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Abstract: The American Burying Beetle (ABBYicrophorus americanyss a critically
endangered insect whose distribution is limitedeweral states at the periphery of its
historical range in the eastern and central UrBtedes. The objective of this study is to
develop a digital image classification algorithrattvill be used in an autonomous
monitoring system to be attached to existing ABip& that will detect, image, classify
and report insects to species as they enter theArgraining set of 92 individual
specimens representing 11 insect species with shagplarity from the Oklahoma State
University Entomology Museum was used in this sti@harting with a color digital
image, an unsupervised preprocessing algorithnaetsteach insect shape, converts it to
a binary image, and then aligns it for classifisatusing pattern recognition techniques.
For region-based and contour-based shape repréasantsethods, an area component
and a Fourier descriptor methods are implementeshfape representation and
classification. Analysis of initial classificatiorsults revealed that the pose variability of
insect legs and antennae introduced excessivetaimagrin the feature space. To address
this, a novel shape decomposition algorithm baseclovature theory is proposed to
remove legs and antennae from the insect shapmatitally prior to classification. This
shape decomposition approach increased overaflifitagion accuracy from 64% to

76% and 57% to 67% for area component and Foueseriptor methods respectively.
To further improve classification accuracy, a hgltapproach using a decision fusion
technique has also been implemented after initgstfication by each method. This
resulted in 100% classification accuracy for ABRI&9©% overall classification accuracy
for the 11 species (total 92 images) investigated.
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CHAPTER |

INTRODUCTION

1.1 Background and Motivation

The American Burying Beetle (ABBNjcrophorus americanggFigure 1.1) is classified as a
critically endangered species by the U.S. Fish\afildlife Service (USFWS). The historic range
of ABB was the Eastern US but it is currently ofdund in three small areas of the United States
centered in eastern Oklahoma, central Nebrask& kol Island in Rhode Island [2]. Ongoing
research projects at Oklahoma State University rdustate University and other organizations
are investigating ABB biology and ecology with #ien to identify methods to insure survival of
the species. These research studies, and exisBRYMS monitoring and management protocols,
entail extensive trapping of ABB and related insgucies. Current ABB trapping methods
require daily, early morning monitoring of trapscteeck whether any beetles were captured
overnight. This is labor intensive and limited teorgd data is provided because most beetle

activity occurs at night.



Figure 1.1: American Burying Beetle (ABB) [3].

A research project is underway to develop an aut@mus monitoring system that can be attached
to existing ABB traps. The trap monitor incorposagecellular phone which runs an Andrdid
application that contains primary trap functioneeTapplication detects when an insect enters the
trap, takes a dorsal image of the insect and €lessi as ABB or other species. If the insect is
classified as an ABB, a simple/multimedia messageice alert containing GPS coordinates,

time stamp, an image and other data will be senbweer the cell phone network to alert

collection personnel. This improved trap has paaéid dramatically reduce labor costs, improve
data richness, and reduce stress on captured ABrbgdiately alerting personnel of trapped

insects [4].
1.2 Objective and Approach

The specific objective of this research projec¢bigevelop robust image segmentation and
classification algorithms for the autonomous AB&ptrThe classification capability must include
ABB and other species of interest routinely caughhe traps. Due to the protected status of
ABB, the algorithm was developed and tested thegudead specimens from Oklahoma State

University’s Entomology Museum. The training datsbaonsisted of insect specimens



comprising 11 species with a total of 92 individyahost of which have shape similarity

discerned by human vision (Table 1.1). There werAdRB specimens in the training database.

Species ID | Number of Representative image
individuals
Nicrophorus americanus (ABB) | S1 | 10 @
Necrodes americana S2 |9
J

Necrodes surinamensis S3 | 10 b
Nicrophorus carolinus S4 | 10 p
Nicrophorus pustulatus S5 |6 i é :
Nicrophorus tomentosus S6 |6 E i _EE:
Nicrophorus marginatus S7 |10 ‘
Nicrophorus orbicollis S8 |6 ‘:
Oiceoptoma inaequale S9 |9 ‘
Creophilus maxillosus S10 | 8 p
Creophilus maculosus S11 | 8 ‘

Table 1.1: Species used in classification.



The input images for this study were color digitahges of the insect specimens positioned
dorsal side up on a mounting boahkdariations among them on size, pose, color andeshap
significant factors to be investigated by the alpon. Specifically, this investigation focused on
shape analysis of binary images. In order to ekfemtures precisely from a binary image, it is
imperative that the images be composed using siwrigria. Thus our initial effort was to apply
appropriate morphological operations and developxaraction and alignment algorithm for
individual insect images. After each insect imagyeamposed in a similar manner, its shape is
represented by feature vectors using region-basgd@ntour-based methods. Corresponding to
these two methods, area components and Fourierip@ss are applied to classify insects to
species using a template matching technique. leidasification accuracies using composed
images were relatively low: 45% for ABB and 61% @te Analysis of the initial classification
results led to the hypothesis that significant shapcertainty was introduced by variation in the
pose of legs and antennae among the differentrapasi. For example, the legs and antennae
were attached to the insect body shape in someidugdils while fully expanded in others. This
hypothesis was confirmed when the same shape sspiadi®n methods increased classification
accuracy by 70% for ABB and 75% overall respecyivadter legs and antennae were manually
removed from binary insect shape images. An unsigest method to identify and ultimately

remove legs and antennae was therefore desired.

Several shape decomposition methods have beeropshyiproposed based on convexity and
concavity rules [5-8], however the insect shap#issnctive because of its non-smooth shape
contour curve and irregular details. To addresschallenge, a new shape decomposition method
was proposed to remove insect shape uncertaingdlmsvisual curvature [1]. This method first
identifies a candidate cut set from points thathavarge visual curvature. After making
observations on reasonable cuts according to hmmsam, several intrinsic properties were

determined which reduced the size of the candicistset. Next the largest closed curve area is



removed which is comprised of the cut itself anghetial shape contour. The candidate cut set is
dynamically renewed after each cut and the algorithrepeated until enough reasonable cuts are
accomplished. Based on the auto-decomposed sharallalassification accuracies using area
components and Fourier descriptors were both segmifly improved to 76% for ABB and 67%

overall.

Analysis of misclassified cases from each appreoacealed that the two methods were
complementary to each other suggesting that aidadission technique might improve
classification accuracy. The minimum Euclideanatise between the feature vector of an
unknown insect shape and the mean feature vectbeafarious species is used to classify each
individual to species. It is straight forward tqppfuzzy set theory to classify unknown shapes
after normalization of the Euclidean distanceslitofahe other mean shapes. Hence, a decision
combination rule proposed by Fauvel et al. [9] waglemented to methodically combine the
decisions of the two classification methods. Byndahis, overall classification accuracy of 90%,

and ABB classification accuracy of 100% was ultietgBchieved for this sample set.

1.3 Main Contribution

An autonomous insect classification system presaatsy fundamental computer vision
challenges exaggerated by the articulated body flads, antennae, wings, abdomen, etc.) of
insects [10]. Legs and antennae in particular ¢hiog uncertainty when using insect shape
features for classification. To the best of ourwlemge, there is no existing specific method in
use or proposed for the treatment of insect legsaatennae in an autonomous insect

classification system.

Based on observations of shape distortion introdibbgeinsect legs and antennae, we proposed a
novel shape decomposition algorithm to preserverthie body shape for species classification.

The algorithm automatically identifies cuts to reradegs and antennae from the insect shape



thus enhancing the function of the autonomous trdassification algorithm. This algorithm is
not specific to ABB and is widely adaptable tosggdkcies in our training database. In addition,
the decomposed shape could be universally used aaging other shape representation

methods, or even color-related representation nastho the future.

This thesis is organized as follows: Chapter 2udises existing insect classification and
recognition work using pattern recognition, relevelassical shape representation methods using
both region-based and contour-based approachesleasiexisting shape decomposition
procedures based on convexity and concavity r@kapter 3 describes the image preprocessing
procedures including insect object segmentationadigdment as well as a region-based shape
representation method for classification. The eéftecclassification results using a dimension
reduction technology, principal component analyBiSA), is also discussed. In Chapter 4,
Fourier descriptor theory [11] is presented asrdaaa-based shape representation method.
Visual curvature, proposed by Liu et al. [1] iscathscussed as the foundation of the shape
decomposition algorithm. Most importantly, our noweuitive insect shape decompaosition
method is presented in detail followed by experitakbresults and analysis. Chapter 5 presents
the hybrid region-based and contour-based apptoasdd on fuzzy set theory using decision
fusion technology. Chapter 6 evaluates the ovpefiormance of this autonomous insect

classification system and summarizes the conclgsion



CHAPTER Il

RELATED WORK

A brief overview of previous related work follows. particular, a review of the literature is
presented on image-based automatic insect speagssfication. Following that, region-based
and contour-based shape representation approaabed bn analysis of shape features are
reviewed and discussed. Finally, as an importaq ward shape understanding, shape

segmentation and decomposition methods are dist(Ske

2.1 Machine Vision for Insect Classification

Autonomous computer vision and pattern recognitimthods have been widely investigated to
improve efficiency and accuracy of many environrakapplications involving imagery. This
includes classification and identification of mangect species in a variety of different

applications.

After preprocessing procedures are applied to tiginal captured image, there are numerous
feature selection algorithms for classificatiorchmose from. When using color images, the most
common approach is to analyze the color componéis.et al. [12] used the average color
intensity values for red, green, and blue color gonents as the feature to classify Whiteflies,
Aphids and Thrips found in greenhouses. Mayo dt.8l. extracted color features not only in
RGB color space, but also in HSB color space fassification of live moths. At the same time,
instead of analyzing the entire body, their metboxcentrated on the centroid grid of moths for

binary feature extraction. Another interesting roetlproposed by Zayas et al. [14] was to find
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specific beetle species in wheat samples usindch palor feature matching method in RGB and
HSL color spaces. In general, color componentsyaiginethods are not robust when images are
captured in different surroundings or conditiomsatidition, with many insect species exhibiting

color similarity, the method is not able to clagsliem to a high degree of accuracy.

Based on binary images, shape information prowaaeisnportant feature for object classification
and recognition. Numerous shape feature extractietmods have been thoroughly studied for
both region-based and contour-based shape repatiserdpproaches. Al-Sager et al. [15]
applied five recognition methods for Pecan Wealehtification based on template matching
technology, including normalized cross-correlatiBaurier descriptors, Zernike moments, string
matching and regional properties. When the recmgnihethods were applied in a specific order,
this method could achieve relatively high identtion accuracy. However this specific order for
classification methods and numerous parametertgaieanake application to other systems
difficult. Arbuckle et al. [16] proposed a recogoait system for bees based on the patterns found
on their wings. This method required human intéoacto do preprocessing work on the wings
before image analysis. Watson et al. [17] prop@ssgstem for insect classification of several
moth species. However, it was not an autonomousrsygue to the requirement of human
intervention to align the insects. In additionsthystem required a large training database which
made its application inefficient. Larios et al. [H&scribed an automatic computer vision
classification approach, but it was applicable dolgtonefly larvae. After the identification of
regions of interest, this method used the histogemtures of SIFT vectors [18]on those regions

for classification.

2.2 Shape Representation M ethods

Shape representation methods can generally befiddsato two categories: region-based and

contour-based approaches. Shape features aretedtfsmm the entire shape region in region-



based methods whereas shape features are extoatyeidom the outline of the shape in contour-
based methods. A good shape representation metlattisoe effective in finding perceptually
similar shapes in various complex circumstancesh si8 shape rotation, translation and scaling,

curve defining point shifts, noise affected shapestprted shapes and defective shapes [19].

2.2.1 Reqgion-based Shape Representation Methods

Hu [20] first proposed a theory of two-dimensionmament invariants of planar geometric
figures in 1961, and this concept was applied &psltlassification and retrieval by Ezer et al.
[21] and Park et al. [22]. This set of seven 2-Dnmeat invariants are insensitive to shape
rotation, translation and change of scale [23]nd&r moments, proposed by Khotanzad et al.
[24], are a mapping of an image shape onto a satldgonal basis functions over the unit
circle. The magnitudes of a set of orthogonal cexphoments represent the shape feature with
rotational invariance. Based on Zernike momentgtlal. [25] proposed the invariant Zernike
moments descriptor, which not only uses magnitaétemation of the orthogonal complex
moments, but also combines phase coefficientsrto fbe shape descriptor. This descriptor is
unaffected by shape rotation, translation and sgaBunke et al. [26] presented a string
matching method for 2-D shape recognition. Thishoetis pixel oriented and is based on
curvature. It requires fewer computer resourcepfeprocessing but more in the matching
algorithm. Kim et al. [27], introduced the ideausing a combination of sub-region features. The
whole shape is divided into several segments bypriviple axes then several parameters are
calculated to represent each region. The entirpesfeature is an arrangement of the calculated
features in all sub-regions. Another interestindghuod is proposed by Zhang et al. [28] who used
a contour-based method to compute a concentriglairsampling signature in a shape region

which could achieve rotation, translation and scplhvariance as well.

2.2.2 Contour-based Shape Representation Methods




The Fourier descriptor [11] is one of the most Widesed algorithms for shape representation
and classification in the contour-based shape septation category. The Fourier descriptor is
determined by applying the discrete Fourier tramsf(DFT) to the complex sequence associated
with the boundary curve. Numerous variations basethe Fourier descriptor of shape contours
have been proposed. These include an affine Falemariptor with affine transformation
invariance proposed by Arbter [29] using a comptethematical analysis, the modified Fourier
descriptor with insignificant properties separafwaposed by Granlund [30] for hand print
character recognition, fastest point distance liolgi corner information proposed by El-ghazal
et al. [31] and angular radius Fourier descriptonbining the directional angle of the boundary
line proposed by Kunttu et al. [32]. Besides Faudiescriptors, Yang et al. [33] proposed the
starting-point-independent wavelet descriptor f& 8hape recognition consisting of the
estimation of the misalignment between the stapioigts for the reference model and matching
objects using multiresolutional wavelet represénmtatBelongie et al. [34, 35] proposed the shape
context descriptor, which for each point captuhesdistribution of the remaining points relative
to it. Shape context solves for correspondencedmtvpoints on the two shapes. Corresponding
points on two similar shapes will have similar shapntexts, which make it robust for measuring
shape similarity once shapes are aligned. Free8&pfoposed the chain code concept to
describe an object in 1961. The shape descriptoseqjuence of small vectors of unit length
containing pre-defined possible direction inforroatiLee et al. [37] proposed a polygon curve
evolution algorithm for smoothing polygon curvesiaaducing the number of data points while
keeping the main topology of the shape. The cuwsvwepresented by a bend angle versus
normalized curvature length function derived frdma k and y coordinates of the boundary
points. Arica et al. [38] proposed an image retalalgorithm which finds similar objects in a
database based on a discrete circular Hidden Maviaxlel. This model is size and starting point
shift invariant as well as requiring less compuatadl complexity compared to other
methodologies.

10



2.3 Shape Decomposition

Shape decomposition is a fundamental problem indliveshapes in a variety of disciplines,
such as computer vision, data visualization andpeder graphics [5]. In shape decomposition
methods, the convexity rule is the most widely ustgria in object segmentation. By
identifying the convex parts at different stagestelcki et al. [6] proposed a contour evolution
method to make significant visual parts at highagss when they become convex object parts. A
hierarchical convexity rule is then used for shdpeomposition where visual parts are enclosed
by the maximal convex object at different stagethefcontour evolution. With the definition of
cut cost, Liu et al. [5] formalized the convex sha@composition problem as an integer linear
programming problem, and the approximate optimabd®osition solution is obtained by
minimizing the total cost under some concavity ¢@ists. Based on that work, Ren et al. [7]
proposed the near-convex decomposition algorithmreskhe degree of near-convexity specified
by the user is used to decompose 2-D and 3-D arpishapes into a minimum number of parts.
Using the non-overlapping cut constraints and hydsing perception rules, the shape
decomposition problem is formulated as a combimatioptimization problem. Ghosh et al. [8]
proposed Fast Approximate Convex Decomposition lwvkioployed two new strategies. The
first strategy is that each potential cut is evedday the relative reduction in concavity it
produces rather than absolute concavity. The sesimatkgy uses a dynamic programming
approach to select a set of candidate cuts satgsfyinon-crossing constraint. The two strategies
are used simultaneously to decompose the shapeeKam [39] proposed an algorithm which
performs constrained morphological decompositi@mursively. The opening morphological
operation is used for shape processing and themaptiecomposition is selected by weighted
convexity. In other work, Mi et al. [40] proposednadel for separating 2-D parts based on

differential geometry of smoothed local symmetdes relatability. The criterion used for cut
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selection is to make either the remaining shapghesegment removed to be a simpler shape.

The relatability is taken into account to determpaet boundaries.

2.4 Our Approach and Advantages

In this investigation, we propose an insect clasasion system which includes these advantages:
automatic application, few algorithm parameterc@as and robust properties for classification
of numerous species. Specifically, using pre-sedrpaters, an insect image is classified to
species by progressing through a sequence of ipr@geocessing, feature extraction, shape
decomposition, classification by multiple class#iand a final decision fusion step. In the image
preprocessing step, human intersection is not redui o describe the shape precisely, both
region-based and contour-based shape representaitiods are used for feature extraction.
Specifically, an area component method is apphettieé region-based category whereas Fourier
descriptors are utilized in the contour-based @atedased on marginal initial classification
results obtained from our training set, a novepshdecomposition algorithm is proposed to
automatically remove shape uncertainty introducebbs and antennae, which results in
increased classification accuracies. After clasaifon by each method independently, a hybrid
region-based and contour-based approach usingaedision technology is implemented in this

system to improve performance.

12



CHAPTER IlI

REGION-BASED SHAPE REPRESENTATION

The initial color images of captured insects argéneral not suitable for classification directly.
Several external factors influence the ability nalsize color images such as lighting, weather
conditions and the camera itself. In binary imagdsre we generally focus on shape analysis
without regard to color components, backgroundenaisd object pose can still have significant
effects on the shape representation. To maintaipesmformation accuracy in preparation for
classification, several image preprocessing pragsdsuch as morphological operations, object
segmentation and object alignment are first requidter image preprocessing, the binary shape
images are classified using a region-based appra&it chapter describes the image
preprocessing steps and presents the subsequectt ciesssification results obtained using region

properties.

3.1 Image Preprocessing

The ultimate objective of this research is the pesvised classification to species of images of
insects taken by a cell phone camera locatedriaypa The input images for this project were
digital camera images of dead insects positionegadiside up on a mounting bodFdgure 3.1).
Each JPEG input image contained several insectrspas on a non-noiseless, white
background. In addition, the insects were pose@@bus angles and directions which dictates
that the algorithm be able to deal with each inspetimen individually to place them in the

same presentation criteria. The output of the inpagprocessing step was an individual binary
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insect image aligned along its longitudinal axis.

Figure 3.1: Representative unprocessed color JRE@d of insect (ABB) specimens.

3.1.1 Object Segmentation

Binary images have several advantages over cotbgeay scale images for insect shape analysis
through image processing. Binary images generatjyire less storage space, allow for faster
processing speed and have straightforward algotithplementations which are desirable in this
application. The first step in segmentation isdowert the input image from a color JPEG format
to a binary image. The insect specimens mounteawhite surface in this study had sufficient
contrast between the object and the backgrountiow the binary image to preserve the insect
body shape precisely using a threshold which wesnaatically calculated by the program

(Figure 3.2)Each insect body shape closely resembles the eufithe corresponding color

image with some uncertainty due to noise cause@figctions, shadows and pixelization.
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Figure 3.2: Representative binary image of inspetisnens calculated from threshold operation.

Several morphological operations are required ¢pare the binary images that result from the
threshold operation for classification. The firptoation is to fill holes in the binary images wgin
the hole filling operation. For the object and bgrckind in the binary image, the operation sets
the binary image,,, to be a 0 everywhere except inside the imagedvpwehere it is set tb — f
[23].

_(1=f(y), if (x,y) is in the border of f
fm(x,y) = { 0, otherwise G-

The second operation is to step through each pixk binary image and label each pipels a
foreground pixel if at least five pixels of its Barest neighbors (Figure 3.4(b)) are foreground

pixels; otherwise it is labeled as a backgroun@Idiz3].
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Figure 3.3: Representative binary image of inspetisnens after morphological operations.

The morphological operations used to convert thi@idPEG color image to a binary image
(Figure 3.3) unavoidably change each insect’'s shapever this generally has a minor effect on
the final classification result. After the implentation of morphological operations to clean up

the images, the next step is to extract an imagaoh insect separately to be used as training and
validation images for classification operationseTinst step to extract the shape of each insect is
to label the connected components. A ppet, y) in the image, but not in the boundary, has two
horizontal and two vertical neighbors constitutihg set of 4 nearest neighbors (Figure 3.4(a)).
The set of 4 nearest neighbors plus the four dialgogighbors constitute the set of 8 nearest

neighbors (Figure 3.4(b)).
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(a) (b)

Figure 3.4: A pixel, represented by a red square,its (a) 4 nearest neighbors; or (b) 8 nearest

neighbors represented by black squares.

From the definitions of 4 and 8 nearest neighbars,sets of foreground pixelg,andq, are
defined as 4-connected or 8-connected when therd-isonnected path or 8-connected path
between them respectively. For an arbitrary foregdopixelp in the image, all foreground pixels

which connect to it constitute an individual conegiccomponeri3].

Thus in the morphologically processed binary imae insect body shape should only
correspond to one connected component either inandected or 8-connected way.
Furthermore, noise pixels in the background maystitute other connective components. A
length filter is used to eliminate these redund¢amiponents ensuring the segmentation results
only containseparate individual insect body shapes (Figurevgtigh can eventually be used for
classification. Binary images used in this clasatiion work were on the order around 500 by

1000 pixels with some variations.
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(a) (b)

Figure 3.5: Representative segmentation resultsflividual insect body shapes of four

American Burying Beetle specimens.

3.1.2 Object Alignment

The pose of each insect after segmentation wilersmme influence on ensuing shape analysis. In
the segmented binary image, each pixel is presdmtedtwo dimensional coordinatg;, y),

which distribute the foreground pixels along twe@sxalled the main axis and auxiliary axis.
Using a covariance matrix to analyze all objecef®n the insect body shape, it is expected that
the two dimensional distribution of the pixels am independent to each other. By using the
proper projection of the data, it is desirable awénthe two dimensional data with the least

relevance as well as most energy preservationdh éienension separately.
The covariance matrix of each insect body shapéeaepresented as a 2 by 2 matrix:

_ (611 c12> 52)

C21 (22

The eigenvectors of the covariance matrix can la¢scepresented as a 2 by 2 matrix with each

column containing an eigenvector:
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B (Vll V12> (33)
21 v22 '
The rotation angle is calculated by:
V11
6 =tan"1(—) (3.4)

V21

After rotating the original image (Figure 3.6(ay) the anglé, the main axis and auxiliary axis of
each insect shape are parallel to the new cooadmas (Figure 3.6(b)). After rotation however,
the insect head may be at the bottom and the abuatribe top of the image (Figure 3.6(b)). For
most insect species, the total number of objedlpii the abdomen is greater than in the head
section. To account for this, first the image mdizd into two equal segments along the vertical
axis (Figure 3.6(c)). After which the object pixalghin each segment are summed, if the top
half of the image has more object pixels than thtton half, the image is rotated 180 degrees

prior to further use in classification (Figure 31§(

=hni

(a) (b) (c) (d)
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Figure 3.6: Steps in rotating a representativecinseage (a) Original segmented image; (b)
figure after rotation using eigenvectors with haaottom; (c) image divided into top and

bottom halves; (d) final rotated image with heatbat

3.1.3 Algorithm Flow

In summary, the processing of insect images stdtitsa color image. This is converted to a

binary image followed by morphological operatioo<kean up the image prior to segmentation
into connected components. Finally, these indiidomponents are composed for subsequent
classification tasks by orienting them about thetiee axis of the insect with the head at the top

of the image (Figure 3.7).

Captured Insect
Specimen Color | Conversion > Binary Image
Image

3R]

Morphological Operations

Insects Shapes

Connective Components
Segmentation

|

Alignment - " E :3
Individual Insect - Rotation— Indiv};;:};;nmt
‘Shape .

Figure 3.7: Algorithm flow of insect image prepresimg.

3.2 Region-based Shape Representation

Shape representation methods can generally befigdsato two categories: region-based

methods and contour-based methods. In region-lssguk representation methods, as its name
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suggests, shape features are extracted from thie whape region [19]. Several classical region-
based methods have been documented in recent de¢aslet of second and third order 2-D
moment invariants are widely used as the regioestiptor for its insensitivity to translation,
scaling and rotation [23]. Zernike moments, whioh the magnitudes of a set of orthogonal
complex moments of an image, is the classical niefbioinvariant image recognition [24]. With
shape division methods, one or more basic regicempeters are described in each sub-region
area. These are then combined into an overall Steg®iptor vector representing the overall
region [27]. Based on string edit distance companatstring matching methods can be applied to
2-D shape recognition [26]. A novel grid string peaepresentation method is well presented for

content-based image retrieval by Lu et al.[41].

In this investigation, we started with 11 differ@mtect species with a total 92 images, which
were obtained from the Oklahoma State UniversitipEwlogy Museum collection and represent
insect species typically captured in ABB traps (€abl). Our first method for insect
classification, called region-based shape repratient is described as follows: First, each binary

image is divided into N equal area components albagertical axis (Figure 3.8(b)).

1L

(a) (b)
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Figure 3.8: Representative insect image (a) afegprpcessing image; (b) showiNg= 5 area

region-based classification representation.

The feature vectak (Eqgn. 3.5) is then calculated by finding #ie(Eqn. 3.6) for each d¥ area

components in the binary insect shape.

K = (K1, K>, ---:KN)T (3.5)

4S;

where K; = AS

(3.6)

Where#S; represents the number of object pixels initRearea andS represents the number of

object pixels in the total insect shape.

The feature vector K represents the area proparobthe antennae, head, thorax and abdominal
regions and provides a numerical representatidheofeneral insect shape. In the training
process, the feature vectors for all of the imamfesach species of insect are determined and then
the mean of the individual vectors is calculatedefaresent a specific species. Unidentified
images of insects are then classified to specidsting the minimum Euclidean distance
between the new image feature vector and the nesdiaré vector of all the species.

Classification accuracy, defined as the percentdgerrectly identified images, was determined

for each of the 11 species.

3.3 Experimental Resultsand Analysis of Region-based Shape Classification

Classification accuracy for each of the 11 speas#sg the intuitive region-based shape
representation method ranged from 0 to 100% fdwiddal species. As the number of area
components increased, classification accuracydoh epecies increased monotonically as did

overall classification accuracy (Table 3.1).
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Areas | S1 S2 S3 sS4 S5 S6 S7 S8 S9 S10 | S11 Overall

50 50% | 56% | 30% | 30% | 0% 83% | 30% | 50% | 67% | 50% | 88% | 48%

100 50% | 56% | 30% | 40% | 0% 83% | 30% | 50% | 67% | 50% | 88% | 49%

300 60% | 56% | 40% | 60% | 50% | 83% | 40% | 50% | 78% | 88% | 100% | 64%

Table 3.1: Classification accuracy of 11 insectime(N=92) using different numbers of area

components. S1 represents the American Burying 86&BB).

By increasing area components in each insect shagge, the feature vector captures more
details along the insect’'s body and higher accuimexpected. However, with high dimensional
features it is easy to get interference from nd&ecipal component analysis (PCA) is an
effective way to obtain dimension reduction whitegerving the most important relationships
within the data. When the region-based shape @lzetgon data was subjected to PCA analysis to
reduce the dimensionality by a factor of betweam@ 15, the classification accuracy of
individual species generally increased or stayedstime even with lower feature space
dimension. Only in the case of species 3, for 20cfpal area region classification, did the
classification accuracy decline from 30% to 20%ef@ll classification accuracy of the 20 and 50
principal area regions increased 11% and 13% ré&spBgc while 100 principal area results were

unchanged (Table3.2).

Areas |PCA S1 S2 S3 S4 S5 S6  |S7 S8 S9 S10 [S11  (Overall
dimen.
300 20 60% [56% [20% [50% (33% [83% 0% [50% [78% [75% |100% |59%
300 50 60% [56% [30% [60% (33% [83% 0% [50% [78% [88% [100% |62%
300 100 60% [56% [40% [60% [50% [83% {d0% [50% (78% [88% [100% |64%
Table 3.2: Classification accuracy of 11 insectime(N=92) for area components method using

PCA. S1 represents the American Burying Beetle (ABB

From the results above, it is obvious that using itituitive region-based shape representation
method does not result in sufficient classificatimeuracy of both ABB and overall for the
ultimate use of this work. Informal observationdlo# insect images suggest that the insect

bodies are relatively stable for feature extractldowever, the legs and antennae of the insects
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are highly variable in pose among the differentge® It was suspected that these factors would
influence the precision of the region-based feataiaing process and decrease classification

accuracy.

To verify this hypothesis, legs and antennae wexeually removed from all of the segmented
insect shapes (Figure 3.9) and the resulting nexg@s subjected to the region-based shape

classification methods, including the PCA dimengieduction.

Sikid

(a) (b) (c) (d)

Figure 3.9: Binary images of four representativeBAdpecimens after manually removing legs

and antennae.

Overall classification accuracy of the 11 speamesdased between 8 and 14% when using the
images without legs and antennae. The changessifitation accuracy for individual species

ranged from an increase of 50% to decrease of Tefdl€ 3.1 and Table 3.3).
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Areas | S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall

50 50% | 78% | 50% | 40% | 17% | 67% | 20% | 67% | 89% | 75% | 88% | 58%

100 60% | 78% | 50% | 40% | 17% | 67% | 40% | 67% | 89% | 100% | 88% | 63%

300 60% | 78% | 70% | 50% | 50% | 83% | 50% | 67% | 100% | 100% | 88% | 72%

Table 3.3: Classification accuracy of 11 insecti&gme(N=92) for area components method on

images with legs and antennae manually removed.

Subjecting the data from images of insects with uadly removed legs and antennae to PCA
analysis further increased overall classificatioousacy of principal 20 and 50 area region results

by 6% and 5% respectively (Table 3.3 and Table 3.4)

Areas [PCA [S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 |S11 |Overall
dimen.
300 20 60% [78% [50% [40% [|17% [83% [20% |67% [100% [100% [88% [64%
300 |50 60% [78% [70% [50% [|17% [83% [40% |67% [100% [100% [88% [68%
300 100 [60% [78% [70% [50% [50% [83% [50% [67% (100% [(100% 88% [72%
Table 3.4: Classification accuracy of 11 insectgse(N=92) for area components method using

PCA on images with legs and antennae manually rechov

From these results, the classification accuraciebdth methods have been dramatically
enhanced by analyzing images without legs or aagenihcan be concluded that shape
uncertainty introduced by leg and antenna featwiténfluence shape feature analysis as well as
decrease classification accuracy. For this reagtomaatic removal of legs and antennae from

insect shapes is a necessary procedure whichagssisd in Chapter 4.
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CHAPTER IV

CONTOUR-BASED SHAPE REPRESENTATION

In contrast to region-based shape representatitimoc® contour-based shape representation
methods use contour shape features for classditaturthermore, contour-based shape
representation methods are generally classifierldantinuous and discrete approaches. A
continuous approach tends to maintain boundargiityewithout dividing a shape, while a
discrete approach breaks the boundary of the shapeultiple segments [19]. For continuous
contour-based shape representation methods, tvetralpdescriptors, the Fourier descriptor [11]
and wavelet descriptor [42] have been proposeddoae noise sensitivity and accommodate
boundary variations. They have been widely usedtiape representation and retrieval [30-33,
43-45]. For discrete contour-based shape reprdgsantaethods, polygon curve decomposition
[37], hidden Markov model-based shape descrip@8sdnd shape contexts [35] were developed

for shape matching and recognition.

In this chapter, Fourier descriptors are usedrfsect shape representation and classification. In
previous classification efforts, the legs and angéenin insect images were found to have a
negative influence on shape analysis and limitadsification accuracy. To mitigate this shape
uncertainty, a shape decomposition method basedoal curvature [1] was proposed and
implemented to automatically remove legs and amterirom the insect images prior to
subjecting them to classification using contourdabshape representation. The results of

classification using both area component and Fodgscriptor methods are presented in detail
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for the 11 species of insects (N=92) that were usélde previous analysis.

4.1 Fourier Descriptor of a Closed Contour

The Fourier coefficients of a shape’s chain encamedour was first proposed as a spectral
descriptor by Kuhl and Giardina [11] in order eccome boundary variations and noise
sensitivity [19]. This is one of the most widelyedsshape descriptor methods and is discussed by
numerous papers [43, 45]. The Fourier descriptarksid of shape signature that uses a one-

dimensional function to describe the boundary @iha two-dimensional object [32].

4.1.1 Fourier Descriptor from DFT of Closed InsBhape

The shape boundary extracted from the preprocéssedt body shape is a closed curve that can
be represented by a set of coordindtgsy;),i = 1,2, ..., L whereL is the number of boundary
points. By representing the, y plane in complex notation, every boundary poimt loa

presented a& = x + jy. For theL boundary points, the boundary line could be dbsdrias a
complex sequenc&(n),n = 0,1, ...,L — 1. Any periodic signal of finite length can be exgsed

in terms of complex exponentials, thus the contfan insect body shape can be transformed by
applying the discrete Fourier transform (DFT) le tomplex sequence of the insect shape [32].
If the results of the DFT are labeledig®),n = 0,1, ..., L — 1, this Fourier descriptor preserves

all of the boundary information (Egn. 4.1).

—j2mni
( I yn=201,..,.L—-1 (4.1)

L-1
1
F(n) = Zz Z(n)exp
i=0

4.1.2 Fourier Descriptor Normalization

Fourier descriptors preserve all of the boundafgrmation, including shape position, direction
and scale. However, a change in any of these futitiraffect all of the Fourier descriptors. For

shape representation and retrieval, the shapeipiesshould only describe the shape itself and
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be unaffected by the other factors. For that reaSourier descriptors need to be normalized to

satisfy the objective of translational, rotatioaat scale invariance.

The centroid distance;, is defined as the distance of the boundary pdiota the centroid

(x¢, y.) of the shape (Eqgn. 4.2).

ni=n—x P+ - ylHY2i= 12,1 (4.2)

Where(x,, y.) are the average of thecoordinates angl coordinates of the boundary shape

respectively [46]. In the DFT, the boundary is nalimed toN which is the integer power of 2.

1 = —j2nni
fnzﬁiriexp( N )yn=0,1,.,N-1 (4.3)
i=0

The coefficients;,,,n = 0,1, ..., N — 1 are defined as the Fourier descriptors of the siigp),

denoted a¥D,,,n = 0,1, ..., N — 1 respectively.

The Fourier descriptors based on the centroidriistare translation invariant. To achieve
rotation invariance, only magnitude informatidtD,,| without phase information is preserved. In
addition, scale invariance is implemented by divigihe magnitudes of the DC components,
denoted a§FD,|. Finally, the feature vector used as the Foursicdptor describing the shape is
presented by equation 4.4:

T
_[IFDy| |FD,]  |FDy|
[FDol” 1FDol” ™" TFDo]

(4.4)

In the Fourier descriptors, the low-frequency cioedhts preserve the primary shape information
of the boundary whereas the higher-frequency aneffts represent finer shape structures and

noise. When this procedure is used as the objeptestiescription method, only a subset of low-
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frequency coefficients from the original Fouriesdaptors are kept to retain the main shape

information while getting rid of finer structureasdnoise.

4.1.3 Experimental Results and Analysis for Ingglassification

In the contour-based shape representation methot,iesect body shape (Figure 4.1a) was first
converted to the insect boundary (Figure 4.1b)s Dloundary was then subjected to DFT using

distance to the centroid and finally the DFT ca@dints were normalized.

Figure 4.1: (a) Representative binary insect badype and (b) insect boundary shape.
Reconstructed insect boundary shapes using thestoWe) 64 DFT coefficients; (d) 256 DFT

coefficients; (e) 1024 DFT coefficients.

To capture global features, the original Fouriesadiptors were truncated to thelowest
frequency coefficients to represent the featureoreaf each image. Even though a finer shape
could be achieved using more DFT coefficients, sagcth024 DFT coefficients in figure 4.1(e), a
high dimensional feature vector is very sensitovadise or small distortions. As a trade-off in
these experimentd] was set equal to 64, 128 and 256 coefficienterAftature extraction was
performed on all images, each insect species wascterized by taking the mean of all of the

feature vectors for that species. In the clasgifiogrocess, each image was then classified to
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species by finding the smallest Euclidean distd&teveen the unknown image feature vector and

the mean feature vectors of all 11 species.

Fourier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 | Overall
coefficients

64 30% | 67% | 30% | 50% | 50% | 67% | 20% | 33% | 89% | 100% | 63% | 54%
128 30% | 67% | 30% | 50% | 50% | 67% | 20% | 50% | 89% | 100% | 63% | 56%
256 30% | 67% | 30% | 50% | 67% | 67% | 20% | 50% | 89% | 100% | 63% | 57%

Table 4.1: Classification accuracy on preprocesseghe images of 11 species of insects (N=92)

using Fourier descriptor method for 64, 128 and R&6rier coefficients. S1 is ABB.

As the number of frequency coefficients increadespverall classification accuracy increased
only slightly from 54% to 57% (Table 4.1). ABB céafication accuracy is 30% for all feature
vector lengths. ABB and overall classification aemies using this method are not satisfactory
due to shape uncertainty introduced by the legsaatehnae of the insect subjects. To verify this
observation, legs and antennae were removed mgritath the binary shape images and the
classification algorithm using Fourier descriptaas repeated. Classification accuracies of all
individual species, except S4 and S10, increaseerad classification accuracy increased from
54-57% to 78% and was unaffected when the numbEowofier coefficients was varied between

64 and 256. Classification accuracies of S5, S&rE#PS10 reached 100% (Table 4.2).

Based on the results obtained (Table 4.1 and 258 DFT coefficients was selected for use in

ensuing experiments.

Fourier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 | Overall
coefficients

64 80% | 89% | 40% | 50% | 100% | 100% | 60% | 67% | 100% | 100% | 75% | 78%
128 80% | 89% | 40% | 50% | 100% | 100% | 60% | 67% | 100% | 100% | 75% | 78%
256 80% | 89% | 40% | 50% | 100% | 100% | 60% | 67% | 100% | 100% | 75% | 78%

Table 4.2: Classification accuracy on manually deposed shape images of 11 species of insects

(N=92) using Fourier descriptor method for 64, 2P8 256 Fourier coefficients. S1 is ABB.
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Compared to the area component method, the Falesariptor method is more sensitive to
shape uncertainty and resulted in improved clasditin accuracy. Classification accuracy of
both methods was improved by removing variabilitgttarose from uncertainly in the pose of
legs and antennae. For that reason we presentvatgig-based approach to automatically

remove legs and antennae from insect images inm twdmprove classification accuracy.

4.2 Visual Curvature[1]

In order to remove legs and antennas precisely &rimage of an insect, the most important

task is to identify the locations where legs anadfmiennae are connected to the body (Figure 4.2).

Figure 4.2: Insect shape boundary with yellow adidots indicating antenna-body and leg-body

connection points respectively.

The task of locating the connections described elvawn be classified as a corner detection
problem. Corners are critical features used inrileigg objects and are essential for pattern
recognition [47]. Various corner detection methbédsed on curvature have been proposed

previously [47-51]. Due to distortion from noisedararying levels of detail in images, the
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desired curvature should reflect contour informati different scales, be unaffected by noise,
invariant under rotation and translation, as welba suitable for smooth curves and polygonal

arcs [1].

In this investigation visual curvature, proposed._hyet al [1], is implemented to locate the
candidate connection points as the starting poin¢tnove unnecessary shape distractors. Visual
curvature is based on statistics of the extremetpaif the height function computed over all
directions which combine regular curve featurethageometry and turn angle information of

polygonal curves together. The complete visual atume algorithm is organized as follows:

e Step 1: After getting the insect shape boundargryekioundary point is assigned to a

coordinate in the original coordinate system (Fégdi3).

a axis

-point(a,b)

b axis
Figure 4.3: Boundary point coordinate in the oradicoordinate system.

e Step 2: The contour is parameterized by the disténaen each point to the b-axis,

denoted by (s). At first, the parameter for each point is itsdminate. By rotating the

coordinate system by angieanticlockwiseq; = n%,i =0,..,N—1, weobtain a

32



series of height functiorfg,,, where each height functidfy,; presents all boundary point

parameters in the; direction.

[
x(s) =acosa; + bsina;,a; =TL’N,i =0,1,..,N—-1 (4.5)

e Step 3: For a point on the cur@esupposes (v) is its neighborhood of sizkS on the

curveC, the visual curvature of poimtis defined as:

Yilo #[He, (S))]
NAS

Kyas(v) =m (4.6)

Where#[H,, (S(v))] represents the local extreme points of the héigidtionH,, in the
neighborhood (v). As mathematically defined above, each boundamytisovisual curvature is
estimated by its small neighborha®@). For every height function, the extreme points are
identified and those that are in this neighborhacounted. After summing up all the numbers
in all directions, each point’s visual curvature@culated using equation 4.6. In the current

implementation, settingS = 1, yields the most robust curvature estimation fgital contours.

e Step 4: From the definition of visual curvature abaall extreme points are counted
without considering whether they are importantat: in fact, at certain scales small
concave or convex segments should be ignored dgaelatively important extreme
points should be calculated. Using this algorittime, multi-scale visual curvature of the
pointv is defined to be:

Yilo #[Hg,(S))]
NAS

Kyas(v) = m (4.7)

In this expressiorg is a scale factor ant[Hg, (S(v))] represents the number of the extreme
points of the height functioH,, in the neighborhoo8i(v) whose scale measure is not smaller

thane.
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e Step 5: The scale measure of an extreme paimthe height functiof,, is denoted

by e, (v):

g, (V) = Tah( v) (4.8)

The heightH, denoted by, is the absolute difference between the maximummaindnum
values in the height functiath,. Furthermore, the scale measurement of a locedmet point
in the height functiort{,, denoted by, (v), is presented in Figure 4.4 and equations 4.Qgiro

4.11.

Figure 4.4: The scale measure of an extreme pamthe height functios,, [1].

For a local extreme poimtin the height functioil,,, its influence regio®, (v) is defined by the
maximal neighborhood such that the height of epaint in this neighborhood is not greater
(lower) than the height of the point For example, the influence region for local maximpoint
v in Figure 4.4 is the red curve from potto P,. If the pointv is not an absolute extreme

value,R,(v) is divided into two segments loy the left segmenk (v) and the right segment

RY(V).
1o (v) = min[ry (v), 75 (v)] (4.9)
1 () = max{|Hy(p) — Ho(v)||p € RE (v)} (4.10)
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1w () = max{|Ha(p) — Ho(W)||p € Rz (v)} (4.11)

As denoted above;, (v) andr,; (v) are the maximal height differences between fpwiand the
points belonging t&®} (v) andR (), respectively. Equation 4.8 computes the sfraleach local
extreme point in the height function. The impor&wo€ the local extrema depends not only on the

height of this point, but also on the scale of¢batour.

For a point on the contour in each height functibit,is the local extreme point, it is counted
when the scale measure is larger than the threshidhe visual curvature for each boundary

point is calculated by equation 4.7 using the sacadee.

e Step 6: Because of digitalization, some high cumeapoints may disappear since the
curvature is spread to several adjacent pointbussrated in Figure 4.5. The curvature at
point O is not represented by a pixel at that locationrbptesented by the sum of the

curvature of adjacent points.

| AN

0000 00
P

Figure 4.5: Example of a high curvature point dssgring due to digitalization [1].
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In the current implementation, after calculating tisual curvature for all boundary points, they
are ranked from high to low monotonically. The pairwith highest visual curvature is selected
and the visual curvatures of adjacent points adeadb it within its neighborhood(v) of

radiusT (Egn. 4.12).

DKy as(W) = Z Ky as (W) (4.12)
ueu)

At the same time, the digital visual curvature lbbther points in the neighborhood are set to
zero. Except for these recalculated points, thiepeated for the second largest visual curvature
point, then the third, and so on. The algorithmsanwten there is no change in the visual

curvature presentation of all boundary points.

In the algorithm described above, several parameied to be tuned to yield the best results.

For these experiment§=128,AS=1 andT'=10 and the visual curvature can be rewritten as:

N-1

K@) = ) #[HE (S@))] (4.13)
i=0

Two parameters in Equation 4.13 will affect theuttssof whether a boundary point is selected as
a candidate connection point. The first parameténe scale threshold, denotedasnd the

second is the threshold of visual curvatkirel o find the best choice of paramekerseveral
experiments based on differdfitvalues were conducted. According to human pergepti

K = 10 preserved all the important candidate points apdoduced a relatively small candidate
point set. Also, the average number of candidat@ection points decreased from 57 to 48 on

the 92 images used in this study whemas changed from 0.010 to 0.015.
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Figure 4.6: Representative images of 4 insectestbyp visual curvature algorithm (K=10) with
scale threshold=0.010 left image, ane=0.015 right image. Red dots indicate the boundary

points where visual curvature is larger than viswa/ature and scale threshold.

Compared to the ideal leg and antennae conneatimsp(Figure 4.2), the visual curvature
algorithm yields more candidate connection poirtticty makes selecting cutting points more
complicated. A smaller scale threshelcesults in the detection of more candidate pantthe
contour. This is more likely to preserve the reatt points on the contour, which is helpful for
further processing. On the other hand, if numeredsndant candidate points are detected in
addition to the real joint points, it will make tbatting algorithm more complicated and time-
consuming. Thus a proper scale threstzaklsignificant not only for visual curvature blgs@

shape decomposition results.
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In subsequent discussions on this chapter, basho$gtarameterg=0.010 and=10 as well as
€=0.015 and{=10, are used for visual curvature implementatioth @ndidate connection point

selection for future shape decomposition.

4.3 Visual Curvature Based Shape Decomposition

After the visual curvature algorithm identifies didate connection points on each insect image
(Figure 4.6) these can be used to cut legs andaeusing shape decomposition techniques to

reduce uncertainty in classification.

Shape decomposition methods using convexity andasdty rules have been thoroughly
documented [5-8] however these techniques havamtite best of our knowledge, been applied
specifically to insect classification tasks. Basacbbservable insect characteristics, an intuitive
insect shape decomposition algorithm was propdaabughout the following presentation
American Burying Beetle image #2 (Figure 4.7a) Wwélused to illustrate the algorithm
progression. The visual curvature parametees=6f015 and=10 are used in the algorithm to
identify candidate connection points (Figure 4frajn the boundary shape (Figure 4.7b). Final
cuts to separate legs and antennae from the beghesire made among the pairs of points

contained in the set of candidate connection points
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(a) (b) (c)

Figure 4.7: (a) Original image; (b) boundary shgpgrandidate connection points identified by

visual curvature algorithm in ABB specimen 2.
The Visual Curvature Based Shape Decompositiorrighgo consists of the following steps:

e Step 1: First the image is divided into two segraelgfined by the center line of the
image along the horizontal direction (Figure 4.&n)e to morphology of the insects of
interest, this will place the pairs of candidatemection points, along which the final cut
to separate the leg or antenna is made, in the saage segment. Each segment will be
treated separately and cutting lines will be deteeshamong candidate connection
points independently in each side. This algoritlbitearily treats the left segment first

followed by the right segment.
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(a) (b)

Figure 4.8: (a) Visual curvature result on bounddrgpe; (b) left and right segment on shape.

Step 2: Each side of the image has several caredidainection points (Figure 4.8b).
Assume that there are points in the left side andpoints in the right side.

Theoretically, each pair of candidate connectiomgsacould make one possible cut. That
is, there aren(m — 1)/2 possible candidate cuts in the left side atwl— 1)/2 possible

candidate cuts in the right side.
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(a) (b)

Figure 4.9: (a) Left and right segment of shapeallpossible candidate cuts in each side from

pairs of candidate connection points.

The objective of this insect shape decompositigorithm is to find the cuts which precisely
separate legs and antenna among the candidate @atsh side that mimic what human vision

can discern (Figure 4.10).
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Figure 4.10: Ideal cutting lines for legs and ansenidentified by human vision. Yellow lines

represent cutting lines and red lines represemipixiong contour of one leg to be cut.

From careful observation of the ideal cutting litlesre is a unique relationship between the two
candidate connection points. If the shape conmtepresented by a two dimensional coordinate
sequence in a clockwise direction, we know the remolb contour pixels between each pair of
candidate connection points. This is called thelpiistance. Specifically for the upper left leg in
Figure 4.10, the contour pixels are red in coloraddition, it is straight forward to calculate the
Euclidean distance between these two candidateection points as well. According to
morphological characteristics of insect leg anegana shapes, the distance rataetermined by
Equation 4.14 tends to be large when the two cdimgepoints form a reasonable cut on the

insect shape.

_5 414
r_ES (' )
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WhereP, denotes the pixel distance afiddenotes the Euclidean distance of two candidate
connection points. Candidate cuts are denotet sherel. andR represent the left side and
right side respectively. The C(Lyr(m — 1)/2 possible candidate cuts on the left and C(R)=

n(n — 1)/2 possible candidate cuts on the right, are soryedidiance ratio r in descending

order, respectively.
C(L) = {Cutl Cutm(m_l)/z}, ™ = 1) =2 rm(m—l)/z (415)
C(R) ={cuty ..cutym-1y/2}, 11 D> 12 = = Tym-1)/2 (4.16)

Because the distance ratio for reasonable cutdgrenbe large, the candidate cut $Ks) and

C(R) may be truncated by setting a threshald
C,(L) = {cuty ...cutp}, 2T, 221, 2Y (4.17)
C,(R) ={cuty ..cuty}, n=nrn=-2r=y (4.18)

A distance ratio threshold, and resulting truncaimadidate cut sets, will be used to find the final

reasonable cuts.

e Step 3: In addition to the distance ratio mentioalkdve, there are additional intrinsic

characteristics for reasonable cuts in shape deasitign.
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Figure 4.11: The example cutting line accordinguman vision using ratio of vertical distance

in cut to total shape length.

The first characteristic of reasonable cuts is they should be totally contained within the insect
body. If the connection line between two candidatenection points is totally or partially
outside the insect body shape, it should not l@msanable and correct cut for separation. To
check for thislJ is set as the union of all pixels in the insealyoshape and a binary value is

assigned for each candidatet;:

_ (0 cut;elU
acuti - {1 Cuti ¢u (419)

The candidate cut set satisfying this conditioexpressed by:
Ca(L) = {cuty ...cutp}, Aeut, =+ = Aeyt,, =0 (4.20)

C,(R) = {cut1 ...cutq}, Aeut, =+ = Aeut, = 0 (4.21)
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Using this limitation, numerous candidate cuts lsamemoved which results in a new smaller

candidate cut set (Figure 4.12b).

(a) (b) (c)

Figure 4.12: Representative insect body shape styof&) all possible candidate cuts in each
side, (b) possible candidate cuts contained bty shape in each side after removing cuts that
contain pixels outside the body shape and (c) plessandidate cuts contained in the body shape

after applying length ratio threshold.

The second check for reasonable cuts concentratdedifference between the vertical
component of a candidate cut compared to the $bigbe length. In Figure 4.11 for each cut
labeled by a yellow line, the vertical coordinatifedence for two candidate connection points
labeled as green line is not very large. In otherds, the ratio between this difference and image

vertical length, which is called the length rasbpuld be relatively small. For each cut,

R=— (4.22)
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WhereD denote the coordinate vertical difference betweenpoints for the cut an®, denote
the image vertical length. Because the length fati@ reasonable cut tends to be small, the

candidate cut set(L) andC(R) can be reduced by setting the thresldold
Cs(L) ={cuty ..cutp}, Ry <86&R;<§..&R,<§ (4.23)
Cs(R) ={cuty ..cut;}, Ry <8&R;<&..&R;<§ (4.24)

The third step is to combine the step that chefdkeicut is within the body with the length ratio
restriction to reduce the candidate cut list furtiidne result of this step when using a lengttorati
limitation withé = 1/10 is shown in Figure 4.12c. Additional candidatescarte removed by
combining the two procedures. These cuts represemtall subset (Eqn. 4.25 and 4.26) from the

original candidate cuts.
Csa(L) ={cuty ..cutp}, Ry <8&R;<8..&Rp <8,acy, == Geyr, =0 (4.25)
Csq(R) = {cutl cutq}, Ri<8&R; <§..&R;<6,acy, = = Acut, = 0 (4.26)

e Step 4: After the candidate cut extraction, the setof reasonable cuts compares well to

the cuts identified by human vision (Figure 4.13).
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Figure 4.13: Representative image showing (a) ptessandidate cuts contained in the body

shape and subject to length ratio threshold; @®)dbkal cutting lines according to human vision.

As mentioned is step 2 above, the distance ratietermined by pixel distance and Euclidean
distance trends to be large when the two connegpiams are a reasonable cut on the insect
shape. Due to the uncertain distribution of candidannection points found by the visual
curvature algorithm, it is not possible to concltldat the connection with highest distance ratio

is the reasonable cut. However, as illustratedguare 4.13b, it can be concluded that the distance
ratio for a reasonable cut should be relativellhtdgiong the candidate cut set under the
limitation of step 3. In addition, when each poksitandidate cut connects to the shape contour,
it should form a closed curve. The area of thisetbcurve can be calculated and used to identify
the whole leg or antennae to be pruned. Usingdkes, the shape decomposition algorithm is

presented below.

In the left segment and right segment respectivedyuse the candidate cut sets which are found

by applying (4.25) and (4.26) separately to thedaate cut set. The candidate cut set is
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truncated further by using the distance ratio khiby parameter (Eqn. 4.27 and 4.28). After

truncation, the reduced cut set is sorted in delngrorder.

Cysa(l) ={euty cuty}), 1221 2¥,Ry, Ry <8, Qcup, =+ = Aeyr, = 0 (4:27)
Cp5a(R) ={cuty ..cuty}, 1= =1,2y,Ry,..,Ry<8,acy, == Geut, = 0 (4.28)

As mentioned above, the distance ratio for a resslercut should be relatively high. So we

introduce another parameter, selection ratito truncate the candidate cut set to theltgpcuts.

Csayu(L) = {cutl cut[R]},
T

Rll ...,R[E] < 6, acutl e = acutp = 0,7‘1 > 2 r[E] > Y (4.29)
m [ m

Cs,ayu(R) = {cutl cut[g]},
n

Rl’ ...,R[g] < 6, acutl == Aoyt
m [

=07 =2 =y (4.30)
il il

For the candidate cut set determined by equatid®ahd 4.30, the closed curve area is

calculated for each possible cut line. The two {soivthose connection creates the biggest area are

used to make the first cut on the left side antherright side (Figure 4.14).
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Figure 4.14: Representative image showing candwataection point set result from (a) visual

curvature result on boundary shape; (b) shape faftecut on the left side.

e Step 5: After the first cut is made, the set ofdidate connection points has been
changed due to the removal of an area segmentcandidate points where the cut was
made have been removed as well as the candidates pm the contour between these
two points. Because the candidate point set has ing#ated, the algorithm can be
repeated starting with step 3 to construct newiplessandidate cuts. The algorithm on
the left side will end when the number of cuts hesc4 or there is no possible cut to
satisfy all limitations set by thresholdsé, @ andu. The algorithm will then proceed to

the right side and prune up to 4 more areas.

The insect shape decompaosition example shown ir&i4.15 uses ABB #2 image. The

thresholds used in the algorithm gre= 2.5,6 = 1/10, @ = 0 andu = 2. Additional results of
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shape decomposition using this procedure are siowigure 4.16 through Figure 4.20 using the

same threshold values.

(a) (b) (c) (d)

Figure 4.15: Results of image pruning for #2 iméaeOriginal boundary shape; (b) left side
shape decompoaosition; (c) right side shape decoripogd) final insect shape decomposition

result.
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(a) (b)

Figure 4.16: Results of image pruning for #4 imégeOriginal boundary shape; (b) insect shape

decomposition result.

(a) (b)

Figure 4.17: Results of image pruning for #24 imggeOriginal boundary shape; (b) insect

shape decomposition result.
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(a) (b)

Figure 4.18: Results of image pruning for #26 imggeOriginal boundary shape; (b) insect

shape decomposition result.

(a) (b)

Figure 4.19: Results of image pruning for #36 imggeOriginal boundary shape; (b) insect

shape decomposition result.
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(a)

Figure 4.20: Results of image pruning for #41 imggeOriginal boundary shape; (b) insect

shape decomposition result.

4.4 Experimental Analysis

When using images where the legs and antennaeamaatly pruned insect overall classification
accuracy for 11 species of insects reached 78% tisenFourier descriptor method and 72%
using the area component method. After applying/ibigal curvature and shape decomposition
algorithm to remove uncertainty introduced by legd antennae, the overall classification
accuracies increased to 67% using the Fourier ig¢sicmethod and 76% using the area

component method when using the best combinatidireshold parameters (Table 4.3).
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Visual curvature Shape Decomposition Classification Accuracy
parameters parameters Fourier descriptor Area component
€ K y 8 U ABB Overall | ABB Overall

0.015 10 4 1/10 1 0.80 0.62 0.60 0.72
0.010 10 4 1/10 1 0.80 0.55 0.60 0.72
0.015 10 3 1/10 1 0.80 0.64 0.60 0.74
0.010 10 3 1/10 1 0.80 0.59 0.60 0.71
0.015 10 2.5 1/10 2 0.90 0.67 0.60 0.76
0.010 10 2.5 1/10 2 0.80 0.57 0.60 0.73
0.015 10 2.5 1/10 1.5 0.90 0.63 0.60 0.75
0.010 10 2.5 1/10 1.5 0.50 0.57 0.40 0.70
0.015 10 2 1/10 2 0.90 0.68 0.60 0.74
0.010 10 2 1/10 2 0.60 0.62 0.60 0.73
0.015 10 2 1/10 1.5 0.90 0.63 0.60 0.73
0.010 10 2 1/10 1.5 0.70 0.54 0.60 0.73

Table 4.3: Effect of visual curvature and shapeodgmsition parameters on classification
accuracy on automatically decomposed shapes usimgelF descriptors and Area components

methods for 11 species of insects (N=92).

Thresholds set by = 0.015, K = 10 in visual curvature computation and thresholdsget

y =25, =1/10,a = 0,4 = 2 in shape decomposition algorithm yielded the maolstist
classification results. Classification accuracyA8B was 90% when using Fourier descriptors on
the images subject to automatic decomposition coeap 80% on the manually decomposed
images. Classification accuracy of ABB using auttendecompaosition and area components was

60% which was the same as realized from manualndgasition (Table 4.4).

Fourier Descriptor Area Component
Classification image source ABB Overall ABB Overall
Original shape 30% 57% 60% 64%
Manual decomposition 80% 78% 60% 72%
Automatic decomposition 90% 67% 60% 76%

Table 4.4: Insect classification accuracy comparisetween original shapes and manually and
automatically decomposed images using Fourier g#eciand area component methods for

ABB and 11 species (N=92).
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This insect shape decomposition algorithm basedsaral curvature computation is shown to be
useful. The classification accuracies have beemaltiaally improved compared with those of the
original shapes. The data show that the clasdificatccuracy of the automatically pruned shapes
approaches that of manually pruned shapes. ABBifilzetion accuracy was 90% using the

Fourier descriptor method.

4.5 Parameter Selection

Based on the results of several trials using difieparameters, this algorithm was shown to be
sensitive to parameter selection. The visual cureaalgorithm selects the set of candidate
attachment points which have the largest visuatature. A good visual curvature result should
include all real attachment points with minimunstapositives. In the shape decomposition
algorithm, due to the uncertainty of the candidate three parameters were used to fine-tune the
set of candidate points. Because a cut is madmkind two candidate attachment points, the
most important thing for a correct cut is that tlve candidate attachment points be within the

same leg or antenna portion of the entire shape.

This intuitive insect shape decomposition algorittemoves insect legs and antennas
automatically when using appropriate parameters.classification accuracy achieves the level
of manual decomposed shapes which means that tbengesed shape is sufficient for
classification work. However, both the Fourier dggor and area component methods do not
reach high accuracies, only 67% and 76%, respégtivestead of using two methods separately,
one possible solution is to combine them togetbeéhay can complement each other for insect

classification. Thus, a hybrid region-based andaarbased approach is proposed in Chapter 5.
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CHAPTER V

HYBIRD REGION-BASED AND CONTOUR-BASED APPROACH

In previous chapters, region-based and contouredbasthods applied separately achieved
classification accuracies 64% and 57% respectivayavoid uncertainty introduced by the
insect’s legs and antennae, a shape decomposdigiorithm was proposed to remove those shape
distractors automatically. This encouragingly im@d classification accuracy to 76 and 67% on
region-based and contour-based methods respectindlye cleaned shapes. However, both area
components and Fourier descriptor methods coulgieltt satisfactory classification results

when using each of them independently. After mdogeovations of misclassification cases, it
was found that the two methods could be complemgindaeach other, meaning that combining
them together could be a good approach to furtieease the classification accuracy. With this

idea, a hybrid region-based and contour-based apprs developed in this chapter.

Many mathematical theories have been applied foistba fusion-based classification. Fuzzy set
theory [9], Dempster-Shafer theory [52], Bayesdudb3], belief approach [54], joint likelihood
and the weighted majority [55], possibility anddamce theory [56] and multiple kernel learning
method [57] have thoroughly studied the resultsamhbining different classifiers. In this chapter,
fuzzy set theory is used to combine two featurab®idecomposed shape and the fusion rule
proposed by Fauvel [9] is implemented for the dfasdion of insect images. Detailed

classification results from this approach are pressgtand discussed.

5.1 Fuzzy Set Theory for Decision Fusion
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In traditional binary set theory, a membership gadfi1 is assigned to elements which are in the
set, and 0 is assigned to elements which are eutisedset. Fuzzy set theory, first introduced by
Zadeh [58], defines the concept of partial membprsind thus the membership degree can range
from O to 1. With the ability to handle ambiguitythin data, fuzzy set theory is widely used for
additional processing of outputs from multiple sléiers [9]. Specifically, we implement the

decision fusion algorithm based on fuzzy set th@othis investigation.

5.1.1 Definitions [9]

A fuzzy setF of a reference séf is a set of ordered pairs:

F = {(x, yF(x))|x € U} (5.1)
And pg: U — [0,1] is the membership function éfin U.

A fuzzy set is a normal set if and only if:

max up(x) =1 (5.2)
The support of a fuzzy sétis:

Supp(F) = {x € Ulup(x) > 0} (5.3)

5.1.2 Measure of Fuzziness [59]

Pal et al. [59] proposed a measure of fuzzinegaultiplicative class.

H(up) = K ) gup(x), KeR* (5.4)
i=1

Whereg (ur) is defined as:

g(@®) = g(®) — o450
{ g = h(t)ho(lt—1 t) (5.5)
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And h is the concave increasing function.
h:[0,1] » R%,vx € [0,1] h'(x) > 0and h"'(x) < 0 (5.6)

Different choices of functiog will lead to various measure definitions. In thigestigation, let
h:[0,1] » R* be h(t) = t% 0 < a < 1. And the function¢alled a — Quadratic entropy, is a

measure of fuzziness.

1 n
Haqe () = =5z )t ()* (1 = p ()" (5.7)
i=1

5.2 Decision Fusion for I nsect Classification

In this investigation, after feature extractioratifinsect images using region-based and contour-
based methods, for an individual imaehe Euclidean distance between its feature veotdr

the mean feature vector of allspecies is calculated according to equation 5.8:
d(P) ={d’(P),j =1,2,..,n} (5.8)

To be considered a fuzzy set, the value of eachesiemust range from O to 1, so normalization

of the distance vector is required using equati®n 5

D/(P)=1- , where p = max[d(P)] and ¢ = min[d(P)] (5.9

d/(P)—p
D(P) ={D/(P),j =1,2,..,n} (5.10)
For a given imagé®, the output of classifiaris defined as the fuzzy set given by:

m;(P) = {D!(P),j = 1,2,...,n} (5.11)

WhereDij(P) € [0,1] is the membership degree of imayeo clasg using classifief. By

definition, the larger th@ijvalue is, the more likely it is that this imagedmads to clasg. With
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different classifiersm fuzzy sets are computed for each image whichheme input to the fusion

process.

= {m,(P), m,(P), ..., (P)} (5.12)

As discussed in Chapters 3 and 4, 11 differenting@ecies comprising a total of 92 images
correspond to 11 classes, and two different comepresentation methods correspond to 2 fuzzy

sets.

The hybrid region-based and contour-based appredohelassification of each image are

organized as follows [9]:

e Step 1: For each image n = {m,(P), m,(P)} fuzzy sets are constructed according to
equations 5.8 to 5.12.

e Step 2: For each fuzzy set, the fuzziness dedrisecomputed. Specifically, based on the
rewriting of equation 5.7, the — Quadratic entropy [59] calculated by equations 5.13

and 5.14 is implemented which provides a measutkeofuzziness in each classifier.

o/ (1-D]P))"

Jj _
Si (P) - 2-2a

i€ [1,2],) € [1,11] (5.13)

H,(P) = %2 si(p),  ie[L2])e L1l (5.14)
=

The parameter differentiates the degree of fuzziness for diffén@membership degree

values. When the parameter is close to 0, fuzzysoreas not sensitive to changes in

DL.j(P) and all the fuzzy sets have approximately the s@@geee of fuzziness [9].

e Step 3: Intuitively, the classifier is most reliab/hen one class has a relatively high
membership value and all other classes have mehipearalues closer to 0. It follows

that if all of the classes have membership valbasdre approximately the same it
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indicates significant ambiguity and the classifseconsidered unreliable. In other words,
uncertain results are obtained using the classiffech produces a high degree of

fuzziness. To reduce classifier uncertainty, eaelayf set is weighted by:

Wy (P) = Yk=1k=i Hi (P) Zwi —1 (5.15)

Step 4: Next, the combination operator is applgetintageP to make the fusion decision.
After applying each classifier’'s fuzzy set weighiits corresponding distance vector,
given by equation 5.15, a new distance vector msttacted combining region-based and

contour-based methods:

u(P) = max{w;di(P),w;d?(P), ...,w;di1(P),w,di(P),w,d3(P), ...,w,di*(P)} (5.16)

Whered{(P) is the Euclidean distance between imBgefeature vector to the class
representative feature vector using classifigP) represents the largest membership

degree after the combination rule is applied far thassifiers and 11 classes.

Step 5: Finally, the class is selected correspanttirthe highest membership value.

5.3 Experimental Resultsand Analysis

As described in step 2 above, to evaluate reltgbtlhequadratic entropy is calculated first to

measure fuzziness of the two classifiers. Aftet,tha shown in step 3, the weight of each

classifier is calculated by equation 5.15 to redtlassifier uncertainty. The significance of the

weighting is to emphasize the classifier having fegziness and somehow neglect the classifier

with more fuzziness. In other words, a high weighdiven to the reliable classifier and a low

weight to the unreliable classifier so that thafioombined classifier takes advantage of them

both. The sum of the weights of two classifiersgsial to 1.
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For example, for a certain image which belongddesc2, the class representation using two

classifiers is presented as figure 5.1.

i I - class 2 image on arsa component classifier I - class 2 image on Fourier descriptor classifier
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Figure 5.1: Class membership degrees for an exaimplge in class 2 (a) using area component

classifier; (b) using Fourier descriptor classifier

Both classifiers could classify this image intossli2 with their highest membership degree.
However, intuitively, we could conclude that theZiness of the area component classifier is less
than that of the Fourier descriptor classifierother words, for this image classification,

classifier 1 is more reliable than classifier 2agslifier 2 has more uncertainty even though it
could make the right classification. Under thisdition, more weight is placed on results of

classifier 1 and less weight on classifier 2.

In thisa — Quadratic entropy fuzziness measurement, for each image, througatieqs 5.13 to
5.15, the weight is affected by its membership degiin two classifiers and the parameter
a (0 < a < 1) value as well. Specifically, for the example imagelass 2, the weight

distribution for two classifiers is shown in figuse2 as ther parameter is changing.
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Figure 5.2: The weights for two classifiers foriarage in class 2 for different valuesaf

As discussed above, for this image, it is prefetoeeimphasize the area component classifier as
well as reduce the influence of the Fourier desariplassification. From figure 5.2, the goal is
achieved when the parameteapproaches 0. When applied to all images in #iritrg data set,
the optimal value of, which differentiates the degree of fuzziness fffecent membership

degree values, is approximately equal to 0 andptttiduces the best classification accuracy

(Table 5.1).

Parameter a 107(-17) 0.1 0.2 (0.3 |04 .5 |06 0.7 0.8 0.9 0.99
ABB Accuracy 100% 60% [60% |60% [60% [60% [60% |60% [60% |60% [60%
Overall Accuracy [90% 64% 64% 61% [62% [60% [60% |60% [60% 60% [60%
Table 5.1: Classification accuracies for ABB andsp&cies (N=92) using differeatparameter

values.

Based on the selection of parametgethe classification accuracy for ABB was 100% amdrall

classification accuracy for all 11 species was 4U%ble 5.2).
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Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 [S11 Overall
Hybrid 100% 89% [70% [70% [100% [83% [90% [83% [100% (100% 100% [90%
Area Comp. 60% [89% [70% |60% [83% [83% [50% [67% [100% [88% [B88% |76%
Fourier Des. 90% [78% [30% [20% [50% [50% [60% [67% |100% (100% 88% |67%
Table 5.2: Classification accuracies for hybridioegbased and contour-based approach on

images with legs and antennae automatically remdvgdepresents the American Burying

Beetle (ABB).

The hybrid fusion method compared to area compareemd Fourier descriptor methods
separately resulted in improved overall classifaraaccuracy for the current data set. In all cases
the hybrid decision fusion operator was succes$sflibeping the best classification results
determined separately by the two methods. In addifor S1, S4, S5, S7, S8 and S11, the hybrid
classification accuracy is higher than either efitiethods individually. The hypothesis that each
method could be complementary to the other methel a@nfirmed by using this hybrid region-

based and contour-based approach.

5.4 Experimental Results and Analysis of L eave-one-out Validation

To further test the robustness of our algorithmjnmwelemented the leave-one-out validation. In
other words, each test image is not involved inttaming stage when the average feature vector
is computed from multiple samples of each cladse @xperimental results are shown in Table
5.3, where both ABB and overall classification aecies decrease significantly compared with
Table 5.2. Still it is shown that cleaned shapésr alecomposition are preferred for better
classification. Further, the decision fusion isealdl improve the classification accuracy for ABB

(80%) and all species (61%), as shown in Table 5.4.
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Area Component Fourier Descriptor
Classification image source ABB Overall ABB Overall
Original shape 40% 35% 10% 33%
Manual decomposition 50% 41% 80% 63%
Automatic decomposition 50% 35% 80% 43%

Table 5.3: Classification results of leave-oneaalidation for ABB and 11 species (N=92).

Methods S1 S2 S3 S4 S5 S6  |S7 S8 S9 S10 |S11  |Overall
Hybrid 80% B9% [B0% [30% (17% 67% [50% [50% [89% |100% [75% [61%
Area Comp. 50% 44% 30% [20% (0% |50% [10% [33% [89% [38% [26% [35%
Fourier Des. [80% [78% [10% [10% [(17% [33% [50% [17% (0% |100% [75% [43%
Table 5.4: Fusion results of leave-one-out val@ratS1 represents the American Burying Beetle

(ABB).

With the decreasing of classification accuraciglsdth methods, we could conclude that the
robust classification result may not be achievelg with these two shape representation methods
in practice. However, our proposed insect shaperdposition algorithm could still improve
classification accuracies in both methods for ABH averall species. There are three thoughts
for future research from this leave-one-out val@aexperiment. First, we may need additional
features (such as colors, edges or textures) toowehe accuracy and robustness of the
algorithm. Second, we also need more training sasmolr each species to improve the
representativeness of shape features. Third, weneeg involve advanced feature learning [60]

to learn more stable features for each species.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this investigation, an insect classificationalthm was implemented through template
matching. Specifically, shape features were exthfitom color images for analysis and
classification based on binary images. After impggprocessing and insect object extraction and
alignment, a region-based area component method andtour-based Fourier descriptor method
were implemented to classify 11 different of typéinsects to species from a total of 92 images.
Due to the shape uncertainty introduced by thetiposdf the legs and antennae of the insects,
initial classification accuracy was not sufficid¢ot the intended purpose. Using visual curvature
theory, an intuitive insect shape decompositiotgm was proposed to cut the legs and
antennae from insect body shapes automaticallyefiixental results using the same region-
based and contour-based methods on the decompuseessdemonstrated that the algorithm was
useful in removing uncertainty in the insect shiapéncreasing classification accuracy by 12%
and 10% respectively. Moreover, classification aacy was dramatically improved to 90%

using the Fourier descriptor approach on AmericaryiBg Beetle (ABB) specimens. To achieve
higher overall classification accuracy, a hybrigra@ch using a fusion operator to combine
region-based and contour-based methods togethgprapesed. After that implementation, the
overall accuracy achieved 90% and the ABB clas#iificn accuracy increased to 100%.
However, the experimental results of leave-onevalitiation show that the proposed algorithm
still needs future improvements in three areastFadditional features (such as colors, edges or

textures) are needed to complement shape-basedSswmd, more training samples and a large
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data set are necessary to improve the overall pmegioce of the proposed algorithm. Third,

advanced feature learning may be helpful to finidioée features for each species.

The original objective of the algorithm was to si&gand identify the American Burying Beetle
(ABB) precisely and also be able to discriminateeotspecies of interest as well. There are still
rooms to improve the overall insect classifica@meuracy and robustness. Furthermore, the

methods developed in this investigation may hay®iegtion for other insect assemblages, and

even on non-insect animals, where unsupervisedifitagion is desired.
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