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ABSTRACT:  

Circulant matrices may be used to process certain kinds of signals in computer science 

applications. Specifically, they can be used as signal transforms. In this thesis several 

new applications of circulant matrices are described. New results have been obtained in 

number theoretic Hilbert transform (NHT), which is a generalization of discrete Hilbert 

transform (DHT).The NHT matrix generates ideal orthogonal sequences named as 

random residue sequences, since the NHT matrix with its transpose computes all 

correlation in the block. Random residue sequences can be used as carriers for wireless 

communications. We also investigate applications of circulant matrices to store and 

reproduce patterns as neural memories. 

 

 



 
 
 
 
 
 
 
 
 

iv 
 

 
TABLE OF CONTENTS 

 

Chapter                                                                                                                           Page 

I. INTRODUCTION………………………………………………………...............1 

1.1 Matrix transforms in computer science applications……………………...1 

1.2 Discrete Fourier transform………………………………………………...1 

1.3 The Discrete Hilbert Transform…………………………………..............2 

1.4 Circulant matrices……………………………………………………...…4 

1.5 DHT in Data Hiding…………………………...….……………………....6 

1.6 Problem Statement………………………………………………………..8 

 

II. REVIEW OF RELATED LITERATURE……………………………………......9 

2.1 NHT-circulant Matrices……………………………………………...…...9 

2.2 Number Theoretic Hilbert Transform………………………...………......9 

2.3 Random sequences……………………………………………………....10 

2.4 D sequences…………………………………………………………...... 11 

2.5 PN-sequences…………………………………………………………....12 

2.6 Neural Networks………………………………………………...….…....12 

2.7 The Back Propagation Algorithm……………………………….............16 

2.8 Hopfield Network……………………………………………….............17 

 

III. NUMBER THEORETIC HILBERT TRANSFORM AND RANDOM RESIDUE 

SEQUENCES……………………………………………………………...........19 

3.1 The 10-point and 12-point NHT………………………………...……....19 

3.2 Development of 14-point and 16-point NHT……………………............21 

3.3 Random residue sequences……………………………………....……....28 

 

IV. ARCHITECTURE OF WIRELESS COMMUNICATION SYSTEM USING 

RANDOM RESIDUE SEQUENCES………………………………….…..........37 

4.1 Spread spectrum based communication system…………………………37 

4.2 Communication system architecture using rr sequences………………..39 

4.3 Implementation of wireless system architecture using 16 bit sequence...40 

 

V. MEMORY CAPACITY OF NEURAL NETWORKS USING CIRCULANT 

MATRICES………………………………………………………………..........42 

5.1 Motivation……………………………………………………….............42 

5.2 Artificial neurons used…………………………………………………. 43 

5.3 Structure of Memories generated by circulant matrices………….. …... 46 

 



 
 
 
 
 
 
 
 
 

v 
 

    VI.CONCLUSION ……………………………………………………………………51 

 

          FUTURE WORK………………………………………………………………….52 

 

REFERENCES……………………………………………………………………53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 

vi 
 

 

LIST OF TABLES 

 

 

           Table         Page 
 

 

1. The 14-point NHT for modulus 29….….….................................23 

2. The 16-point NHT for modulus 13……………………………...25 

3. Examples for 16-bit long NHT sequences……………………....31 



 
  

  

  

vii 
 

LIST OF FIGURES 

 

Figure         Page 

 

1 Information hiding system……….……….………………….….…..... .7 

2 Neural network………………………………………………………...13 

3 Artificial neuron……………………………………………………….14 

4 Feed-forward network………………………………………………....15 

5 Feed-back network…………………………………………………….16 

6 Hopfield network……………………………………………………...18 

7 Input graph for mod 7283……………………………….………….....32 

8 Autocorrelation function for the given input………………………….32 

9 Input graph for mod 2185……………………………………………..33 

10 Autocorrelation function for the given input………………………….33 

11 Cross correlation function between example 1 and 2 mod n=7283…...34 

12 Cross correlation function between example 1 and 2 mod n=21851….34 

13 Cross correlation function between example 1 and 3mod n=7283……35 

14 Cross correlation function between example 1 and 3 mod n=3121…...35 

15 Spread spectrum communication system……………………………...37 

16 Wireless system architecture using random residue sequences……….40 

17 Zero auto correlation produced when user produces his sequence……41 

18 Artificial neuron used in Hopfield network…………………………...44 

19 Memories occupied by each order circulant matrix…………………..49 

20 Memories occupied by even order circulant matrix…………………..49 

21 Memories occupied by odd order circulant matrix………………....…50 

 

 

  



 
  

  

  

1 
 

CHAPTER I 

 

 

                                               INTRODUCTION 

 

1.1Matrix Transforms in Computer Science Applications 

A matrix is a rectangular array of number of rows and columns and a matrix consisting of 

m rows and n columns is known as m×n matrix. Often matrices are used to store data or 

to solve problems using certain matrix calculations. Matrix transforms are performed on 

matrices through matrix multiplication of a point matrix by a transform matrix. Let T be a 

transform matrix, P be a point matrix and N be a new transformed point matrix then N = 

T P. We can perform operations including rotation, scaling, shearing, reflection and 

orthogonal projection by using 2D matrix transforms. With the help of matrix theory 

methods and linear algebra matrix transforms can be developed with applications in areas 

of computer science like computer graphics, robotics, image processing, signal 

processing, cryptography, animation and so on [1]-[6]. 

1.2 Discrete Fourier Transform 

Fourier transform is the operation that helps to decompose a signal into its constituent 

frequency components. The Fourier transform for a continuous time signal  tx may be 

defined as 



 
  

  

  

2 
 

    




  ),,wdtetxwX jwt  

The Fourier transform comes in three varieties: the plain-old Fourier transform, the 

Fourier series and the discrete Fourier transform. Discrete Fourier transform is a specific 

kind of Fourier transform which converts or transforms finite function of equally spaced 

samples to a function of finite sampled coefficients. The input samples are complex 

numbers and the output coefficients are complex as well. From the above definition it 

means that discrete Fourier transform requires input function that is discrete and non-zero 

values must have a limited duration. From the Fourier transform we can easily obtain 

discrete Fourier transform with finite summation of limits over a signal x , which may be 

defined as 
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wheremeans “is defined as” or “equals by definition”. Discrete Fourier transforms are 

used for data compression, spectral analysis and data convolution. 

1.3The Discrete Hilbert Transform 

The Hilbert transform has many applications in signal processing, imaging, modulation 

and demodulation of instantaneous frequency and in cryptography. The discrete Hilbert 

transform (DHT) has several forms [7]-[11].  
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The Discrete Fourier Transform (DFT) has a number theoretic version that has many 

applications, we would like to have similar number theoretic version of the Discrete 

Hilbert Transform. The basic Discrete Hilbert Transform (DHT) of discrete data  nf

where n=   ,...,1,0,1,...,  is given by [7] 

     DHT   nf =g  k =
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The inverse Discrete Hilbert Transform (DHT) is given as: 

 nf =
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The matrix form of the DHT requires data the data of finite length. Since the DHT 

transform is defined for an infinite number of points, limitations of the DHT transform 

signal to a finite set would set up an approximation in the signal that is recovered. 

The DHT is given below for data n=0, 1, 2… 
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1.4Circulant Matrices  

In this section we deal with circulant matrices and their properties [13]. An N×N 

circulant matrix can be formed by starting with a vector having n components. This 

vector becomes the first row of the matrix and the subsequent rows shift the elements of 

the previous rows to the right.  

C = 

 
 
 
 
 
 
𝑎 𝑏 𝑐 . . 𝑘
𝑘 𝑎 𝑏 𝑐 . .
. 𝑘 𝑎 𝑏 𝑐 .
. . 𝑘 𝑎 𝑏 𝑐
𝑐 . . 𝑘 𝑎 𝑏
𝑏 𝑐 . . 𝑘 𝑎 
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The eigenvectors of a circulant matrix are given by  

TN

jjjj wwwu ),....,,,1( 12   , where j = 0, 1… N.-1and 











N

ij
w j

2
exp are the nth root of unity and i = 1 . 

The determinants of circulant matrices are given by 

det circ   110 ,...,, nvvv     =   1
1




n
det circ   0121 ,,...,, vvvv n  

                                         =   1
1




n
det circ   0121 ,,...,, vvvv nn   

and iterations of these yield that det V =    
.det1

1 knk
T


 V for each integer 0 k <n. 

Circulant matrices form a commutative algebra, since for any two given circulant 

matrices A and B, the sum A+B is circulant, the product AB is circulant and AB=BA. 

The number of elements in the multiplicative group of circulant matrices of size N×N 

modulo elements p is [13],[14] 

   1,1  pNppartPN
 

where part  Np,  is number of partitions of p in up to N parts. 

1.5DHT in Data Hiding 

The data hiding or digital watermarking technique is used for the purpose of 

authentication, annotation and copyright protection. Not only the imperceptibility but also 
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the robustness against common signal is concerned as the performance of data hiding. 

Data hiding in audio signals exploits imperfection of Human auditory system (HAS) 

known as audio masking. As HAS has a wider dynamic and differential range compared 

to the other human senses. Hiding data in audio signals present a variety of challenges. 

The specific application of information hiding is one to which DHT lends itself naturally 

since phase shift in speech makes no difference as far as perception is concerned. In one 

method [15], the secret information which could be an image or some other linear 

sequence is encoded in binary form. The steganographic signal is hidden in the phase 

differences that will be produced based on whether the direct speech convert signal or its 

DHT has been transmitted. 

Since DHT does not affect the spectrum, for it only shifts the phase and the human 

perception system is insensitive to it, the fact that the steganographic signal carries 

additional secret information will not be obvious. 

The above model presents a schematic of the information hiding system. The secret 

sequence is determined by considering the DHT processed information for its shifts in 

phase according to a clock. The speech waveform will otherwise not be effected and 

therefore form a perception basis it will be unaltered.            
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Figure 1: Information Hiding System 

1.6 Problem Statement 

Circulant matrix transforms are used to process certain kinds of signals in computer 

science applications. Further properties of the recently proposed number theoretic Hilbert 

transform [12] have been obtained [16], [17]. A new class of orthogonal sequences called 

as random residue sequences can be developed from the number theoretic Hilbert 

transform (NHT) matrix. Random residue sequences can be used as carriers in wireless 

communications in place of shift register sequences [18], [19]. Circulant matrices [14], 

[20] have the capability to store and reproduce patterns as neural memories [21], [22] and 

they could be models of neural networks at birth and other structured networks [23]-[43]. 

Speech DHT 
Processor 

Speech 

Secret 

Sequence 

Secret sequence 
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Although Hebbian learning is the most popular model used in neural networks, we are 

interested in determining if the regular connectivity in the networks that may be assumed 

to be circulant can also store memories. This is likely to have applications in 

understanding the memories that newly-born organism seem to possess. We show that 

such memories are possible and we provide some results.  

The remainder of this thesis document is organized as follows. In Section II we briefly 

review the related work. In Section III we go through the random residue sequences and 

number theoretic Hilbert transform. The architecture of wireless communication system 

using random residue sequences is described in Section IV. In Section V we have a look 

at capacity of circulant matrices to store neural memories. The conclusions of the thesis 

are presented in Section VI. 



 
  

  

  

9 
 

        CHAPTER II 

 

 

REVIEW OF RELATED LITERATURE 

2.1 NHT-circulant Matrices 

A NHT circulant matrix can be formed by purging the diagonal zeroes in circulant 

matrix and adding alternative zeroes to all non-zero elements present. The NHT-

circulant matrix has some additional constraints like the sum of the squares of the 

entries is 1 and the other requirement is that NN
T
=1. 

                      N = 

 
 
 
 
 
 
 
 
 
 

0 𝑎 0 𝑏 0 𝑐 0 . . 𝑘
𝑘 0 𝑎 0 𝑏 0 𝑐 0 . .
. 𝑘 0 𝑎 0 𝑏 0 𝑐 0 .
. . 𝑘 0 𝑎 0 𝑏 0 𝑐 0
0 . . 𝑘 0 𝑎 0 𝑏 0 𝑐
𝑐 0 . . 𝑘 0 𝑎 0 𝑏 0
0 𝑐 0 . . 𝑘 0 𝑎 0 𝑏
𝑏 0 𝑐 0 . . 𝑘 0 𝑎 0
0 𝑏 0 𝑐 0 . . 𝑘 0 𝑎
𝑎 0 𝑏 0 𝑐 0 . . 𝑘 0 

 
 
 
 
 
 
 
 
 

mod m 

where N is the NHT transformation obtained and m is appropriate value of modulus. 

2.2 Number Theoretic Hilbert Transform  

With the help of NHT circulant matrix, a new class of transformation called the 

Number theoretic Hilbert Transform (NHT) can be obtained.NHT is a generalization 

of the standard discrete Hilbert transform (DHT).The notation for NHT transform is 

as follows:  
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F is the data block vector and G is the NHT transformed data block, N is the NHT 

transform matrix and the computations are with respect to the modulus m, the 

inverse of the NHT matrix is N
T
 mod m. We can represent in mathematical form 

as 

       G= NF mod m and 

        F = N
T
G mod m                                                                        (1) 

From the autocorrelation of a NHT, we will be able to derive a sequence which is 

zero for all non-zero shifts, which illustrates that these non-zero shifts are self-

orthogonal sequences which can also be called as Random Residue Sequences.  

2.3 Random Sequences 

Random numbers are used in different fields in cryptography for generating 

encryption keys, in simulating and modeling complex phenomena. Random numbers 

may be classified as pseudo-random and true-random [44]-[47]. True-random 

numbers are unpredictable and cannot be generated by physical processes. 

Randomness into computers is introduced in the form of pseudo-random numbers. A 

truly random sequence of binary symbols would be one for which a knowledge of 

past history of sequence would be of no assistance in predicting the next symbol. 

Such a sequence is sometimes referred to as digital noise. 

 

A random sequence is the one that appears to be perfectly random for K output 

symbols but then repeats i.e. it is periodic with a cycle time of K symbols. If K can be 
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made large enough then any interval up to K symbols will appear to be perfectly 

random. Random sequences can be constructed using shift registers. For a N stage 

shift register, 12  NK  for a maximal length shift register sequence. All settings 

cannot produce a maximal-length random sequence, but only when they have a cycle 

period less than K. Digital random sequences are used in error correcting and error 

detection codes. As random sequences have peaked autocorrelation properties they 

are widely used in radar ranging, GPS systems and spectrum communication systems 

such as digital cell phones. D sequences and PN sequences are two commonly used 

types. 

 

2.4 D Sequences 

Prime reciprocal or D sequences are obtained in expansion of fractions or irrational 

numbers and thus are “decimal” sequences to arbitrary bases [44]-[45]. Decimal 

sequences are obtained when a number is represented in a decimal form in a base r 

and they may terminate, repeat or be periodic. For a certain class of decimal 

sequences of q1 , q is prime, the digits are spaced half a period apart add up to 1r , 

where r is the base in which the sequence is expressed as 

  2modmod2 pa i

i   

The D-sequences are periodic and their randomness properties are checked only in 

one period. D-sequences may be generated by using feedback shift registers. Decimal 
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sequences are also known to have good cross correlation properties and they can be 

used in applications for encryption and error correction coding. 

 

2.5 PN-Sequences 

A Pseudo-random Noise (PN) sequence is a sequence of binary numbers, which 

appears to be random, but in fact it is perfectly deterministic [18]. The sequence 

appears to be random in sense that binary values and groups of binary value occur in 

the sequence in the same proportion. For a sequence to be a pseudo noise sequence it 

should follow the following basic rules. 

 The relative frequency of 0’s and 1’s are each 21 . 

 The run lengths of 0’s and 1’s are, 21 for all run lengths of length 1, 41 for 

all run lengths of length 2 and so on. 

 If a PN sequence is shifted by any non-zero number of elements, then the 

resulting sequence will have an equal number of agreements and 

disagreements with respect to the original sequence. 

These properties are known as balance property, run property and correlation property 

respectively. PN sequences are known as maximal length sequences are generated by 

using linear feedback shift register. PN sequences are widely used in digital 

communications, instrumentation etc. The good autocorrelation property of PN 

sequences makes them suitable for frame synchronization in digital communications.  
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2.6 Neural Networks 

An artificial neural network is an information processing paradigm that is inspired by 

the way nervous systems, such as brain, process information [21]. The key element of 

this paradigm is the novel structure of information processing system. It is composed 

of a large number of highly interconnected processing elements called neurons 

working in parallel to solve a specific problem. A neural network like people learn by 

example i.e. neural network is configured for a specific application, such as pattern 

recognition or data classification, through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between the 

neurons. This is true even in the case of artificial neural networks as well. 

 

Figure 2: Neural network 
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A trained neural network can be thought of as an expert in the category of 

information it has been given to analyze. A neural network can create its own 

organization or representation of information it receives during learning time. Partial 

destruction of a network leads to the corresponding degradation of performance. 

However, some network capabilities may be retained even with major network 

damage this tells us that neural networks are fault tolerant. 

 

A simple neuron. A typical neuron collects signals from others through a host of fine 

structures called dendrites. The neuron sends out spikes of electrical activity through 

a long, thin structure known as an axon, which splits into thousands of branches. At 

end of each branch, a structure called a synapse converts the activity from the axon 

into electrical effects, which inhibit or excite activity from the axon into electrical 

effects that inhibit or excite activity in the connected neurons. Learning occurs by 

changing the effectiveness of the synapses so that the influence of one neuron 

changes the other. 

 

Figure 3: An artificial neuron 
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Architecture of neural networks 

Based on the topology of neural networks, they can be classified into two types: 

feedforward and feedback. A feed-forward neural network allows signals to travel 

one way only, from input to output. There is no feedback i.e. the output of any layer 

does not affect the current layer. Feed-forward neural networks tend to be straight 

forward networks that associate inputs with outputs. They are extensively used in 

pattern recognition. 

 

Figure 4: Feed-forward network 

Feedback networks can have signals travelling in both directions by introducing loops 

in the network. Feedback networks are very powerful and can get extremely 

complicated. Feedback architectures are also referred to as interactive or recurrent, 

although the later term is often used to denote feedback connections in single-layer 

organizations. 
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Input Output 
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Figure 5: Feed-back network 

2.7 The Back Propagation Algorithm 

In order to train a neural network to perform some task, we must adjust the weights of 

each unit in such a way that the error between the desired output and the actual output 

is reduced. This process requires that the neural network compute the error derivative 

of the weights (EW). In other words, it must calculate how the error changes as each 

weight is increased or decreased slightly. The back propagation algorithm is most 

widely used for determining EW. 

 

The back propagation algorithm is easiest to understand if all the units in the network 

are linear. The algorithm computes each EW by first computing the EA, the rate at 

which the error changes as the activity level of a unit is changed. For output units, the 

EA is simply the difference between the actual and desired output. To compute EA 

Layer 0 

Layer 1 
Layer 2 

Layer 3 
Layer 4 

Input Output 
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for a hidden unit in the layer before the output layer, we first need to identify all the 

weights between the hidden unit and the output units to which it is connected. Then 

we multiply those weights by the EAs of output units and add the products. This sum 

equals to the EA for the chosen hidden unit.  

 

After calculating all the EAs in the hidden layer just before the output layer, we 

compute EAs for other layers, moving from layer to layer in a direction opposite to 

the way activities propagate through the network. This is why it gets the name back 

propagation. Once the EA has been computed for a unit, it is straight forward to 

compute EW for each incoming connection of the unit. The EW is the product of the 

EA and activity through incoming connection. The back propagation algorithm with 

non-linear units includes an extra step. Before back-propagating, the EA must be 

converted, the rate at which the error changes as the total input received by a unit is 

changed. 

2.8 Hopfield network 

The Hopfield network is created by supplying input data vectors, or pattern vectors, 

corresponding to the different classes. These patterns are called class patterns. In an 

n-dimensional data space the class patterns should have n binary components  1,1

i.e. each class pattern corresponds to a corner of a cube in an n-dimensional space. A 

Hopfield network can be used as an associative memory. If we want to “imprint” m 

different stable states in the network if we have to find adequate weights for the 
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connections. Hebbian learning can be implemented into Hopfield network by loading 

the m selected n-dimensional states mxxx ,...,, 21  on the network and by updating the 

network’s weights which are initially set to zero after each presentation according to 

the rule  

,
k

j

k

iijij xxww  nji ,...,1,  and .ji   

k

ix and
k

jx denote ith and jth component of the vector kx . 

 

Figure 6: Hopfield network 

 

Quantum processing may also play a role in neural networks [48]-[51]. Classical 

processing is described in [52]-[71]. 
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        CHAPTER III 

  

NUMBER THEORETIC HILBERT TRANSFORM AND RANDOM  

RESIDUE SEQUENCES 

 

In this chapter, we present theory of NHT transforms and random residue sequences 

derived from NHT transform. In this chapter we have developed NHT matrices up to 16-

point NHT. The NHT transformation can be used as a primitive to create 

cryptographically useful scrambling transformations. In [13], NHT matrices up to 8-point 

were presented. 

3.1 The 10-point and 12-point NHT 

Here we are going to deal with 10-point NHT and 12-point NHT in detail with examples 

which provide greater flexibility in their use. 

10-point NHT 

The first row of the 10-point NHT matrix will be given by integers a, b, c, d, e that 

alternate with 0s.If we multiply the 10-point NHT with its transpose we observe that 

a
2
 + b

2
 + c

2
 + d

2
+ e

2 

 

is the diagonal term and the non-diagonal terms are 

(b+ e) a + (c+ e) d + bc and (a+ e) c + (b + a) d + eb. 
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There are many solutions which satisfy the equation if we randomly choose the values of 

a=2 b=1 c=2 d=5 e=3 and in order to get a valid NHT matrix we need to assume a 

suitable modulus such that the non- diagonal elements of NN
T
 will become zero and only 

the diagonal elements remain.   

 
 
 
 
 
 
 
 
 
 
 
𝑔(0)
𝑔(1)
𝑔(2)
𝑔(3)

𝑔(4)
𝑔(5)
𝑔(6)
𝑔(7)

𝑔(8)
𝑔(9) 

 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
0 2 0 1 0 2 0 5 0 3
3 0 2 0 1 0 2 0 5 0
0 3 0 2 0 1 0 2 0 5
5 0 3 0 2 0 1 0 2 0
0 5 0 3 0 2 0 1 0 2
2 0 5 0 3 0 2 0 1 0
0 2 0 5 0 3 0 2 0 1
1 0 2 0 5 0 3 0 2 0
0 1 0 2 0 5 0 3 0 2
2 0 1 0 2 0 5 0 3 0 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
𝑓 0 

𝑓 1 

𝑓 2 

𝑓 3 

𝑓 4 

𝑓 5 

𝑓 6 

𝑓 7 

𝑓 8 

𝑓 9  
 
 
 
 
 
 
 
 
 
 

 mod 7 

 

It is easy to check NN
T
 = I mod 7 

 

12-point NHT 

The first row of the 12-point NHT matrix will be given by integers 0, a, 0, b, 0, c, 0, d, 0, 

e, 0, f. If we multiply the 12-point NHT with its transpose we observe that the squares of 

the non-zero integer values of the first row should equal 1 modulo the chosen m .In other 

words 

a
2
+b

2
+c

2
+d

2
+e

2
+f

2  

 

The other non-diagonal element terms in the product NN
T

 

(a + e) f + (e + c) d + (c + a) b,  

2(ad + be + fc) and  

(e + c) a + ec+ (b + d) f +bd. 

 

There are many solutions which satisfy the equation if we randomly choose the values of 
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a=14 b=28 c=18 d=27 e=23 f=7 and thus we can write the 12-point NHT transformation 

as G=HT mod 29. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑔(0)

𝑔(1)
𝑔(2)
𝑔(3)
𝑔(4)

𝑔(5)
𝑔(6)
𝑔(7)
𝑔(8)

𝑔(9)
𝑔(10)
𝑔(11) 

 
 
 
 
 
 
 
 
 
 
 
 

 = 

 
 
 
 
 
 
 
 
 
 
 
 

0 14 0 28 0 18 0 27 0 23 0 7
7 0 14 0 28 0 18 0 27 0 23 0
0 7 0 14 0 28 0 18 0 27 0 23

23 0 7 0 14 0 28 0 18 0 27 0
0 23 0 7 0 14 0 28 0 18 0 27

27 0 23 0 7 0 14 0 28 0 18 0
0 27 0 23 0 7 0 14 0 28 0 18

18 0 27 0 23 0 7 0 14 0 28 0
0 18 0 27 0 23 0 7 0 14 0 28

28 0 18 0 27 0 23 0 7 0 14 0
0 28 0 18 0 27 0 23 0 7 0 14

14 0 28 0 18 0 27 0 23 0 7 0  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓(0)

𝑓(1)
𝑓(2)
𝑓(3)
𝑓(4)

𝑓(5)
𝑓(6)
𝑓(7)
𝑓(8)

𝑓(9)
𝑓(10)
𝑓(11) 

 
 
 
 
 
 
 
 
 
 
 
 

 mod 29 

It is easy to check NN
T
 = I mod 29. 

 

 

3.2Development of 14-point and 16-point NHT 

Let us have a look in detail about 14-poin NHT and 16-point NHT in detail with 

examples .The first row of the 14-point NHT matrix will be given by integers a , b, c , d, 

e , f, g that alternate with 0s.The problem is to find the circulant matrix with these values 

in the first row that satisfies the conditions given by (1).When we multiply the 14-point 

NHT with its transpose we observe that the squares of the non-zero integer values of the 

first row should equal 1 modulo the chosen m. In other words 

a
2
 + b

2
 + c

2
 + d

2
 + e

2
 + f 

2
+ g

2
 = 1 mod m                                              (2) 

The other non-diagonal element terms in the product NN
T
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ab + bc + cd + de + ef + fg + ga 

ac + bd + ce + df + eg + fa + gb 

ad + be + cf + dg + ef + fg + ga 

 

         (3) 

should be all zero with respect to the same modulus. 

 

 

In order to get a valid NHT matrix we need to assume a suitable modulus in such that all 

the non-diagonal elements of the matrix product NN
T
 will become zero and only the 

diagonal elements of the product matrix remain. There are many solutions which satisfy 

the equation if we randomly choose the values of a=3 b=15 c=22 d=11 e=20 f=10 and 

g=5 and thus we can write the 14-point NHT transformation as G=HT mod 29 which is 

shown as below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑔(0)
𝑔(1)

𝑔(2)
𝑔(3)
𝑔(4)
𝑔(5)

𝑔(6)
𝑔(7)
𝑔(8)
𝑔(9)

𝑔(10)
𝑔(11)
𝑔(12)

𝑔(13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 3 0 15 0 22 0 11 0 20 0 10 0 5
5 0 3 0 15 0 22 0 11 0 20 0 10 0
0 5 0 3 0 15 0 22 0 11 0 20 0 10

10 0 5 0 3 0 15 0 22 0 11 0 20 0
0 10 0 5 0 3 0 15 0 22 0 11 0 20

20 0 10 0 5 0 3 0 15 0 22 0 11 0
0 20 0 10 0 5 0 3 0 15 0 22 0 11

11 0 20 0 10 0 5 0 3 0 15 0 22 0
0 11 0 20 0 10 0 5 0 3 0 15 0 22

22 0 11 0 20 0 10 0 5 0 3 0 15 0
0 22 0 11 0 20 0 10 0 5 0 3 0 15

15 0 22 0 11 0 20 0 10 0 5 0 3 0
0 15 0 22 0 11 0 20 0 10 0 5 0 3
3 0 15 0 22 0 11 0 20 0 10 0 5 0  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓(0)
𝑓(1)

𝑓(2)
𝑓(3)
𝑓(4)
𝑓(5)

𝑓(6)
𝑓(7)
𝑓(8)
𝑓(9)

𝑓(10)
𝑓(11)
𝑓(12)

𝑓(13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is easy to check NN
T 

= I mod 29. 
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We now present the data and transform block pairs for different choices of the data 

values.  

Table 1. The 14-point NHT for modulus 29 (a=3 b=15 c=22 d=11 e=20 f=10 g=5) 

  f  𝑛                 g 𝑛  

1 1,1,1,1,1,1,1, 

1,1,1,1,1,1,1 

  
2 1,1,1,1,1,1,1, 

0,0,0,0,0,0,0 

 
 

3 0,0,0,1,1,1,1, 

1,1,1,0,0,0,0 
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4 1,1,0,0,1,1,0, 

0,1,1,0,0,1,0 

  

5 0,1,0,1,0,1,0, 

1,0,1,0,1,0,1 

  
6 1,1,1,0,0,0,1, 

1,1,0,0,0,1,0 

  
7 0,0,1,1,1,0,0, 

0,1,0,1,0,1,1 
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8 1,1,1,0,0,0,1, 

1,0,0,1,1,1,1 

  
 

16-point NHT: 

Given the first row of the 16-point NHT matrix is 0,a,0,b,0,c,0,d,0,e,0,f,0,g,0,h and is 

given by the following matrix shown below. By multiplying the 16-point matrix with its 

transpose we observe that 

a
2
+b

2
+c

2
+d

2
+e

2
+f

2 
+g

2
+h

2 

 

is the diagonal element term and the non-diagonal element terms are  

 

(a + g) d + (e + c) h + (c + a) f + (e+ g) b,  

(a+e)(g+c) + (h+d)(b+f)and  

            (a + g) h + (e + c) d + (c + a) b + (e+ g) f 

Table 2.16-point NHT for 13 (a=7 b=11 c=12 d=6 e=3 f=8 g=4 h=2) 

  f  𝑛                 g 𝑛  
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1 1,1,1,1,1,1,1,1 

1,1,1,1,1,1,1,1 

  
2 1,1,1,1,1,1,1,1 

0,0,0,0,0,0,0,0 

  

3 0,0,0,1,1,1,1,1 

1,1,1,0,0,0,0,0 

  
4 1,1,0,0,1,1,0,0 

1,1,0,0,1,1,0,0 
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5 0,1,0,1,0,1,0,1 

0,1,0,1,0,1,0,1 

  

6 1,1,1,0,0,0,1,1 

1,0,0,0,1,1,0,0 

  

7 1,1,1,0,0,0,1,1 

1,0,0,0,1,0,1,0 

 
 

8 1,1,1,0,0,0,1,1 

1,0,0,0,1,1,1,1 

  
 

To get correct NHT matrix we need to select an appropriate matrix in such a way that all 

of the non diagonal elements in the NN
T
 product matrix will become zero and only the 

diagonal elements will remain. Though there are infinite number of solutions we choose 
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the values as a=7, b=11, c=12, d=6, e=3, f=8 g=4 h=2 randomly and we can write the 

NHT transformation as G=HT mod 13 which is as follows with NN
T
 = I mod 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑔(0)
𝑔(1)
𝑔(2)

𝑔(3)
𝑔(4)
𝑔(5)
𝑔(6)

𝑔(7)
𝑔(8)
𝑔(9)
𝑔(10)

𝑔(11)
𝑔(12)
𝑔(13)

𝑔(14)
𝑔(15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 7 0 11 0 12 0 6 0 3 0 8 0 4 0 2
2 0 7 0 11 0 12 0 6 0 3 0 8 0 4 0
0 2 0 7 0 11 0 12 0 6 0 3 0 8 0 4
4 0 2 0 7 0 11 0 12 0 6 0 3 0 8 0
0 4 0 2 0 7 0 11 0 12 0 6 0 3 0 8
8 0 4 0 2 0 7 0 11 0 12 0 6 0 3 0
0 8 0 4 0 2 0 7 0 11 0 12 0 6 0 3
3 0 8 0 4 0 2 0 7 0 11 0 12 0 6 0
0 3 0 8 0 4 0 2 0 7 0 11 0 12 0 6
6 0 3 0 8 0 4 0 2 0 7 0 11 0 12 0
0 6 0 3 0 8 0 4 0 2 0 7 0 11 0 12

12 0 6 0 3 0 8 0 4 0 2 0 7 0 11 0
0 12 0 6 0 3 0 8 0 4 0 2 0 7 0 11

11 0 12 0 6 0 3 0 8 0 4 0 2 0 7 0
0 11 0 12 0 6 0 3 0 8 0 4 0 2 0 7
7 0 11 0 12 0 6 0 3 0 8 0 4 0 2 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓(0)
𝑓(1)
𝑓(2)

𝑓(3)
𝑓(4)
𝑓(5)
𝑓(6)

𝑓(7)
𝑓(8)
𝑓(9)
𝑓(10)

𝑓(11)
𝑓(12)
𝑓(13)

𝑓(14)
𝑓(15) 
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3.3RANDOM RESIDUE SEQUENCES: 

The search for random sequences with ideal randomness properties is an important area 

of computer science. Shift-register sequences provide near-ideal autocorrelation function 

but the period constrained to be 2
n
-1 for different values of n. Random sequence family is 

that of “decimal sequence” By obtaining residue sequences modulo prime that have ideal 

autocorrelation  function that is it is zero for all non-zero values of the argument. In other 

words rather than binary sequences we wish to deal with sequences where individual 

items are integers modulo a prime. We do so by using the structure of the NHT matrix. 

 The idea of using NHT matrix is to generate random residue sequences comes from the 

fact that the product of the NHT matrix with its transpose computes all correlations on 

the block. Therefore the circulant part of the NHT matrix should be able to generate ideal 

random sequences. We represent the first row of matrix by using integers 

a,b,c,d,e,f,g,h,i,j,k,l, m,n,o,p and alternate with 0s. 

a
2
 + b

2
 + c

2
 + d

2
 + e

2
 + f

2
 + g

2
 + h

2
 + i

2
 + j

2
 + k

2
 + l

2
 + m

2
 + n

2
 + o

2
 + p

2 

The other non-diagonal element terms in the product NN
T
 are: 

 

2(ai + bj + ck + dl +em + fn + go+ hp)(3) 

  a(h+j)+b(i+k)+c(j+l)+d(k+m)+e(l+n)+f(m+o)+g(n+p)+pi+oh(4) 

  a(g+k)+b(h+l)+c(i+m)+d(j+n)+e(k+o)+f(l+p)+gm+hn+io+jp(5) 

  a(f+l)+b(g+m)+c(h+n)+d(i+o)+e(j+p)+k(f+p)+gl+hm+in+jo(6) 

   a(e+m)+b(f+n)+c(g+o)+d(h+p)+i(e+m)+j(f+n)+k(g+o)+l(h+p) (7) 

   a(d+n)+b(e+o)+c(f+p)+g(d+j)+h(e+k)+i(f+l)+m(j+p)+kn+lo(8) 

  a(c+o)+b(d+p)+e(c+g)+f(d+h)+i(g+k)+j(h+l)+m(k+o)+n(l+p)(9) 

ab + bc + cd + de + ef + fg + gh + hi + ij + jk + kl + lm + mn +no + op + pa.(10) 

 

The autocorrelation function captures the correlation of data with itself .For a data 
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sequence a (n) of N points the autocorrelation function C (k) is represented by     

)()(
1

)(
1

kjaja
N

kC
N

j

a  


 

 For a noise sequence the autocorrelation function Ca(k)= E(a(i)a(i+k)) is two valued 

with value of 1 for k=0 and a value approaching zero for k≠0 for a zero-mean random 

variable. Assuming periodicity such a sequence will have C(k) as 1 for k=0 and 

approximatelyμ
2 

for non-zero k. μ is the mean of the variable. 

 

We now present an algorithm for generating the NHT generator sequence. The basic idea 

that has worked very well is to pick a number that is prime and then pick numbers that 

are powers of 2. 

Algorithm for Generating the Sequence 

1. Enter the number of rows and columns of the circulant matrix generally the 

number of rows and columns will be equal to desired NHT i.e (16 by 16 for 16-

point NHT). 

2. Then choose the elements of circulant NHT matrix in such a way that one element 

need to be a prime number and the remaining elements need to be 2 and multiples 

of 2. 

3. Then find the transpose of the circulant NHT matrix. 

4. Multiply the circulant NHT matrix with its transpose matrix and we will get a 

product NHT matrix. 



 
  

  

  

31 
 

5. Find the gcd of all the non-diagonal elements in the obtained product NHT 

matrix. 

6. The gcd of non-diagonal elements will be the modulus of the circulant NHT 

matrix, in most of the cases it will be a prime modulus. 

7. If the desired format is I mod n then we need to normalize the elements of the 

NHT matrix with the remainder obtained by taking modulus of the diagonal 

elements. 

8. We will get the elements a1, a2, a3 …..an and modulus which will be a prime 

number. 

Pseudo code: 

1. Input rows[m] and columns[n] of matrix .i.e matrix[m][n] 

2. for i<-0 to m do                                                // Input circulant matrix 

3. for j<-0 to n do 

4.  Matrix[i][j] <- values. 

5. for i<-0 to m do 

6. for j<-0 to n do                                                 //Finding transpose of matrix 

7. transpose[j][i]=matrix[i][j] 

8. for i<-0 to n do 

9. for j<-0 to m do 

10. transpose[i][j] 

11. for i<-0 to m do 

12. for j<-0 to n do 

13. for k<-0 to m do                                           //Multiply circulant with its transpose 

14. sum <-0 

15. sum = sum + matrix[i][k]*transpose[k][j]; 

16. mul[i][j]=sum; 

17. for i<-0 to 1 do                                     //Initialize non diagonal elements of matrix  

18. for j<-1 to n do 

19. mul[i][j]; 

20. gcd=greatestcommondivisor(gcd,mul[i][j]); 

21. greatestcommondivisor( a , b )                         //gcd of non diagonal elements. 

22. while ( a % b != 0) do 
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23. x=b; 

24. y=a%b; 

25. a=x; 

26. b=y; 

27. return b; 

 

Experimental Results for Autocorrelation Function: 

We have done random experiments by using above algorithm for different values of input 

sequences. As seen from Figures 1-4 their amplitudes have a variety of relationships. 

Table 3: Example 16-bit long NHT sequences 

Example a    b c d e f g h i 

   1 911 1821 3642 1 2 4 8 16 32 

   2 12747 3642 7284 14568 7285 14570 7289 14578 7305 

   3 3 2 4 8 16 32 64 128 256 

   4 2 2 4 8 16 32 64 128 256 

   5 11 2 4 8 16 32 17 34 21 

   6 13 2 4 8 16 32 64 128 256 

 

j k l m n o p mod q 

64 128 256 512 1024 2048 4096 7283 

14610 7369 14738 7625 15250 8649 17298 21851 

512 1024 2048 975 1950 779 1558 3121 

181 31 62 124 248 165 330 331 

42 37 27 7 14 28 9 47 

512 1024 61 122 244 488 976 1987 

 

Random sequences from the first four examples of Table 3, when plotted on a graph 
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Figure 7: Input graph for the above values 

 

Figure 8: Autocorrelation function for the above input 

 

Figure 9: Input graph for the example 2 values mod 2185 
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Figure 10: Autocorrelation function 

 

Cross-Correlation Function: 

The cross-correlation function captures the correlation of the data with other sequences. 

For a data sequence a(n) of N points cross correlation function C(k)is represented by 

)()(
1

)(
1

kjbja
N

kC
N

j

c  
  

where the value b (j +k) corresponds to the next sequence result. 

For a noise sequence, the cross correlation function Cc(k) = E(a(i)b(i+k)).If the two 

sequences are independent the cross correlation will be the product of their individual 

means. 

Experimental results for Cross-correlation function: 

We continue with the first four examples of Table 3 and we compute their mutual cross-

correlation function. 
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Figure 11:Cross correlation function between example 1 and 2 when mod n=7283 

 

 

 

 

 

 

 

Figure 12: Cross correlation function between example 1 and 2 when mod n=21851 

 

Figure 13: Cross correlation function between example 1 and 3 when mod n=7283 
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Figure 14: Cross correlation function between example 1 and 3 when mod n=3121 

This chapter presents random residue sequences defined modulo of a prime that have 

perfect autocorrelation properties and variable cross correlation properties. The fact of 

zero autocorrelation function for all non-zero lags makes them suitable for use in 

applications where orthogonal sequences are needed. 

 

The fact that the NHT related circulant matrix allows us to generate perfect random 

residue sequences opens up the larger question of the property of such random residue 

sequences .In particular it raises the question whether there is a general algorithm to 

generate the elements a1a2 a3a4….an .Such an algorithm was discussed in this chapter along 

with pseudo code. Orthogonal sequences could have application as keys in environments 

which are extremely noisy since these strings satisfy certain properties of minimum 

mutual distance amongst themselves. 
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CHAPTER IV 

ARCHITECTURE OF WIRELESS COMMUNICATION SYSTEM 

USING RANDOM RESIDUE SEQUENCES 

In this chapter, we are going to describe the architecture of wireless communication 

system using the random residue sequences. 

4.1 Spread Spectrum based communication system 

The main idea behind spread spectrum was to use more bandwidth than the original 

message by maintaining same signal power [19].  As the spread spectrum signal does not 

have a clear distinguishable peak in the time domain this makes the signal difficult to 

distinguish from its noise. Spread spectrum is used to provide secure communication by 

spreading the given signal over a large frequency band, because of this reason spread 

spectrum signals can transmit with low spectral power density.  

 

Figure 15: Spread spectrum communication system 
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A large number of users want to share a common channel to transmit information to a 

receiver in a multiple access system scenario. As the communication system has a fixed 

amount of resources, spectrum and channels, the system has to manage resources 

appropriately as multiple units are trying to access the system at the same time. To solve 

this problem we can employ three common technologies, frequency-division multiple 

access (FDMA), time-division multiple access (TDMA), code-division multiple access 

(CDMA). As both TDMA and FDMA has drawbacks and inefficient for multiple access 

system limits, we need to find an alternative i.e. by allowing more than one user to share 

a channel by use of direct sequence spread spectrum signals (DS-SS). 

 

Each user is assigned a unique code sequence that allows the user to spread the 

information signal across the assigned frequency band. Signals from the various users are 

separated at the receiver by cross-correlation of the received signal with each of user code 

sequences. The cross-correlation and the cross-talk inherent in demodulated signals 

received are minimized as a result of designing the code sequences. The above multiple 

access method is CDMA, in order to classify a system as SS modulation technique, the 

transmission bandwidth must be much larger than the information bandwidth and the 

resulting RF bandwidth must be determined by a function other than the information 

being sent. 

 

The intentional and unintentional interference and jamming signals are rejected because 
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they do not contain the spread spectrum key. Only the desired signal which has the key 

will be seen at the receiver while demodulating the received signal.  

4.2 Communication system architecture using RR sequences 

A wireless network system consists of several components that support communications 

by converting information signals into suitable form for transmission through the air 

medium. Wireless networks include computer devices, base stations and a wireless 

infrastructure. User is the one who initiates and terminates the information signal in 

wireless networks and can directly utilize the wireless network. 

 

In our proposed architecture we will be having N users, where each user wants to 

transmit his own message or information signal securely without being intercepted by 

other users’ signals and only the authentic user will be able to receive his information 

signal. The first user will be having his message M1to transmit, he will mix message M1 

with a random residue sequence V1(t) before transmission. Same procedure will be 

followed by the remaining users who wish to transmit their message signal, but each user 

will be getting   a random left or right shift of the original random residue sequence,  

which each user will be mixing to his message before transmission. 

 

At the receiver end, if a user wants to get back his original message or information signal 

the he has to mix his own random residue sequence to the message signal received. As it 

was discussed in the previous chapter that the autocorrelation of the random residue 
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sequence for all non-diagonal shifts is zero, so only the authentic user who is having a 

correct RR sequence will be able to retrieve original message signal. Similarly the 

remaining users can retrieve their original message by using their valid RR sequences. 

Thus only the authentic users can retrieve their message signal and all intruders cannot 

get access to the original message which also provides security to the information signal.

 

Figure 16: Wireless system communication architecture using random residue sequences 

4.3 Implementation of wireless system architecture using a 16 bit RR sequence  

Let the 16 bit sequence be a=11, b=2, c=4, d=8, e=16, f=32, g=17, h=34, i=21, j=42, 

k=37, l=27, m=7, n=14, o=28, p=9. In a multiple access system, more than one user 

wants to communicate through the same common channel. As the users share the same 

common channel to transmit their message, each user is assigned unique rr sequence i.e. 
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the user M1 will be assigned the original sequence 11, 2, 4, 8, 16, 32, 17, 34, 21, 42, 37, 

27, 7, 14, 28, 9 the user M2 sequence might be left shift or right shift of the original 

sequence 14, 28, 9,11, 2, 4, 8, 16, 32, 17, 34, 21, 42, 37, 27, 7 and the user M3 sequence 

is 4, 8, 16, 32, 17, 34, 21, 42, 37, 27, 7, 14, 28, 9, 11, 2which is 2 bits left shift of the 

original sequence. The combined signal along with the user’s unique RR sequence will be 

transmitted and the signal will be separated at the receiver by autocorrelation with each 

user unique RR sequence. 

User M1 RR sequence: 11, 2, 4, 8, 16, 32, 17, 34, 21, 42, 37, 27, 7, 14, 28, 9 

User M2RRsequence:14, 28, 9, 11, 2, 4, 8, 16, 32, 17, 34, 21, 42, 37, 27,  

User M3 RR sequence: 4, 8, 16, 32, 17, 34, 21,42, 37, 27, 7, 14, 28, 9, 11, 2 

 

 

 

Figure 17: Zero autocorrelation produced when user M2 produces his sequence at receiver 

As each user will be having his own RR sequence, so the cross talk inherent in the 

demodulated signals received will be minimized 
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       CHAPTER V  

MEMORY CAPACITY OF NEURAL NETWORKS USING CIRCULANT MATRICES  

In this chapter, we present the memory capacity of generalized feedback neural networks 

using a circulant matrix. 

5.1 Motivation 

Children are capable of learning soon after birth [23]-[25] which indicates that the neural 

networks of the brain have prior learnt capacity that is a consequence of the regular 

structures in the brain’s organization. The simplest regularity that can be conceived is that 

of a circulant structure. Therefore, we consider the memory storage behavior and capacity 

of feedback networks that have circulant structure in the weight matrix. 

 

We wish to determine if circulant matrix based processing might have applications also 

to larger questions underlying the storage memories. These include non-classical 

processing [26] and abstract concept formation. Our approach is basically Hebbian. We 

have shown that these networks can store substantial number of patterns and their shifted 

versions. The memory capacity of even sized networks is higher than their nearly situated 

odd sized networks. 
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5.2 Artificial neurons used 

Attempts have been made to reproduce some of the capacities of the human brain using 

neural networks. Several models have been implemented to exhibit features of human 

brain, of those models available Hopfield Network model is the simplest and widely used 

model by the Neural Networks. The potential of Neural Networks relies massively on 

finite number of artificial neurons connected by edges with variable weights. There will 

be pattern in which each neuron is connected to other neurons referred to as topology of 

neural network, based on topology Neural Networks can be classified as Feed-back 

Neural Networks and Feed-forward Neural Networks. A Hopfield Network is a fully 

connected feed-back Neural Network. 

 

Hopfield Networks are constructed from artificial neurons which have N inputs. With 

each input i  there will be a weight iw  and also have an output. The state of output is 

maintained until the neuron is updated. The following operations help us in updating 

these neurons: 

 The value of each input ix is determined and the sum of all weighted inputs 

 ii xw  is calculated. 

 The output state of the neuron is set to +1 if the weighted input sum is larger or 

equal to 0.It is set to -1 if the weighted input sum is smaller than 0. 

 A neuron can retain its output state until it is updated again. 
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 When written as a formula: 















0:1

0:1

ii

ii

xw

xw
o  

 

i1                                            w1 

i2                          w2                                                                                                   O                   

i3                                            w3 

Figure 18: Artificial neuron used in Hopfield network  

The weight matrix W is a N×N symmetric matrix whose components wij and wji are 

same, in other words as the matrix is a symmetric matrix so the values of wij=wji. 

 
 
 
 
 
 
 
 0 12w 13w 14w 15w

21w 0 23w 24w 25w

31w 32w 0 34w 35w

41w 42w 43w 0 45w

51w 52w 53w 54w 0  
 
 
 
 
 
 
 

 

Using the Hopfield Network as a reference we are going to use an N×N circulant matrix 

and try to store a new set of neural memories which are relevant to the circulant matrix. 

The structures of memories stored by different orders of circulant matrices are as follows: 
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Memories stored by 4×4 circulant matrix: 

Let us consider a 4×4 circulant matrix whose elements are 0, a, b, c for experimental 

purpose. When a random value is assigned to each of the variable then the matrix will be  

 

0 5 −6 3
3 0 5 −6

−6 3 0 5
5 −6 3 0

  

As the matrix is of order 4×4 the total number of available memories is 1624  .The 

above circulant matrix can hold 6 memories. 

 + + − −  

 − + + −  

 − − + +  

 + − − +  

 − − − −  

 + + + +  
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Memories stored by 5×5 circulant matrix: 

Consider a 5×5 circulant matrix whose elements are 0, a, b, c, d. where a=-2 b=3 c=3 and 

d=-2. 

 
 
 
 
 

0 −2 3 3 −2
−2 0 −2 3 3
3 −2 0 −2 3
3 3 −2 0 −2

−2 3 3 −2 0  
 
 
 
 

 

As the matrix is of order 5×5 the total number of available memories is 3225  .The 

above matrix can hold 7 memories. In general a 5×5 circulant matrix can hold two classes 

of memories.  One of them is ++-+- & its shifts, the other is +- -++ & its shifts. 

 

 + + + + +  + − − + +  

 + + − + −  + + − − +  

 − + + − +  + + + − −  + − + + −  − + + + −  

 − + − + +  − − + + +  + − + − +  

 − − − − −  

5.3GENERAL STRUCTURE OF MEMORIES GENERATED  

For the 4x4 circulant case, the memories are basically ++ - - & its circular shifts. 

1. For the 5x5 case, most of the memories are shifts of ++ - + - & +--++ 
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2. For the 6x6 case, the situation is more interesting. You have two classes;++ - ++-

& + - + - + - and their complements. 

3. For the 7x7 case, we have the all +, the all – sequences and shifts of +++ - ++ -. 

 

4. For the 8×8 case, we have three classes +++-+++- , ++--++-- & +-+-+-+- and  

 

their complements. 

 

5. For the 9×9 case, we have all the sequences as shifts of ++++-+++-. 

 

6. For the 10×10 case, we have three classes ++++-++++- , ++---++--- & +-+-+-+-+-  

 

their shifts and complements. 

 

7. For the 11×11 case, we have all the sequences as shifts of +++++-++++-.  

 

8. For the 12×12 case, we have four classes +++++-+++++- , +-+-+-+-+-+- , ++---- 

 

-++-----,++-++-++-++- their shifts and complements. 

 

9. For the 13×13 case, we have all the sequences as shifts of ++++++-+++++-. 

 

11. For the 14×14 case, we have four classes ++++++-++++++- , +-+-+-+-+-+-+- ,  

 

++-----++-----, ++++---++++---their shifts and complements. 

 

12. For the 15×15 case, we have all the sequences as shifts of +++++++-++++++-. 

 

13. For the 16×16 case, we have seven classes +++++++-+++++++-, +-+-+-+-+-+-+- 

 

+-, ++------++------, ++++----++++----, ++--++--++--++--, +++-+++-+++-+++-  

 

, +++++---+++++---.their shifts and complements.  

 

14.  For the 17×17 case, we have all sequences as shifts of ++++++++-+++++++-. 

 

15.  For the 18×18 case, we have six classes ++++++++-++++++++-, +-+-+-+-+-+- 
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+-+-+-, ++-------++-------, ++++-----++++-----, ++-++-++-++-++-++-, +++------ 

 

+++--------- their shifts and complements. 

 

16. For the 19×19 case, we have all sequences as shifts of +++++++++-++++++++-. 

 

17. For the 20×20 case, we have eight classes +++++++++-+++++++++-, ++-------- 

 

++--------, +++++-----+++++-----, +-+-+-+-+-+-+-+-+-+-, +++--+++--+++--+++--,  

 

++++------++++------, ++++-++++-++++-++++-, +++-------+++------- their shifts  

 

and complements. 

 

18.  For the 21×21 case, we have all sequences as shifts of ++++++++++- 

 

+++++++++-. 

 

19. For the 22×22 case, we have six classes ++++++++++-++++++++++-, +-+-+-+ 

 

-+-+-+-+-+-+-+-, ++---------++---------, +++--------+++--------, ++++-------++++-- 

 

-----, +++++------+++++------ their shifts and complements. 

 

20. For the 23×23 case, we have all sequences as shifts of +++++++++++- 

 

++++++++++-. 

 

21. For the 24×24 case, we have ten classes+++++++++++-+++++++++++-, ++------ 

 

----++----------, +++---------+++---------, ++++--------++++--------, +++++------- 

 

+++++-------, ++++++------++++++------, +++---+++---+++---+++---, +-+-+-+-+- 

 

+-+-+-+-+-+-+-, ++--++--++--++--++--++-- their shifts and complements. 

 

22. For the 25×25 case, we have all sequences as shifts of ++++++++++++ 

 

-+++++++++++- 
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The above results when plotted on a graph with first instance as memories held by the 

N×N circulant matrices of order up to 25×25. 

 

Figure 19: Memories occupied by each circulant matrix 

 

Figure 20: Memories occupied by even order circulant matrices up to 24×24 
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Figure 21: Memories occupied by odd order circulant matrices up to 25×25 

The above graphs explain the memories held by each of the matrix out of the total 

outcomes and it shows that how efficiently a circulant matrix can hold memories. 

We presented different classes of memories stored by circulant matrices of different 

order. Other interesting thing is that the memories stored by a particular circulant matrix 

are also in circulant nature when shifted by one memory bit at a time.  If quantum 

processing were to be occurring in neural structures there would be further need to 

examine probability constraints on such processes [72]-[76]. 
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CHAPTER VI 

                                                CONCLUSION 

In this thesis, we have obtained new results in number theoretic Hilbert transform (NHT) 

theory by proposing an algorithm to generate valid NHT matrices. NHT matrices of 

various lengths up to 16 have been found. This allowed us to find ideal orthogonal 

sequences that can be used as carriers for wireless communications and sequences of 

lengths up to 24 have been computed. We proposed an architecture that uses random 

residue sequences as unique code sequence assigned to each user in multiple access 

system. We also investigated applications of circulant matrices to store and reproduce 

certain patterns as neural memories.  

Our proposed NHT algorithm does not work for all values and, therefore, it must be 

further generalized. Likewise, the problem of generation of memories and their properties 

needs to be further investigated. 
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