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Abstract: The American Burying Beetle (ABB) (Nicrophorus americanus) is a critically 
endangered insect whose distribution is limited to several states at the periphery of its 
historical range in the eastern and central United States. The objective of this study is to 
develop a digital image classification algorithm that will be used in an autonomous 
monitoring system to be attached to existing ABB traps that will detect, image, classify 
and report insects to species as they enter the trap. A training set of 92 individual 
specimens representing 11 insect species with shape similarity from the Oklahoma State 
University Entomology Museum was used in this study. Starting with a color digital 
image, an unsupervised preprocessing algorithm extracts each insect shape, converts it to 
a binary image, and then aligns it for classification using pattern recognition techniques. 
For region-based and contour-based shape representation methods, an area component 
and a Fourier descriptor methods are implemented for shape representation and 
classification. Analysis of initial classification results revealed that the pose variability of 
insect legs and antennae introduced excessive uncertainty in the feature space. To address 
this, a novel shape decomposition algorithm based on curvature theory is proposed to 
remove legs and antennae from the insect shape automatically prior to classification. This 
shape decomposition approach increased overall classification accuracy from 64% to 
76% and 57% to 67% for area component and Fourier descriptor methods respectively. 
To further improve classification accuracy, a hybrid approach using a decision fusion 
technique has also been implemented after initial classification by each method. This 
resulted in 100% classification accuracy for ABB and 90% overall classification accuracy 
for the 11 species (total 92 images) investigated. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Background and Motivation 

The American Burying Beetle (ABB) (Nicrophorus americanus) (Figure 1.1) is classified as a 

critically endangered species by the U.S. Fish and Wildlife Service (USFWS). The historic range 

of ABB was the Eastern US but it is currently only found in three small areas of the United States 

centered in eastern Oklahoma, central Nebraska and Block Island in Rhode Island [2]. Ongoing 

research projects at Oklahoma State University, Murray State University and other organizations 

are investigating ABB biology and ecology with the aim to identify methods to insure survival of 

the species. These research studies, and existing USFWS monitoring and management protocols, 

entail extensive trapping of ABB and related insect species. Current ABB trapping methods 

require daily, early morning monitoring of traps to check whether any beetles were captured 

overnight. This is labor intensive and limited temporal data is provided because most beetle 

activity occurs at night. 
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Figure 1.1: American Burying Beetle (ABB) [3]. 

A research project is underway to develop an autonomous monitoring system that can be attached 

to existing ABB traps. The trap monitor incorporates a cellular phone which runs an AndroidTM 

application that contains primary trap functions. The application detects when an insect enters the 

trap, takes a dorsal image of the insect and classifies it as ABB or other species. If the insect is 

classified as an ABB, a simple/multimedia message service alert containing GPS coordinates, 

time stamp, an image and other data will be sent out over the cell phone network to alert 

collection personnel. This improved trap has potential to dramatically reduce labor costs, improve 

data richness, and reduce stress on captured ABB by immediately alerting personnel of trapped 

insects [4]. 

1.2 Objective and Approach 

The specific objective of this research project is to develop robust image segmentation and 

classification algorithms for the autonomous ABB trap. The classification capability must include 

ABB and other species of interest routinely caught in the traps. Due to the protected status of 

ABB, the algorithm was developed and tested the using dead specimens from Oklahoma State 

University’s Entomology Museum. The training database consisted of insect specimens 
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comprising 11 species with a total of 92 individuals, most of which have shape similarity 

discerned by human vision (Table 1.1). There were 10 ABB specimens in the training database. 

Species ID Number of 

individuals 

Representative image 

Nicrophorus americanus (ABB) S1 10 

 
Necrodes americana S2 9 

 
Necrodes surinamensis S3 10 

 
Nicrophorus carolinus S4 10 

 
Nicrophorus pustulatus S5 6 

 
Nicrophorus tomentosus S6 6 

 
Nicrophorus marginatus S7 10 

 
Nicrophorus orbicollis S8 6 

 
Oiceoptoma inaequale S9 9 

 
Creophilus maxillosus S10 8 

 
Creophilus maculosus S11 8 

 
Table 1.1: Species used in classification. 



4 

 

The input images for this study were color digital images of the insect specimens positioned 

dorsal side up on a mounting board.  Variations among them on size, pose, color and shape are 

significant factors to be investigated by the algorithm. Specifically, this investigation focused on 

shape analysis of binary images. In order to extract features precisely from a binary image, it is 

imperative that the images be composed using similar criteria. Thus our initial effort was to apply 

appropriate morphological operations and develop an extraction and alignment algorithm for 

individual insect images. After each insect image is composed in a similar manner, its shape is 

represented by feature vectors using region-based and contour-based methods. Corresponding to 

these two methods, area components and Fourier Descriptors are applied to classify insects to 

species using a template matching technique. Initial classification accuracies using composed 

images were relatively low: 45% for ABB and 61% overall. Analysis of the initial classification 

results led to the hypothesis that significant shape uncertainty was introduced by variation in the 

pose of legs and antennae among the different specimens. For example, the legs and antennae 

were attached to the insect body shape in some individuals while fully expanded in others. This 

hypothesis was confirmed when the same shape representation methods increased classification 

accuracy by 70% for ABB and 75% overall respectively after legs and antennae were manually 

removed from binary insect shape images. An unsupervised method to identify and ultimately 

remove legs and antennae was therefore desired. 

Several shape decomposition methods have been previously proposed based on convexity and 

concavity rules [5-8], however the insect shape is distinctive because of its non-smooth shape 

contour curve and irregular details. To address this challenge, a new shape decomposition method 

was proposed to remove insect shape uncertainty based on visual curvature [1]. This method first 

identifies a candidate cut set from points that have a large visual curvature. After making 

observations on reasonable cuts according to human vision, several intrinsic properties were 

determined which reduced the size of the candidate cut set. Next the largest closed curve area is 
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removed which is comprised of the cut itself and a partial shape contour. The candidate cut set is 

dynamically renewed after each cut and the algorithm is repeated until enough reasonable cuts are 

accomplished. Based on the auto-decomposed shape, overall classification accuracies using area 

components and Fourier descriptors were both significantly improved to 76% for ABB and 67% 

overall. 

Analysis of misclassified cases from each approach revealed that the two methods were 

complementary to each other suggesting that a decision fusion technique might improve 

classification accuracy. The minimum Euclidean distance between the feature vector of an 

unknown insect shape and the mean feature vector of the various species is used to classify each 

individual to species. It is straight forward to apply fuzzy set theory to classify unknown shapes 

after normalization of the Euclidean distances to all of the other mean shapes. Hence, a decision 

combination rule proposed by Fauvel et al. [9] was implemented to methodically combine the 

decisions of the two classification methods. By doing this, overall classification accuracy of 90%, 

and ABB classification accuracy of 100% was ultimately achieved for this sample set. 

1.3 Main Contribution 

An autonomous insect classification system presents many fundamental computer vision 

challenges exaggerated by the articulated body parts (legs, antennae, wings, abdomen, etc.) of 

insects [10]. Legs and antennae in particular introduce uncertainty when using insect shape 

features for classification. To the best of our knowledge, there is no existing specific method in 

use or proposed for the treatment of insect legs and antennae in an autonomous insect 

classification system. 

Based on observations of shape distortion introduced by insect legs and antennae, we proposed a 

novel shape decomposition algorithm to preserve the main body shape for species classification. 

The algorithm automatically identifies cuts to remove legs and antennae from the insect shape 
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thus enhancing the function of the autonomous insect classification algorithm. This algorithm is 

not specific to ABB and is widely adaptable to all species in our training database. In addition, 

the decomposed shape could be universally used when applying other shape representation 

methods, or even color-related representation methods, in the future. 

This thesis is organized as follows: Chapter 2 discusses existing insect classification and 

recognition work using pattern recognition, relevant classical shape representation methods using 

both region-based and contour-based approaches as well as existing shape decomposition 

procedures based on convexity and concavity rules. Chapter 3 describes the image preprocessing 

procedures including insect object segmentation and alignment as well as a region-based shape 

representation method for classification. The effect on classification results using a dimension 

reduction technology, principal component analysis (PCA), is also discussed. In Chapter 4, 

Fourier descriptor theory [11] is presented as a contour-based shape representation method. 

Visual curvature, proposed by Liu et al. [1] is also discussed as the foundation of the shape 

decomposition algorithm. Most importantly, our novel intuitive insect shape decomposition 

method is presented in detail followed by experimental results and analysis. Chapter 5 presents 

the hybrid region-based and contour-based approach based on fuzzy set theory using decision 

fusion technology. Chapter 6 evaluates the overall performance of this autonomous insect 

classification system and summarizes the conclusions.  
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CHAPTER II 
 

 

RELATED WORK 

A brief overview of previous related work follows. In particular, a review of the literature is 

presented on image-based automatic insect species classification. Following that, region-based 

and contour-based shape representation approaches based on analysis of shape features are 

reviewed and discussed. Finally, as an important step toward shape understanding, shape 

segmentation and decomposition methods are discussed [5]. 

2.1 Machine Vision for Insect Classification 

Autonomous computer vision and pattern recognition methods have been widely investigated to 

improve efficiency and accuracy of many environmental applications involving imagery. This 

includes classification and identification of many insect species in a variety of different 

applications. 

After preprocessing procedures are applied to the original captured image, there are numerous 

feature selection algorithms for classification to choose from. When using color images, the most 

common approach is to analyze the color components. Cho et al. [12] used the average color 

intensity values for red, green, and blue color components as the feature to classify Whiteflies, 

Aphids and Thrips found in greenhouses. Mayo et al. [13] extracted color features not only in 

RGB color space, but also in HSB color space for classification of live moths. At the same time, 

instead of analyzing the entire body, their method concentrated on the centroid grid of moths for 

binary feature extraction. Another interesting method proposed by Zayas et al. [14] was to find 
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specific beetle species in wheat samples using a patch color feature matching method in RGB and 

HSL color spaces. In general, color components analysis methods are not robust when images are 

captured in different surroundings or conditions. In addition, with many insect species exhibiting 

color similarity, the method is not able to classify them to a high degree of accuracy.  

Based on binary images, shape information provides an important feature for object classification 

and recognition. Numerous shape feature extraction methods have been thoroughly studied for 

both region-based and contour-based shape representation approaches. Al-Saqer et al. [15] 

applied five recognition methods for Pecan Weevil identification based on template matching 

technology, including normalized cross-correlation, Fourier descriptors, Zernike moments, string 

matching and regional properties. When the recognition methods were applied in a specific order, 

this method could achieve relatively high identification accuracy. However this specific order for 

classification methods and numerous parameter selections make application to other systems 

difficult. Arbuckle et al. [16] proposed a recognition system for bees based on the patterns found 

on their wings. This method required human interaction to do preprocessing work on the wings 

before image analysis. Watson et al. [17] proposed a system for insect classification of several 

moth species. However, it was not an autonomous system due to the requirement of human 

intervention to align the insects. In addition, this system required a large training database which 

made its application inefficient. Larios et al. [10] described an automatic computer vision 

classification approach, but it was applicable only to stonefly larvae. After the identification of 

regions of interest, this method used the histogram features of SIFT vectors [18]on those regions 

for classification. 

2.2 Shape Representation Methods 

Shape representation methods can generally be classified into two categories: region-based and 

contour-based approaches. Shape features are extracted from the entire shape region in region-
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based methods whereas shape features are extracted only from the outline of the shape in contour-

based methods. A good shape representation method should be effective in finding perceptually 

similar shapes in various complex circumstances, such as shape rotation, translation and scaling, 

curve defining point shifts, noise affected shapes, distorted shapes and defective shapes [19]. 

2.2.1 Region-based Shape Representation Methods 

Hu [20] first proposed a theory of two-dimensional moment invariants of planar geometric 

figures in 1961, and this concept was applied to shape classification and retrieval by Ezer et al. 

[21] and Park et al. [22]. This set of seven 2-D moment invariants are insensitive to shape 

rotation, translation and change of scale [23]. Zernike moments, proposed by Khotanzad et al. 

[24], are a mapping of an image shape onto a set of orthogonal basis functions over the unit 

circle. The magnitudes of a set of orthogonal complex moments represent the shape feature with 

rotational invariance. Based on Zernike moments, Li et al. [25] proposed the invariant Zernike 

moments descriptor, which not only uses magnitude information of the orthogonal complex 

moments, but also combines phase coefficients to form the shape descriptor. This descriptor is 

unaffected by shape rotation, translation and scaling. Bunke et al. [26] presented a string 

matching method for 2-D shape recognition. This method is pixel oriented and is based on 

curvature. It requires fewer computer resources for preprocessing but more in the matching 

algorithm. Kim et al. [27], introduced the idea of using a combination of sub-region features. The 

whole shape is divided into several segments by two principle axes then several parameters are 

calculated to represent each region. The entire shape feature is an arrangement of the calculated 

features in all sub-regions. Another interesting method is proposed by Zhang et al. [28] who used 

a contour-based method to compute a concentric circular sampling signature in a shape region 

which could achieve rotation, translation and scaling invariance as well. 

2.2.2 Contour-based Shape Representation Methods 
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The Fourier descriptor [11] is one of the most widely used algorithms for shape representation 

and classification in the contour-based shape representation category. The Fourier descriptor is 

determined by applying the discrete Fourier transform (DFT) to the complex sequence associated 

with the boundary curve. Numerous variations based on the Fourier descriptor of shape contours 

have been proposed. These include an affine Fourier descriptor with affine transformation 

invariance proposed by Arbter [29] using a complex mathematical analysis, the modified Fourier 

descriptor with insignificant properties separation proposed by Granlund [30] for hand print 

character recognition, fastest point distance including corner information proposed by El-ghazal 

et al. [31] and angular radius Fourier descriptor combining the directional angle of the boundary 

line proposed by Kunttu et al. [32]. Besides Fourier descriptors, Yang et al. [33] proposed the 

starting-point-independent wavelet descriptor for 2-D shape recognition consisting of the 

estimation of the misalignment between the starting points for the reference model and matching 

objects using multiresolutional wavelet representation. Belongie et al. [34, 35] proposed the shape 

context descriptor, which for each point captures the distribution of the remaining points relative 

to it. Shape context solves for correspondence between points on the two shapes. Corresponding 

points on two similar shapes will have similar shape contexts, which make it robust for measuring 

shape similarity once shapes are aligned. Freeman [36] proposed the chain code concept to 

describe an object in 1961. The shape descriptor is a sequence of small vectors of unit length 

containing pre-defined possible direction information. Lee et al. [37] proposed a polygon curve 

evolution algorithm for smoothing polygon curves and reducing the number of data points while 

keeping the main topology of the shape. The curve is represented by a bend angle versus 

normalized curvature length function derived from the x and y coordinates of the boundary 

points. Arica et al. [38] proposed an image retrieval algorithm which finds similar objects in a 

database based on a discrete circular Hidden Markov Model. This model is size and starting point 

shift invariant as well as requiring less computational complexity compared to other 

methodologies. 
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2.3 Shape Decomposition 

Shape decomposition is a fundamental problem in handling shapes in a variety of disciplines, 

such as computer vision, data visualization and computer graphics [5]. In shape decomposition 

methods, the convexity rule is the most widely used criteria in object segmentation. By 

identifying the convex parts at different stages, Latecki et al. [6] proposed a contour evolution 

method to make significant visual parts at higher stages when they become convex object parts. A 

hierarchical convexity rule is then used for shape decomposition where visual parts are enclosed 

by the maximal convex object at different stages of the contour evolution. With the definition of 

cut cost, Liu et al. [5] formalized the convex shape decomposition problem as an integer linear 

programming problem, and the approximate optimal decomposition solution is obtained by 

minimizing the total cost under some concavity constraints. Based on that work, Ren et al. [7] 

proposed the near-convex decomposition algorithm where the degree of near-convexity specified 

by the user is used to decompose 2-D and 3-D arbitrary shapes into a minimum number of parts. 

Using the non-overlapping cut constraints and by imposing perception rules, the shape 

decomposition problem is formulated as a combinational optimization problem. Ghosh et al. [8] 

proposed Fast Approximate Convex Decomposition which employed two new strategies. The 

first strategy is that each potential cut is evaluated by the relative reduction in concavity it 

produces rather than absolute concavity. The second strategy uses a dynamic programming 

approach to select a set of candidate cuts satisfying a non-crossing constraint. The two strategies 

are used simultaneously to decompose the shape. Kim et al. [39] proposed an algorithm which 

performs constrained morphological decomposition recursively. The opening morphological 

operation is used for shape processing and the optimal decomposition is selected by weighted 

convexity. In other work, Mi et al. [40] proposed a model for separating 2-D parts based on 

differential geometry of smoothed local symmetries and relatability. The criterion used for cut 
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selection is to make either the remaining shape or the segment removed to be a simpler shape. 

The relatability is taken into account to determine part boundaries. 

2.4 Our Approach and Advantages 

In this investigation, we propose an insect classification system which includes these advantages: 

automatic application, few algorithm parameter selections and robust properties for classification 

of numerous species. Specifically, using pre-set parameters, an insect image is classified to 

species by progressing through a sequence of image preprocessing, feature extraction, shape 

decomposition, classification by multiple classifiers and a final decision fusion step. In the image 

preprocessing step, human intersection is not required. To describe the shape precisely, both 

region-based and contour-based shape representation methods are used for feature extraction. 

Specifically, an area component method is applied in the region-based category whereas Fourier 

descriptors are utilized in the contour-based category. Based on marginal initial classification 

results obtained from our training set, a novel shape decomposition algorithm is proposed to 

automatically remove shape uncertainty introduced by legs and antennae, which results in 

increased classification accuracies. After classification by each method independently, a hybrid 

region-based and contour-based approach using decision fusion technology is implemented in this 

system to improve performance.
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CHAPTER III 
 

 

REGION-BASED SHAPE REPRESENTATION 

The initial color images of captured insects are in general not suitable for classification directly. 

Several external factors influence the ability to analyze color images such as lighting, weather 

conditions and the camera itself. In binary images, where we generally focus on shape analysis 

without regard to color components, background noise and object pose can still have significant 

effects on the shape representation. To maintain shape information accuracy in preparation for 

classification, several image preprocessing procedures such as morphological operations, object 

segmentation and object alignment are first required. After image preprocessing, the binary shape 

images are classified using a region-based approach. This chapter describes the image 

preprocessing steps and presents the subsequent insect classification results obtained using region 

properties.  

3.1 Image Preprocessing 

The ultimate objective of this research is the unsupervised classification to species of images of 

insects taken by a cell phone camera located in a trap. The input images for this project were 

digital camera images of dead insects positioned dorsal side up on a mounting board (Figure 3.1).  

Each JPEG input image contained several insect specimens on a non-noiseless, white 

background. In addition, the insects were posed at various angles and directions which dictates 

that the algorithm be able to deal with each insect specimen individually to place them in the 

same presentation criteria. The output of the image preprocessing step was an individual binary
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insect image aligned along its longitudinal axis. 

 

Figure 3.1: Representative unprocessed color JPEG image of insect (ABB) specimens. 

3.1.1 Object Segmentation 

Binary images have several advantages over color and gray scale images for insect shape analysis 

through image processing. Binary images generally require less storage space, allow for faster 

processing speed and have straightforward algorithm implementations which are desirable in this 

application. The first step in segmentation is to convert the input image from a color JPEG format 

to a binary image. The insect specimens mounted on a white surface in this study had sufficient 

contrast between the object and the background to allow the binary image to preserve the insect 

body shape precisely using a threshold which was automatically calculated by the program 

(Figure 3.2). Each insect body shape closely resembles the outline of the corresponding color 

image with some uncertainty due to noise caused by reflections, shadows and pixelization. 
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Figure 3.2: Representative binary image of insect specimens calculated from threshold operation. 

Several morphological operations are required to prepare the binary images that result from the 

threshold operation for classification. The first operation is to fill holes in the binary images using 

the hole filling operation. For the object and background in the binary image, the operation sets 

the binary image ��, to be a 0 everywhere except inside the image border, where it is set to 1 
 � 

[23]. 

����, �� � �1 
 ���, ��, if ��, �� is in the border of �0, otherwise �                                                      �3.1� 

The second operation is to step through each pixel in the binary image and label each pixel " as a 

foreground pixel if at least five pixels of its 8 nearest neighbors (Figure 3.4(b)) are foreground 

pixels; otherwise it is labeled as a background pixel [23]. 
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Figure 3.3: Representative binary image of insect specimens after morphological operations. 

The morphological operations used to convert the initial JPEG color image to a binary image 

(Figure 3.3) unavoidably change each insect’s shape however this generally has a minor effect on 

the final classification result. After the implementation of morphological operations to clean up 

the images, the next step is to extract an image of each insect separately to be used as training and 

validation images for classification operations. The first step to extract the shape of each insect is 

to label the connected components. A pixel "��, �� in the image, but not in the boundary, has two 

horizontal and two vertical neighbors constituting the set of 4 nearest neighbors (Figure 3.4(a)). 

The set of 4 nearest neighbors plus the four diagonal neighbors constitute the set of 8 nearest 

neighbors (Figure 3.4(b)). 
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Figure 3.4: A pixel, represented by a red square, and its (a) 4 nearest neighbors; or (b) 8 nearest 

neighbors represented by black squares. 

From the definitions of 4 and 8 nearest neighbors, two sets of foreground pixels, " and #, are 

defined as 4-connected or 8-connected when there is a 4-connected path or 8-connected path 

between them respectively. For an arbitrary foreground pixel " in the image, all foreground pixels 

which connect to it constitute an individual connected component [23].  

Thus in the morphologically processed binary image, one insect body shape should only 

correspond to one connected component either in a 4-connected or 8-connected way. 

Furthermore, noise pixels in the background may constitute other connective components. A 

length filter is used to eliminate these redundant components ensuring the segmentation results 

only contain separate individual insect body shapes (Figure 3.5) which can eventually be used for 

classification. Binary images used in this classification work were on the order around 500 by 

1000 pixels with some variations. 
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Figure 3.5: Representative segmentation results for individual insect body shapes of four 

American Burying Beetle specimens. 

3.1.2 Object Alignment 

The pose of each insect after segmentation will have some influence on ensuing shape analysis. In 

the segmented binary image, each pixel is presented by a two dimensional coordinate, ��, ��, 

which distribute the foreground pixels along two axes called the main axis and auxiliary axis. 

Using a covariance matrix to analyze all object pixels in the insect body shape, it is expected that 

the two dimensional distribution of the pixels are not independent to each other. By using the 

proper projection of the data, it is desirable to have the two dimensional data with the least 

relevance as well as most energy preservation in each dimension separately.  

The covariance matrix of each insect body shape can be represented as a 2 by 2 matrix: 

$ � %$11    $12
$21    $22'                                                                                                                                       �3.2� 

The eigenvectors of the covariance matrix can also be represented as a 2 by 2 matrix with each 

column containing an eigenvector: 
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( � %(11    (12
(21    (22'                                                                                                                                      �3.3� 

The rotation angle is calculated by:  

) � tan+,�(11
(21�                                                                                                                                         �3.4� 

After rotating the original image (Figure 3.6(a)) by the angle θ, the main axis and auxiliary axis of 

each insect shape are parallel to the new coordinate axis (Figure 3.6(b)). After rotation however, 

the insect head may be at the bottom and the abdomen at the top of the image (Figure 3.6(b)). For 

most insect species, the total number of object pixels in the abdomen is greater than in the head 

section. To account for this, first the image is divided into two equal segments along the vertical 

axis (Figure 3.6(c)). After which the object pixels within each segment are summed, if the top 

half of the image has more object pixels than the bottom half, the image is rotated 180 degrees 

prior to further use in classification (Figure 3.6(d)). 
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Figure 3.6: Steps in rotating a representative insect image (a) Original segmented image; (b) 

figure after rotation using eigenvectors with head at bottom; (c) image divided into top and 

bottom halves; (d) final rotated image with head at top. 

3.1.3 Algorithm Flow 

In summary, the processing of insect images starts with a color image. This is converted to a 

binary image followed by morphological operations to clean up the image prior to segmentation 

into connected components. Finally, these individual components are composed for subsequent 

classification tasks by orienting them about the central axis of the insect with the head at the top 

of the image (Figure 3.7). 

 

Figure 3.7: Algorithm flow of insect image preprocessing. 

3.2 Region-based Shape Representation 

Shape representation methods can generally be classified into two categories: region-based 

methods and contour-based methods. In region-based shape representation methods, as its name 
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suggests, shape features are extracted from the whole shape region [19]. Several classical region-

based methods have been documented in recent decades. A set of second and third order 2-D 

moment invariants are widely used as the regional descriptor for its insensitivity to translation, 

scaling and rotation [23]. Zernike moments, which are the magnitudes of a set of orthogonal 

complex moments of an image, is the classical method for invariant image recognition [24]. With 

shape division methods, one or more basic region parameters are described in each sub-region 

area. These are then combined into an overall shape descriptor vector representing the overall 

region [27]. Based on string edit distance computation, string matching methods can be applied to 

2-D shape recognition [26]. A novel grid string shape representation method is well presented for 

content-based image retrieval by Lu et al.[41]. 

In this investigation, we started with 11 different insect species with a total 92 images, which 

were obtained from the Oklahoma State University Entomology Museum collection and represent 

insect species typically captured in ABB traps (Table 1.1). Our first method for insect 

classification, called region-based shape representation, is described as follows: First, each binary 

image is divided into N equal area components along the vertical axis (Figure 3.8(b)). 
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Figure 3.8: Representative insect image (a) after preprocessing image; (b) showing . � 5 area 

region-based classification representation. 

The feature vector 0 (Eqn. 3.5) is then calculated by finding the 01 (Eqn. 3.6) for each of . area 

components in the binary insect shape. 

0 � �0,, 02, … , 04�5                                                                                                                                �3.5� 

where 01 � #71∆7                                                                                                                                          �3.6� 

Where #71 represents the number of object pixels in the :;< area and ∆7 represents the number of 

object pixels in the total insect shape.  

The feature vector K represents the area proportions of the antennae, head, thorax and abdominal 

regions and provides a numerical representation of the general insect shape. In the training 

process, the feature vectors for all of the images of each species of insect are determined and then 

the mean of the individual vectors is calculated to represent a specific species. Unidentified 

images of insects are then classified to species by finding the minimum Euclidean distance 

between the new image feature vector and the mean feature vector of all the species. 

Classification accuracy, defined as the percentage of correctly identified images, was determined 

for each of the 11 species. 

3.3 Experimental Results and Analysis of Region-based Shape Classification 

Classification accuracy for each of the 11 species using the intuitive region-based shape 

representation method ranged from 0 to 100% for individual species. As the number of area 

components increased, classification accuracy for each species increased monotonically as did 

overall classification accuracy (Table 3.1). 
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Areas S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

50  50% 56% 30% 30% 0% 83% 30% 50% 67% 50% 88% 48% 

100  50% 56% 30% 40% 0% 83% 30% 50% 67% 50% 88% 49% 

300  60% 56% 40% 60% 50% 83% 40% 50% 78% 88% 100% 64% 

Table 3.1: Classification accuracy of 11 insect species (N=92) using different numbers of area 

components. S1 represents the American Burying Beetle (ABB). 

By increasing area components in each insect shape image, the feature vector captures more 

details along the insect’s body and higher accuracy is expected. However, with high dimensional 

features it is easy to get interference from noise. Principal component analysis (PCA) is an 

effective way to obtain dimension reduction while preserving the most important relationships 

within the data. When the region-based shape classification data was subjected to PCA analysis to 

reduce the dimensionality by a factor of between 3 and 15, the classification accuracy of 

individual species generally increased or stayed the same even with lower feature space 

dimension. Only in the case of species 3, for 20 principal area region classification, did the 

classification accuracy decline from 30% to 20%. Overall classification accuracy of the 20 and 50 

principal area regions increased 11% and 13% respectively, while 100 principal area results were 

unchanged (Table3.2). 

Areas PCA 

dimen. 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

300 20 60% 56% 20% 50% 33% 83% 40% 50% 78% 75% 100% 59% 

300 50 60% 56% 30% 60% 33% 83% 40% 50% 78% 88% 100% 62% 

300  100 60% 56% 40% 60% 50% 83% 40% 50% 78% 88% 100% 64% 

Table 3.2: Classification accuracy of 11 insect species (N=92) for area components method using 

PCA. S1 represents the American Burying Beetle (ABB). 

From the results above, it is obvious that using this intuitive region-based shape representation 

method does not result in sufficient classification accuracy of both ABB and overall for the 

ultimate use of this work. Informal observations of the insect images suggest that the insect 

bodies are relatively stable for feature extraction. However, the legs and antennae of the insects 
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are highly variable in pose among the different images. It was suspected that these factors would 

influence the precision of the region-based feature training process and decrease classification 

accuracy. 

To verify this hypothesis, legs and antennae were manually removed from all of the segmented 

insect shapes (Figure 3.9) and the resulting new images subjected to the region-based shape 

classification methods, including the PCA dimension reduction.  

 

Figure 3.9: Binary images of four representative ABB specimens after manually removing legs 

and antennae. 

Overall classification accuracy of the 11 species increased between 8 and 14% when using the 

images without legs and antennae. The change in classification accuracy for individual species 

ranged from an increase of 50% to decrease of 16% (Table 3.1 and Table 3.3). 
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Areas S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

50  50% 78% 50% 40% 17% 67% 20% 67% 89% 75% 88% 58% 

100  60% 78% 50% 40% 17% 67% 40% 67% 89% 100% 88% 63% 

300  60% 78% 70% 50% 50% 83% 50% 67% 100% 100% 88% 72% 

Table 3.3: Classification accuracy of 11 insect species (N=92) for area components method on 

images with legs and antennae manually removed. 

Subjecting the data from images of insects with manually removed legs and antennae to PCA 

analysis further increased overall classification accuracy of principal 20 and 50 area region results 

by 6% and 5% respectively (Table 3.3 and Table 3.4). 

Areas PCA 

dimen. 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

300 20 60% 78% 50% 40% 17% 83% 20% 67% 100% 100% 88% 64% 

300 50 60% 78% 70% 50% 17% 83% 40% 67% 100% 100% 88% 68% 

300 100 60% 78% 70% 50% 50% 83% 50% 67% 100% 100% 88% 72% 

Table 3.4: Classification accuracy of 11 insect species (N=92) for area components method using 

PCA on images with legs and antennae manually removed. 

From these results, the classification accuracies for both methods have been dramatically 

enhanced by analyzing images without legs or antennae. It can be concluded that shape 

uncertainty introduced by leg and antenna features will influence shape feature analysis as well as 

decrease classification accuracy. For this reason automatic removal of legs and antennae from 

insect shapes is a necessary procedure which is discussed in Chapter 4.
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CHAPTER IV 
 

 

CONTOUR-BASED SHAPE REPRESENTATION 

In contrast to region-based shape representation methods, contour-based shape representation 

methods use contour shape features for classification. Furthermore, contour-based shape 

representation methods are generally classified into continuous and discrete approaches. A 

continuous approach tends to maintain boundary integrity without dividing a shape, while a 

discrete approach breaks the boundary of the shape into multiple segments [19]. For continuous 

contour-based shape representation methods, two spectral descriptors, the Fourier descriptor [11] 

and wavelet descriptor [42] have been proposed to reduce noise sensitivity and accommodate 

boundary variations. They have been widely used for shape representation and retrieval [30-33, 

43-45]. For discrete contour-based shape representation methods, polygon curve decomposition 

[37], hidden Markov model-based shape descriptors [38] and shape contexts [35] were developed 

for shape matching and recognition. 

In this chapter, Fourier descriptors are used for insect shape representation and classification. In 

previous classification efforts, the legs and antennae in insect images were found to have a 

negative influence on shape analysis and limited classification accuracy. To mitigate this shape 

uncertainty, a shape decomposition method based on visual curvature [1] was proposed and 

implemented to automatically remove legs and antennae from the insect images prior to 

subjecting them to classification using contour-based shape representation. The results of 

classification using both area component and Fourier descriptor methods are presented in detail  
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for the 11 species of insects (N=92) that were used in the previous analysis. 

4.1 Fourier Descriptor of a Closed Contour 

The Fourier coefficients of a shape’s chain encoded contour was first proposed as a spectral 

descriptor  by Kuhl and Giardina [11] in order to overcome boundary variations and noise 

sensitivity [19]. This is one of the most widely used shape descriptor methods and is discussed by 

numerous papers [43, 45]. The Fourier descriptor is a kind of shape signature that uses a one-

dimensional function to describe the boundary line of a two-dimensional object [32].  

4.1.1 Fourier Descriptor from DFT of Closed Insect Shape 

The shape boundary extracted from the preprocessed insect body shape is a closed curve that can 

be represented by a set of coordinates ��1 , �1�, : � 1, 2, … , = where = is the number of boundary 

points. By representing the  �, � plane in complex notation, every boundary point can be 

presented as > � � ? @�. For the = boundary points, the boundary line could be described as a 

complex sequence >�A�, A � 0, 1, … , = 
 1. Any periodic signal of finite length can be expressed 

in terms of complex exponentials, thus the contour of an insect body shape can be transformed by 

applying the discrete Fourier transform (DFT)  to the complex sequence of the insect shape [32]. 

If the results of the DFT are labeled as B�A�, A � 0, 1, … , = 
 1, this Fourier descriptor preserves 

all of the boundary information (Eqn. 4.1).  

B�A� � 1
= C >�A�exp �
@2FA:

= �
G+,

1HI
 A � 0, 1, … , = 
 1                                                                       �4.1� 

4.1.2 Fourier Descriptor Normalization  

Fourier descriptors preserve all of the boundary information, including shape position, direction 

and scale. However, a change in any of these factors will affect all of the Fourier descriptors. For 

shape representation and retrieval, the shape descriptor should only describe the shape itself and 
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be unaffected by the other factors. For that reason, Fourier descriptors need to be normalized to 

satisfy the objective of translational, rotational and scale invariance. 

The centroid distance, J1, is defined as the distance of the boundary points from the centroid 

��K , �K� of the shape (Eqn. 4.2). 

J1 � �L�1 
 �KM2 ? L�1 
 �KM2�,/2, : � 1, 2, … , =                                                                                 �4.2� 

Where ��K , �K� are the average of the � coordinates and � coordinates of the boundary shape 

respectively [46]. In the DFT, the boundary is normalized to . which is the integer power of 2. 

�O � 1
. C J1exp �
@2FA:

. �
4+,

1HI
 A � 0, 1, … , . 
 1                                                                             �4.3� 

The coefficients �O, A � 0, 1, … , . 
 1 are defined as the Fourier descriptors of the shape (FD), 

denoted as BPO, A � 0, 1, … , . 
 1 respectively. 

The Fourier descriptors based on the centroid distance are translation invariant. To achieve 

rotation invariance, only magnitude information |BPO| without phase information is preserved. In 

addition, scale invariance is implemented by dividing the magnitudes of the DC components, 

denoted as |BPI|. Finally, the feature vector used as the Fourier descriptor describing the shape is 

presented by equation 4.4: 

� � R|BP,|
|BPI| , |BP2|

|BPI| , … , |BP4|
|BPI|S

5
                                                                                                            �4.4� 

In the Fourier descriptors, the low-frequency coefficients preserve the primary shape information 

of the boundary whereas the higher-frequency coefficients represent finer shape structures and 

noise. When this procedure is used as the object shape description method, only a subset of low-
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frequency coefficients from the original Fourier descriptors are kept to retain the main shape 

information while getting rid of finer structures and noise. 

4.1.3 Experimental Results and Analysis for Insect Classification 

In the contour-based shape representation method, each insect body shape (Figure 4.1a) was first 

converted to the insect boundary (Figure 4.1b). This boundary was then subjected to DFT using 

distance to the centroid and finally the DFT coefficients were normalized. 

 

Figure 4.1: (a) Representative binary insect body shape and (b) insect boundary shape. 

Reconstructed insect boundary shapes using the lowest:  (c) 64 DFT coefficients; (d) 256 DFT 

coefficients; (e) 1024 DFT coefficients. 

To capture global features, the original Fourier descriptors were truncated to the . lowest 

frequency coefficients to represent the feature vector of each image. Even though a finer shape 

could be achieved using more DFT coefficients, such as 1024 DFT coefficients in figure 4.1(e), a 

high dimensional feature vector is very sensitive to noise or small distortions. As a trade-off in 

these experiments, . was set equal to 64, 128 and 256 coefficients. After feature extraction was 

performed on all images, each insect species was characterized by taking the mean of all of the 

feature vectors for that species. In the classification process, each image was then classified to 
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species by finding the smallest Euclidean distance between the unknown image feature vector and 

the mean feature vectors of all 11 species.  

Fourier 

coefficients 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

64 30% 67% 30% 50% 50% 67% 20% 33% 89% 100% 63% 54% 
128 30% 67% 30% 50% 50% 67% 20% 50% 89% 100% 63% 56% 
256 30% 67% 30% 50% 67% 67% 20% 50% 89% 100% 63% 57% 
Table 4.1: Classification accuracy on preprocessed shape images of 11 species of insects (N=92) 

using Fourier descriptor method for 64, 128 and 256 Fourier coefficients. S1 is ABB. 

As the number of frequency coefficients increases, the overall classification accuracy increased 

only slightly from 54% to 57% (Table 4.1). ABB classification accuracy is 30% for all feature 

vector lengths. ABB and overall classification accuracies using this method are not satisfactory 

due to shape uncertainty introduced by the legs and antennae of the insect subjects. To verify this 

observation, legs and antennae were removed manually from the binary shape images and the 

classification algorithm using Fourier descriptors was repeated. Classification accuracies of all 

individual species, except S4 and S10, increased. Overall classification accuracy increased from 

54-57% to 78% and was unaffected when the number of Fourier coefficients was varied between 

64 and 256. Classification accuracies of S5, S6, S9 and S10 reached 100% (Table 4.2).  

Based on the results obtained (Table 4.1 and 4.2), 256 DFT coefficients was selected for use in 

ensuing experiments. 

Fourier 

coefficients 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

64 80% 89% 40% 50% 100% 100% 60% 67% 100% 100% 75% 78% 

128 80% 89% 40% 50% 100% 100% 60% 67% 100% 100% 75% 78% 

256 80% 89% 40% 50% 100% 100% 60% 67% 100% 100% 75% 78% 

Table 4.2: Classification accuracy on manually decomposed shape images of 11 species of insects 

(N=92) using Fourier descriptor method for 64, 128 and 256 Fourier coefficients. S1 is ABB. 
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Compared to the area component method, the Fourier descriptor method is more sensitive to 

shape uncertainty and resulted in improved classification accuracy. Classification accuracy of 

both methods was improved by removing variability that arose from uncertainly in the pose of 

legs and antennae. For that reason we present a curvature-based approach to automatically 

remove legs and antennae from insect images in order to improve classification accuracy.  

4.2 Visual Curvature [1] 

In order to remove legs and antennas precisely from an image of an insect, the most important 

task is to identify the locations where legs and/or antennae are connected to the body (Figure 4.2).   

 

Figure 4.2: Insect shape boundary with yellow and red dots indicating antenna-body and leg-body 

connection points respectively. 

The task of locating the connections described above can be classified as a corner detection 

problem. Corners are critical features used in describing objects and are essential for pattern 

recognition [47]. Various corner detection methods based on curvature have been proposed 

previously [47-51]. Due to distortion from noise and varying levels of detail in images, the 
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desired curvature should reflect contour information at different scales, be unaffected by noise, 

invariant under rotation and translation, as well as be suitable for smooth curves and polygonal 

arcs [1]. 

In this investigation visual curvature, proposed by Liu et al [1], is implemented to locate the 

candidate connection points as the starting point to remove unnecessary shape distractors. Visual 

curvature is based on statistics of the extreme points of the height function computed over all 

directions which combine regular curve features in the geometry and turn angle information of 

polygonal curves together. The complete visual curvature algorithm is organized as follows: 

• Step 1: After getting the insect shape boundary, every boundary point is assigned to a 

coordinate in the original coordinate system (Figure 4.3). 

 

Figure 4.3: Boundary point coordinate in the original coordinate system. 

• Step 2: The contour is parameterized by the distance from each point to the b-axis, 

denoted by ��T�. At first, the parameter for each point is its b coordinate. By rotating the 

coordinate system by angle U anticlockwise, U1 � F 1
4 , : � 0, … , . 
 1, we obtain a 
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series of height functions ��V, where each height function ��V presents all boundary point 

parameters in the U1 direction. 

��T� � W cos U1 ? Y sin U1 , U1 � F :
. , : � 0, 1, … , . 
 1                                                            �4.5� 

• Step 3: For a point on the curve $, suppose 7�Z� is its neighborhood of size ∆7 on the 

curve $, the visual curvature of point Z is defined as: 

04,∆[�Z� � F ∑ #L��V�7�Z��M4+,1HI .∆7                                                                                                          �4.6� 

Where #L��V�7�Z��M represents the local extreme points of the height function ��V in the 

neighborhood 7�Z�. As mathematically defined above, each boundary point’s visual curvature is 

estimated by its small neighborhood 7�Z�. For every height function, the extreme points are 

identified and those that are in this neighborhood are counted. After summing up all the numbers 

in all directions, each point’s visual curvature is calculated using equation 4.6. In the current 

implementation, setting ∆7 � 1, yields the most robust curvature estimation for digital contours. 

• Step 4: From the definition of visual curvature above, all extreme points are counted 

without considering whether they are important or not. In fact, at certain scales small 

concave or convex segments should be ignored and only relatively important extreme 

points should be calculated. Using this algorithm, the multi-scale visual curvature of the 

point Z is defined to be: 

04,∆[�Z� � F ∑ #L��V] �7�Z��M4+,1HI .∆7                                                                                                          �4.7� 

In this expression, _ is a scale factor and #L��V` �7�Z��M represents the number of the extreme 

points of the height function ��V in the neighborhood 7�Z� whose scale measure is not smaller 

than _. 
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• Step 5: The scale measure of an extreme point Z in the height function �� is denoted 

by _��Z�: 

_��Z� � J��Z�
a�                                                                                                                                             �4.8� 

The height �� denoted by a� is the absolute difference between the maximum and minimum 

values in the height function ��. Furthermore, the scale measurement of a local extreme point Z  

in the height function ��, denoted by J��Z�, is presented in Figure 4.4 and equations 4.9 through 

4.11. 

 

Figure 4.4: The scale measure of an extreme point Z in the height function �� [1]. 

For a local extreme point Z in the height function ��, its influence region c��Z� is defined by the 

maximal neighborhood such that the height of every point in this neighborhood is not greater 

(lower) than the height of the point Z. For example, the influence region for local maximum point 

Z in Figure 4.4 is the red curve from point d, to d2. If the point Z is not an absolute extreme 

value, c�(v) is divided into two segments by Z, the left segment c�+(v) and the right segment 

c�e(v). 

J��Z� � minLJ�e�Z�, J�+�Z�M                                                                                                                     �4.9�  

J�e�Z� � maxh|���"� 
 ���Z�|i" j c�e�Z�k                                                                                   �4.10� 
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J�+�Z� � maxh|���"� 
 ���Z�|i" j c�+�Z�k                                                                                   �4.11� 

As denoted above, J�e(v) and J�+(v) are the maximal height differences between point Z and the 

points belonging to c�e(v) and c�+(v), respectively. Equation 4.8 computes the scale for each local 

extreme point in the height function. The importance of the local extrema depends not only on the 

height of this point, but also on the scale of the contour. 

For a point on the contour in each height function, if it is the local extreme point, it is counted 

when the scale measure is larger than the threshold _.The visual curvature for each boundary 

point is calculated by equation 4.7 using the same scale l. 

• Step 6: Because of digitalization, some high curvature points may disappear since the 

curvature is spread to several adjacent points as illustrated in Figure 4.5. The curvature at 

point m is not represented by a pixel at that location but represented by the sum of the 

curvature of adjacent points. 

 

Figure 4.5: Example of a high curvature point disappearing due to digitalization [1]. 



36 

 

In the current implementation, after calculating the visual curvature for all boundary points, they 

are ranked from high to low monotonically. The point Z with highest visual curvature is selected 

and the visual curvatures of adjacent points are added to it within its neighborhood n�Z� of 

radius o (Eqn. 4.12). 

P04,∆[` �Z� � C 04,∆[`
pjq�r�

�s�                                                                                                               �4.12� 

At the same time, the digital visual curvature of all other points in the neighborhood are set to 

zero. Except for these recalculated points, this is repeated for the second largest visual curvature 

point, then the third, and so on. The algorithm ends when there is no change in the visual 

curvature presentation of all boundary points. 

In the algorithm described above, several parameters need to be tuned to yield the best results. 

For these experiments, .=128, ∆7=1 and o=10 and the visual curvature can be rewritten as: 

0�Z� � C #L��V] �7�Z��M
4+,

1HI
                                                                                                         �4.13� 

Two parameters in Equation 4.13 will affect the results of whether a boundary point is selected as 

a candidate connection point. The first parameter is the scale threshold, denoted as _ and the 

second is the threshold of visual curvature 0. To find the best choice of parameter 0, several 

experiments based on different 0 values were conducted. According to human perception, 

0 � 10 preserved all the important candidate points and it produced a relatively small candidate 

point set. Also, the average number of candidate connection points decreased from 57 to 48 on 

the 92 images used in this study when ε was changed from 0.010 to 0.015. 
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 .     

  

Figure 4.6: Representative images of 4 insects subject to visual curvature algorithm (K=10) with 

scale threshold _=0.010 left image, and _=0.015 right image. Red dots indicate the boundary 

points where visual curvature is larger than visual curvature and scale threshold. 

Compared to the ideal leg and antennae connection points (Figure 4.2), the visual curvature 

algorithm yields more candidate connection points which makes selecting cutting points more 

complicated. A smaller scale threshold l results in the detection of more candidate points on the 

contour. This is more likely to preserve the real joint points on the contour, which is helpful for 

further processing. On the other hand, if numerous redundant candidate points are detected in 

addition to the real joint points, it will make the cutting algorithm more complicated and time-

consuming. Thus a proper scale threshold _ is significant not only for visual curvature but also 

shape decomposition results. 
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In subsequent discussions on this chapter, both sets of parameters, _=0.010 and 0=10 as well as 

_=0.015 and 0=10, are used for visual curvature implementation and candidate connection point 

selection for future shape decomposition.  

4.3 Visual Curvature Based Shape Decomposition 

After the visual curvature algorithm identifies candidate connection points on each insect image 

(Figure 4.6) these can be used to cut legs and antennae using shape decomposition techniques to 

reduce uncertainty in classification.   

Shape decomposition methods using convexity and concavity rules have been thoroughly 

documented [5-8] however these techniques have not, to the best of our knowledge, been applied 

specifically to insect classification tasks. Based on observable insect characteristics, an intuitive 

insect shape decomposition algorithm was proposed. Throughout the following presentation 

American Burying Beetle image #2 (Figure 4.7a) will be used to illustrate the algorithm 

progression. The visual curvature parameters of _=0.015 and 0=10 are used in the algorithm to 

identify candidate connection points (Figure 4.7c) from the boundary shape (Figure 4.7b). Final 

cuts to separate legs and antennae from the body shape are made among the pairs of points 

contained in the set of candidate connection points. 
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Figure 4.7: (a) Original image; (b) boundary shape; (c) candidate connection points identified by 

visual curvature algorithm in ABB specimen 2. 

The Visual Curvature Based Shape Decomposition algorithm consists of the following steps: 

• Step 1: First the image is divided into two segments defined by the center line of the 

image along the horizontal direction (Figure 4.8b). Due to morphology of the insects of 

interest, this will place the pairs of candidate connection points, along which the final cut 

to separate the leg or antenna is made, in the same image segment. Each segment will be 

treated separately and cutting lines will be determined among candidate connection 

points independently in each side. This algorithm arbitrarily treats the left segment first 

followed by the right segment. 
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Figure 4.8: (a) Visual curvature result on boundary shape; (b) left and right segment on shape. 

• Step 2: Each side of the image has several candidate connection points (Figure 4.8b). 

Assume that there are t points in the left side and A points in the right side. 

Theoretically, each pair of candidate connection points could make one possible cut. That 

is, there are t�t 
 1�/2 possible candidate cuts in the left side and A�A 
 1�/2 possible 

candidate cuts in the right side. 
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Figure 4.9: (a) Left and right segment of shape; (b) all possible candidate cuts in each side from 

pairs of candidate connection points. 

The objective of this insect shape decomposition algorithm is to find the cuts which precisely 

separate legs and antenna among the candidate cuts in each side that mimic what human vision 

can discern (Figure 4.10). 
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Figure 4.10: Ideal cutting lines for legs and antennae identified by human vision. Yellow lines 

represent cutting lines and red lines represent pixels along contour of one leg to be cut. 

From careful observation of the ideal cutting lines there is a unique relationship between the two 

candidate connection points. If the shape contour is represented by a two dimensional coordinate 

sequence in a clockwise direction, we know the number of contour pixels between each pair of 

candidate connection points. This is called the pixel distance. Specifically for the upper left leg in 

Figure 4.10, the contour pixels are red in color. In addition, it is straight forward to calculate the 

Euclidean distance between these two candidate connection points as well. According to 

morphological characteristics of insect leg and antenna shapes, the distance ratio J determined by 

Equation 4.14 tends to be large when the two connecting points form a reasonable cut on the 

insect shape.  

J � duvu                                                                                                                                                         �4.14� 
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Where du denotes the pixel distance and vu denotes the Euclidean distance of two candidate 

connection points. Candidate cuts are denoted by C, where L and R represent the left side and 

right side respectively. The C(L)= t�t 
 1�/2 possible candidate cuts on the left and C(R)= 

A�A 
 1�/2 possible candidate cuts on the right, are sorted by distance ratio r in descending 

order, respectively. 

$�=� � hzs{, … zs{���+,�/2|, J, } J2 } ~ } J���+,�/2                                                    �4.15� 

$�c� � hzs{, … zs{O�O+,�/2|, J, � J2 } ~ } JO�O+,�/2                                                      �4.16� 

Because the distance ratio for reasonable cuts trends to be large, the candidate cut sets $�=� and 

$�c� may be truncated by setting a threshold �: 

$��=� � hzs{, … zs{�|, J, } J2 } ~ } J� } �                                                                        �4.17� 

$��c� � hzs{, … zs{�|, J, } J2 } ~ } J� } �                                                                       �4.18� 

A distance ratio threshold, and resulting truncated candidate cut sets, will be used to find the final 

reasonable cuts. 

• Step 3: In addition to the distance ratio mentioned above, there are additional intrinsic 

characteristics for reasonable cuts in shape decomposition.  
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Figure 4.11: The example cutting line according to human vision using ratio of vertical distance 

in cut to total shape length. 

The first characteristic of reasonable cuts is that they should be totally contained within the insect 

body. If the connection line between two candidate connection points is totally or partially 

outside the insect body shape, it should not be a reasonable and correct cut for separation. To 

check for this, n is set as the union of all pixels in the insect body shape and a binary value is 

assigned for each candidate cut1: 

WKp;V � �0     zs{1 j n1     zs{1 � n�                                                                                                                            �4.19� 

The candidate cut set satisfying this condition is expressed by: 

$��=� � hzs{, … zs{�|,   WKp;� � ~ � WKp;� � 0                                                                           �4.20� 

$��c� � hzs{, … zs{�|,   WKp;� � ~ � WKp;� � 0                                                                           �4.21� 
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Using this limitation, numerous candidate cuts can be removed which results in a new smaller 

candidate cut set (Figure 4.12b). 

 

Figure 4.12: Representative insect body shape showing (a) all possible candidate cuts in each 

side, (b) possible candidate cuts contained in the body shape in each side after removing cuts that 

contain pixels outside the body shape and (c) possible candidate cuts contained in the body shape 

after applying length ratio threshold. 

The second check for reasonable cuts concentrates on the difference between the vertical 

component of a candidate cut compared to the total shape length.  In Figure 4.11 for each cut 

labeled by a yellow line, the vertical coordinate difference for two candidate connection points 

labeled as green line is not very large. In other words, the ratio between this difference and image 

vertical length, which is called the length ratio, should be relatively small. For each cut, 

R � P
P�                                                                                                                                                         �4.22� 
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Where D denote the coordinate vertical difference between two points for the cut and  P� denote 

the image vertical length. Because the length ratio for a reasonable cut tends to be small, the 

candidate cut set $�=� and $�c� can be reduced by setting the threshold �: 

$��=� � hzs{, … zs{�|, c, � � & c2 � � … & c� � �                                                          �4.23� 

$��c� � hzs{, … zs{�|, c, � � & c2 � � … & c� � �                                                          �4.24� 

The third step is to combine the step that checks if the cut is within the body with the length ratio 

restriction to reduce the candidate cut list further. The result of this step when using a length ratio 

limitation with δ � 1/10 is shown in Figure 4.12c. Additional candidate cuts are removed by 

combining the two procedures. These cuts represent a small subset (Eqn. 4.25 and 4.26) from the 

original candidate cuts. 

$�,��=� � hzs{, … zs{�|, c, � � & c2 � � … & c� � �, WKp;� � ~ � WKp;� � 0          �4.25� 

$�,��c� � hzs{, … zs{�|, c, � � & c2 � � … & c� � �, WKp;� � ~ � WKp;� � 0          �4.26� 

• Step 4: After the candidate cut extraction, the new set of reasonable cuts compares well to 

the cuts identified by human vision (Figure 4.13). 
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Figure 4.13: Representative image showing (a) possible candidate cuts contained in the body 

shape and subject to length ratio threshold; (b) the ideal cutting lines according to human vision. 

As mentioned is step 2 above, the distance ratio J determined by pixel distance and Euclidean 

distance trends to be large when the two connection points are a reasonable cut on the insect 

shape. Due to the uncertain distribution of candidate connection points found by the visual 

curvature algorithm, it is not possible to conclude that the connection with highest distance ratio 

is the reasonable cut. However, as illustrated in Figure 4.13b, it can be concluded that the distance 

ratio for a reasonable cut should be relatively high among the candidate cut set under the 

limitation of step 3. In addition, when each possible candidate cut connects to the shape contour, 

it should form a closed curve. The area of this closed curve can be calculated and used to identify 

the whole leg or antennae to be pruned. Using this idea, the shape decomposition algorithm is 

presented below. 

In the left segment and right segment respectively, we use the candidate cut sets which are found 

by applying (4.25) and (4.26) separately to the candidate cut set. The candidate cut set is 
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truncated further by using the distance ratio limited by parameter γ (Eqn. 4.27 and 4.28). After 

truncation, the reduced cut set is sorted in descending order. 

$�,�,��=� � hzs{, … zs{�|, J, } ~ } J� } �, c,, … , c� � �, WKp;� � ~ � WKp;� � 0   �4.27� 

$�,�,��c� � hzs{, … zs{�|, J, } ~ } J� } �, c,, … , c� � �, WKp;� � ~ � WKp;� � 0  �4.28� 

As mentioned above, the distance ratio for a reasonable cut should be relatively high. So we 

introduce another parameter, selection ratio µ, to truncate the candidate cut set to the top 1/µ cuts. 

$�,�,�,��=� � �zs{, … zs{��µ��, 

  c,, … , c��µ� � �, WKp;� � ~ � WKp;��µ� � 0, J, } ~ } J��µ� } �                                                   �4.29� 

$�,�,�,��c� � �zs{, … zs{��µ��, 

  c,, … , c��µ� � �, WKp;� � ~ � WKp;��µ� � 0, J, } ~ } J��µ� } �                                                   �4.30� 

For the candidate cut set determined by equations 4.29 and 4.30, the closed curve area is 

calculated for each possible cut line. The two points whose connection creates the biggest area are 

used to make the first cut on the left side and on the right side (Figure 4.14). 
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Figure 4.14: Representative image showing candidate connection point set result from (a) visual 

curvature result on boundary shape; (b) shape after first cut on the left side. 

• Step 5: After the first cut is made, the set of candidate connection points has been 

changed due to the removal of an area segment. Two candidate points where the cut was 

made have been removed as well as the candidate points on the contour between these 

two points. Because the candidate point set has been updated, the algorithm can be 

repeated starting with step 3 to construct new possible candidate cuts. The algorithm on 

the left side will end when the number of cuts reaches 4 or there is no possible cut to 

satisfy all limitations set by thresholds �, �, U and µ. The algorithm will then proceed to 

the right side and prune up to 4 more areas. 

The insect shape decomposition example shown in Figure 4.15 uses ABB #2 image. The 

thresholds used in the algorithm are � � 2.5, � � 1/10, U � 0 and � � 2. Additional results of 
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shape decomposition using this procedure are shown in Figure 4.16 through Figure 4.20 using the 

same threshold values. 

 

Figure 4.15: Results of image pruning for #2 image (a) Original boundary shape; (b) left side 

shape decomposition; (c) right side shape decomposition (d) final insect shape decomposition 

result. 
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Figure 4.16: Results of image pruning for #4 image (a) Original boundary shape; (b) insect shape 

decomposition result. 

 

Figure 4.17: Results of image pruning for #24 image (a) Original boundary shape; (b) insect 

shape decomposition result. 
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Figure 4.18: Results of image pruning for #26 image (a) Original boundary shape; (b) insect 

shape decomposition result. 

 

Figure 4.19: Results of image pruning for #36 image (a) Original boundary shape; (b) insect 

shape decomposition result. 
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Figure 4.20: Results of image pruning for #41 image (a) Original boundary shape; (b) insect 

shape decomposition result. 

4.4 Experimental Analysis 

When using images where the legs and antennae are manually pruned insect overall classification 

accuracy for 11 species of insects reached 78% using the Fourier descriptor method and 72% 

using the area component method. After applying the visual curvature and shape decomposition 

algorithm to remove uncertainty introduced by legs and antennae, the overall classification 

accuracies increased to 67% using the Fourier descriptor method and 76% using the area 

component method when using the best combination of threshold parameters (Table 4.3).  
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Visual curvature 

parameters 

Shape Decomposition 

parameters 

Classification Accuracy 

Fourier descriptor Area component 

_ 0 � � � ABB Overall ABB Overall 

0.015 10 4 1/10 1 0.80 0.62 0.60 0.72 

0.010 10 4 1/10 1 0.80 0.55 0.60 0.72 

0.015 10 3 1/10 1 0.80 0.64 0.60 0.74 

0.010 10 3 1/10 1 0.80 0.59 0.60 0.71 

0.015 10 2.5 1/10 2 0.90 0.67 0.60 0.76 

0.010 10 2.5 1/10 2 0.80 0.57 0.60 0.73 

0.015 10 2.5 1/10 1.5 0.90 0.63 0.60 0.75 

0.010 10 2.5 1/10 1.5 0.50 0.57 0.40 0.70 

0.015 10 2 1/10 2 0.90 0.68 0.60 0.74 

0.010 10 2 1/10 2 0.60 0.62 0.60 0.73 

0.015 10 2 1/10 1.5 0.90 0.63 0.60 0.73 

0.010 10 2 1/10 1.5 0.70 0.54 0.60 0.73 

Table 4.3: Effect of visual curvature and shape decomposition parameters on classification 

accuracy on automatically decomposed shapes using Fourier descriptors and Area components 

methods for 11 species of insects (N=92). 

Thresholds set by _ � 0.015, 0 � 10 in visual curvature computation and thresholds set by 

� � 2.5, � � 1/10, U � 0, � � 2 in shape decomposition algorithm yielded the most robust 

classification results. Classification accuracy of ABB was 90% when using Fourier descriptors on 

the images subject to automatic decomposition compared to 80% on the manually decomposed 

images. Classification accuracy of ABB using automatic decomposition and area components was 

60% which was the same as realized from manual decomposition (Table 4.4).   

 Fourier Descriptor Area Component 

Classification image source ABB Overall ABB Overall 

Original shape 30% 57% 60% 64% 

Manual decomposition 80% 78% 60% 72% 

Automatic decomposition 90% 67% 60% 76% 

Table 4.4: Insect classification accuracy comparison between original shapes and manually and 

automatically decomposed images using Fourier descriptor and area component methods for 

ABB and 11 species (N=92). 
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This insect shape decomposition algorithm based on visual curvature computation is shown to be 

useful. The classification accuracies have been dramatically improved compared with those of the 

original shapes. The data show that the classification accuracy of the automatically pruned shapes 

approaches that of manually pruned shapes. ABB classification accuracy was 90% using the 

Fourier descriptor method.  

4.5 Parameter Selection 

Based on the results of several trials using different parameters, this algorithm was shown to be 

sensitive to parameter selection. The visual curvature algorithm selects the set of candidate 

attachment points which have the largest visual curvature. A good visual curvature result should 

include all real attachment points with minimum false positives. In the shape decomposition 

algorithm, due to the uncertainty of the candidate set, three parameters were used to fine-tune the 

set of candidate points. Because a cut is made by linking two candidate attachment points, the 

most important thing for a correct cut is that the two candidate attachment points be within the 

same leg or antenna portion of the entire shape. 

This intuitive insect shape decomposition algorithm removes insect legs and antennas 

automatically when using appropriate parameters. The classification accuracy achieves the level 

of manual decomposed shapes which means that the decomposed shape is sufficient for 

classification work. However, both the Fourier descriptor and area component methods do not 

reach high accuracies, only 67% and 76%, respectively. Instead of using two methods separately, 

one possible solution is to combine them together so they can complement each other for insect 

classification. Thus, a hybrid region-based and contour-based approach is proposed in Chapter 5. 
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CHAPTER V 
 

 

HYBIRD REGION-BASED AND CONTOUR-BASED APPROACH  

In previous chapters, region-based and contour-based methods applied separately achieved 

classification accuracies 64% and 57% respectively. To avoid uncertainty introduced by the 

insect’s legs and antennae, a shape decomposition algorithm was proposed to remove those shape 

distractors automatically. This encouragingly improved classification accuracy to 76 and 67% on 

region-based and contour-based methods respectively on the cleaned shapes. However, both area 

components and Fourier descriptor methods could not yield satisfactory classification results 

when using each of them independently. After more observations of misclassification cases, it 

was found that the two methods could be complementary to each other, meaning that combining 

them together could be a good approach to further increase the classification accuracy. With this 

idea, a hybrid region-based and contour-based approach is developed in this chapter.  

Many mathematical theories have been applied for decision fusion-based classification. Fuzzy set 

theory [9], Dempster-Shafer theory [52], Bayes fusion [53], belief approach [54], joint likelihood 

and the weighted majority [55], possibility and evidence theory [56] and multiple kernel learning 

method [57] have thoroughly studied the results of combining different classifiers. In this chapter, 

fuzzy set theory is used to combine two features of the decomposed shape and the fusion rule 

proposed by Fauvel [9] is implemented for the classification of insect images. Detailed 

classification results from this approach are presented and discussed. 

5.1 Fuzzy Set Theory for Decision Fusion 
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In traditional binary set theory, a membership value of 1 is assigned to elements which are in the 

set, and 0 is assigned to elements which are outside the set. Fuzzy set theory, first introduced by 

Zadeh [58], defines the concept of partial membership, and thus the membership degree can range 

from 0 to 1. With the ability to handle ambiguity within data, fuzzy set theory is widely used for 

additional processing of outputs from multiple classifiers [9]. Specifically, we implement the 

decision fusion algorithm based on fuzzy set theory in this investigation. 

5.1.1 Definitions [9] 

A fuzzy set B of a reference set n is a set of ordered pairs: 

B � h��, ������i� j n|                                                                                                                            �5.1� 

And ��: n ¡ L0,1M is the membership function of B in n. 

A fuzzy set is a normal set if and only if: 

max ����� � 1                                                                                                                                           �5.2� 

The support of a fuzzy set B is: 

7s""�B� � ¢� j n|����� £ 0k                                                                                                              �5.3� 

5.1.2 Measure of Fuzziness [59] 

Pal et al. [59] proposed a measure of fuzziness on multiplicative class. 

����� � 0 C ¤�����1��
O

1H,
, 0lce                                                                                                           �5.4� 

Where ¤���� is defined as: 

�¤�{� � ¤¥�{� 
 ¤¥�{�I¦;¦,�1O
¤¥�{� � a�{�a�1 
 {�                                                                                                                         �5.5�� 
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And a is the concave increasing function. 

a: L0,1M ¡ c2, §� j L0,1M a¨��� £ 0 and a¨¨��� � 0                                                                        �5.6� 

Different choices of function ¤ will lead to various measure definitions. In this investigation, let 

a: L0,1M ¡ ce be a�{� � {� , 0 � U � 1. And the function, zW©©ª« U 
 ¬uadratic entropy, is a 

measure of fuzziness. 

��®¯���� � 1
A2+2� C ��

O

1H,
��1���1 
 ����1���                                                                                   �5.7� 

5.2 Decision Fusion for Insect Classification 

In this investigation, after feature extraction of all insect images using region-based and contour-

based methods, for an individual image d, the Euclidean distance between its feature vector and 

the mean feature vector of all A species is calculated according to equation 5.8:  

«�d� � ¢«°�d�, @ � 1, 2, … , Ak                                                                                                              �5.8� 

To be considered a fuzzy set, the value of each element must range from 0 to 1, so normalization 

of the distance vector is required using equation 5.9: 

P°�d� � 1 
 «°�d� 
 "
" 
 # ,  where " � maxL«�d�M and # � minL«�d�M                                       �5.9� 

P�d� � ¢P°�d�, @ � 1, 2, … , Ak                                                                                                            �5.10� 

For a given image d, the output of classifier : is defined as the fuzzy set given by: 

F1�d� � hP1°�d�, @ � 1,2, … , A|                                                                                                            �5.11� 

Where P1°�d� j L0,1M is the membership degree of image d to class @ using classifier :. By 

definition, the larger the P1°value is, the more likely it is that this image belongs to class @. With 
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different classifiers, t fuzzy sets are computed for each image which are then input to the fusion 

process. 

F � ¢F,�d�, F2�d�, … , F��d�k                                                                                                             �5.12� 

As discussed in Chapters 3 and 4, 11 different insect species comprising a total of 92 images 

correspond to 11 classes, and two different contour representation methods correspond to 2 fuzzy 

sets. 

The hybrid region-based and contour-based approaches for classification of each image are 

organized as follows [9]: 

• Step 1: For each image d, F � ¢F,�d�, F2�d�k fuzzy sets are constructed according to 

equations 5.8 to 5.12. 

• Step 2: For each fuzzy set, the fuzziness degree � is computed. Specifically, based on the 

rewriting of equation 5.7, the U 
 Quadratic entropy [59] calculated by equations 5.13 

and 5.14 is implemented which provides a measure of the fuzziness in each classifier. 

71°�d� � P1°�d�� ²1 
 P1°�d�³�

2+2� , : j L1,2M, @ j L1,11M                                                     �5.13� 

�1�d� � 1
A C 71°�d�, : j L1,2M, @ j L1,11M                                                                 �5.14�

O

°H,
 

The parameter U differentiates the degree of fuzziness for different membership degree 

values. When the parameter is close to 0, fuzzy measure is not sensitive to changes in 

P1°�d� and all the fuzzy sets have approximately the same degree of fuzziness [9].  

• Step 3: Intuitively, the classifier is most reliable when one class has a relatively high 

membership value and all other classes have membership values closer to 0. It follows 

that if all of the classes have membership values that are approximately the same it 
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indicates significant ambiguity and the classifier is considered unreliable. In other words, 

uncertain results are obtained using the classifier which produces a high degree of 

fuzziness. To reduce classifier uncertainty, each fuzzy set is weighted by: 

´1�d� � ∑ �1�µH,,µ¶1 �d�
�t 
 1� ∑ �1�d��1H,

, C ´1 � 1                                                                         �5.15�
�

1H,
 

• Step 4: Next, the combination operator is applied to image d to make the fusion decision. 

After applying each classifier’s fuzzy set weight to its corresponding distance vector, 

given by equation 5.15, a new distance vector is constructed combining region-based and 

contour-based methods: 

��d� � max¢ ,́«,,�d�, ´,«,2�d�, … , ´,«,,,�d�, ´2«2,�d�, ´2«22�d�, … , ´2«2,,�d�k  �5.16� 

Where «1°�d� is the Euclidean distance between image d’s feature vector to the  @ class 

representative feature vector using classifier :. ��d� represents the largest membership 

degree after the combination rule is applied for two classifiers and 11 classes.  

• Step 5: Finally, the class is selected corresponding to the highest membership value. 

5.3 Experimental Results and Analysis 

As described in step 2 above, to evaluate reliability, the #uadratic entropy is calculated first to 

measure fuzziness of the two classifiers. After that, as shown in step 3, the weight of each 

classifier is calculated by equation 5.15 to reduce classifier uncertainty. The significance of the 

weighting is to emphasize the classifier having less fuzziness and somehow neglect the classifier 

with more fuzziness. In other words, a high weight is given to the reliable classifier and a low 

weight to the unreliable classifier so that the final combined classifier takes advantage of them 

both. The sum of the weights of two classifiers is equal to 1. 
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For example, for a certain image which belongs to class 2, the class representation using two 

classifiers is presented as figure 5.1. 

 

Figure 5.1: Class membership degrees for an example image in class 2 (a) using area component 

classifier; (b) using Fourier descriptor classifier. 

Both classifiers could classify this image into class 2 with their highest membership degree. 

However, intuitively, we could conclude that the fuzziness of the area component classifier is less 

than that of the Fourier descriptor classifier. In other words, for this image classification, 

classifier 1 is more reliable than classifier 2. Classifier 2 has more uncertainty even though it 

could make the right classification. Under this condition, more weight is placed on results of 

classifier 1 and less weight on classifier 2. 

In this U 
 Quadratic entropy fuzziness measurement, for each image, through equations 5.13 to 

5.15, the weight is affected by its membership degrees in two classifiers and the parameter 

U �0 � U � 1� value as well. Specifically, for the example image in class 2, the weight 

distribution for two classifiers is shown in figure 5.2 as the U parameter is changing. 
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Figure 5.2: The weights for two classifiers for an image in class 2 for different values of U. 

As discussed above, for this image, it is preferred to emphasize the area component classifier as 

well as reduce the influence of the Fourier descriptor classification. From figure 5.2, the goal is 

achieved when the parameter U approaches 0. When applied to all images in the training data set, 

the optimal value of U, which differentiates the degree of fuzziness for different membership 

degree values, is approximately equal to 0 and this produces the best classification accuracy 

(Table 5.1). 

Parameter U 10^(-17) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

ABB Accuracy 100% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 

Overall Accuracy 90% 64% 64% 61% 62% 60% 60% 60% 60% 60% 60% 

Table 5.1: Classification accuracies for ABB and 11 species (N=92) using different U parameter 

values. 

Based on the selection of parameter α, the classification accuracy for ABB was 100% and overall 

classification accuracy for all 11 species was 90% (Table 5.2). 
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Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

Hybrid 100% 89% 70% 70% 100% 83% 90% 83% 100% 100% 100% 90% 

Area Comp. 60% 89% 70% 60% 83% 83% 50% 67% 100% 88% 88% 76% 

Fourier Des. 90% 78% 30% 20% 50% 50% 60% 67% 100% 100% 88% 67% 

Table 5.2: Classification accuracies for hybrid region-based and contour-based approach on 

images with legs and antennae automatically removed. S1 represents the American Burying 

Beetle (ABB). 

The hybrid fusion method compared to area components and Fourier descriptor methods 

separately resulted in improved overall classification accuracy for the current data set. In all cases 

the hybrid decision fusion operator was successful in keeping the best classification results 

determined separately by the two methods. In addition, for S1, S4, S5, S7, S8 and S11, the hybrid 

classification accuracy is higher than either of the methods individually. The hypothesis that each 

method could be complementary to the other method was confirmed by using this hybrid region-

based and contour-based approach. 

5.4 Experimental Results and Analysis of Leave-one-out Validation 

To further test the robustness of our algorithm, we implemented the leave-one-out validation. In 

other words, each test image is not involved in the training stage when the average feature vector 

is computed from multiple samples of each class.  The experimental results are shown in Table 

5.3, where both ABB and overall classification accuracies decrease significantly compared with 

Table 5.2. Still it is shown that cleaned shapes after decomposition are preferred for better 

classification. Further, the decision fusion is able to improve the classification accuracy for ABB 

(80%) and all species (61%), as shown in Table 5.4.   
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  Area Component Fourier Descriptor 

Classification image source ABB Overall ABB Overall 

Original shape 40% 35% 10% 33% 

Manual decomposition 50% 41% 80% 63% 

Automatic decomposition 50% 35% 80% 43% 

Table 5.3: Classification results of leave-one-out validation for ABB and 11 species (N=92). 

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall 

Hybrid 80% 89% 30% 30% 17% 67% 50% 50% 89% 100% 75% 61% 

Area Comp. 50% 44% 30% 20% 0% 50% 10% 33% 89% 38% 26% 35% 

Fourier Des. 80% 78% 10% 10% 17% 33% 50% 17% 0% 100% 75% 43% 

Table 5.4: Fusion results of leave-one-out validation. S1 represents the American Burying Beetle 

(ABB). 

With the decreasing of classification accuracies in both methods, we could conclude that the 

robust classification result may not be achieved only with these two shape representation methods 

in practice. However, our proposed insect shape decomposition algorithm could still improve 

classification accuracies in both methods for ABB and overall species. There are three thoughts 

for future research from this leave-one-out validation experiment. First, we may need additional 

features (such as colors, edges or textures) to improve the accuracy and robustness of the 

algorithm. Second, we also need more training samples for each species to improve the 

representativeness of shape features. Third, we may need involve advanced feature learning [60] 

to learn more stable features for each species. 
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CHAPTER VI 
 

 

CONCLUSIONS AND FUTURE WORK 

In this investigation, an insect classification algorithm was implemented through template 

matching. Specifically, shape features were extracted from color images for analysis and 

classification based on binary images. After image preprocessing and insect object extraction and 

alignment, a region-based area component method and a contour-based Fourier descriptor method 

were implemented to classify 11 different of types of insects to species from a total of 92 images. 

Due to the shape uncertainty introduced by the position of the legs and antennae of the insects, 

initial classification accuracy was not sufficient for the intended purpose. Using visual curvature 

theory, an intuitive insect shape decomposition algorithm was proposed to cut the legs and 

antennae from insect body shapes automatically. Experimental results using the same region-

based and contour-based methods on the decomposed shapes demonstrated that the algorithm was 

useful in removing uncertainty in the insect shape by increasing classification accuracy by 12% 

and 10% respectively. Moreover, classification accuracy was dramatically improved to 90% 

using the Fourier descriptor approach on American Burying Beetle (ABB) specimens. To achieve 

higher overall classification accuracy, a hybrid approach using a fusion operator to combine 

region-based and contour-based methods together was proposed. After that implementation, the 

overall accuracy achieved 90% and the ABB classification accuracy increased to 100%. 

However, the experimental results of leave-one-out validation show that the proposed algorithm 

still needs future improvements in three areas. First, additional features (such as colors, edges or 

textures) are needed to complement shape-based ones. Second, more training samples and a large
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data set are necessary to improve the overall performance of the proposed algorithm. Third, 

advanced feature learning may be helpful to find reliable features for each species. 

The original objective of the algorithm was to classify and identify the American Burying Beetle 

(ABB) precisely and also be able to discriminate other species of interest as well. There are still 

rooms to improve the overall insect classification accuracy and robustness. Furthermore, the 

methods developed in this investigation may have application for other insect assemblages, and 

even on non-insect animals, where unsupervised classification is desired.



67 

 

 

 

REFERENCES 
 

 

1. Liu, H., et al. Visual curvature. in Computer Vision and Pattern Recognition, 
2007. CVPR'07. IEEE Conference on. 2007. IEEE. 

 
2. Ratcliffe, B.C., carrion beetles (Coleoptera: Silphidae) of Nebraska. 1996. 
 
3. Mountain-Prairie, U. File: American Burying Beetle.jpg 

https://www.flickr.com/photos/51986662@N05/7489195168. 
 
4. Hardin, J., American Burying Beetle trap monitor proposal. 
 
5. Liu, H., W. Liu, and L.J. Latecki. Convex shape decomposition. in Computer 

Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. 2010. IEEE. 
 
6. Latecki, L.J. and R. Lakämper, Convexity rule for shape decomposition based on 

discrete contour evolution. Computer Vision and Image Understanding, 1999. 
73(3): p. 441-454. 

 
7. Ren, Z., J. Yuan, and W. Liu, Minimum near-convex shape decomposition. 2013. 
 
8. Ghosh, M., et al., Fast approximate convex decomposition using relative 

concavity. Computer-Aided Design, 2013. 45(2): p. 494-504. 
 
9. Fauvel, M., J. Chanussot, and J.A. Benediktsson, Decision fusion for the 

classification of urban remote sensing images. Geoscience and Remote Sensing, 
IEEE Transactions on, 2006. 44(10): p. 2828-2838. 

 
10. Larios, N., et al., Automated insect identification through concatenated 

histograms of local appearance features: feature vector generation and region 
detection for deformable objects. Machine Vision and Applications, 2008. 19(2): 
p. 105-123.



68 

 

11. Kuhl, F.P. and C.R. Giardina, Elliptic Fourier features of a closed contour. 
Computer graphics and image processing, 1982. 18(3): p. 236-258. 

 
12. Cho, J., et al., Automatic identification of whiteflies, aphids and thrips in 

greenhouse based on image analysis. Red, 2007. 346(246): p. 244. 
 
13. Mayo, M. and A.T. Watson, Automatic species identification of live moths. 

Knowledge-Based Systems, 2007. 20(2): p. 195-202. 
 
14. Zayas, I. and P. Flinn, Detection of insects in bulk wheat samples with machine 

vision. Transactions of the ASAE-American Society of Agricultural Engineers, 
1998. 41(3): p. 883-888. 

 
15. Al-Saqer, S., et al., Identification of pecan weevils through image processing. 

American Journal of Agricultural and Biological Sciences, 2010. 6(1): p. 69. 
 
16. Arbuckle, T., et al. Biodiversity informatics in action: identification and 

monitoring of bee species using ABIS. in Proc. 15th Int. Symp. Informatics for 
Environmental Protection. 2001. Citeseer. 

 
17. Watson, A.T., M.A. O'Neill, and I.J. Kitching, Automated identification of live 

moths (Macrolepidoptera) using digital automated identification system (daisy). 
Systematics and Biodiversity, 2004. 1(3): p. 287-300. 

 
18. Lowe, D.G., Distinctive image features from scale-invariant keypoints. 

International journal of computer vision, 2004. 60(2): p. 91-110. 
 
19. Zhang, D. and G. Lu, Review of shape representation and description techniques. 

Pattern recognition, 2004. 37(1): p. 1-19. 
 
20. Hu, M.-K., Visual pattern recognition by moment invariants. Information Theory, 

IRE Transactions on, 1962. 8(2): p. 179-187. 
 
21. Ezer, N., E. Anarim, and B. Sankur. A comparative study of moment invariants 

and fourier descriptors in planar shape recognition. in Electrotechnical 
Conference, 1994. Proceedings., 7th Mediterranean. 1994. IEEE. 

 
22. Park, J.-S. and T. Kim, Shape-based image retrieval using invariant features, in 

Advances in Multimedia Information Processing-PCM 2004. 2005, Springer. p. 
146-153. 

 
23. Gonzalez, R.C., R.E. Woods, and S.L. Eddins, Digital image processing using 

MATLAB. 2004: Pearson Education India. 
 



69 

 

24. Khotanzad, A. and Y.H. Hong, Invariant image recognition by Zernike moments. 
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990. 12(5): p. 
489-497. 

 
25. Li, S., M.-C. Lee, and C.-M. Pun, Complex Zernike moments features for shape-

based image retrieval. Systems, Man and Cybernetics, Part A: Systems and 
Humans, IEEE Transactions on, 2009. 39(1): p. 227-237. 

 
26. Bunke, H. and U. Bühler, Applications of approximate string matching to 2D 

shape recognition. Pattern recognition, 1993. 26(12): p. 1797-1812. 
 
27. Kim, H.-K. and J.-D. Kim, Region-based shape descriptor invariant to rotation, 

scale and translation. Signal Processing: Image Communication, 2000. 16(1): p. 
87-93. 

 
28. Zhang, D. and M.C.Y. Lim. An efficient and robust technique for region based 

shape representation and retrieval. in Computer and Information Science, 2007. 
ICIS 2007. 6th IEEE/ACIS International Conference on. 2007. IEEE. 

 
29. Arbter, K., Affine-invariant Fourier descriptors. From Pixels to Features, 1989: p. 

153-164. 
 
30. Granlund, G.H., Fourier preprocessing for hand print character recognition. 

Computers, IEEE Transactions on, 1972. 100(2): p. 195-201. 
 
31. El-ghazal, A., O. Basir, and S. Belkasim, Farthest point distance: A new shape 

signature for Fourier descriptors. Signal Processing: Image Communication, 
2009. 24(7): p. 572-586. 

 
32. Kunttu, I. and L. Lepisto, Shape-based retrieval of industrial surface defects 

using angular radius Fourier descriptor. Image Processing, IET, 2007. 1(2): p. 
231-236. 

 
33. Yang, H.S., S.U. Lee, and K.M. Lee, Recognition of 2D object contours using 

starting-point-independent wavelet coefficient matching. Journal of Visual 
Communication and Image Representation, 1998. 9(2): p. 171-181. 

 
34. Belongie, S., J. Malik, and J. Puzicha. Shape context: A new descriptor for shape 

matching and object recognition. in NIPS. 2000. 
 
35. Belongie, S., J. Malik, and J. Puzicha, Shape matching and object recognition 

using shape contexts. Pattern Analysis and Machine Intelligence, IEEE 
Transactions on, 2002. 24(4): p. 509-522. 

 
36. Freeman, H., On the encoding of arbitrary geometric configurations. Electronic 

Computers, IRE Transactions on, 1961(2): p. 260-268. 



70 

 

37. Lee, D.-J., S. Antani, and L.R. Long. Similarity measurement using polygon curve 
representation and fourier descriptors for shape-based vertebral image retrieval. 
in Medical Imaging 2003. 2003. International Society for Optics and Photonics. 

 
38. Arica, N. and F.Y. Vural. A shape descriptor based on circular Hidden Markov 

Model. in Pattern Recognition, 2000. Proceedings. 15th International Conference 
on. 2000. IEEE. 

 
39. Kim, D.H., I.D. Yun, and S.U. Lee, A new shape decomposition scheme for 

graph-based representation. Pattern Recognition, 2005. 38(5): p. 673-689. 
 
40. Mi, X. and D. DeCarlo. Separating parts from 2d shapes using relatability. in 

Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. 
2007. IEEE. 

 
41. Lu, G. and A. Sajjanhar, Region-based shape representation and similarity 

measure suitable for content-based image retrieval. Multimedia Systems, 1999. 
7(2): p. 165-174. 

 
42. Tieng, Q.M. and W. Boles, Recognition of 2D object contours using the wavelet 

transform zero-crossing representation. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 1997. 19(8): p. 910-916. 

 
43. Zhang, D. and G. Lu. A comparative study of Fourier descriptors for shape 

representation and retrieval. in Proceedings of the Fifth Asian Conf. on Computer 
Vision. 2002. Citeseer. 

 
44. Sarfraz, M. Object recognition using fourier descriptors: Some experiments and 

observations. in Computer Graphics, Imaging and Visualisation, 2006 
International Conference on. 2006. IEEE. 

 
45. Zhang, D. and G. Lu, Study and evaluation of different Fourier methods for image 

retrieval. Image and Vision Computing, 2005. 23(1): p. 33-49. 
 
46. Zhang, D. and G. Lu. Content-Based Shape Retrieval Using Different Shape 

Descriptors: A Comparative Study. in ICME. 2001. 
 
47. He, X.C. and N.H. Yung, Corner detector based on global and local curvature 

properties. Optical Engineering, 2008. 47(5): p. 057008-057008-12. 
 
48. Sonthi, R., G. Kunjur, and R. Gadh. Shape feature determination usiang the 

curvature region representation. in Proceedings of the fourth ACM symposium on 
Solid modeling and applications. 1997. ACM. 

 



71 

 

49. Mokhtarian, F. and A.K. Mackworth, A theory of multiscale, curvature-based 
shape representation for planar curves. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 1992. 14(8): p. 789-805. 

 
50. Dudek, G. and J.K. Tsotsos, Shape representation and recognition from 

multiscale curvature. Computer Vision and Image Understanding, 1997. 68(2): p. 
170-189. 

 
51. He, X.-C. and N.H. Yung. Curvature scale space corner detector with adaptive 

threshold and dynamic region of support. in Pattern Recognition, 2004. ICPR 
2004. Proceedings of the 17th International Conference on. 2004. IEEE. 

 
52. Fontani, M., et al., A framework for decision fusion in image forensics based on 

Dempster-Shafer theory of evidence. 2013. 
 
53. Shi, X. and R. Manduchi. A study on Bayes feature fusion for image 

classification. in Computer Vision and Pattern Recognition Workshop, 2003. 
CVPRW'03. Conference on. 2003. IEEE. 

 
54. Laanaya, H., et al. Classifier fusion for post-classification of textured images. in 

Information Fusion, 2008 11th International Conference on. 2008. IEEE. 
 
55. Jeon, B. and D.A. Landgrebe, Decision fusion approach for multitemporal 

classification. Geoscience and Remote Sensing, IEEE Transactions on, 1999. 
37(3): p. 1227-1233. 

 
56. Martin, A. Comparative study of information fusion methods for sonar images 

classification. in Information Fusion, 2005 8th International Conference on. 
2005. IEEE. 

 
57. Gehler, P. and S. Nowozin. On feature combination for multiclass object 

classification. in Computer Vision, 2009 IEEE 12th International Conference on. 
2009. IEEE. 

 
58. Zadeh, L.A., Fuzzy sets. Information and control, 1965. 8(3): p. 338-353. 
 
59. Pal, N.R. and J.C. Bezdek, Measuring fuzzy uncertainty. Fuzzy Systems, IEEE 

Transactions on, 1994. 2(2): p. 107-118. 
 
60. Bengio, Y., A. Courville, and P. Vincent, Representation learning: A review and 

new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions 
on, 2013. 35(8): p. 1798-1828. 



  

VITA 
 

Bo Li 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    SHAPE-BASED INSECT CLASSIFICATION: A HYBRID REGION-BASED 

AND CONTOUR-BASED APPROACH 
 
 
Major Field:  Electrical Engineering 
 
Biographical: 
 

Education: 
 

Completed the requirements for the Bachelor of Science in Electronic 
Information Science and Technology at Shandong University, Jinan, Shandong, 
China in 2009. 
 
Experience:   
 
Visual Computing and Image Processing Lab (VCIPL), OSU Stillwater, OK 
Research Assistant,                                                            Jan.2013—Present. 
 
Professional Memberships:   
 
IEEE Student Member 

 
 
 
 
 
 


