

 TOWARDS AN EFFICIENT DISTRIBUTED CLOUD

ARCHITECTURE

 BY

 PRAVEEN KHETHAVATH

 Bachelor of Engineering in Electronics and

Communication Engineering

 Osmania University

 Hyderabad, AP, INDIA

 2006

 Master of Science in Computer Science

 University of Northern Virginia

 Annandale, VA

 2008

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 DOCTOR OF PHILOSOPHY

 July, 2014

ii

 TOWARDS AN EFFICIENT DISTRIBUTED CLOUD

ARCHITECTURE

 Dissertation Approved:

Johnson P Thomas

Dissertation Adviser

Eric Chan-tin

Dissertation Co-Adviser

Subhash Kak

Mary Gade

iii

LIST THE PUBLICATIONS YOU HAVE FROM THIS WORK

 Praveen Khethavath, Johnson Thomas. “Game Theoretic approach to Resource

provisioning in a Distributed Cloud”, submitted at 28th IEEE International

Conference on. Advanced Information Networking and Applications Workshops

WAINA 2014(Accepted)

 Praveen Khethavath, Johnson Thomas, Eric Chan-Tin, and Hong Liu.

"Introducing a Distributed Cloud Architecture with Efficient Resource Discovery

and Optimal Resource Allocation". In Proceedings of 3rd IEEE SERVICES

CloudPerf Workshop 2013

 Praveen Khethavath, Nhat, Prof. Johnson P Thomas. “A Virtual Robot Sensor

Network (VRSN)”. In Proceedings of 2
nd

 International Workshop on Networks of

Cooperating Objects CONET 2011

 Praveen Khethavath, Johnson Thomas. “Distributed Cloud Architecture: Resource

Modelling and Security Concerns”. In Proceedings of 3
rd

 Annual conference on

Theoretical and Applied Computer Science (TACS 2012)

iv
Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Johnson Thomas for

his excellent guidance, patience, and providing me with an excellent atmosphere for

doing research and throughout my thesis. His guidance helped me to successfully

complete my research. For me, he was not only a respectable professor who led me on the

way to do research, but also an attentive tutor who trained me to be a good teacher in my

future career. I really appreciate everything he has done in the past years.

Besides my advisor, I would like to thank Dr. Eric Chan-Tin my co-advisor, for his

support and guidance in my research. I greatly thank him for all the kindness, support and

encouragement. I would also like to thank Dr. Subhash Kak and Dr. Mary Gade for their

encouragement and insightful comments. I would like to also thank Dr. Tingting Chen for

providing opportunity to work on her research.

I would like to thank all my committee members for being a support and guiding me

to advance in my future goals.

I would like to thank my family for supporting me throughout my life and it is they

who have made me who I am now.

v

NAME: PRAVEEN KHETHAVATH

DATE OF DEGREE: MAY, 2014

TITLE OF STUDY: Towards an Efficient Distributed Cloud Architecture

MAJOR FIELD: COMPUTER SCIENCE

Abstract: Cloud computing is an emerging field in computer science. Users are utilizing less of

their own existing resources, while increasing usage of cloud resources. There are many

advantages of distributed computing over centralized architecture. With increase in number of

unused storage and computing resources and advantages of distributed computing resulted in

distributed cloud computing. In the distributed cloud environment that we propose, resource

providers (RP) compete to provide resources to the users. In the distributed cloud all the cloud

computing and storage services are offered by distributed resources. In this architecture

resources are used and provided by the users in a peer to peer fashion. We propose using multi-

valued distributed hash tables for efficient resource discovery. Leveraging the fact that there are

many users providing resources such as CPU and memory, we define these resources under one

key to easily locate devices with equivalent resources. We then propose a new auction

mechanism, using a reserve bid formulated rationally by each user for the optimal allocation of

discovered resources. We have evaluated the performance of resource discovery mechanisms for

the distributed cloud and distributed cloud storage and compared the results with existing DHTs,

peer to peer clients such as VUZE and explored the feasibility and efficiency of the proposed

schemes in terms of resource/service discovery and allocation. We use a simultaneous Auction

mechanism and select a set of winners once we receive all contributions or bids. In a real world

scenario, users request resources with multiple capabilities, and in order to find such resources

we use a contribution mechanism where service providers will provide a contribution price to

users for providing a resource. Users use our proposed auction mechanism to select the resources

from the set of resource providers. We show that Nash equilibrium can be achieved and how we

can avoid the problem of free riders in the distributed cloud. Network latency is an important

factor when deciding which resource provider to select. We used treeple a secure latency

estimation scheme to obtain network measurements in distributed systems. We developed a

mobile application using distributed cloud which preserves privacy and provides security for a

user. Distributed cloud is used for developing such an application where all the data needs to be

close to the users and avoids single point of failure, which is the problem with existing cloud.

vi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1

1.1 RESEARCH BACKGROUND .. 1

1.2 MOTIVATION .. 2

1.3 OBJECTIVES .. 3

1.4 CONTRIBUTIONS .. 4

1.5 DISSERTATION OUTLINE ... 6

II. CLOUD COMPUTING OVERVIEW .. 8

2.1 INTRODUCTION ... 8

2.2 CLOUD DEPLOYMENT MODELS ... 9

2.3 CLOUD SERVICE MODELS .. 10

2.4 BASIC CLOUD ARCHITECTURE ... 12

2.5 SUMMARY ... 14

III. DISTRIBUTED CLOUD ARCHITECTURE .. 16

3.1 PROBLEM STATEMENT .. 17

3.2 LITERATURE REVIEW ... 19

3.3 RESOURCE DESCRIPTION FRAMEWORK .. 21

3.4 HIERARCHIAL MODEL OF DISTRIBUTED CLOUD .. 24

3.5 DISTRIBUTED CLOUD ARCHITECTURE ... 25

vii

IV. RESOURCE DISCOVERY MECHANISM IN DISTRIBUTED CLOUD 29

4.1 PROBLEM STATEMENT .. 29

4.2 LITERATURE REVIEW ... 30

4.3 RESOURCE DISCOVERY IN DISTRIBUTED CLOUD ... 33

4.3.1 NAÏVE SOLUTION FOR RESOURCE DISCOVERY .. 33

4.3.2 RESOURCE DISCOVERY USING MULTI-VALUED HASHTABLE SCHEME 35

4.4 EXPERIMENTAL ANALYSIS ... 39

4.4.1 DISTRIBUTED CLOUD COMPUTING .. 39

4.4.2 DISTRIBUTED CLOUD STORAGE ... 43

4.5 CONCLUSIONS .. 46

V. GAME THEORETIC APPROACHES FOR RESOURCE ALLOCATION 47

5.1 PROBLEM STATEMENT .. 47

5.2 LITERATURE REVIEW .. 48

5.3 A GAME THEORETIC APPROACH FOR RESOURCE PROVISIONING IN THE DISTRIBUTED CLOUD 49

5.4 EXPERIMENTAL ANALYSIS .. 54

5.5 CONCLUSIONS.. 59

VI. BERTRAND GAME MODEL FOR ANALYSISNG RESOURCE ALLOCATION

MECHANISM .. 60

6.1 INTRODUCTION .. 60

6.2 PROBLEM STATEMENT ... 61

6.3 RELATED WORK .. 62

6.4 RESOURCE ALLOCATION BASED ON BERTRAND GAME MODEL .. 63

6.4.1 NOTATIONS ... 63

6.4.2 RESOURCE PROVISIONING MODEL ... 64

6.4.3 GOALS .. 65

6.5 BERTRAND GAME MODEL .. 66

viii

6.5.1 ANALYSIS ... 69

6.6 CONCLUSION .. 69

VII. NETWORK MEASUREMENTS IN A DISTRIBUTED SYSTEM 71

7.1 INTRODUCTION .. 71

7.2 IMPLEMENTATION ... 72

7.3 CONCLUSION .. 74

VIII. USING CLOUD AND BIOMETRICS FOR SECURE MOBILE TRANSACTIONS 75

8.1 INTRODUCTION .. 76

8.2 RELATED WORK .. 77

8.3 SYSTEM MODEL ... 80

8.3.1 SYSTEM OVERVIEW ... 80

8.3.2 SYSTEM COMPONENTS ... 81

8.3.3 Flow of the system .. 83

8.3.4 Security model of the system ... 85

8.3.5 IMPLEMETATION ... 85

8.4 CONCLUSION .. 86

IX. CONCLUSION ... 87

X. REFERENCES ... 89

ix

LIST OF FIGURES

FIGURE 1 CLOUD SERVICE MODEL 12

FIGURE 2 CLOUD ARCHITECTURE 14

FIGURE 3: DIFFERENCES BETWEEN DIFFERENT COMPUTING ARCHITECTURES 17

FIGURE 4 DISTRIBUTED CLOUD 18

FIGURE 5: MOBILE CLOUD COMPUTING 20

FIGURE 6: VEHICULAR CLOUD COMPUTING 21

FIGURE 7 RESOURCE DESCRIPTION FRAMEWORK 23

FIGURE 8 HIERARCHICAL MODEL OF DISTRIBUTED CLOUD 25

FIGURE 9 DISTRIBUTED CLOUD MODEL 27

FIGURE 10 HIGH LEVEL MODEL OF DISTRIBUTED CLOUD 28

FIGURE 11 : ROUTING IN A DISTRIBUTED HASH TABLE 31

FIGURE 12: USER REQUEST FOR A NODE WITH 2 CORES AND 2 GB MEMORY CAN BE SATISFIED BY NODES IN THE

SHADED AREA. 36

FIGURE 13 RESOURCE DISCOVERY MODEL USING MULTI-VALUED HASH TABLES 38

FIGURE 14 AVERAGE NUMBER OF SEARCHES TO FIND K NODES 41

FIGURE 15 PERCENTAGE OF SUCCESSFUL SEARCHES TO FIND K NODES 42

FIGURE 16 PERCENTAGE OF SUCCESSFULLY FINDING AT LEAST 1 NODE FROM INCOMPLETE SEARCHES 42

FIGURE 17 COST (INCENTIVES) DEPENDENCY 55

FIGURE 18 UTILITY WITH VARYING PARTICIPATION FACTORS 55

FIGURE 19 PERCENTAGE OF RESOURCES UTILIZED COMPARED TO PARTICIPATION FACTOR. 56

FIGURE 20 PERCENTAGE OF RESOURCES UTILIZED COMPARED TO PARTICIPATION FACTOR OVER TIME. 57

FIGURE 21 UTILITY VS PARTICIPATION FACTOR WITH FREE RIDERS INCLUDED 57

x

FIGURE 22 PARTICIPATION FACTOR FOR USERS OVER TIME. 58

FIGURE 23: THE CDF OF RELATIVE ERROR USING DIFFERENT VANTAGE POINTS (K) 73

FIGURE 24: THE STABILITY OF MEDIAN RELATIVE ERROR FOR DIFFERENT VANTAGE POINTS (K) 73

FIGURE 25: PUBLIC AND PRIVATE DISTRIBUTED CLOUD SERVER ROLES 82

FIGURE 26: SYSTEM ARCHITECTURE 84

1

CHAPTER1

INTRODUCTION

1.1 RESEARCH BACKGROUND

Cloud computing [1, 2, 3] refers to a novel way of computing over the internet where dynamically

scaled shared resources are provided as a service over the internet to avoid costs of resource over-

provisioning. Many companies are now relying and performing their operations in the cloud. The

most popular of all the applications such as social networking, online gaming, email etc. are hosted

on cloud. Current cloud architectures provide any thing as services for users. Cloud computing

provides infrastructure as a service, software as a service and platform as a service as three main

service models. However, with recent developments, the cloud is said to provide XaaS i.e.

anything or everything as a service. X can refer to communication, storage, data, network etc.

Cloud computing provides many advantages to industry as it saves a lot of time on installing and

upgrading applications.

 Cloud providers provide various instances of platform, infrastructure and storage as services to

users. Cloud computing uses virtualization to provide these required resources to users

dynamically in the form of virtual machines. Xen [4] is the most popular open source standard for

hardware virtualization used by many cloud providers. Hyper-V, KVM, and Sun xVM are some of

the other virtualization management tools commonly used. All these cloud providers provide

resources in the form of various instances based on user needs. For example Amazon provides for

different sizes of virtual machine instances – Small, Medium, Large and Extra Large.

2

Cloud computing is often misunderstood based on the technological aspects. Cloud computing is a

combination of several concepts including virtualization, resource pooling, resource monitoring,

dynamic provisioning, utility computing, multi-tenancy and elasticity.

Cloud computing is built over old technologies and was part of the evolutionary growth of science

and technology. The main entities of cloud computing are service providers, physical resources,

virtualized resources and end-users.

Distributed computing [12, 13, 14, 15] uses multiple autonomous computers over a network to

solve computational problems as one single unit. Allocation of resources in distributed computing

to solve a specific task is NP-hard [13]. Cloud computing and distributed computing share a lot of

similarities which can be used to build a distributed cloud. However, a distributed cloud

computing architecture requires a completely different environment to operate efficiently and

securely. Content distribution and file sharing was made possible by peer-to-peer systems.

Current peer-to-peer systems use a distributed hash table (DHT) for efficient query lookups.

These systems are able to handle churn, node failures, flash crowds, and balance load efficiently.

1.2 MOTIVATION

 With more people using cloud services, their machines are underutilized [5]. These unused

percentages of resources can be efficiently used for both service provisioning and computation

using the distributed cloud. Existing network bandwidth is limited and there exist only a single

point of entry to data centers for a cloud user, resulting in high latency and network traffic. Due to

its centralized infrastructure, existing cloud poses need of resource over provisioning, high energy

consumption, and increases distance to end users.

3

While the demand for cloud resources continues to increase, machines like Desktops, PC’s and

small servers which can run virtualization software and can host multiple VM’s on them are not

part of the cloud. These substantial amounts of underutilized resources which could be integrated

into the cloud, has motivated the idea of a distributed cloud which makes use of these resources for

both computation and storage purposes.

To overcome the downsides of the existing cloud and to make use of underutilized resources of

end users we propose architecture, a distributed solution which can handle all the services

provided by the existing cloud. We can construct the distributed cloud by making use of these

unused resources thereby avoiding investments on new data centers. The Distributed cloud [6, 7] is

different from the existing cloud with geographically-distributed data centers.

1.3 OBJECTIVES

In distributed cloud computing there will be many resource providers, so users will be able to get

the resources requested. Locating a proper subset of resources from a widely spread distributed

cloud that satisfies users requirements would be significantly difficult. So efficient resource

discovery mechanisms and resource allocation methods are needed. Resource discovery would be

dependent on user requirements, and applications being used. Hence the resource discovery

mechanism must be scalable and take account of node characteristics such as CPU, memory,

operating system etc. So we need to define the characteristics of a resource which can be used for

efficient resource discovery.

Apart from discovery of resources we must also consider resource allocation and stability of the

whole system. We need to allocate resources based on application types such as high performance

or high throughput computing and also consider the free riding problem. Since the distributed

4

cloud is constructed using end users shared machines, some users might use resources without

offering their own resources and are referred to as free riders. Therefore we need an efficient

strategic mechanism to assign resources. Game theory which is a strategic decision making

mechanism would be very helpful for allocating resources to user‘s by maintaining stability of

system i.e. allocation is fair.

We see distributed cloud computing as a real working model in next few years. Distributed cloud

can also be used in industry to develop future technological applications. New innovative

applications can be developed using the distributed cloud.

1.4 CONTRIBUTIONS

This dissertation topic studies distributed cloud architecture models, resource provisioning,

networks measurements and applications of distributed cloud. The major contributions are as

follows.

 Distributed cloud model. The main contribution of this thesis revolves under a new

concept, namely, the distributed cloud. The proposed distributed cloud makes use of resources

provided by users and allocates these resources to others as needed in a peer to peer fashion.

 Resource modelling. We model the distributed cloud resources. Resources and their

attributes need to be properly identified.

 A hierarchical model of distributed cloud architecture. We developed a hierarchical

model of the distributed cloud architecture and identified its problems which led to the

development of a completely decentralized cloud model.

5

 Implementation of a Distributed cloud model. We implemented a distributed cloud

model which is completely decentralized. We identified different problems for practical

implementation of the distributed cloud model. The detailed architecture of the distributed cloud

is also described. We also highlight the resource provisioning problem that needs to be solved to

build an efficient distributed cloud.

 Novel resource discovery mechanism. The problems of using existing

multi-dimensional range queries used in p2p systems were identified. We developed a new

resource discovery mechanism for finding nodes with multiple attributes.

 Multiple game theoretic approaches to solve the resource allocation problem in the

distributed cloud. We introduce an auction model by which requestors would ask for resource

provisioning. In our model by introducing incentives we encourage providers to compete for

providing resources and we consider participation of users for allocation of resources requested

by a user. The system will then schedule resources such that the whole system would be

stabilized. We described an incentive based auction mechanism which is utility driven. Hence the

more resources users will provide, the more they can use the resources in the system thereby

avoiding free riders. We also developed a Bertrand model for resource allocation.

 Network measurements using VUZE. We have developed a plugin for VUZE a bit

torrent client to measure the real time latencies in a distributed network. These network

measurements will be helpful to locate nodes nearby.

 Mobile application. We also developed an android application for secure and privacy

preserving login mechanism using distributed cloud computing. We used a biometric scheme for

login mechanism and used pallier encryption algorithm and its holomorphic properties to preserve

privacy.

6

1.5 DISSERTATION OUTLINE

This dissertation is organized as follows:

 Chapter 2 introduces the basics of cloud computing, different architecture models of

cloud, underlying infrastructure of cloud and different cloud services. We studied different

properties of cloud which were helpful in identifying the characteristics required to build a

distributed cloud.

 Chapter 3 presents different models of the distributed cloud architecture. We studied the

economic aspects of cloud and advantages of having a distributed cloud which motivated us to

the develop distributed cloud. We also discuss about the main challenges involved in developing

a distributed cloud.

 Chapter 4 discusses the resource discovery mechanism of the distributed cloud. We use

kademlia a P2P which is an existing routing protocol to develop our new routing mechanism. The

system simulation model and implementation methods used are presented. We analyze our

resource discovery mechanism and compare it with existing distributed systems.

 Chapter 5 introduces different game theoretic methods and the motivation in using game

theory to address the resource allocation problem. In a distributed cloud users join and leave the

network without any notification and there may be free riders in the system. Game theory is used

to analyze the system and allocate resources effectively such that the system is stable and free

riders are punished at the same time.

 Chapter 6 discusses the network measurements in distributed systems which would be

helpful in analyzing the distributed cloud. We made use of the very popular distributed P2P bit

torrent client VUZE to make these measurements.

 Chapter 7 describes an application that is developed using the proposed distributed cloud

models. We developed a secure and privacy preserving scheme using the proposed distributed

7

cloud that can be used as a secure login mechanism for the android application we have

developed.

 Chapter 8 concludes the dissertation and provides suggestions for future work.

8

CHAPTER 2

CLOUD COMPUTING OVERVIEW

2.1 INTRODUCTION

Cloud computing is becoming increasingly important in industry and academic research. Lots of

researchers have provided their own definitions of cloud computing based on the applications

they have developed. Among the many definitions, the most widely accepted and used is the one

proposed by NIST.

NIST defined cloud computing [2] as follows “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.”

Although there are many other definitions for the cloud, the NIST definition gives a more specific

and clear definition along with all the essential characteristics, deployment models and service

models of cloud. Some of the essential characteristics of cloud computing are:

 On Demand Service, where a consumer can get access to services and provision

computing capabilities such as network, storage etc. without human interaction.

 Broad Network access: All the services are offered over the network and can be

accessed using standard mechanisms. All these services can be used using heterogeneous

platforms such as tablets, mobile devices, laptops etc.

9

 Elasticity: To a consumer all the services offered and capabilities seem unlimited and

can be purchased at any time. Cloud capabilities can be rapidly scaled i.e. can be elastically

provisioned and released automatically based on demand.

 Scalability: All services are scalable and scalability follows from the elasticity

characteristic of cloud computing.

 Resource pooling: computing capabilities and resources of the cloud are available to

serve multiple users at same time using a multi-tenant model, where different virtual machines

are dynamically assigned to each user based on demand.

 Measured service: Cloud computing uses Pay-per-use scheme also known as utility

computing. All the cloud services can be measured, controlled and provided with transparency

between user and provider. Cloud computing uses a metering capability where users are charged

based on the measurement of services used. This means the more a user uses the higher the bill.

This has led to a lot of research on how to select the resources such that cost is minimized for the

user or profit is increased for the provider.

2.2 CLOUD DEPLOYMENT MODELS

All cloud computing models should have certain essential characteristics. There are a wide

variety of service models offered by the cloud and four deployment models. Clouds can be

deployed in to four different models based on requirements and usage.

 Public cloud is the standard cloud computing deployment model in which the service

provider makes resources such as applications, storage, platforms etc. available to users over the

10

internet. All the services will be provided at a fine grained price. Examples of public cloud are

Amazon EC2 [48], Windows Azure [49], Sun cloud [50] etc.

 Private cloud is a restricted version of the public cloud. These clouds provide resources

exclusively to a closed set of people in a single organization. An organization which requires

privacy, security and wants control over their data will choose private clouds. Private clouds offer

the same features as public clouds. Examples of private cloud include OpenStack [51],

CloudStack [52] and VMWare [53].

 Hybrid cloud combines features of both public and private clouds along with required

third party resources. Hybrid clouds are more suited for IT environments where part of data that

should be completely under the control of the organization and the rest can be on public clouds.

In the hybrid environment a user might run an application on his own physical machines and at

the same time uses cloud services. Examples of hybrid cloud include popular vendors such as HP

[55], IBM [54] etc.

 Community clouds share the cloud infrastructure by a specific set of organizations that

share common missions, security principles and policies. Examples include IBM federal

community cloud [56] for government organizations.

2.3 CLOUD SERVICE MODELS

All cloud providers provide services defined by service models such as Infrastructure as a Service

(IaaS), Platform as a Service (Paas), and Software as a Service (SaaS). Recent developments have

improved in the field of services offered by the cloud. Current state-of-art shows that anything as

a service (XaaS) is the most generic way of defining services offered by cloud. Currently all

cloud providers rely on huge data centers and are predominantly centralized.

11

 Software as a Service is a service model in which software’s is delivered to the user as a

service using a web browser over the internet. The user won’t have access to the underlying

infrastructure such as network, operating systems, storage platform etc. A user will only be able

to configure the application. This model eliminates most of the security threats caused by users.

Software as a Service is one of the most common and popular cloud based service model. Many

companies or software providers use SaaS model to deliver their services to the users. Social

media, web mail, google docs, games etc. are some of applications that fall into the Software as a

service model based services.

 Platform as a Service provides a whole platform as a service to users and offers a highly

integrated environment to build applications, test, deploy and host them. Users won’t have access

to the underlying network, operating system and storage. Users can only have control over their

deployed applications and can manage the application environment by modifying configuration

settings. PaaS mainly aims at providing the user an environment and all the facilities required to

manage and develop an application. Google app engine [57], Heroku [58], Force.com [59] are

some of the examples of services offered using the PaaS model.

 Infrastructure as a Service provides a whole set of resources which can be available in

any real machine. The cloud makes all the processing, network, storage, OS and other computing

resources available to the user such that user can run any arbitrary software, deploy any

application etc. IaaS gives the user control over the whole infrastructure such as operating system,

network, storage etc. other than the underlying cloud infrastructure. Some of the vendors who

provide IaaS include Amazon EC2 [48], IBM [56], and Eucalyptus [60].

 XaaS, which can be read as anything as service is the result of emerging technology. In

the percent scenario, the cloud is said to offer anything as service. Some of the other services that

are offered over the cloud include Data, network, Information and policy management as service.

12

Any infrastructure that can be virtualized or any application that can be run on multiple instances

or any service that can be shared can be a service provided by the cloud.

Basic cloud services can be seen as a hierarchical structure as shown below based on the level of

access or amount of resources or capabilities available to user. When going from SaaS to IaaS

access to underlying resources increase and moving from IaaS to SaaS ease of access increases.

Figure 1 Cloud Service Model

2.4 BASIC CLOUD ARCHITECTURE

Cloud computing is a result of the evolution of previous technologies. Clouds will play a key role

in the next decade. Amazon played a key role in development of the cloud by launching Amazon

EC2 [48] to rent infrastructures to users. Virtualization was the key concept that made cloud

computing possible.

Data Center

Hardware (storage, memory)/network

IaaS

Infrastructure as a Service

PaaS

Platform as a Service

SaaS

Software as a

Service

Access Levels Increase
Ease of Access

Increase

13

Utility computing is the base for providing resources using grid computing. Grid computing is a

parallel system in which a set of distributed resources are shared dynamically by users based on

availability, capability and requirements. Cloud computing using virtualization provides

resources in parallel to multiple resources which resembles grid computing. The main differences

between a cloud and distributed computing are usage of centralized servers to manage the

resources by cloud. Cloud computing uses the benefits of both grid and utility computing such as

providing resources as requested and pay for services used. Cloud can be considered as next

generation grid-utility model.

The basic components of a cloud computing architecture include datacenters, network and

terminals or end users. Datacenters are facilities that provide huge computer systems and

components needed along such as network, storage etc. The Internet is the main foundation for

providing services to users. With improvements in technology, not only PCs but mobile devices,

netbooks, tablets, PDA etc. become terminals, i.e. most of the services can be used using these

terminal devices.

The cloud architecture is a layered approach as shown in Fig. 2. The bottom layer consists of

huge datacenters. Cloud computing uses virtualization to instantiate virtual machines on the fly

based on demand. The Hypervisor manages these virtual machines. The physical layer together

with virtual machines is also called infrastructure. These virtual machines are provided to the user

as IaaS. The Cloud manager manages and keeps tracks of user requirements. A Client request is

sent to the cloud manager who then provides respective services to the client.

14

Figure 2 Cloud Architecture

There are many other modules such as service management, security management, policy

management, data protection etc. that take care of the whole utility management and service

provisioning. The Platform layer provides all the middleware and resources required for

deployment of applications on top of virtual machines. Finally the application layer provides the

SaaS or applications requested by the user.

2.5 SUMMARY

Although cloud computing has been very productive and popular there are many research

challenges associated with cloud computing mainly because of security threats. There is a wide

range of research that is going on cloud computing mainly focusing on new applications or

Virtualization/ Hypervisor

Physical Hardware / Storage

Virtual Machines

Platforms Layer

Application Layer

Client

Cloud

Manager

15

services a cloud can offer. Lot of research work is going on allocation of resources in an efficient

way. Main concerns in cloud are the increasing number of users resulting in more energy

consumption and heavy environmental pollution. Existing cloud architectures are centralized

where all user requests are directed to a central server. There is therefore a single point of failure.

Furthermore a single central point results in a bottleneck with high latency and network traffic. In

the existing cloud model there is therefore only a single point of entry to the cloud for all users.

Due to its centralized infrastructure, existing cloud over-provisions resources which incur high

energy consumption, and high latency. Due to the increased number of users security has become

more complex as the cloud is shared by many users.

16

CHAPTER 3

DISTRIBUTED CLOUD ARCHITECTURE

Distributed cloud computing refers to managing and provisioning of distributed resources.

Furthermore, the distributed cloud is dynamic as resources may move in and out of the cloud. We

propose a distributed cloud as resources and services provided by users in a P2P fashion, instead

of huge data centers located in a single or multiple locations. It provides a completely

decentralized mechanism for allocating and using resources, thereby avoiding a single point of

failure. The motivation behind the distributed cloud is to make use of large number of machines

like desktops, PC’s and small servers which can run virtualization software on them.

Voluntary computing systems such as BOINC [27] are often mistaken as distributed cloud

computing applications. Voluntary computing systems are completely different from the Cloud

computing paradigm. In BOINC, the client installs a BOINC application which takes input from a

central location and uploads the results. Currently BOINC applications are run on clouds as well.

Current cloud providers make use of multiple datacenters to handle the increasing number of

users efficiently. If we expand this idea of multiple datacenters to millions of individual

machines, we can build a distributed cloud using a peer-to-peer (P2P) model [29]. Such a peer-to-

peer model of a distributed cloud can provide resources without any centralized architecture.

Individual machines, such as desktops PCs, laptops, and servers, can run virtualization software

to create multiple virtual machines (VM) and contribute to the distributed cloud. Distributed

applications where data needs to be placed close to the end user can benefit from the P2P model

distributed cloud, as a user can select peers closer to him. The Distributed cloud formed using

17

these machines provides storage and computation resources similar to the existing cloud, but in a

distributed manner. The Distributed cloud is dynamic in nature as users join and leave the cloud.

Some of the key differences of a distributed cloud, existing cloud and voluntary computing are

shown in Fig 3. As seen from table below we can see that distributed cloud uses features from both

the existing cloud model and voluntary computing systems.

Distributed Cloud Cloud Voluntary computing

Distributed system Centralized system Distributed system managed by

centralized entity

Virtualized environment Virtualized environment Runs applications

Connected using P2P Centralized architecture Centralized architecture

Unpredictable nature Highly predictable Unpredictable nature

Machines’ provided by users Datacenters Machines’ provided by users

Can form public, private or

hybrid

Can form public, private or

hybrid

Public

None Amazon, Google, Azure, etc. BOINC, SETI, Planet lab

Figure 3: Differences between different computing architectures

3.1 PROBLEM STATEMENT

When it comes to modeling, there is no specific cloud resource description [6] which describes the

resources in a cloud. Computer networks and their resources can be described using many existing

frameworks such as RDF (Resource description framework) [61] and Network description

language [62]. Virtualization [4] technology can be applied on basic machines. The increase in

cloud users makes existing desktops, laptops, and storage devices etc. are not used to their full

capability. In order to make use of these machine we propose a distributed cloud where users can

18

share and use others resources in a distributed fashion. We need a distributed cloud model that can

effectively make use of resources provided by the user. We can make use of these resources

distributed across the globe.

Apart from the resource description framework we need an architectural model that describes the

construction of a distributed cloud. We can use a hierarchical structure or a flat structure to form a

distributed cloud. We first describe the hierarchical model and evaluate the advantages and

disadvantages of the model. Then we describe a completely decentralized distributed cloud.

Traffic is the main concern with the existing cloud architecture. Hidden costs, high latency and

need for high bandwidth to support more users are main concerns with the existing cloud. The

advantages of distributed cloud include efficient energy usage, bandwidth conservation and low

network capacity. The basic distributed cloud architecture is shown in Fig 4.

Figure 4 Distributed cloud

A client is the end user and uses applications to access the services offered by other users and to

provide his own to others. The resource manager is responsible for managing the resources based

on the attributes described by the resource model and provides security for the services offered.

The resource manager is a black box as of now. Based on future requirements and modules

identified we can add more layers to the system. In our model, the resource manager module is

R3

Application

R4

Services offered

Resource manager

R2 Rn R1

19

responsible for finding resources using the algorithms we propose to discover and allocate

resources. The service layer is used to identify and manage the types of services that can be

offered i.e. this layer helps the user to choose the types of services that can be offered. It directly

talks to the resource manager to validate the type of service required by a user and also updates

the resource availability. R1, R2…Rn are the distributed resources in the cloud. Each resource

will have the whole software running on their machines. It is similar to the peer to peer clients

running on individual machines.

3.2 LITERATURE REVIEW

There are different implementations of cloud computing. Mobile computing [66, 67] faces the

problems of resource scarcity, connectivity and mobility. Mobile cloud computing has emerged to

tackle some of these problems and its architecture is shown in Fig. 5. Currently mobile cloud

computing uses the existing centralized cloud architectures to run their applications on cloud

providers. This takes care of the problems of resource scarcity and mobility, but connectivity

remains an issue. Running mobile applications on the cloud brings out the new problem of

latency. Mobile cloud computing can be defined as the ability run some of commonly used

applications such as Gmail on a remote server, with the mobile device acting as a thin client

connecting to these servers either over the network or internet.

20

Figure 5: Mobile cloud computing

Mobile cloud computing schemes need high connectivity to data, on demand access to wireless to

connect to and transfer to and from the cloud. With high latency, mobile devices run into battery

issues and large processing times [68]. Use of the distributed cloud computing would be

beneficial in this scenario. User can use mobile devices to do computation and run applications on

nearby resource providers rather than connecting to the cloud data centers which may be more

remote.

VANETS, Vehicular ad-hoc networks have been combined with cloud computing to form

vehicular cloud computing. Drivers of vehicles can make use of mobile cloud computing, but face

the problems discussed earlier of battery limitations and processing time [68]. One solution is to

connect VANETS to the existing cloud architecture to form vehicular cloud computing [69] as

shown in Fig. 6. However, the below architecture still suffers from high latency and connectivity

problems. If the cloud resources are close by the performance of these networks would be

improved. The use of distributed cloud architecture to run application close by the user would

therefore be beneficial.

21

Figure 6: Vehicular cloud computing

All the current architectures make use of centralized cloud architecture. All these applications can

be implemented using the distributed cloud computing model described in section 3.4 with high

reliability and low latency. Future work looks into how to implement these mobile and vehicular

cloud models using our proposed distributed cloud and how to make sure the data is secure and

privacy can be preserved in these distributed cloud computing models.

3.3 RESOURCE DESCRIPTION FRAMEWORK

In the distributed cloud we have resources offering services across the world. These services are

allocated to the user using a resource management system. We will create a resource model which

defines the resources based on the services offered. The distributed cloud resource providers will

22

describe the resources and services they offer to the resource manager. Resource modeling

describes the resource offered by the cloud and is used in describing cloud resource management

and control of resources. The resources distributed have many characteristics which should be

defined properly based on functionalities and services offered. These characteristics would be not

only useful for identifying and analyzing user requirements properly but would also help to locate

resources accurately as per need. The resource offered by each node can be modeled as shown in

Fig 7.

The same resource model can be used for both the distributed cloud and cloud computing system.

Each of the resources modeled are detailed as follows:

 The resourceID is a unique identifier for each node.

 The location of the node can be an important factor if localization is desired. The

location of each node is represented by its network coordinates.

 Network coordinates maps the nodes to a predefined geometric space.

 Cores and RAM are used to identify resources at a fine grained scale like number of

cores or gigabytes of memory.

 The bandwidth indicates how fast data can be stored or retrieved. This can be an

important factor if huge amounts of data need to stored or obtained.

 The storage capacity is how much storage the node has allocated for the distributed

cloud. Both the available and total capacities are reported.

 The availability denotes how busy the node is. If it is receiving a lot of storage

requests, it will set its availability to low or none. This does not indicate the amount of

storage capacity remaining; it can be used for load balancing.

23

 Operating system indicates the type of OS running on the virtual machine.

 Name denotes the type of service offered by resource. Ex: Java for PaaS

Figure 7 Resource description framework

All these parameters are defined for different types of service models. There are different types of

services classified under these service models such as Storage as a Service, Data as a Service etc.

Again actual services offered under these services may or may not use these parameters. For

example if we consider Storage as a Service it only needs information such as resourceID, storage

capacity, bandwidth, location and availability. The main goal of a resource description framework

is to identify the attributes of cloud services.

24

3.4 HIERARCHIAL MODEL OF DISTRIBUTED CLOUD

Based on the service offered, the cloud infrastructure is composed of storage cloud, computing

cloud, infrastructure cloud and data cloud. Using the hierarchical model shown in Fig 8, we can

offer storage, data, computing and infrastructure as services to the users. We first identify users

based on the area or locality and divide the whole system into zones and locations which will help

us manage the resource efficiently.

The global resource manager is the first point of contact for the users and zonal resource manager

is the layer till where users will be able to choose resources. The zonal resource manager is in

charge of collecting information about the local resource managers. All the end nodes are

connected to the local resource managers which keep track of information about nodes. The local

resource manager is defined based on the location radius. We use a hierarchical model for the

resource management system to effectively handle the high number of user requests and

managing them in parallel based on the requirements. The user request based on user location and

service requested will be routed to the zonal resource manager. The zonal resource manager

based on the location assigns the task to a local resource manager. The local resource manager

checks the requirements and based on resource availability and network bandwidth either assigns

the resource in that location to the user or transfers the request to a different location from the

same zone. Each service will be assigned with a unique VM except for storage. Multiple users

can use the same storage based on availability. Using the hierarchical model, managing the

resources would be more efficient.

25

Figure 8 Hierarchical model of distributed cloud

We need optimizing techniques for allocation of resources. Optimizing techniques can be based

on response time, throughput, and network traffic. To achieve the elasticity property of the cloud

in a distributed cloud environment we need to use VM migration techniques. As long as a

particular resource provider has enough resources elasticity is not a problem, but if the resources

are not sufficient we need to look into virtual machine migration techniques to safely migrate

resources to another resource provider.

3.5 DISTRIBUTED CLOUD ARCHITECTURE

Using the hierarchical model of distributed cloud we still have multiple points where the network

is using centralized nodes. In hierarchical model of distributed cloud the super nodes act as

26

central points to the nodes under them. But since the load is uniformly distributed we need not

worry about a single point of failure. The main problem using the hierarchical structure is how to

elect nodes to be a zonal manger, local manager etc. If these are dedicated nodes similar to actual

servers, the whole system needs to be maintained by a central authority. But if we want it to be

completely distributed we need to find an alternative. To make the whole distributed cloud

decentralized we developed a distributed cloud architecture that doesn’t require any central

authority to manage nodes.

Distributed cloud computing refers to managing, provisioning of distributed resources. We

describe distributed cloud as resources and services provided by users in a P2P fashion, instead of

huge data centers located in one single or multiple locations. Moreover it provides a completely

decentralized mechanism of allocating and using resources, thereby avoiding a single point of

failure. Users will be able to store data and perform computations on the proposed distributed

cloud which should be efficient and a practical secure system.

In distributed cloud model shown in Fig 9, resource providers (RP) are distinctive i.e. these

distributed cloud servers are individuals with resources to offer. Users of the distributed cloud

need to discover these resource providers and request them for using their resources. Nodes in the

distributed cloud can be both users and resource providers. The distributed cloud proposed uses a

completely decentralized mechanism to discover and allocate resources. Users in the distributed

cloud share resources in a P2P fashion.

27

Figure 9 Distributed cloud model

The distributed cloud should have all the characteristics of the existing cloud architecture

including proper management of resources, data security and privacy, and trust. The Distributed

cloud provides scalability. Network constraints will be less using the distributed cloud which is

internet based because data and resources distributed would be closer. Moreover latency would be

reduced because resources would be chosen closer to the users. The distributed cloud would be

free of cost as end users share their resources, but at the same time faces the problems associated

with P2P systems such as free riding and performance issues.

In the distributed cloud model the user submits his job for the cloud in the form of a task to be

performed and the required data resources that are present in the cloud. In Fig 10, we outline the

execution flow for the distributed cloud. The user submits the job, data resources required and

constraints over the job to the distributed cloud. A job may consist of multiple independent tasks

or they may be dependent tasks. The workflow manager generates a workflow for the job based

on the constraints and data and identifies the resources required to complete the job. It also will

depict the work that can be done in parallel and hence can maximize the proper utilization of

28

resources. Once the resources requirements are identified, the resource manager will use our

proposed resource discovery algorithm to find the appropriate set of resources. Based on the

constraints, the proposed resource allocator will use game theory to allocate appropriate resources

from the group of resources discovered. In this work we assume there is no collaboration between

the resources discovered.

Figure 10 High level model of distributed cloud

Future work will focus on resource allocation for dependent tasks. Once the resources are

allocated the task scheduler will schedule the tasks onto these resources efficiently based on the

task constraints. If the tasks are dependent and require communication with other tasks we need

to allocate the resources in a way such that overall resource utilization is maximized. We intend

to work on this problem in the future.

 User

 Work Flow Manager

 (Identifies resources required)

 Resource Manager

 Resource Allocator

 (Game Theory)

 Task Scheduler

29

CHAPTER 4

RESOURCE DISCOVERY MECHANISM IN DISTRIBUTED CLOUD

4.1 PROBLEM STATEMENT

The main goal of the distributed cloud is to evaluate and see if the system design can be practical

in terms of efficiency. Designing and evaluating distributed cloud storage and computation is the

main goal. Resource discovery in a distributed cloud model is a main problem. In current P2P

technologies [9, 10, 11], using DHT’s single attribute resources can be discovery. In a distributed

cloud each resource is modeled with multiple attributes. Users request can include different

attributes such as memory, cores, operating system, storage, availability etc. So we need a better

mechanism to perform resource discovery.

To find a node we hash the IP address. But when we need to find a resource for computing we

need to find resources which satisfy the user criteria. This problem of finding resources in P2P

systems with multiple attributes is handled using range queries. Many range query schemes have

been proposed for P2P systems. Since these range query schemes are built over existing

architectures, they create a large overhead and moreover these are only used for data

management. So, existing DHTs cannot be used for routing and resource allocation in the

distributed cloud efficiently. A lot of work has been done on multi attribute range queries [19, 20,

21] in a P2P networks which are described in the literature review.

30

4.2 LITERATURE REVIEW

Distributed cloud computing makes use of underutilized resources and has its own advantages.

The distributed cloud model provides all different services provided by the existing cloud in a

distributed decentralized manner. Since users contribute these unused machines for the distributed

cloud, they can make use of other resources that are offered by others. In distributed or grid

computing a computationally intensive task is divided into multiple smaller problems and run on

different machines. Such an approach can be implemented on this distributed cloud. Apart from

file sharing that is similar to peer to peer networks, users can also store files on the distributed

cloud.

Although allocation of computing resources in a distributed computing to solve a task is a NP-

hard problem, there are models to optimize this allocation. Moreover in grid computing there is a

centralized server which keeps track of other machines in the network. The Distributed cloud

avoids the use of centralized servers to avoid single point of failure. The Distributed cloud allows

users to select their own resources and store data in the resources they want. Although distributed

computing and cloud computing share a lot of similar features, distributed cloud requires a

completely different architecture to operate efficiently.

Peer to peer systems made file sharing and content distribution possible. Peer to peer systems

make use of DHTs for efficient query lookups. Kademlia [9], a peer to peer, decentralized

protocol is used by millions of people daily. In a network of size N users, it takes an average of

 () hops to find a requested peer using kademlia. Kademlia has been shown to perform

efficient query lookup. Every node in kademlia has a 160-bit node ID which is created randomly

or generated from the IP address. Kademlia uses bitwise XOR metric for accelerated lookups. For

each 0 ≤ i <160 every node in kademlia keeps a list of information about other nodes of distance

31

between 2
i
 and 2

i+1
 from itself and these lists are called k-buckets. Kademlia uses four different

RPCs; PING, STORE, FIND_NODE and FIND_VALUE. PING to check if node is online or not,

STORE to save data, FIND_NODE to find k closest nodes given ID and FIND_VALUE works

the same as FIND_NODE except that it can be used to retrieve a value given a key from STORE

RPC. Routing is existing DHTs is as shown in Fig. 11.

Figure 11 : Routing in a distributed hash table: 1) User A contacts B, the closest node to T in A’s

routing table; 2) B replies with C, the closest node to T that B knows about; 3) A contacts C; 4) C

replies with E, 5) A contacts E and finds that E is the closest node to T; 6) A sends the file M to E

to be stored.

Using existing DHTs for resource discovery is not possible as they only work for single

dimensional queries which use one attribute. Moreover range queries are not supported by

existing DHT’s because of hashing. DHTs make routing simple if users want to find resources

with an exact single attribute. In a distributed cloud, users specify multiple criteria for resources

32

and multiple resources may be available that meet user requirements. The problem then becomes

identifying the best resource to be allocated. This requires range queries that satisfy multiple user

requirements and then a set of best resources can be selected.

There are different range queries implementations used in P2P systems to find data in P2P

systems with multiple attributes [19, 21]. In [19], authors used z-curves to partition data and

arrange the subspaces into skip graphs. Query ranges are performed over these zones. Given a

query range, a node computes superset of zones covering this range. In [21], authors used Hilbert

space filling curves to map n dimensional data to a single dimension. In P2P systems these range

queries look for a range of data whose locations are fixed and the data itself does not change. In

contrast, resources in the distributed cloud are dynamic where resources enter and leave the

cloud. The resource attributes (memory available for example) may change once a part of a

resource is used. Existing DHTs cannot therefore be used for routing and resource allocation in

the distributed cloud efficiently.

The Distributed cloud has been recently studied because of its benefits in sharing idle resources

effectively. In [25], the authors merged voluntary computing and cloud and a new architecture

was proposed, but this architecture makes use of a centralized mechanism to traverse the requests.

Any user who wants to provide the resources should send a request to the centralized system and

should accepts the rules and policies required by the cloud@home management system. In [24],

the authors proposed a cloud model using P2P for storage but not for computation. They used a

P2P system on the servers and used DHT to handle storage in cloud. In [26], the authors

described a P2P cloud model which makes use of gossip-based protocol to manage a large P2P

cloud. Though this model achieves building a P2P cloud, important things like resource

discovery, user behavior and other P2P vulnerabilities are not mentioned. In a naïve way we can

make use of multiple DHTs each for an attribute of resource to find the resource providers

effectively. Large storage is required in order to store multiple DHTs and we need multiple

33

queries to process data from multiple DHTs i.e. the time required to find resources would be

higher.

4.3 RESOURCE DISCOVERY IN DISTRIBUTED CLOUD

We use an efficient resource discovery model based on multi valued hash tables as it provides

 () for finding a resource. This model uses kademlia for routing, lookup of nodes and uses

a multi-valued hash table scheme for identifying resources needed with multiple attributes. We

propose a new approach to resource discovery, having two different ID‘s, one to find a node and

the other to find nodes satisfying user requirements. First we use the 2nd nodeID to identify the

resources that satisfy user requirements and use the first nodeID to locate them. There is also a

naive solution that can be used to perform resource discovery which is explained below.

4.3.1 NAÏVE SOLUTION FOR RESOURCE DISCOVERY

A simple and naïve solution to the problem of resource discovery in a distributed cloud is

modifying the original Kademlia algorithm to handle multiple attributes (resources). The node ID

can be changed to include resources information. Routing in Kademlia is performed using the

XOR metric. Peers with similar first few bits in their IDs are “close” to each other. The resource

information can be encoded into the node ID. Instead of the node ID being generated from the IP

address only, the node ID is generated using both the resource information and node ID.

However, for resource discovery to be possible, the node IDs has to be of some structure, such as

34

peers with similar resources are close to each other in terms of node ID space. The information

representing the resources can be prepended to the original node ID, as follows:

Where + indicates concatenation. For example, we first decide the resource attributes needed and

then assign bits for each attribute. If the two resources under consideration are processing power

(CPU) and amount of memory, 3 bits can be assigned for CPU (for a maximum of 8 Ghz) and 5

bits can be assigned for memory (for a maximum of 32 GB). We then concatenate all these bits

together and with the original node ID which is the hash of the IPAddress or hash of file name. If

the original node ID size is n bits which is a constant and can be changed with increased number

of users, the new node ID size is 3+5+n = 8+n bits.

This new node ID is used to represent and locate peers. The routing table and routing mechanism

stay the same. Each ID is now 8 bits bigger and the overhead is only 8, which is small compared

to the original ID size of 160 bits. If user requires resources with fewer constraints only the

required constrains are extracted from the nodeID and resources are retrieved. For example if user

requires 5 resources with constraints such as 4 Ghz of CPU and 2 GB memory then all the nodes

with CPU and memory greater than or equal to 4GHz and 2GB are retrieved. The nodeID size

remains constant. If a user doesn’t require memory then any resource with greater than 0GB

would be considered. When a user requests for a node with a list of required resources, the user

first calculates the first 8-bits, which indicate the resources needed. The peers who match these

first 8-bits are located, and the remainder of the routing process is performed using the original

Kademlia algorithm. Peers with the same first 8-bits are closer together and they all have the

same available resources. The main problem with this solution is that it matters which resource is

prepended first. In the example above, if a user only requires a certain amount of memory, many

35

query lookups are needed to discover all possible peers. Moreover, the size is fixed. If a user

wants to share more than 32 GB of memory, the change is not incrementally deployable and the

whole system needs to be updated. Finally, the IDs are not sorted. For example, an ID with 3 Ghz

of CPU and 1 GB of RAM is located after an ID with 2 Ghz of CPU and 5 GB of RAM, in terms

of the XOR metric.

4.3.2 RESOURCE DISCOVERY USING MULTI-VALUED HASHTABLE SCHEME

The resource discovery model proposed for distributed cloud computing is efficient as it provides

 () for finding a resource. We evaluated this by finding the number of hops required to find

a node. The kademlia scheme is used for routing and lookup of nodes. We introduced a new

concept of distributed local multi-valued hash table to handle the problem of resource discovery

in distributed cloud computing. Every node will have 2 ID‘s, one to determine the resource

location and another to determine the attributes of a resource. We made use of kademlia‘s

distributed hash table to locate a node efficiently. The 1st ID is determined as hash (IPAddress)

and the 2
nd

 ID as hash (attributes). In our approach each node along with its k-bucket maintains a

multi-valued hash table. This multi-valued hash table gives information about nodes in its routing

table. Each node constructs its own multi-valued hash table by storing key value pairs of

<nodeID2, a set of nodeID1’s > in its routing table. The k-buckets and multi-valued hash tables

are updated whenever a node receives messages and configuration changes such as change in

attributes, nodes move in and out of network etc.

 ()

 ()

36

Resource discovery in this model is done by checking its multi-valued hash table and find nodes

that match user requirements. If nodes are not found in the local table, a request to find nodes

with user requirements is sent to the nodes in routing table. These nodes check their multi-valued

hash tables and the process is continued until resources that satisfy user requirements are found.

For example, if we consider two parameters, cores and memory we can have the 2nd nodeID as

hash (cores, Memory). There might be many nodes with the exact cores and memory, so for each

nodeID2 there might be a set of nodeID1’s assigned as value. Hence we use 2nd nodeID to

determine available set of resources and the 1st nodeID for node lookup and routing.

Consider an n dimensional space with n attributes. Given the resource requirements we can

identify all the resources that can satisfy the requirement using n dimensional graphs. For

example, if a user requests for a resource with 2GB memory and 2cores, from Fig.12, we can see

that all the nodes from the shaded region satisfy user requirements since memory is greater than

2GB and cores greater than 2. So we find all nodeID2’s which fall in this region. We use a multi-

valued hash table algorithm to find all these nodes which can satisfy user requirements.

Figure 12: User request for a node with 2 cores and 2 GB memory can be satisfied by nodes in the

shaded area.

37

Assuming there are two major attributes, cores and memory to find a resource we developed and

evaluated the resource discovery algorithm shown in Fig. 13 which is explained below. When a

user requests a resource with X cores and Y memory, the application layer based on a threshold

creates a list of nodeID2‘s that can satisfy user requirements. The Threshold defines the

acceptable range of resources which can satisfy user requirements. It is determined by the system.

Each of these nodeID2’s in the list has cores and memory greater than or equal to user

requirements in the X+threshold and Y+threshold region. This list is used to find the set of

resources that can satisfy the user requirements efficiently. User starts by searching his routing

table for nodeID2. If he finds nodeID2 he will get a set of nodeID1’s. If the number of nodes

found reaches the thresholdCount the system stops additional querying for the resources.

Otherwise the user will send a request to find nodes to other nodes and repeats the process until

number of resources reaches the thresholdCount. ThresholdCount gives number of nodes to be

found to make sure user has choices to select the best node which satisfies his requirements

efficiently.

For example: user requests for 2 cores and 2GB memory

 Find all nodeID2 corresponding to user requirement based on thresholds x and y.

 ()

 Find CheckList: find all other nodeID2‘s that can satisfy user requirements i.e.

(cores, memory) as (2,3),(3,3),(3,2)...

 Check the nodes routing table to see if there are nodes with initial nodeID2. If

found add them to final list.

 Check size of final list. If enough nodes are found start with resource allocation.

if not found repeat the process for other nodes in the CheckList

38

 If there are not enough nodes that can satisfy user requirements look for the

nearest nodes in the routing table and repeat the whole process.

Algorithm: Resource Discovery

//user asks for n resources with X-Cores and Y-Memory

nodeID2=hash(X,Y)//Find nodeID2

//Find all resources which can satisfy user

CheckList=FindAll(nodeID2);

For each nodeID2 in CheckList

 {

//user sends a message to all closest nodes in his k-bucket

 FinalList.find(nodeID2);

 If contains nodeID2

{

 NodeID1=node.get(nodeID2)

//if a node contains NodeID2 get set of NodeID1’s associated with NodeID2.

 For each node in NodeID1

{

//n is number of resources requested. Threshold value is needed for load-balancing. We need

//to find adequate nodes so that we can perform our game on then to find best resources for

//user.The game is covered in section 5.3

 If(FinalList.size<n+thresholdCount)

 FinalList.add(NodeID1)

 Else

{

Stop Searching;

Return FinalList;

 }

End If

}

End If

}

Figure 13 Resource Discovery Model using Multi-Valued Hash tables

Using the distributed cloud users can request for a single resource or set of resources. Since we

used kadelmia [7] the whole process would be done asynchronously. Moreover since we use two

different ID‘s there is no need to update the routing ID. User can use the first n resources found

that meets the user requirement. But the resources found that match’s user requirement may be far

39

away from the user or has large latency or low throughput. So in order to find the resources that

best match the user requirements and also has low latency or high throughput or low incentives

we use game theory to allocate resources effectively. We use auction games to avoid the free

riding problem.

Since for the distributed cloud storage there is only one attribute, namely, storage, we

implemented the distributed cloud storage model using the existing kademlia. For the distributed

cloud computing there is more than one attribute. Hence, we implemented the distributed cloud

computing model using a multi-valued hash table scheme by modifying kademlia. More details

about the implementation are explained in the evaluation section.

4.4 EXPERIMENTAL ANALYSIS

4.4.1 DISTRIBUTED CLOUD COMPUTING

We have proposed a new mechanism to discover resources with multiple attributes in a

distributed cloud. To determine if the proposed method works efficiently when compared to using

the existing kademlia [9] for resource discovery, we simulated a distributed cloud computing

model. The simulation made use of kademlia, a peer to peer protocol.

We wrote our simulator using java1.7. We made use of kademlia for routing purposes. We used

the King dataset [17] to simulate the latency between nodes. Each node has different attributes

such as id, memory, capacity, memory, cores, and availability. Each node maintains its own

routing table and a multi-valued hash table. We used kademlia routing table in our simulator with

each node maintaining 3 k-buckets with bucket size set to 1. We wrote a ping event to check if a

40

node is online. A PING event pings all the nodes in its routing table and verifies the availability

of nodes. If the node doesn’t get any reply for the ping the other node is considered offline. Each

routing table and multi-valued hash table is updated when a new node joins and whenever a new

node is discovered during the process of searching other nodes. After a node has assigned its

resources to another node it deducts the resources assigned. It then updates its multi valued hash

table and then informs about the change to nodes in its routing table. Once the processing time is

finished and resources released, the node updates its new availability and multi valued hash table.

The new resource discovery mechanism was implemented by modifying the existing kademlia.

The simulation network consisted of 500000 nodes which joined the network at the beginning of

the simulation. Each node has a 32 bit unique ID generated randomly. Each node has a mean

memory of 8GB; the minimum is 1GB and maximum is 16GB. Each node has cores which are

randomly assigned from set of valid cores 1, 2,4,6,8 or 10. To make sure that simulations would

be more realistic we are biased towards lower core values when assigning them. This is the

assumption we used because in the real world most of the machines offered would be small

machines with basic computation power i.e. lower number of cores and low memory. In our

simulations we had 50% of nodes with 1 core, 25% of nodes with 2 cores, 10% of nodes with 4

cores, 8% of nodes with 6 cores, 4% of nodes with 8 cores, and 3% of nodes with 10 cores. We

also made sure that most of the requests to the distributed cloud are more biased towards the

lower values of cores and memory, i.e. users requesting nodes with lower computing power. In

our simulations 80% of nodes requested 1 core and memory up to 4GB, 10% requested 2 cores

and memory ranging 5 to 11GB, 5% requested 4 cores, 2% requested 6 cores, 1% requested 8 and

10 cores and all 4, 8 and 10 core machines requested 12-16GB memory.

Each node requests a resource or set of resources with randomly assigned capability. Requests are

processed over a normal distribution with a time of 6 hours; the minimum is 1 hour and the

maximum is 6 hours. After the requests are processed, the resource provider (RP) of respective

41

nodes selected will deduct the resources provided till the processing time is finished. Once the

process is finished, the resource provider RP will change resource attributes based on the new

availability. Each node stores a multi-valued hash table with the key being nodeID2 which gives

information about the computing resources available with a node and value being a set of

nodeID1’s.

The simulation is run with all 500000 nodes joining at the beginning of the simulation. We ran

our simulation with each node requesting "k" nodes for simulation. We used "k" as 1,2,3,5 and

10. We used different “k” values to find out how many nodes can be successfully found, so that

we can allocate one of the best nodes from “k” to the requested user using our resource allocation

game method. We calculated the number of searches/queries required to find a resource. This also

infers that if searches/queries are less the processing time to find a requested resource is low.

Figure 14 Average number of searches to find K nodes

42

Figure 15 Percentage of Successful searches to find K nodes

Figure 16 Percentage of successfully finding at least 1 node from incomplete searches

We implemented resource discovery using regular DHT and we observe that it took more than 25

searches to find a node compared to our multi-valued hash table scheme. We have set the search

limit to 25 and then performed the resource discovery using the regular DHT. Fig. 14 shows the

average number of searches taken to find “k” nodes using our multi-valued hash table and regular

DHT. We see that the numbers of successful searches to find “k” nodes are a lot fewer using our

43

proposed multi-valued hash table scheme. The average number of searches for finding 10 nodes

is 3.64, and from Fig. 16 we can see that more than 70% of time we can find 10 nodes which

match user requirements within 4 search queries.

 In Fig. 15 we compare the success rates of regular DHT’s with a multi-valued DHT. We observe

that the percentage of resources found i.e. successful searches is far higher using our resource

discovery mechanism. We can see that the success rates for finding nodes is about 90% for k=1,

2, 3 and a little less for k=5 and for k=10. We also see that the success rate using regular DHT is

lot lower. Using regular DHT, the success rate for finding k=3, 5 and 10 nodes is zero.

We also evaluated the percentage of finding at least 1 node from unsuccessful searches to finding

2, 3, 5 and 10 nodes. From Fig. 16 we see that the success rate for finding at least 1 node which

meets the requirements using different “k” values is lot higher using our multi-valued DHT

compared to using regular DHT. From these experiments we calculated the number of hops

required to find a node in the network. Our scheme took an average of 2.4 hops compared to

using kademlia which took an average of 2.6 hops to reach a node. From these results we observe

that our proposed model of distributed cloud is practical and more efficient than existing

schemes.

4.4.2 DISTRIBUTED CLOUD STORAGE

To determine whether our proposed concept of distributed cloud is feasible storage, where every

user's machine can be a storage device for other users, we simulated a network of users and file

storage. The peer-to-peer protocol used was kademlia. The network consisted of 10,000 nodes

which all joined at the beginning of the simulation. Each node is assigned a randomly-generated

unique nodeID. The size of each nodeID is 10 bytes, instead of Vuze's 20 bytes due to the smaller

44

network size. Each node randomly contacts another node which had already joined for bootstrap

(obtain information about other nodes). The other parameters of the protocol are similar to what is

set in the Vuze BitTorrent peer-to-peer client. The number of replicas for each file stored is set to

10, the bucket size of each routing table entry is 20. Every 10 minutes, a node pings another node

in its routing table to determine if it is still alive. Every 30 minutes, a node picks a random

nodeID and performs a FIND_NODE. This allows a peer to find other peers in the network.

Our simulation contains a few assumptions. We emphasize that the simulation is a proof-of-

concept that a distributed cloud for storage is feasible and practical. Future work includes more

realistic experiments. Each peer provides a mean storage of 50GB for the network; the minimum

is 10GB and the maximum is 100GB. At the beginning of the simulation, each peer ``generates'' a

random number following a Gaussian/Normal distribution with a mean of 50GB. With 10,000

peers in the network, this provides an average of ~500TB of possible storage for all users. Each

peer also has an average of 100 files to store in the distributed cloud; the minimum is 1 file and

the maximum is 500 files. The average size of each file is 1MB; the minimum is 1KB and the

maximum is 100MB. The fileIDs, mapped on the same space as the nodeIDs, are randomly

generated. Following Vuze's parameters, all files (metadata for Vuze) are deleted after 24 hours.

This implies that every 24 hours, a node has to perform STORE operations to keep its files stored

in the distributed cloud. Each file is replicated 10 times and stored at 10 different other peers. If a

file is stored at least once, this is counted as a successful storage.

After storing its files in the cloud, every peer also has to search and retrieve the files. Searches for

each file follow a normal distribution with a time of 24 hours; the minimum is 1 minute and the

maximum is 48 hours. Every search also has a timeout of 30 seconds. After 30 seconds of

searching and not finding the file, the search is considered to have failed. The peer only needs to

find one copy of the file, not all the replicated copies.

45

The protocol described is very similar to a peer-to-peer file-sharing network. The major

differences are storage is provided. A peer can store its file at another peer. Afterwards, a peer has

to be able to search and find its previously stored file.

The simulation is run for 3 simulated days, with all 10,000 nodes joining at the beginning of the

simulation. The King dataset is used to simulate the latency between peers. From the list of

latencies from the King dataset, one latency is randomly chosen for the simulated latency

between two peers. Each request/reply processed at a peer is also simulated to take 1 millisecond.

This processing time is very likely an overestimate on the actual processing time. The average

time to successfully complete a store operation is 1.9 seconds and the average time to

successfully complete a search operation is also 1.9 seconds. The percentage of successful store

operations is 98.98% and the percentage of successful search operations is 91.21%. The high

success rates show that a distributed cloud can be used efficiently and effectively for distributed

storage.

Since peers can join and leave the network at any time, churn is also simulated. Every peer has a

25% probability of going offline. If a peer leaves the network, it leaves for an average of 12

hours. Afterwards, the peer will rejoin the network after 12 hours. 12 hours is chosen as this is

half a day. The times and success rates are similar to the non-churn scenario above. The average

time for a store operation is 1.9 seconds and for a search operation is 1.9 seconds. The success

rate for a store operation is 98.87% and for a search operation is 91.69%.

Based on the success rates obtained for store and search operations, we find our scheme more

efficient and practical in terms of consideration for implementation in real time.

46

4.5 CONCLUSIONS

We proposed a distributed cloud computing and storage framework, and in particular we

described the distributed cloud model, node architecture and a resource discovery model to find

resources. We find our method took very few searches to find nodes for distributed cloud

computing when compared to using regular DHT. Using our method, the success rates for finding

nodes are 90% with searches less than 3, when compared to success rates of 40% or lower with

number of searches greater than 25. We also find that, with churn, success rate for a store

operation is 98.87% and for a search operation is 91.69%.

We see the distributed cloud as an emerging model in the next few years with a lot of research

remaining to be done. We see from the evaluation that the distributed cloud is a practical model

that will evolve over the next few years. As future work, we will explore more realistic

experiments, such as file changes, more nodes, and more realistic times and parameters. We will

look into adding churn to the distributed computing emulation.

47

CHAPTER 5

GAME THEORETIC APPROACHES FOR RESOURCE ALLOCATION

5.1 PROBLEM STATEMENT

The main goal of the distributed cloud is to alleviate, if not eliminate the disadvantages of a

centralized system, namely, single point of failure and communication bottlenecks by allowing

distributed computing and storage. In the distributed cloud, users are both the providers and users

of the resource. Resources are discovered using the multi-valued resource discovery mechanism

described in chapter 4. After a set (or range) of resources have been discovered, a subset of these

resources are allocated based on certain criteria (performance requirements for example).

Resource allocation based on user SLA (Service Level Agreement) is a NP-Hard problem and

task scheduling on to the resources available is NP-complete. Hence optimized resource

scheduling is achieved only for a particular user task or using heuristics. The user specified job

may require the resources allocated for the tasks to cooperate among themselves to finish the task.

Alternatively, the user specified task may be a completely independent task. In this work we only

consider independent tasks where each resource or set of resources allocated perform independent

work i.e. there is no need for cooperation among them. The proposed distributed cloud is user

centered, where users do not pay money to use resources. Instead, we propose a barter kind of

system where users provide resources and use resources. Hence, the question of fairness comes

up. Free riders who use resources, but do not provide resources for others must be prevented.

Hence after resource allocation the system must be stable. In our case, a system is said to be

48

stable when the allocation is fair, that is, users who provide resources for other users are more

likely to get the resources they require.

5.2 LITERATURE REVIEW

Game theory has been used in existing cloud computing technology for resource allocation such

that total payment is reduced for the user. The paper [29] talks about assigning tasks to resources

in the existing cloud and gives an optimal way to allocate tasks to resources, but in a distributed

cloud there is no central authority to manage resource provisioning. Moreover in the cloud

architecture, resources can be defined and generated at runtime. Hence, based on tasks resources

can be defined. In the distributed cloud we don’t know about the availability of resources,

therefore a game theory mechanism is used to create resources based on availability and latency.

In [23] the authors used a prediction scheme to predict future bids and used bids to schedule

resources which fit with bids. In our case there is no cost involved and we focus on utility for user

and resource provider.

We introduce a novel incentive based mechanism and efficient resource allocation so as to avoid

free riding in our proposed model of distributed cloud computing. Hence P2P technology and

game theory can be used to develop efficient models for resource provisioning in the distributed

cloud.

49

5.3 A GAME THEORETIC APPROACH FOR RESOURCE PROVISIONING IN THE

DISTRIBUTED CLOUD

In the distributed cloud architecture, resource discovery and allocation are the main problems. In

this chapter we address the resource allocation problem. Locating a proper subset of resources

from a widely spread distributed cloud to satisfy users requirements is a significant challenge.

This calls for efficient resource discovery mechanisms and resource allocation methods based on

user requirements and applications.

Resources must be allocated based on application requirements such as high performance or high

throughput while taking into consideration the free riding problem. In this chapter we use game

theory as a strategic decision making mechanism for allocating resources to users while

maintaining system stability. In particular we introduce an auction model for resource

provisioning where incentives encourage users to provide resources. These incentives are in the

form of a payback scheme where providers are given preference when they request resources.

Hence the more resources users will provide the more they can use the resources in the system

thereby avoiding free riders. The proposed game schedules resources such that the whole system

is stabilized. We describe an incentive based auction mechanism which is utility driven. Once the

resources are discovered users and resource providers’ form a group and the game is performed

among them.

After resource discovery part is done we use the first n resources found that meets the user

requirement using this method. Discovering only the exact number of resources requested by a

user is not sufficient. Although these may satisfy user requirements, they may be inefficient to

use because of, distance from the user or large latency or low throughput. So in order to ensure

50

efficient allocation in the distributed cloud, we find resources that match user requirements but

also has low latency or high throughput or low incentives. We use game theory to allocate

resources effectively and to avoid the free riding problem as well.

Once the resources are found, resources are allocated based on game theory. Since resource

providers (RPs) and users share resources similar to economic models where collaborative usage

of resources is needed, game theory provides an appropriate model. An auction is a marketing

mechanism we use for resource allocation in the distributed cloud. In a regular auction

mechanism the bidders bid for a resource. In our proposed model RP’s bid to sell or provide

resources. In our proposed auction an auctioneer, the user, determines the resource allocation.

The bidders who are RP’s provide their resource. The players are both bidders and auctioneers. In

this game there is no centralized computation, which fits in well with our proposed distributed

cloud. Since the distributed cloud is based on resources supplied by users, it is free.

Both types of players have information of resource description and include CPU, memory,

participation factor (which is defined later in the chapter), latency, and throughput. The

auctioneer knows about the latency and throughput from measurements made by the RP’s. RPs

submits their contributions to the user. Contributions specify the amount of resources they are

willing to provide along with the incentives they need for providing them. Incentives specify the

resources the provider expects from the requesting user at some point in time. Each bid can be

characterized as 4-tuple bi = <Ci, Mi, δ, *, α >, where Ci is CPU available, Mi is memory available,

δ is participation factor, * defines user specification which is latency or throughput and α

determines the incentives required.

A question that arises is “can’t a bidder submit a false bid?” For example a free rider might

generate a bid with a high δ (participation factor) value. In this paper we assume that the

underlying operating systems software generates the bid. This we assume is a secure piece of

51

code that cannot be tampered with. Based on communications (ping for example), the * values

can be generated.

Based on the bids, the user calculates the utility function. Using this utility function, resources are

allocated to the user. The Utility function (eq. 5.1 below) determines the utility which is the value

of resources assigned to the user. Since our model of distributed cloud is free of cost, we have a

participation factor (δ) assigned to each user, and incentives to encourage users to provide

resources. The participation factor aims to avoid selfish behavior of users. It shows how much

resources a user has contributed to the system. Participation factor is included in the system and

user cannot cheat about the participation factor values.

In this type of auction the bidder with the highest contribution is not the winner. User i chooses

the resources based on the bids and allocation of these resources to user is done rationally. Each

user requesting a resource would not receive ideal resources if his participation factor is low.

Users need to provide resources to raise their participation factor. Participation factor is based on

the number of requests a user has satisfied. If ‘N’ is the total capacity of resources provided by

RP until a time t and ‘Z’ is total capacity of resources available with the RP then participation

factor is:

The participation factor is always between 0 and 1. During the initial stages or if the user’s

participation factor is low he might receive resources whose utility value is small. This ensures

that once the system is close to stability or users who are not free riders will most probably

receive resources with maximum utility. Typically each provider submits contributions to

maximize their participation factor. In the distributed cloud users will be requesting multiple

resources for computation, so we will be using a simultaneous auction and there will be multiple

winners.

52

A bidding profile is a vector of player’s bids b = b1,b2...bi. The bidding profile of user i is

represented using bi and the bidding profile of user i’s opponent is defined as b-i = b1...bi-1,bi+1..

User i chooses a resource based on the utility, where utility is defined as

 () ()

 () (
 ()

) ()

Where Wt is the weight assigned for CPU and memory, δuser is participation factor of user

requesting resources and Costi is the value of incentive α that is asked by the RP. Once the user

receives all the contributions, the user will calculate utility values for all the bids using eqn. (1). If

the user needs ‘N’ resources, the user will select ‘N’ winners whose utility is maximum. The cost

Costi for a particular RP is based on the amount of resources he has in his possession. Costi is

modeled in such a way that it is low for RPs with lots of resources to provide and vice versa.

After the winners are announced, the user will have to pay incentives ‘α’ to the respective

winners. Incentive for RPi is given as

 {

We describe this game by considering that if a RP had submitted a contribution to one user he

won’t submit anymore contributions until the results are declared. After the bidding is completed,

utility is calculated based on user requirements, latency or throughput based on type of computing

and participation factor. We calculate participation factor for a provider based not only on the

resources provided by a particular provider but also on the quality of service. In a homogeneous

system we assume only one user is requesting a resource at a particular point of time. Then the

desirable outcome would be a bidding profile for which the utility would be maximized and is

called the Nash Equilibrium for the game, from which no user can unilaterally deviate i.e.

53

 (

) (
)

The users who provide their resources will be receiving some kind of incentives such as storage

or resource‘s for computing. The incentives would be based on Costi. The whole process can be

summarized beginning with users requesting a set of resources. The request is send out to all the

nodes in the routing table and a set of resources which can satisfy the user would be discovered.

Then we use game theory to select the resources such that it will best match user specifications

and incentives would be awarded to the respective RP. All the users discovered will send the bids

bi = <Ci, Mi, δ, *, α> to the user. The user then evaluates the bid using game theory and uses the

resultant resources and pays the incentives to the winners. The whole process of resource

discovery and playing the game would be automated. This way no user can modify their

participation factor (δ) or none of the RPs can cheat about their availability and bids.

We claim that our proposed approach achieves stability, that is, allocation is fair. Users who

provide resources for other users are more likely to get the resources they require.

Corollary 1: In a system where all resource providers have the same participation factor, load

balancing is achieved, that is, stability is achieved.

Proof: Utility is based on and cost. is the same (see corollary 2 below). The only variable is

cost. There are two possible cases:

 Cost that is higher than average. For a particular RP, a high cost, results in fewer

resources being allocated. This reduces. This will drive down the cost, resulting in more

resources being allocated and increasing.

 Cost that is lower than average. For a particular RP, a low cost results in more

resources being allocated. This increases. This will increase the cost, resulting in fewer

resources being allocated and decreasing.

54

Corollary 2: In the absence of free riders, all resource providers will converge to a similar

participation factor.

Proof: the Nash equilibrium states that the utility would be maximized for the game from which

no user can unilaterally deviate. Utility is based on the participation factor. Therefore the RPs will

have similar s and in the limit will be equal.

This leads to the following important conclusion

Theorem 1: The proposed auction game achieves load balancing and Nash equilibrium in terms

of resource allocation, that is, the system achieves stability.

Proof: Follows from the above two corollaries.

5.4 EXPERIMENTAL ANALYSIS

We simulated the simultaneous auction model using the king data set [17] with 100 nodes. There

is no cost involved in searches for resource allocation. In other words, in the auction mechanism

can be scaled to a large number of nodes and therefore simulating with 100 nodes is sufficient.

The simulation results are therefore valid to a larger number of nodes. The king data set gives real

time latencies between a set of DNS servers. This was used to evaluate Vivaldi [30] a

decentralized network coordinate system. We implemented our auction game on a distributed

cloud model. We simulated the distributed cloud by making changes to Kadelmia by adding our

resource discovery model into it. We performed experiments using different participation factor

values. We can see that only the nodes which satisfy user requirements would be selected for

auction. Once bids are submitted, the user will select the nodes for which he can maximize his

55

utility. Fig.17 shows how cost or incentive values varies as difference between required and

available resources increase.

Figure 17 Cost (Incentives) dependency

Figure 18 Utility with varying participation factors

56

We can see that as the difference between the available and required resources increases, cost

decreases. This is similar to a buisness model where as supply incresases cost decreases. We ran

simulations to see how the participation factor will affect the utility of a user. We measured utility

for varying CPU and memory requested. In Fig 18 (2,2) means user requested a CPU 2GHz and

memory 2GB and we can see that utility for nodes with lower participation factor is low for the

same amount of resources requested. This also ensures that free riders will get resources only at a

higher cost, than honest users.

From Fig.19 we see that with 10% free riders in the system the utility is a bit higher for free riders

than with 20% and 50% free riders. These results show that with more free riders the utility of

free riders is decreased. But for users who are not free riders the utility is almost constant as the

participation factor is increased. Utility values with 20% and 50% free riders in the system are

almost the same i.e. the utility values are low for free riders and constant for other users. Overall,

utility for free riders is comparatively lower than regular users.

Figure 19 Percentage of resources utilized compared to participation factor.

57

Figure 20 Percentage of resources utilized compared to participation factor over time.

Figure 21 Utility vs Participation factor with free riders included

58

We calculated the percentage of resources utilized and Fig.20 shows that total resource utilization

is more for resources with higher participation factor and we observe that users providing fewer

resources will eventually provide more resources over time. This leads to system stability. Fig.21

shows that the percentage of resources utilized increases over time and after some time all the

resources are utilized to the full. This shows that our scheme balances the load over time. We ran

experiments with constant resources provided by everyone. We see that utilization is constant for

all resources i.e. the load is balanced equally among all participants or users.

Figure 22 Participation factor for users over time.

We ran simulations with 50 users having varying participation factor values i.e. each user is assigned a

participation factor value between 0 and 1. We assumed there were no free riders in this case. We see that

the difference in participation factor values of all the resource providers are reduced over time. From

Fig.22 we can see that initially after a few runs participation is widely distributed. But as the game

proceeds we can see that all the resource providers end up with an almost similar participation factor.

59

5.5 CONCLUSIONS

We described a game theoretical model for resource allocation. We see distributed cloud as an emerging

model in the next few years with a lot of research remaining to be done. We propose a game theoretic

model for resource allocation. Results show that a game theoretical approach stabilizes the system and

penalizes free riders using the participation factor for allocation of resources.

Our future goals include simulating a large distributed cloud for detailed validation. We plan to extend the

game theory concepts presented here for a homogeneous system to a heterogeneous system, in other

words, multiple users requesting the same resource or multiple users requesting different resources at the

same time. We are working on using the Bertrand pricing mechanism to define the optimal price so that

the system would yield maximum utility. Issues we need to look into would be how to allocate the

resources when tasks are dependent on each other and need cooperation between the resources.

60

CHAPTER 6

BERTRAND GAME MODEL FOR ANALYSISNG RESOURCE ALLOCATION

MECHANISM

6.1 INTRODUCTION

The distributed cloud is a completely decentralized system. There are no central agents working

to allocate the resources. So we need a completely decentralized approach to allocate resources. A

user would be a part of the distributed cloud. A user will get access to resources in the distributed

cloud in a P2P fashion. The distributed cloud brings the benefits of both P2P networks and cloud

computing systems. A user requiring resources will find the nodes using the P2P model and then

uses the auction mechanism to select appropriate resources.

From an economics point of view pricing plays an important role in sharing/trading resources.

We have used an incentive mechanism instead of price such that both user and provider benefits

from the system. In our model demand is dependent not only on price but also the availability of

resources. Since in a peer to peer model the main problem is free riding, we modeled the

distributed cloud in such a way that free riders are unlikely to get resources. Free riders are the

users who tend to use the resources and provide none. In our model price depends on the

availability of resources, i.e. resource provider with more resources will provide resources for less

price and demand for such providers increase.

61

Bertrand model is used to analyze the behavior of nodes and used to study interactions between

nodes which can be either users or providers. Based on the Bertrand model we can make sure the

system applies the appropriate auction mechanism on nodes. We use the Auction model described

in chapter 5 for dynamic resource allocation in a distributed cloud. In this environment a user will

request for resources and multiple service providers will compete to provide their resources. We

formulate this resource allocation as an oligopoly market.

The main objective of this game would be to stabilize the system i.e. to make sure free riders are

eliminated and all users provide resources. The decision of one resource provider will affect the

outcome of others. Users decide to choose the best resource providers to maximize their utility.

The best set of resources a user can choose to maximize his profit is called a best response. In our

scenario resource providers competing can be assumed as firms in an oligopoly market. These

resource providers compete with each other to provide resources. Resource providers and users

are independent; therefore we can use the best response to find the equilibrium from both the user

and resource provider point of view.

6.2 PROBLEM STATEMENT

In a distributed cloud users are completely distributed with no centralized authority to allocate

resource, manage security etc. Multiple resources are available to be used. Users request and also

provide resources for other users. All resources are identified based on the attributes that describe

them. Some resources being provided or requested are single attribute resources e.g. CPU only,

some have multiple attributes e.g. CPU, cores and memory based on the requirements of the user.

Users with tasks to execute on the distributed cloud will request for resources. Multiple service

providers will compete to provide their resources which satisfy users requests. Since there are a

62

large number of users and their resources which are homogeneous we formulate this as an

oligopoly market.

The main problems that need to be resolved are, firstly, how the user can choose resources such

that user requirements are satisfied. Secondly, how can we allocate resources such that the utility

of users are maximized. Users who don't provide any resources and just use the system to get

resources for themselves should be punished. This is achieved by exacting a high cost for using

the system i.e. not allowing free riders. A free rider is someone who uses resources but does not

provide any of his own for others. The main problem would be to make sure the system doesn't

allow free riders or punish them if there are any.

The main objective if the model is to attain system stability where all users participate in the

system such that there is a balance between providing resources and using resources. To verify if

users are providing resources or not we have included a participation factor associated with each

user which measures a user’s contribution to the system.

6.3RELATED WORK

Distributed cloud computing is an emerging model of cloud computing. Distributed cloud

computing makes use of resources provided by users in a P2P fashion. A Distributed cloud can be

implemented with no cost needed for maintaining a data center. Resources that are lying idle can

be used to build a distributed cloud infrastructure. New users can join the system and users can

move in and out of system similar to a P2P mechanism. The system would be scalable and can

provide access to multiple resources without any single point of failure and central management.

63

Cloud resource pricing has been a topic for research recently. In [31], the authors proposed usage

of game theory in a P2P cloud model to solve the free rider problem. The authors however divide

the cloud into clusters supervising nodes maintain information. This forms a hybrid cloud which

uses a centralized architecture among a cluster. Our model of distributed cloud is completely

decentralized and there are no centralized points. In [33], the authors looked into cloud resource

pricing competition among cloud providers. In [32], the authors used cournot equilibrium for

strategic pricing of cloud resources where quantity is changed. In the cloud computing model

increasing the quantity of resources without knowing the requirement means increase in costs for

the provider to maintain them. In our model we show that by modeling the distributed cloud as an

oligopoly market and using Bertrand competition, users compete to maximize their profits while

solving the free riding problem.

6.4 RESOURCE ALLOCATION BASED ON BERTRAND GAME MODEL

6.4.1 NOTATIONS

 System - the distributed cloud

 N users

 Each user provides different number and types of resources

 Total number of resources provided by all users is r resources where r >=N

 Participation factor Pf - ratio of resources provider has provided to other users to

the total capacity of resources he has available.

 Auction factor Af : Af is the threshold level of participation factor which is

defined by the system. Auction factor determines which auction mechanism should be

64

used based on the users participation factor. The two auction mechanisms used are sealed

first bid auction mentioned in chapter 5 and reverse auction or sealed last bid auction. In

sealed last bid auction the lowest bid is considered winner. So free riders will get the

resources with lowest bids i.e. for higher costs.

 Demand of user i, Di : demand defines the need for his resources available.

 Profit πuser - Amount of utility gained by the user

 Profit πRP - Total increase in participation factor and incentives obtained.

 ur: Number/amount of resources requested by a user

 A user u has his own set of resources which he can provide to others wp

 Different resource providers charge a different price p for each resource.

Currently price is value of incentives

 Utility represents the motivation of players. In this game higher utility implies

the strategy is most preferred one and vice versa.

6.4.2 RESOURCE PROVISIONING MODEL

We use the Bertrand model [22] to analyze the market and apply the auction mechanism. We

consider a scenario in which there are “N” users and each of them provides “r” resources, where

N <= r. At any given point all users might not provide resources. All the resources provided by a

RP might be being used and they won’t have anything to provide at time‘t’. When a user requests

a set of resources “ur” the only thing that varies among the different resource providers is the

price “p”. All the different resource provider nodes vary in their capability and some of them

might be closer to the requestor node so latency will be less. Here we try to analyze from both the

resource provider's point of view and the user point of view.

65

In this model (Bertrand) RPs will have a fixed price which depends on the number of resources

they are providing and the number of resources requested. In our model, the price quoted by a RP

depends on the difference (r-ur). We formulated our model such that cost of resource requested

“ur” decreases if (r-ur) increases.

This way we can make sure that RP's provide more resources to users and RP's who are not

providing much resources will change their quantity to increase profits. Since cost decreases as

the number of resources provided increases, the demand would be more for users who provide a

lot of resources. RP's will try to maximize their total profit “π” and at the same time they will try

to increase their participation factor Pf. The utility of the user depends on his participation factor,

i.e. if the user's participation factor is low or below a threshold he will be awarded resources with

low utility. For the user, utility is the total value of goods they received subtracted from the total

incentives they paid. The user's strategy depends on his participation factor. If user's participation

factor is less than a threshold value the system uses a reverse auction mechanism to make sure

users are actively providing resources and not just using the resources.

6.4.3 GOALS

Different resource providers charge a different price “p” for each resource. Other factors such as

latency, throughput may vary. The price quoted or amount of incentives required by a user w who

provide resources, depends on availability. The scarcer a resource the provider has, the higher the

price. Therefore price is a function of 1/(wp-ur) where w and u are different users. The goal is to

66

make sure that resource providers provide more resources to users. Resources that are cheap will

be used faster and the participation factor of users providing resources will increase.

Resource providers:

 Aim to maximize total profit π.

 Aim to increase their participation factor Pf

Users:

 If a user’s participation factor Pf is higher than the threshold or Auction factor Af

, the system will aim to maximize the user’s utility

o A regular auction mechanism is used

 If user’s participation factor Pf is low or below threshold or Af , the system will

award him resources at a higher price resulting in lower utility

o A reverse auction mechanism is used

o Makes sure users are actively providing resources and not just using

resources.

6.5 BERTRAND GAME MODEL

Definition: Stable System: The system is said to be stable if all the users in the system have an

almost equal participation factor i.e.

Pf1 ≈ Pf2 ≈ Pf 3 ≈ Pf4 ≈ Pf5 ≈ …. ≈PfN (6.1)

We define Demand to be a function f of prices provided by different providers to that provided by

wp. In other words, the lower the price, the higher the demand.

67

Demand Di = 1/f(pwp, p-wp) (6.2)

p-wp gives the price of other resources available that are not provided currently.

The auction mechanism and all the terms are described in chapter 5. All resource providers will

bid to provide resources. Price required or value of incentives is based on the availability of

resources being provided and latency. Latency can be obtained when a user receives the bid using

ping. In our initial model, although each resource is selected from only one provider, all the

resources requested will be of the same type. Hence if n resources are need, n providers will be

selected. All the resource providers with a resource will submit bids.

Let Pi = {p
1
i,pi

2
,…,pi

n
} be the bids submitted for a resource i by n providers where p

j
i is the price

of resource i demanded by provider j.

If Pf < Af for a user, then using the reverse auction mechanism the successful bid will be p
j
i such

that p
j
i > p

k
i where j k. In reverse auction mechanism the bid with least utility is assigned to the

user i.e. user will get the resources with highest price.

For m resources, the winning bids Wr(P) for user r requesting m resources will be the collection

of each of the successful bids for the m resources. That is,

Wr(P) = {p
a
1,p

b
2,…,p

g
m} such that i < m, j > m, p

x
i > p

y
j where x y (6.3)

If Pf > Af for a user, then the auction mechanism for the successful bid will be p
j
i such that p

j
i <

p
k
i where j k

For m resources, the winning bid for user r requesting m resources will be the collection of each

of the successful bids for the m resources. That is,

Wr(P) = {p
a
1,p

b
2,…,p

g
m} such that i < m, j > m, p

x
i < p

y
j where x y (6.4)

68

Profit for a resource provider would be calculated as

πwp = Total price received + increase in Pf.

Let Ci be the marginal cost of resource for resource provider i. Marginal cost is the unit cost for a

resource.

Profit for a user n requesting i resources would be calculated as:

πi(ur) = ∑ ()

 if Pf > Af (6.5)

πi(ur) = ∑ ()

 if Pf < Af (6.6)

Definition (Nash Equilibrium): A price vector Pi
*
 is a Nash equilibrium for user i given P

*
-i such

that user’s profit is maximized by vector Pi
*
 i.e.

 Pi
*
 = argMax πi(p1,p2,p3…pn : P-i

*
) for all i=1,2,3…N (6.7)

The Nash equilibrium of the game is solution such that no player can increase his payoff

unilaterally choosing another strategy. The Nash equilibrium can be obtained using the best

response which is an optimal strategy. The best set of resources a user can choose to maximize

his profit is called a best response.

 BR(Pi
*
) = argMaxPi(Pi

*
: P-i

*
) for all I (6.8)

Proposition: If Pf < Af there is no price vector Pi
*
 such that the user attains Nash Equilibrium.

Proof: From Eq. 5 we see that πi(p1,p2,p3…pn) = ∑ ()

 if Pf < Af

We know that price vectors are arranged in descending order such that p1 < p2 < p3 < ...pn and

number of resources requested i ≠ n, so there exist a set of price vectors Pi
*
 such that

 ∏i(Pi
*
) > ∑ ()

69

6.5.1 ANALYSIS

In this Bertrand game model we will use the auction mechanism mentioned in chapter 5. If users

participation factor is greater than the auction factor, than the regular auction mechanism

mentioned in chapter 5 is used. If the participation factor of the user is less than the auction

factor, a reverse auction mechanism is used. In reverse auction mechanism a free rider requesting

a set of resources will get access to resources provided by resource providers which will give

them the lowest possible utility, i.e. the free riders are punished by letting them have access to

resources at a high price.

 Therefore if a user’s participation factor is below the auction factor, his profit would be

minimized and therefore he doesn’t attain Nash equilibrium. All users therefore try to increase

their participation factor by providing more resources and thereby the system attains stability and

avoids the free riding problem. Experimental analysis is similar to the results in chapter 5 where

stability is achieved over the time by increasing the participation factor.

6.6 CONCLUSION

The Distributed cloud model is built on top of resources provided by individual users, firms etc.

A Game theoretical model is proposed to solve the free riding problem. The Distributed cloud is

modeled as an oligopoly market where users compete based on price. Participation factor is taken

into account to decide the price of resources and any free riders requesting a resource would get

them, but at a high cost. Users are motivated to provide resources for self-benefit and by avoiding

70

penalties. Since there is no maintenance cost, users with idle resources are encouraged to provide

resources for their own self-interest.

71

CHAPTER 7

NETWORK MEASUREMENTS IN A DISTRIBUTED SYSTEM

7.1 INTRODUCTION

Treeple [28] is a centralized network coordinate. Trusted nodes, called vantage points, perform

network-based path measurements to map the path from the vantage point to every node in the

network. Vantage points build a tree of intermediate nodes and the per-hop network latencies.

Every leaf of the trees built is a node. The network coordinate of a node is the path from the

vantage point. To estimate the network distance between two nodes, the least common ancestor

for the two trees or paths found and the estimated network distance is the sum of all the per-hop

latencies. Although this is not the actual path taken by a packet between the two nodes, this

estimate provides a bound on the error. With real Internet-based experiments, Treeple was shown

to be accurate, efficient, and provably secure.

Treeple can be used for secure network measurements in a distributed system which in turn can

be useful identifying the closest nodes in a distributed cloud. Latency estimation in distributed

cloud is necessary and the network measurement techniques can be used to find the closest nodes

efficiently and also can reduce communication overheads. The results from this work will be used

in the resource allocation game as latency is a factor in resource allocation. In the distributed

cloud latency can be obtained from the PING or we can use this mechanism. We can use this

mechanism to show the user a list of providers based on the latency.

72

7.2 IMPLEMENTATION

We implemented a plugin for Vuze [16] and worked closely with the Vuze developers to make it

available on the Vuze website. Vuze is a popular peer-to-peer file-sharing client, based on the

BitTorrent architecture. The plugin has negligible overhead in processing and network traffic. We

set up a server that collected the IP addresses of all the PlanetLab nodes. When the Vuze plugin

first starts, it registers with the server which records the new IP address. The server then sends the

list of current IP addresses to the plugin. The plugin then performs a ping network measurement

to all the IP addresses and sends the latency information back to the server. The ping is performed

every time Vuze starts and all the pings are spread over time and to random IP addresses each

time.

We used planet lab nodes as these nodes are located all across the world. This closely resembles

the distributed cloud where users can be any where in the world. We then deployed traceroute and

ping scripts on PlanetLab that will periodically perform a traceroute and ping measurement to

other PlanetLab nodes and the Vuze nodes (that have the plugin installed). This experiment was

performed in July 2013. The Treeple dataset contains per-hop latency and the IP address of each

router along the path from a node in PlanetLab to either another node in PlanetLab or a node in

Vuze. Figure 1 shows the accuracy obtained by this new Treeple dataset.

Fig. 23 shows the CDF of relative errors obtained by using different k vantage points. The median

relative error is about 0:15, which is comparable to that obtained by Vivaldi and the original

Treeple paper.

Fig. 24 shows the median relative error over 30 days. The figure shows that Treeple network co-

ordinates are very stable over time. Again, this reflects the result obtained previously. This leads

us to conclude that the plugin and experiment performed work correctly.

73

Figure 23: The CDF of relative error using different vantage points (k)

Figure 24: the stability of median relative error for different vantage points (k)

74

7.3 CONCLUSION

Treeple is a decentralized network coordinate system and can be used as an efficient and secure

network measurement mechanism in distributed computing environments. We used it to make the

network measurements in a distributed P2P systems and the data obtained was very useful. It was

used for accurate geolocation based on latency and it can also be used in place of King data set.

This mechanism can be used in distributed cloud computing environment for efficient latency

estimation and can also be used to make decisions about routing so as to decrease communication

overheads.

75

CHAPTER 8

USING CLOUD AND BIOMETRICS FOR SECURE MOBILE TRANSACTIONS

Distributed cloud computing can be of different types, such as public, private and hybrid. A

distributed private cloud can be very useful as it can avoid huge data centers. Mobile payments

are used to sell and purchase goods and services. The increase in the usage of mobile devices has

increased the scope for using these devices for payments and other day to day activities. Using

handheld devices for payments brings up lot of security challenges for mobile applications.

Mobile payments have become popular with the extensive use of user friendly hand-held mobile

devices and easily available wireless networks [34]. Mobile payments are rapidly growing and

are supported by many leading IT industries such as PayPal, Google, Apple etc. Although mobile

devices are widely used for different purposes (e.g., mobile payments, mobile banking etc.), its

low computation power cannot provide a highly secure environment. To enhance security and

improve performance, cloud computing [1, 2, 3] can be used along with mobile applications.

Mobile applications for payment systems must be very secure to perform transactions and at the

same time be efficient. Current mobile payment systems use a merchant agent (MA) who must be

physically present in order to make a payment.

In this chapter we look at an application of the distributed cloud, in particular the use of the

distributed cloud for developing a mobile payment scheme which can be used by all the markets.

The distributed cloud can be used here for parallel computations to serve many users from the

same area based on latency. The distributed cloud used here is private to the market i.e. only the

76

users of the market can have access to these distributed clouds. Since online shopping at a

particular store requires high level of interactivity and low latency, the distributed cloud would be

ideal for this scenario.

In order to make the shopping experience even more comfortable we propose a secure Global

Market mechanism for making in store purchases and payment more secure without need of a

cashier or a MA. We use a Biometric mechanism as it is more secure, safe and easy to use. We

also show how it is related to the distributed cloud.

In this chapter, we propose a novel secure and privacy preserving biometric authentication

scheme for mobile transactions and architecture using the distributed cloud. All the participating

Stores will save their in store products information in the distributed cloud. Users scan the

resources they want to buy using the mobile application and payment is made using the proposed

secure scheme.

8.1 INTRODUCTION

All cloud providers provide services defined by their service model’s Infrastructure as a Service,

Platform as a Service, or Software as a Service. Using the distributed cloud we can have the

entire biometric infrastructure from processing the biometric template to storing the templates

done in parallel without a single point of failure. Characteristics of distributed cloud such as

elasticity, broad network access makes the use of cloud for biometric services more scalable and

cost effective.

With the advantages of the distributed cloud we also need to make sure that we preserve privacy

and provide security for users. Performing user authentication is one of the important steps to

77

prevent unauthorized users. There are different authentication mechanisms [36] such as password

based, token based and biometric based. Biometric authentication refers to identification of a user

based on their characteristics or behavior. There are different biometric characteristics such as

iris, face, fingerprint, voice recognitions that are being used. The cloud’s advantages such as

scalability and high computing power make biometric mechanisms more feasible and enhance the

security needed for highly secure applications such as banking. Beside the advantages of

biometric mechanisms there are increasing high concerns associated with privacy issues [37] as

biometric information is highly sensitive. So we need to have appropriate secure privacy

preserving mechanisms when using biometric features.

Different mobile payment applications use either a password based mechanism or token based

mechanism to secure access for these applications. Any unauthorized user with access to these

mobile devices and passwords can exploit these payment mechanisms. So we used a secure and

privacy preserving biometric authentication mechanism for access to these mobile payment

applications. Using biometrics for authentication involves the use of high computation power and

can be time consuming. We have designed a light weight biometric authentication mechanism

using the distributed cloud. Our proposed application does not need any merchant agent for a

secure transaction and moreover our application ensures user authentication when any user tries

to log in to our application. For privacy preserving log in we use biometrics since it is far more

secure than traditional log in mechanisms. For secure transactions our application takes the entire

responsibility for user authentication, merchant authentication, and payment.

8.2 RELATED WORK

Mobile devices face various challenges when it comes to M-commerce applications because of

low bandwidth, low security, low computation power and highly complex device configurations.

78

All the mobile payments architectures revolve under how to perform transactions securely. Some

of the technologies used for mobile commerce are NFC a short range communication protocol

[42], Mobile wallet [ref] etc.

Mobile wallet [63] is an application residing on the mobile device which holds information

regarding credit cards and can be used for payments also. Authenticating these applications using

existing mechanisms is not sufficient as these devices are not protected against theft and

password compromise. We need a more secure mechanism to authenticate mobile payment

applications which resists theft of devices and other known attacks where user credentials are

compromised.

There are many schemes for mobile payments which try to solve issues such as efficiency,

security or privacy. A secure account-based payment protocol [38] for wireless networks makes

use of symmetric key properties which reduces computations. The chapter also mentions how the

protocol can be used to increase transaction security when compared to the SET [39] based

approach. Use of a highly secure, multi-factor authentication scheme can be expensive in mobile

devices. In [40], the authors proposed a multi-factor security protocol for wireless payments for

J2MEE based clients and J2EE based servers. Author utilizes TIC full form code and SMS to

authenticate the transactions. Author assumes the mobile device which has the TIC codes is

secure. The only security for applications provided is username and password. S. Karnuskos et al

[41], presented a secure mobile payment service as a part of the SEMPOS project to handle

security and privacy of users. The SEMPSO project uses mobile network operators and data

centers to be part of the payment mechanism. In [42] the authors utilized a NFC based solution

for managing payments. Since there are many parties involved in the transactions, we utilized a

cloud based approach. Secure elements are downloaded to the mobile device when a user wants

to make payments and once the user authorizes the payment, the transaction is done and the

secure element is deleted from the device for security purposes. Existing methods for mobile

79

payments are device specific as in [40, 41]. In [40, 41] the payment technology can be applied

only for devices with J2MEE and NFC enabled devices. Existing payment techniques such as

NFC based solutions or google wallet are similar to traditional credit cards and are provided for

ease of customer use, but are still prone to thefts and various attacks. Our payment protocol uses

the RSA based scheme to verify use and payment by the bank and we use a strong biometric

authentication scheme to secure the mobile payment application.

Biometric authentication mechanisms have gained popularity as they are more secure and offer

non repudiation. Biometric authentication mechanisms [43] have been proposed to secure mobile

payments. The public key of the bank is used to encrypt credit card information and hashes of the

finger print to send to the bank. The bank server has information regarding all users and their

finger print information. This method doesn't protect the privacy of user. In [44], the authors

specified an identity based encryption (IBE) and biometric scheme for secure data access in the

cloud. The biometric scheme was used here to authenticate the user and IBE scheme was used to

encrypt and decrypt the data. Ross and Othman [45] used visual cryptography to protect the

privacy of user. They decompose the user’s biometric template into two noises like images using

visual cryptography and store them in two distinct databases. During authentication these images

are laid together to create a temporary biometric template for verification. The main advantage of

this mechanism is that the biometric information can never be exposed to the attacker using a

single database. This method is practically very expensive as it requires maintaining two

databases and moreover during authentication the search process is doubled. Barni et al. [46]

designed a privacy preserving protocol for finger print identification using finger codes. This

protocol uses a multi-party computations approach and makes use of hemimorphic properties of

pallier cryptosystem. Feng et al. [47] used cancellable biometrics and proposed a three step

hybrid approach for face template protection. All the biometric authentication mechanisms used

are computationally very expensive because of the low computation power of mobile devices.

80

Our proposed biometric authentication mechanism makes use of distributed cloud services to

perform computations and thereby reducing load on mobile devices. We used distributed cloud

here as we need all the data close to the users. Moreover biometrics is very sensitive data, and we

need to make sure we protect the privacy of the user. We propose a secure biometric

authentication which is not only very fast compared to traditional password based authentication

mechanisms, but also more secure and protects privacy of the user.

8.3 SYSTEM MODEL

This section describes the system model of our application. In this section we present an overview

of our system, the main components of our system and flow among different components of the

system. .

8.3.1 SYSTEM OVERVIEW

Using our mobile application any registered user (here by registered user we mean a user who

already has an account in our mobile application) can log in to the application and purchase

products from any participating store which subscribes to our application for mobile shopping. To

purchase any product a user needs to scan the bar code of the product using their mobile phone.

The scanned products will be added to the user account's cart. After selecting all the products the

user wants to purchase, our mobile application let the user proceed towards checkout. To make a

payment the user bank pays the amount to the merchant bank account. Our system secures the

user log in to the application as well as the transaction from the user bank account to the merchant

bank account.

81

8.3.2 SYSTEM COMPONENTS

The main components of our system are the mobile application, the cloud server, the user bank

and the merchant bank.

 The Mobile Application

This is the main component of our system. Any registered user of our application can purchase

items from a store and pay for the items using their mobile devices. To make this happen this

component creates a connection with two other components, namely, the distributed cloud server

and the user bank.

 The distributed cloud Server

The mobile application connects to a centralized server which holds information regarding the

appropriate private distributed cloud. The distributed cloud server is used for two main purposes,

authentication and mobile shopping and payment as shown in Fig. 25. We use the public

distributed cloud for authentication purposes and private distributed cloud for inventory

management and payment. For authentication where privacy preserving mechanisms which will

ensure user privacy, we use the public distributed cloud. The data required for authentication

would be placed on any of the nodes. We use kademlia, a DHT explained in chapter 4 to look for

the user data stored. Since the data regarding the store items should be retrieved very fast and to

maintain security of inventory, the private distributed cloud is used.

82

Transactions

Figure 25: Public and private distributed cloud server roles

To purchase an item from a store the user need to see the item details from the selected store. The

private distributed cloud server stores all the store details and the items' details of a store. The

mobile application creates a connection to the private distributed cloud and fetches the

information about a store and its items' details whenever it is required. The distributed cloud

server is located near every store. All the private distributed cloud servers of similar stores keep

in contact with each other to keep track of inventory and transactions. The main drawback of

using a centralized cloud here is a single point of failure and latency. It takes a lot of time and

bandwidth to support a large number of customers in multiple stores using a centralized cloud.

Moreover to accommodate these many users the cloud should increase the bandwidth. The

distributed cloud will divide the whole load into multiple smaller servers and thereby we can

avoid single point of failure and need to increase bandwidth.

 The User Bank

The mobile application creates a connection with the user bank when the user proceeds with

check out to pay for their purchase. The user bank creates a connection with the merchant bank

and checks the authentication of the merchant account with the help of the merchant bank. If the

merchant is an authenticated one then the user bank transfers the payment amount from the user

account to the merchant account.

User

Distributed cloud

Authentication

Private distributed cloud

83

 The Merchant Bank

The user bank creates a connection to the merchant bank to start the transaction procedure. After

the merchant authentication, the user bank transfers the payment amount from the user account to

the merchant account.

8.3.3 FLOW OF THE SYSTEM

In this subsection we explain the workflow among different components of the system. Fig 26

shows the workflow among different components of the system. The system starts when a user

log in to the mobile application. To log in to the application the application verifies user

authentication first. We can have at each of the distributed cloud where user connects based on

the location and has authentication verified. Each user when tries to authenticate will be routed to

a close by distributed cloud resource. The data is retrieved using the distributed storage cloud

mentioned in chapter 4 and authentication process takes on.

Here we assume that the user is a registered authenticated user and is logged in to the mobile

application.

 The mobile application sends request for the user desired store details to the distributed cloud

server.

 The distributed cloud server sends the store details to the mobile application.

 The User scans his desired products from the store by scanning the bar code of the products.

The mobile application adds the product to the user's cart after the user scans the bar code of

the product. All the data of particular store is stored in private distributed cloud server at that

store. We use public resources only for authentication.

84

Figure 26: System Architecture

 When the user is ready to check out the mobile application creates a connection to the user

bank.

 The user bank checks that whether the user is authorized. If the user is an authorized user

then the bank creates a connection with the merchant bank to check the merchant

authorization.

 If the merchant bank account is an authorized one then the user bank starts the transaction

from the user bank account to the merchant bank account.

 The Merchant bank notifies the user bank of a successful transaction and the user bank sends

notification to the user for successful payment.

If the user does no activity (e.g., does not use the application to proceed with the shopping) after

logging in to the application, then the application logs out the user from the application for

security purposes.

85

8.3.4 SECURITY MODEL OF THE SYSTEM

Mobile devices are prone to be lost or stolen frequently. Any adversary can access or misuse the

mobile phone if it is stolen or lost. Since our mobile application is related to transactions from the

user bank account, it should be secure so that no adversary can access the user account. Our

application is secure in a semi-honest model [64]. In the semi-honest model, each party follows

the protocol and adversaries may try to extract more information from observing the execution of

the algorithm. The Semi-honest model is a standard adversary model in cryptography and it has

been adopted by many previous works on privacy protection [65]. Intuitively, if privacy is

guaranteed in the semi-honest model, it means that no adversary can efficiently obtain more

information than the input and the output of the algorithm. In our application any semi-honest

adversary who attempts to learn about the information between application and the cloud server

will be able to observe nothing but encrypted data, since our mobile application sends only

encrypted data to the cloud server.

In this model we are preserving user information privacy and bank details so that no malicious

user can log in to the user account and access their bank account. To implement this we had

provided two fold securities, so that only an authenticated user can use the application and the

transaction from the bank remains secure always. To authenticate user log in to the mobile

application we use user biometrics (e.g., user face image) as it is more secure.

8.3.5 IMPLEMETATION

We designed and developed an Android mobile application for secure mobile payments. To

implement this application we used Java programming language on a computer with 3.33 GHz

86

Intel Core i5 processor, 4 GB RAM, 64 bit operating system. To test our application we use

Google Nexus 7 with Android version 4.2.1. We implemented our system by developing an

Android application and to do that we used Android SDK and Android Developer Tools (ADT).

The main system components are connected to each other over the Internet. The communications

between the cloud server and the application is realized by Java Platform, Enterprise Edition

(Java EE) and Java EE APIs. we use javax.servlet package and use HTTP requests which

includes the Java Server Pages (JSP) specification. To implement the communication between

two banks and with the user we use javax.servlet packages. For extracting the feature vector from

the user biometrics we use the PCA - based Face Recognition System package using Matlab.

8.4 CONCLUSION

We have designed and developed a mobile application for secure mobile payments. To make this

application secure we focus on secure user log in to the mobile application and secure

transactions from the bank. For secure log in we use biometrics based Authentication. We used

the distributed cloud environment for both computation and authentication. Since mobile devices

are low power devices privacy preserving authentication mechanisms cannot run efficiently on

them. So we used distributed cloud computing resources to perform computations required for

authentication and mobile payment.

87

CHAPTER 9

CONCLUSION

In this thesis we proposed a detailed architecture for the distributed cloud computing model.

Distributed cloud computing can be used for applications which don’t require huge data centers

and applications which require data to be close to clients location. We developed a novel resource

discovery scheme to work with multi-attribute distributed systems. The resource discovery

mechanism developed works for finding resources required efficiently. We also noted that using

our resource discovery mechanism, success rates for finding nodes are 90% with searches less

than 3 which is a lot better than using existing mechanisms.

We developed multiple game theoretic approaches for resource allocation using game theory.

Game theoretic algorithms were proposed and proven to be applicable for real world scenarios.

The auction mechanism described in chapter 5 is used for resource allocation. We also developed

the Bertrand model for analyzing the market and strategize the pricing for stability of the system.

So using the Bertrand game we decide which auction game is to be used for a particular user

based on their participation. We could see from the observations that the free riding problem

could be solved and the system is stabilized using the above game theoretic approaches.

We have developed a network plugin for a distributed system client VUZE and made real time

measurements useful to estimate the latency accurately. We used planet lab nodes to make sure

our approach using Treeple network coordinates are stable over time. We use planet lab nodes as

their location closely resembles a distributed cloud scenario. Treeple is a new scheme for secure

latency estimation in P2P networks.

88

We also proposed a distributed cloud computing application for secure mobile transaction. In this

mechanism users require distributed cloud resources to be available close to them in order to

avoid any delays. Different markets can form distributed hybrid cloud for storage and

management of inventory. Biometric authentication for mobile devices can be performed on

available resources provided by regular users.

Future work includes more advance game theoretic approaches for resource allocation. We intend

to work on coalition games where users can form coalitions to offer resources and in turn stabilize

the system i.e. makes sure everyone is participating and profiting. There are many research

challenges for designing of a distributed cloud environment such as data replication [18]

techniques, incentive mechanisms etc.

Mobile applications for payment systems needs to be very secure to perform transactions while

being efficient. We are working on developing a mobile application will provide both secure

transactions and preserve the privacy of the user.

89

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica and Matei Zaharia, “Above the

Clouds: A Berkeley View of Cloud Computing”, Technical report EECS-2009-28, UC Berkeley,

2009

[2] Peter Mell and Timothy Grance, “NIST definition of cloud computing, National Institute of

Standards and Technology”, Special Publication 800-145, 2011,

“http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf”, Retreived July 22, 2014

[3] Buyya, R. and Chee Shin Yeo and Venugopal, S., “Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services as Computing Utilities”, Proccedings 10th

IEEE International Conference on. High Performance Computing and Communications,.

HPCC’08. IEEE, 2008.

[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Warfield, A.,“Xen and the

art of virtualization”, ACM SIGOPS Operating Systems Review, Vol. 37, No. 5, pp. 164-

177,2003.

[5] Fox, Armando. "Cloud computing-what's in it for me as a scientist." Science, Vol. 331, pp.

406-407, 2011.

[6] Endo, Patricia Takako, Andre Vitor de Almeida Palhares, Nadilma Nunes Pereira, Glauco

Estacio Goncalves, Djamel Sadok, Judith Kelner, Bob Melander, and J-E. Mangs. "Resource

allocation for distributed cloud: concepts and research challenges." IEEE Network, Vol.25, No.4,

pp.42,46, July-August 2011.

90

[7] Khethavath, Praveen, Johnson Thomas, Eric Chan-Tin, and Hong Liu. "Introducing a

Distributed Cloud Architecture with Efficient Resource Discovery and Optimal Resource

Allocation.", Proceedings IEEE Ninth World Congress on Services (SERVICES), pp. 386-392.

IEEE, 2013.

[8] Church, Kenneth, Albert Greenberg, and James Hamilton. "On delivering embarrassingly

distributed cloud services.", Proceedings Hotnets-VII, 2008.

[9] Maymounkov, Petar, and David Mazieres. "Kademlia: A peer-to-peer information system

based on the xor metric.", Revised Papers from the First International Workshop on Peer-to-Peer

Systems, pp.53-65, March 07-08, 2002.

[10] Stoica, Ion, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan,

"Chord: A scalable peer-to-peer lookup service for internet applications.", IEEE/ACM

Transactions on Networking, vol.11, no.1, pp.17-32, Feb 2003.

[11] Fletcher, George, Hardik Sheth, and Katy BÃ˝urner, "Unstructured peer-to-peer

networks: Topological properties and search performance”, Proceedings of the Third international

conference on Agents and Peer-to-Peer Computing, 2004.

[12] Rimal, Bhaskar Prasad, Eunmi Choi, and Ian Lumb. "A taxonomy and survey of cloud

computing systems.", Fifth International Joint Conference on INC, IMS and IDC, pages 44-51,

2009.

[13] Fernndez-Baca, David,"Allocating modules to processors in a distributed system.", IEEE

Transactions on Software Engineering, Vol.15 No.11, pp.1427-1436, November 1989.

[14] David P. Anderson , Jeff Cobb , Eric Korpela , Matt Lebofsky , Dan Werthimer,

“SETI@home: an experiment in public-resource computing”, Communications of the ACM,

Vol.45 No 11, pp.56-61, November 2002

[15] Attiya, Hagit, and Jennifer Welch, Distributed computing: fundamentals, simulations,

and advanced topics, John Wiley & Sons, 2004.

91

[16] VUZE, “http://www.vuze.com/corp/technology.php”, Retreived July 22, 2014.

[17] King data set, “https://pdos.csail.mit.edu/p2psim/kingdata”. Retreived July 22, 2014.

[18] V. Martins, E. Pacitti, P. Valduriez., “ Survey of Data Replication in P2P

Systems.”, Technical Report, 2006, “ http://hal.inria.fr/inria-00122282/”, Retreived July 23, 2014.

[19] Yanfeng Shu , Beng Chin Ooi , Kian-Lee Tan , Aoying Zhou, “Supporting

Multi-Dimensional Range Queries in Peer-to-Peer Systems”, Proceedings of the Fifth IEEE

International Conference on Peer-to-Peer Computing, pp.173-180, August 31-September 02,

2005.

[20] Gupta, Abhishek, Divyakant Agrawal, and Amr El Abbadi, "Approximate range selection

queries in peer-to-peer systems.", Proceedings First Biennial Conf. on Innovative Data Systems

Research CIDR. . 2003.

[21] Lawder, Jonathan K., and Peter J. H. King. "Querying multi-dimensional data indexed

using the Hilbert space-filling curve." ACM Sigmod Record, Vol. 30 No. 1,pp.19-24, 2001.

[22] Dong-Qing Yao, John J. Liu, “Competitive pricing of mixed retail and e-tail distribution

channels”, Omega, Volume 33, Issue 3, Pages 235-247, ISSN0305-0483, June 2005.

[23] F. Teng and F. Magoules, “A new game theoretical resource allocation algorithm for

cloud computing”., Proceedings of the 5th international conference on Advances in Grid and

Pervasive Computing, May 10-13, 2010.

[24] Ke Xu; Meina Song; Xiaoqi Zhang; Junde Song, "A Cloud Computing Platform Based

on P2P," Proceedings IEEE International Symposium on IT in Medicine & Education, ITIME '09,

vol.1, no., pp.427-432, Aug. 2009.

[25] Cunsolo, Vincenzo D., Salvatore Distefano, Antonio Puliafito, and Marco Scarpa.

"Cloud@ home: Bridging the gap between volunteer and cloud computing.", Proceedings of the

5th international conference on Emerging intelligent computing technology and applications,

September 16-19, 2009.

92

[26] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. 2012, “Design and

implementation of a P2P Cloud system”, Proceedings 27th Annual ACM Symposium on Applied

Computing (SAC '12), pp: 412-417, 2012.

[27] Anderson, David P. "Boinc: A system for public-resource computing and storage.",

Proceedings Fifth IEEE/ACM International Workshop on Grid Computing, 2004.

[28] Chan-Tin, Eric, and Nicholas Hopper. "Accurate and Provably Secure Latency

Estimation with Treeple.", Proceedings Network and Distributed System Security (NDSS), 2011.

[29] Wei, Guiyi, et al.,"A game-theoretic method of fair resource allocation for cloud

computing services.", The Journal of Supercomputing, Vol.54 No.2, pp.252-269, November

2010.

[30] Dabek, Frank, et al. "Vivaldi: A decentralized network coordinate system.", ACM

SIGCOMM Computer Communication Review. Vol. 34. No. 4. ACM, 2004.

[31] Qi, ShouQing, et al. "A Novel P2P Network Model for Cloud Computing Based on Game

Theory", Proceedings IEEE International Conference on Computer Science & Service

System (CSSS) , 2012.

[32] Wang, Bo, et al. "The Research on Cloud Resource Pricing Strategies Based on Cournot

Equilibrium.", In Recent Advances in Computer Science and Information Engineering, pp.

253-259. Springer Berlin Heidelberg, 2012.

[33] Jin, Xin, Yu-Kwong Kwok, and Yong Yan. "A Study of Competitive Cloud Resource

Pricing under a Smart Grid Environment." Proceedings IEEE 5th International Conference on

Cloud Computing Technology and Science (CloudCom), 2013. Vol. 1., 2013.

[34] Upkar Varshney, “Mobile Payments”, Computer, Vol.35 No.12, pp..120-121, December

2002.

[35] Sadeh, Norman. M-commerce: technologies, services, and business models, John Wiley

& Sons, 2003.

93

[36] Clarke, Nathan L., and Steven M. Furnell. "Authentication of users on mobile

telephones–A survey of attitudes and practices." Computers and Security, Vol. 24, No. 7, pp. 519-

527, 2005.

[37] Salil Prabhakar , Sharath Pankanti , Anil K. Jain, “Biometric Recognition: Security and

Privacy Concerns”, IEEE Security and Privacy, Vol.1 No.2, pp.33-42, March 2003.

[38] Kungpisdan, Supakorn, Bala Srinivasan, and Phu Dung Le. "A secure account-based

mobile payment protocol.", Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC'04) Vol. 2, pp.35, April 05-07, 2004.

[39] Alia Fourati , Hella Kaffel Ben Ayed , Farouk Kamoun , Abdelmalek Benzekri, “A SET

Based Approach to Secure the Payment in Mobile Commerce”, Proceedings of the 27th Annual

IEEE Conference on Local Computer Networks, pp.136-140, November 06-08, 2002.

[40] Tiwari, A., Sanyal, S., Abraham, A., Knapskog, J. S. & Sanyal, S., "A Multi-factor

Security Protocol for Wireless Payment-Secure Web Authentication Using Mobile Devices",

Proceedings IADIS International Conference Applied Computing, pp.160-167, 2007.

[41] Harb, Hany, Hassan Farahat, and Mohamed Ezz. "SecureSMSPay: secure SMS mobile

payment model.", Proceedings 2nd International Conference on Anti-counterfeiting, Security and

Identification (ASID), IEEE, 2008.

[42] Pourghomi, Pardis, and Gheorghita Ghinea. "Managing NFC payment applications

through cloud computing.", Proceeding 7th IEEE International Conference for Internet

Technology and Secured Transactions (ICITST), pp. 772--777, 2012.

[43] Gordon, Michael, and Suresh Sankaranarayanan. "Biometric security mechanism in

Mobile paymentts.", Proceedings 7
th
 IEEE International Conference On Wireless And Optical

Communications Networks (WOCN), 2010.

94

[44] Cheng, Hongbing, et al. "Identity based encryption and biometric authentication scheme

for secure data access in cloud computing." Chinese Journal of Electronics, Vol. 21, No. 2, pp.

254-259, 2012.

[45] Ross, Arun, and Asem Othman. "Visual cryptography for biometric privacy." IEEE

Transactions on Information Forensics and Security, Vol. 6, No.1 pp. 70-81, 2011.

[46] Mauro Barni , Tiziano Bianchi , Dario Catalano , Mario Di Raimondo , Ruggero Donida

Labati , Pierluigi Failla , Dario Fiore , Riccardo Lazzeretti , Vincenzo Piuri , Fabio Scotti ,

Alessandro Piva, “Privacy-preserving fingercode authentication”, Proceedings of the 12th ACM

workshop on Multimedia and security, September 09-10, 2010.

[47] Feng, Y. C., Pong C. Yuen, and Anil K. Jain. "A hybrid approach for face template

protection.", IEEE Transactions on Information Forensics and Security, Vol. 5 No. 1, March

2010.

[48] Amazon EC2, “http://aws.amazon.com/ec2/”, Retreived July 22, 2014

[49] Microsoft Azure, “http://azure.microsoft.com/en-us/”, Retreived July 22, 2014

[50] Oracle sun cloud, “https://www.oracle.com/cloud/index.html”, Retreived July 22, 2014

[51] Openstack, “https://www.openstack.org/”, Retreived July 22, 2014

[52] Apache cloud stack, “http://cloudstack.apache.org/”, Retreived July 22, 2014

[53] VMWare, “http://www.vmware.com/cloud-computing/overview.html”, Retreived July

22, 2014

[54] IBM Hybrid Cloud, “http://www-01.ibm.com/software/tivoli/products/hybrid-cloud/”,

Retreived July 22, 2014

[55] HP Hybrid cloud, “http://www8.hp.com/us/en/software-solutions/cloud-management/”,

Retreived July 22, 2014

http://aws.amazon.com/ec2/

95

[56] IBM Federal cloud computing solutions,

 “http://www-304.ibm.com/industries/publicsector/us/en/promotion/!!/xmlid=218253”,

Retreived July 22, 2014

[57] Google App engine, “https://developers.google.com/appengine”, Retreived July 22, 2014

[58] Heroku, “https://www.heroku.com/”, Retreived July 22, 2014

[59] Sales force, “http://www.salesforce.com/”, Retreived July 22, 2014

[60] Eucalyptus, “https://www.eucalyptus.com/eucalyptus-cloud/iaas”, Retreived July 22,

2014

[61] Klyne, Graham, and Jeremy J. Carroll. "Resource description framework (RDF):

Concepts and abstract syntax.", W3C Recommendation, 2004, “http://www.w3.org/TR/rdf-

concepts/”, Retreived July 23, 2014.

[62] Network description language, “http://sne.science.uva.nl/ndl/”, Retreived July 22, 2014

[63] Zhao, Hao, and Sead Muftic. "The concept of secure mobile wallet.", Proceedings World

Congress on Internet Security (WorldCIS), pp.54-58, 2011.

[64] Goldreich, Oded, Foundations of Cryptography: Basic Applications, Vol. 2. Cambridge

University Press, 2009.

[65] Lindell, Yehuda, and Benny Pinkas, "Privacy preserving data mining.", Advances in

Cryptology—CRYPTO, Springer Berlin Heidelberg, 2000.

[66] Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu, "Mobile cloud computing: A

survey.", Future Generation Computer Systems, Vol. 29, No.1 pp. 84-106, 2013.

[67] Bahl, Paramvir, et al. "Advancing the state of mobile cloud computing.", Proceedings of

the third ACM workshop on Mobile cloud computing and services, ACM, 2012.

[68] Shiraz, M., Gani, A., Khokhar, R. H., & Buyya, R. (2013), “A review on distributed

application processing frameworks in smart mobile devices for mobile cloud computing”, IEEE

Communications Surveys Tutorials, , Vol. 15, No. 3, pp. 1294-1313, 2013 .

VITA

Praveen Khethavath

Candidate for the Degree of

Doctor of Philosophy

Thesis: TOWARDS AN EFFICIENT DISTRIBUTED CLOUD ARCHITECTURE

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Computer Science

at Oklahoma State University, Stillwater, Oklahoma in July, 2014.

Completed the requirements for the Master of Science in Computer Science at

University of Northern Virginia, Annandale, Virginia in 2008.

Completed the requirements for the Bachelor of Engineering in Electronics and

Communication Engineering at CBIT, Osmania University, Hyderabad, Andhra

Pradesh, India in 2006.

