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Major Field: ENVIRONMENTAL ENGINEERING 

Abstract: This document is a compilation of three papers, made for publication, detailing 

the findings from research conducted in a laboratory and in Honduras 

regarding the implementation and monitoring of the household, point-of-use, 

water treatment technology known as intermittent slow sand filters (ISSF), also 

known as biosand filters (BSF). While laboratory results have shown biosand 

filters can provide a high degree of biological removal from contaminated 

water, field results can vary greatly. Three trials using six 1/30th scale volume 

filters and a full scale filter were conducted, varying total organic carbon 

(TOC) and biodegradable dissolved organic carbon (BDOC). Fecal coliform 

(FC) removals, nitrate concentrations, and sulfate concentrations were 

analyzed to better understand how aerobic and anaerobic conditions affect 

filtration efficiency. Higher organic loadings had a higher oxygen demand on 

the “schmutzdecke” layer of the sand filters. Filters with a standing head DO of 

3mg/L or less had signs of the filters turning anaerobic, conditions 

unconducive to pathogen removal. Filters with TOC loadings higher than 20 

mg/L and BDOC loadings higher than 10 mg/L can turn anaerobic, generating 

more anaerobic organisms than are removed. By working with communities 

around the Campana region of Honduras, wooden molds were developed for 

the construction BSFs. Entirely sourced from in-country materials and labor, a 

local production facility and foreman was established to provide the filters and 

clean water information to the surrounding communities. Rotary style sieves 

were developed to process the filtration medium, reducing the labor required 

per filter. Under the moniker of AguaSeis filters, the filters were sold for 

$25.00 USD with a material cost of $7.50 USD per filter.  The concerted effort 

of having a sustained, local BSF production and adoption was carried out 

between March 2011 and January 2014. During that time, 46 filters were made 

in-country with 72% still in operation. An averaged removal rate of total 

coliforms, sampled from 27 filters, was found to be 91%. 
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CHAPTER I 

 

IMPETUS FOR BIOSAND RESEARCH 

 

 COMPOSITION OF THESIS 

This research is presented in three separate chapters, originally written for 

publication outside of this collection, covering the literature review and findings relevant 

to each component addressed. Chapter II details the findings from laboratory experiments 

varying total organic carbon (TOC) loading through lab scale and full scale biosand 

filters (BSF)s. Chapter III contains the field findings from attempting to establish a BSF 

production facility in the Campana region of Honduras. Chapter IV contains the 

assessment of BSFs operating in Honduras over the course of a few years. Further 

publications related to this research can be found at www.aguaseis.org. The content of 

this first chapter is to explain preliminary details that would not normally be included in 

environmental engineering publications, but gives a necessary introduction in to why.  

BACKGROUND INTO BIOSAND FILTERS 

Poor quality drinking water is a global problem, gravely affecting the developing 

world and contributing to approximately 1.8 million deaths per year and 1.1 billion 

without access to “improved” drinking supplies (WHO, 2007) (Ashbolt, 2004). 

Consequences from having improperly designed water systems can adversely affect the 
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health and economic productivity of a nation (Poverty-Environment Partnership, 2014). 

In countries without well maintained water systems, point-of-use water (POU) treatment 

technology can be an effective solution to meeting the water quality needs of 

communities, with the potential to prevent 94% of worldwide diarrheal cases (Sobsey, 

Stauber, Casanova, Brown, & Elliott Mark, 2008), (WHO, 2007). Most of these 

interventions require a consumable product that must be purchased, failing to provide 

clean water during periods of financial strife. Intermittent slow sand filters (ISSF), 

commonly referred to as biosand filters (BSF), are POU water filters that are installed in 

the household and can be used continuously without outside intervention (Sobsey, 

Stauber, Casanova, Brown, & Elliott Mark, 2008). By retaining the microorganisms of a 

contaminated water supply within a simple sand medium, BSF technology has been 

shown to have as much as 4 log10 removal of E.coli, and 95% removal of bacteriophages 

(Elliott, Sauber, Koksal, DiGiano, & Sobsey, 2008). 

The original BSF filter was invented in 1990 by Dr. David Manz, out of Calgary, 

Canada. After an initial successful implementation of the technology, he later founded the 

non-profit organization known as the Center for Affordable Water and Sanitation 

Technology (CAWST). As a result of the efforts of CAWST and other NGOs such as 

Samaritan’s Purse, there are now over 200,000 BSFs installed in over 70 countries 

(Manz, 2007). The design is based off of the traditional slow sand filters (SSF), used in 

some municipalities for cleaning drinking water. By retaining organisms within a sand 

matrix, and given sufficient time, pathogens will be adsorbed on to the surface of the 

sand medium and subsequently oxidized by other microorganisms (Metcalf & Eddy, 

2003). The operation parameters that govern SSF efficiencies differs from the BSF in a 
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few ways. First, SSFs operate continuously while BSFs are intermittent. This means SSF 

performance relies on hydraulic loading rates to determine retention time while BSFs use 

batch volume loading rates and rest periods for retention times (Huisman & Wood, 

1974). Second, because SSFs are continuously fed, the sand column is modeled to be 

completely aerobic. This may not be true for BSFs, where the sand would have a gradient 

of aerobic to anaerobic activities as the oxygen is consumed down the column. Third, 

because the surface area to volume ratio for SSFs are larger than BSFs, the aerobic 

fraction of the BSF is that much more reduced. The closer a BSF operates to an SSF, the 

better the pathogen removal, as evidenced when BSFs are operating continuously 

(Young-Rojanschi & Madramootoo, 2013). The research detailed in this paper kept these 

differences in mind during the design phase. 

THEORETICAL OXYGEN DEMAND 

All of the literature regarding slow sand filters and their intermittent counterparts 

indicates the pathogen removal capabilities of these systems are reliant on a biologically 

active layer contained in the sand layers (Huisman & Wood, 1974). Despite this fact, 

most previous research has treated the filter as normal sand filters modeled for particulate 

removal as evidenced by the prevalent use of turbidity and effluent velocity as the 

primary means to determine filtration efficiency (CAWST, 2012). Biological removal has 

been determined in broad strokes by analyzing total coliform and E. coli removal. 

However, what has not been examined is how influent composition can affect filtration 

efficiencies of the biosand filter because of changes in the biological characteristics of the 

biologically active layers. 
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In developing countries, it is common for wastewater contamination to enter 

drinking water supplies, hence the prevalence of fecal-oral type diseases in these 

countries (Ashbolt, 2004). That would mean the BSF would be better analyzed as a 

wastewater treatment device, hinged on the organic composition of the influent. As such, 

the primary objective of the BSF should be to oxidize dissolved and particulate 

biodegradable components in to inert products (Metcalf & Eddy, 2003). If the influent is 

modeled as domestic wastewater, with the substrate generalized to C10H19O3N, and the 

electron acceptor is oxygen, then the stoichiometry of the reaction can be calculated as 

seen in Equation 1. This also gives a cellular yield of 0.4479 gVSS/gCOD. This is a 

measure of grams of cells produced per gram of chemical oxygen demand. This means 

the aerobic growth of cells would be dependent on available oxygen. If the oxygen 

demand exceeds the oxygen transfer of the water, then it stands to reason higher 

bioactivity could cause cellular die off, reducing pathogenic removal capabilities. 

0.02𝐶10𝐻19𝑂3𝑁 + 0.1036 𝑂2 + 0.0117𝑁𝐻4
+ + 0.0117𝐻𝐶𝑂3

− 

→ 0.0317𝐶5𝐻7𝑂2𝑁 + 0.1325 𝐻2𝑂 + 0.0532𝐶𝑂2 

Equation 1: Generalized Wastewater Oxidation Stoichiometry 

The theoretical amount of oxygen needed is a real number required by the filters. 

By measuring the TOC of the influent, this gives an estimate of the amount of substrate 

available to the microorganisms within the BSF. At higher concentrations of TOC, the 

amount of available oxygen, in terms of the rate of oxygen entering the water from the 

atmosphere, will not be high enough to sustain aerobic activity. Previous research has not 

adequately explained how a filter will function under these conditions. Chapter II will 
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attempt to experimentally determine how excess assimilable dissolved organic carbon 

will affect the filtration capabilities of the BSF technology. 

The next chapter will delve in to laboratory studies to assess how higher organic 

loadings can affect filtration efficiency. The overall goal of this paper is to demonstrate 

the TOC laboratory research in Chapter II, show the efforts contributing to the 

establishment of a BSF production facility in Honduras conducted by the Oklahoma State 

University Engineers Without Borders student chapter in Chapter III, and the longitudinal 

assessment of those filters in Honduras in Chapter IV. 
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CHAPTER II 

 

EFFECTS OF TOTAL ORGANIC CARBON LOADING ON BIOSAND FILTRATION 

EFFICIENCIES 

 

HIGHLIGHTS 

 Varying total organic carbon (TOC) concentrations were loaded in to biosand 

filters. 

 1/30th scale volume filters made of polycarbonate tubes were built for bench scale 

testing. 

 Filters are stratified by biolayers depending on aerobic and anaerobic conditions. 

 TOC loadings higher than 20 mg/L can cause filters to generate anaerobes. 

 Dissolved oxygen tests of field filters can confirm excessive TOC loadings. 

ABSTRACT 

Intermittent slow sand filters, also known as biosand filters, are a point-of-use 

water filtration technology for household use. While laboratory results have shown 

biosand filters can provide a high degree of biological removal from contaminated water, 

field results can vary greatly. The effects of filter construction and operations have been 

thoroughly studied, but influent organic loading has not. Three trials using six 1/30th scale 

filters and a full scale filter were conducted, varying total organic carbon (TOC) and 
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biodegradable dissolved organic carbon (BDOC). Fecal coliform (FC) removals, nitrate 

concentrations, and sulfate concentrations were analyzed to better understand how 

aerobic and anaerobic conditions affect filtration efficiency. Higher organic loadings had 

a higher oxygen demand on the “schmutzdecke” layer of the sand filters. Filters with a 

supernatant dissolved oxygen (DO) measurement of 3mg/L or less had signs of the filters 

turning anaerobic, conditions unconducive to pathogen removal. Filters with TOC 

loadings higher than 20 mg/L and BDOC loadings higher than 10 mg/L can turn 

anaerobic, generating more anaerobic organisms than are removed. 

INTRODUCTION 

Poor quality drinking water is a global problem, gravely affecting the developing 

world and contributing to approximately 1.8 million deaths per year and 1.1 billion 

without access to “improved” drinking supplies (WHO, 2007) (Ashbolt, 2004). 

Consequences from having improperly designed water systems can adversely affect the 

health and economic productivity of a nation (Poverty-Environment Partnership, 2014). 

In countries without well maintained water systems, point-of-use water (POU) treatment 

technology can be an effective solution to meeting the water quality needs of 

communities, with the potential to prevent 94% of worldwide diarrheal cases (Sobsey, 

Stauber, Casanova, Brown, & Elliott Mark, 2008), (WHO, 2007). Most of these 

interventions require a consumable product that must be purchased, failing to provide 

clean water during periods of financial strife. Intermittent slow sand filters (ISSF), 

commonly referred to as biosand filters (BSF), are POU water filters that are installed in 

the household and can be used continuously without outside intervention (Sobsey, 

Stauber, Casanova, Brown, & Elliott Mark, 2008). By retaining the microorganisms of a 
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contaminated water supply within a simple sand medium, BSF technology has been 

shown to have as much as 4 log10 removal of E.coli, and 95% removal of bacteriophages 

(Elliott, Sauber, Koksal, DiGiano, & Sobsey, 2008). 

The most common BSF is constructed out of concrete, but plastic versions are 

available for purchase (Lea, 2008). The concrete configuration proposed by the Centre 

for Affordable Water and Sanitation Technology (CAWST), consists of a three foot tall 

concrete basin containing four inches of gravel at the bottom and fine sand, sized 16 to 

20mm, to form the filtration media (Lea, 2008). Filters of this size can be effective at 

processing 15 to 20 gallons of water per day. The outlet is made of a PVC pipe two 

inches taller than the total height of the filtration media, using hydrostatic pressure to 

ensure the standing water level in the filter does not decrease below the sand layer (Lea, 

2008). Previous research has contended optimal pathogenic removal can be achieved 

through the use of finer sand and longer retention times (Jenkins, Tiwari, & Darby, 

2011). The combination of these two factors allow for the aerobically active biolayer, or 

“schmutzdecke” of the sand surface, to better develop, increasing the filtration 

capabilities of the filter (Elliott, Sauber, Koksal, DiGiano, & Sobsey, 2008; Jenkins, 

Tiwari, & Darby, 2011).  

The BSF technology utilizes naturally occurring organisms in a water supply to 

form a biofilm in the interstitial spaces of the filtration media. Most of the filtration and 

subsequent biological removal of pathogens and viruses rely on the vital metabolic 

occurrences within these biofilms (Elliot, DiGiano, & Sobsey, 2011).  The development 

of biofilms along surfaces can be assessed by measuring the presence of coliforms and 

other heterotrophic plate count (HPC) bacteria (LeChevallier, Welch, & Smith, 1996). 
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One study using this method found water purification plants can have regrowth of 

attached biofilms in pipe systems based on temperature, presence of disinfectants, and 

assimilable organic carbon (AOC) (LeChevallier, Welch, & Smith, 1996). The AOC of a 

sample represents only 0.1-9.0% of the total organic carbon (TOC) content, quantifying 

the fraction of TOC usable by specific mixtures of bacteria (Van der Kooij, 1990). AOC, 

biodegradable dissolved organic carbon (BDOC), and TOC are all usable indicators of 

determining the growth potential of a water source (Escobar & Randall, 2001), (Dubber 

& Gray, 2010). 

Because BSFs can be built entirely in country, this technology can be very 

effective at meeting the long-term, sustained water needs of a communities in developing 

countries. Performance studies of filters in Haiti over an average of 2.5 years found 97% 

of filters tested had an effluent of 0-10 E.Coli cfu /100mL (Duke, Nordin, & Mazumder, 

2006). Another study in rural Nicaragua found 154 out of 199 filters in continued use 

after 2 years, with a median E. coli colony forming units (CFU) removal of 74% (Fiore, 

Minnings, & Fiore, 2010). Assessment of BSF technology in the Dominican Republic 

found 90% of 328 households visited were still using filters after one year of operation, 

with an average of 84-88% bacterial reduction (Aiken, Sauber, Ortiz, & Sobsey, 2011). 

While the results of field filters are mostly positive, some filters have shown to produce 

more coliforms in the effluent than influent (Duke, Nordin, & Mazumder, 2006), (Fiore, 

Minnings, & Fiore, 2010), (Aiken, Sauber, Ortiz, & Sobsey, 2011), (Fewster, Mol, & 

Weisent-Brandsma, 2004), (Mwabi, Mamba, & Momba, 2013). One study from 

Cambodia found many filters to have more E. coli in the effluent than in the influent. 

They claimed this was because of inconsistent influent E. coli concentrations causing 
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break through, residual organisms in water collection vessels, and outlet tubes that are 

recontaminating effluent (Water and Sanitation Program, 2010). While poor filtration 

performance can be attributed to user error or inconsistent construction, few studies have 

looked at how the influent organic composition can affect filter operation.  

This paper will attempt to systematically determine how excessive organic 

loading rates could adversely impact the biolayers crucial to effective BSF operations. 

While one study did report a source water TOC of 5 to 8 mg/L, field conditions could 

vary greatly (Elliot, DiGiano, & Sobsey, 2011). Many waste water treatment plants 

(WWTP) utilize aerobic conditions to bio-oxidize undesirable constituents of waste water 

(Reynolds & Richards, 1996). In the regions of the world where BSFs are likely to be 

implemented, filters are often used to treat drinking water contaminated by human waste 

water (Ashbolt, 2004).  Differences in TOC concentration, depending on severity of the 

contamination, would change dissolved oxygen concentrations, determining whether 

aerobic or anaerobic biological process are dominant (Sawyer, McCarty, & Parkin, 

2003). Past research has shown continuous operation of filters, rather than intermittent, 

can improve filtration Escherichia coli and viral bacteriophage MS2 removal (Young-

Rojanschi & Madramootoo, 2013). This could be because the aerobic biofilms are better 

developed from the increased DO of a continuous flow. The known advantages of longer 

retention times and finer sand could be benefitting filter operation by retaining more non-

dissolved TOC in the upper aerobic fraction of the sand columns (Jenkins, Tiwari, & 

Darby, 2011). By analyzing how the influent organic quality of a BSF affects the 

schmutzdecke and bio-oxidation potential of the device, both in the aerobic and anaerobic 

fractions, usable data can be extracted to predict how well a BSF might operate in certain 
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conditions.  Varied TOC concentrations were loaded in to BSFs to determine how 

influent TOC affects filtration efficiency. 

MATERIALS AND METHODS 

Testing Platform 

Two configurations of BSF were used for this study, a full scale filter and six 

1/30th scale filters. Full scale filters constructed in the field have a volume of around 12 

liters, a high daily loading volume for laboratory research. To facilitate reproducibility of 

results, six 1/30th scale filters were built for emulation, based on a full scale filter and 

work done by previous research (Young-Rojanschi & Madramootoo, 2013), (Elliot, 

DiGiano, & Sobsey, 2011). Each filter was constructed out of impact-resistant 

polycarbonate tubes, (item number 8585K64, mcmaster.com). Each tube has an outer 

diameter of two inches, inner diameter of 1 7/8 inches, and 3 feet of length. The filtration 

medium was made using sand processed the same as in the field, with an effective size 

(ES) between 0.15 to 0.20 mm and uniformity coefficient (UC) less than 2.5 (CAWST, 

2012). The bottom two inches of filtration medium is made of washed gravel, underlying 

sieved and washed sand. Sampling ports were placed in the tubes with holes drilled in to 

rubber stoppers, as seen in Figure 1. Connected flexible tubing with clamps and plastic 

syringes allowed for cheap, easy sampling. The standing water above the sand could be 

visually assessed to maintain the water level. The influent was mixed on the lab bench 

and then percolated in to the filters, ensuring the biolayer can properly develop without 

agitation. The full scale filter was constructed from concrete with the configuration as 

seen in Figure 2. The loading and sampling procedures, for the full scale filters, were the 

same as the 1/30th scale filters. 
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Figure 1: 1/30th Scale BSF Tubes 

   

Figure 2: Full Scale Experimental BSF 
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Hydraulic Loading Formulation 

Three trials were carried out to determine what how influent TOC affects 

filtration efficiency, labeled Trial A, Trial B, and Trial C. Each trial ensured the hydraulic 

loading rate of each filter was equivalent to or less than one pore volume over 24 hours ± 

2, as recommended by previous research (Elliot, DiGiano, & Sobsey, 2011), (Young-

Rojanschi & Madramootoo, 2013). The daily total volume did not exceed 9.0 liters, 

which is 90% of the total pore volume, in the full scale filter. The 1/30th scale filters were 

loaded with 0.35 liters, 95% of the total pore volume, of influent every day.  

Each trial used a different mix of solutions as needed. Primary and final effluent 

from the Stillwater, OK waste water treatment plant (WWTP) was used to emulate 

drinking water contamination. Boomer Lake, Stillwater, Oklahoma provided background 

organisms found in natural water sources. Deionized water (DI) was used to dilute filter 

influents as required. 

Analytical Methods 

3M™ Petrifilm™ E. coli/Coliform Count Plates (Petrifilm™ EC plates) were 

used to quantify the coliform CFU concentration, in CFUs/mL, of influent and effluent 

water related to the test filters (3M, 2014). When compared with other coliform 

enumeration tests recommended by the American Public Health Association (APHA), 

Petrifilm™ EC plates allowed for easier parallel testing of biological contaminant 

indicators while maintaining a high specificity percentage, only 0.5 log10 lower than 

mHPC agar (Schraft & Watterworth, 2005). This methodology has also been used for 

fecal coliform (FC) enumeration in other papers (White, et al., 2013). 
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Ion chromatography was used to measure nitrate and sulfate concentrations 

(APHA, 1998), (APHA, 1998). The instrument used was a Thermo Scientific Dionex 

ICS-1100 with a Dionex IonPac™ AS14 anion column attached. DO was measured using 

a Hach dissolved oxygen field probe at 21 ± 2°C. 

TOC tests were done using Hach Low Range Total Organic Carbon (TOC) Test 

‘N Tube™ Reagent Set 2760345, method 10129, with a range of 0.3 to 20.0 mg/L TOC. 

All loadings were analyzed once a week to maintain TOC concentrations within 

±0.2mg/L. TOC loadings were chosen to be around the 5 to 11 mg/L TOC used in 

previous research (Elliot, DiGiano, & Sobsey, 2011), (Young-Rojanschi & 

Madramootoo, 2013), (Reith & Birkenhead, 1998). 

Experimental Trials 

Trial A 

Trial A used six 1/30th scale filters. The loading is found in Table 1. This initial 

run was performed to determine whether or not a variable TOC loading would affect 

filtration efficiency. To run the experiment, primary effluent from the local waste water 

treatment plant was used as the TOC and coliform supply. Autoclaved primary effluent 

was used to change the TOC loading between tubes while maintaining a relatively 

consistent coliform load to each column. Water from Boomer Lake provided additional 

background organisms that would allow for proper biofilm development. One of the 

tubes was loaded with a “Forced 0” mix, containing WWTP primary effluent filtered 

through a 0.6 micron paper filter. The trapped particles were then re-suspended in DI 

water, measuring an average of 176 CFU/ml. This mix was used to drop the TOC while 

keeping the coliform loading similar to the rest of the tubes; the remaining tubes 
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contained a percent volume of autoclaved WWTP primary effluent, with an average of 

536 CFU/ml. These mixes ensured all tubes had equivalent biological loadings and 

variant TOC loadings. The ID labels are percent of the loading volume that contained 

autoclaved primary WWTP effluent. 

Table 1: Trial A Influent Composition 

ID FILTERED 

1', ML 

AUTOCLAVED 

1', ML 

DI, ML BOOMER, 

ML 

1', 

ML 

[TOC], 

MG/L 

FORCED 

0 

35 0 70 245 0 24.6 

0% 0 0 70 245 35 28.6 

5% 0 3.5 66.5 245 35 28.0 

10% 0 7 63 245 35 29.4 

25% 0 17.5 52.5 245 35 33.2 

50% 0 35 35 245 35 35.4 

       

Trial B 

Trial B used six 1/30th scale filters and one full scale, ran in parallel. The 

respective hydraulic and TOC loadings can be found in  

 

 

Table 2. The purpose of this trial was to compare how the variant TOC affected 

the aerobic and anaerobic fractions in both lab and full scale. In order to achieve the 

lowest TOC loading, WWTP primary effluent was filtered and re-suspended to provide 

coliforms without adding BDOC. The rest of the filters were loaded with different 

volumes of WWTP primary effluent. Because of this, influent CFUs had to be recorded 

for each filter to determine individual filtration efficiencies with averages ranging from 

406 to 3064 CFU/ml. The loading fractions were stored in a refrigerator at 3-5°C between 
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loadings, to limit biological degradation.  

 

 

Table 2: Trial B Influent Composition 

ID DESIGN 

TOC 

(MG/L) 

ACTUAL 

TOC 

(MG/L) 

FILTERED 

PRIMARY 

EFFLUENT 

(ML) 

1' 

(ML) 

BOOMER 

(ML) 

DI 

(ML) 

CALCULATED 

DOC (MG/L) 

1 5 5.37 50 0 100 200 3.46 

2 10 10.51 0 20 100 230 6.78 

3 15 15.66 0 40 100 210 10.1 

4 20 20.80 0 60 100 190 13.4 

5 25 25.94 0 80 100 170 16.7 

6 30 31.09 0 100 100 150 20.0 

FULL 

SCALE 

6 6.09 0 400 1000 7600 3.92 

 

        

Trial C 

Trial C used six 1/30th scale filters. The loadings can be found in Table 3. This 

experiment attempted to use a TOC loading that was mostly in the dissolved fraction. 

Following the reagent standard for 5-day BOD tests, a glucose-glutamic acid 1.0 M 

solution was used to supply BDOC composing the majority of the TOC loadings 

(Clesceri, Greenberg, & Eaton, 1998). Boomer Lake water and WWTP final effluent 

provided background organisms and coliforms, consistently across all tubes. The average 

FC loading was 10.7 CFU/ml. 
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Table 3: Trial C Influent Composition 

ID TOC 

DESIRED, 

MG/L 

TOC 

LOADING

, MG/L 

BOOME

R LAKE, 

ML 

FINAL 

EFFL, 

ML 

GLUC/GLUT

A, ML 

DI, 

ML 

1 5 5.5 50 50 0.5 249.

5 

2 10 10.1 50 50 2.5 247.

5 

3 15 14.8 50 50 4.5 245.

5 

4 20 20.5 50 50 7 243 

5 25 25.2 50 50 9 241 

6 30 29.8 50 50 11 239 

 

RESULTS AND METHODS 

Trial A 

This initial run was performed to determine how a high, variable TOC loading 

would affect filtration efficiency. Each of the six filters were dosed once a day for 26 

days with a FC loading with an average of 276 ± 20 CFU/mL. DO readings of the tubes 

were taken at each sampling port for the first week. At the four day mark, all of the sub-

surface sampling ports had readings of 0.0 mg/L DO. This effectively means after the 

biolayer has matured, the aerobic fraction of the filter does not extend past the first two 

inches of sand at the selected TOC loadings. Subsequent DO readings were taken from 

the standing water, after the 24 hour rest period, the rest of the 26 days, as seen in Figure 

3. The tube with the artificially low BDOC had the highest DO concentration, 
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consistently between 7.0 and 6.0 mg/L, while the tube with the highest TOC of 35 mg/L 

had a DO that was precipitously dropping, approaching 1.0 mg/L. The filtration 

efficiency was gauged by measuring the influent coliform CFU and the effluent coliform 

CFU. This gave a fractional CFU concentration plotted against the age of each tube on a 

log chart with linear best fit lines, as seen in Figure 4. The three lowest TOC loadings 

had overall better removal approaching 2 log10 removal towards the end of the run. The 

three higher TOC loadings were more variant through the experiment, as evidenced by 

the less steep linear lines.  

 

Figure 3: Trial A DO in standing water 24 hours after loading 
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Figure 4: Trial A CFU Removal Results 

Trial B 

1/30th Scale Filters 

The influent coliform CFU for each tube started relatively high and dropped over 

time, until the stock solutions could be replenished from the WWTP. Respective influent 

CFUs for Tubes 5, 10, 15, 20, 25, and 30 were 250, 350, 1400, 1400, 2400, and 2800 

CFUs/mL on day 5, dropping to 120, 520, 710, 820, 1100, and 1600 CFUs/mL on day 10. 

The stock solutions of WWTP effluent were restocked on days 11 and 23, increasing the 

CFU loading back to day 5 levels. The removal efficiency for each filter experienced 

decreased removal percentages when the influent CFUs spiked after each restocking. The 

filters with lower TOC loadings maintained higher, more consistent removals than the 

filters with higher TOC loadings, especially during CFU spikes. The increased resiliency 
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of the filters loaded with lower TOC concentrations is evidenced by the sinusoidal nature 

of the plot in Figure 5, with higher amplitudes for higher organic loadings. 

 On the 28th day of operation, the filters were considered to be operating at a 

reasonably steady state. In order to quantify how the schmutzdecke within each filter 

developed, from the variant TOC loadings, samples from the supernatant and the 

subsurface sample port were analyzed for anion changes. Schmutzdecke development 

was examined through nitrate levels, as seen in Figure 6, because nitrifiers operate in 

aerobic conditions (Metcalf and Eddy, 2003). While the presence and interaction of the 

biological communities are complex, previous research has shown nitrifying organisms 

are contained within the surface biolayer (Feng, et al., 2012). More nitrification would 

indicate healthier aerobic conditions, ideal for pathogenic removal from a water source. 

Figure 6 indicates TOC loadings higher than 20 mg/L had more anaerobic activity than 

aerobic nitrification. Additionally, the presence of sulfide reducers would indicate 

anaerobic conditions within the schmutzdecke, undesirable for robust biofilm 

development (Metcalf and Eddy, 2003). Figure 7 shows TOC loadings higher than 20 

mg/L had the highest rates of sulfate reduction.  
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Figure 5: Trial B Bench Scale CFU Results 

 

Figure 6: Trial B Bench Scale Nitrate Results 
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Figure 7: Trial B Bench Scale Sulfate Results 

Full Scale Filter 

CFU removals, nitrate concentrations, and sulfate concentrations were analyzed 

within the full scale filter to better understand how the aerobic and anaerobic fractions of 

the filter affect filtration efficiency. Because the pore volume of the entire filter is 

replaced at every loading, it stands to reason a certain fraction of the hydraulic loading 

would only be in the anaerobic fraction. Figure 8 shows the comparison of coliforms 
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and decreasing further down the column. Figure 10 shows indications of anaerobic 
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the 1/30th scale experiments. This full scale trial shows coliform removal occurs along the 

entire sand column, achieving higher removal rates in the upper aerobic fractions. 

 

Figure 8: Trial B Full Scale CFU Results Sampled 24 and 0 Hours After Loading 

 

Figure 9: Trial B Full Scale Nitrate Results Sampled 24 Hours After Loading 
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Figure 10: Trial B Full Scale Sulfate Results Sampled 24 Hours After Loading 

Trial C 
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efficiencies may be burdened by excessive TOC and DO demand, causing the aerobic 

schmutzdecke to become anaerobic. Figure 12 and Figure 13 also shows how higher 

BDOC loadings caused anaerobic conditions to take over the column, exhibiting a lack of 

aerobic nitrifier activity and higher sulfate reduction from anaerobic bacteria (Sawyer, 

McCarty, & F, 2003).  

 

Figure 11: Trial C Coliform Results 
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Figure 12: Trial C Nitrate Results 

 

Figure 13: Trial C Sulfate Results 
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Figure 14: Trial C DO Results 

CONCLUSIONS 
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20 mg/L or BDOC higher than 10 mg/L should be reconsidered. Organic loadings much 

higher than this would promote anaerobic conditions within BSFs, potentially converting 

the water filter in to a pathogen incubator.  More research should be done to examine 

how to better maintain aerobic conditions within the upper sand column by changing 

loading volume, altering retention time, or considering various pre-treatment options such 

as cascading influents.  
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CHAPTER III 

 

COST REDUCTION OF INTERMITTENT SLOW SAND FILTERS THROUGH THE 

USE OF WOODEN MOLDS AND ROTARY SIEVES 

 

ABSTRACT 

By working with communities around the Campana region of Honduras, wooden 

molds were developed for the construction of intermittent slow sand filters, also known 

as biosand filters. Entirely sourced from in-country materials and labor, a local 

production facility and foreman was established to provide the filters and clean water 

information to the surrounding communities. Rotary style sieves were developed to 

process the filtration medium, reducing the labor required per filter. Under the moniker of 

AguaSeis filters, the filters were sold for $25.00 USD with a material cost of $7.50 USD 

per filter.   

INTRODUCTION 

Poor quality drinking water is a global problem, gravely affecting the developing 

world and contributing to approximately 1.8 million deaths per year and 1.1 billion 

without access to “improved” drinking supplies (WHO, 2007) (Ashbolt, 2004). 

Consequences from having improperly designed water systems can adversely affect the 

health and economic productivity of a nation (Poverty-Environment Partnership, 2014). 
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In countries without well maintained water systems, point-of-use water (POU) treatment 

technology can be an effective solution to meeting the water quality needs of 

communities, with the potential to prevent 94% of worldwide diarrheal cases (Sobsey, 

Stauber, Casanova, Brown, & Elliott, 2008), (WHO, 2007). Most of these interventions 

require a consumable product that must be purchased, failing to provide clean water 

during periods of financial strife. Intermittent slow sand filters (ISSF), commonly 

referred to as biosand filters (BSF), are POU water filters that are installed in the 

household and can be use continuously without outside intervention (Sobsey, Stauber, 

Casanova, Brown, & Elliott, 2008). By retaining the microorganisms of a contaminated 

water supply within a simple sand medium, BSF technology has been shown to have as 

much as 4 log10 removal of E.coli, and 95% removal of bacteriophages (Elliott, Sauber, 

Koksal, DiGiano, & Sobsey, 2008). 

Many clean water interventions see successful initial implementations but fail to 

sustain (Thompson & Doherty, 2006). One of the higher profile failures in the past ten 

years was the PlayPump project. The PlayPump was designed to harness the power of 

children playing on a roundabout to pump water into an elevated water tank, with 

advertisements on the tanks to draw funding for maintenance (Borland, 2010). After the 

construction of approximately 1,000 units in ten years, PlayPumps International was shut 

down due to many short-comings of the technology. First, PlayPumps were not designed 

to be maintained by locals, contrary to more successful interventions like the Zimbabwe 

Bush Pump. Second, many PlayPumps were installed over existing pumps, so when they 

broke there were no water options for the communities (Borland, 2010). A letter 

produced by the non-governmental organization (NGO) WaterAid recommended against 
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the installation of PlayPumps, at $14,000 each they cost three times that of traditional 

pump systems and required child labor of 27 hours per day to provide the target volume 

advertised (Freschi, 2010). This is not a unique story; there are many such interventions 

that try to adapt developed world thinking to a developing world need while failing to 

provide lasting results (Thompson & Doherty, 2006). 

Water quality interventions are just one of many types of developmental 

technology available to the developing world. It can be difficult to allow those in need to 

access these developments, as such, many NGOs have developed methods to improve 

accessibility. An example of this can be found with The Center for Health Market 

Innovations, where they attempt to improve access to healthcare in the developing world 

through systematic analysis of in-field data (Center for Health Market Innovations, 

2013).  By analyzing components of the medicine supply chain, from production to 

consumption, CHMI could identify what technologies have the best impact for the lowest 

cost. Their collaboration with On Cue Compliance used SIM card equipped pill bottles to 

increase patient compliance from 22-60% to 90% (Center for Health Market Innovations, 

2013).  

Branding can be important to the viability of a developmental intervention. Some 

technologies hit a barrier of sustainability where they are not aspirational technologies. A 

study found that things that were desirable in developing countries were considered 

“status goods”, where a western brand can hold sway over a local market (Batra, 

Ramaswamy, Alden, Steenkamp, & Ramachander, 2000). Non-local products are 

considered to be of higher quality, have perceived better international profiles, and comes 
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with admiration of the lifestyles coincident with developed nations (Batra, Ramaswamy, 

Alden, Steenkamp, & Ramachander, 2000).  

A good example of how to develop a supply chain can be found in Coca-Cola. In 

a comparison of how Coke succeeds, while some medical interventions fail in having 

sustained presence in developing countries, researchers identified certain parameters key 

to a successful supply chain (Yadav, Stapleton, & Wassenjove, 2013). Maintaining a 

supply chain in these regions can be difficult but the key elements found are in 

production, information gathering, distribution, retail point of sale, incentive structure, 

and consumption benefits. Distribution is handled by Coke through what they call Micro 

or Manual Distribution Centers (MDC), a process unavailable to medical interventions 

due to tight regulations from safety concerns. MDCs allow for entrepreneurs to be 

incentivized to become distributors and advertisers while gaining a modest income as part 

of the Coca-Cola network (Nelson, Ishikawa, & Geaneotes, 2009). 

This research aims to apply best practices of developmental interventions, while 

avoiding the pitfalls endemic in these types of international projects, applied to a water 

filtration project. To accomplish this, a wooden mold design, rotary sieving method, and 

customized supply chain was developed. This paper covers the intermittent slow sand 

filter, also known as biosand filter, project conducted by the Oklahoma State University 

Engineers Without Borders student chapter in the Campana region of Honduras. The 

project started in March 2009 and closed out in January 2014.  
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MATERIALS AND METHODS 

Traditional Biosand Filters 

BSFs are built in a wide variety of styles. The three most common implementations are 

the square steel molded CAWST model, the round steel molded BushProof model, and 

informal plastic and metal barrel adaptations (Lea, 2008). The CAWST and BushProof 

techniques require steel molds to be constructed, which are then used to form the 

concrete shell for BSFs. These require sheet metal, metal working machinery and 

welding expertise, which is prohibitively difficult and expensive to source in Honduras. 

The round BushProof filter molds were proposed to cost less than the square ones (Mol & 

Fewster, 2007). However the steel, specialized equipment, threaded rods and other 

equipment still would require tens of thousands of dollars in capital costs. Other 

communities around the world have their methods for biosand filtration such as ceramic 

Koloshis, an attempted Bangladesh development for biological pathogen and arsenic 

removal (Hussam & Munir, 2007). For the project covered by this paper, a wooden 

construction method, under the moniker of AguaSeis filters, was developed to adapt to 

the capabilities of the Honduran community. 

Adaptations to Traditional BSF Construction 

The AguaSeis filter construction molds was developed for use in the Campana 

region of Honduras, and were restrained to utilize all locally sourced materials. As such, 

this design only uses plywood, PVC pipe, plastic sheeting, and ceramic tiles. The 

plywood is used for constructing molds. One sheet of four by eight feet of plywood will 

provide all the panels required to build one AguaSeis filter. The wood does not have to be 

coated with grease like the steel models. This reduces cost and simplifies the construction 
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process. Contrary to the CAWST model, AguaSeis filters do not rely on an entrained 

outlet pipe. Instead, only a single hole is drilled into the outer mold for a straight length 

of PVC tubing. This simplicity works better for repairing and emptying filters if 

necessary. All of these components of construction were chosen to allow for owners to 

adapt their filters depending on their needs, without compromising the filtration 

functionality. The construction documents, which were used in Honduras, can be found 

in Appendix A. 

Plywood Molds 

There were two designs used for the outer mold section, as seen in Figure 15. 

While jigsaw cuts are more complex and use more wood, there are some advantages over 

the flat cut design. The jigsaw cut design is stronger because of the way the screws are 

driven in to the posts, fewer screws can be used and stress from the pressure of the 

concrete can be isolated to individual sections. Each panel is exactly the same, reducing 

unique parts required. The jigsaw cut panels also have distinct profiles requiring more 

craftsmanship, meaning they are less likely to be thrown around or misappropriated. Both 

types of outer molds have a plywood bottom to form the base of the filter as seen in the 

flat cut design diagrams in Figure 16.  

Two blocks are used between the inner mold and outer mold, preventing the inner 

mold from floating while the concrete is being poured and agitated. Once the concrete is 

settled and ready for curing, the blocks can be removed and filled with concrete. The 

inner mold will be held in place by friction while the concrete sets. Alternately the blocks 

can be left in allowing for a space where, a filter owner can directly pipe influent water as 

seen in Figure 17. 
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The inner mold uses a collapsible configuration, with removable inner supports to 

counter inward pressure from curing concrete as seen in Figure 18. The tapered sides 

ensure the inner mold can be easily removed. 6 mm contractor’s plastic or standard floor 

tiles are used to form the bottom of the inner mold, depending on the capabilities or 

available materials of the construction site. Four support blocks are screwed in to place at 

the top of the inner mold. One support is wedged in to place towards the bottom of the 

inner mold. This bottom support is not screwed in to the side panels, but will instead be 

pulled up. Construction quality is important to ensure the panels do not slip and become 

channel locked in the cured concrete. The inner mold panels can be easily removed using 

a fulcrum method to lever the panels out as seen in Figure 19. 

  

Figure 15: Outer Molds (Jigsaw Cut on Left, Flat Cut on Right) with Inner Mold and 

Curing Concrete 
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Figure 16: Select Outer Mold Components 

 

  

Figure 17: Two Examples of Filters Installed in Homes 
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Figure 18: Select Inner Mold Components 

 

Figure 19: Leveraging Inner Mold Panel for Removal 
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Rotary Sieve 

The most time consumptive process of BSF construction is in the processing of 

sand and gravel for the concrete aggregate and filtration media. As seen in Figure 20, the 

AguaSeis methodology uses a mix of sieves to process the material. The first sieve is a 

lean-to frame with a one half inch sized hardware cloth. The bulk material is thrown 

against the screen, where the larger particles are removed and the pass through is diverted 

to the second sieve. This one contains quarter inch hardware cloth, utilized by two people 

swinging the frame between them. The retained material is the large gravel forming the 

bottom most layer of the filtration media. The pass-through then goes to the third and 

fourth sieves. In the past, these have been constructed as manual swinging frames too. 

This is highly inefficient, requiring three people to operate and taking a lot of time and 

energy to process all of the material, as seen in Figure 21. 

The rotary sieve was developed to make the third and fourth sieving process 

easier and less time consuming. The device uses all locally sourced material and is easy 

to build. The sieves are made of window screens to provide the 1/12” and 1/20” spacing 

needed. The structure of the sieving barrels are made from bicycle rims backed by 

plywood, as shown in Figure 22. Two of these barrels were built along with one sieving 

platform. The platform currently uses aluminum rails, interchangeable with rollers or 

casters for the barrels to roll on, as seen in Figure 23. This rotary method cuts the 

required man-hours to 1/3 of the swinging frame method while requiring only one person 

to operate. If the material to be sieved is wet, the manual swinging method is ineffective 

because of the tendency for wet sand to clump and stick. Within a rotating barrel, the 
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sand is flipped and forced against the sieve, more effectively processing the sand 

medium. 

After washing the sand, there are a few ways to ensure the filtration sand was 

sieved to the right size ratios. The most accurate and direct way is to conduct a sieve 

analysis to reach the desired effective size (ES) between 0.15 to 0.20 mm and uniformity 

coefficient (UC) less than 2.5 (CAWST, 2012). This is not always possible in-country so 

the effluent flow rate can be measured, looking for a recommended 0.4 to 0.6 L/min 

(CAWST, 2012). 

 

Figure 20: Demonstration of Sand Sieving Process 
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Figure 21: Swinging Sieving Method 

 

Figure 22: Graphical Representation of AguaSeis Rotary Seive 
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Figure 23: Image of AguaSeis Rotary Seive 

RESULTS AND DISCUSSION 

Conducting a clean water intervention can be difficult, more so due to being in a 

developing country, requiring extensive research in to the materials and skills available in 

the working country (Ngai & Fenner, 2008), (Wang, Dulaimi, & Aguria, 2004). For an 

intervention project to be successful, a robust supply chain is required with analysis of 

production, information, distribution, sales, incentivization, and consumption (Yadav, 

Stapleton, & Wassenjove, 2013). Table 4 outlines the supply chain developed around 

supporting the AguaSeis initiative done in Honduras.  

Currently, the production is headed by a local individual named Santos Munoz. 

Startup of his production facility required an initial investment of $400.00 USD to 

purchase materials for two BSF molds and construction of 15 filters. Another proposed 

setup for a new construction facility, utilizing steel molds, was quoted for $2000 USD in 

2002 (Ngai, Sen, & Lukacs, 2002). Clean Water for Haiti sells steel molds for $450 USD 
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with others selling them for $750 USD (Clean Water for Haiti, 2010). In Honduras, there 

were not industrial sieving operations nearby, so the production facility sieves all of the 

sand and gravel on site contrary to the recommendations of a different study (Bergner, 

Cashen, Jordan, Pelnik, & Williams, 2012). However, by sieving on site, it allows the 

operation to have more process quality control to properly source and sort usable sand 

and gravel, being an important component to a successful BSF operation (White, 

Sangster, Joy, & Dunekacke, 2013). The materials cost associated with BSF construction 

can be found in Table 5. The labor costs associated with production can be found in 

Table 6, if $8.50 USD are retained for material and upkeep costs. 

One study found identifying key personnel, with entrepreneurial qualities can 

make or break a project (Okeoma, 2010). Our experiences in Honduras support this 

conclusion. The low cost of operations in setting up an AguaSeis production facility 

allows for decreased barriers to entry in the clean water market. Santos, whose wife owns 

a small shop and himself working as a contractor, was equipped to anticipate the 

investment of time and effort required to run a BSF production facility. 

In addition to the production facility are monitoring activities carried out by local 

personnel. Core information gathered in country includes global positioning system 

(GPS) coordinates and fecal coliform (FC) colony forming units (CFU) per milliliter. 

Accounting for products and services delivered can be difficult in a developing country, 

but important to the longevity of a project (Yadav, Stapleton, & Wassenjove, 2013). All 

filters built are given a GPS coordinate, using a cheap tablet with a built-in GPS chip, 

allowing corresponding data (user name, filter age, filtration efficiency, etc.) to be 

overlaid in a geographic information system (GIS) representation, simply made using 
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Microsoft Publisher, as seen in Figure 24. This tool enables project managers to rapidly 

and easily draw conclusions from a wide range of filter attributes. 

The distribution element of the supply chain includes filters, clean water, and 

information. The filters are delivered by the foreman of the production facility. This is 

necessary because proper installation is important to filter functionality, requiring special 

training. The clean water that is produced by the filters is frequently shared by their 

owners. It was discovered that pulperias, small shops prevalent in Honduran 

communities, who own filters will frequently give away filtered water for free. The 

AguaSeis project now keeps track of those pulperias for use as micro-distribution centers 

(MDCs). Safe water practices, BSF information, and clean water can now be 

disseminated from these MDCs. In return the pulperias’ filters are tested weekly, for 

filtration efficiency using 3M Petrifilms determining total coliform removal by a local 

who works and lives nearby, along with any water from the rest of the community. These 

MDCs also serve as a way for project managers to find out community concerns about 

the BSFs and prioritize supply chain extensions as needed. 

Sales for filters are contracted to the production facility as needed, from MDCs 

and NGOs. Currently, the project in Honduras is in contact with two pulperias and the 

nearby missionaries. The act of establishing a production facility piqued interest in the 

community, generating work orders for the facility from day one. Currently each filter is 

being sold for $25.00 USD, approximately 1% of the national minimum wage in 2010, by 

the foreman. The material cost per filter is $7.50 USD, 30% of the total sale. The rest of 

the cost goes to labor and facility maintenance as required by the foreman. Comparable 

operations include a micro-enterprise in Nawalparasi, Nepal charging 2000 Napali 
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rupees, or about $27 USD, per filter built from the steel mold (Ngai, Sen, & Lukacs, 

2002). The CDC website for biosand filters states average slow sand filter prices vary 

from $15 to $60 (CDC, 2012). One Guatamalan estimate values the material cost of a 

BSF to be $15.00 USD, with a steel mold, capable of building 1500 filters over 5 years, 

for $2000.00 USD for just the mold (Yung, 2003). The BSF cost for the AguaSeis project 

accounts for materials cost, based on an estimate of one mold building 20 filters, is priced 

to be accessible to households in the area while providing an above minimum wage 

income to the laborers and foreman. 

An analysis of 286 randomly chosen biosand filters, considering many BSF 

factors influencing severity of diarrhea burden and filter operations and maintenance, 

found chlorinating post-filtration was positively correlated with proper filter use 

(Divelbiss, Boccelli, Succop, & Oerther, 2012). Based on this, user manuals were 

produced explaining how to use a filter and how to do post-treatment, as seen in Figure 

25. Informational posters were also made to explain how the BSFs can save money and 

protect the health of the users, also in Figure 25. These documents are available through 

the NGOs and associate MDCs. By making these materials present at the pulperias, filter 

users can have access to the project managers, forming a two way street for information. 

The pulperias will normally sell bottled water for $1.70 per five gallons from the local 

bottling company. The BSF filter provides an alternative for the locals where owning a 

BSF filter would pay back the $25.00 USD cost of a filter in eight days, assuming 10 

gallons per day of bottled water consumption.  
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Table 4: Biosand Project Supply Chain 

FACTOR AGUASEIS SUPPLY CHAIN 

PRODUCTION 

 Production completely occurs in country. 

 Heavily relies on dependable entrepreneurs who own land for 

production facility setup. 

 Requires capital cost of $400 USD for materials and tools. 

 Low operating cost, mostly in man-hours (8 hours per filter). 

Each filter costs $7.50 USD in materials and are sold for 

$25.00 USD. 

INFORMATION 

GATHERING 

 Systematic information gathered using GPS and coliform data 

from third parties (NGOs and micro distribution centers). 

 Supply chain planning is based on finding pulperias to serve 

as MDCs in neighboring communities. 

DISTRIBUTION 

 Distribution asset investments are placed in improved 

information gathering and dissemination. 

 GPS data allows for traceability of filters. 

 Pulperias serve as MDCs, becoming community hubs for 

WASH data dissemination and water filtration services. 

RETAIL POINT 

OF SALE 

 Sales are contracted through NGOs and the pulperias to the 

production centers. Common modus operandi is for half cost 

of the filter upfront and the rest on delivery. 

 Most filter owners end up sharing filtered water, increasing 

interest in the product. 

INCENTIVE 

STRUCTURE 

 Sales incentives for pulperias were attempted, but they are not 

interested in selling the filtered water. The value is placed in 

giving free clean water and important health information. 

 Production facilities are incentivized to construct filters, albeit 

in a sporadic nature, when work is hard to find by providing a 

reliable income source. 

CONSUMPTION 

BENEFITS 

 Consumption of filtered water reduces DALYs for filter 

owners and those who share. 

 Each BSF can produce 10 gallons of filtered water per day. 

 Reduces the cost of clean water consumption. While 

increasing accessibility. 
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Table 5: Material Costs per BSF 

Purchase List in Northern Honduras 

 Cost USD # of Filters Made 

1 Pile of Sand and 

Gravel 

 $  65.00  20 

1 Four by Eight 1/2" 

Plywood 

 $  28.00  30 

20 feet 1/2" PVC  $    3.50  10 

Plastic Diffuser  $    1.00  1 

3 PVC Elbows, 1/2"  $    0.60  1 

1 Bag Cement  $    5.00  2 

2 Ceramic Tiles  $    1.00  1 

 

Table 6: Profit from Filters Sold at $25USD 

Filters 

Built/Week 

Number 

of 

Laborers 

Labor 

Hours 

/Filter 

Total 

Profit 

Profit 

/Person 

Hours 

/Person 

/Filter 

Hours 

/Person 

/Week 

3 1 10 $990 $990 10 30 

5 2 8 $1650 $825 4 20 

7 2 8 $2310 $1155 4 28 

7 3 7.5 $2310 $770 2.5 17.5 
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Figure 24: GIS Overlaid Map 
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Figure 25: AguaSeis BSF User's Manual on Top, Informational Poster on Bottom 

The next logical step would be to assess the process for embodied energy 

required. Others have looked at two parameters of clean water interventions in Mali. The 

first was the direct and indirect energy required for pre-manufacturing, manufacturing, 
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and usage (Held, Zhang, & Mihelcic, 2013). The second was the human energy 

consumption, key to sustainable projects in developing nations. This approach could be 

applied to conducting a cost-benefit analysis of establishing the AguaSeis supply chain, 

in Honduras and other countries. The Mali research found BSFs have been found to have 

a total embodied energy of 140 megajoules per 12 cubic meters per day, relatively low 

compared to other interventions (Held, Zhang, & Mihelcic, 2013). However, this is based 

on the steel mold method of construction and would be much less for the AguaSeis 

method. If the new total embodied energy is calculated, this figure can be used to analyze 

the amount of social good done by an AguaSeis project (Rogers, Bhatia, & Huber, 1998). 

This cost-benefit analysis, combined with the results garnered from the AguaSeis 

construction methods and supply chain, could ensure sustainable adoption of BSF 

interventions in other parts of the world. 

CONCLUSION 

The AguaSeis wooden molds and rotary sieves combined with a MDC-based 

supply chain can effectively provide sources of income, safe drinking water, and 

sustained operations to communities requiring a clean water intervention. As of January 

2014, more than 50 filters have been constructed using the wooden molds.  
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CHAPTER IV 

 

LONGITUDINAL ASSESSMENT OF INTERMITTENT SLOW SAND FILTER 

PERFORMANCE IN NORTHERN HONDURAS 

 

ABSTRACT 

Lack of access to clean drinking water is a problem stymying the growth of 

developing nations all around the world. Point-of-use intermittent slow sand filters, also 

known as biosand filters (BSF), are an effective clean water solution for places without a 

well maintained clean water system. This study was conducted in the Campana region of 

Honduras, where a clean water project was started with the express intent of creating 

sustained, local BSF production and adoption. Implemented in March 2011, 46 filters 

were made in-country by January 2014 with 72% still in operation. An averaged removal 

rate of total coliforms, sampled from 27 filters, was found to be 91%.   

INTRODUCTION 

Poor quality drinking water is a global problem, gravely affecting the developing 

world and contributing to approximately 1.8 million deaths per year and 1.1 billion 

without access to “improved” drinking supplies (WHO, 2007) (Ashbolt, 2004). 

Consequences from having improperly designed water systems can adversely affect the 

health and economic productivity of a nation (Poverty-Environment Partnership, 2014). 
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In countries without well maintained water systems, point-of-use water (POU) treatment 

technology can be an effective solution to meeting the water quality needs of 

communities, with the potential to prevent 94% of worldwide diarrheal cases (Sobsey, 

Stauber, Casanova, Brown, & Elliott, 2008), (WHO, 2007). Most of these interventions 

require a consumable product that must be purchased, failing to provide clean water 

during periods of financial strife. Intermittent slow sand filters (ISSF), commonly 

referred to as biosand filters (BSF), are POU water filters that are installed in the 

household and can be use continuously without outside intervention (Sobsey, Stauber, 

Casanova, Brown, & Elliott, 2008). By retaining the microorganisms of a contaminated 

water supply within a simple sand medium, BSF technology has been shown to have as 

much as 4 log10 removal of E.coli, and 95% removal of bacteriophages (Elliott, Sauber, 

Koksal, DiGiano, & Sobsey, 2008). 

BSF performances have been exhaustively studied all around the world. A study 

in Kianjavato, Madagascar had measured BSF performance from filters processing a 

variety of water sources. This is a rural community with about 10,000 people where 

filters were built in 2011 and 2012. They built round concrete filters based off the 

biosandfilter.org guidelines, using cylindrical steel molds with an interior volume of 53.5 

liters. They measured filtration efficiencies using 3M™ Petrifilm™ E.Coli/Coliform 

Count plates. Loading total coliforms (TC), had concentrations of 200 to 800 colony 

forming units (CFU)/100 mL from well water and 1600 to 6200 CFU/100 mL from river 

water (White, et al., 2013). Their loading rate was 18 liters every 24 hours. They found 

some filters would achieve >85% TC removal by seven days after initial loading, while 

others would have more TCs in the effluent than influent.  



53 

 

BSFs in Bonao, Dominican Republic resulted in two publications. The first paper 

had field data collection starting on June 19, 2005 to July 27, 2006. They randomly gave 

out BSFs in February 2006 to determine impact on diarrheal incidents. They had 187 out 

of 210 households complete the study. The average BSF influent had an E. coli 

concentration of 21 MPN/100 mL with an average 48% removal (Stauber, Ortiz, Loomis, 

& Sobsey, 2009). The second paper analyzed the performance of filters approximately 

one year after installation, plus additional filters constructed by the Bonao Rotary Club. 

A total of 328 BSF households were analyzed. The influents had E. coli measurements of 

11% < 1 MPN/100 mL, 22% 1-10, 38% 11-100, 22% 101-1000, and 7% >1000. The 

average removal found from the effluent was 84-88% (Aiken, Stauber, Ortiz, & Sobsey, 

2011). Tests for the presence total coliforms, including E. coli, are a good indicator of 

increased chance of contracting diarrhea causing diseases (Edberg, Rice, Karlin, & Allen, 

2000). 

The use of plastic housed biosand filters was studied in Copan, Honduras. It is 

one of three simultaneously conducted trials carried out in Honduras, Ghana, and 

Cambodia. The Honduran study was carried out between May 5, 2008 and February 25, 

2009. This randomly controlled study gave 90 households a filter while 86 families 

served as control with no filters. Their water sources were 49 to 69% unprotected, 24 to 

50% protected, 1 to 11% piped, and 0 to 2% rainwater. The geometric mean for the 

influent E. coli concentration was 60 MPN/100 mL with a BSF effluent of 23 MPN/100 

mL. Their plastic BSFs had an average reduction of 61% E. coli and 38% total coliforms 

(Fabiszewski de Aceituno, Stauber, Walters, Sanchez, & Sobsey, 2012). The study in 

Ghana was a randomized control study with 260 households, beginning June 17, 2008 to 
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December 23, 2008. 117 plastic filters were given to the communities. 71 to 98% of 

households used water from surface water, collected from behind earthen dams. The 

average contamination for the influent E. coli was 823 MPN/100 mL. The average 

removal rates were 97% removal of E. coli (Stauber, Kominek, Liang, Osman, & Sobsey, 

2012). The study in Cambodia was also a randomized control study between March 13, 

2008 and December 20, 2008. Plastic BSFs were installed in July for 90 households. The 

average influent E. coli concentrations were 36.7 CFU/100 mL, and the average BSF 

effluent 2.9 CFU/100mL for an average removal rate of 93.3% reduction (Stauber, Printy, 

McCarty, Liang, & Sobsey, 2011).  

There are more than 200,000 BSFs implemented around the world (Clasen, 2009). 

The largest concerted effort for BSF dissemination, providing the bulk of these filters, 

comes from Samaritan’s Purse Canada. An analysis in 2001 surveyed 585 household 

BSFs in Kenya, Mozambique, Cambodia, Vietnam, Honduras, and Nicaragua. They 

analyzed TC concentrations and found influents to range from 0 to 10,000 CFU/100 mL, 

with a BSF world average removal to be 93%. The source of the water was commonly 

from shallow wells, composing 40% of influents. Deep wells, piped water, and capped 

wells were the next most used sources, respectively 15.4%, 14.6%, and 9.8%. Their main 

recommendations for improving BSF projects is to provide labeled influent and effluent 

containers, have more training material for basic water, sanitation, and hygiene (WASH) 

practices, and enhance local capacity of technicians, possibly through moving workshops. 

A recent, updated study of Samaritan Purse’s Cambodia program conducted further 

analysis of their BSFs. Out of 294 users, 63% of BSFs used rainwater as their main 

influent. Wells deeper than 10m were 48% and rivers or streams were 17%. A 5 month 
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longitudinal study of 107 BSF owning families was analyzed. Of those, 46% used surface 

water, 46 % deep well water, and 4% rainwater. 51% of influents had E. coli 

concentrations between 101 to 1000 CFU/100 mL, and 22% had more than 1000 

CFU/100 mL. Following filtration, 57% of effluents from BSFs had concentrations 

between 1 to 10 CFU/100 mL and 26% 11 to 100 CFU/100 mL (Water and Sanitation 

Program, 2010). 

Other issues related to BSFs are inconsistencies in how projects are implemented 

and monitored, affecting overall project performance. One study in the Artibonite Valley 

of Haiti visted 55 BSFs in March 2011. Their ages ranged from less than one year to 

twelve years of continued use. 47% of the filters were no longer in use, with 65% of 

those being less than seven years old. All of the filters were provided for free, but buckets 

for usage had to be purchased. The eight problems identified, expressed by multiple 

studies, were improper knowledge of filter maintenance, insufficient training, poor water, 

sanitation, and hygiene (WASH) understanding, sand clogging, poor follow up from 

project managers, and construction problems. They recommend distributors provide long-

term education and technical support, better understanding of societal and cultural needs, 

and continued collaborative work with local governments and NGOs to develop 

educational materials (Sisson, Wampler, Rediske, & Molla, 2013). Another study in 

Posoltega, Nicaragua analyzed filters installed in 1999 and 2004. At 2007 the filters were 

eight and three years old. Out of 234 filters, 24 were still being used or 10.3%. The 

average influents from source waters were 13,000 CFU TC/100 mL and 130 CFU E. 

coli/100 mL. For the filters still in operation, the average filtration rates were 98% TC, 

and 96% E. coli. The main complaint were of cracks developing in the sides of the filters. 
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No one in the community knew how to fix the filters because they were built by outside 

implementers (Vanderzwaag, Atwater, Bartlett, & Baker, 2009).   

The study in this paper was conducted as part of a clean water project with 

Oklahoma State University Engineers Without Borders Student Chapter (EWB-OSU) in 

the Campana region of Honduras. Previous health surveys done by our partner NGOs 

(Gathering Hearts for Humanity) had determined the community of Seis de Mayo, 

Honduras had a 25% infant mortality rate stemming from contaminated water supplies. 

BSFs were chosen to be the best solution to their drinking water problems. This paper 

covers the longitudinal development of the BSF project from January 2012 to January 

2014. Because previous research has well established the health benefits of BSF usage, 

disease surveillance was not included in the project. Instead, the objective was to see if 

and how local production facilities can be established with minimal outsider intervention. 

TC counts were taken of the influent and effluent of filters to determine filtration 

efficiencies and to indirectly gauge the potential health benefits to the community 

(Edberg, Rice, Karlin, & Allen, 2000). To monitor the success of the facilities 

information was taken including data of number of BSFs built, BSF performance, user 

retention, and general observations of approaches to ensuring a sustainable project. 

MATERIALS & METHODS 

Research Setting 

A total of five monitoring visits were made between March 2011 and January 

2014. The communities in the Campana region of Honduras, where Seis de Mayo is 

located, experience alternating wet and dry seasons. The December and January samples 

were taken in the midst of their wet, rainy season, while March samples are just at the 
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start of the dry season. Because most of the filters were constructed and purchased by the 

locals, there was no standing agreement to allow our investigators into homes. The 

production facilities would have the information of where new filters were built and 

delivered, where upon BSF owners could volunteer samples and information. 

The first concrete POU biosand filters were constructed to meet the water needs 

of the community in March 2011. The filters were a custom design, marketed in-country 

as AguaSeis filters, using thicker walls and accompanied by instructional printed 

materials made in conjunction with locals. Promotional posters were made to sell the 

filters, an example of one of these posters can be seen in Figure 26. Attempts were made 

to establish BSF production facilities in Seis and surrounding communities, of which a 

couple have been successful in making BSFs without continued outside intervention.  

Since the inception of the technology in to the community, filters have been sporadically 

constructed by EWB-OSU and local producers.  
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Figure 26: AguaSeis BSF Promotional Poster 



59 

 

BSF Quality Assessment 

Over the past few years of monitoring, samples were taken from the influent and 

effluent of BSFs. The influent was taken from the water sources as if they were about to 

be poured in to the BSFs. For more than 90% of the homes, this was from water taps in 

the house piped from outside the communities. For the most part, these taps contained 

water from a mix of spring water and surface runoff recontaminated by total coliforms on 

its way to the homes of the BSF users. The effluent samples were taken directly from the 

water exiting the BSF sampled. The samples were not taken from the normal water 

receptacles used by the household because this study was over the filtration efficiencies 

of the filters, not of the overall drinking water quality of the household. 

3M™ Petrifilm™ E. coli/Coliform Count Plates (Petrifilm™ EC plates) were 

used to quantify the coliform CFU concentration, in CFUs/mL, of influent and effluent 

water related to the test filters (3M, 2014). Total organic carbon (TOC) tests were done 

using Hach Low Range Total Organic Carbon (TOC) Test ‘N Tube™ Reagent Set 

2760345, method 10129, with a range of 0.3 to 20.0 mg/L TOC.  

Notes were taken about the status of the filters including flow rates, frequency of 

usage, filter placement, and concrete shell condition. Because BSF owners are not always 

forthcoming about frequency of filter usage, these types of observations are important to 

determining if poor filtration efficiencies are due to user error or inconsistent construction 

quality. For instance, if the home owner has to move a potted plant out of the way to 

access their filter, that probably means they are not using their BSF all that often. This 

sort of investigative assessment was useful for properly understanding the local concerns 

crucial to a successful BSF operation (Sisson, Wampler, Rediske, & Molla, 2013). 
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RESULTS 

As seen in Table 7, many filters have been constructed in the region since the 

project’s inception in March 2011. Instructional documents on proper filter maintenance 

and usage, as seen in Figure 27 were implemented March 2012. Prior to that, 

maintenance and operational information were verbally distributed. Out of 46 total BSFs, 

as of January 2014, 17 were built by OSU-EWB students and the rest by the local 

production facilities. The ages of filters ranged from two and a half years to only a couple 

of months. Some of the filters and their locations can be seen in Figure 28. Even without 

active prodding from the EWB-OSU project managers, the local production facilities 

have sold filters outside of the original target communities. The distance between the first 

filters, implemented in Seis de Mayo, and the latest ones installed by the local production 

facilities, in Alto Puente are about five miles. 

The data from Table 8 contains TOC measurements of various samples taken in 

January 2014. The river, well water, and rain water samples were single point samples of 

influents that would go in to a BSF. The average piped influent is represented from nine 

samples and the BSF effluent from four. This information was taken to determine if the 

influent source TOC affected BSF filtration efficiencies. While more than 90% of the 

filters are fed with piped water, it is anticipated some of the filters unknown to us may 

use sources with higher organic content. This study did not see a correlation between 

filter performance and influent TOC. 

The filters sampled for Table 9 were about two and a half years old at the time of 

sampling. Out these nine original filters, four were not being used at the final sampling. 
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Out of these four, two of the users insisted they still used their BSFs every day, but 

qualitative observations indicated otherwise.  

Table 7: BSF Filtration Efficiency Summary 

Date of 

Analysis 

Total 

Filters 

Built 

Filters 

Still 

in Use 

Filters 

Sampled 

Mean 

Influent TC 

CFU/mL 

Mean 

Effluent TC 

CFU/mL 

Mean % 

Removal 

 

Standard 

Deviation 

Jan-12 9 9 9 14.6 6.89 34.3% 1.61 

Mar-12 9 9 9 9.5 4.56 47.6% 0.32 

Dec-12 27 22 25 20.1 1.8 94.1% 0.16 

Mar-13 32 27 19 64.6 3.7 76.2% 0.32 

Jan-14 46 33 27 55.0 12.2 91% 0.17 

 

Table 8: Field TOC Measurments 

NAME TOC, MG/L STANDARD 

DEVIATION 

CHAMELECOR RIVER 19.7  

WELL WATER 10  

RAIN WATER 13  

AVERAGE PIPED INFLUENT 15.9 2.53 

AVERAGE BSF EFFLUENT 11.7 1.57 
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Figure 27: BSF User's Manual 
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Table 9: Nine Oldest BSFs FC CFU/mL 

 5-JAN-12 15-MAR-12 

 Influent 

CFU/mL 

Effluent 

CFU/mL 

% 

Removal 

Influent 

CFU/mL 

Effluent 

CFU/mL 

% 

Removal 

ROMONA  7 0 100%  0  

MARGARITA 19 0 100% 16 5 69% 

OTILIA SALIMIENTO 33 0 100%  5  

SANTOS 9.5 10 -5% 5 2 60% 

ANDREAS 10.5 51 -386%  17  

UMBERTO MARTIN 0 1 100% 4 4 0% 

ALEJANDRA/LAZARO 41 0 100% 13 5 62% 

ANTONIO MARKO 5 0 100%  2  

SUYAPA 6 0 100%  1  

       

 15-DEC-12 15-MAR-13 

 Influent 

CFU/mL 

Effluent 

CFU/mL 

% 

Removal 

Influent 

CFU/mL 

Effluent 

CFU/mL 

% 

Removal 

ROMONA     0 1 100% 

MARGARITA 16 12 25% 26 5 81% 

OTILIA SALIMIENTO 17 0 100% 9 0 100% 

SANTOS 11 0 100% 19 1 95% 

ANDREAS 16 6 63% 12 4.5 63% 

UMBERTO MARTIN   100%    

ALEJANDRA/LAZARO 137 0 100%    

ANTONIO MARKO 1   100% 20.5 0 100% 

SUYAPA 2 0 100%       

       

 8-JAN-14  Legend  

 Influent 

CFU/mL 

Effluent 

CFU/mL 

% Removal Not in 

Use 

 

ROMONA  0 0 100%    

MARGARITA 16 0 100%    

OTILIA SALIMIENTO 15 0 100%    

SANTOS 30 5.25 83%    

ANDREAS 6.5 0 100%    

UMBERTO MARTIN 1.5     

ALEJANDRA/LAZARO 10.5 18.75 -79%    

ANTONIO MARKO          

SUYAPA 0 0      
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Figure 28: Overlay of BSF Owning Houses and Influent Concentrations of TC CFU/mL 
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DISCUSSION 

The removal rates compare well to other BSF projects, with an overall average 

TC removal rate of 91% in January 2014 (Stauber, Printy, McCarty, Liang, & Sobsey, 

2011) (Stauber, Kominek, Liang, Osman, & Sobsey, 2012) (Stauber, Ortiz, Loomis, & 

Sobsey, 2009). There were no complaints of cracks in the walls of the filters, apparently 

because of the additional wall thickness, as found in another study (Vanderzwaag, 

Atwater, Bartlett, & Baker, 2009). The design used was made to involve the community 

as much as possible and seemed to have contributed to the increased retention rate of 33 

out of 46, or 72%, as compared to the 10% retention in Nicaragua over a similar time 

frame (Vanderzwaag, Atwater, Bartlett, & Baker, 2009).  

On one monitoring excursion carried out March 2012, two filters, one owned by 

Margarita and the other by Alejandra and Lazaro, allowed our team unique insight in to 

how the locals perceive the filters. Initial assessment and interviews seemed to indicate 

their filters were being used correctly and consistently. However, their TC tests came 

back showing sub-optimal removal rates. When additional interviews are carried out with 

the filter owners, it was determined the problem was with misunderstanding how to 

maintain the filters. Margarita’s mother would clean the filter everyday by removing the 

effluent pipe and washing it in the sink. This would allow air bubbles in to the sand 

column, detrimental to effective biological filtration. Their family was also over using the 

filter, not allowing for an adequate rest period between loadings. The other useful user 

interaction was with Lazaro who had shortened his pipe to increase flow. He would also 

wash his sand every other day by removing the top two inches of sand and scrubbing it in 

the sink. The common thread between these two and most of the owners, regarding filter 
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usage and maintenance, is over diligence with cleaning the filter, something that has not 

been seen in other papers. New user manuals were made to address the issue based on 

these findings. Later tests of the two filters with our interventions in place resulted in 

much better performance. 

Inclusion of community members in developing the technology and 

accompanying manuals was important to increasing usage rate. For instance, following 

conversations with several bilingual residents, it was discovered that in that part of 

Honduras, the word “potable” is considered to be synonymous with dirty water. It was 

also recommended to us to sell the idea as “purified” rather than “filtered” water, because 

of higher user recognition of purified water. Continued involvement in generating 

educational materials about proper WASH techniques and BSF usage also seems to help 

with technology adoption and the sustained construction of filters, as recommended by 

the Haiti study (Sisson, Wampler, Rediske, & Molla, 2013). 

The limitations of the BSF technology, to reiterate recommendations of previous 

findings, are wholly contained in how well project managers integrate local community 

involvement to meet the long-term educational and technical support required of a 

sustainable operation. The problem with other projects has been in decline of interest in 

the filters after implementers left the country. This surmountable problem can be fixed by 

developing more local expertise in the filter construction and usage. Utilization of locals 

can allow for the filters to be sold as aspirational devices, rather than merely necessary 

implements. This approach to marketing the filters, plus a better local support system, has 

the potential to improve local adoption of BSF solutions. 
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