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CHAPTER I

INTRODUCTION

This thesis explores the potential of Haar wavelets in designing a Receding Hori-

zon Controller with reduced computation load at each time step. Wavelets are set

of orthogonal functions which form the basis of square integrable functions. They

were developed separately in the field of mathematics, numerical analysis, electrical

engineering, seismic geology and quantum field theory. Now they have many ap-

plications, such as image processing, data compression, noise removal, earthquake

prediction, human and computer vision [1], [2].

Mathematical background of wavelets dates back to the work of Joseph Fourier

(1807), which laid the foundation of frequency analysis. The first ever wavelet that

can be found in the literature is the Haar wavelet, in the work of Alfred Haar [3].

This wavelet has compact support, which means it is non zero only on a finite time

interval. It is not continuously differentiable, but its compact support enables it to

approximate functions with discontinuities or sudden changes. In 1946, physicist Ga-

bor proposed decomposing a signal over elementary waveforms with minimal spread

in time-frequency plane. He called these waveforms the Time-Frequency atoms [4].

The algorithm for wavelet analysis dates back to the work of Stephane Mallat [5].

Following his work, Ingrid Daubechie constructed a set of wavelet orthonormal basis

functions which covers the mathematical background of wavelets [6].

Wavelets represent a signal both in time and frequency domain, comparable with

Short Time Fourier transformation which is shifted in time. The difference is, in

wavelets, the window width changes as a function of the analyzing frequency band,
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whereas in Fourier transformation, the width remains the same. In the case of discrete

wavelet transform, a signal can be decomposed into wavelet coefficients, which can

be used to reconstruct the signal. Before reconstruction, these coefficients can be

processed using filter banks, which will remove the noise corresponding to certain

frequency band. Denoisoing with wavelets is useful in the case of short lived external

disturbances. Data compression can also be achieved by omitting insignificant wavelet

coefficients.

Due to the orthogonality of the wavelets, they can be used to form integral and de-

lay operational matrices. Wavelet coefficients together with operational matrices are

used in the analysis and controller design of linear time invariant/variant (LTI/LTV)

systems with delays [7–10].

Like any other orthogonal functions, wavelets are used to find approximate solu-

tions to the ordinary differential equations (ODEs) for a finite time interval [11]. It is

done by integrating the ODEs. The states and inputs are approximated by orthogonal

functions and an integral operational matrix is used in the equation to replace the

integration operation, thus converting the ODE into an algebraic equation. The solu-

tion of this algebraic equation is obtained in terms of the coefficients of the orthogonal

function. Different orthogonal functions can be chosen from Block pulse functions,

Chebyshev polynomials, Fourier series, Hermite polynomials, Jacobi series, Laguerre

series, shifted Legendre polynomials, Taylor series, Walsh functions, Bessel series and

Wavelet functions [12]. The selection of the function will also determine the form of

the integral and delay operational matrices. Solving ODEs in wavelet domain leads

to the process of solving an optimal control problem in wavelet domain.

Optimal control is a process of determining the control input and state trajectory

such that a performance index is minimized while satisfying the system equation and

constraints. Due to the complexity in most applications, optimal control problems

are solved numerically. These methods are divided into two broad classes: indirect
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and direct methods. In the indirect method, calculus of variations is used to deter-

mine a first-order optimality condition of the original optimal control problem [13].

It converts the optimal control problem into a multiple point boundary value prob-

lem (MPBVP), which is solved to determine candidate optimal trajectories known as

extremals. Each of the candidate extremals are then examined to see if it is a local

minimum, maximum or saddle point. The particular extremal with the lowest perfor-

mance index is selected. This method involves the solution of the Hamilton-Jacobi-

Bellman (HJB) equation. For linear time invariant systems, this problem reduces

to solving an algebraic Riccati equation. For general systems, however, the problem

remains in finding the value function that satisfies the HJB equation. Finding the

value function is challenging because it requires the solution of a partial differential

equation which cannot be solved explicitly.

Direct approach bypasses the tenacious job of solving the HJB equation. Here, the

optimal solution is obtained by direct minimization of the cost function subjected to

constraints. For this approach, various computational methods based on orthogonal

wavelet functions have been developed in the past recent years [10, 14–17]. In this

method, the control variable is discretized and approximated by a finite series of

the known wavelet function with unknown coefficients. Then the state variables are

solved for a finite time interval in terms of those unknown parameters by integrating

the system state equation.

Upon getting the solution, an appropriate cost function and control law are se-

lected. The cost function is transformed into the wavelet domain and it is subjected

to the optimality criterion. The resulting equation, together with solution of the sys-

tem differential equation, gives the optimal control and state trajectory. The initial

states, plant parameters and the desired trajectory are what determine the control.

The control can be transformed back into the time domain by using the inverse wavelet

transform. This method is also known as Model Predictive Control (MPC), as it uses
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a model of the plant to predict the states of the system which is again optimized by

minimizing a cost function. At each time step this process is repeated over a cer-

tain horizon which also recedes with time, so this process is also known as Receding

Horizon Control [18].

In this thesis Haar wavelet based open loop optimization of unconstrained linear

system is applied to construct a Haar based MPC. Haar is a compact basis function

with a simple analytical expression. While devising the Haar based MPC, open loop

optimization formulas from [16] are revised to compute only those Haar coefficients

which will build the first control action from the control horizon. Thus the amount of

computation involved in Haar based optimization at each time step is reduced. With

this reduced computation, the performance of Haar based MPC is compared with a

Dynamic Matrix Controller (DMC), which is a conventional MPC controller.

I.1 Thesis Contributions

The contributions of this thesis are summarized in the following:

� Optimization based on Haar wavelets is implemented in a Receding Horizon

Control fashion to construct a closed loop controller.

� Derivations for ordinary differential solution and optimization in Haar domain

are modified to isolate the Haar wavelets necessary for only the first control

action and thus reducing the computation order.

� The designed closed loop optimizer is used to stabilize systems to minimize the

error at each time step. This is shown by MATLAB simulations of velocity

regulation of a DC motor and position and orientation tracking of a two link

planar robot and a wheeled mobile robot.
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I.2 Thesis Organization

The rest of the thesis report is organized as follows. Time-frequency representa-

tion of a function is discussed in Chapter II. Haar wavelet method for solving the

optimal control problem for LTI systems is reviewed in Chapter III. Receding Horizon

Optimization for closed loop control scheme and modifications in the derivations are

shown in this chapter. Performance of the modified algorithm for velocity regulation

of a DC motor is compared with DMC in this chapter. Trajectory tracking using

the proposed controller are discussed with examples in Chapter IV. Conclusion and

possible future works are discussed in Chapter V.
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CHAPTER II

TIME FREQUENCY REPRESENTATIONS

This chapter is modest in scope, it is only a brief introduction to a vast subject

that itself is small part of mathematics: how a signal can be represented in different

forms. Information can be represented in different forms; a mathematical function or a

physical signal may be decomposed using a Fourier transform or a wavelet transform.

Even though wavelets represent a departure from Fourier analysis, the two methods

clearly belong to the same family.

Most signals are represented as a sequence of numbers as a function of time. But

some of their properties are better revealed in the frequency domain. Fourier analysis

is useful to get global information about the frequency distribution of a signal, but it

cannot localize frequency component in time domain. The localized frequency content

is revealed by decomposing signals using functions which are localized in time and

frequency domain. Short Time Fourier Transform and Wavelet Transform are two

important techniques that can be used to localize in time the frequency content of

signals. The first section provides an overview on Time-Frequency Analysis and its

various forms. Section II.2 and II.3 present some background on multi-resolution

frequency analysis.

II.1 Time-Frequency Analysis

In time frequency analysis, localized time-frequency information of a signal are

revealed using basis function which are localized and time-frequency. The Short Time

Fourier Transform (STFT) and the Wavelet analysis are two important techniques

6



that can be used to localize in time the frequency content of signals.

II.1.1 Short Time Fourier Transform (STFT)

To localize frequency component of a signal in time, the Fourier transform is used

in a short window of time. Sliding of window over the signal in time provides a time

localized Fourier transform. This process is knows as Short Time Fourier Transform

(STFT), first introduced by Dennis Gabor in 1946 [4].

In STFT, width of the sliding window determines how much of the signal would be

taken into consideration, in both time and frequency. A real and symmetric window

g(t) = g(−t) is translated in time domain by τ and modulated by the frequency ξ.

gξ,τ(t) = g(t− τ)e2πiξt (II.1)

Here g ∈ L2(R) and ||g||2 =
∫
|g(t)|2dt. τ is the mean time in gξ,τ(t), which is given

by

τ =
1

||g||2
∫ ∞

−∞
t|gξ,τ(t)|2dt (II.2)

The Fourier transformation ĝ of g is also symmetric. So, the Fourier transform of

gξ,τ (t)

ĝξ,τ(ω) = ĝ(ω − ξ)e−2πi(ω−ξ)τ (II.3)

is a translation by ξ of the frequency window ĝ. The mean frequency ξ of ĝξ,τ(ω) is

given by

ξ =
1

||g||2
∫ ∞

−∞
ω|ĝξ,τ(ω)|2dω (II.4)

7



This window can be a small analyzing function (small in time length), which envelops

higher frequency oscillations in it (Figure II.1). The shape and size of the envelop is

determined by the function g, and different oscillations inside the envelop are coming

from e−2πiξt. Larger window has more oscillation in it and vise versa.

Time

A
m
p
li
tu
d
e

Figure II.1: Windows for STFT with analyzing functions of different frequencies (from
(II.1)). Wider windows encompass more oscillations while smaller windows do fewer.

The Short Time Fourier Transform of a function is given by

X̂(ξ, τ) =

∫ ∞

−∞
x(t)g∗ξ,τdt =

∫ ∞

−∞
x(t)g(t− τ)e−2πiξtdt (II.5)

When g(t) = 1, STFT reduces to Fourier Transform. The energy of the function is

conserved in time-frequency domain.

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞

∫ ∞

−∞
|X̂ξ,τ |2dτdξ (II.6)

Reconstruction of x(t) is

x(t) =
1

||g||2
∫ ∞

−∞

∫ ∞

−∞
X̂(ξ, τ)g(t− τ)e2πiξtdτdξ (II.7)

This reconstruction formula has redundancy because gξ,τ is redundant in L2(R).
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II.1.2 Time-Frequency Resolution for STFT

Let σt is the standard deviation of |g|2 and also the length of the window in time

domain. Probability density of t is 1
||g||2 |gξ,τ(t)|2. Then the variance of |g|2 is

σ2
t =

1

||g||2
∫ ∞

−∞
(t− τ)2|gξ,τ(t)|2dt (II.8)

Since g is even, the energy of gξ,τ(t) = g(t− τ)e2πiξt is centered at τ over the interval

of σt. Therefore the variance of |g|2 becomes

σ2
t =

1

||g||2
∫ ∞

∞
t2|g(t)|2dt (II.9)

Equation (II.9) shows that width of the time window is independent of τ and ξ.

σω is the standard deviation of |ĝ|2 and also the spread of the window in frequency

domain. Probability density of ω in the window is 1
||g||2 |gξ,τ(ω)|2. Then variance of

|ĝ|2 is

σ2
ω =

1

||g||2
∫ ∞

−∞
(ω − ξ)2|gξ,τ(ω)|2dω (II.10)

Since ĝ is symmetric, energy of ĝξ,τ(ω) is centered at ξ over the interval of σω. Like

σt, σω for STFT is also independent of τ and ξ.

σ2
ω =

1

||g||2
∫ ∞

∞
ω2|g(ω)|2dω (II.11)
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ω

t

ζ

ξ

τ υ

σt

σt

σω

σω

|ĝζ,υ(ω)|

|ĝξ,τ(ω)|

|gζ,υ(t)||gξ,τ(t)|

Figure II.2: Time-frequency boxes representing the energy spread of two windows for
different time-frequency localization. Window sizes do not change over time-frequency
plane, so time-frequency resolution stay the same over the plane.

In the time-frequency plane, this window is a rectangle, centered at (ξ, τ). Time

width and frequency width are σt and σω respectively. For STFT, they are indepen-

dent of τ and ξ (equations (II.9) and (II.11)). So widths of the boxes stay the same

over the time-frequency plane regardless of their positions. Sizes of these rectangles

are equal over the entire time-frequency plane (Figure II.2), because they are related

by Second Order Moment Heisenberg’s Inequality [4, 19, 20].

σtσω ≥ 1

4π
(II.12)

Different values appears on the right hand side of the inequality stated above for

different formulas used for Fourier transformation. It is not possible to have high

resolution in both time and frequency domain, since they are related by equation

(II.12).
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II.1.3 Discrete Short Time Fourier Transform

Discrete STFT is derived using the same idea from Discrete Fourier Transform.

Any N sample signal is assumed to be periodic with period N . The window function

g[n] = g[−n] is an even function of period N . It is translated in time domain by m

and modulated by the frequency 2π
N
k.

gl,m[n] = g[n−m]e
2πi
N
ln (II.13)

Its Fourier transform is

ĝl,m[k] = ĝk−le
− 2πi

N
(k−l)m (II.14)

In discrete form, the STFT of a signal of period N is given by

X̂ [l, m] =
N−1∑

n=0

x[n]g[n−m]e−
2πi
N
ln (II.15)

The energy of the function is conserved in discrete time-frequency domain.

N−1∑

n=0

|x[n]|2 = 1

N

N−1∑

l=0

N−1∑

m=0

|X̂[l, m]|2 (II.16)

The reconstruction formula is given by

x[n] =
1

N

N−1∑

m=0

g[n−m]

N−1∑

l−0

X̂[l, m]e
2πi
N
ln (II.17)

Here the reconstruction of x[n] is achieved using N2 terms, despite x[n] contains

only N points. Therefore there is a redundancy in the inverse STFT. In the past

few decades, various kinds of window for STFT have been introduced, which are

suitable for different purposes [21]. For instance, Gaussian window is better suited for
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analyzing transient signal, the Hanning and Hann windows are applicable for narrow

band, random signals, the Kaiser-Bessel window for differentiating signal components

with close frequencies at different amplitudes. Therefore, the choice of the window

directly depends on specific application.

II.1.4 Scaling in Short Time Fourier Transform

Time-frequency localization of the window can be varied using scaling factor s > 0.

Let a dilated version of window g is gs(t) = 1√
s
g( t

s
). To normalize energy of the

dilated g( t
s
), it is multiplied by 1√

s
. For this dilated window, a change of variables

in equations (II.9) and (II.11) show that time and frequency width for gs are sσt

and σω/s respectively. Heisenberg boxes have equal areas in time-frequency plane

(due to uncertainty inequality), but time width is dilated by s and frequency width

is compressed by s. So time intervals and frequency bands, that is, resolution in both

domain can be changed by scaling window function g.

An important thing to notice is, in STFT, since σt and σω are independent of τ

and ξ, time widths and frequency widths of the boxes remain the same regardless

of their different positions in the time-frequency plane. So ratio of time-frequency

resolutions remains the same in the plane. This implies that STFT is able to analyze

a signal only at a fixed resolution in time and frequency. For wavelets, however, we

will see that σt and σω are dependent on the center position of the Heisenberg boxes,

where these centers are again dependent on the scaling parameter. So, scaling window

not only resizes the Heisenberg boxes, but also changes the ratio of time-frequency

resolutions over the time-frequency plane. This is the reason why wavelets are able

to analyze a signal at different time-frequency resolutions.

12



ωω

t t

Figure II.3: Low scale gives high time resolution but low frequency resolution, and
vise versa. In all the cases, both time and frequency resolutions remain fixed over
time-frequency plane once the window is decided.

II.2 Wavelet Analysis

For detecting low frequency components of a signal, analyzing functions with

large time support and small bandwidth are needed. On the other hand for detecting

high frequency components of a signal, analyzing function with short time support

and large bandwidth are needed. Therefore for detecting low and high frequency

components of a signal, it is desirable to have both of these types analyzing functions

forming the basis. This is not possible with the STFT where time-frequency support

of the analyzing functions is fixed. However, this is possible through wavelet analysis.

Wavelet analysis is a multi-resolution analysis process, where time-frequency width of

the analyzing function is not the same over the time-frequency plane. Unlike STFT,

windows in wavelet analysis encompass only one analyzing function. The varying

width of the window stretches or compresses the analytic function inside it, thus

provides varying frequencies.

13
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Figure II.4: Wavelets of same shape but different sizes

II.2.1 Wavelet Function

A wavelet is a function ψ ∈ L2(R) that satisfies the admissibility condition

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2
ω

dω < +∞ (II.18)

Admissibility condition implies that the Fourier transform of ψ(t) vanishes at zero

frequency:

|ψ̂(ω)|2ω=0 = 0 (II.19)

So wavelets act like band-pass filters. This also means that their average in time

domain is zero

∫ ∞

−∞
ψ(t)dt = 0 (II.20)

Wavelets are oscillatory in nature. It is centered in the neighborhood of t = 0. When

ψ is selected for analyzing, scale is fixed to s0 and the function is called the mother

wavelet or base wavelet. All the other wavelets are obtained by scaling ψ by varying

s from s0 and translating by τ :

ψs,τ (t) =
1√
s
ψ

(
t− τ

s

)

, s > 0, τ ∈ R (II.21)
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ψ
(
t−τ
s

)
is multiplied by 1√

s
to normalize the energy. The center frequency of ψ̂ is

η =
1

||ψ||2
∫ ∞

−∞
ω|ψ̂(ω)|2dω (II.22)

Fourier transform of ψs,τ(t) is a dilation of ψ̂ by 1
s
.

ψ̂s,τ (ω) =
√
sψ̂(sω)e2πiωτ (II.23)

So center frequency ψs,τ(t) is η/s.

The wavelet transform of x(t) at time τ and scale s is [22]:

Wx(s, τ) =

∫ ∞

−∞
x(t)

1√
s
ψ∗
(
t− τ

s

)

dt (II.24)

where ψ∗ is the complex conjugate of ψ. Wavelet transformation is a linear transfor-

mation. In a convolution product form, it is given by:

Wx(s, τ) = f ⋆ ψ̄s(τ) (II.25)

with

ψ̄s(t) =
1√
s
ψ∗
(−t
s

)

(II.26)

As long as wavelets satisfy the admissibility condition, energy of x(t) is conserved in

wavelet domain.

∫ +∞

−∞
|f(t)|2dt =

∫ +∞

−∞

1

Cψ

∫ +∞

−∞

∫ +∞

−∞
|X(s, τ)|2dτ ds

s2
(II.27)
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Inverse continuous wavelet transform is given as [23]

x(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wx(s, τ)

1√
s
ψ

(
t− τ

s

)

dτ
ds

s2
(II.28)

II.2.2 Scaling Function

When Wx(s, τ) is known for s > s0, then we need another function which will

give the remaining information of x(t) from scale s to ∞. This function is called

the scaling function φ (also known as the father wavelet), which is an aggregation of

wavelets for scales larger than s. Modulus of φ̂ is given by

|φ̂(ω)|2 =
∫ +∞

s0

|ψ̂(sω)|2ds
s

=

∫ +∞

ω

| ˆψ(ξ)|2
ξ

dξ (II.29)

From the admissibility condition (II.18) it can be shown that

lim
ω→0

|φ̂(ω)|2 = Cψ (II.30)

Scaling function can be interpreted by as a low pass filter, and it is denoted by

φs(t) =
1√
s
φ(

1

s
) and φ̄s(t) = φ∗

s(−t) (II.31)

Low frequency components extracted by φs are

Lx(s, τ) =

〈

x(t),
1√
s
φ

(
t− τ

s

)〉

= x ⋆ φ̄s(τ) (II.32)

With the scaling function, inverse continuous wavelet transform can be given as

x(t) =
1

Cψ

∫ s0

0

Wx(s, τ) ⋆ ψs(τ)
ds

s2
+

1

Cψs0
Lx(s, τ0) ⋆ φs0(τ) (II.33)
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II.2.3 Time-Frequency Resolution in Wavelet Domain

With change of variable v = t−τ
s
, variance of |ψs,τ |2 is given by

s2σ2
t =

1

||ψs,τ ||2
∫ ∞

−∞
(t− τ)2|ψs,τ(t)|2dt (II.34)

Spread of ψ̂s,τ around η/s is

σ2
ω

s2
=

∫ ∞

−∞
(ω − η/s)2|ψ̂s,τ(ω)|2dω (II.35)

So for wavelets, σt and σω both are dependent on scale s and center time τ .

ω

t

η
s1

η
s2

τ1 τ2

s1σt

s2σt

σω
s1

σω
s2

|ψs,τ1(t)| |ψs0,τ2(t)|

|ψ̂s,τ1(ω)|

|ψ̂s0,τ2(ω)|

Figure II.5: Time-Frequency Boxes representing the energy spread for different time-
frequency localization in wavelet domain. Different sizes of the windows give different
time-frequency resolution over the plane.

According to uncertainty inequality, area of Heisenberg’s boxes centered at (τ, η/s)

is σtσω, which are equal over the time-frequency plane. But widths and heights of

boxes (σts) and (σω
s
) respectively are dependent on their centers (equations (II.34)

and (II.35)), which are again dependent on the scaling parameter. So shapes of the
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boxes are different on the time-frequency plane, some are narrow in high frequency

region, some are wide in low frequency region (Figure II.5). This implies, for wavelets,

time-frequency resolutions vary over time-frequency plane. Lower scale decreases time

spread but increases frequency support, which is shifted towards higher frequency. So

at lower scale, frequency band of the wavelet gets larger, and time interval gets smaller.

A narrow window at high frequency is able to provide better time localization, which is

required to distinguish sudden changes in the signal. At higher scale, the time interval

is large and the frequency band (shifted towards low frequency) is small in size. A

wider window at low frequency region is providing better frequency localization, which

is required to detect low frequency components, that is the trend of the signal. Narrow

windows at high frequency region are providing high time resolution which is required

to detect sudden changes of a signal. This shows that, in wavelet transformation,

time and frequency resolution are inversely and directly proportional to the scaling

parameter, respectively.

ω

t
Figure II.6: Multi-resolution of time and frequency

Several commonly used wavelets for continuous wavelet transformation are shown

in Appendix B.1.
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II.2.4 Discrete Wavelet Transform (DWT)

Continuous variation of scale parameter s and translation parameter τ result in

redundant representation of a function in wavelet domain. This redundancy can be

exploited for signal denoising or extracting signal features, but they come at a cost

of high computation time and memory size. For data compression, or for a concise

representation of the signal in wavelet domain, orthogonal wavelet transformation

is essential. The approach towards the orthogonality is to use discrete scaling and

translation parameters.

In Discrete Wavelet Transformation (DWT), the scaling parameter s and trans-

lation parameter τ take only integer values. s is taken as integer power of some fixed

s0 > 1, i.e. [24]

s = sj0, , s0 > 1, j ∈ Z (II.36)

We saw that in wavelet domain, both time and frequency resolution are dependent on

scaling parameter s. So, discretization of τ is dependent on j. Narrow Heisenberg’s

boxes (Figure II.5) mean lower scale and lower value of j, and these boxes will have

to slide with smaller steps to cover the entire time span, so they will have a small

translation parameter τ . For larger scale (large value of j), wider boxes have to slide

with larger step to cover the time span, so they have a larger translation parameter.

So discrete translation parameter is proportional of j and it is given by

τ = kτ0s
j
0, τ0 > 0, j, k ∈ Z (II.37)

From equation (II.21), discrete wavelet family is

ψk,j =
1
√

sj0

ψ

(

t− kτ0s
j
0

sj0

)

(II.38)
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The discrete wavelet transform of x(t) is given as

Wx(j, k) = 〈x(t), ψj,k(t)〉 =
1√
2j

+∞∫

∞

x(t)ψ∗

(

t− kτ0s
j
0

sj0

)

dt (II.39)

If the wavelet coefficients exist and they can completely describes the signal, that is,

if they can be used for perfect reconstruction of the signal, then the following must

hold:

A||x(t)||2 ≤
∑

j,k

|x(t), ψj,k(t)|2 ≤ B||x(t)||2, A, B ∈ R
+ (II.40)

Equation (II.40) is called the wavelet frame [23]. The bounds A, B depend on the

scaling and translation parameters and the base wavelet that has been selected. If

A = B, then the wavelet frame called tight frame and the reconstruction formula is

given by

x(t) =
1

A

+∞∑

j=−∞

+∞∑

k=−∞
Wx(j, k)ψj,k(t) (II.41)

If A 6= B but their difference is not large, then

x
′

(t) =
2

A +B

+∞∑

j=−∞

+∞∑

k=−∞
Wx(j, k)ψj,k(t) (II.42)

Difference between x(t) and x
′

(t) becomes small as B/A approaches unity. To exclude

redundancy from the reconstruction formula of x(t), it is necessary to have orthogonal

wavelet bases.
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II.3 Orthogonal Wavelet Bases

Dyadic discretization of with s0 = 2 and τ0 = 1 creates a family of wavelets which

constitute an orthogonal bases for L2(R) within the tight wavelet frame, characterized

by A = 1.

ψj,k = 2−j/2ψ
(
2jt− k

)
(II.43)

φj,k = 2−j/2ψ
(
2jt− k

)
(II.44)

The theoretical foundation for constructing orthogonal base wavelet is the multireso-

lution analysis.

II.3.1 Multiresolution Analysis (MRA)

MRA of L2(R) consists of successive approximation subspaces Vj, j ∈ Z. Their

properties are

1. Monotonicity: · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · . This indicates the

successive inclusion relationship of the closed subspaces.

2. Completeness:
⋂

j∈Z
Vj = 0,

⋃

j∈Z
Vj = L2(R). This implies all the subspaces form

a complete L2(R).

3. Dilation regularity: x(t) ∈ Vj ⇔ x(2jt) ∈ V0. This indicates the multiresolution

aspect of the closed subspaces.

4. Translation invariance: x(t) ∈ Vj ⇒ x(t− n) ∈ V j0.

5. Existence of orthogonal basis: There exists a scalar function φ(t) ∈ V0, so that

{φ(t− n)n∈Z} form an orthogonal basis for V0, that is, V0 = spanφ(t− n).
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V0 V1 V2 V3

(a) Inclusion relation among subspaces, V0 ⊃ V1 ⊃ V2 ⊃ V3

V0 V1 V2 V3W1 ⊥W2 ⊥W3 ⊥ V3

V3W3W2W1

(b) Ortogonal wavelet subspaces

Figure II.7: Multiresolution analysis of L2(R) into subspaces.

From Figure II.7(a), Vj have the inclusion property and they are not orthogonal, so

the family of scalar functions φj,k(t) cannot be used as orthogonal bases of L2(R).

Wj are the orthogonal complement of Vj in Vj−1, as shown in Figure II.7(b). These

subspaces are related as

Vj−1 = Vj ⊕Wj (II.45)

and

Wj ⊥Wj′ , for j 6= j
′

(II.46)
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For j < J ,

Vj = VJ ⊕
J−j−1
⊕
k=0

WJ−k (II.47)

Wj are orthonormal, and they form the L2(R).

L2(R) = ⊕
j∈Z

Wj (II.48)

Wj also have the scaling property of Vj, that is

x(t) ∈ W0 ⇔ x(2−jt) ∈ Wj (II.49)

So, ifW0,k, k ∈ Z for is a set of orthonormal bases of L2(R), then {ψj,k = 2−j/2ψ(2−jt−

k), k ∈ Z} is also a family of orthonormal bases of scale 2j. So, all the collections of

{ψj,k, k, j ∈ Z} form the sets of orthonormal bases for L2(R).

II.3.2 Orthogonal Wavelet Transform

According to MRA of V0 space, it can be decomposed as follows:

V0 = V1 ⊕W1 = V2 ⊕W2 ⊕W1 = V3 ⊕W3 ⊕W2 ⊕W1 = · · · (II.50)

φj,k is the set of orthonormal bases of the space Vj, so if function x(t) is projected

onto Vj, then

xja(t) =
∑

k

aj,kφj,k(t) (II.51)

aj,k is called the scaler coefficients, which is given by

aj,k = 〈x(t), φj,k(t)〉 (II.52)
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Similarly, if the signal x(t) is projected onto space Wj , whose orthonormal base is

ψj,k, then

xjd(t) =
∑

k

dj,kψj,k(t) (II.53)

dj,k is called the wavelet coefficient, which is given by

dj,k = 〈x(t), ψj,k(t)〉 (II.54)

So, if x(t) is decomposed up to j = J and VJ and Wj are expressed in the terms of

their orthonormal bases, then

x(t) =

J∑

j=∞

+∞∑

k=−∞
dj,kψj,k(t) +

+∞∑

k=−∞
aj,kφj,k(t) (II.55)

Equation (II.55) is equivalent to equation (II.41) when A = B = 1. This is the

case when the wavelet bases are orthonormal [6]. Equation (II.55) is the perfect

reconstruction of x(t) without redundancy and equations (II.52) and (II.54) are the

orthogonal forward scalar and wavelet transform. Different kind of discrete orthogonal

wavelets and their scalar functions are described in Appendix B.2.

II.3.3 Frequency Bands and Time Intervals for Orthogonal Wavelets

Since for orthogonal wavelets, the scale is varied in a logarithmic fashion (inte-

ger power of 2), frequency range and time span is also divided in the same way.

Say a signal has 2J discrete points and it is sampled at a constant fs frequency. It

is decomposed with a wavelet which is supported on l discrete points. At j scale,

{ψj,k} will be have a support on 2j−1l points and it will translate with the same

2j−1l number of points as its step. At a certain scale, translating functions do not

have any overlap onto each other, since they are orthogonal to each other. j = 1
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is the scale when we have the smallest time step of the bases functions and finest

time resolution. Functions at this scale also project the function onto the coarsest

frequency band, which is
[
fs/2 : 1

2
fs/2

]
(fs/2 is the maximum observable frequency,

according to Nyquist sampling rate). As j increases, support of the wavelet dou-

bles, and the frequency band of projection halves. At scale j, the frequency band is
[
2−(j−1)fs/2 : 2−jfs/2

]
and the support, that is the translation step of {ψj,k} is 2j−1l

points. When j = J , support of {ψj,k} and {φj,k} is 2J−1l points. Frequency band of

for {ψJ,k} is
[
2−(J−1)fs/2 : 2−Jfs/2

]
and for {φJ,k} it is

[
2−Jfs/2 : 0

]
.

0− 31.25

31.25− 62.5

62.5− 125

125− 250

250− 500

Frequency bands (Hz)

ψ1,k

ψ2,k

ψ3,k

ψ4,k

φ4,k

Temporal widths of functions

Figure II.8: For a signal sampled at 1000 Hz, temporal widths of Haar functions and
their different frequency bands of projections are shown for a decomposition up to
j = 4. Both the size of frequency band and width of the functions vary dyadically
with the change of j.

In the following chapters, Haar matrix is used for solving linear differential equa-

tions and for optimal control. Before proceeding to them, a brief introduction of

Haar wavelet and how it decomposes piecewise constant sequences is given in the
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next section.

II.3.4 Decomposition of a signal into Haar Wavelets

The oldest function ψ for which {ψj,k} form an orthonormal basis for L2(R) is the

Haar function. It was first introduced by Alfred Haar in 1910 [3]. It is one of the

earliest example of wavelet transform which is dyadic, orthonormal and compact in

support. It is also the simplest orthogonal function in mathematical expression.

ψ(t) =







1 for 0 ≤ t < 1
2

−1 for 1
2
≤ t < 1

0 otherwise

(II.56)

Its scalar function φ is defined by

φ(t) =







1 for 0 ≤ t < 1
2

1 for 1
2
≤ t < 1

0 otherwise

(II.57)

For a sequence with N = m2s (N,m, s ∈ Z) piecewise constant points, level of

decomposition with Haar wavelet is s.

The signal can be represented in terms of Haar wavelets as

x(t) =

m−1∑

k=0

φs,k(t) +

s∑

j=1

N/2s−1
∑

k=0

dj,kψj,k(t) (II.58)

In rest of the report m will be assumed as 1 for simplification. If the sequence with

N points is denoted by a row vector x and its corresponding Haar coefficients by a
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row vector X , then in matrix form, the Haar representation of sequence x is given by

x = XHN (II.59)

where HN is the (N ×N) normalized Haar matrix of order N . The recursive formula

for Haar matrix is

HN =






HN
2

⊗ φ

IN
2

⊗ ψ




 =







HN
2

⊗
[

1√
2

1√
2

]

IN
2

⊗
[

1√
2

−1√
2

]







(II.60)

where H1 = 1, IN is the identity matrix of order N . For N = 4, it is

H4 =












1
2

1
2

1
2

1
2

1
2

1
2

−1
2

−1
2

1√
2

−1√
2

0 0

0 0 1√
2

−1√
2












(II.61)

X is obtained by

X = xH−1
N (II.62)

Since HN is normalized, H−1
N = HT

N . So, X is given by

X = xHT
N (II.63)

Lets assume a sequence for N = 4 as

x =

[

−3 0 4 1

]
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Its Haar coefficients are

X =

[

−3 0 4 1

]












1
2

1
2

1√
2

0

1
2

1
2

−1√
2

0

1
2

−1
2

0 1√
2

1
2

−1
2

0 −1√
2












=

[

1 −4 − 3√
2

3√
2

]

Each row of HN represents a basis function, and its corresponding coefficients repre-

sent the projection of x on these functions. The signal can be reconstructed by simply

multiplying the coefficients with the basis functions and adding them.

[

1
2

1
2

1
2

1
2

]

×1

+

[

1
2

1
2

−1
2

−1
2

]

×(−4)

+

[

1√
2

−1√
2

0 0

]

×
(−3√

2

)

+

[

0 0 1√
2

−1√
2

]

×
(

3√
2

)

=

[

−3 0 4 1

]

Last two coefficients together represents the signal at frequency range [fs/2 : 1
2
fs/2]

Hz. Second coefficient represents the signal in [1
2
fs/2 : 1

4
fs/2] Hz, and the first

coefficient in [1
4
fs/2 : 0] Hz, fs is the sampling frequency. Time evolution of the
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signal at these frequency ranges are obtained as:

[fs/2 :
1

2
fs/2] Hz :

[

1√
2

−1√
2

0 0

]

×
(−3√

2

)

+

[

0 0 1√
2

−1√
2

]

×
(

3√
2

)

=

[

−3
2

3
2

3
2

−3
2

]

[
1

2
fs/2 :

1

4
fs/2] Hz :

[

1
2

1
2

−1
2

−1
2

]

× (−4)

=

[

−2 −2 2 2

]

[
1

4
fs/2 : 0] Hz :

[

1
2

1
2

1
2

1
2

]

× (1)

=

[

2 2 2 2

]

Summing the signal at these frequencies bands reconstructs x.

It can also be shown that energy is conserved in wavelet domain.

(−3)2 + 02 + 42 + 12 = 26 = 12 + (−4)2 +

(−3√
2

)2

+

(
3√
2

)2

Rows of the HN will be denoted by hi, i = 1, 2, · · · , N , so HN = [h1 h2 · · · hN ]T .

Columns of HN will be denoted by Hλ, λ = 1, 2, · · · , N . It is notable that

x(λ) = XHN(λ) (II.64)

It implies that each of the columns represents time in wavelet domain.

The signal shown in Figure II.9(a) has N = 210 samples, so for decomposing it

with Haar wavelets, maximum level attainable is s = 10 (equation (II.58)). Sampling

rate is fs = 204.6 Hz. Time evolutions of the signal in all the frequency ranges and

the reconstructed signal are shown in Figure II.9.
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Figure II.9: Time evolution of x(t) at different frequency ranges, starting from the
frequency band at lowest frequency region.

Now that we know how Haar wavelets form orthonormal bases and how it de-

composes a function, we can move into solving linear differential equations via Haar

wavelets [9], which will pave the way for optimal control of linear systems without

constraints [16]. In the following chapter, derivation of Haar integral matrix, solu-

tion of LTI systems [9] and optimal control of unconstrained LTI systems via Haar

wavelets [16] will be shown. It is important to have these derivations presented, be-

cause later we have to come back to these formulas to make modifications in them

and apply them in Model Predictive Control.
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CHAPTER III

OPTIMAL CONTROL OF LINEAR SYSTEMS VIA HAAR

WAVELETS

This chapter proposes a method of solving the Model Predictive Control problem

for unconstrained linear systems using the Haar domain. In section III.1 the optimal

control problem statement and various methods for solving them are presented. Sec-

tion III.2 contains how orthogonal functions can be used for solving linear differential

equations [9]. Section III.3 contains Haar wavelet integral matrix from [9] which is

useful in solving differential equation via Haar wavelets. Section III.4 reviews how dif-

ferential equations are solved using Haar wavelets [9,16]. Using Haar domain solution,

a linear quadratic cost function is minimized in Haar domain to solve an unconstrained

open loop optimal control problem, which is reviewed in section III.5 [16]. Section

III.6 proposes the idea of using this Haar domain optimizer in a Receding Horizon

fashion to construct a Model Predictive Controller (MPC) in Haar domain. In MPC,

only the first control action from the optimized control horizon is applied to the plant.

So in section III.8 this Haar domain optimizer is configured in such a manner that

it only produces those Haar coefficients which are used to construct the first control

action only.

III.1 Optimal Control Problem

Optimization of a dynamic control system aims to find the optimal control by

minimizing or maximizing a performance index under constraints. Several methods

that solve optimal control problems using orthogonal function are discussed in [25].
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Transforming optimization problem in wavelets appeared in [9, 15, 26]. The general

statement of the optimal control problem is as follows:

Optimize the performance index

J =

T0+Tf∫

T0

g (x(t), u(t), t) (III.1)

Subjected to

ẋ(t) = f(x(t), u(t), t), x(T0) = x0 (III.2)

This problem is solved by one of the following approaches [27]:

� Variational method and Pontryagin’s minimum principle (Euler-Lagrange equa-

tions).

� Direct methods using parameterization.

These methods are categorized as indirect methods and direct methods [15].

III.1.1 Indirect Methods

Methods based on Euler-Lagrange equations and the variational method convert

the optimal control problem into two point boundary value problem. These methods

result in an optimal controller which is used to control the closed-loop feedback control

input u(x(t)).

III.1.2 Direct Method

This method consists of directly substituting the transformed control and states

into the performance index without constructing the Hamiltonian for the system. Here

the control and state both are approximated by a finite series of known functions with

unknown parameters.
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The typical direct methods require numerical procedures for solving optimality

problems, specially for nonlinear systems and with constraints on states and control.

Numerical procedures may produce more than one minima [15], so unique optimal

solution is not guaranteed. For unconstrained linear systems though, optimized con-

trol action can be found by direct differentiation of the cost function with respect

to the control. In the following sections, the control and states are transformed in

Haar domain and a linear quadratic cost function is differentiated with respect to the

transformed control, which in turn gives an analytic optimal control in Haar domain.

III.2 Orthogonal Functions in Solving Differential Equations

In the last few decades, orthonormal functions have been playing an important role

in solving problems such as parameter estimation and optimal control. In this method

the differential equation is converted into a set of algebraic equations. Chen and Hsiao

[7] were the first to use the approximation method via Walsh function. However, the

orthonormal functions which are globally supported face difficulty in solving systems

with abrupt changes. Haar wavelet is useful in overcoming this problem, since it

vanishes outside a short interval of time (equation (II.56) and (II.57)). The simple

analytic form of Haar wavelets makes transformation of control, states and the cost

function compact compared to other orthonormal functions. For finding the optimal

control, it is necessary to have a relation between the input and the states in Haar

domain, which is described by the governing equation of the system. This demands for

solving the governing dynamics in Haar domain. Next section discusses the integration

in Haar domain.

III.3 Integration of Haar Wavelets

It is necessary to perform integration for solving differential equations. For having

a solution of a differential equation in Haar domain, it is necessary to have an integral
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operational matrix in Haar domain. This Haar integral matrix is used for solving

differential equations for different time durations. So this Haar integral matrix is

defined on a time duration of 1, so that this matrix can be used by normalizing time

durations of various differential equations. For this, λ of HN will take the values as

λ =
1

N
,

2

N
, · · · , 1 (III.3)

Before giving the formula of the Haar integral matrix, as an example, integrations

and piecewise constant approximations of each of the Haar functions of H4 (each row

of H4) are given [9].

1∫

0

h1(t)dt =t, 0 ≤ t < 1 ≈ 1

8

[

1
2

3
2

5
2

7
2

]

(III.4)

1∫

0

h2(t)dt =







t, 0 ≤ t < 1
2

1− t, 1
2
≤ t < 1

≈ 1

8

[

1
2

3
2

3
2

1
2

]

(III.5)

1∫

0

h3(t)dt =







t, 0 ≤ t < 1
4

1
2
− t, 1

4
≤ t < 1

2

≈ 1

8

[

1√
2

1√
2

0 0

]

(III.6)

1∫

0

h4(t)dt =







t− 1
2
, 1

2
≤ t < 3

4

1− t, 3
4
≤ t < 1

≈ 1

8

[

0 0 1√
2

1√
2

]

(III.7)
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Figure III.1: Haar functions of H4 and their integrals, defined over [0 1]s.

Writing equations (III.4) to (III.7) altogether, we obtain

∫ 1

0

H4(t)dt ≈
∫ 1

0

H4(λ)dλ ≈ 1

8












1
2

3
2

5
2

7
2

1
2

1
2

3
2

1
2

1√
2

1√
2

0 0

0 0 1√
2

1√
2












(III.8)
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If the integrals of each of the Haar functions are expanded into Haar coefficients P4,

then from equation (II.63)

P4 =





1∫

0

H4(λ)dλ



HT
4 (III.9)

Substituting the value of H4, P4 is obtained as

P4 =
1

2× 4












4 −2 − 1√
2

− 1√
2

2 0 − 1√
2

1√
2

1√
2

1√
2

0 0

1√
2

1√
2

0 0












(III.10)

If the columns of H4 are denoted by some other variable γ = 1
4
, 2

4
, 3

4
, 1, the integra-

tion from 0 to any time λ = 1
4
, 2

4
, 3

4
, 1 is

λ∫

0

H4(γ)dγ = P4H4(γ) (III.11)

Following the same procedure, for H8, the integral matrix P8 is given by

P8 =
1

2× 8






(2× 8)P4 −H4

HT
4 04




 (III.12)

04 is the (4× 4) null matrix. The recursive formula for PN is given by [9],

PN =
1

2N






2NPN/2 −HN/2

HT
N/2 0N/2




 (III.13)
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where H1 = 1, HT
1 = 1, P1 =

1
2
and 0N/2 is (N

2
× N

2
) null matrix. And also

∫ λ

0

HN(γ)dγ = PNHN(λ) (III.14)

III.4 Solving Linear Time Invariant Systems via Haar Wavelets

The solution of a first order linear differential equation using Haar wavelets is

reviewed from [16]. Let us consider a linear time invariant system described in state

space with the following differential equation:

ẋ(t) = Ax(t) +Bu(t) (III.15)

y(t) = Cx(t) (III.16)

x(0) = x0 (III.17)

where x(t) is the state vector and u(t) is the input vector. The coefficient matrices A

and B are of order (n × n) and (n × l), respectively. The initial state is x0. We are

looking for a solution for a finite time interval of [0 Tf ] seconds. If we want to find

the solution in Haar domain, we have to rescale [0 Tf ] to [0 1] seconds, since the

Haar wavelet and its integral matrix are defined over time interval of [0 1] seconds; N

number of samples are considered in [0 Tf ]. Rescaling the time variable in equation

(III.15) by

t = Tfλ (III.18)

We get,

ẋ(λ) = TfAx(λ) + TfBu(λ) (III.19)
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Now that the differential equation has been scaled from [0 Tf ] to [0 1], instead of

integrating in [0 t], we have to integrate in [0 λ]:

x(λ)− x0 = TfA

∫ λ

0

x(γ)dγ + TfB

∫ λ

0

u(γ)dγ (III.20)

We can augment x0 to xaug0 by padding N − 1 number of columns, where all the

columns are the same x0 initial state vector.

xaug0 =

[

x0 x0 ... x0
︸ ︷︷ ︸

N-1

]

(III.21)

So (III.20) becomes

x(λ)− xaug0 (λ) = TfA

∫ λ

0

x(γ)dγ + TfB

∫ λ

0

u(γ)dγ (III.22)

If X , X0 and U are Haar coefficients of x(λ), xaug0 (λ) and u(λ), respectively, then by

using forward Haar transformation from equation (II.63),

x(λ) = XHN(λ) (III.23)

xaug0 (λ) = X0HN(λ) (III.24)

u(λ) = UHN (λ) (III.25)

X0 is given by

X0 = xaug0 HT
N (III.26)

Since all the columns in xaug0 are the same, X0 becomes

X0 =

[
(

1√
N

)

x0 0 0 ... 0
︸ ︷︷ ︸

N-1

]

(III.27)
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Now, equation (III.22) can be written in terms of the Haar coefficients as

(X −X0)HN(λ) = TfAX

∫ λ

0

HN(γ)dγ + TfBU

∫ λ

0

HN(γ)dγ (III.28)

From (III.14),

(X −X0)HN(λ) = TfAXPNHN(λ) + TfBUPNHN(λ) (III.29)

Since it is true for all HN(λ),

X −X0 = TfAXPN + TfBUPN (III.30)

For finding X , vec(.) operator is applied to (III.30), which stacks columns of a matrix

in a single column.

vec(X)− vec(X0) = Tf (P
T
N ⊗A)vec(X) + Tf (P

T
N ⊗ B)vec(U) (III.31)

Applying the property of vec(.) operator from equation (C.1) in Appendix C and

after some calculations, we have

vec(X) =
[
INn − Tf (P

T
N ⊗ A)

]−1 [
Tf(P

T
N ⊗ B)vec(U) + vec(X0)

]
(III.32)

⊗ is the Kronecker product and INn is the identity matrix of order (Nn × Nn). In

abbreviated form, it is

vec(X) = K1vec(U) +K2vec(X0) (III.33)
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where,

K1 = Tf
[
INn − Tf (P

T
N ⊗ A)

]−1
(P T

N ⊗ B) (III.34)

K2 =
[
INn − Tf (P

T
N ⊗ A)

]−1
(III.35)

Equation (III.33) is the transfer function of the linear systems in wavelet domain

and K1 is the state transition matrix. If we write the identity matrix of order N by

denoting its rows, then

In =












IN(1)

IN(2)

...

IN(N)












(III.36)

Then we can find X from vec(X) by

X =

[

(IN(1)⊗ IN) vec(X) (IN(2)⊗ In) vec(X) · · · (IN(N)⊗ IN) vec(X)

]

(III.37)

Using (II.59), we can find the whole sequence x from X by

x = XHN (III.38)

And x(λ) at different time step is given by

x(λ) = XHN(λ) (III.39)
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III.4.1 Example of a LTI System solution via Haar Wavelets

Let the system be






ẋ1(t)

ẋ2(t)




 =






−1 95

−1 97











x1(t)

x2(t)




 , x0 =






1

1




 (III.40)

Its analytic solution is given by [28]

x1(t) =
1

47

(
95e−2t − 48e−96t

)

x2(t) =
1

47

(
48e−96t − e−2t

)

Solution via Haar wavelets are compared with the exact solutions in figure (III.2).
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Figure III.2: Comparison between states from analytic solution and solution via Haar
wavelets.

Consider another system [9]

ẋ(t) =












0 18 0 0

0 0 25 250

0 0 0 250

−390 −92.25 0 −250












x(t) +












0

0

0

390












u(t), x0 =












0.5

0

0

0












(III.41)
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Figure III.3 show the response due to step input. Increasing the scale improves the

accuracy of the solution via Haar wavelets.
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Figure III.3: Comparison between states from analytic solution and solution via Haar
wavelets.

In both the examples, time duration of [0 0.6]s is used. A decomposition level of

5, that is H5 is used for finding the solutions in Haar domain. Higher resolution gives

a gives a response close to the actual response.

III.5 Open Loop Optimal Control via Haar Wavelets

In this section, optimal control via Haar wavelet is reported from [16]. It is a linear

optimal open loop control, because the control depends only on the initial states of

the plant. The optimal control can be obtained with respect to the optimization of a

quadratic cost function as follows:

J =

∫ Tf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (III.42)

subjected to

ẋ = Ax(t) +Bx(t), y(t) = Cx(t), x(0) = x0 (III.43)

The selection of weighting matrices Q and R in the performance index is discussed in

Appendix D.
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Rescaling time with t = Tfλ and [0 Tf ] to [0 1]s, we have

J = Tf

∫ 1

0

[
xT (λ)Qx(λ) + uT (λ)Ru(λ)

]
dλ (III.44)

Using equation (III.23) and (III.25), we can expand the states and inputs into wavelet

coefficients. Then the cost function becomes

J = Tf

∫ 1

0

[
HT
N(λ)X

TQXHN(λ) +HT
N(λ)U

TRUHN (λ)
]
dλ

According to property from equation (C.3) in Appendix C

J = Tf

∫ 1

0

[
tr
(
HN(λ)H

T
N(λ)X

TQX
)
+ tr

(
HN(λ)H

T
N(λ)U

TRU
)]
dλ (III.45)

It can be written as

J = Tf

[

tr

(∫ 1

0

HN(λ)H
T
N(λ)dλX

TQX

)

+ tr

(∫ 1

0

HN(λ)H
T
N(λ)dλU

TRU

)]

(III.46)

By defining

M =

∫ 1

0

HN(λ)H
T
N(λ)dλ (III.47)

equation (III.46) can be written as

J = Tf
[
tr
(
MXTQX

)
+ tr

(
MUTRU

)]
(III.48)

According to property from equation (C.2) in Appendix C

J = Tf
[
vecT (X)(MT ⊗Q)vec(X) + vecT (U)(MT ⊗ R)vec(U)

]
(III.49)
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If we write,

V1 =MT ⊗Q (III.50)

V2 =MT ⊗R (III.51)

Then equation (III.49) is given by

J = Tf
[
vecT (X)V1vec(X) + vecT (U)V2vec(U)

]
(III.52)

Now we have the cost function in terms of Haar wavelets. Since J is a function of

vec(U), for optimal control, J satisfies the following:

∂J

∂vec(U)
= 0 (III.53)

According to property from equation (C.4) in Appendix C, equation (III.52) becomes

∂J

∂vec(U)
=Tf

[
∂vecTX

∂vec(U)

∂

∂vec(X)

(
vecT (X)V1vec(X)

)
]

+Tf

[
∂vecT (U)

∂vec(U)

∂

∂vec(U)

(
vecT (U)V2vec(U)

)
]

Using property from equation (C.5) in Appendix C

∂J

∂vec(U)
= Tf

[
∂vecT (X)

∂vec(U)
(V1 + V T

1 )vec(X) + (V2 + V T
2 )vec(U)

]

(III.54)

Now from equation (III.33)

∂vecT (X)

∂vec(U)
=

∂

∂vec(U)

(
vecT (U)KT

1 + vecT (X0)K
T
2

)
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Using property from equation (C.6) in Appendix C

∂vecT (X)

∂vec(U)
= KT

1 (III.55)

So, equation (III.54) becomes

∂J

∂vec(U)
= Tf

[
KT

1 (V1 + V T
1 )vec(X) + (V2 + V T

2 )vec(U)
]

(III.56)

From equations (III.53) and (III.56),

vec(U) = −(V2 + V T
2 )−1KT

1 (V1 + V T
1 )vec(X) (III.57)

Using equation (III.57) in (III.33), we get

vec(X) =
[
INn +K1(V2 + V T

2 )−1KT
1 (V1 + V T

1 )
]−1

K2vec(X0) (III.58)

Like equation (III.37), we can get the optimal X from the above vec(X) by denoting

IN by its rows.

X =

[

(IN (1)⊗ In) vec(X) (IN(2)⊗ In) vec(X) · · · (IN(N)⊗ In) vec(X)

]

(III.59)

Then we find the whole sequence of optimal state by

x = XHN (III.60)

And x(λ) is

x(λ) = XHN(λ) (III.61)
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Putting vec(X) from equation (III.58) to (III.57), we get the optimal control vec(U)

in terms of Haar wavelets.

vec(U) = Kvec(X0) (III.62)

Where

K =− (V2 + V T
2 )−1KT

1 (V1 + V T
1 )×

[
INn +K1(V2 + V T

2 )−1KT
1 (V1 + V T

1 )
]−1

K2 (III.63)

For reference trajectory tracking, the cost function is defined by

J =

Tf∫

0

[(
xref (t)− x(t)

)T
Q
(
xref(t)− x(t)

)
+ uT (t)Ru(t)

]

(III.64)

Following the same procedure, the optimal control in Haar domain is obtained by

vec(U) = K4

(
vec(X)ref −K2vec(X0)

)
(III.65)

where,

K4 = [INl +K3K1]
−1K3 (III.66)

K3 =
(
V2 + V T

2

)−1
KT

1

(
V1 + V T

1

)
(III.67)

From optimal vec(U), we find U by

U =

[

(IN (1)⊗ Il) vec(U) (IN(2)⊗ Il) vec(U) · · · (IN(N)⊗ Il) vec(U)

]

(III.68)
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The optimal control input is given by

u = UHN (III.69)

And u(λ) is

u(λ) = UHN(λ) (III.70)

So if we know the initial states of the system, we can get the optimal trajectory and

optimal control in Haar domain from equations (III.58) and (III.62), respectively. This

optimal control only depends on the initial states. Figure III.4 shows the algorithm

of the open loop optimal control scheme.
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Start

Read plant parameters A, B, C;
Weight matrices Q and R;

Initial states x0;
Total runtime T ;

Wavelet decomposition scale P .

Get N = 2P , HN , PN , M ,
V1, V2, X0, K1 and K2.

Sampling time, Ts = T/(N − 1).
Set Tf = T .

Controller: Obtain vec(U),
U and u. Initialize t = 0.

Compute u(t) and
apply to the plant.

Plant

t = t + Ts

Output
from states
y(t) = Cx(t)

t > Tf?

End

Output
y(t)

u(t)

x(t)

No

t

Yes

y(t)

Figure III.4: Open Loop Optimal Control
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III.5.1 Example of Open Loop Optimal Control via Haar Wavelets

Consider a system model given by

ẋ(t) =






0 1

0 0




 x(t) +






0

1




 u(t), x0 =






0.5

0.4






y(t) =

[

1 0

]

x(t)

We have to find out the optimal control and state trajectory for a finite time interval,

which is [0 1.5] seconds. We set Tf = 1s. We select wavelet resolution scale s = 8

and get N = 2s. This gives us the sampling time Ts = Tf/N . Next we get K1 and K2

from equations (III.34) and (III.35), respectively, V1 and V2 from equations (III.50)

and (III.51), respectively. We take Q =






5000 0

0 0




 and R = 0.1. Then we calculate

the optimal trajectory vec(X) and control vec(U) from equations (III.58) and (III.62)

respectively. The states and the open loop optimal control are shown in Figure III.5.
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(a) Trajectory of the states
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(b) Open loop optimal control

Figure III.5: Time evolution of states and open loop optimal control via Haar wavelet.

Next section reviews Receding Horizon Control, which can be used to develop a

closed-loop optimal control scheme.
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III.6 Receding Horizon Optimization

Receding Horizon Optimization approach is widely used in Model Predictive Con-

trol (MPC). In MPC, based on a model and the current states, future states are

predicted over a horizon. Then a cost function is minimized to obtain the optimal

control, which drive the predicted states towards reference. Because the optimized

predicted states may change from the effect of disturbance or plant model mismatch,

only the first control action from the horizon is applied to the plant. Then the horizon

is receded in time, and the process is repeated. That is why the name is Receding

Horizon Control. For a horizon size N , at time t, the control sequence ut is obtained

and the sequence ends up in future time t + (N − 1)Ts. The horizon time NTs is

chosen to be equal or larger than the settling time of the step response of the plant.

ut =

[

ut ut+Ts · · · ut+(N−1)Ts

]

(III.71)

In Receding Horizon Control, the current control action is determined by measur-

ing the current states and optimizing a finite horizon cost function at each sampling

instant. Optimization at each sampling period yields an open loop optimal control

trajectory, from which only the first portion is applied to the system until the next

time step. The repetition of this procedure at each time step results in a closed loop

control which mitigates uncertainties in the system. The fixed horizon recedes in

time with each sampling instants, that is why the name Receding Horizon. It is also

known as Model Predictive Control because of its use of the model to predict system

behavior. The sampling period is much smaller than the horizon time.

So the idea can be summarized as follows:

i At time t , for the current state xt, optimal control problem over a fixed time
interval [t t+ Ts · · · t + (N − 1)Ts] is solved.

ii From the resulted optimal control sequence ut (in equation (III.71)), only the first
control step ut is applied to the system.
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iii State reached at time t+ Ts is measured.

iv Fixed horizon optimization is repeated at time t+Ts over the interval [t+Ts t+
2Ts · · · t +NTs] from the new current states xt+Ts .

T
im

e

Time

Time

Time

t

t+ Ts

t + 2Ts Tf

Tf

Tf

u
t

u
t+
T
s

u
t+

2
T
s

X

X

X

×××××××××

×××××××××

×××××××××

Figure III.6: Optimal control sequence ut with fixed horizon size Tf is receding in
time. Only the first control action (with the Xmark) is applied to the system, rests
are discarded.
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replacemen

Finite Horizon

Optimizer

u(t)

ẋ(t)

x(t) = f(x(t), u(t))

u(t) = ut

ut =












ut

ut+Ts
...

ut+(N−1)Ts












t = t+ Ts

Figure III.7: Receding Horizon Optimizer acting as a closed loop controller. Control
ut is determined by minimizing the states at each time step. The first control step ut
is selected from the optimal control sequence ut and set as u(t) = ut. So u(t+ Ts) =
f(x(t)).

Computing a control sequence at each time step causes large computation load. With

the advent of computing power, today it is possible to apply Receding Horizon Control

to systems governed by fast dynamics. In the following section it is shown how the idea

of Receding Horizon Optimization can be used for developing a closed loop control

scheme using Haar wavelets.

III.7 Closed Loop Optimal Control

If we look closely at equation (III.62), we can see that the control action for Tf

is dependent on the initial state x0. A closed loop control scheme can be achieved in

Receding Horizon Control (RHC) fashion. At each time step t, feedback of states is
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taken and set as x0. Then an optimal control sequence ut of N point is computed.

These N points constitute the horizon Tf . This Tf will be receding in time with each

time step. So the general idea would be to get the feedback of the states at every

time step, set them as the new xt0, and calculate the new control sequence ut for the

time interval [t (t+ Tf )]. We apply only the first control step from ut and discard

the rest (N − 1) steps. The same process is repeated at every Ts seconds; set the new

feedback as xt+Ts0 , calculate ut+Ts for [(t+ Ts) (t+ Ts + Tf )] interval, apply the first

control step and discard the rest (N − 1) control steps. Figure (III.8) shows the flow

chart of the closed loop control scheme.

Among offline computations, calculating K1, K2 and K (from equations (III.34),

(III.35) and (III.63)) require the inversion of (Nn × Nn) matrices. During online

closed loop computation, at each time step, we need to calculate vec(U t), which

includes multiplication of two matrices K and vec(X0) with the order of (Nl × Nn)

and (Nn × 1) respectively. This demands too much computation power. Moreover,

we use only the first control from the sequence and discard the rest. So almost all

of the computation effort at each time step is going to wasted and not necessary. To

prevent this large wastage and consumption of computation power, we need to find

a way to modify the computation, which will do the necessary computation only to

find the first control action.

56



Start

Weight matrices Q and R;
Initial states x0;
Total runtime T ,
Sampling time Ts;

Wavelet Decomposition scale s.

Get N = 2s, HN ,
PN , M , V1 and V2.
Horizon Tf = TsN .

Controller: Calculate X t
0.

Calculate K1, K2 and K. Obtain
vec(U t), U t and ut, which is the
optimal control sequence for

[t t + Tf ] time interval; pick the
first control step as u(t), discard
the remaining (N − 1) steps.

Plant

t = t + Ts Output
from states
y(t) = Cx(t)

t > T ?

End

Output
y(t)

xt0 = x(t)

u(t)

x(t)

No

xt0

t

Yes

y(t)

Figure III.8: Close Loop Optimal Control
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III.8 Modified Computation for Closed Loop Optimal Control

From equations (III.39) and (III.70), we see that the first step in state and control

trajectories depend only on the first column ofHN . Moreover we only need to calculate

those wavelet coefficients with the same indexes of the non-zero elements in the first

column of HN . This means that the number of Haar coefficients required at every

step is equal to the number of non-zero elements of the first column of HN . This

significantly reduces the amount of computation. If we select a resolution level of

s = 10, then total number of Haar coefficients required for the whole time span

becomes N = 210 = 1024. Whereas if we consider the non-zero elements in the first

column of HN (11 only), then number of coefficients required for the first optimal

state trajectory and optimal control step reduces to 11 (in general, s+ 1).

In the first column of HN (N = 2s), the number of non-zero elements is

N∗ = s + 1 (III.72)

Their indexes are given by an array of N∗ elements, which is

IndN∗
=
[
1, 1 + 20, 1 + 21, 1 + 22, 1 + 23, . . . , 1 + 2s−1

]
(III.73)

In recursive form, it is given by

IndN∗
=
[
IndN∗−1, 1 + 2s−1

]
(III.74)

In the definition of HN (equation (II.60)), the first column of

HN
2

⊗
[

1√
2

1√
2

]

gives the coordinates to IndN∗−1, and it contains 2s−1 number of non-zero elements.
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In the first column of

IN
2

⊗
[

1√
2

−1√
2

]

the first element is non-zero, all other elements are zero. This gives the final non-zero

element in IndN∗.

For example, the first column of H8 is (for λ = 1/8)

H8 (1/8) =

[

1
2
√
2

1
2
√
2

1
2

0 1√
2

0 0 0

]T

where N∗ = 4 non-zero elements with indexes Ind8∗ =

[

1 2 3 5

]

. In the following,

all the formulas previously introduced are revised considering that only (s+1) entries

of HN (1/m) are needed for control design.

Let SN∗
be a (N∗ × N) sparse matrix whose ith row has 1 in IndN∗

[ith] column.

So,

SN∗
=









1st sparse (1×N) vector with 1 in IndN∗
[1st] column

...

(N∗)
th sparse (1×N) vector with 1 in IndN∗

[(N∗)
th] column









(III.75)

So, for H8, S8∗ is given by

S8∗ =












1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0












We can construct a vector HN∗
which is made up with nonzero elements of the first

column of HN . It can be obtained from HN(1/N) (the first column of HN) by pre-
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multiplying it with the sparse matrix SN∗
.

HN∗
= SN∗

HN(1/N) (III.76)

H8∗ is given by

H8∗ = S8∗H8(1/8)

=

[

1
2
√
2

1
2
√
2

1
2

1√
2

]T

If, for example, we had the following sequence of 8 samples

y = [4 7 − 1 2 8 12 7 − 3]

the corresponding Haar coefficients would be

Y = yHT
8 =

[

9
√
2 −3

√
2 5 8 − 3√

2
− 3√

2
−2

√
2 5

√
2

]

Y∗ is made up with the columns from Y which have the indexes from Ind8∗ . Then

Y∗ =

[

9
√
2 −3

√
2 5 − 3√

2

]

Then the first sample from the sequence y would be given by

Y∗H8∗ =

[

9
√
2 −3

√
2 5 − 3√

2

] [

1
2
√
2

1
2
√
2

1
2

1√
2

]T

= 4

So, finding the Haar coefficients with the indexes from IndN∗
is sufficient for finding

the first sample from the sequence.

Let us denote the first optimal state and control step at time t as xt∗ and ut∗

respectively. X t
∗ and U t

∗ are (n×N∗) and (l ×N∗) matrices, respectively, made with
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the columns of X t and U t, respectively, which have the indexes from IndN∗
. The first

element of the sequences xt and ut are given as

xt∗ = X t
∗HN∗

(III.77)

ut∗ = U t
∗HN∗

(III.78)

Now we will start modifying the derivations. First we will look into the solution of

linear systems via Haar wavelets, in section III.4. For obtaining the first time step of

solution x in equation (III.30), X , X0 and PN will be replaced by X t
∗, X

t
0∗ and PN∗

respectively. From equation (III.27), X t
0∗ is modified to

X t
0∗ =

[(
1√
N

)

xt0 0 0 ... 0
︸ ︷︷ ︸

N∗−1

]

(III.79)

PN∗
is made up from rows and columns of PN which have the indexes from IndN∗

. It

is given by

PN∗
= SN∗

PN∗
STN∗

(III.80)
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That is,

P8∗ = S8∗P8S
T
8∗

= S8∗


























1
2

−1
4

−
√
2

16
−

√
2

16
− 1

32
− 1

32
− 1

32
− 1

32

1
4

0 −
√
2

16

√
2

16
− 1

32
− 1

32
1
32

1
32

√
2

16

√
2

16
0 0 −

√
2

32

√
2

32
0 0

√
2

16
−

√
2

16
0 0 0 0 −

√
2

32

√
2

32

1
32

1
32

√
2

32
0 0 0 0 0

1
32

1
32

−
√
2

32
0 0 0 0 0

1
32

− 1
32

0
√
2

32
0 0 0 0

1
32

− 1
32

0 −
√
2

32
0 0 0 0


























ST8∗

=












1
2

−1
4

−
√
2

16
− 1

32

1
4

0 −
√
2

16
− 1

32
√
2

16

√
2

16
0 −

√
2

32

1
32

1
32

√
2

32
0












Equations (III.34) and (III.35) will be modified to

K1∗ = Tf
[
IN∗n − Tf (PN∗

T ⊗ A)
]−1

(PN∗

T ⊗ B) (III.81)

K2∗ =
[
IN∗n − Tf (PN∗

T ⊗A)
]−1

(III.82)

And in equation (III.33), vec(X) is replaced by

vec(X t
∗) = K1∗vec(U

t
∗) +K2∗vec(X

t
0∗) (III.83)

After modifying the solution via Haar wavelet, now we will modify the optimal control
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in section III.5. In equation (III.48), for X t
∗, M is replaced by M∗, which is

M∗ = SN∗
MSTN∗

(III.84)

Consequently, V1 and V2 are changed to

V1∗ =M∗
T ⊗Q (III.85)

V2∗ =M∗
T ⊗ R (III.86)

So in equation (III.52), the cost function becomes

J t∗ = Tf
[
vecT (X t

∗)V1∗vec(X
t
∗) + vecT (U t

∗)V2∗vec(U
t
∗)
]

(III.87)

Differentiating J t∗ with respect to vec(U t
∗) and setting it equal to zero for optimality,

we get,

vec(U t
∗) = −(V2∗ + V T

2∗)
−1KT

1∗(V1∗ + V T
1∗)vec(X

t
∗) (III.88)

Substituting vec(U t
∗) from the above expression in equation (III.83) gives,

vec(X t
∗) =

[
IN∗n +K1∗(V2∗ + V T

2∗)
−1K1∗

T (V1∗ + V T
1∗)
]−1

K2∗vec(X
t
0∗) (III.89)

If we denote IN∗
by its rows, we can get X t

∗ by

X t
∗ =

[

(IN∗
(1)⊗ In) vec(X

t
∗) (IN∗

(2)⊗ In) vec(X
t
∗) · · · (IN∗

(N∗)⊗ In) vec(X
t
∗)

]

(III.90)
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From equations (III.89) and (III.88),

vec(U t
∗) = K∗vecX

t
0∗ (III.91)

where K∗ is the feedback gain, given by

K∗ =− (V2∗ + V T
2∗)

−1K1∗
T (V1∗ + V T

1∗)×
[
IN∗n +K1∗(V2∗ + V T

2∗)
−1K1∗

T (V1∗ + V T
1∗)
]−1

K2∗ (III.92)

For reference trajectory tracking, the modified formula for the first optimal control

action in the horizon at time t is given by

vec(U t
∗) = K4∗

(
vec(X∗)

ref −K2∗vec(X
t
0∗)
)

(III.93)

where,

K4∗ = [IN∗l +K3∗K1∗ ]
−1K3∗ (III.94)

K3∗ =
(
V2∗ + V T

2∗

)−1
KT

1∗

(
V1∗ + V T

1∗

)
(III.95)

U t
∗ is given by

U t
∗ =

[

(IN∗
(1)⊗ Il) vec(U

t
∗) (IN∗

(2)⊗ Il) vec(U
t
∗) · · · (IN∗

(m)⊗ Il) vec(U
t
∗)

]

(III.96)

Once we get vec(X t
∗) and vec(U t

∗), we get xt∗ and ut∗ from equations (III.77) and

(III.78) respectively. u(t) is computed as a function of the feedback from previous

time step t + 1. So u(t) can be expressed as a function of the feedback of the states
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from the previous time step.

u((k + 1)Ts) = f(x(kTs)) (III.97)

Figure III.9 shows the flow chart of the modified closed loop control scheme.
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Start

Weight matrices Q and R;
Initial states x0;
Total runtime T ,
Sampling time Ts;

Wavelet resolution scale s.

Calculate N = 2s, HN , PN
and M . Horizon Tf = TsN .

Calculate N∗, IndN∗
, SN∗

,
HN∗

, PN∗
, M∗, V1∗ and V2∗ .

Controller: Get X t
0∗ . Calculate

K1∗ , K2∗ and K∗. Calculate
vec(U t

∗), U
t
∗ and ut∗, which is the

first optimal control step of the
whole sequence ut∗. Set u(t) = ut∗.

Plant

t = t + Ts

Output
from states
y(t) = Cx(t)

t > T ?

End

Output
y(t)

x0 = x(t)

u(t)
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No

x0

t

Yes

y(t)

Figure III.9: Modified Close Loop Optimal Control
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III.8.1 Computation Load in Modified Closed Loop Optimization

In this modified version of closed loop control scheme, instead of calculating the

whole control sequence ut at each time step, we are calculating ut∗, which is the first

control step of ut. It should be noticed that the receding horizon has not been reduced

to a single time step. The horizon Tf is the same, we are only calculating the first

control action and ignoring the rest. The calculation ofK1∗ , K2∗ andK∗ require inver-

sion of matrices of order (N∗n×N∗n) (from equations (III.81), (III.82) and (III.92)),

which were previously (Nn × Nn). vec(U t
∗) is calculated from equation (III.91) or

(III.93), where each of N∗l coefficients are obtained by N∗n number of arithmetic mul-

tiplication, so at each time step total number of multiplication is N∗l×N∗n. Without

modifications, in equation (III.62) and (III.65), total number of multiplication at each

time step is Nl×Nn. For example, if s = 10, that is N = 210 = 1024, total number of

multiplication at each time step is (1024l× 1024n), but in the modified version, that

amount comes down to (11l×11n), which is substantial savings in computation. This

will allow the implementation of Receding Horizon Optimization in systems with fast

dynamics.

III.9 Comparison with Dynamic Matrix Control (DMC)

There are different types of MPCs, among them DMC is selected for comparison

purpose due to its simplicity and effectiveness. It was first developed by the engineers

at Shell Oil Company in the early 1970’s, since then many versions of DMC have been

developed. The Dynamic Matrix Control law presented in [29] is considered. This law

uses the parametric plant model which yields an easy and effective controller design

method for discrete time tracking controller.
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III.9.1 DMC Control Law

Discrete time state space representation of a LTI system is given by

xk+1 = Axk +Buk

yk = Cxk

(III.98)

where the matrix dimensions are same as in equation (III.15). The Dynamic Matrix

Controller is obtained by minimizing the quadratic cost function

J =

N∑

i=i

[
eTk+iQiek+i + uTk+iRiuk+i

]
(III.99)

where

ek+i = xrefk+i − xk+i future tracking error vector (n× 1)

xrefk+i future reference trajectory vector (n× 1)

xk+i future plant state vector (n× 1)

uk+i future control vector (l × 1)

Qi, Ri (n× n) and (l × l) weighting matrices

N optimization horizon

From the state space representation in equation (III.98), future values xk+i over the

horizon [k + 1, k +N ] are obtained as












xk+1

xk+2

...

xk+N












︸ ︷︷ ︸
X

=












A

A2

...

AN












︸ ︷︷ ︸
T

xk +












B 0 · · · 0

AB B · · · 0

...
... · · · ...

AN−1B AN−2B · · · B












︸ ︷︷ ︸
S












uk+1

uk+2

...

uk+N












︸ ︷︷ ︸
U

(III.100)
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where xk is the state feedback at time k. T and S represents unforced and forced

responses, respectively. Equation (III.99) can be written as

J = (Xref −X)TQ(Xref −X) + UTRU (III.101)

where

Q =












Q1 0 · · · 0

0 Q2 · · · 0

...
...

. . .
...

0 0 · · · QN












R =












R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · RN












(III.102)

The optimal control vector for the horizon is obtained by

U = KDMC(X
ref − Txk) (III.103)

where

KDMC = (R + STQS)−1STQ (III.104)

Only the first control vector uk is applied to the plant. It is obtained by

uk = KDMC∗
(Xref − Txk) (III.105)

where KDMC∗
is defined by the first l rows of KDMC . In DMC, for finding uk, the

number of multiplication operations is l×Nn, whereas in equation (III.91) or (III.93)

it was N∗l×N∗n. In general, the amount of multiplication at each time step in DMC

and Haar based MPC are 2snl and (s + 1)2nl, respectively. For s = 5, that is, for

a horizon size of 25 = 32, the number of multiplication operations in DMC at each

time step is l × 32n = 32nl. In Haar based MPC (N∗ = s + 1 = 6), the number

of multiplication operations at each time step is 6l × 6n = 36nl. But for s = 6,
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the number of multiplication operation in DMC and Haar based MPC are 64nl and

49nl, respectively. So for horizon a size N ≥ 26, Haar based MPC has less amount

of computation than DMC. Now we will evaluate the performance of both of these

controllers with the same horizon size for velocity regulation of a DC motor.

III.9.2 Velocity Regulation of a DC motor

The velocity governing equation of a DC motor is given as

ω̇(t) = Kt
V (t)−Keω(t)

RI
(III.106)

where ω is the angular velocity, Kt is the motor torque constant, Ke is the motor

voltage constant, R is resistance, I is inertia and V is applied voltage. In this example,

the motor has to follow a velocity setpoint ωref . Both Haar based MPC and DMC

are applied with a same prediction horizon size.

For Haar based MPC, V (t) is obtained each time step from equation (III.93). For

DMC, V (t) is obtained from equation (III.105).

The constants are given as

Ke = 0.575 V/rpm

Kt = 48.61 lb.inch/amp

I = 0.79 lb.inch.s2

R = 4 ohms

The initial velocity is ω0 = 0 rpm. Total runtime T = 2 s and sampling time

Ts = 0.001 s. For the first second, desired velocity is ωref(t) = 2 rpm, from 1 to 2

second it is 1 rpm. Wavelet resolution scale of s = 6 is used. So, N = 26 = 64.

The setpoint and actual velocity of the motor from both the controllers are shown in

Figures (III.10) and (III.11).
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Figure III.10: Desired and actual angular velocity of the motor from Haar based MPC
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Figure III.11: Desired and actual angular velocity of the motor from DMC

For similar level of performance, Haar based MPC requires less computation.

For larger horizon, the difference in computation increases. For s = 10, number

of multiplication operations in DMC and Haar based MPC are 1024nl and 121nl,

respectively.
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CHAPTER IV

TRAJECTORY TRACKING

In this chapter, error dynamics are stabilized using the Receding Horizon control

scheme in Haar domain. Two examples are considered: position and orientation

tracking of a two link planar robot and a wheeled mobile robot. In these examples,

the control scheme from the previous chapter is applied on the error dynamics. In the

process, an optimized auxiliary control signal is generated from the error dynamics,

from which the original control for the plant is computed.

IV.1 Position Control of Two Link RR Planar Robot

The close loop control scheme described in section III.8 is applied for position

control of a 2 link RR planar robot. Robot kinematics and dynamics are discussed in

Appendix E. In Appendix F, desired smooth circular trajectory is generated in the

workspace, and it is converted in smooth joint space trajectory for the joint variables

of the robot. Position control of the robot is shown in section IV.1.1. A stylization of

the kinematic structure is depicted in Figure (IV.1). Table IV.1 shows the symbols

used to derive kinematic and dynamic equations of the robot. For more details on

the kinematics and dynamics of manipulators, interested readers are encouraged to

refer [30] and [31].

72



I1 Motor 1 rotor inertia q1 Angle of link 1 with respect to
the global x axis

I2 Link 1 centroidal moment of in-
ertia

q2 Angle of link 2 with respect to
link 1

M1 Motor 1 mass τ1 Torque produced by motor 1
M2 Link 1 mass τ2 Torque produced by motor 2
I3 Motor 2 rotor inertia xc1 Global position vector of center

of gravity of link 1
I4 Link 2 centroidal moment of in-

ertia
xc3 Global position vector of center

of gravity of motor 2
M3 Motor 2 mass xc4 Global position vector of center

of gravity of link 2
M4 Link 2 mass xcp Global position vector of center

of gravity of payload
I3c Motor 2 stater inertia vc2 Velocity vector of center of

gravity of link 2
Mp Payload mass vc3 Velocity vector of center of

gravity of motor 2
Ip Payload moment of inertia vc4 Velocity vector of center of

gravity of link 2
L1 Length of link 1 vp Velocity vector of center of

gravity of payload
L2 Length of Link 2 xcpx x component of xcp
L3 Distance of center of gravity of

link 1 from axis of rotation
xcpy y component of xcp

L4 Distance of center of gravity of
link 2 from the axis of rotation

r Distance of center of gravity of
the payload from that of motor
1

Table IV.1: Symbol definitions for kinematic and dynamic structure of 2 link planar
robot
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x
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Figure IV.1: 2 link planar robot in global x-y co-ordinate

IV.1.1 Position Control

For position control, tracking error dynamics needs to constructed for the manip-

ulator. From equation (E.22), the robot dynamics is given by

M(q)q̈(t) + C(q, q̇)q̇ = τ(t) (IV.1)
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Since qd(t) and q̇d(t) are defined from the previous section, position and velocity

tracking errors can be obtained as

e(t) = qd(t)− q(t) (IV.2)

ė(t) = q̇d(t)− q̇(t) (IV.3)

Differentiating equation (IV.3) yields,

ë(t) = q̈d(t)− q̈(t) (IV.4)

Substituting q̈d(t) in equation (IV.1),

ë(t) = q̈d(t) +M−1 (Cq̇(t)− τ(t)) (IV.5)

Defining the control input function

τ(t) = Cq̇(t)−M (u(t)− q̈d(t)) (IV.6)

The tracking error dynamics is

ë(t) = u(t) (IV.7)

In state space form, the error dynamics becomes






ė(t)

ë(t)




 =






02 I2

02 02











e(t)

ė(t)




+






02

I2




u(t) (IV.8)

where 02 and I2 are zero and identity matrix of order 2, respectively.

In the example, NSK 2 link robot has been taken into consideration. Its arms’
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lengths are L1 = 0.38m and L2 = 0.24m. Under no load condition, coupled parame-

ters are taken as p1 = 3.6, p2 = 0.2 and p3 = 0.15 [32], [33]. Wavelet resolutions scale

s = 6 is used, so N = 26 = 64. Receding horizon is Tf = Ts(N − 1) = 0.252s. Weight

matrices are

Q =










5000 0 0 0

0 5000 0 0

0 0 1 0

0 0 0 1










R =




0.5 0

0 0.5





Here,

A =




02 I2

02 02



 B =




02

I2





Feedback gain matrix is obtained from equation (III.92). Every time, State feedback

vector






q(t)

q̇(t)




 is set as x0 and u(t) is obtained according to the procedures in section

III.8 and τ(t) is computed from equation (IV.6). In the simulation, the starting posi-

tion of the end-effector is placed outside the desired circle to show how the controller

minimize this initial error. Simulation results are shown in Figure IV.2.
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Figure IV.2: Auxiliary controls in Figures IV.2(g) and IV.2(h) are the close loop aux-
iliary optimal control obtained in receding horizon control fashion, via Haar wavelet.
τ1 and τ2 in Figures IV.2(i) and IV.2(j) are torques driving the states of the links
towards their desired trajectories, shown in Figures IV.2(a)-IV.2(f). Figure IV.2(k)
shows the desired and actual end-effector trajectory in Cartesian space.

IV.2 Trajectory Tracking of a Mobile Robot

A differential drive mobile robot is a nonholonomic robot. It has two independently

actuated wheels on a common axis with a caster wheel. For linear motion both wheels

rotate with the same velocity, to make a turn wheels rotate with different velocities,

hence the name differential drive.

IV.2.1 Robot Kinematics

Position and orientation of the robot at any time is described by q = [x, y, θ]T ,

(x,y) is the position of Cr in the global corodinate frame and θ is the orientation

with respect to the positive x axis. ωl and ωr are angular velocities of left and right

wheels, respectively. These two angular velocities are control inputs. There are three

variables to control in q, whereas we have two control inputs. So to reduce the number
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of variables to control in q from three to two, the following transformation is used









ẋ

ẏ

θ̇









=









cos θ 0

sin θ 0

0 1














v

ω




 (IV.9)

y

yr

ye

2r

Cr
θ

b

θr

xe

x xr

Figure IV.3: Mobile robot kinematic model

where v is linear velocity of Cr and ω is angular velocity of the robot. The velocities

ω and v are given by

ω =
r(ωr − ωl)

b
(IV.10)

v =
r(ωr + ωl)

2
(IV.11)

So once v and ω are obtained, desired angular velocities of the wheels can be decided
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using the above two equations.

IV.2.2 Position and Orientation Tracking of Mobile Robot

The velocities v and ω are obtained in the outer loop path control, and from them,

ωl and ωr are obtained from inner loop velocity control. Here, outer loop path control

is done by receding horizon optimizer in Haar domain. The reference state vector is

given by

q̇d =









ẋd

ẏd

θ̇d









=









vd cos θd

vd sin θd

ωd









(IV.12)

The tracking error is written as [34]









ex

ey

eθ









=









cos θ sin θ 0

− sin θ cos θ 0

0 0 1

















xd − x

yd − y

θd − θ









(IV.13)

The error state dynamic model is derived as follows









ėx

ėy

ėθ









=









ωey − v + vd cos eθ

−ωex + vd sin eθ

ωr − ω









(IV.14)

Defining the control signal

u =






u1

u2




 =






vd cos eθ − v

ωd − ω




 (IV.15)
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Then error state dynamics becomes









ėx

ėy

ėθ









=









0 ω 0

−ω 0 0

0 0 0

















ex

ey

eθ









+









u1

vd sin eθ

u2









(IV.16)

Linearized error state model is [34]









ėx

ėy

ėθ









=









0 ωd 0

−ωd 0 vd

0 0 0

















ex

ey

eθ









+









1 0

0 0

0 1














u1

u2




 (IV.17)

The tracking control is to find u1 and u2 to drive the error system towards equilibrium

(e(t) = 0 and u(t) = 0). Receding horizon optimizer is used in Haar domain for finding

optimal u at each time step. For simulation purposes, b = 7in and r = 1.375in was

used. Weight matrices were

Q =









0.9 0 0

0 0.9 0

0 0 0.9









R =






0.2 0

0 0.2




 (IV.18)

The mobile robot is to traverse a circle of radius 0.8m in 13s without any initial and

final velocity, acceleration and jerk. Sampling time is 0.01s. Horizon size of 5s is used

with resolution scale s = 8.
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Figure IV.4: Control signals are driving the error states towards zero. The robot is
initially placed outside the reference circle, then the actual trajectory merges with
the reference trajectory.

All the simulations in this chapter were done with the Haar based Receding Hori-

zon controller. In all the figures with comparisons between reference and actual

trajectory of the states, it can be seen that actual states followed the reference very

closely, and there were very less overshoot. It is because of the nature of the MPC,

it could predict the future error in the error dynamics in advance. Based on where

the error is going, it adjusted the control input action accordingly, so that the control
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input does not overdo and overshoots the trajectories. These results also indicate that

the attempt of using Haar coefficients of only the first control input to reduce com-

putation was successful in attaining a Model Predictive Controller; it could predict

future trajectories, prevented overshoot and provided smooth trajectories following

references.
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CHAPTER V

CONCLUSION AND FUTURE WORK

A fixed horizon optimal controller designed in wavelet domain is investigated in

this thesis. The controller optimizes a parameterized linear quadratic cost function in

wavelet domain. To solve for the optimal control action for the selected weight ma-

trices in the cost function, the governing equation of the linear system is transformed

into wavelet domain.

The optimal controller minimizes the states from the initial values in the horizon,

using the states’ initial condition. To convert this process into a closed loop control

scheme, a horizon of fixed size is receded in time by a single time step, while taking

feedback of the states, setting it as the initial value for the horizon and optimizing the

cost function. Only the first control action is applied to the system and the rest are

discarded. This process is repeated at each time, and thus the procedure constructs

a Receding Horizon Optimizer in wavelet domain.

The computational load of calculating an optimal control for a horizon at each time

step poses a significant practical implementation problem. To mitigate this problem

for the Haar based MPC, the fact that Haar wavelet is not globally supported is

exploited. Each of the column of Haar transformation matrix represents the time

component of the transformed signal. Therefore, while transforming, only the first

column of the Haar matrix is used, since only the first control action is used for

each horizon. Moreover, the first column of the Haar matrix is sparse. This was

exploited to reduce the computational load at each time step. The corresponding

modified equations are derived in this thesis. The modified algorithm was compared
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with DMC, a conventional MPC, for velocity regulation of a DC motor.

It was stated before that at each time step, states are driven towards zero by

the optimal control input. For following desired trajectories, the error dynamics of

the system is considered for the proposed Receding Horizon Optimizer in Wavelet

domain, which generates an auxiliary control, which drives the error towards zero at

each time step. The resulting auxiliary control is used to obtain the actual input to

the system. Numerical simulation results show the successful implementation of the

controller in velocity regulation of a DC motor and position and orientation control

of a two-link planar robot and a wheeled mobile robot, respectively.

In the future, it might be possible to further reduce the computation load. Smooth

signals have most of their information contained in lower frequency bands. So for a

smooth control input, Haar wavelets corresponding to high frequency bands have

lower value compared to those corresponding to lower frequency bands. If the Haar

wavelets with higher frequencies can be ignored without sacrificing too much accuracy,

then order of computation can be further reduced.

Equation (III.58) shows the optimal state as a function of the state feedback, which

is the initial state vec(X0) of the horizon in that equation. vec(X) can be thought as

a forecast of the state trajectory, as a function of X0. It shows the probable states

in the future. The entire time step in the horizon need not be considered as the

forecast, but two to three time steps ahead of present time can easily be considered

as a forecast or as at least as the direction of the states, given that the time steps are

small. This can unlock another potential use of this proposed controller, where it is

necessary to know the error dynamics ahead of time.

Instead of Haar wavelet, if simple block pulse function is considered as basis func-

tion, then the transformation matrix is an identity matrix, and N∗ = 1. This will

reduce the amount of computation more, but we will loose the frequency informa-

tion about the optimal control horizon, and only have time information. With the
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proposed Haar based MPC, it is possible to extract frequency information as well as

time information with the least possible amount of computation.

Haar wavelet based MPC optimizes the system in different frequency bands. Con-

sidering separate penalizing terms for different frequency bands, control inputs in

those bands can be optimized separately. This can also provide a mean for distur-

bance filtering.

The focus of this thesis was to reduce computation load without compromising

performance. For simplicity in the derivations, time invariant systems without con-

straints on control and states are considered. But this concept can be extended to

problems with constraints by replacing them with differentiable functions of an un-

constrained parameter:

a ≤ x ≤ b ⇒ x =
b− a

1 + e−x̃
+ a (V.1)

x ≤ a ⇒ x = ex̃ + a (V.2)

For equality constraints g(x) = 0, g(x) is introduced in the cost function by using a

Lagrange multiplier:

J = xTQx+ uTRu+ λTg(x) (V.3)

These functions can be expanded in the Haar domain, and using the same procedure,

constraints can be included in the derivations.

Model-plant mismatch was not considered. Plant parameter adaptation can be

included to solve this problem. State delay can also be considered by including a

state delay operational matrix [10] in the derivations.
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APPENDICES A

ORTHONORMAL BASES

Two real functions are said to be orthogonal to each other if their inner product

is zero.

〈f1(t), f2(t)〉 =
∫

f1(t)f2(t)dt = 0 (A.1)

When the functions are orthonormal, they are orthogonal to each other and their

energy is 1.

∫

fn(t)fm(t)dt =







1 if m = n

0 if m 6= n

(A.2)

If a signal is projected against a set of orthonormal bases, then the coefficients will

be given as

cn =

∫

x(t)fn(t)dt (A.3)

For orthonormal bases, there is no redundancy in forward transformation, so the

transformation coefficients can be used as weight functions for reconstruction of the

signal from the bases.

x(t) =
∑

n

cnfn(t) (A.4)
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Since the bases are orthonormal, the coefficients are independent of each other, energy

of the signal are exactly in the coefficients, and projection and reconstruction of the

signal can be done for each coefficients.
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APPENDICES B

WAVELET FAMILIES

Some commonly used wavelets are presented are here. In the first section, wavelets

for continuous wavelet transform are presented. In the second section, wavelets for

discrete wavelet transform are presented. Some wavelets are complex, some are real.

Complex wavelets can separate both the amplitude and phase components of a signal.

Wavelets and their associated scaling functions are also illustrated in the following

sections.

B.1 Wavelets used in Continuous Wavelet Transform

These wavelets are only used for analysis. They are not compactly supported.

Even though they produce perfect reconstruction in theory, they are redundant in

presentation.

B.1.1 Morlet Wavelet

Morlet wavelet is defined by [35]

ψ(t) =
1√
πωb

e2πiωcte
− t2

ωb (B.1)

ωb is the bandwidth parameter and ωc is the center frequency. It can extract both

the amplitude and phase information from the signal. It is obtained by windowing a

sine wave by a Gaussian window.
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Figure B.1: Amplitude of real and imaginary part of Morlet wavelet for ωb = 1 Hz
and ωc = 1 Hz.

B.1.2 Gaussian Wavelet

A Gaussian wavelet is expressed as [36]

ψ(t) = CN
dNf(t)

dtN
(B.2)

Where f(t) is the Gaussian function defined as

f(t) = e−ite−t
2

(B.3)

N ≥ 1 is an integer which defines the order of the Gaussian wavelet. CN ensures that

||fN(t)||2 = 1.
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Figure B.2: Amplitude of real and imaginary part of Gaussian wavelet for N = 2.

B.1.3 Mexican Hat Wavelet

It is normalized, second derivative of Gaussian function, it is defined by [1, 23]

ψ(t) =
1√
2πσ3

(

1− σ2

t2

)

e−t
2/2σ2 (B.4)

It is a real wavelet , it does not have any imaginary part.

−5 −2.5 0 2.5 5
−0.5

0

0.5

1

Time (s)

ψ

Figure B.3: Amplitude of Mexican Hat wavelet for N = 2.

B.1.4 Meyer Wavelet

Unlike most of the continuous wavelets, Meyer wavelet contains a scalar function.
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Figure B.4: Amplitude of Meyer scalar and wavelet function.

B.1.5 Frequency B-Spline Wavelet

Mathematical expression of Frequency B-Spline wavelet is [36]

ψ(t) =
√
ωb

[

sinc

(
ωbt

p

)]p

e2πiωct (B.5)

ωb is bandwidth parameter, ωc is wavelet center frequency, and p ≥ 2 is an integer.

sinc is defined as

sinc(x) =







1 x = 0

sinx
x

otherwise

(B.6)
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Figure B.5: Amplitude of real and imaginary part of frequency B-spline wavelet for
ωb = 1 Hz, ωc = 1 Hz and p = 2.

Shannon wavelet is a special case of frequency B-spline wavelet for p = 1.
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Figure B.6: Amplitude of real and imaginary part of Shannon wavelet for ωb = 1 Hz
and ωc = 1 Hz.

B.2 Wavelets used in Discrete Wavelet Transform

B.2.1 Daubechies Wavelet

Daubechies wavelets are orthogonal asymmetric wavelets. It is compactly sup-

ported with a support width of 2p − 1, p is the order of the scalar function [6]. With

the increase of order of the scalar function, wavelets become smoother, which leads to
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better frequency localization. Daubechies wavelets of order 1 is actually Haar wavelet,

which has been discussed in detail II.3.4. Daubechies scalar and wavelet functions of

order 2 and 4 are shown in the following figure.
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(a) db2 scalar function
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ψ
(b) db2 wavelet function
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(c) db4 scalar function
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Time (s)
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(d) db4 wavelet function

Figure B.7: Daubechies scalar and wavelet function of order 2 and 4 respectively.

B.2.2 Coiflets Wavelet

Coiflets wavelets are orthogonal and near symmetric [6]. They produce 2p number

of vanishing moment for both scalar and wavelet function of order p, with a given

support width of 6p− 1.
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(a) Coiflet 2nd order scalar
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(b) Coiflet 2nd order wavelet
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Figure B.8: Coiflet scalar and wavelet function of order 2 and 4 respectively.

B.2.3 Symlet Wavelet

Symlet wavelets are orthogonal and near symmetric [6]. A Symlet wavelet of p

order has p vanishing moment for a support of 2p− 1.

101



0 1.5 3
−0.5

0

0.5

1

1.5

Time (s)

φ

(a) Symlet 2nd order scalar

0 1.5 3
−2

−1

0

1

2

Time (s)

ψ

(b) Symlet 2nd order wavelet
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Figure B.9: Symlet scalar and wavelet function of order 2 and 4 respectively.
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APPENDICES C

SOME PROPERTIES OF KRONECKER PRODUCT, VECTOR,

TRACE AND MATRIX DERIVATIVES

Let A : p× q, B : q × r, C : r × s, D : s× p, E : m × n and F : m ×m be fixed

matrices, and x : m× 1, y(x) : n× 1 be vectors.

vec(ABC) = (CT ⊗ A)vec(B) (C.1)

tr(ABCD) = vec(BT )T (AT ⊗ C)vec(D) (C.2)

ETFE = Tr(EETF ) (C.3)

∂f(y(x))

∂x
=
∂y(x)T

∂x

f(y)

∂y
(C.4)

∂(xTAx)

∂x
= (A+ AT )x (C.5)

∂xTA

∂x
= A (C.6)

(A⊗ B)−1 = A−1 ⊗ B−1 (C.7)
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APPENDICES D

WEIGHT MATRICES IN LINEAR QUADRATIC COST FUNCTION

[37] Consider a quadratic cost function

J(x(t0), u(t), t) =

Tf∫

t0

(uTRu+ xTQx)dt (D.1)

Subjected to constraints

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, y(t) = Cx(t) (D.2)

Q and R are nonnegative definite and positive definite matrices, respectively.

A natural extension of the cost function will be

J(x(t0), u(t), t) =

Tf∫

t0

(uTRu+ yTQy)dt (D.3)

A smooth trajectory of y(t) is also desired. So the cost function can be generalized

as follows:

J(x(t0), u(t), t) =

Tf∫

t0

(uTRu+ xTQ1x+ yTQ2y)dt (D.4)

Q1 and Q2 are nonnegative definite symmetric matrices.

xTQ1x minimizes the states of the system, thus minimizes the derivatives of the

output and try to produce a smooth response. But this also make y(t) = Cx(t) small.
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This may opposes y(t) to go near zero states, which is enforced by yTQ2y term. To

avoid this complexity, Q1 is given by

Q1 = [I − CT (CCT )−1C]TQ3[I − CT (CCT )−1C] (D.5)

for an arbitrary nonnegative definite symmetric matrixQ3. Finally, Q can be obtained

by

Q = Q1 + CTQ2C (D.6)
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APPENDICES E

ROBOT KINEMATICS AND DYNAMICS

E.1 Forward Kinematics

Let,

q =






q1

q2




 τ =






τ1

τ2




 (E.1)

From Figure IV.1, the position and velocity of center of mass of link 1 are:

xc2 =






L3cos(q1)

L3sin(q1)




 vc2 =






−L3q̇1sin(q1)

L3q̇1cos(q1)




 (E.2)

The position and velocity of center of mass of motor 2 are:

xc3 =






L1cos(q1)

L1sin(q1)




 vc3 =






−L1q̇1sin(q1)

L1q̇1cos(q1)




 (E.3)

The position and velocity of center of mass of link 2 are:

xc4 =






L1cos(q1) + L4cos(q1 + q2)

L1sin(q1) + L4sin(q1 + q2)






vc4 =






−L1q̇1sin(q1)− L4(q̇1 + q̇2)sin(q1 + q2)

L1q̇1cos(q1) + L4(q̇1 + q̇2)cos(q1 + q2)






(E.4)
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The position and velocity of center of mass of payload are:

xcp =






xcpx

xcpy




 =






L1cos(q1) + L2cos(q1 + q2)

L1sin(q1) + L2sin(q1 + q2)






vcp =






ẋcpx

ẋcpy




 =






−L1q̇1sin(q1)− L1(q̇1 + q̇2)sin(q1 + q2)

L1q̇1cos(q1) + L2(q̇1 + q̇2)cos(q1 + q2)






(E.5)

vcp can be written as

vcp = Jq̇ (E.6)

The matrix J is called the Jacobian of the manipulator. It is given by

J =






−L1sin(q1)− L2sin(q1 + q2) −L2sin(q1 + q2)

L1cos(q1) + L2cos(q1 + q2) L2cos(q1 + q2)




 (E.7)

E.2 Inverse Kinematics

For a given xcp, joint angles q1 and q2 can be found out by inverse kinematics. q2

is obtained by

r2 = x2cpx + x2cpy

or, x2cpx + x2cpy = L2
1 + L2

2 + 2L1L2cos(q2)

Let, D2 := cos(q2) =
x2cpx + x2cpy − L2

1 − L2
2

2L1L2

∴ q2 = atan2(±
√

1−D2
2, D2) (E.8)
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In the above equations, ± shows the presence of two possible configurations of the

robot. q1 is obtained as [30]

q1 = tan−1

(
xcpy
xcpx

)

− tan−1

(
L2sin(q2)

L1 + L2cos(q2)

)

(E.9)

From equation (E.9), it can be seen that q1 is determined by q2. So for a given xcp,

there will be two pairs of q1 and q2, and these two configurations are known as elbow

up and elbow down.

The joint velocities are found from the end effector velocities via the inverse Ja-

cobian

q̇ = J−1vcp (E.10)

J−1 is given by [30]

J−1 =
1

L1L2sin(q2)




L2cos(q1 + q2) L2sin(q1 + q2)

−L1cos(q1)− L2cos(q1 + q2) −L1sin(q1)− L2sin(q1 + q2)





(E.11)

The determinant of the Jacobian in equation (E.7) is L1L2sin(q2). Therefore, J−1

does not exist when q2 = 0 or q2 = π. This configuration is known as singular

configuration.

E.3 Robot Dynamics

The robot dynamics are derived using the following Euler-Lagrange equation:

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= τi (E.12)
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where i = 1, 2. L = T − P is the Lagrangian, T is the kinetic energy and P is the

potential energy of the robot. It is a planar robot, gravitational weights do not affect

the motion of the links, so P = 0. The kinetic energy is given by

T =
1

2
[(I1 + I2 + I3c)q̇1

2 + (I3 + I4 + Ip)(q̇1 + q̇2)
2

+M2v
T
c2vc2 +M3v

T
c3vc3 +M4v

T
c4vc4 +Mpv

T
p vp]

(E.13)

From equations (E.2), (E.3), (E.4) and (E.5), substituting vc2, vc3, vc4 and vcp in

equation (E.13), we get

T =
1

2
[(I1 + I2 + I3c +M3L

2
1 +M4L

2
1 +MpL

2
1 +M2L

2
3)q̇1

2

+ (I3 + I4 + Ip +M4L
2
4 +MpL

2
2)(q̇1 + q̇2)

2

+ 2(M4L1L4 +MpL1L2)q̇1(q̇1 + q̇2) cos(q2)]

(E.14)

Now,

∂T

∂q̇1
=(I1 + I2 + I3c +M3L

2
1 +M4L

2
1 +MpL

2
1 +M2L

2
3)q̇1

+ (I3 + I4 + Ip +M4L
2
4 +MpL

2
2)(q̇1 + q̇2)

+ (M4L1L4 +MpL1L2)(2q̇1 + q̇2) cos(q2)

(E.15)

∂T

∂q̇2
=(I3 + I4 + Ip +M4L

2
4 +MpL

2
2)(q̇1 + q̇2)

+ (M4L1L4 +MpL1L2)q̇1 cos(q2)

(E.16)

∂T

∂q1
=0 (E.17)

∂T

∂q2
=− (M4L1L4 +MpL1L2)q̇1(q̇1 + q̇2) sin(q2) (E.18)
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We can define the coupled parameters as

p1 =I1 + I2 + I3c + I3 + I + 4 + Ip

+ (M3 +M4 +Mp)L
2
1 +M2L

2
3 +M4L

2
4 +MpL

2
2

(E.19)

p2 =I3 + I4 + Ip +M4L
2
4 +MpL

2
2

(E.20)

p3 =M4L1L4 +MpL1L2 (E.21)

Therefore,

d

dt

∂T

∂q̇1
=p1q̈1 + p2q̈2 + p3(2q̈1 + q̈2) cos(q2)− p3(2q̇1 + q̇2)q̇2 sin(q2)

d

dt

∂T

∂q̇2
=p2q̈1 + p2q̈2 + p3q̈1 cos(q2)− p3q̇1q̇2 sin(q2)

∂T

∂q1
=0

∂T

∂q2
=− p3q̇1(q̇1 + q̇2) sin(q2)

Substituting these into equation (E.12) yields,

M(q)q̈ + C(q, q̇)q̇ = τ(t) (E.22)

where M(q) is the inertia matrix given by

M(q) =






p1 + 2p3 cos(q2) p2 + p3 cos(q2)

p2 + p3 cos(q2) p2




 (E.23)

and C(q, q̇) is the Coriolis matrix given by

C(q, q̇) =






−p3q̇2 sin(q2) −p3(q̇1 + q̇2) sin(q2)

p3q̇1 sin(q2) 0




 (E.24)
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APPENDICES F

ROBOT TRAJECTORY GENERATION

This section generates smooth reference trajectories in the joint space, given a

desired trajectory in the workspace for the end effector. In particular, what is shown in

this section, is the generation process of smooth time history of desired joint position

qd(t), velocity q̇d(t), acceleration q̈d(t) and jerk
...
q d(t) under some constraints. In the

example, the robot end effector is required to traverse a circular trajectory in the

workspace in a time duration of [t0 T ]=[0 4] seconds. This trajectory corresponds to

a circle of radius rc = 0.10m and center c = (0.48, 0). Let Θd(t) is the desired angular

displacement of a point on the circle. Then desired position and velocity of the end

effector in Cartesian co-ordinates are,

xdcpx(t) =xc + rc cos(Θ(t) + Θ0)

xdcpy(t) =yc + rc sin(Θ(t) + Θ0)

ẋdcpx(t) =− rcΘ̇(t) sin(Θ(t))

ẋdcpy(t) =rcΘ̇(t) cos(Θ(t))

(F.1)
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Figure F.1: Desired circular trajectory

Where Θ0 is the angle at t0 from which the end effector starts traversing the circle.

In our example, the desired starting position of the end effector is s = (0.58, 0), that

is Θ0 = 0. Putting the values in equation (F.1),

xdcpx(t) =0.48 + 0.1 cos(Θ(t))

xdcpy(t) =0.1 sin(Θ(t))

ẋdcpx(t) =− 0.1Θ̇(t) sin(Θ)

ẋdcpy(t) =0.1Θ̇(t) cos(Θ)

(F.2)

It is also required that there are no initial and terminal velocity, acceleration and jerk.

So, the joint space trajectory qd(t) to be designed are required to satisfy the following

constraints:

Θ(t0) = 0 Θ(T ) = 2π

Θ̇(t0) = 0 Θ̇(T ) = 0

Θ̈(t0) = 0 Θ̈(T ) = 0

...
Θ(t0) = 0

...
Θ(T ) = 0

(F.3)

Since the trajectory satisfies these eight constraints, Θ(t) is required to be expressed

by a polynomial with eight independent coefficients that can be chosen to satisfy these
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constraints.

Θ(t) = a0 + a1t+ a2t
2 + · · ·+ a7t

7 (F.4)

By differentiating equation (F.4) four times and plugging the eight constraints from

equation (F.4), the coefficients can be found by following:




















a0

a1

a2

a3

a4

a5

a6

a7




















=




















1 t0 t20 t30 t40 t50 t60 t70

0 1 2t0 3t20 4t30 5t40 6t50 7t60

0 0 2 6t0 12t20 20t30 30t40 42t50

0 0 0 6 24t0 60t20 120t30 210t40

1 T T 2 T 3 T 4 T 5 T 6 T 7

0 1 2T 3T 2 4T 3 5T 4 6T 5 7T 6

0 0 2 6T 12T 2 20T 3 30T 4 42T 5

0 0 0 6 24T 60T 2 120T 3 210T 4




















−1 


















Θ(0)

Θ̇(0)

Θ̈(0)
...
Θ(0)

Θ(T )

Θ̇(T )

Θ̈(T )
...
Θ(T )




















(F.5)

By substituting the values of initial and terminal time and the constraints, the coef-

ficients can be found from equation (F.5).

Once the coefficients are obtained, Θ(t) can be found out from equation (F.4).

Then desired Cartesian position and velocity of the end-effector are found out from

equation (F.2). Finally, using the inverse kinematics, qd and q̇d are obtained from

equations (E.8), (E.9) and (E.10). For the example, sampling time is, Ts = 0.004s

and t = kTs, where k = 0, 1, · · · , 1000.
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