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Abstract:  
 
 Switchgrass has been selected as a substrate to produce ethanol.  One method of 
producing ethanol from switchgrass is through pretreatment followed by saccharification 
and fermentation.  The harvest date of switchgrass could impact the production of ethanol 
due to changes in plant chemical composition.  Kanlow switchgrass was harvested in 
July, August, September, October, and November in Stillwater, OK in 2008.  The 
switchgrass was comminuted, analyzed for chemical composition, pretreated by 
hydrothermolysis, and converted to ethanol via simultaneous saccharification and 
fermentation (SSF).  The objectives were to determine changes in structural carbohydrate 
and lignin contents in switchgrass over a typical harvest season and to determine the 
effect of switchgrass maturity on the production of ethanol via SSF. 
 
 Structural carbohydrate and lignin contents increased throughout the harvest 
period.  Extractives content decreased throughout the harvest period.  The amount of 
switchgrass dissolved during hydrothermolysis decreased after September.  Ethanol 
concentration via SSF was highest for the August harvest, followed by July, October, 
September, and November harvest dates.  Initial fermentation rates decreased throughout 
the harvest period.  Ethanol yield in terms of liters per ton of switchgrass was highest for 
the October harvest, followed by the November, August, July, and September harvests.  
Much of the increase in structural carbohydrate content over the harvest period was due 
to a decrease in extractives content, rather than addition of new structural carbohydrates.  
Increasing lignin content through the harvest period had a negative effect on fermentation 
rates and yields.  The lignin content after pretreatment did not appear to correlate to 
fermentation rates and yields as did the lignin content of untreated switchgrass.  The 
decreased amount of switchgrass dissolved during hydrothermolysis at the end of the 
harvest period had a positive effect on ethanol yields.  Ethanol yield in terms of liters per 
ton of switchgrass for July, August, October, and November harvest dates were not 
significantly different; a significantly lower yield was obtained for the September harvest 
date. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 Ethanol is used as a fuel and in fuel blends, such as E10 gasoline.  Corn has been the 

largest substrate used to make ethanol in the United States (McLaughlin and Walsh, 1998; 

USDA, 2010).  The starch in corn can be easily converted to simple sugars for fermentation by 

yeast.  This fermentation produces ethanol.  However, corn is a high input crop due to the amount 

of fertilizer used as well as the amount of fuel used in farm equipment.  Corn is also used as food 

for both humans and animals.  As an alternative to high-value grains such as corn, other plant 

matter such as stalks and leaves can be used to produce ethanol.  Plant cell walls also contain 

sugars that can be converted to ethanol via yeast fermentation. 

 Plant cell walls are composed of a matrix of three materials: cellulose, hemicellulose, and 

lignin.  Cellulose is a chain of six-carbon (C6) sugars, meaning there are six carbon atoms in the 

sugar molecule.  C6 sugars in monomer form are readily fermentable by yeast.  Hemicellulose is 

a chain of both five-carbon (C5) sugars and C6 sugars.  C5 sugars can also be converted to 

ethanol, but not as easily as C6 sugars (Mosier et al., 2005).  Lignin is a phenolic molecule that is 

not fermentable to ethanol (Casler and Boe, 2003), but may be burned for heat (Mosier et al., 

2005).  Obtaining monomer sugars for fermentation is difficult due to the matrix formed by 

cellulose, hemicellulose, and lignin.  Pretreatment methods have been developed to disrupt the 
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matrix structure and separate cellulose, hemicellulose, and lignin prior to the saccharification of 

cellulose and hemicellulose (Alvira et al., 2010; Mosier et al., 2005). 

 Once the matrix structure of the plant cell wall is disrupted, cellulose and hemicellulose 

can be converted to monomer sugars for fermentation by yeast.  Enzymes from fungi are used to 

cleave the bonds that connect individual sugar molecules together in a chain, which is called 

saccharification.  Yeast produces ethanol when supplied with C6 sugars in the absence of oxygen.  

If both the saccharification and fermentation steps are combined into a single process, it is called 

simultaneous saccharification and fermentation (SSF).  SSF is advantageous over performing 

each step separately because enzymes can be inhibited by the sugars they release from cellulose 

and hemicellulose, but yeast consume the sugars fast enough to prevent this from occurring in the 

combined process (Suryawati et al., 2008; Teugjas and Valjamae, 2013).  Further, there is less 

chance of sugar being consumed by contaminant organisms in SSF as opposed to separate 

hydrolysis and fermentation steps.  Finally, capital costs are reduced with SSF because fewer 

tanks are needed. 

 All plants could be used to produce ethanol through pretreatment, saccharification, and 

fermentation, but plants that have low inputs are seen as advantageous.  Switchgrass has been 

identified as a bioenergy crop to be used for producing ethanol (McLaughlin and Kszos, 2005).  

Optimizing all parameters of the process of converting switchgrass to ethanol will improve its 

economic viability.  One parameter to optimize is the harvest window of switchgrass used for 

ethanol production.  As an example, wheat grain is harvested once the plant is mature and the 

seed is ripe.  The wheat is too wet for storage if the harvest is early.  Quality and yield of wheat 

decrease if the harvest is late.  The decision of when to harvest switchgrass needs to include 

factors affecting ethanol production, not just maximizing the mass of switchgrass harvested per 

area of land.  Switchgrass grows through the summer and senesces as the plant matures in late 

summer and fall.  Since ethanol is produced from cell wall carbohydrates, it will be useful to 
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know how the composition of cell walls change as switchgrass matures.  Ethanol yields may best 

be calculated in terms of the amount of ethanol produced per area of land.  Determining when 

these maximum ethanol yields can be obtained will provide an optimum switchgrass harvest 

window for ethanol production.  Thus, ethanol production via SSF of switchgrass harvested 

throughout the maturing process was explored in this study.  Switchgrass samples harvested from 

late summer through fall were analyzed for structural carbohydrate and lignin content.  Further, 

the samples underwent a hydrothermolysis pretreatment process and were analyzed again for 

structural carbohydrate and lignin content.  Finally, ethanol was produced from the pretreated 

samples via SSF.
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CHAPTER II 
 

 

OBJECTIVES 

 

The objectives of this research are to: 

1.  Determine changes in structural carbohydrate and lignin contents in switchgrass over a typical 

harvest season. 

2.  Determine the effect of switchgrass maturity on the production of ethanol via a simultaneous 

saccharification and fermentation process.
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CHAPTER III 
 

 

REVIEW OF LITERATURE 

 

3.1  Switchgrass Characteristics 

 Switchgrass (Panicum virgatum L.) is a perennial, warm season C4 grass native to the 

United States (Porter, 1985).  It grows over most of the United States, as well as part of Mexico 

and Canada (McLaughlin and Walsh, 1998).  It is drought resistant and suitable for marginal soils 

(Casler and Boe, 2003).  There are two morphological strains of switchgrass: lowland ecotypes 

and upland ecotypes (Porter, 1985).  Lowland ecotypes are tall, vigorous, course-stemmed, 

adapted to wet conditions, and light green (Lemus et al., 2002; Porter, 1985).  Upland ecotypes 

are short, rhizomatous, relatively fine-stemmed, adapted to drier conditions, and blue-green 

(Lemus et al., 2002; Porter, 1985).  Lowland ecotypes have higher yield potentials than upland 

ecotypes (Adler et al., 2006).  There are four populations based on ecotype and latitude of origin: 

southern lowland with germplasm originating from southern and central Texas, northern lowland 

with germplasm originating from Oklahoma, southern upland with germplasm originating from 

Oklahoma, and northern upland with germplasm originating from the Central Great Plains 

(Sanderson et al., 1996).  Northern populations flower earlier than southern populations as 

flowering is related to the latitude of origin since switchgrass is sensitive to photoperiod (Lemus 

et al., 2002).  Switchgrass is suited as a bioenergy crop because it produces high yields compared 
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with other herbaceous species, it requires less energy to manage because it is perennial, it can 

grow in poor soils that are not producing cash crops, and farmers are already familiar with 

growing and harvesting grasses (McLaughlin and Kszos, 2005). 

3.2  Switchgrass Yields 

 The amount of switchgrass harvested will directly affect the amount of ethanol that can 

be produced.  Variety, location, time of harvest, and number of harvests in a season all affect 

switchgrass yields. 

3.2.1  Comparison of Varieties 

 Research shows that the best variety of switchgrass will be dependent upon the location 

of farms.  Sladden et al. (1991) compared lowland ecotype varieties Alamo and Kanlow and 

upland ecotype varieties Blackwell, Cave-in-Rock, Kansas Native, Pathfinder, Summer, and 

Trailblazer in Shorter, Alabama in 1989 and 1990.  Stands were planted in 1988.  Switchgrass 

was cut twice per year (a two-cut management) at a 5 cm stubble height with the harvest after 

anthesis when it was assumed that little further yield increases would occur.  Anthesis is the 

flowering stage of a plant.  The lowland ecotype varieties were harvested about a month after the 

upland ecotype varieties both years.  Both lowland ecotype varieties yielded more biomass than 

the upland ecotype varieties each year, and Alamo yielded higher than Kanlow both years.  The 

upland varieties did not differ significantly in yield (Sladden et al., 1991).  Upland ecotypes are 

not adapted to the climate in Alabama, whereas lowland ecotypes are suited for Alabama and 

should have higher yields. 

 Lemus et al. (2002) studied 20 switchgrass varieties near Chariton, Iowa from 1998 to 

2001.  Plots were planted in 1997.  Varieties compared were Alamo, Blackwell, Caddo, Carthage, 

Cave-in-Rock, Forestburg, Kanlow, Pathfinder, Shawnee, Shelter, Sunburst, Trailblazer, IA-GT, 

IA-LM, NL93-2CH, NU94-2CH, SU92-ISO, SU94-2CH, HDMD-C3, and HYLD-C3.  Plots 
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were harvested on November 13, 1998, September 30, 1999, and October 15, 2001 with a cutting 

height of 7.5 cm.  The harvest for the 2000 crop was delayed until early January 2001 and was 

used for composition, but was not included for yield data.  Comparison of varieties only showed 

the average yield of the three years, as no cultivar by year interaction was observed.  The average 

yield for all varieties was 9.0 Mg/ha.  Kanlow had the highest yield at 13.1 Mg/ha, which was 

significantly higher than all other varieties except Alamo (12.1 Mg/ha).  Alamo yielded 

significantly more biomass than most other varieties, except Kanlow, NU94-2CH (11.2 Mg/ha), 

and HDMD-C3 (10.5 Mg/ha).  NU94-2CH and HDMD-C3 are both upland ecotype varieties.  

The lowland cultivars Alamo and Kanlow yielded the most biomass, but the winters were mild 

for Iowa during these years (Lemus et al., 2002).  Lowland switchgrass cultivars are not suited for 

cold winters.  Kanlow and Pangburn, both lowland cultivars, failed to survive the first winter after 

planting in Pennsylvania in 1968 (Berg, 1971). 

 McLaughlin and Kszos (2005) compared 9 switchgrass cultivars planted in 1992 at 18 

sites across 13 states: Virginia, West Virginia, Tennessee, Kentucky, North Carolina, Georgia, 

Alabama, Texas, Arkansas, Louisiana, North Dakota, South Dakota, and Iowa.  The best 

commercial varieties in terms of yield after 10 yr of production were Alamo in the deep South, 

Alamo and Kanlow at mid-latitudes, and Cave-in-Rock, Trailblazer, and Sunburst for northern 

latitudes (McLaughlin and Kszos, 2005).  Casler and Boe (2003) compared six upland ecotypes 

of switchgrass at two locations: Brookings, South Dakota and Arlington, Wisconsin.  The 

cultivars Cave-in-Rock, Dacotah, Forestburg, Shawnee, Sunburst, and Trailblazer were harvested 

by a single cutting in August, September, and November from 1998 to 2001 after a 1997 planting.  

Shawnee ranked first in yield for 5 of the 8 year-location combinations.  Location of origin had an 

effect as some cultivars did better at one location or the other.  Cave-in-Rock originates from 

Illinois and performed better in Wisconsin, whereas Trailblazer originates from Nebraska and 

performed better in South Dakota (Casler and Boe, 2003). 
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3.2.2  Harvest Date Effect on Yield for Single-cut Management 

 Switchgrass should be fully grown for a single-cut management because an earlier 

harvest would greatly reduce yields.  Lockert (1974) harvested Summer variety switchgrass at 

Brookings, South Dakota on June 17 at the vegetative growth stage, July 8 at late jointing, and 

August 12 when grass was 100% headed (any part of the panicle exposed above the flag leaf).  

Yields were 1.5 Mg/ha in June, 6.7 Mg/ha in July, and 9.6 Mg/ha in August (Lockert, 1974).  

McLaughlin and Kszos (2005) stated in a review that switchgrass yields were maximized when 

harvested by mid-September.  Harvest after late September reduced yields by up to 20%.  After 

these initial losses, further loss over the winter appeared minimal and the switchgrass often 

benefited from conserved nutrients (McLaughlin and Kszos, 2005).  Sanderson et al. (1999) 

found that in Dallas, Texas in 1993 and Stephenville, Texas in 1993 and 1995, a November 

harvest date yielded less than either a September or October harvest date.  In 1994, yields at both 

locations were higher in September than October and November (Sanderson et al., 1999).  

However, some research obtained maximum yields after September.  In Stephenville, Texas in 

1996, September harvest yielded lower than October and November harvests (Sanderson et al., 

1999).  Casler and Boe (2003) harvested six upland ecotypes from 1998 to 2001 in August, 

September, and October at Brookings, SD and Arlington, WI.  Delaying harvest in 1998 lowered 

yields.  This trend gradually changed through 1999 and 2000 to an increase in yield with delayed 

harvest in 2001.  Stands were planted in 1997 (Casler and Boe, 2003).  Sanderson et al. (1999) 

planted stands in 1992 and harvested from 1993 to 1996.  Similar to Casler and Boe (2003), 

yields were also better for earlier harvests in the first few years after establishment and switched 

to better yields for delayed harvest in the last year of the study. 

 Researchers have also investigated delaying switchgrass harvest until the following 

spring, leaving stands in the field over the winter.  Adler et al. (2006) found Pennsylvania 

switchgrass yields were greater when harvested in the fall (between mid-October and mid-
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November) versus waiting until the following spring (between early April and early May).  

Spring yields were lower due to increased field residue from cutting and bailing as well as from 

ash content reduction.  Including residue, spring biomass yield was 11% lower than fall biomass 

yield.  Snowfall over the winter also affected yields at Rock Springs, Pennsylvania.  In the winter 

of 2001-2002, snowfall was 56 cm and yields were similar between fall and spring.  The 

following two winters each had about 153 cm of snow and average yield decreased almost 40% 

over the winter (Adler et al., 2006).  Makaju et al. (2013) harvested a mature Kanlow switchgrass 

stand at Stillwater, Oklahoma once a month from November to March for switchgrass grown in 

2007, 2008, and 2009.  A significant decrease in yields for the 2007 and 2009 crops was observed 

as harvest was delayed, but no decrease in yield was observed for the 2008 crop.  No consistent 

association between rainfall and decrease in yield was found (Makaju et al., 2013). 

3.2.3  Harvest Date Effect on Yield for Multi-cut Management 

 McLaughlin and Kszos (2005) stated that for a harvest management with two cuts per 

year, the first cutting needed to be in July or later to sustain high yields in future years.  Further, 

yields were maximized when the final cutting was by mid-September.  However, harvesting after 

the first frost has the benefit of maximizing carbon and energy translocation to the root system 

(McLaughlin and Kszos, 2005). 

 Lockert (1974) harvested switchgrass every 14 and 28 days after initial harvest through 

September 9 in 1971 in South Dakota using three different initial harvest dates and two cutting 

heights: 6.4 and 25.4 cm.  For an initial harvest date of June 17 at the vegetative growth stage, the 

14-day harvest interval yielded less biomass than the 28-day harvest interval.  No effect was 

observed between 14 and 28-day harvest intervals when the initial harvest date was delayed to 

either July 8 at the late jointing stage or August 12 when grass was 100% headed.  Total season 

yields generally increased as initial harvest was delayed.  The one exception to this trend was at a 



 

10 

cutting height of 25.4 cm, where the initial harvest date of June 17 with a 28-day harvest interval 

yielded higher for the season than the initial harvest date of July 8 for either the 14 or 28-day 

harvest interval.  Regardless of cutting height or harvest frequency, the initial harvest date of 

August 12 yielded the highest for the season.  Yields were higher with a 6.4 cm cutting height 

than a 25.4 cm cutting height (Lockert, 1974). 

3.2.4  Single vs. Multi-cut Harvests 

 Sanderson et al. (1999) found in Stephenville, Texas, that Alamo switchgrass under a 

single-cut management yielded more biomass than a two, three, or four-cut management every 

year from 1993 through 1996.  This was regardless of whether the final cut was in September, 

October, or November.  In Dallas, Texas, Alamo switchgrass harvested in 1994 also yielded more 

biomass under a single-cut management.  In Dallas in 1995, there was not a significant difference 

between single and two-cut managements, which both yielded higher than three and four-cut 

managements.  In Dallas in 1993 and 1996, the single-cut yielded the lowest (Sanderson et al., 

1999).  However, in Dallas in 1993, 1995, and 1996, no yield exceeded 8 Mg/ha.  Yields for 

Dallas in 1994 and all years in Stephenville were between 10 and 21 Mg/ha for the single-cut 

management (Sanderson et al., 1999).  McLaughlin and Kszos (2005) reported the best yield in a 

year was with a two-cut management in Alabama with lowland variety Alamo switchgrass.  The 

upland variety Cave-in-Rock yielded higher than lowland varieties in some years in the Southeast 

under two-cut management (McLaughlin and Kszos, 2005).  In Pennsylvania, four-cut 

management eliminated stands the following year for Caddo, Summer, and Pathfinder varieties 

cut in June, July, August, and September 1969 (Berg, 1971).  It is difficult for switchgrass to 

recover from multi-cut harvests due to the location of its growing points.  Growing points for 

switchgrass are rapidly extended above cutting height and are removed upon harvest (Porter, 

1985).  Lockert (1974) observed minimal regrowth once the stem growing points were removed.  

Frequent harvests have reduced the yield and persistence of switchgrass (Porter, 1985).  These 



 

11 

studies have shown that exceeding two harvests in a season is not beneficial for switchgrass.  

Two-cut management may only work in southern regions with long growing seasons.  Single-cut 

management would use less fuel and put less wear on equipment each season than two-cut 

management. 

3.2.5  Harvest Date Effect on Stand Health 

 An August harvest in Wisconsin and South Dakota reduced stand density over time 

compared with September and October harvests (Casler and Boe, 2003).  Adler et al. (2006) 

observed similar results in Pennsylvania.  Sanderson et al. (1999) reported a reduction of yield in 

May following a September harvest compared with an October or November harvest of Alamo 

switchgrass in Texas.  One reason for this observation may be due to nutrient loss over time.  

Adler et al. (2006) states a mid-August harvest would remove twice as much nitrogen and higher 

amounts of other minerals compared to a fall harvest in Pennsylvania.  Another reason is a 

reduction in carbohydrate reserves.  Switchgrass depends on carbohydrate reserves in the stem 

base for regrowth and survival (Porter, 1985).  Switchgrass loses growing points and leaves 

during harvest, which causes cut shoots to die and reduces photosynthetic area, thus reducing 

carbohydrate reserves (Porter, 1985).  Also, regrowth after harvest can consume carbohydrate 

reserves without adequate time to replace them during the remainder of the growing season 

(Porter, 1985).  Casler and Boe (2003) observed little regrowth for September and no regrowth 

for October harvests, indicating retention of carbohydrate reserves. 

3.3  Switchgrass Storage 

 Ethanol production facilities would operate year-round to improve economic viability.  

However, it is not feasible to harvest switchgrass year-round, so storage of harvested switchgrass 

is necessary.  Switchgrass can be harvested and stored in bales, just as hay is traditionally stored.  
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It is also possible to ‘store’ switchgrass in the field over the winter, delaying the harvest until 

following spring.  Losses could occur from either scenario, reducing ethanol yields. 

3.3.1  Storage Moisture Content 

 Adler et al. (2006) stated excessive moisture content can lead to microbial degradation of 

soluble and storage carbohydrates and self-ignition of switchgrass.  Standard storage moisture 

content of hay is 15 to 18% (w/w) (Adler et al., 2006).  Lewandowski and Kicherer (1997) 

reported storage moisture content of switchgrass should be less than 23% (w/w).  Sanderson et al. 

(1997) baled switchgrass at 19% and 11% without any temperature rise over ambient 

temperature, which indicates there was neither microbial respiration nor spoilage. 

3.3.2  Harvest Date Effect on Moisture Content, Residue, and Storage 

 Switchgrass moisture content is well above the storage moisture range until late in the 

fall.  Moisture content decreased between July 25 at early heading and August 19 at anthesis in 

Wisconsin for upland ecotypes Blackwell and Pathfinder from 74% (w/w) to 67% (w/w) in 1983 

and from 67.5% (w/w) to 60% (w/w) in 1984 (Porter, 1985).  Moisture content decreases as 

above ground switchgrass tissue dies during senescence in the fall.  Ravindranath et al. (2009) 

harvested upland switchgrass ecotypes Blackwell and Cave-in-Rock in Oklahoma and Arkansas 

each month from July to December.  Moisture content declined for both varieties in Oklahoma 

from about 50% (w/w) in July to about 9% (w/w) in December.  In Arkansas, the moisture 

content increased from July to September for Cave-in-Rock and decreased for Blackwell and 

Cave-in-Rock from about 50% and 55% (w/w), respectively, in September to about 9% (w/w) in 

December for both varieties (Ravindranath et al., 2009).  Switchgrass can be allowed to dry 

between cutting and baling if the moisture content is too high at the time of cutting.  However, if 

switchgrass becomes too dry and brittle at the time of cutting, losses during baling can occur.  In 

Pennsylvania, Adler et al. (2006) found residue left behind after baling increased from 21% (db) 



 

13 

in November to 45% (db) in April for switchgrass left standing through the winter.  The moisture 

content of switchgrass fell from 35% (w/w) in November to 7% (w/w) in April (Adler et al., 

2006).  Sanderson et al. (1997) measured switchgrass residue after baling at 1.8% to 4.4% (db) 

for three different October cuttings and 6.0% (db) for a November cutting in Stephenville, Texas 

over a three year span.  Residues increased in these studies for later harvests. 

 Further losses of biomass can occur after switchgrass is baled.  Switchgrass stored in 

bales left outside on sod for 12 months at Stephenville, Texas lost 5.6% (db) of bale mass for an 

October 1993 cutting and 6.0% (db) of bale mass for a November 1994 cutting (Sanderson et al., 

1997).  Sanderson et al. (1997) observed reduced bale losses when bales were stored either 

outside on gravel or inside a building compared with outside storage on sod.  The depths of the 

visibly weathered layer of bales after 12 months were 12 and 13 cm for outside storage on gravel 

and sod, respectively (Sanderson et al., 1997).  Although the depths of the weathered layers were 

similar, bales stored on sod had a large rotted area on the bottom while bales stored on gravel did 

not (Sanderson et al., 1997).  Other data have shown much smaller losses during storage of 

switchgrass bales.  Wiselogel et al. (1996) measured the composition of Alamo switchgrass bales 

after 6 months of storage in Stephenville, Texas for a grazed stand cut in October 1991 and an 

ungrazed stand cut in August 1992.  Structural carbohydrate losses varied little between the inside 

and outside layers of bales.  In 1991, inside and outside bale layers lost 5.6 and 5.8% (db) of 

glucan, respectively, and 5.6 and 6.0% (db) of xylan, respectively (Wiselogel et al., 1996).  In 

1992, inside and outside bale layers lost 1.2 and 2.5% (db) of glucan, respectively; while very 

slight increases in xylan were measured (Wiselogel et al., 1996).  The only significant reduction 

in structural carbohydrates was for xylan from the 1991 cutting, which fell from 24.9 to 23.4% 

(db) on an extractives free basis for the outer layers of the bales (Wiselogel et al., 1996).  The 

extractives content also significantly decreased for the 1991 cutting from 17.0 to 9.3% (db) for 

the inner layers and 6.5% (db) for the outer layers of the bales, however, extractives content only 
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decreased from 14.2 to 12.4% (db) for the outer layers of bales from the 1992 cutting (Wiselogel 

et al., 1996).  The larger loss in extractives for the 1991 bales corresponds to a thicker weathered 

layer.  Wiselogel et al. (1996) found the visibly weathered layer depth of the bales after 6 months 

to be 19 cm for the 1991 cutting and 8 cm for the 1992 cutting.  Although the harvest date for the 

1992 cutting was in August, the 1991 cutting in October may have contained less mature 

switchgrass due to grazing; combined with different harvest years, it is not possible to conclude 

an effect from maturity on storage.  The preservation of structural carbohydrates during storage 

indicates that switchgrass can be effectively stored after harvest with little loss of potential 

ethanol production. 

3.4  Composition of Switchgrass 

 Plant cell walls contain cellulose and hemicellulose, and some contain lignin (Mosier et 

al., 2005).  Cellulose microfibrils have hydrogen bonds to hemicellulose, forming the structural 

backbone to the cell wall (Mosier et al., 2005).  Cellulose is further protected by lignin (Mosier et 

al., 2005).  Cellulose is a polymer of glucose molecules arranged in tightly packed, crystalline 

structures (Mosier et al., 2005).  These structures are water insoluble and resistant to 

depolymerization.  Hemicelllulose is a branched polymer of glucose or xylose, substituted with 

glucose, xylose, galactose, arabinose, mannose, fructose, glucuronic acid, or acetyl groups of 

ferulate (Mosier et al., 2005).   

3.4.1  Compositional Analysis Methods 

3.4.1.1  Forage Fiber Analysis 

 Goering and van Soest (1970) developed a procedure to determine neutral detergent fiber 

(NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL).  NDF is a measure of cell 

wall material that is left after removal of constituents that are soluble and available as nutrients.  

NDF is obtained by boiling ground biomass in a neutral detergent solution for 1 h, followed by 



 

15 

filtering and rinsing solids first with hot water and then with acetone.  ADF is cellulose, lignin, 

cutin, and acid insoluble ash consisting mainly of silica.  ADF is obtained after ground biomass is 

boiled in sulfuric acid solution for 1 h, followed by filtration and rinsing with hot water.  An 

estimate of hemicellulose is given by subtracting ADF from NDF, although it includes some 

proteins attached to cell walls.  ADL is lignin, cutin, and acid insoluble ash.  ADL is obtained by 

pouring 72% sulfuric acid solution over the ADF sample at room temperature and stirring at 

regular intervals for 3 h, followed by filtration and rinsing with hot water.  Cellulose is calculated 

by subtracting ADL from ADF.  The ADL sample is then heated in a muffle furnace at 500 to 

550°C for 3 h.  Lignin, including cutin, is calculated by subtracting the ash from ADL.  There is a 

permanganate lignin method in the procedure that does not include cutin, which is a large fraction 

in some seed hulls.  However, the amount of cutin is not important in common forages (Goering 

and Van Soest, 1970).   

 The permanganate lignin method removes lignin from ADF, leaving cellulose and ash in 

the remaining solid material (Goering and Van Soest, 1970).  This method can be used instead of 

determining ADL, which uses 72% sulfuric acid to remove cellulose from ADF.  In the 

permanganate lignin method, potassium permanganate and a lignin buffer solution are added to 

the ADF sample at room temperature and stirred at regular intervals for 1 h.  The solution is 

removed by filtration and the residue is washed with a demineralizing solution until residue is 

white, followed by subsequent ethanol and acetone washes.  Permanganate lignin is calculated by 

the weight loss from ADF.  The residue is heated in a muffle furnace at 500°C for 3 h.  Cellulose 

is calculated by subtracting the ash weight from the residue weight (Goering and Van Soest, 

1970).  Cellulose and hemicellulose tend to be overestimated and lignin underestimated from this 

forage fiber analysis procedure (Dien et al., 2006; Wiselogel et al., 1996). 
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3.4.1.2  Determination of Structural Carbohydrates and Lignin in Biomass 

 Sluiter et al. (2004) developed a procedure for the National Renewable Energy 

Laboratory titled “Determination of Structural Carbohydrates and Lignin in Biomass.”  Extracted 

biomass is analyzed for lignin and structural polymers of the sugars glucose, xylose, galactose, 

arabinose, and mannose.  Extracted biomass has undergone water and ethanol extraction to 

remove non-structural components such as sucrose, nitrates, nitrites, protein, ash, chlorophyll, 

and waxes.  A two-stage acid hydrolysis (72% and then 4% sulfuric acid) separates the sugars 

from the extracted biomass and hydrolyzes them into monomers for analysis by high performance 

liquid chromatography (HPLC).  Lignin is separated into both an acid soluble and an acid 

insoluble fraction.  The acid soluble lignin is analyzed by UV-Vis spectroscopy.  The acid 

insoluble fraction is found by burning the remaining material in a muffle furnace at 575°C.  Total 

lignin is the sum of the acid soluble and acid insoluble lignin.  The acetyl content can also be 

measured if necessary via analysis of the liquid fraction on HPLC (Sluiter et al., 2004). 

3.4.2  Harvest Date Effect on Composition 

 Porter (1985) observed an increase in NDF, ADF, ADL, and cellulose from July 25 at 

early heading to August 19 at anthesis in 1983 and 1984 in Wisconsin for upland varieties 

Pathfinder and Blackwell.  Switchgrass was also separated and analyzed by section: lower stem, 

upper stem, and leaves.  Between early heading and anthesis, the percentage of leaf component 

decreased, the percentage of lower stem increased, and the percentage of upper stem did not 

change.  In the lower stem, cellulose did not change between harvest times.  In the upper stem, 

cellulose increased from early heading to anthesis in 1984, but not in 1983.  For leaf tissue, NDF, 

ADF, ADL, and cellulose did not change between harvest times.  NDF and ADF increased from 

early heading to anthesis for both upper and lower stem components.  ADL did not increase 

significantly during the same interval for either upper or lower stem components (Porter, 1985). 
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 Bals et al. (2010) harvested lowland variety Alamo at Auburn, Alabama in July and 

October 2005 and upland variety Cave-in-Rock at East Lansing, Michigan in July and October 

2008, though it was not clear if it was under a single or double-cut management.  Larger 

differences in composition were seen between harvests for Cave-in-Rock than for Alamo.  Glucan 

content increased from 30.6 to 33.6% (db), xylan content increased from 19.4 to 25.3% (db), 

lignin increased from 10.4 to 16.7% (db), and total extracts decreased from 26.0 to 15.8% (db) for 

Cave-in-Rock from July to October.  Alamo switchgrass from July to October had glucan content 

increase from 32.6 to 32.9% (db), xylan content increase from 22.8 to 23.0% (db), lignin content 

increase from 15.4 to 17.2% (db), and total extracts decrease from 18.1 to 15.0% (db).  All 

changes listed were significantly different except glucan and xylan contents for Alamo (Bals et 

al., 2010). 

 Lemus et al. (2002) harvested 20 different switchgrass varieties in Iowa in November 13, 

1998, September 30, 1999, and early January 2001.  They found cell wall components increase in 

later harvests, which they attributed to the loss of more easily degraded plant components.  

Cellulose content was significantly different for each harvest date: September 1999 (34.0%), 

November 1998 (36.1%), and January 2001 (41.1%).  The November and January harvests had 

more hemicellulose than the September harvest.  ADL was different for all three harvest dates: 

6.2% for September 1999, 7.0% for November 1998, and 5.7% for January 2001(Lemus et al., 

2002). 

 Kim et al. (2011) also observed an increase in structural carbohydrates with delayed 

harvest.  Alamo switchgrass was harvested in November 2007 and December 2006 at Ardmore, 

Oklahoma from two different plots.  Glucan content increased from 29.9 to 32.1% (db), xylan 

content increased from 20.5 to 21.6% (db), lignin content increased from 18.8 to 19.5% (db), and 

water extractable sugar content decreased from 9.6 to 6.9% (db) from November to December, 

though harvests were in different years and from different plots (Kim et al., 2011).  The 



 

18 

composition of two northern upland varieties were also compared, with Shawnee switchgrass 

harvested in December 2006 in Stillwater, Oklahoma and Dacotah switchgrass harvested in May 

2008 in Pierre, South Dakota.  Composition was affected more by harvest date than by variety, 

year, or location.  The May harvest from Dacotah switchgrass left standing over the winter had 

very low water extractable sugar content at 0.8% (db).  Glucan content was 35.3% (db), xylan 

content was 22.5% (db), and lignin content was 22.6% (db) for the May harvest (Kim et al., 

2011). 

 Adler et al. (2006) found glucan and xylan concentrations increased significantly from 

October to April for Cave-in-Rock switchgrass left in the field over winter at Rock Springs, 

Pennsylvania in both 2002-2003 and 2003-2004.  Soluble carbohydrates decreased significantly 

from fall to spring, 3.6 to 0.4% (db).  Soluble components probably leached out over the winter.  

Storage polysaccharides, which are starches in switchgrass, also decreased significantly from fall 

to spring, 0.9 to 0.3% (db).  Starch loss was likely due to seeds falling off over the winter.  

Klason lignin increased from fall to spring (Adler et al., 2006).  Makaju et al. (2013) harvested 

Kanlow switchgrass in Stillwater, Oklahoma once a month from May through March of the 

following year for three growing seasons, 2007-2009.  NDF, ADF, and ADL all increased 

significantly during the growing season from May to October for each year.  However, NDF, 

ADF, and ADL did not change significantly from November to March for all three years, except 

for ADF for the 2007 crop, which increased significantly (Makaju et al., 2013). 

 McLaughlin and Kszos (2005) found ash content was reduced by delaying harvest until 

after the first frost, although yield was also reduced.  Adler et al. (2006) observed a 30% 

reduction in ash content from a fall to spring harvest.  Ash content reduction was due to element 

loss from leaching in the winter (Adler et al., 2006).  However, Makaju et al. (2013) found that 

ash content did not change significantly from November to March for crops grown in 2007, 2008, 

and 2009. 
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3.4.3  Comparison of Composition of Switchgrass Varieties 

 Sladden et al. (1991) in Shorter, Alabama in 1990 found lowland ecotype varieties 

Kanlow and Alamo had significantly more cellulose than upland ecotype varieties Blackwell, 

Cave-in-Rock, Kansas Native, Pathfinder, Summer, and Trailblazer for initial harvest after 

anthesis.  Kanlow and Alamo were harvested on July 10 and September 21 in a two-cut system.  

The other varieties were harvested June 6 and August 14 in a two-cut system.  No significant 

difference in cellulose content was found between all varieties for the second cutting.  In the first 

cutting, there were no significant differences in hemicellulose contents among all varieties.  In the 

second cutting, Kansas Native was significantly higher and Summer was significantly lower than 

the other varieties in hemicellulose content.  The lowland ecotype varieties had higher 

permanganate lignin than all upland ecotype varieties except Summer for the initial harvest.  No 

difference in lignin was found for the second harvest (Sladden et al., 1991). 

 Lemus et al. (2002) harvested 20 different varieties in Iowa in November 13, 1998, 

September 30, 1999, and early January 2001.  The results were averaged for each variety.  No 

significant difference in cellulose was observed between varieties.  NU942 had the highest 

hemicellulose content (33.5%), which was significantly higher than 13 other varieties.  NU942 

was followed by Alamo and Kanlow in hemicellulose content (both at 32.8%), which was only 

significantly higher than 4 other varieties.  NL932 and NU942 had significantly lower ADL (5.3 

and 5.4%, respectively) than all other varieties except Alamo (5.7%).  Alamo had the lowest ash 

content (5.2%), which was significantly lower than all other varieties except Kanlow (5.4%).  The 

ash content of Kanlow was significantly lower than 15 other varieties (Lemus et al., 2002). 

3.4.4  Effect of Fertilizer on Switchgrass Composition 

 In Wisconsin, Porter (1985) reported that nitrogen fertilizer increased switchgrass yield 

(Mg/ha) when harvested on July 25 at early heading.  Fertilizing with nitrogen also increased 
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NDF, ADF, and cellulose concentrations.  However, the cellulose concentration of fertilized 

switchgrass only increased at early heading, not at anthesis.  Also, ADF increased to a greater 

extent on July 25 at the early heading stage than on August 19 at anthesis stage.  Nitrogen 

fertilization increased ADL in 1983, but not in 1984.  Nitrogen fertilizer increased upper and 

lower stem percentage, but decreased leaf percentage (Porter, 1985). 

3.5  Pretreatment 

 Lignocellulosic material needs to be pretreated prior to enzymatic hydrolysis due to the 

crystalline structure of cellulose and the seal of lignin (Mosier et al., 2005).  Without a 

pretreatment step, sugar yields from subsequent enzymatic hydrolysis are low (Kim et al., 2011; 

Mosier et al., 2005).  Pretreatment of lignocellulose disrupts cell wall structure and provides 

enzymes access to cellulose and hemicellulose (Mosier et al., 2005).  Pretreatment methods 

include comminution, extrusion, alkali, concentrated acid, dilute acid, ozonolysis, organosolv, 

ionic liquids, aprotic solvents, metal complexes, ammonia fiber expansion (AFEX), soaking in 

aqueous ammonia (SAA), wet oxidation, microwave, ultrasound, carbon dioxide explosion, steam 

explosion, and hydrothermolysis (Alvira et al., 2010; Kim et al., 2011; Mosier et al., 2005).  The 

effects of the pretreatment vary depending on the method used.  The pretreatment method will 

affect downstream processing steps for conversion of biomass to ethanol (Alvira et al., 2010).  

The pretreatment step will also affect the economic viability of the process, as it is considered one 

of the most expensive steps (Mosier et al., 2005).  Hydrothermolysis has been considered one of 

the leading pretreatment methods, especially for grasses (Alvira et al., 2010; Kim et al., 2011; 

Mosier et al., 2005).  Hydrothermolysis produced the second highest glucose and highest xylose 

contents in a comparison of AFEX, SAA, lime, dilute sulfuric acid, and hydrothermolysis 

pretreatment technologies using switchgrass (Kim et al., 2011). 
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 Hydrothermolysis is a liquid hot water pretreatment where water is added to 

lignocellulosic material and heated under pressure so the water remains in the liquid state (Mosier 

et al., 2005).  Hydrothermolysis depolymerizes and dissolves some lignin, dissolves most of the 

hemicellulose, and increases digestibility of cellulose by enzymes (Alvira et al., 2010).  The 

amount of biomass dissolved ranges from 40 to 60% (Mosier et al., 2005).  Temperatures for 

hydrothermolysis range from 140 to 240°C for a duration of 10 to 30 min (Alvira et al., 2010; 

Mosier et al., 2005; Suryawati et al., 2009; Yu et al., 2008).  The combination of temperature and 

time affect the severity of the pretreatment, and can be calculated by the severity equation, 

( )[ ]75.14/100−×= T
O etR  , where t is time in min and T is temperature in °C (Overend and Chornet, 

1987).  The logarithm of RO is typically reported (Yu et al., 2008).  During pretreatment, acetic 

acid and other organic acids are formed by O-acetyl and uronic acid substitutions from 

hemicellulose.  These acids help to catalyze the formation and removal of oligosaccharides 

(Mosier et al., 2005).  If conditions are too severe, sugars will degrade into aldehyde compounds 

that can inhibit fermentation organisms; hexoses will degrade to 5-hydroxymethylfurfural (HMF) 

and pentoses will degrade to furfural (Mosier et al., 2005).  Maintaining pH between 4 and 7 

retains hemicellulose as oligomers and minimizes formation of monomers, which reduces sugar 

degradation to fermentation inhibitors (Alvira et al., 2010; Mosier et al., 2005).  If the severity 

factor is too low, the pretreatment will be incomplete and the digestibility of cellulose will be 

impeded.  A severity factor of log(RO) = 3.65 for switchgrass resulted in much lower ethanol 

production during SSF than higher severity factors (Suryawati et al., 2009).  Glucose yields from 

rice straw dropped below 80% (db) for severity factors of log(RO) = 3.35 and less (Yu et al., 

2008).  Suryawati et al. (2009) optimized milled switchgrass hydrothermolysis pretreatment with 

the conditions 200°C for 10 min (log(RO) = 3.94) to balance maximizing ethanol from cellulose 

fermentation, dissolving hemicellulose, retaining hemicellulose as oligomers, and minimizing 

formation of inhibitors.  Yu et al. (2008) optimized hydrothermolysis pretreatment of rice straw 
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harvested in November 2006 in Japan and determined the optimum conditions were 180°C for 30 

min (log(RO) = 3.83).  Rice straw pretreated at 200°C for 10 min had a slightly higher severity 

factor (log(RO) = 3.94) than conditions at 180°C for 30 min (log(RO) = 3.83); and both 

pretreatment conditions produced nearly the same glucose yield from hydrolysis at two different 

enzyme loadings, 10 FPU Acremonium/g substrate and 40 FPU Acremonium/g substrate.  

However, 180°C for 30 min produced lower inhibitor concentrations (Yu et al., 2008). 

 Hydrothermolysis allows for separation of solids enriched in cellulose from the liquid 

fraction rich in hemicellulose through filtration (Alvira et al., 2010).  Suryawati et al. (2008) 

reported increasing glucan content of from 36.6 to 56.6% (db) and decreasing xylan content from 

21.0 to 2.4% (db) in the solid fraction of switchgrass by hydrothermolysis at 200°C for 10 min 

with 10% (w/w) solids loading.  Similarly, Faga et al. (2010) increased glucan content from 34.2 

to 53.2% (db) and decreased xylan content from 23.3 to 2.6% (db) in the solid fraction of 

switchgrass by hydrothermolysis at 200°C for 10 min with 10% (w/w) solids loading.  Yu et al. 

(2008) increased glucan content from 36.4 to 53.0% (db) and decreased xylan content from 19.2 

to 2.8% (db) in the solid fraction of rice straw by hydrothermolysis at 180°C for 30 min with 9% 

solids loading.  The liquid fraction is referred to as prehydrolyzate (Suryawati et al., 2008).  A 

portion of the biomass will dissolve into the prehydrolyzate during hydrothermolysis.  Suryawati 

et al. (2008) dissolved approximately 43.9% (db) and Faga et al. (2010) dissolved approximately 

37.7% (db) of switchgrass into the prehydrolyzate.  Suryawati et al. (2008) reported 4.6% (db) 

glucan and 28.0% (db) xylan of switchgrass were recovered in the prehydrolyzate. 

 While the prehydrolyzate contains sugars, it also can contain inhibitors to fermentation.  

In vivo tests showed that acetic acid affects both glycolysis enzymes and NADH dehydrogenase 

in the yeast Saccharomyces cerevisiae (Zhao et al., 2008).  Ethanol production was inhibited by 

50% for S. cerevisiae in the presence of acetic acid at two different concentrations and pH values: 

4.3 g/L acetic acid at pH 5.5, and 1.4 g/L acetic acid at pH 4.5 (Olsson and Hahn-Hagerdal, 
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1996).  However, Delgenes et al. (1996) found the strain S. cerevisiae CBS 1200 at pH 5.6 

produced 99% of ethanol as the control in the presence of 5 g/L acetic acid and 73% of the 

control at 10 g/L acetic acid.  Undissociated weak acids such as acetic acid can diffuse across the 

plasma membrane in microorganisms and dissociate in the cytosol, lowering the cytosolic pH 

(Palmqvist and Hahn-Hagerdal, 2000).  More of the undissociated forms of weak acids are 

present at lower pH values.  Thus, acetic acid inhibition of ethanol production via yeast 

fermentation increases as the pH decreases.  Ethanol production for S. cerevisiae CBS 1200 was 

reduced to 57% in the presence of 0.5 g/L furfural and 29% in the presence of 1 g/L HMF 

(Delgenes et al., 1996).  S. cerevisiae CBS 1200 was more sensitive to furfural than other strains 

of S. cerevisiae (Delgenes et al., 1996). 

3.6  Hydrolysis and Fermentation 

 After pretreatment, the cellulose and hemicellulose can be hydrolyzed by enzymes into 

monomeric sugars for fermentation by microorganisms.  Separate hydrolysis and fermentation 

(SHF) is the two-step approach where enzymes are first added and allowed time to generate sugar 

monomers before the fermentation step.  Simultaneous saccharification and fermentation (SSF) 

combines enzymes and microorganisms to both hydrolyze oligomers and ferment sugar 

monomers in the same step.  Simultaneous saccharification and co-fermentation (SSCF) is an SSF 

of both cellulose and hemicellulose together (Mosier et al., 2005). 

 Both hydrolysis rates of glucan and final glucose yields were found to be lower when 

switchgrass was left in the field and harvested the following spring.  Kim et al (2011) reported 1 h 

glucose yields of May 2008 harvested Dacotah switchgrass to be half that of December 2006 

harvested Shawnee and Alamo switchgrass after ammonia fiber expansion (AFEX), dilute acid, 

and hydrothermolysis pretreatments, despite higher glucan content in the Dacotah switchgrass.  

The difference in glucose yields between harvest times decreased with time of hydrolysis.  
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Dacotah 168 h glucose yields were 5 to 20% less than Shawnee and Alamo for five different 

pretreatments.  The extent to which glucose yields for Dacotah switchgrass were lower was 

greatest for ammonia pretreatments.  Shawnee and Dacotah switchgrass were subjected to the 

same conditions for AFEX pretreatment, which differed from conditions for Alamo switchgrass.  

Glucose yields, however, were similar for Shawnee and Alamo, with a much lower yield for 

Dacotah.  This suggests that harvest date may have a large effect on glucose yields after AFEX 

pretreatment, but the effect could be confounded by switchgrass variety.  Alamo and Shawnee 

switchgrass were pretreated at the same conditions for soaking in aqueous ammonia (SAA) 

pretreatment, with different conditions for Dacotah switchgrass.  Conditions varied among 

ammonia pretreatments because optimum conditions were chosen.  Glucose yields for SAA 

followed the same pattern as AFEX, with similar yields for Alamo and Shawnee versus a lower 

yield for Dacotah.  The lower glucose yield for SAA may be due to different pretreatment 

conditions, unknown effects from different switchgrass varieties, or it could also be an indicator 

of reduced sugar yields for ammonia pretreatments at later harvest dates.  Conditions were the 

same across switchgrass cultivars for dilute acid, hydrothermolysis, and lime pretreatments.  

Glucose yields for Dacotah switchgrass were closer to glucose yields for Alamo and Shawnee 

switchgrass for these three pretreatments, but they were still the lowest yields among the three 

cultivars.  The effect of harvest date may be confounded by switchgrass variety in this study (Kim 

et al., 2011).  Adler et al. (2006) found in vitro gas production rate, an indication of SSF yields, 

decreased 25% when harvest was delayed from fall to spring for Cave-in-Rock switchgrass at 

Rock Springs, Pennsylvania from fall of 2002 to spring of 2005.  There was no significant harvest 

season by year interaction (Adler et al., 2006). 

 Bals et al. (2010) compared separate hydrolysis and cofermentation after AFEX 

pretreatment of July and October harvests of Alamo switchgrass at Auburn, Alabama in 2005 and 

Cave-in-Rock switchgrass at East Lansing, Michigan in 2008.  It was not clear if the harvests 
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were under a one-cut or two-cut management.  AFEX pretreatment conditions were optimized for 

all four harvests, resulting in different optimal pretreatment conditions for each harvest.  Enzyme 

loadings were then optimized for switchgrass pretreated under the optimal conditions for each 

harvest, comparing varying amounts of Accellerase, β-glucosidase Novozyme 188, Multifect 

Xylanase, and Multifect Pectinase.  Optimal amounts were a combination of Accellerase, 

Multifect Xylanase, and Multifect Pectinase, each loaded at 5 mg enzyme/g dry switchgrass for 

both Alamo harvests and the July Cave-in-Rock harvest.  The optimal amounts for the October 

Cave-in-Rock harvest varied from these amounts by an increase in Accellerase to 6.4 mg 

enzyme/g dry switchgrass and a decrease in Multifect Xylanase to 3.6 mg enzyme/g dry 

switchgrass.  Glucose and xylose yields from hydrolysis were higher for July harvest (32.1 and 

20.0 % (db) switchgrass, respectively) than October harvest (22.3 and 18.7 % (db)) for Cave-in-

Rock switchgrass, while October harvest (23.7 and 20.8 % (db)) yielded more glucose and xylose 

than July harvest (21.0 and 20.1 % (db)) for Alamo switchgrass.  July harvest of Cave-in-Rock 

switchgrass yielded much more glucose than the other harvests.  Sugar yields were determined by 

g sugar/kg switchgrass, but it was not clear if the yields were in terms of untreated or pretreated 

switchgrass.  Cofermentation of glucose and xylose by Saccharomyces cerevisiae 424A, a 

genetically modified yeast that can ferment xylose in addition to glucose, was conducted for 

switchgrass from each harvest after pretreatment under optimal conditions with optimal enzyme 

loadings.  Solids loading was 20%, except for October Alamo switchgrass, which was at 10% 

solids loading.  Ethanol was still increasing when fermentations were stopped at 96 hr, when 

glucose was consumed, but xylose was still being utilized.  Ethanol yield for Cave-in-Rock at 96 

h was higher for July harvest at 34 g/L than October harvest at 30 g/L, and also contained more 

residual xylose which was still being consumed.  When comparing varieties at July harvests, 

Cave-in-Rock also had a higher ethanol yield than Alamo, which produced 30 g/L.  Comparison 

of ethanol yield of October Alamo switchgrass to the other ethanol yields is difficult due to a 

different solids loading in the October Alamo fermentation (Bals et al., 2010). 
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3.7  Conclusion 

 A single-cut management will likely be used across much of the United States for 

switchgrass grown for ethanol production.  Timing of the harvest will likely focus on maximizing 

long term yield; minimizing a combination of stand loss from earlier harvests and residue loss 

from later harvests. 

 There is lack of a detailed carbohydrate composition of switchgrass throughout likely 

harvest periods from the end of the growing season through senescence.  Further, there is a lack 

of switchgrass hydrolysis and fermentation data throughout this period.  A comparison of 

multiple harvest dates within the same harvest season for a single variety of switchgrass grown at 

the same location will aid in defining a harvest window for switchgrass used for ethanol 

production.



 

27 

CHAPTER IV 
 

 

MATERIALS AND METHODS 

 

4.1  Harvest and Sample Preparation 

 Switchgrass (Panicum virgatum, var. Kanlow) was used for all experiments.  Kanlow is a 

lowland cultivar.  The switchgrass was from a mature, ten-year old stand planted in 1998 in an 

Easpur loam soil.  The switchgrass received no application of fertilizer, nutrients, or pesticides 

both during and three years prior to the harvest for this study.  It was grown at an Oklahoma State 

University research field near Stillwater, OK.  Weather data for the switchgrass plot is provided 

in the Appendix.  Additional data for the switchgrass can be found in Makaju et al. (2013), as 

both that study and this study used the same switchgrass plot. 

 Switchgrass was harvested near the 22nd of July, August, September, October, and 

November of 2008, dependent of weather.  The first freeze of the fall occurred in mid-November, 

and the November sample was harvested after this freeze.  Thus the effects of a freeze on 

switchgrass could be analyzed.  Normally, anthesis of lowland switchgrass occurs in August in 

Oklahoma.  Senescence typically begins at the end of August in the leave blades and is completed 

by November (Yanqi Wu, personal communication).  A single-harvest management was used.  

Each harvest was the first cutting of the season; different plants within the same plot were 

harvested each time.  There were six samples collected from the plot each month.  The plot was 

divided into six zones, with a sample taken from each zone.  The samples were combined into a 
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single bulk sample for each month.  The bulk samples were dried for a week at 50°C, after which 

the moisture content was 5 ± 1% for all samples.  After drying, each bulk sample was ground 

from a bundle of whole stalks to particles that could pass through a 2 mm sieve.  A Thomas-

Wiley Laboratory Mill, model 4 (Arthur H. Thomas Company, Philadelphia, PA, U.S.A.), was 

used for grinding the switchgrass, which was then stored at room temperature in a plastic zip-loc 

bag. 

4.2  Percent Solids Determination 

 The dry solids content of the switchgrass was determined after grinding, after extraction, 

after pretreatment, and before fermentation.  The National Renewable Energy Laboratory 

(NREL) Laboratory Analytical Procedure (LAP), “Standard Test Method for Moisture, Total 

Solids, and Total Dissolved Solids in Biomass Slurry and Liquid Process Samples” was used to 

determine the dry solids content (Ehrman, 1994).  Samples and weighing tins were heated in an 

oven (Lab-Line Instruments, Inc., Melrose Park, IL, U.S.A.) at 105 ± 5°C.  The dried samples and 

weighing tins were cooled inside a vacuum desiccator.  The mass of the samples and weighing 

tins were measured using an analytical balance (P-314, Denver Instruments, Bohemia, NY, 

U.S.A.) to the nearest 0.1 mg. 

4.3  Pretreatment 

 A hydrothermolysis pretreatment was used to disrupt the lignin structure and dissolve 

hemicellulose, making the cellulose available for enzymatic hydrolysis.  A Parr reactor (Series 

4520, Parr Instrument Company, Moline, IL, U.S.A.) was used to conduct the pretreatment.  A 

mass of 60 g of dry, ground switchgrass and 540 g deionized water (resistivity < 18 MΩ/cm) 

were mixed at 500 rpm and heated from approximately 20°C to 200°C.  The temperature was 

maintained at 200 ± 2°C for 10 min.  The severity factor was log(RO) = 3.94.  These conditions 

were chosen to optimize sugar recovery and ethanol yield, while keeping inhibitor production low 
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(Suryawati et al., 2009).  The switchgrass and water slurry was cooled to 40°C using an ice water 

bath before opening the gas tight container; thus losses of volatile compounds were minimized. 

 The liquid (also known as prehydrolyzate) and solid portions of the slurry were then 

separated via vacuum filtration using a Whatman #5 filter (Whatman Schleicher & Schuell, 

Maldstone, England)  The mass of solids remaining on the filter and the mass of prehydrolyzate 

were determined.  The prehydrolyzate was measured for pH and then stored at 4°C.  The solids 

were washed four times with 500 mL of 60 to 63°C deionized water.  The rinse water was 

removed by vacuum filtration and its pH was measured after cooling to room temperature.  After 

the fourth rinse, the solids were kept under vacuum long enough to remove most of the water.  A 

sample consisting of approximately 5 g of wet solids was taken to determine dry solids content.  

Washed solids were stored at 4°C. 

 A mass balance was attained by measuring the mass of the solid and liquid material both 

before and after pretreatment.  The following were measured: 

 mass of the switchgrass loaded into the Parr reactor = mgl 

 percent dry solids of switchgrass before pretreatment = %Solidsgl 

 mass of water loaded into the pretreatment cell = mw 

 mass of the prehydrolyzate = mp 

 mass of the wet solids remaining on filter after filtration, but before rinsing = mwsi 

 mass of wet solids after rinsing = mwsf 

 percent dry solids of wet solids after rinsing = %Solidswsf 

The mass recovered after the pretreatment process was calculated using the following equation: 
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The amount of grass dissolved into the water during the pretreatment process was calculated by 

the following equation: 

 
eredreSolidsm glgl cov%*)%*(

/100)(%Solids * m
 1 dissolved % wsfwsf−=      (2) 

4.4  Compositional Analysis 

 Samples of each month’s switchgrass harvest were analyzed for structural carbohydrates 

and lignin.  This analysis was performed both before and after hydrothermolysis pretreatment.  

The samples had to undergo either an extraction or pretreatment process before constituents could 

be determined.  The extraction procedure followed was the NREL LAP titled “Determination of 

Extractives in Biomass” (Sluiter et al., 2007).  Structural carbohydrates were then determined 

using the NREL LAP titled “Determination of Structural Carbohydrates and Lignin in Biomass” 

(Sluiter et al., 2004).  Figure 4.1 shows an overview of the analysis of the switchgrass. 

 Dried, ground switchgrass underwent a water extraction followed by an ethanol 

extraction.  The extractions were performed using an Accelerated Solvent Extractor (Dionex 

Corporation, Sunnyvale, CA, U.S.A.)  Both the water and ethanol extractions used the following 

method: 1,500 psi, 100°C, 5 min heat time, 7 min static time, 150% flush volume, 120 sec purge 

time, and 3 static cycles.  Ethanol was allowed to evaporate from the ethanol extracts in a fume 

hood.  A sample of the water extracts was pulled for sugar content analysis.  The water was 

evaporated in a 40°C oven from the water extracts.   
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Figure 4.1  Overview of Analyses.  Compositional Analysis was performed on ground 

switchgrass both before and after pretreatment.  An extraction was required before compositional 

analysis for untreated switchgrass.  Pretreated switchgrass was then processed by simultaneous 

saccharification and fermentation (SSF). 

 

Ground Dried Switchgrass 

Extraction Hydrothermolysis Pretreatment 

Compositional Analysis Compositional Analysis SSF 
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The extracts were calculated as a percent of switchgrass on a dry weight basis: 

 
Solidsmass

mass
sExtractive

grass

sextractive

%*
% =       (3) 

Glucose and sucrose contents of the water extractives were determined with a High Performance 

Liquid Chromatograph (HPLC) (Agilent 1100 Series, Santa Clara, CA, U.S.A.).  A Biorad 

Aminex HPX-87P sugar column at 85°C with a deionized water mobile phase at a 0.6 mL/min 

flow rate was used for carbohydrate separation.  A refractive index detector (RID) (Agilent 1100 

Series) was used for quantification of compounds. 

 Switchgrass was analyzed for lignin and structural carbohydrates after either extraction or 

pretreatment.  A two-stage acid hydrolysis with 72% sulfuric acid at 30°C for 60 min and 4% 

sulfuric acid at 121°C for 60 min was used to disrupt lignin and hydrolyze structural 

carbohydrates.  Each acid and grass suspension was vacuum filtered using a filter crucible.  Acid 

insoluble lignin (AIL) was determined from the dry mass of the acid insoluble residue (AIR) and 

the ash in the solids.  The following equation gives the percent of AIL on an extractives free 

basis: 

 100*%
drygrass

ashAIR
sFreeExtractive m

mm
AIL

−
=       (4) 

where mdrygrass is the dry mass of the switchgrass acid hydrolyzed. 

Dry mass was measured after heating in an oven for 24 h and cooling in a vacuum desiccator.  

Ash mass was measured after heating in an Isotemp Programmable Muffle Furnace (Fisher 

Scientific, Dubuque, IA, U.S.A.) using the following program: increase temperature to 105°C, 

hold at 105°C for 12 min, increase temperature to 250°C at a rate of 10°C/min, hold at 250°C for 

30 min, increase temperature to 575°C at a rate of 20°C/min, hold at 575°C for 180 min, allow 
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temperature to decrease to 105°C.  Acid soluble lignin (ASL) was determined by measuring the 

absorbance of the filtrate with a UV-Vis spectrophotometer (Cary 50 Bio UV-Visible 

Spectrophotometer, Varian, Palo Alto, CA, U.S.A.) at a wavelength of 205 nm using a quartz 

cuvette (Thammasouk et al., 1997).  Acid soluble lignin on an extractives free basis was 

calculated with the following equation: 

 100*
*

**
%

drygrass

Filtrate
sFreeExtractive m

DilutionVolumeceUVabsorban
ASL

ε
=   (5) 

where ε is the absorptivity of biomass at a specific wavelength (110 L/g cm) and mdrygrass is the 

dry mass of the switchgrass acid hydrolyzed.  (Thammasouk et al., 1997). 

Total lignin content on an extractives free basis is the sum of %AIL and %ASL.  Acid filtrate was 

neutralized with calcium carbonate and filtered through a 0.2 µm filter.  Structural carbohydrate 

contents were determined from neutralized filtrate by HPLC analysis using the same method as 

for extractive sugar content.  Samples were analyzed for cellobiose, glucose, xylose, galactose, 

arabinose, and mannose. 

 Lignin and structural carbohydrates were calculated on an as received basis to account for 

the mass removed by extraction.  The following equations were used: 

 






 −=
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%
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AILAIL sFreeExtractivecievedAs    (6) 

 






 −=
100

%
1*%% Re

sExtractive
ASLASL sFreeExtractiveceivedAs    (7) 

Acid insoluble lignin, acid soluble lignin, and structural carbohydrates were calculated as a 

percent of switchgrass on a dry weight basis. 
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4.5  Simultaneous Saccharification and Fermentation 

 Pretreated, rinsed switchgrass was converted to ethanol through a SSF process.  The 

NREL LAP “SSF Experimental Protocols: Lignocellulosic Biomass Hydrolysis and 

Fermentation” was followed with some modifications (Dowe and McMillan, 2001).  Two SSF 

experiments were conducted, one with all five harvest dates and one using only July, September, 

and November harvest dates. 

4.5.1  Switchgrass Preparation 

 Switchgrass pretreated using the hydrothermolysis pretreatment described in section 4.3 

was used in the SSFs.  The solids from two batch hydrothermolysis pretreatments of each harvest 

date were combined and mixed.  After compositional analysis, the combined pretreated 

switchgrass solids were used in the SSF.  The liquid fraction from hydrothermolysis pretreatment 

was not added to the SSF.  The SSF of July, September, and November switchgrass used different 

pretreated batches than the SSF of all five harvest dates.  The moisture content of the pretreated 

switchgrass was determined one day before use in the SSF. 

4.5.2  Yeast Preparation 

 The yeast strain Saccharomyces cerevisiae D5A was used for the fermentation.  The yeast 

was stored in a refrigerator at 4°C on an agar slant consisting of 3 g/L yeast extract, 3 g/L malt 

extract, 5 g/L peptone, 22 g/L dextrose monohydrate, and 22 g/L agar.  Aseptic procedure was 

used to inoculate liquid medium with yeast from the slants.  The liquid medium consisted of 10 

g/L yeast extract, 20 g/L peptone, and 50 g/L glucose.  The medium was filter sterilized through a 

0.22 µm bottle-top filter.  A volume of 100 mL of liquid medium was poured into a 250 mL 

baffled flask and inoculated with a loop of cells.  The flask was covered with a Bugstopper 

(Whatman Inc., Florham Park, NJ, U.S.A.), which allows aerobic conditions while maintaining a 

monoculture through aseptic gas transfer.  The flask was placed in a Max Q 4450 incubated 
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orbital shaker (Thermo Scientific, Dubuque, IA, U.S.A.) at 37°C and 250 RPM.  A higher 

rotational speed was used for the aerobic growth of the yeast culture than the anaerobic SSF to 

ensure adequate oxygen to the yeast culture, whereas the SSF only need to be well-mixed. 

 A second flask was filled with 90 mL of liquid medium and inoculated with 10 mL of 

well-mixed volume from the first flask.  This was done 16 h after the first flask was inoculated.  

The yeast were in the exponential growth phase after that period of incubation.  The second flask 

was covered with a Bugstopper and incubated in an orbital shaker at 37°C at 250 RPM.  The 

optical density (OD) of the second flask was measured to determine whether adequate cell growth 

had occurred.  The optical density was measured by a UV-Vis spectrophotometer (Cary 50 Bio 

UV-Visible Spectrophotometer, Varian, Palo Alto, CA, U.S.A.) at 600 nm.  The absorbance 

measurement was multiplied by the dilution factor, which is the total volume divided by the 

sample volume.  This product is the optical density of the yeast culture. 

 The volume of culture needed to supply the amount of cells necessary for the SSF was 

calculated based on the yeast culture OD, desired starting OD of the SSF, the volume of the SSF, 

and the number of flasks to be used for the SSF. 

( )1_
, +×

×
= flasksSSF

inoculum

initialSSFSSF

inoculum number
OD

ODVolume
Volume    (8) 

Adding one to the number of flasks creates a slightly larger working volume.  This is 

advantageous as it is difficult to pipette the final droplets remaining in a container; and the entire 

volume would be required without adding one to the number of flasks.  The initial OD was 0.5 for 

each SSF.  There were 18 flasks for the SSF of all five harvest dates and 7 flasks for the SSF of 

July, September, November harvest dates. 

 The volume of inoculum that is calculated was then withdrawn via pipette from the well-

mixed inoculum flask using sterile technique.  The volume was split between two 50 mL sterile 
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centrifuge tubes.  The inoculum was centrifuged at 3,750 RPM for 6 min with a Sorvall Legend 

RT centrifuge (Kendro, Asheville, NC, U.S.A.).  Then the supernatant was decanted.  The cells 

were resuspended in DI water to wash away residual sugar.  The cell suspension was centrifuged 

at 3,750 RPM for 6 min.  The supernatant was decanted and the cells were resuspended in DI 

water.  The volume used to suspend the cells was the number of flasks used plus one, in mL.  

Since 18 flasks were used, the cells were suspended in 19 mL.  This allows for each flask to 

receive one mL of cell suspension with one mL excess. 

4.5.3  Enzyme 

 A commercial enzyme, Accellerase 1500 (Genencor, Palo Alto, CA, U.S.A.), was used to 

saccharify the switchgrass cellulose into monomers for the SSF of all five harvest dates.  Another 

commercial enzyme, Fibrilase (Iogen, Ottawa, Canada) was used for saccharification in the SSF 

of only July, September, and November harvest dates.  The activity of the enzyme was measured 

in filter paper units (FPU) using NREL LAP “Measurement of Cellulase Activities” (Adney and 

Baker, 1996). 

4.5.4  Loading Quantities 

 Switchgrass comprised 8% of the SSF on a dry mass basis.  SSFs are typically loaded by 

glucan content, rather than dry mass.  However, in keeping with the objective, a comparison of 

ethanol production among different harvest dates based on a dry mass basis is more suitable than 

a comparison based on glucan content.  Ethanol production can be compared between different 

harvest months based on yield per dry mass unit.  This yield can be directly correlated to the yield 

of dry mass of switchgrass per area of land.  Combining the two yields allows a comparison of 

harvest dates based on ethanol per area of land.  Each SSF consisted of 100 g of material loaded 

into a 250 mL baffled flask.  Wet, pretreated switchgrass was loaded based on its moisture 
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content to total 8 g dry grass.  DI water was also added on a mass basis according to the following 

equation: 

mass wet grass + 5 g citrate buffer at pH 4.5 + 10 g 10X YP media + 1 g yeast + 1 g enzyme +  

DI water = 100 g 

The flasks containing wet switchgrass and DI water were capped with Bugstoppers.  Then the 

mass of each flask was measured and recorded.  The flasks and a container of DI water were 

sterilized at 121°C for 1 h by an autoclave.  The flasks were dried and allowed to cool.  The mass 

of each flask was measured again.  The difference in mass was attributed to evaporation of water 

in the autoclave.  The sterilized DI water was added aseptically to replace the evaporated water.  

A 1.0 M citrate buffer solution was filter sterilized.  A 10X yeast extract and peptone (YP) 

nutrient solution was prepared with 100 g/L yeast extract and 200 g/L peptone and filter 

sterilized.  Citrate buffer was at 50 mM, yeast extract at 10 g/L, and peptone at 20 g/L for 

fermentations.  Volumes of 5 mL of 1.0 M citrate buffer at pH 4.5, 10 mL of 10X concentrated 

YP medium, 1mL of 100X concentrated yeast solution, and 1 mL of enzyme were also added 

aseptically.  The time of the SSF started once the enzyme was added.  The yeast was added 

second to last and the enzyme was added last.  The SSF of all five harvest dates using Accellerase 

enzyme contained 9 FPU/g glucan.  The SSF of July, September, and November harvest dates 

using Fibrilase enzyme contained 14 FPU/g glucan. 

4.5.5  SSF Conditions 

 Flasks were placed into a C25 Incubator Shaker (New Brunswick Scientific, Edison, NJ, 

U.S.A.) after initial samples were taken.  The temperature was held at 37°C and the shaker speed 

was at 130 RPM.  Anaerobic conditions were maintained using a one-way air valve and rubber 

stopper to cap each flask.  Each rubber stopper contained a hole in the center.  A one-way air 

valve was inserted into this hole.  Gases were allowed out of the flask by the one-way air valve, 
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which prevented excessive pressure from building up.  No gases were allowed into the flask, 

which maintained the anaerobic condition and prevented contamination. 

4.5.6  Sampling 

 Each flask was sampled aseptically at 0, 6, 24, 48, 72, 96, 120, 144, and 168 h after 

enzyme addition.  Flasks were transferred to a freshly sterilized biosafety cabinet.  The one-way 

air valve was removed, the mouth of the flask flamed, the flask was swirled to ensure a well-

mixed slurry, and a sterile pipette tip used to remove 1.5 mL of sample.  The samples were put 

into 2 mL microcentrifuge tubes and centrifuged at 13,000 RPM for 10 min by an accuSpin 

Micro microcentrifuge (Fisher Scientific, Hampton, NH, U.S.A.).  The supernatant was filtered 

through a 0.45 µm nylon filter into an HPLC vial.  The pH of the flasks was measured after the 

last sample at 168 h.  The pH was measured using a pH probe (ORION 310 pH meter, Thermo 

Electron Corporation, Beverly, MA, USA; VWR symphony probe, West Chester, PA, USA). 

4.5.7  Analysis 

 The filtered SSF samples were analyzed by HPLC to determine the concentrations of 

cellobiose, glucose, xylose, xylitol, succinic acid, glycerol, ethanol, and acetic acid.  The mobile 

phase was 0.01 M H2SO4.  An Aminex HPX-87H column was used for separation of compounds.  

RID was used to quantify the compounds.  External standards were used for the calibration.  

There were three SSF flasks set up for each harvest date of switchgrass, as well as the control, for 

the SSF of all five harvest dates.  There were two SSF flasks set up for each harvest date and only 

one control flask for the SSF of July, September, and November harvests.  Tukey’s test was used 

to separate means between harvest dates at a 95% confidence interval with SAS Release 9.3 

(SAS, Cary, NC, U.S.A.).
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CHAPTER V 
 

 

RESULTS AND DISCUSSION 

 

5.1  Composition of Switchgrass through Harvest Season 

5.1.1  Extractives Content 

 The percentage of total mass extracted decreased throughout the harvest interval, from 

13.8% (db) in July to 5.3% (db) in November.  Figure 5.1 shows the extractives as percent dry 

mass.  The amount extracted decreased over the harvest interval for both the water and ethanol 

extractions.  Ethanol extractives include chlorophyll, waxes, and other minor constituents (Ruiz et 

al., 2007).  Water extractives include inorganic material, non-structural carbohydrates, and 

nitrogenous material (Ruiz et al., 2007).  Water extractives decreased faster after September. 

 Water extractives were analyzed for sugar content by HPLC.  Both sucrose and glucose 

were detected.  Extractable sucrose content of switchgrass ranged from 2.43% (db) in August to 

0.09% (db) in November.  Extractable glucose content ranged from 1.29% (db) in September to 

0.18% (db) in November.  A reduction in the amount of sugar extracted was observed after 

September, as shown in Figure 5.2.  Adler et al. (2006) and Lemus et al. (2002) also observed that 

soluble and storage sugars declined as plants aged.  Sugars are not produced by photosynthesis as 

above ground switchgrass tissue dies during senescence.  Extractable glucose and sucrose peaked 

near 3.5% (db) in August and September. 
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Figure 5.1  Water and ethanol extractive content in switchgrass harvested during different 

months. 
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Figure 5.2  Sugar content removed by water extraction in switchgrass harvested during 

different months. 
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5.1.2  Structural Carbohydrate Content 

 Structural carbohydrates were analyzed after extraction by water and ethanol.  Contents 

are expressed as a percentage of switchgrass dry mass before the removal of extracts.  Glucan 

content increased over the harvest period; values for each month from July to November were 

36.5, 37.1, 37.7, 39.7, and 41.4% (db), respectively.  Figure 5.3 shows changes in structural 

carbohydrate content over the harvest period.  Makaju et al. (2013) found a similar increase in 

cellulose content over the same period for the same switchgrass stand; cellulose contents were 41, 

42, 42, 44, and 44% (db) from July to November, respectively.  The cellulose content measured 

by the method used by Makaju et al. (2013) tends to overestimate structural glucan content by 2 

to 4% (Wolfrum et al., 2009).  Bals et al. (2010) measured a smaller increase in glucan content of 

Alamo switchgrass over a similar period in Auburn, AL in 2005, with 32.6% (db) for July and 

32.9% (db) for October.  However, the switchgrass in Auburn may not have senesced as much by 

October as the Kanlow grass in Stillwater, OK due to differences in climate and latitude.  Bals et 

al. (2010) did not observe a large decline in extractives in October as was the case in this study.  

Porter (1985) observed a 4% (db) cellulose increase from July to August in Wisconsin for two 

upland cultivars, more than the 0.6% (db) glucan content increase observed in this study for the 

lowland cultivar Kanlow.  Xylan content held steady from July through September at 

approximately 22.5% (db), increased in October to 26.1% (db), and then decreased to 24.8% (db) 

in November (Figure 5.3).  In Iowa, Lemus et al. (2002) observed an increase in cellulose and 

hemicellulose of 2.1 and 3.6%, respectively, for average values of both upland and lowland 

cultivars from September to November, although harvests were from different years.  These 

results from Lemus et al (2002) correspond to glucan and xylan content increases of 3.7 and 2.1% 

(db), respectively, from September to November for this study.  Dien et al. (2006) measured a 3.9 

and 2.8% (db) increase in glucan and xylan content, respectively, for upland Cave-in-Rock 

switchgrass from anthesis to post frost growth stages in 2003 at Mead, Nebraska.   
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Figure 5.3  Structural carbohydrate content in switchgrass harvested during different 

months. 
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Dien et al. (2013) measured changes in glucan and xylan content from anthesis to post frost 

growth stages of Cave-in-Rock to be -0.7 and 1.9% (db), respectively, and Kanlow N1 to be 2.2 

and 0.7% (db), respectively, at Mead, Nebraska.  These growth stages correspond to August and 

November harvests in this study where glucan and xylan content increased by 4.3 and 1.4% (db), 

respectively.  Arabinan content ranged from 2.0 to 2.4% (db) and mannan content ranged from 

0.7 to 1.4% (db) (Figure 5.3).  Galactan content was less than 1.0% (db) for all months (Figure 

5.3). 

 Glucan content was more constant over the harvest period on an extractives free basis 

than on a whole plant basis, as shown in Figure 5.4.  This indicates that most of the increase in 

glucan content over the harvest period for total plant composition is from the declining 

extractives content rather than additional structural carbohydrates.  If there are insignificant gains 

in structural carbohydrates over the harvest period, then the same mass of glucan can be harvested 

at any time.  Further, it is not necessary to preserve the soluble sugars present in the extractives 

because they would be degraded in almost all types of pretreatments.  It is unlikely to be cost 

effective to extract these sugars for fermentation. 

5.1.3  Lignin Content 

 Lignin was analyzed in switchgrass after extraction by water and ethanol.  Lignin content 

is expressed as a percent of switchgrass before extraction.  Lignin content increased from July at 

17.8% (db) until September at 20.5% (db), after which a very slight increase to 20.8% (db) in 

November was observed.  Figure 5.5 shows the lignin content of switchgrass over the harvest 

interval.  The acid insoluble portion of lignin was the major lignin component and followed the 

same pattern as the total lignin, ranging from 15.2 to 18.8% (db) from July to November.  

However, the acid soluble portion of lignin decreased from 2.6 to 2.0% (db) from July to 

November. 
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Figure 5.4  Structural carbohydrate content on extractives free basis in switchgrass 

harvested during different months.
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Figure 5.5  Lignin content in switchgrass harvested during different months.  AIL is acid 

insoluble lignin and ASL is acid soluble lignin. 
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 Increases in lignin will decrease access to structural carbohydrates.  Depending on the 

effectiveness and cost of pretreatment, an earlier harvest may be advantageous to avoid increased 

lignin content. 

5.2  Effect of Switchgrass Maturity on Simultaneous Saccharification and Fermentation 

Yields 

5.2.1  Composition of Switchgrass after Pretreatment 

 Switchgrass was pretreated by hydrothermolysis to disrupt lignin structure so that 

enzymes could access cellulose during SSF.  The percent of switchgrass dissolved by 

pretreatment begins to decline in October.  The decrease in the percent dissolved is similar to the 

decrease in the percent extracted from July to November, shown in Figure 5.6. 

 The effects of the pretreatment on the composition of switchgrass were analyzed.  The 

sample used to determine the dry matter content of switchgrass analyzed by acid hydrolysis was 

lost for the November harvest sample.  The average of the other four harvest date samples was 

used to estimate the dry matter content of the November sample.  The standard deviation for the 

dry matter content of the samples from the other four harvest dates was 0.157%; therefore, it can 

be assumed that the error introduced is very small from this factor. 

 Lignin contents of pretreated switchgrass are shown in Figure 5.7.  Lignin content 

increased in switchgrass solids after pretreatment by hydrothermolysis for all harvest dates 

(Figures 5.5 and 5.7).  Lignin mostly remained in the solid fraction, while other components were 

dissolved into the liquid fraction.  The resultant mass loss from dissolved components makes 

lignin a larger constituent in the remaining solids.  After pretreatment, the lignin content profile 

over the harvest season changed.  The highest lignin content of pretreated switchgrass at 34.6% 

(db) occurred with an August harvest date (Figure 5.7).  The October and November harvest dates 

had the highest lignin content before pretreatment at 20.6 and 20.8% (db) (Figure 5.5), but the 
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Figure 5.6  Amounts of switchgrass harvested during different months dissolved by 

hydrothermolysis pretreatment and removed by extraction. 
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Figure 5.7  Lignin content of switchgrass harvested during different months after 

hydrothermolysis pretreatment.  AIL is acid insoluble lignin and ASL is acid soluble lignin.
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lowest lignin content after pretreatment at 32.3 and 32.8% (db) (Figure 5.7).  Acid insoluble 

lignin content also increased in the solid fraction after pretreatment for all harvest dates, however, 

acid soluble lignin decreased for all harvest dates. 

 Glucan content increased in switchgrass solids after hydrothermolysis pretreatment.  

Figure 5.8 shows the structural carbohydrate content of the pretreated switchgrass.  Glucan 

content ranged from 37.1 to 41.4% (db) before pretreatment (Figure 5.3) and 56.3 to 59.8% (db) 

after pretreatment (Figure 5.8).  This increase is due to the preservation of glucan in the solid 

fraction and the removal of other components from switchgrass to the liquid fraction.  Xylan 

content was greatly reduced in the solid fraction after pretreatment.  Xylan ranged from 22.7 to 

26.5% (db) before pretreatment (Figure 5.3) and 2.0 to 2.7% (db) after pretreatment (Figure 5.8).  

Nearly all galactan, arabinan, and mannan were removed from the solid fraction during 

pretreatment.  For August harvested switchgrass, 0.6% (db) galactan and 0.4% (db) mannan were 

detected in the solid fraction after pretreatment (Figure 5.8).  No galactan, arabinan, or mannan 

were detected in pretreated switchgrass solids for any other harvest date.   

 Figure 5.9 shows the preservation of structural carbohydrates in the solid fraction.  For 

glucan, 87.0 to 92.6% (db) was preserved in the solids after pretreatment.  A small amount of 

glucan was dissolved into the liquid fraction.  Only 5.1 to 6.8% (db) xylan was preserved in the 

solid fraction after pretreatment.  Most of the xylan was dissolved into the liquid fraction. 

 Figure 5.10 shows the concentrations of sugars in the liquid fraction after 

hydrothermolysis pretreatment of switchgrass and subsequent acid hydrolysis.  The acid 

hydrolysis was performed to convert sugar polymers to monomers.  The amount of glucose in the 

liquid fraction increased from 3.2 to 3.6 g/L from July to September harvests, and then declined 

to 2.0 g/L for the November harvest.  Xylose increased from 11.0 to 14.7 g/L from July to 
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Figure 5.8  Structural carbohydrate content of switchgrass harvested during different 

months after hydrothermolysis pretreatment. 
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Figure 5.9  Preservation of structural carbohydrates in solid fraction of switchgrass 

harvested during different months after hydrothermolysis pretreatment. 
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Figure 5.10  Concentration of sugars in liquid fraction after pretreatment of switchgrass 

harvested during different months. 
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October harvests, and then declined to 12.0 g/L for the November harvest.  Galactose ranged 

from 0.8 to 1.0 g/L. 

 Figure 5.11 shows the percent of structural carbohydrates dissolved into the liquid 

fraction during hydrothermolysis pretreatment.  The amount of glucan dissolved into the liquid 

fraction was between 4.4 and 8.7 % (db).  The amount of xylan dissolved into the liquid fraction 

was higher, between 42.6 and 49.7% (db).  The xylan content recovered in the liquid fraction was 

higher than other switchgrass pretreated under the same conditions.  Suryawati et al. (2008) found 

4.6% (db) of glucan and 28.0% (db) of xylan in the liquid fraction. 

The liquid fraction after pretreatment by hydrothermolysis contained inhibitors.  A small 

amount of glucose was degraded to hydroxymethylfurfural (HMF).  Some of the xylose was 

degraded to furfural during hydrothermolysis.  Figure 5.12 shows the inhibitor concentrations 

formed by pretreatment over the harvest period.  Both HMF and furfural increased from July to 

August and then decreased through November.  HMF ranged from 0.2 g/L in November to 0.7 

g/L in August.  Furfural ranged from 2.7 g/L in November to 3.5 g/L in August.  Acetic acid was 

between 2.6 and 2.8 g/L for all harvest dates. 

 Suryawati et al. (2009) and Suryawati et al. (2008) found similar acetic acid 

concentrations at 3.4 and 3.7 g/L, respectively, similar HMF concentrations at 0.3 and 0.2 g/L, 

respectively, and lower furfural concentrations at 0.8 and 0.9 g/L, respectively, for the liquid 

fraction of switchgrass pretreated by hydrothermolysis at 200°C for 10 min.  However, Yu et al. 

(2008) found a similar furfural concentration at 2.8 g/L and a similar HMF concentration at 0.4 

g/L for the liquid fraction of rice straw harvested in November 2006 in Japan and pretreated by 

hydrothermolysis at 200°C for 10 min. 

 The furfural and HMF produced can be metabolized by S. cerevisiae, but will cause a lag 

phase in the fermentation (Palmqvist and Hahn-Hagerdal, 2000).  The 2.8 g/L acetic acid  
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Figure 5.11  Structural carbohydrate content dissolved into liquid fraction by 

hydrothermolysis pretreatment of switchgrass harvested during different months. 
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Figure 5.12  Inhibitors in liquid fraction after hydrothermolysis pretreatment of 

switchgrass harvested during different months. 
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produced in these pretreatments can be expected to cause less than 50% inhibition for ethanol 

production by S. cerevisiae at pH 5.5 (Olsson and Hahn-Hagerdal, 1996).  However, fermentation 

at pH 5.5 of the liquid fraction after hydrothermolysis of November harvested switchgrass with 

glucose added to 20 g/L using S. cerevisiae D5A did not produce ethanol (data not shown). 

5.2.2  Simultaneous Saccharification and Fermentation 

 Initial fermentation rates (0 to 24 h) slowed as switchgrass aged.  Initial fermentation 

rates were calculated by dividing the 24 h ethanol concentration by 24 h.  July harvested 

switchgrass had the highest initial fermentation rate of 0.470 g ethanol/L/h, with declining rates 

for switchgrass harvested from each month through November, when a rate of 0.370 g 

ethanol/L/h was observed.  These rates appear to be related to the lignin content of switchgrass 

before pretreatment rather than the lignin content after pretreatment.  Lignin increased in 

switchgrass throughout the harvest period, as shown in Figure 5.5.  However, lignin content of 

switchgrass after pretreatment was lowest for October and November, shown in Figure 5.7.  The 

disruption of lignin likely varied between harvest dates because the same pretreatment process 

was used on varying lignin contents.  A harsher pretreatment could be used for increased lignin 

content, but increased degradation of structural carbohydrates may occur.  Pretreatment 

conditions for ammonia fiber expansion and soaking in aqueous ammonia have been adjusted for 

harvest date and ecotype (Bals et al., 2010; Kim et al., 2011).  Faster rates of fermentation will 

allow for smaller or fewer fermentation vessels to be used to produce the same amount of ethanol, 

thus reducing production cost. 

 Ethanol production appeared to have stopped by 144 h for July and August harvested 

switchgrass, but production was continuing slowly for September, October, and November 

harvested switchgrass until 168 h.  This is likely due to a less disrupted lignin complex for the 

latter months of harvest, which slowed enzyme accessibility to structural carbohydrates.  Ethanol 
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concentrations by harvest times from highest to lowest were August at 18.0 g/L, July at 17.8 g/L, 

October at 17.5 g/L, September at 16.5 g/L, and November at 16.4 g/L.  Figure 5.13 shows the 

ethanol production for the SSF over time.  Ethanol concentrations for July and August harvest 

dates were significantly higher than September and November harvest dates (p<0.05).  October 

ethanol concentration was not significantly different from any other harvest date (p>0.05).  These 

ethanol concentrations were higher than those measured after 96 h for SSF using S. cerevisiae 

YR400 at 10% solids loading of Kanlow N1 switchgrass harvested at anthesis and post frost 

maturity stages, 13.8 and 13.2 g/L respectively, which correspond to August and November 

harvests for this study (Dien et al., 2013). 

 Ethanol yields were low after 168 h, between 61.4 and 70.1% of maximum theoretical 

yields based on glucan in pretreated solids.  This is likely due to a low enzyme loading of 9 

FPU/g glucan.  Figure 5.14 shows the percent theoretical yield throughout the fermentation.  SSF 

of August harvested switchgrass produced the highest percentage of maximum theoretical yield.  

Pessani et al. (2011) found the optimum enzyme loading to be 58 FPU Accellerase 1500/g glucan 

for SSF at 45°C with K. marxianus IMB3 of post-frost November harvested Kanlow switchgrass 

from the same stand as this study after pretreatment by hydrothermolysis at 200°C for 10 min. 

 An SSF experiment using a greater enzyme loading of 14 FPU/g glucan was done in 

duplicate with pretreated switchgrass from July, September, and November and produced 91.7, 

87.8, and 85.9% of theoretical yield of the pretreated solids, respectively.  Fibrilase was used for 

the enzyme instead of Accellerase 1500.  This experiment shows results with a good theoretical 

yield and supports data from the SSF using Accellerase 1500 enzyme at a lower loading.  The 

initial fermentation rate in this experiment was also highest for July harvested switchgrass, as 

shown in Figure 5.15.  Ethanol concentrations of 24.4 g/L from July, 23.5 g/L from November, 

and 22.3 g/L from September harvested switchgrass were not significantly different (p>0.05), 

however, statistical significance between data requires more separation for duplicate analysis than 
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Figure 5.13  Ethanol production of SSF using Accellerase enzyme at 9 FPU/g glucan. 
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Figure 5.14  Theoretical ethanol yield of SSF using Accellerase enzyme at 9 FPU/g glucan.  

Theoretical yield was calculated from glucan content of pretreated switchgrass in each SSF. 
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Figure 5.15  Ethanol production of SSF using Fibrilase enzyme at 14 FPU/g glucan. 
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triplicate analysis.  Pessani et al. (2011) observed nearly the same percent theoretical ethanol 

yield, about 87%, as this experiment for an SSF using 58 FPU Accellerase 1500/g glucan and S. 

cerevisiae D5A at 37°C. 

 There was a lag time for ethanol production during the SSF using Fibrilase at a higher 

enzyme loading.  Ethanol production was 3.0 g/L after 6 h for the SSF of all harvest dates, where 

less than 0.6 g/L ethanol was produced after 12 h for the SSF with higher enzyme loading.  It 

should be noted that the SSF with higher enzyme loading was sampled at 0, 12, and 24 h, whereas 

the SSF of all harvest dates with a lower enzyme loading was sampled at 0, 6, and 24 h.  The 

glucose concentration peaked higher than 2.5 g/L at 12 h for the SSF with higher enzyme loading 

during the lag time, while the glucose peak was less than 1.0 g/L at 6 h for the SSF of switchgrass 

from all harvest dates.  This indicates that metabolic growth stage of the yeast caused the lag time 

for ethanol production during the SSF with higher enzyme loading.  Yeast was likely not in the 

exponential phase when it was used for inoculation. 

 Glucose concentrations were less than 1 g/L throughout SSF with the lower enzyme 

loading, indicating continuous conversion of glucose to ethanol.  Figure 5.16 shows the glucose 

concentration during SSF over time.  Acetic acid production was similar for the first 72 h of SSF, 

but concentrations diverged by 168 h.  Acetic acid production ranged from 0.9 to 1.4 g/L, with 

declining concentrations for later harvest dates.  Figure 5.17 shows acetic acid production for the 

SSF.  Xylitol production ranged from 1.25 to 1.39 g/L.  Succinic acid production ranged from 

1.64 to 1.75 g/L.  Glycerol production ranged from 0.59 to 0.65 g/L. 

 Ethanol yield in terms of liters of ethanol per metric ton of untreated, dry switchgrass 

provides useful data to determine the best harvest date.  An October harvest date yielded the 

highest among harvest dates with 167 L ethanol/Mg switchgrass.  July, August, and November 

harvest dates provided slightly lower yields that were within 4 L ethanol/Mg switchgrass of the 
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Figure 5.16  Glucose concentration of SSF using Accellerase enzyme at 9 FPU/g glucan. 
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Figure 5.17  Acetic acid production of SSF using Accellerase enzyme at 9 FPU/g glucan. 
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August harvest date.  The September harvest date had a considerably lower yield at 150 L 

ethanol/Mg switchgrass.  July, August, October, and November harvest dates yielded 

significantly more L ethanol/Mg switchgrass than the September harvest date (p<0.05).  Table 

5.1.A illustrates how yields were similar over the harvest period, except for September, and how 

those yields correspond to both the theoretical maximum yield and the percent of theoretical 

maximum yield obtained based on glucan content of untreated switchgrass.  Aside from 

September, these yields were close considering how the earlier harvest dates generally produced 

higher ethanol concentrations.  It appears July, August, October, and November harvest dates had 

such similar ethanol yields per metric ton of untreated switchgrass due to two factors.  First, the 

amount of switchgrass dissolved into the liquid fraction during hydrothermolysis varied, as 

shown in Figure 5.6.  Less switchgrass was dissolved during hydrothermolysis for October and 

November harvests, leaving more switchgrass solids for fermentation.  Further, the amount of 

glucan dissolved into the liquid fraction was less for October and November harvests (Figure 

5.11).  Second, lignin contents of switchgrass were lower for July and August harvests, (Figure 

5.5), which likely increased ethanol yields for the early months.  The September harvest benefited 

from neither the effect of lower dissolved solids during pretreatment nor the effect of lower lignin 

content, which accounts for the decreased yield of ethanol per ton of untreated switchgrass. 

 Ethanol yield based upon the SSF using Fibrilase at a higher enzyme loading for July, 

September, and November harvested switchgrass indicates larger differences between harvest 

dates.  Table 5.1.B shows these results.  For this experiment, a November harvest yielded 15 L 

ethanol/Mg switchgrass more than a July harvest.  The September harvest yielded the lowest as it 

did in the experiment of all five harvest dates, 11 L ethanol/Mg switchgrass lower than the July 

harvest.  The November harvest yielded significantly more ethanol than the September harvest 

(p<0.05).  The July harvest was not significantly different from either the September or 

November harvests (p>0.05).  The larger difference in ethanol yield observed in this experiment  
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Table 5.1  Comparison of ethanol yield between harvest dates based on SSF with (A) 

Accellerase 1500 and lower enzyme loading and (B) Fibrilase and higher enzyme loading.  

Ethanol yields with different letters are significantly different (p<0.05).  Means were separated by 

Tukey’s test.  Theoretical ethanol yield is based on glucan content in untreated switchgrass. 

A

Harvest 
Date

Theoretical 
ethanol yield 

(L/Mg)

% 
Theoretical 

Yield

July 163 a 262 62.0

August 164 a 267 61.3

September 150 b 271 55.4

October 167 a 286 58.3

November 165 a 298 55.3

Ethanol yield 
(L/Mg)

 

B

Harvest 
Date

Theoretical 
ethanol yield 

(L/Mg)

% 
Theoretical 

Yield

July 223 a, b 262 85.1
September 212 b 271 78.1
November 238 a 298 79.9

Ethanol yield 
(L/Mg)
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between July and November harvests than in the experiment with all five harvest dates may be 

due to several reasons.  First, variation within ground switchgrass samples may account for the 

difference, as the two SSF experiments used different batches of pretreated switchgrass.  The 

glucan content for pretreated November switchgrass was 1.4% (db) higher for the SSF with 

increased enzyme loading than the SSF with all fives harvest dates.  The glucan content for the 

pretreated July switchgrass was the same for both SSF experiments.  The glucan content for the 

pretreated September switchgrass was 1.4% (db) lower for the SSF with increased enzyme 

loading than the SSF with all five harvest dates.  Second, the increased enzyme loading may have 

released more glucose during SSF from the November switchgrass relative to the July 

switchgrass than was released with the lower enzyme loading.  Third, the Fibrilase enzyme used 

in the SSF of increased enzyme loading may have functioned better on the November switchgrass 

than the Accellerase 1500 enzyme used in the SSF of all harvest dates due to differences between 

enzyme cocktails, such as varying amounts of endoglucanases, exoglucanases, and β-glucanases.  

SSF with Fibrilase at 14 FPU/g glucan from this study produced nearly the same percent of 

theoretical ethanol yield as SSF with Accellerase 1500 at 58 FPU/g glucan using the same 

switchgrass and pretreatment method (Pessani et al., 2011).  Dien et al. (2013) found ethanol 

yields via SSF of 193 and 184 L/Mg Kanlow N1 switchgrass harvested at anthesis and post frost, 

respectively, at Mead, Nebraska.  These maturity stages correspond to August and November 

harvest dates for this study.  The decrease in ethanol yield from switchgrass observed by Dien et 

al. (2013) at later maturity was not observed in this study for either SSF experiment (Table 5.1).  

The SSF with Fibrilase had higher ethanol yields (Table 5.1.B) than those obtained using a 

glucose and xylose fermenting strain of S. cerevisiae (Dien et al., 2013). 

 The SSF experiment with Accellerase 1500 found a nearly constant ethanol yield per ton 

of untreated switchgrass for July, August, October, and November (Table 5.1A), which would 

allow for a wide harvest window from the standpoint of ethanol production.  The other SSF 
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experiment with Fibrilase found a larger increase in ethanol yield by delaying harvest until late in 

the fall (Table 5.1B).  More weight can be given to the SSF with Accellerase 1500 because the 

experiment was performed in triplicate, while the SSF with Fibrilase was performed in duplicate.  

This data needs to be combined with multiple factors to determine the best harvest date.  Two of 

the more important factors are the yield in terms of tons of switchgrass per hectare and the 

harvest date effect on stand persistence.  A 10% decrease in the mass of switchgrass harvested 

over the harvest period would more than offset the higher ethanol yields of October and 

November from the two SSF experiments, and allow more ethanol to be produced from a July 

harvest.  The percent difference from the lowest ethanol yield in Tables 5.2.A and 5.2.B shows 

how much higher the yield was for each month than the lowest yield obtained from September 

harvested switchgrass.  The percent difference in ethanol yields between harvest dates reveals 

how much the mass yields of switchgrass need to differ in order to offset the ethanol yield to 

produce the same amount of ethanol per area of land.  For example, in Table 5.2.A, a July harvest 

yielded 8.3% more volume of ethanol per mass of switchgrass than a September harvest, so the 

September dry mass yield would need to be 8.3% higher than the July yield to obtain the same 

volume of ethanol. 

 An estimate of revenue was calculated (Table 5.2) based on the ethanol yields obtained 

from these experiments for 350,000 tons (318,000 Mg) of switchgrass, the annual estimated mass 

of switchgrass needed for a 25,000,000 gal/yr (95,000,000 L/yr) ethanol plant 

(http://www.abengoabioenergy.com/web/en/2g_hugoton_project/, accessed 4-23-14).  A price of 

$2.00/gal ethanol ($0.53/L ethanol) was used for the calculation; the price was estimated as a 

future baseline price using a 10-year chart for ethanol on the Chicago Board of Trade 

(http://www.nasdaq.com/markets/ethanol.aspx?timeframe=10y, accessed 4-23-14).  This 

calculation does not take into consideration cost factors such as transportation cost, which is 

likely higher for earlier harvests due to higher extractives content. 
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Table 5.2  Comparison of revenue between harvest dates based on SSF with (A) Accellerase 

1500 and lower enzyme loading and (B) Fibrilase and higher enzyme loading. 

A

Harvest 
Date

% difference 
from lowest 
ethanol yield

difference in 
production of L 
ethanol/318,000 
Mg switchgrass

revenue 
difference at 

$0.53/L ethanol

July 8.3 3,977,000 $2,102,000

August 8.9 4,276,000 $2,259,000

September 0.0 0 $0

October 10.9 5,212,000 $2,754,000

November 9.8 4,678,000 $2,472,000
  

B

Harvest 
Date

% difference 
from lowest 
ethanol yield

difference in 
production of L 
ethanol/318,000 
Mg switchgrass

revenue 
difference at 

$0.53/L ethanol

July 5.3 3,561,000 $1,882,000

September 0.0 0 $0

November 12.4 8,342,000 $4,408,000
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CHAPTER VI 
 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1  Conclusions 

 Much of the increase in structural carbohydrate content over the harvest period was due 

to a decrease in extractives content, rather than addition of new structural carbohydrates.  

Increasing lignin content through the harvest period had a negative effect on fermentation rates 

and yields.  The lignin content after pretreatment did not appear to correlate to fermentation rates 

and yields as did the lignin content of untreated switchgrass.  The decreased amount of 

switchgrass dissolved during hydrothermolysis at the end of the harvest period had a positive 

effect on ethanol yields.  Ethanol yield in terms of liters per ton of switchgrass for July, August, 

October, and November harvest dates were not significantly different; a significantly lower yield 

was obtained for the September harvest date. 

6.2  Recommended Future Work 

 Repetition of this study for different years, switchgrass varieties, and locations is 

recommended.  The data obtained from such research will aid to create a harvest guide across the 

United States for switchgrass to be used in ethanol production via fermentation.  Further, 

collecting switchgrass yield data in terms of mass per unit of land area for each repetition of this 

study is recommended.  Obtaining yield data will allow for a better optimization of the harvest 
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period for producing ethanol from switchgrass. 

 Optimization of the pretreatments, such as hydrothermolysis, at different harvest dates 

should improve ethanol yields.  Later harvest dates from this study had lower inhibitor production 

during hydrothermolysis and lower % theoretical ethanol yields during SSF than earlier harvest 

dates.  It may be possible to achieve higher % theoretical ethanol yields during SSF for later 

harvest dates.  Slight adjustments to the severity factor, R0, by varying temperature by a few 

degrees and time by a few minutes can provide this optimization.  The results of such a study may 

help to better optimize a harvest period for switchgrass. 
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APPPENDICES 
 

 

Table A.1  Monthly average of the mean daily temperature at Stillwater, OK, from 2008 
compared with 30-yr average (1971-2000). 

–––––– air temperature, °C ––––––

Month 2008 30-yr mean

January 3.1 1.4

February 3.7 4.4

March 10.2 9.6

April 14.3 14.9

May 20.6 20.1

June 25.5 25

July 27.9 27.9

August 26.3 27.4

September 21.1 22.7

October 15.2 16.3

November 9.3 9.3

December 3.1 3.6

Source: www.mesonet.org/index.php/weather/station_monthly_ summaries 
and http://ggweather.com/normals/OK71.htm.

 

Adapted from Makaju et al. (2013). 
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Table A.2  Monthly total precipitation at Stillwater, OK, from 2008 compared with 30-yr 
average (1971-2000). 

––––––– precipitation, cm –––––––

Month 2008 30-yr mean

January 1.4 3.3

February 6.6 4.1

March 10.5 8.2

April 14.6 8.8

May 16.2 13.7

June 12.5 11

July 12.7 6.8

August 3.4 7.7

September 4.2 10.5

October 5.3 8.2

November 6.5 6.5

December 2.3 4.4

Source: www.mesonet.org/index.php/weather/monthly_rainfall_table /stil and 
http://ggweather.com/normals/OK71.htm.

 

Adapted from Makaju et al. (2013). 
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Table A.3  Monthly total solar radiation at Stillwater, OK, from 2008. 

Month 2008

January 9.58

February 11.38

March 15.69

April 19.96

May 23.14

June 23.19

July 23.67

August 18.73

September 16.86

October 14.16

November 11.58

December 8.21

Source: www.mesonet.org/index.php/weather/station_ monthly_summaries.

solar radiation, MJ m–2

 

Adapted from Makaju et al. (2013). 
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