised individuals.
To date, most studies have focused on the clinical aspects of this organism, and little is
known regarding its antimicrobial resistance mechanisms. In addition, the phylogenetics and
speciation of this genus is still highly controversial and has yet to be thoroughly defined. In
an effort to clear up confusion surrounding the speciation of this genus as well as identifying
possible antimicrobial resistance mechanisms, whole genome sequencing of the F.

meningoseptica type strain was utilized.
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CHAPTER II

MATERIALS AND METHODS

2.1 Bacterial storage and preparation of stock plates

Stock cultures of S. aureus were maintained on either Mueller Hinton agar
(MHA), Luria Broth agar (LBA) or Tryptic Soy Agar (TSA) and E. meningoseptica
ATCC 13253" were maintained on nutrient agar (NA) plates at 4°C.  Single colonies
were used to initiate growth in 2 ml of liquid media which were grown overnight at 30°C
(E. meningoseptica) or 37°C (S. aureus strains) in a shaking incubator (200 rpm). Five
hundred microliters of overnight cultures were transferred to a cryotube containing 500
ul of 50% glycerol to reach a final glycerol concentration of 25%. These glycerol stocks
were then stored at -20°C and -80°C and were used to streak bacterial isolates onto

working stock plates.

2.2 Isolation and characterization of S. aureus dairy strains

Samples of raw milk were collected from 33 hospital cows, some receiving
antibiotic treatment, and 100 healthy cows in two milking parlors (A and B) at a local

dairy. The isolation of S. aureus strains was carried out as follows.
14



Briefly, 100 pl of phosphate buffered diluted milk samples were spread onto Baird-
Parker agar (Becton Dickinson and Co., Sparks, MD) plates and incubated at 37°C for
48 h. Resulting colonies were then subjected to Gram staining, a catalase test with 3%
hydrogen peroxide and a coagulase test using rabbit plasma (Becton Dickinson and Co.).
Presumptive S. aureus isolates were further scrutinized on mannitol salt agar (Acumedia
Manufacturers, Inc., Lansing, MI) plates. Luria broth (LB) cultures of all presumptive
isolates were then grown overnight and glycerol (20% v/v) was added to aliquots which
were then stored at -80°C. Working cultures of these isolates were maintained on LBA
plates at 4°C. Total DNA from 20 ml LB overnight cultures of 40 suspected S. aureus
milk isolates, two positive control S. aureus lab strains (COL and ATCC 25923) and a
negative control culture (Staphylococcus epidermidis ATCC 12228), were isolated as
described below (157). These DNA samples were then scrutinized by a PCR protocol
designed to detect the S. aureus-specific nucA nuclease gene or for mecA as previously

described (16, 134).

2.3 Milk growth curves

The growth rate of ten S. aureus dairy strains plus one laboratory strain, COL in
TSB and commercially available milk was compared. Briefly, overnight cultures were
diluted in 1 X phosphate buffered saline (PBS) to an ODgspnm of 0.01. Five hundred
microliters of diluted culture was then added to 50 ml of TSB or milk followed by
incubation at 37°C with shaking (200 rpm). Serial dilutions (10-fold) were carried out
and colony counts (CFU/ml) were determined on TSA plates at time-points 0, 1, 2, 3, 4,

6, 8 and 24 h following incubation at 37°C for 18-24 h.
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2.4 Vancomycin-susceptible MM 66 mutant isolation

Selection of the vancomycin-susceptible MM66 mutant, MM66RVI-4 was done
using a replica plating method, by Mitchell Nelson (New Mexico State University).
Briefly, a 5 ml LB culture of MM66 was maintained by passaging a 10% inoculum (final
v/v) through drug-free LB everyday for 14 days. At days 7 and 14, the cultures were
serially diluted to 10 and 100 ul aliquots of the diluted cultures were pipetted onto an
LBA plate and spread across the surface using a sterile cotton swab, followed by
incubation overnight at 37°C. A Kimwipe (Kimberly-Clark Professional, Dallas, Texas)
was stretched across a PVC replica plating tool (Bel-art Scienceware, Wayne, NJ) and
secured with a rubber band. The inoculated plates were then inverted and pressed onto
the surface of the Kimwipe with slight pressure. The resulting imprinted Kimwipe was
then used to transfer colony imprints onto drug-free LBA plates (control plates) and onto
plates containing 1 pg/ml vancomycin. The plates were then examined for vancomycin
susceptible mutant colonies that grew only on the control plates and not the vancomycin-
containing plates. Single suspected vancomycin-susceptible mutant colonies were then
picked off the drug-free plates and used to inoculate 3 ml of drug-free LB and grown
overnight (37°C, 200 rpm). Inoculums from these overnight cultures were then used to

create 20% glycerol freezer stocks and stored at -80°C.

2.5 Extraction of genomic DNA

Initially, strains were grown overnight in 25 ml of LB at 37°C (200 rpm) for S.
aureus strains, 25 ml of nutrient broth (NB) at 30°C (200 rpm) for E. meningoseptica
ATCC 13253". Cells were harvested by centrifugation at 7, 598 x g for 8 min. at 4°C and

resuspended in 3 ml of lysis solution (20 mM Tris-HCI; 2 mM EDTA; 1.2% Triton X-
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100; pH 8.0). Lysostaphin was added to the S. aureus isolates to a final concentration of
10 mg/1 and lyzozyme was added to the Elizabethkingia isolates (final concentration of 2
mg/ml) and samples were incubated at 37°C or 30°C for 2 hr. After incubation, 0.3 ml of
a 5% w/v SDS-50% v/v ethanol solution was added and vortexed for 10 s followed by the
addition of 2 ml of phenol/chloroform/isoamyl alcohol (25:24:1; Sigma Aldrich).
Samples were centrifuged at 47,488 x g for 10 min at 4°C and the supernatant was
transferred to a new tube. The aqueous phase was extracted with an equal volume of
chloroform (Sigma Aldrich), vortexed and centrifuged at 16,100 x g for 10 min at 4°C.
The supernatant was then transferred to a new tube and two times the volume of 100%
ethanol (Pharmco-Aaper, Brookfield, CT) was added and mixed well followed by
centrifugation at 16,100 x g for 25 min at 4°C to pellet the DNA. The pellet was
resuspended in 1 ml of TE buffer and RNAse-A (Sigma Aldrich) was added to a final
concentration of 20 mg/l. Samples were incubated overnight at room temperature.
Following overnight incubation, 0.2 ml of phenol/chloroform/isoamyl alcohol (25:24:1)
was added, vortexed and centrifuged at 16,100 x g for 10 min at 4°C to get the aqueous
phase. An equal amount of chloroform was added to each sample and again centrifuged
at 16,100 x g for 10 min at 4°C. The aqueous phase was then transferred to a new tube
and one times the volume of 3 M sodium acetate and two times the volume of 100%
ethanol was added. The samples were centrifuged once again at 16,100 x g for 10 min at
4°C and the supernatants were decanted. The samples were allowed to dry at room
temperature for 10 min then the DNA pellet was dissolved in 30 ul of 1X TE buffer. The
purity and integrity of the DNA sample was determined by gel electrophoresis. Extracted

DNA was stored at -20°C.
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2.6 Draft genome sequencing

The draft genomes of S. aureus H29 and PB32 were sequenced (>20X overall
coverage) using Roche 454 GS (FLX Titanium) pyrosequencing according to
manufacturer’s instructions at New Mexico State University (Las Cruces, NM). All reads
were assembled into contigs utilizing the Newbler assembler (v 2.3; 454 Life Sciences).
Draft genomes of S. aureus MM66 and MM66RVI-4 were produced with the Roche 454
GS (Junior) pyrosequencing platform at Oklahoma State University. Sequencing of
MM66 generated 187,437 reads (>30 X coverage; average read length 455.4 bp) while
MM66RVI-4 generated 213,277 reads (>30 X coverage; average read length 468.58 bp).
Both genomes were assembled using the Roche GS de novo assembler (v 2.7). Contigs
from S. aureus genomes were then compared to other genomes in the databases utilizing
BLASTn (http://blast.ncbi.nlm.nih.gov/). Sequence types (ST) and allele numbers were

determined with the S. aureus MLST website (http://saureus.mlst.net) using sequences

obtained from 454 sequencing.

The draft genome of E. meningoseptica ATCC 132537 was sequenced using the
Roche 454 GS Junior pyrosequencing platform according to manufacturer’s instructions
at Oklahoma State University. Sequencing of ATCC 13253" produced 223,447 reads
(29.7 X coverage, average read length = 504.9 bp) that were assembled with Roche GS
de novo assembler (v 2.7). All draft genomes were then uploaded into the Rapid

Annotation using Subsystem Technology (RAST) server for annotation (6).
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2.7 Pulsed-field gel electrophoresis (PFGE)

Initially, S. aureus strains were grown overnight in 5 ml of MHB at 37°C (200
rpm). The cultures (600 pl) were then transferred to microcentrifuge tubes and harvested
by centrifugation (16,100 x g, 5 min, 25°C). The supernatant was then decanted and the
pellet was resuspended in 400 pl PIV buffer (10 mM Tris-HCI; 1 M NaCl) and vortexed
gently. The cells were reharvested (16,100 x g, 5 min, 25°C) and the microcentrifuge
tubes were blotted to remove excess fluid. The pellet was resuspended in 200 pl of PIV
buffer and mixed by pipetting. Each cell suspension was then diluted 1/200 with PTV
buffer and the ODgoonm Was read. To ensure that all samples have the same cell
concentration, the ODgoonm Value was put into the following dilution formula: (OD x 40 x
210) -210. A 1.5% low melting point agarose (Sigma Aldrich, St. Louis, MO) solution
was then made up in 0.5X TBE (50 mM boric acid, 50 mM Tris, 1 mM EDTA) as
required (150 pl of the agarose is required for each strain investigated). The solution was
microwaved until the agarose dissolved and was then equilibrated in a 60°C water bath
for 5 min. In a microcentrifuge tube at 60°C, initially 150 pl of the 60°C agarose and 150
ul of cells are added and then mixed via vortexing. Twenty five microliters of this cell
suspension is then pipetted onto a flat parafilmed slide surface and covered with another
parafilmed slide with 1 mm spacers and the disks are frozen at -20°C for 10 min. The
lysis solution was prepared by adding 1 ml of EC buffer (1 M NaCl, 6 mM Tris-HCI; pH
8.0, 100 mM EDTA, 0.2% sodium deoxycholate, 0.5% sarkosyl), plus 2 mg/ml of
lysozyme (Sigma Aldrich) powder and 8 pl of lysostaphin (Sigma Aldrich; 10 mg/ml
stock) per strain to a microcentrifuge tube. All the disks from a single strain were then
placed in 1 ml lysis solution in a microcentrifuge tube and allowed to lyse for 3 h at
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37°C. After lysing, the tubes were placed on ice for 10 min. to firm the disks. The lysis
buffer was then removed by pipetting and 1 ml of ES buffer (500 mM EDTA, 1%
sarkosyl) and 10 pl of Proteinase K (Sigma Aldrich; 10 mg/ml stock) was added per
strain and the samples were left overnight in a 50°C water bath. The next day, the
samples were placed on ice for 10 min. and the buffer was removed and the disks were
washed in TE buffer (10 mM Tris-HCI, pH 7.6; | mM EDTA) at 37°C for 1 h. This was
step was repeated five times with the last rinse being overnight for the total removal of
the protease. At this stage the disks can be stored at 4°C indefinitely. The disks were
placed on ice for 15 min prior to digestion. For each disk, 50 pl of restriction buffer
(Buffer 4, New England Biolabs) was prepared for equilibration and 50 pl for digestion
for a total of 100 pl per strain. Remove one disk and place into a tube containing 50 pl of
restriction buffer and the disk was equilibrated for 30 min at 25°C (recommended
temperature for the Smal enzyme). The restriction mix was prepared by adding 1.2 pl of
Smal enzyme per strain to 50 pl of the diluted buffer 4 mix. The equilibration buffer was
removed from the tubes containing the disks and the 50 pl of restriction mix was added
and the tubes then sat overnight at 25°C. The pulsed field gel was a 1% agarose (BioRad,
Hercules, CA) made in 0.5X TBE (45 mM Tris; 45 mM Boric acid; 1 mM EDTA, pH
8.0) and the running was also 0.5X TBE which was cooled in the pulsed field unit to 4°C
approximated 30-40 min before loading the digested agarose disks. The disks were
placed on wet ice for 10 min prior to loading the gel. Using a spatula, the disks were
loaded against the bottom part of the well and once all disks were loaded, each well was
sealed with 1.5% agarose. The gel was placed in the unit and the running conditions (6

volts/cm, initial switch time of 1 s, final switch time of 30 s, temperature of 11.3°C, and a
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total run time of 23 h) were set. Once the gel was run, it was stained with ethidium
bromide for 45 min and then washed with double distilled water for another 45 min. The
image of the ethidium-stained Smal bands was captured using the BioRad Gel Doc

program and analyzed visually.

2.8 Antibiotic susceptibility testing

2.8.1 Kirby-Bauer disk diffusion

The antimicrobial susceptibility was determined by the Kirby-Bauer disk
diffusion method according to the CLSI (76). A single colony of each isolate was
inoculated into 2 ml of MHB and incubated overnight at 30°C (Elizabethkingia strains) or
37°C (8. aureus strains), 200 rpm. Cultures were diluted to an ODgpsnm of 0.1 in fresh
MHB. Each adjusted suspension was then streaked onto MHA plates using a sterile
cotton swab and antibiotic disks (Remel, Lenexa, KS) were put onto the bacterial lawn
and incubated at appropriate temperature for 24 h. Zones of inhibition were then

measured in mm.

2.8.2 Gradient plate analysis

Gradient plate analyses were performed as described previously (151). Briefly,
gradient plates were prepared by pouring 40 ml of MHA into a 90 mm x 90 mm square
petri dish raised at one side by a 1 ml pipette (6 mm) and left to dry overnight. After 24
h, 40 ml of MHA containing the correct antimicrobial concentration was then poured on
top of the drug-free layer and allowed to solidify for 3 h at room temperature. Overnight

MHB cultures grown at 37°C (S. aureus strains) or 30°C (Elizabethkingia strains), 200
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rpm, were diluted in fresh MHB to an ODgsqm of 1.0. The resulting diluted cultures were
used to streak the gradient plates three times (using a sterile cotton swab) for each row, in
a concentration dependent manner (low concentration to high concentration). Plates were
incubated for 48 h (37°C or 30°C) and distance of confluent growth along the gradient

was measured and recorded in mm.

2.8.3 Vancomycin E-test

Vancomycin E-tests were performed as described by the manufacturer’s
instructions (AB Biodisk, New Jersey). Overnight S. aureus MHB cultures (37°C, 200
rpm) were diluted to an ODgoonm 0f 0.25. A cotton swab, dipped into the diluted cultures,
was then used to spread an even inoculum onto MHA plates containing 2% NaCl. The
plates were allowed to dry for 15 min and a single vancomycin E-test strip was placed in
the center of the plate with tweezers flamed in 95% ethanol. After 24 h incubation
(37°C), the MIC was read at the concentration at which growth was inhibited per

manufacturer’s instructions.

2.9 Vancomycin growth curves

Duplicate cultures (250 ml) were initiated with a 2 % (v/v) inoculum from LB
overnights of MM66 and MM66RVI-4 (37°C, 200 rpm). Cultures were grown to an
ODsgonm of 0.4 and then vancomycin was added (2.5 pg/ml final concentration) to one
flask per strain. Sterile water was added to the second flasks as the control. Cultures

were then incubated at 37°C, 200 rpm and the ODsgonm Was read every h for a total of 8 h.
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2.10 Vancomycin population analysis

Vancomycin population analyses were performed as previously described with
slight modifications (151). Overnight MHB cultures of S. aureus strains MM66 and
MM66RVI-4 (37°C, 200 rpm) were adjusted to an ODsgonm 0f 1.0 in fresh MHB and then
serially diluted to 10°. A 10 pl aliquot of each dilution was inoculated onto MHA plates
containing increasing concentrations of vancomycin (0 to 2.7 pg/ml). Following
overnight incubation at 37°C, colony counts were then determined on plates containing

dilution spots with 10 to 50 colonies.
2.11 Sequence analysis and phylogenetic tree construction

Sequence homology comparisons were done utilizing sequences within the

GenBank databases using the BLAST (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and

RAST programs (6). Nucleotide and protein sequence alignments and respective percent
identities were produced using MacVector (v 12.6.0). Multiple sequence alignments for

construction of the phylogenetic trees were completed using the Molecular Evolutionary
Genetics Analysis (MEGA v5.2.1) software (182). The models used for the evolutionary

distances were determined by MEGA (182).

In total, 59 partial 16S rRNA gene sequences (> 1000 bp) were obtained from the

NCBI databases (http://www.ncbi.nlm.nih.gov/pubmed/). Alignment of the sequences

was performed using the MUSCLE algorithm and trimmed to equal lengths (1287 bp).
The evolutionary distances (phylogenetic tree) were computed using the Kimura 2-
parameter method (Kimura, 1980) and Flavobacterium johnsoniae UW101 was used as

an outlier.
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Protein sequences of RpoB, GyrB, GroEL were obtained from the NCBI
databases for 19 species of the Chryseobacterium, Flavobacterium, Riemerella and
Elizabethkingia genera. Alignments were first performed for each protein individually
and the resulting alignments were trimmed to equal lengths (GyrB, 228 amino acids (aa);
RpoB, 249 aa; GroEL, 131 aa). The final trimmed protein sequences were combined
end-to-end (GyrB, RpoB, GroEL; total size: 608 aa) for each species to obtain one
concatenated protein sequence. A MUSCLE alignment was performed using the
concatenated protein sequences and then used for construction of the phylogenetic tree.

The evolutionary distances were computed using the Jones-Taylor-Thornton model (84).

Fourteen different protein sequences of previously characterized RND transporter
genes were obtained from the NCBI databases and aligned to the 5 RND transporter
sequences from E. meningoseptica ATCC 13253". Alignment of the proteins was
performed using the MUSCLE algorithm and used for construction of the phylogenetic
tree. The evolutionary distances were computed using the Whelan and Goldman (WAG)

model (198).
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CHAPTER III

RESULTS AND DISCUSSION

3.1 Isolation and characterization of S. aureus strains from a Paso Del Norte dairy

Growth on Baird Parker and mannitol salt agar, Gram stain and catalase reaction
presumptively identified 40 S. aureus isolates from 29 milk samples. More than one
isolated colony was chosen from samples that showed variable reactions on the selective
media above (designated by strain number followed by a, b, or ¢). All 40 of these isolates
were coagulase and nucA positive. These isolates included 7 from hospital cows (H
strains), 18 from parlor A cows (PA strains) and 15 from parlor B cows (PB strains).
None of the strains investigated demonstrated resistance to vancomycin by disk diffusion.
All H strains except H15¢ were oxacillin-resistant, yet all 7 H strains were mecA positive.
One H strain (H30) also demonstrated erythromycin resistance, while 3 H strains (H24,
H26a, H26b) demonstrated resistance to ciprofloxacin and erythromycin. Strain H29
demonstrated resistance to both of these antimicrobials, as well as tetracycline and

imipenem, and inducible clindamycin resistance. None of the PA and PB strains were
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methicillin-resistant or mecA-positive. PA18 however demonstrated ciprofloxacin and

erythromycin resistance, while PB26b demonstrated resistance to fusidic acid.

Contamination of milk by S. aureus has been previously linked to staphylococcal
food-borne outbreaks (5, 46, 135). Studies have also revealed that virulence of S. aureus
is significantly increased when grown in milk whey compared to growth in TSB (120). In
addition, mastitis isolates have also demonstrated the ability to resist phagocytosis by
bovine cells when grown in the presence of milk (180). A representative milk and TSB
growth curve was produced to examine the ability of select dairy isolates (H29, H15a and
PB32) and a common S§. aureus laboratory strain (COL) to grow in commercially
available milk compared to standard laboratory media (Figure 2). Both COL and H29
produced similar numbers of CFU/ml in milk as they did in TSB, however COL
produced fewer CFU/ml in milk compared to H29 (Figure 2). Strains H15a and PB32
exhibited a decrease in CFU/ml when grown in milk compared to growth in TSB and
both strains demonstrated differences in the levels of growth when compared to COL and
H29 (Figure 2). All strains investigated demonstrated the ability to grow in milk and
suggests the ability of these strains to be a source of staphylococcal food-borne

intoxication outbreaks.
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Figure 2. Representative growth curves for four Staphylococcus aureus strains (COL, H29,
H15a and PB32) grown in milk and tryptic soy broth (TSB).

PFGE of Smal-digested DNA separated the 40 strains into multiple pulsed-field
types (PFT). PFT-A was the most frequently isolated PFT, representing 37.5% (n = 15)
of all isolates (Figure 3). PFT-B contained the largest number of H strains (n = 5) and
PAI18, all of which demonstrated resistance to two or more of the antimicrobials
investigated. PFT-C, -D and -E all contained two or more strains isolated from a single
milk sample, which indicates the clonality of the colonies isolated from these milk

samples. In two instances where more than a single S. aureus colony was chosen from
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one milk sample (PA8a and PA8b; PA10a and PA10b), PFGE analysis revealed that the
Smal restriction fragment length polymorphisms were different (Figure 3). Both PA8b
and PA10b clustered within the PFT-A strains, while PA8a and PA10a clustered close to
PFT-A strains (Figure 3). This suggests that more than one S. aureus clone was present in

each of these milk samples.

We next chose two strains for 454 sequencing. One was H29 which was a
representative of the most widely distributed MRSA clone (PFT-B) and the other was
PB32, which was a MSSA clone from PFT-C, that was most related to the PFT-B MRSA

clones identified in this study.

The draft genome of MRSA strain H29 derived from 119 contigs (all >200 bp in
length), consists of 2,844,315 bp, which encodes for 2,664 protein-coding genes. MLST
revealed that strain H29 is ST5 (1,4,1,4,12,1,10), a sequence type that contains human
MRSA isolates and is found within CC5. The presence of ST5S MRSA strains circulating
in Paso Del Norte area hospitals located near the dairy investigated has previously been

reported on (38, 141).

Overall, the H29 draft genome (accession no. PRINA179361) proved to be 100%
identical over 97% of the human MRSA strain JHI genome (accession no. NC009632)
by BLASTn comparisons. S. aureus JH1 is also an ST5 strain that was isolated from a
patient with endocarditis and the JH lineage is capable of developing intermediate
resistance to vancomycin (136, 170). A vancomycin E-test demonstrated that H29 does

not demonstrate vancomycin-intermediate resistance.
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Figure 3. Pulsed-field gel electrophoresis (PFGE) patterns of Smal-digested
chromosomal DNA of Staphylococcus aureus strains investigated and dendrogram of
percent relatedness derived from the patterns. Asterisks represent the two strains that
were sequenced.
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Contig 1 (27,139 bp) of the H29 draft genome represents a -lactamase plasmid
that had only 42% nucleotide similarity to plasmid pSJH101 (accession no. NC009619)
found in JHI1; yet was 99.5% identical to plasmid SAP048A (27,268 bp; accession no.
GQ900406) found in S. aureus strain NE 3809, a human clinical blood isolate from
Nebraska. SAPO48A is a representative of pIB485-like plasmids that carry ATn552
encoding p-lactamase and a cluster of staphylococcal enterotoxin genes (sed, sej, and ser)
that have contributed to outbreaks of S. aureus food-born illness (for review see
Gustafson and Wilkinson, 2005; Shearer et al., 2011). In addition, contig 34 of H29
demonstrated 97% nucleotide identity to a previously described enterotoxin gene cluster
(egc) operon that encodes five enterotoxin genes, seo, sem, sei, sen, seg and two
pseudogenes, ¢gentl and ¢gent2, located on the vSaf} genomic island (82, 99). The H29
draft genome also contains the SCCmec sequence type II which harbors a erythromycin
resistance gene (erm) (77), a Tn916-like transposon containing the tetracycline resistance
gene fetM (36), and a mutation in the DNA gyrase gene (gyr4) that leads to a **S>™L

alteration in GyrA that has previously been tied to ciprofloxacin resistance (161).

The draft genome of MSSA strain PB32 (accession no. PRINA179544) derived
from 80 contigs consists of 2,808,519 bp which encodes 2,632 protein-coding genes.
MLST sequences derived from the draft genome confirmed PB32 as a STI124
(3,1,1,37,1,5,3) strain of CC97, which is represented by bovine as well as shared
bovine/human strains (175). There does not appear to be any readily identifiable plasmid

sequences in the PB32 draft genome.
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Overall, the PB32 draft genome (accession no. PRINA179544) proved to be
100% identical over 94% of the human MRSA strain 04-02981 genome (accession no.
CP001844.2) by BLASTn comparisons. Strain 04-02981 is a plasmid-less ST225
(1,4,1,4,12,25,10) multidrug-resistant SCCmec sequence type Il strain that was isolated in
Koéln in 2004. (140). The ST225 sequence type first described in the 1990s in the USA
represents a single locus variant of STS strains and the genome of 04-02981 is also co-

linear with the JH1 genome (140).

S. aureus SCCmec insertion is carried out by site-specific recombination between
the attB site on the chromosome and the a#tS site on SCCmec (78, 88). This
recombination event results in copies of the atf sites at each end of SCCmec, with attR
within orfX and attL at the other end of the SCCmec (194). A 27,082 bp segment within
contig 15 (215,480 bp) contains several genes previously described in SCCmec elements
as well as the artL attachment site (Figure 4). These genes include the recombinase genes
ccrA and ccrB, pbp4, and an arsenic resistance operon (arsA-D, arsR). It has been
reported that all ST225 and JH strains carry the same ccrB gene (140). The ccrB gene of
PB32 however only demonstrated 93% nucleotide identity to the ccrB of the ST225 strain
04-02981 and 39% nucleotide identity to the ccrB of the JHI1 strain. mecA and mecA
controlling genes (mecl and mecRI) were not present in the draft genome of PB32. In the
PB32 draft genome, orfX is found on one end of contig 75 (130,864 bp) as well as the
attR attachment site (Figure 4) suggesting that contig 15 and contig 75 belong together. S.
aureus strains that possess chromosomally-located remnants of SCCmec determinants,
including some with a pbp4 gene, have been reported on (27, 42, 109, 116, 169, 200) and
we suspect that sequences within contigs 15 and 75 described here represent a novel
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SCCmec remnant. It is of interest to note that like PB32, ST225 MSSA isolates can also

carry SCCmec remnants (140).

PB32 contains another mobile genetic element, a novel bovine staphylococcal
pathogenicity island (SaPIbov) located within contig 66 (127,041 bp) which will be
referred to as SaPlbovPB32. Sequence comparison of SaPIbovPB32 (nt 90,549 —
104,940) with other SaPIbov sequences, demonstrated the greatest nucleotide identity to
SaPIbov5 (accession no. HM228919) at 79% identity followed by 66% identity to
SaPIbov4 (accession no. HM211303) (191). SaPIbovS5 (13,526 bp) was described in a S.
aureus ST398 clone (191). Staph. aureus strains that contain SaPIbov5 have been
isolated from different animals including cows, sheep and goats (191). SaPIbovPB32 is
14,391 kb in length and is flanked by 21 bp direct repeats that are found in other SaPIbov
sequences (Figure 5). Of the 18 open reading frames (ORF) found in SaPIbov5, 11 were
shared with SaPIbovPB32, which included the integrase, excisionase, primase-like genes
as well as a von Willebrand factor-binding gene (vwb). PB32 also has a second vwb
variant located on contig 12. Like PB32, it has been previously been reported that
ruminant-associated S. aureus strains possess two variants of vwb, one located on
SaPIbov and another located elsewhere on the chromosome (58, 191). The vwb gene
contained within the SaPIbov is responsible for coagulation of ruminant-specific plasma
and is suggested to play an important role in host-adaptation (58, 191). The genome of
strain 04-02981 does not demonstrate the presence of a SaPIBov sequence. Lastly, a gene
encoding enterotoxin A (sea) that produces a product with 91% amino acid identity to the

S. aureus strain COL SeaA (51), was located on contig 22 of the PB32 draft genome.
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3.1.1 Conclusions

PFGE analysis revealed clonally-related S. aureus strains circulating within the dairy
herd investigated. Strains represented by PFT-A, which included 13 MSSA strains and
two mecA-positive strains (H15a and H15c), were the most widely distributed clones
found within this herd. The presence of mecA-positive strains within PFT-A, including
one that was also oxacillin-resistant (H15a), suggests that a PFT-A clone has either
gained or lost the mecA determinant. Collectively, genomic analysis corroborates the
multidrug resistance phenotype displayed by H29 and revealed the presence of both a
novel SaPlbov sequence and SCCmec remnant in PB32. Genome analysis also
demonstrated that H29 carried enterotoxin genes on both plasmid and chromosome
locations, while PB32 harbored a chromosomally-located sea gene. This finding suggests
that these strains are capable of causing staphylococcal food-poisoning. In addition, while
the draft genome of PB32 was most related to MRSA strain 04-02981, based on
differences in SCCmec and SaPlbov content, ST sequence types and ccrB sequences,
PB32 and 04-02981 represent clearly diverged clones. Overall, our data demonstrates that
H29 and PB32 represent novel clones of human and/or bovine-related strains of S.
aureus. We speculate that the unique genomic features of these strains possibly reflect the

evolutionary trajectory they have taken in the dairy herd examined.
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3.2 Draft genomes of heterogeneous vancomycin-intermediate Staphylococcus
aureus strain MM66 and MM66 variant exhibiting increased vancomycin
susceptibility
3.2.1 Characterization of vancomycin resistance levels of MM66 and MMG66RVI-4
Vancomycin is currently the antibiotic of choice for treating serious MRSA
infections (103, 111) and resistance can now be found globally. Previously, a clinical
hVISA strain MM66 was isolated from the Memorial Medical Center in Las Cruces, New
Mexico (38). S. aureus strain MM66RVI-4 was obtained by passaging MM66 through
drug-free media and selecting for MM66 colonies via replica plating that did not grow on
plates containing 1 ug/ml of vancomycin. In order to determine the differences in
vancomycin susceptibility between MM66 and MM66RVI-4, vancomycin E-test strips
and vancomycin gradient plates were utilized. It was determined that the hVISA parent
strain MM66 exhibits a vancomycin E-test MIC of 3 pg/ml while the vancomycin MIC
of MM66RVI-4 was slightly decreased (2 pg/ml) in comparison to MM66 (Table 1).
MM66RVI-4 demonstrated a significant decrease in the distance grown on a 0 — 3 pg/ml
vancomycin gradient compared to MM66 (Table 1). Teicoplanin, another glycopeptide
antibiotic, was used to determine whether the increase in susceptibility seen with
MM66RVI-4 was unique to vancomycin or if it can be seen with other glycopeptide
antibiotics. Teicoplanin gradient plates (0 — 3 pg/ml) of MM66RVI-4 demonstrated a
similar increase in susceptibility to teicoplanin as vancomcyin, demonstrating that
selection of MM66RVI-4 for increased susceptibility to vancomycin also confers
increased susceptibility to other glycopeptide antibiotics (Table 1). It has been previously
shown that selection for the VISA phenotype in the laboratory can also lead to the loss of

SCCmec or demonstrate decreased levels of methicillin-resistance (1, 11, 139). Oxacillin
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(methicillin) gradient plates were used to determine if there were differences in
methicillin resistance levels upon selection of increased vancomycin susceptibility in
MMO66RVI-4. MM66RVI-4 demonstrated a significant decrease in methicillin resistance
compared to MM66, as seen with the gradient plate technique (Table 1). This infers the
possibility of either loss of the mecA gene responsible for methicillin resistance, or
mutations within the mecA coding region leading to loss of function or decreased
transcription of mecA. To determine if MM66RVI-4 lost the mecA gene, PCR was
performed to amplify a 286 bp region of mecA from both MM66 and MM66RVI-4.
Amplified MM66 DNA demonstrated a single 286 bp band while the DNA of
MMO66RVI-4 did not produce a mecA amplicon, confirming loss of the mecA gene and

corroborates the decrease in methicillin resistance of MM66RVI-4.

Table 1. Antibiotic susceptibilities using gradient plates and vancomycin E-test

Strain Vancomycin Vancomycin Teicoplanin Oxacillin
E-test (ug/ml) Gradient Gradient Gradient
0 — 3 pg/ml 0 — 3 pg/ml 0 — 175 pg/ml
MM66 3 61.6+t4 3064 84.0+2
0 — 3 pg/ml 0 — 3 pg/ml 0 — 0.5 pg/ml
MMO66RVI-4 2 41.6+3" 16.0 + 3" 73.0+5

Numbers for gradient plates represent distances grown (mm) on 90 mm square petri plates with standard deviations (n=3)
*Denotes: MM66RVI-4 compared to MM66, p-value < 0.05
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A method that can be used to measure increased resistance to antimicrobials is
bacterial growth curves in the presence of a specific antimicrobial. Growth of MM66 and
MM66RVI-4 with and without the presence of 2.5 ug/ml vancomycin was measured by
monitoring the optical density for an 8 h period. Without the presence of vancomycin,
both MM66 and MM66RVI-4 exhibited similar growth. In the presence of 2.5 ug/ml
vancomycin, MM66RVI-4 demonstrated a slight decrease in growth compared to MM66.
As previously stated, hVISA are strains that have a subpopulation of cells resistant to
vancomycin and are not detectable by standard broth and disk diffusion techniques.
Therefore, vancomycin population analyses were then performed in an effort to
determine if any minor differences in vancomycin resistance could be seen between the
two strains. Differences in the number of surviving cells at various vancomycin
concentrations were observed. It is important to note that at vancomycin concentrations
of 1.5 ug/ml to 2.5 ng/ml, MM66RVI-4 was still able to produce colonies but not to the
extent of the parent MM66 (Figure 6). This suggests that while MM66RVI-4 expresses
an increased vancomycin susceptibility compared to MM66 utilizing vancomycin E-tests
and gradient plates, it did not lose the ability to express some level of vancomycin

resistance as seen with the vancomycin growth curves and population analyses.
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Figure 6. Vancomycin resistance population analysis profile of Staphylococcus
aureus strains MM66 and MM66RVI-4.

3.2.2 MM66 and MM66RVI-4 draft genome analysis

In an effort to determine the genetic alterations, if any, that may be attributed to
the phenotypic changes seen in MM66RVI-4 compared to MM66, in addition to genes
involved with the hVISA mechanism, whole-genome sequencing was utilized. The
MM66 draft genome sequence was 2,834,320 bp in length (32.9% G+C content) and
included 2,684 protein-coding regions distributed in 114 contigs (>200 bp). The
MM66RVI-4 draft genome sequence was 2,732,996 bp in length (33% G+C content) and
included 2,563 protein-coding regions distributed in 197 contigs (>200 bp). MLST
analysis of the drafts genomes demonstrated that both MM66 and MM66RVI-4 were

sequence type 5 (ST 5), which is common for VISA strains (44). Interestingly, the

39



presence of ST 5 MRSA strains circulating among dairies in the Paso Del Norte area has
previously been reported on (122, 141) and could suggest the clonal spread of these

strains.

Initially, PCR confirmed deletion of mec4 from MM66RVI-4, corroborating the
loss of methicillin-resistance seen in this strain. However, further analysis of the MM66
and MM66RVI-4 draft genomes revealed that the majority (~46 kb) of the SCCmecll that
is found in MM66 (~49 kb) was missing in MM66RVI-4 (Figure 7). It has been
previously found that the passaging of MRSA strains through drug-free media can result
in the spontaneous loss of methicillin-resistance (57, 67). Therefore, not only can
selection for the VISA phenotype result in the loss of SCCmec, but selection for strains
with increased susceptibility to vancomycin can as well. It has been argued that the loss
of mecA is advantageous to the VISA mechanism (139) however, what role, if any, the
loss of mecA plays in the selection for increased susceptibility to vancomycin requires

further investigation.

It has been suggested that the VISA phenotype of S. aureus is the result of an
accumulation of mutations over time or in some cases, a single mutation (22, 72, 136,
168). Mutations associated with the hVISA/VISA phenotype have been identified within
a variety of S. aureus genes [for review see (70)]. Utilizing the draft genomes of MM66
and MM66RVI-4, sequence based comparisons with known hVISA/VISA genes were
performed in an effort to determine which, if any, of these mutations are found in MM66
and MM66RVI-4. MM66 and MM66RVI-4 nucleotide/protein sequence comparisons
were performed with S. aureus N315, a MRSA strain that is susceptible to vancomycin

(99).
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No mutations in known genes responsible for the hVISA/VISA phenotype (rpoB, walKR,
vraR, graR, isdE, yycH) were found within the MM66 and MM66RVI-4 draft genomes.
This suggests that while these genes may be important for the VISA mechanism found in
other VISA strains, they do not play a role in the hVISA phenotype exhibited by MM66

and MM66RVI-4.

The GraRS two-component regulatory system has been shown to control the
expression of many genes (63) as well as playing a role in the VISA mechanism (32, 40,
74). For example, a single amino acid change in GraS (T136I) has been shown to
contribute to the VISA phenotype of a clinical VISA strain (JKD6008) compared to a
vancomycin-susceptible S. aureus (VSSA) strain (JKD6009) from the same patient (74).
Introduction of the GraS T1361 mutation into the VSSA strain JKD6009 demonstrated
increased vancomycin resistance but not to the extent of the full VISA strain JKD6008
via population analyses (74). In this study, the GraS mutation was found to significantly
contribute to the VISA phenotype, however, it was not the only mutation found and
suggested that other mutations in addition to GraS may play a role in the VISA
phenotype of these strains (74). Interestingly, a single mutation was also found within
graS of both the MM66 and MM66RVI-4 draft genomes. Both MM66 and MM66RVI-4
harbored a novel mutation in grasS, resulting in an amino acid change of S270N. PCR and
Sanger sequencing were used to confirm the graS mutation found in MM66 and
MMO66RVI-4. Results from the vancomycin growth curves and population analysis
assays demonstrated only minor phenotypic differences between MM66 and MM66RVI-
4 in the presence of vancomycin. It can therefore be hypothesized that this graS mutation

may contribute to the hVISA phenotype of MM66 and since the mutation is found in both
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strains, may account for the similar levels of vancomycin resistance exhibited by

MM66RVI-4.

In an effort to determine the genetic changes that may be associated with the
minor increase in vancomycin susceptibility exhibited by MM66RVI-4, both draft
genomes were aligned to identify single nucleotide polymorphisms (SNP) and/or
insertions/deletions between the two strains. Alignment of the draft genomes produced a
total of 9 nucleotide differences between MM66 and MM66RVI-4 (Table 2). Due to the
fact that mutations linked to the hVISA/VISA phenotype have been found within cell
wall-related genes, it is of no surprise that 5 of the alterations in MM66RVI-4 are found
within genes known to be associated with the cell wall. It is of particular importance to
point out the multiple changes found within the vraG gene of MM66RVI-4, which
encodes an ATP-binding cassette (ABC) transporter permease and results in a premature
stop codon at the 440™ amino acid position (out of 629 amino acids). vraG is upregulated
in the VISA phenotype however mutations within vvaG have been shown to be
responsible for increased vancomycin susceptibility in two different MRSA and VISA
strain backgrounds (127). Based upon the mutations found within vraG it could be
hypothesized that these mutations are responsible for the increased vancomycin
susceptibility exhibited by MM66RVI-4 (MIC = 2 ug/ml) compared to MM66 (MIC = 3
ug/ml). Interestingly, vraG expression is under the control of graRS (127) and both
MM66 and MM66RVI-4 contain a mutation within graS. We also hypothesize that the
effects of the graS mutation on vraG expression or VraG activity might contribute to the
vancomcyin-intermediate mechanism of MM66. Therefore, the mutations in vraG in

MM66RVI-4 may reduce the effects of the vancomycin-intermediate supportive graS
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mutation on vraG expression or VraG activity, and the vraG mutations in MM66RVI-4
may contribute to the reduced expression of the vancomycin-intermediate mechanism in
this strain. It can also be postulated that the other genetic alterations found within
MMO66RVI-4 (Table 2) play a role in the increased vancomycin susceptibility of
MM66RVI-4 as well. However, it should be noted that with the exception of the
mutations found within vraG, the majority of these differences between MM66 and
MMO66RVI-4 are found within homopolymer regions of these genes. It has been
previously found that homopolymer regions are known to be a source of sequencing

errors within 454 pyrosequencing (208).
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3.2.3 Conclusions and future directions

In this study, we were able to isolate MMO66RVI-4, a MM66 clone that
demonstrated increased susceptibility to vancomycin. MM66RVI-4 was able to
demonstrate slightly reduced growth and a reduced ability to produce cells that survive
on inhibitory concentrations of vancomycin. MM66RVI-4 also demonstrated an almost
complete loss of the SCCmecll, corroborating the decrease in methicillin resistance of
this strain. Investigations into the genetic differences between MM66 and MM66RVI-4
revealed mutations within genes previously associated with both the VISA phenotype and
VISA reversion. The GraS mutation may account for the similar levels of vancomycin
resistance exhibited by MM66 and MM66RVI-4 and that the mutations within vraG of
MMO66RVI-4 may be responsible for the slight increase in susceptibility to vancomycin.
However, to confirm the significance of these mutations, re-sequencing and confirmation
is needed to ascertain their role, if any, in the increased vancomycin susceptibility

phenotype exhibited by MM66RVI-4.

46



3.3 Draft genome sequence of Elizabethkingia meningoseptica
3.3.1 Antimicrobial resistance mechanisms of Elizabethkingia meningoseptica

Bacteria have evolved several ways to overcome susceptibility to antibiotics
which include alteration of drug targets, changes in membrane permeability, inactivation
of drugs by degradation/modification and drug efflux from cells (148). In essence, all
antimicrobial resistance mechanisms prevent the drug from binding to its target. Not
much is known about the antimicrobial resistance mechanisms of Elizabethkingia, even
though the organisms demonstrate a multidrug-resistant (MDR) phenotype (17, 92, 181).
Utilizing the Kirby-Bauer disk diffusion method we have determined that E.
meningoseptica strain ATCC 132537 demonstrates resistance to 19 of 30 antibiotics
tested confirming the MDR phenotype previously seen for this strain (Table 3) (17, 92).
This strain is resistant to antibiotics representing the following antibiotic classes:
aminoglycosides, cephalosporins, B-lactams, tetracyclines, lincosamides, streptogramin,
oxazolidonone, and glycylcycline. To date, the antimicrobial regimens used for treating
infections caused by supposed E. meningoseptica are quite variable (93). This variability
might also be indicative of the inability of the attending physician to pick the best
antimicrobial therapy because the species and their antimicrobial susceptibility profiles
are undefined by the Clinical Laboratory Standards Institute (177). Due to the variability
in antimicrobial susceptibility patterns seen amongst Elizabethkingia strains and 16S
rRNA sequencing not effectively distinguishing between Elizabethkingia species, lead us
to complete and compare the draft genomes of these organisms. Analysis of these draft
genome sequences will provide a firm beginning to the process of correctly establishing

the species of this genus, in addition, aiding in the identification of possible resistance
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mechanisms responsible for the MDR phenotype of these organisms. Whole-genome
sequencing of E. meningoseptica ATCC 132537 produced a draft genome that was
3,797,222 bp (35.2% GC content) in length and included 3,486 protein-coding regions

distributed in 115 contigs (>200 bp).

Table 3. Antibiotic susceptibility profile for E. meningoseptica ATCC 13253"
Antibiotic Susceptibility
Amikacin R
Aztreonam
Cefamandole
Cefepime
Cefoxitin
Ceftazidime
Ceftriaxone
Chloramphenicol

Ciprofloxacin
Clindamycin
Erythromycin
Fusidic Acid
Gentamicin
Levofloxacin
Lincomycin
Linezolid
Minocycline
Neomycin
Oxacillin
Piperacillin
Piperacillin/Tazobactam
Quinupristin/Dalfopristin
Rifampin
Spectinomycin
Streptomycin
Tetracycline
Ticarcillin/Clavulanic Acid
Tigecycline
Trimethoprim/Sulfamethoxazole
Vancomycin

nnAIFAIIAFTLLFLLOAFTLOLIAITLI N~ ©NnNnIAIIIIAIA

Abbreviations: R, resistant; S, susceptible; I, intermediate-resistance
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The B-lactam class of antibiotics is often the first antimicrobial choice for the
treatment of infections caused by Gram-negative bacteria (98). To date, the only
mechanism of antibiotic resistance studied in the Elizabethkingia species revolves around
its resistance to f-lactam antibiotics (7, 132, 158, 159, 201). The expression of -lactam
and related drug resistance by Elizabethkingia is attributed to the presence of at least
three chromosomally located f-lactamase genes. This includes two different metallo-p-
lactamase (MPL) genes (blaB and blagos) and one extended-spectrum B-lactamase gene
(ESBL; blaAcme) (8, 9, 159). These genes produce enzymes that hydrolyze the p-lactam
ring found in B-lactam antibiotics and related antimicrobials, therefore inactivating these

drugs.

Metallo-p-lactamases belong to the Class B/Group 3 of the Amber/Bush-Jacoby-
Medeiros classification on the basis of their functional properties (3, 19). Three
subclasses (B1, B2, B3) for MPLs have been described and are based on sequence
similarities between these enzymes (49). The first MBL found in Elizabethkingia, blaB,
encodes a 249 amino acid polypeptide and is a Class B MBL that belongs to the Subclass
B1 (159). Protein sequence comparison to other MPLs indicates blaB shares the greatest
homology to the MPL enzymes Bc-1I from Bacillus cereus (35% amino acid identity) and
CcrA from Bacteroides fragilis (27% amino acid identity) (159). The second ML gene
found in Elizabethkingia species, blacos, encodes a 290 amino acid polypeptide and is
also a Class B MPBL but belongs to the Subclass B3 (7). Protein sequence comparison
indicates blagop shares the greatest homology to FEZ-1 from Legionella gromanii (42%
amino identity) and L1 from Stenotrophomonas maltophilia (18% amino acid identity)
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(7, 69). The substrate profiles for both blaB and blagos have been shown to be broad,
with the ability to hydrolyze the penicillin, cephalosporin, and carbapenem classes of 8-
lactam antibiotics (7, 53, 159, 190, 201). Alignment of the protein sequences of blaB and
blacop confirms the two MPBL genes found in Elizabethkingia are different as they only
share 11% amino acid identity (7). The third p-lactamase, blaAdcme found in
Elizabethkingia species is a Class A serine P-lactamase within Group 2e of the Bush-
Jacoby-Medeiros classification (3, 19, 158). The blaAcme gene encodes a 295 amino
acid polypeptide that demonstrates the greatest homology to the Class A enzymes VEB-1
from Escherichia coli (46% amino acid identity), CblA from Bacteroides uniformis (40%
amino acid identity) and PER-1 from Pseudomonas aeruginosa (39% amino acid
identity) (158). Like the MPLs in Elizabethkingia, the ESBL blaAcvme also exhibits a
broad substrate profile, with the ability to hydrolyze cephalosporins, penicillins and
monobactams (158). Taken together, the presence of these three chromosomally-located
B-lactamases enables Elizabethkingia to effectively be resistant to most p-lactam
antibiotics and emphasizes the difficulty in the treatment of infections caused by these

organisms.

The B-lactamases found within Elizabethkingia exhibit heterogeneity adding to
the complexity of the MDR phenotype. Two variants of blaAdcwme (9, 158), 13 variants of
blaB (7, 159, 201, 207) and 18 variants of blagos (7, 132, 207) have been reported.
Woodford et al., (2000), characterized and determined the distribution of the blaB-1 and
blaAcme genes from several reference strains of E. meningoseptica (National Collection
of Type Culture [NCTC] collection), including the E. meningoseptica type strain ATCC

13253" (201). In this study, the blaB-1 gene was only detectable by PCR in 5 of the 15
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NCTC strains and the blaB-1 gene could not be detected in the type strain (201).
However, resistance of the type strain to the carbapenem antibiotics, imipenem and
meropenem, suggested the presence of a novel variant of the blaB-I carbapenemase
(blaB-3) (201). Analysis of the 13 BlaB variant sequences described to date revealed 86
to 100% amino acid identity (81 to 100% nucleotide identity) amongst each other (Figure
8). It should be noted that BlaB-3 and BlaB-4 are in fact the same genes as they
demonstrate 100% nucleotide and amino acid identity to each other, making the total
number of Elizabethkingia blaB variants to be 12 (7, 201). Upon further examination of
these BlaB variant sequences by our laboratory, ATCC 13253" in fact demonstrates 99%
amino acid identity not only to BlaB-3 (BlaB-4), but to BlaB-12 and BlaB-13 as well. In
this same study, PCR detection for the ESBL blaAcme gene, which was found in other
presumed E. meningoseptica strains, was negative for ATCC 13253" (201). Utilizing our
draft genome sequence of ATCC 13253", the inability to detect bladcue is due to
sequence differences that are found between strains of E. meningoseptica and that the
primer sequences used were designed to detect specific P-lactamase sequences. For
example, blaAcve and blacye-» demonstrate 98% amino acid identity to each other while
the B-lactamase found in ATCC 13253" demonstrates 73% and 74% amino acid identity
(73% nucleotide identity) to blaAcme and blacme-o, respectively (Figure 9). This suggests
the possibility of ATCC 13253 to either possess a novel variant of the bladcy gene or
that these genes are found within different Elizabethkingia species. In addition to the
blaB and blaAcme variants, several blagos variants have been reported on, demonstrating
71 to 99% amino acid identity to each other (7, 207). The first description of blacos-1

was in 2000 from a clinical Elizabethkingia meningoseptica isolate and that same study
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described E. meningoseptica ATCC 13253" as possessing a GOB-1-like sequence (7).
However, a MUSCLE alignment of the two protein sequences demonstrates only 80%
amino acid identity (Figure 10). More variants have been described since then and the
ATCC 13253" Blagos sequence currently shares 98% and 99% amino acid identity to

Blagog-16 and Blagog.17, respectively (207).

Alignment of all the Elizabethkingia f-lactamase variants described to date
clearly validates the heterogeneity previously found within these genes. The difficulty in
PCR detection of these variants lies in the selection of correct primer sequences due to
the wide range of nucleotide differences between the genes. In addition, these variations
in B-lactamase sequences within this genus could in fact be due to the possession of
different f-lactamase genes from multiple Elizabethkingia species, not just E.

meningoseptica.
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Figure 8. Amino acid sequence alignment of the blaB variants from Elizabethkingia
meningoseptica. The alignment was generated using MUSCLE in MacVector (v 12.6.0).
The dark gray boxes indicate identical amino acids and the light gray boxes indicate similar
amino acids. Absence of gray indicates different amino acids. Dashes indicate gaps within
the alignment.
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Figure 9. Amino acid sequence alignment of the blacye variants from Elizabethkingia

meningoseptica. The alignment was generated using MUSCLE in MacVector (v 12.6.0). The
dark gray boxes indicate identical amino acids and the light gray boxes indicate similar amino

acids. Absence of gray indicates different amino acids. Dashes indicate gaps within the
alignment.
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Figure 10. Amino acid sequence alignment of the blagos variants from Elizabethkingia
meningoseptica. The alignment was generated using MUSCLE in MacVector (v 12.6.0).
The dark gray boxes indicate identical amino acids and the light gray boxes indicate similar
amino acids. Absence of gray indicates different amino acids. Dashes indicate gaps within
the alignment.
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The susceptibility/resistance patterns of clinical E. meningoseptica isolates have
been shown to vary substantially (93). Besides the f-lactamase genes described above,
the bioinformatic analysis of the draft genome of E. meningoseptica ATCC 13253" did
not reveal the presence of previously characterized horizontally transmitted antimicrobial
resistance genes. One very important mechanism of “intrinsic” antimicrobial resistance is
drug efflux, which is mediated by genes that encode single to multiple drug efflux pumps.
The presence of these genes is in fact required for many acquired (either by mutation or
gene acquisition) clinical antimicrobial resistance mechanisms. All the bacterial efflux
pumps described to date fall into one of five groups: resistance-nodulation-division
family (RND); major facilitator superfamily (MFS); ATP-binding cassette family (ABC);
small multidrug-resistance family (SMR); and multidrug and toxic compound extrusion
family (MATE). In Gram-negative bacteria, RND-type efflux pumps are known to play a
significant role in resistance to a broad-spectrum of antimicrobial agents including classic
antimicrobials, detergents, dyes and solvents (138, 147, 199). RND-type efflux pumps
were first described in the 1990’s in Escherichia coli (AcrAB-TolC) and Pseudomonas
aeruginosa (MexAB-OprM) and have been shown to form tripartite membrane
complexes (117, 149). These complexes consist of an outer membrane protein (OMP), a
membrane fusion protein (MFP), and a resistance-nodulation-division transport protein
(RND) that work together as a proton-drug antiport to pump antimicrobials from the cell
interior into the external medium. The presence of intrinsic multidrug efflux pumps,
particularly of the RND type may play a role in the intrinsic MDR mechanism expressed
by this organism as they do in other well-characterized pathogens (61, 204, 206).

Utilizing the ATCC 13253 draft genome, 5 putative efflux gene operons belonging to

56



the RND-type family efflux pumps were identified (123). A phylogenetic analysis of the
RND-type efflux transporter genes revealed that the transporter genes of E.
meningoseptica ATCC 13253" form their own clade and diverge away from other well-
characterized Gram-negative RND efflux transporter genes (Figure 11) (61, 125, 129,

144, 153, 156, 163, 178, 179).

AcrB (Escherichia coli)
AcrB (Salmonella enterica)

AcrB (Erwinia amylovora)

MexB (Pseudomonas aeruginosa)

MexB (Pseudomonas syringae)

VmeB (Vibrio parahaemolyticus)

MtrD (Neisseria gonorrhoeae)
"—!i MexD (Pseudomonas aeruginosa)

MexY (Pseudomonas aeruginosa)

CmeB (Campylobacter jejuni)

MexF (Pseudomonas aeruginosa)

—|j EmeK (Elizabethkingia meningoseptica)

EmeN (Elizabethkingia meningoseptica)

EmeH (Elizabethkingia meningoseptica)
EEmeB (Elizabethkingia meningoseptica)
EmeE (Elizabethkingia meningoseptica)
MexI (Pseudomonas aeruginosa)
{ VexB (Vibrio cholerae)

VexD (Vibrio cholerae)

P
0.5

Figure 11. Phylogenetic relationship between representative RND-type efflux transporter
proteins using a maximum-likelihood analysis. Bar represents 0.5 substitutions per amino
acid position.
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Figure 12 shows the alignment of the 5 putative E. meningoseptica RND efflux
operons (emeABC, emeDEF, emeGHI, emeJKL and emeMNQO) compared to the well-
characterized mexAB-oprM operon from P. aeruginosa strain PAO1. Not only are these
eme operons of similar size to mexAB-oprM, but they also have similar gene
organization. The percent amino acid identity across the length of the MexAB-OprM
proteins, were next compared to the Eme protein alignments (Figure 12). Alignment
results revealed that the Eme proteins demonstrated 24% to 40% amino acid identity to
the MexAB-OprM from P. aeruginosa. This data suggests the presence of RND-type

efflux operons in E. meningoseptica ATCC 13253".

MFP RND OmMP
! —F >| oo > Proteins % Identit
MexA vs EmeA 30
EmeD 28
<emeC < emeB )<emeA| EmeG 30
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OprM vs EmeC 28
<emel ]’< emeH K emeG EmeF 28
Emel 26
EmeL 24
|emel\>j emeN >| emeO> EmeM 25
—zZw

Figure 12. Organization of the RND-type efflux operons from Elizabethkingia
meningoseptica ATCC 13253" and amino acid identity to the MexAB-OprM operon
in Pseudomonas aeruginosa.
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One method used to determine if bacteria possess active efflux mechanisms is to
grow them in the presence of substances known to induce efflux (e.g. salicylate) or
reduce efflux (e.g. carbonylcyanide m-chlorophenylhydrazone, CCCP) and determine
their relative resistance levels to various antimicrobials. For example, bacteria grown in
the presence of salicylate can demonstrate increased resistance to ciprofloxacin, which is
due to increased expression of efflux pump genes or increased efflux pump activity (10,
150). Therefore, we examined if the addition of salicylate (1 and 2 mM) to media utilized
in the gradient plate technique affected the levels of ciprofloxacin (0 — 1 pg/ml gradient)
resistance of E. meningoseptica ATCC 13253". No differences in ciprofloxacin
susceptibility were detected with and without the addition of salicylate as the organism
grew the entire length of the plate (90 mm) for all concentrations tested. Results of this
limited induction experiment demonstrated that salicylate addition did not affect
ciprofloxacin susceptibility levels at the concentrations tested, however salicylate could
affect the susceptibility levels at different concentrations or with different antimicrobials.
The Kirby-Bauer disk diffusion assay was also performed on E. meningoseptica ATCC
13253" with and without the addition of the known efflux pump inhibitor CCCP which
disrupts the proton motive force (130) required by RND efflux pumps to function. Of the
7 antimicrobials investigated (tetracycline, cefepime, levofloxacin, ciprofloxacin,
aztreonam, gentamicin and ceftazidime), 20 uM CCCP addition to the Kirby-Bauer disk
susceptibility media led to an increase in susceptibility to 2 known RND efflux pump
substrates, tetracycline and levofloxacin (Figure 13), suggesting that active efflux may be

involved with the intrinsic resistance of E. meningoseptica ATCC 13253" to these drugs.
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Figure 13. Susceptibility of Elizabethkingia meningoseptica ATCC 13253 to tetracycline and
levofloxacin without (A & C) and with (B & D) the addition of 20 uM CCCP.

3.3.2 Potential multi-locus sequence analysis for speciation of Elizabethkingia strains

Based on the papers published to date, the vast majority of Elizabethkingia
strains given a species name is based on 16S rRNA sequencing, which we have already
brought to question (Figure 1). For example, the 16S rRNA sequences of E.
meningoseptica ATCC 13253" and E. anophelis R26" demonstrate 98% nucleotide
identity (87). Several housekeeping gene sequences from the E. meningoseptica and E.

anophelis type strains were used for phylogenetic and multi-locus sequence analysis in an
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effort to identify new genes that can be used for speciation of the Elizabethkingia genus.
Nucleotide alignment of several highly conserved genes from the E. meningoseptica
ATCC 13253" draft genome and E. anophelis R26" draft genome (gene and bp identities
= gln, 86%; gyrB, 87%:; recA, 88%; atpD, 92%; dnakK, 92%; groEL, 93%; rpoB, 92%)
supports previous findings that E. anophelis is at least a separate species and suggests the
possibility of using these genes for further speciation (87). With this data, sequencing of
these conserved genes with slow molecular clocks from new and previously identified
Elizabethkingia strains may then be utilized to clear up the confusion surrounding the
speciation of this genus. Figure 14 demonstrates the possibility of using the protein
sequences of three conserved genes, gyrB, rpoB and groEL, as a means to
phylogenetically separate the type strains of E. meningoseptica and E. anophelis.
However, to move the process of characterizing the species within this genus forward,
more genome sequences and species-specific allele identification of many more strains is
required. An additional question that could be asked is whether or not the -lactamase
variants and their detection can be utilized for the speciation of this genus based on the
heterogeneity of these genes? Comparison of the B-lactamase orthologues from these two
species revealed 74% to 85% amino acid identity suggesting the possibility of each
species possessing unique f-lactamases. However, as seen with the housekeeping genes,
until the species can be correctly defined, we are unable to demonstrate that these [3-
lactamases genes are E. meninogoseptica-specific variants or if these variants are

composed of multiple Elizabethkingia species.
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Figure 14. Phylogenetic relationships between representative species of the
Chryseobacterium, Flavobacterium, Riemerella and FElizabethkingia genera based on
maximum-likelihood analysis of partial protein sequences of the genes gyrB, rpoB and groEL
analyzed end-to-end. Bar represents 0.02 substitutions per amino acid position over 608
amino acids.
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3.3.3 Conclusions and future directions

There are several complications surrounding the speciation of members within the
Elizabethkingia genus. The first complication deals with the continued use of 16S rRNA
sequencing as a means for identifying/naming these species. As established in Figure 1,
there is not enough differences between the 16S rRNA sequences to accurately name new
Elizabethkingia isolates and brings us to question the identity of already identified strains
within this genus. The second complication deals with the variation seen within the three
B-lactamase genes found within this genus. Either the heterogeneity seen within these
genes is truly found within a single Elizabethkingia species or these variants are different
B-lactamase genes isolated from different Elizabethkingia species. A third complication
is the variability with chosen antimicrobial therapies in the treatment of infections caused
by Elizabethkingia species. If 16S rRNA sequencing continues to be the standard for the
identification of Elizabethkingia species, this could lead to a majority of strains being
misidentified as well as the incorrect antimicrobial therapy being chosen for the treatment
of these infections. Clarification of the complexities associated with this genus is
ultimately dependent upon correctly classifying and characterizing the species that
compose the Elizabethkingia genus. Deciphering the correct species within this genus, as
well as completing the draft genome sequences, will also provide information to

individuals studying the natural ecology and evolution of these organisms.
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