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A STUDY OF THE GLYCOLYTIC ENZYMES IN 

THE AQUATIC SNAIL PHYSA HALEI LEA

CHAPTER I 

INTRODUCTION

Recent s tu d ie s  o f  in te rm ed ia ry  carbohydrate  ca ta b o ­

lism  of in v e r te b ra te s  have po in ted  to  a g en e ra l  concept of 

b iochem ical u n i ty .  At th e  same time these  s tu d ie s  have 

shown th a t  m anifo ld  d ev ia t io n s  from c l a s s i c  m etabolic  p ro c ­

e s se s  do e x i s t .  Among in v e r te b ra te s ,  carbohydrate  catabolism 

has been most in t e n s iv e ly  s tu d ied  in  th e  p a r a s i t i c  protozoans, 

p a r a s i t i c  h e lm in th e s ,  and th e  in s e c ts .

Reviews o f  th e se  s tu d ie s  (Hutner and Lwoff, 1955; 

von Brand, 1957; and Drummond and Black, 1960) have po in ted  

o u t  m etabo lic  d e v ia t io n s  in  the  e x c re t io n  o f  v o l a t i l e  f a t t y  

a c id s  in s te a d  o f  l a c t i c  a c id ,  and, i n  the  p a r t i a l  or complete 

absence of a Krebs t r ic a rb o x y l ic  ac id  cyc le  in  many p a ra s i t ic  

forms. In  in s e c t  muscle a -g lycerophosphate , in s te a d  o f l a c ­

t i c  a c id ,  i s  th e  e x c re to ry  product o f  anaerob ic  ca tab o lism ,
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and a-g lycerophosphate  dehydrogenase i s  thought to  re p la c e  

l a c t i c  dehydrogenase in  r e o x id lz in g  reduced diphcsphopyrid ine 

n u c le o t id e  (DPNH) (Drummond and Black, 1960). The h e te r o ­

g e n e i ty  o f  in d iv id u a l  enzymes d e r iv e d  from d i f f e r e n t  animal 

sources  has r e c e n t ly  been d iscu ssed  by Kaplan, e t  a l .  (1960). 

They rev iew  the  s i m i l a r i t i e s  and d i s s i m i l a r i t i e s  d e te c te d  In 

enzymes by Immunological and chromatographic techniques as 

w e ll  as by p h y s ic a l  p r o p e r t ie s .  Data a re  p re se n ted  on com­

p a r a t iv e  s tu d ie s  o f  the  a c t i v i t y  measurements o f  l a c t i c  

dehydrogenase from a v a r i e ty  o f  taxonomic groups. These 

a c t i v i t y  measurements show v a r i a t i o n  from group to  group In 

th e  c a t a l y t i c  a b i l i t y  of t h i s  enzyme. V a r ia t io n s  in  th e  co­

f a c to r  s e n s i t i v i t y  o f  l a c t i c  dehydrogenase a re  a l s o  presented, 

and w ith  th e  a r th ro p o d s , fo r  example, th e  g r e a t e s t  a c t i v i t y  

o f  th e  enzyme was ob ta ined  w ith  3 -a c e ty l  p y r id in e  diphospho- 

p y r ld in e  n u c le o t id e ,  a s y n th e t ic  analog of d lphosphopyridine 

n u c le o t id e .  The v a r ia t io n s  in  ca rbohydra te  metabolism which 

a r e  known to  e x i s t  and th e  h e te ro g e n e i ty  o f enzymes both 

p o in t  to  th e  need fo r  d e ta i l e d  s tu d ie s  o f  th e  various  ta x o ­

nomic groups o f  In v e r te b ra te s .

S tu d ie s  have been conducted on ly  very  r e c e n t ly  on 

I s o la t e d  and p a r t i a l l y  p u r i f i e d  enzyme systems o f



in v e r te b ra te s  and most o f  th e se  s tu d ie s  have been made on 

p a r a s i t i c  forms. As von Brand (1957) p o in ts  out in  a re c e n t  

rev iew , th e se  s tu d ie s  a r e  p o s i t iv e  c o n tr ib u t io n s  to  compara­

t i v e  b iochem istry  and provide a r a t i o n a l  approach to  p a ra s i te  

chemotherapy. I t  seems reaso n ab le  to  assume th a t  comparable 

c o n t r ib u t io n s  to  t h e o r e t i c a l  and p r a c t i c a l  knowledge can 

a l s o  be ob ta ined  from s tu d ie s  w ith f r e e - l iv in g  in v e r te b ra te  

form s.

The phylum Mollusca i s  the second la rg e s t  group of 

in v e r te b ra te s  in  terms o f  numbers o f  described  s p e c ie s . I t  

i s  o f  economic im portance in  a g r ic u l tu r e  and commerce and, 

s in c e  i t  in c lu d es  in te rm ed ia te  h o s ts  fo r  many p a r a s i t i c  

organism s, i s  o f  pu b lic  h e a l th  s ig n i f ic a n c e  in  some reg io n s .  

N ev e rth e le s s ,  our in fo rm ation  on th e  in te rm ed ia ry  metabolism 

o f  t h i s  group i s  q u i te  l im i te d .  S tud ies which have been 

conducted on th e  in te rm ed ia ry  carbohydrate  metabolism o f  th e  

M ollusca a re  reviewed in  the  fo llow ing chap te r .  These 

s tu d ie s  in c lu d e  measurements which s t ro n g ly  support th e  ex­

i s t e n c e  o f an ae rob ic  cyc le  in  molluscs th a t  i s  s im i la r  to 

th e  Krebs cy c le  o f  v e r te b ra te  t i s s u e  and y e a s t .  O verall 

g ly c o ly s is  has been dem onstrated in  many m olluscs b u t,  w ith  

a q u a t ic  s n a i l s ,  ob se rv a tio n s  such as p ropionic  a c id  excretion 

under anaerob ic  c o n d i t io n s ,  and the f a i l u r e  of f lu o r id e  to
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i n h i b i t  pyruvate fo rm ation  in d ic a te  p o s s ib le  m etabo lic  

d e v ia t io n  from the  g ly c o ly t ic  scheme as i t  i s  known fo r  

v e r te b ra te  t i s s u e  and y e a s t .  F u r th e r ,  i t  must be p o in ted  

ou t th a t  in  none o f  th e  s tu d ie s  o f  g ly c o ly s is  have th e  i n d i ­

v id u a l  enzymes r e s p o n s ib le  fo r  c a ta ly z in g  th e  chem ical r e ­

a c t io n s  been c h a ra c te r iz e d .  The preceding paragraphs o f  

t h i s  chap ter  have p o in te d  out the  need fo r  in fo rm ation  on 

th e  c h a r a c te r i s t i c s  o f  the  v a r io u s  enzymes and th e  va lue  

such in fo rm ation  w i l l  c o n t r ib u te  to  our o v e r a l l  knowledge. 

This  paper i s  a s tudy  which w i l l  extend our knowledge o f  the  

chemical sequence o f  g ly c o ly s is  in  one sp ec ie s  o f  th e  Mol­

lu s c a ,  the  aq u a tic  s n a i l  Physa h a l e i  Lea, and d e s c r ib e  the  

c h a r a c t e r i s t i c s  of some o f  th e  enzymes c a ta ly z in g  th e s e  

r e a c t io n s .



CHAPTER I I  

REVIEW OF THE LITERATURE

Aerobic Metabolism

Of th e  c l a s s e s  o f Mollusca s tu d ie d  in  connection 

w ith  o x id a t iv e  ca rbohydra te  metabolism, th e  l e a s t  i n v e s t i ­

g a ted  i s  th e  Cephalopoda. S l ic e s  o f  squid  h e a r t ,  Loligo 

p e a l i i , have been shown to  m etabolize a c e ta te  and oxalace- 

t a t e ,  suggesting  a mechanism s im i la r  to  the  Krebs cyc le  

(Barron, e t  a l . , 1953). In  Barron’s s tudy  c i t r i c  ac id  was 

observed to  markedly s t im u la te  r e s p i r a t i o n .  There have been 

some s tu d ie s  of th e  te rm in a l  pathways o f  r e s p i r a t i o n  o f  

cephalopods. In  view o f  th e  in t im a te  r e l a t io n s h ip  which ex­

i s t s  in  v e r te b r a te  t i s s u e s  between th e  cytochromes of te rm i­

n a l  r e s p i r a t i o n  and ae ro b ic  carbohydrate  ca tabo lism , evidence 

fo r  th e  e x is te n c e  o f  cytochromes in  th e  cephalopods, and in  

th e  o th e r  m o llu scs , i s  inc luded  in  t h i s  review. Cytochromes 

a ,  b, and c ,  s u c c in ic  dehydrogenase and cytochrome oxidase 

have been r e p o r te d  (B a ll  and Meyerhof, 1940) in  t i s s u e  slices
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(h e a r t ,  head and neck muscle) o f  th e  squid . These pigments 

and enzymes have a lso  been re p o r te d  in  the  nervous t i s s u e  o f  

L. p e a l i i  (Cooperste in  and Lazarow, 1951; Nachmansohn, e t  

a l . , 1942, 1943). The presence o f  su c c in ic  dehydrogenase, 

cytochrome o x id ase , and cytochromes a ,  b, and c was s t ro n g ly  

suggested  by measurements made w ith  e x t r a c ts  o f  Octopus 

v u lg a r i s  (G h ire tt i-M ag a ld i,  e t  a l . , 1957). In a subsequent 

and more d e ta i l e d  s tudy w ith  a h ig h ly  p u r i f i e d  e x t r a c t ,  

G h ire t t i -M a g a ld i ,  e t  a l .  (1958) have ob ta ined  more complete 

evidence fo r  th e  presence of su c c in ic  dehydrogenase and the 

cytochromes in  0. v u lg a r i s . There now seems l i t t l e  ques tion  

t h a t  th e  te rm in a l  pathway o f  r e s p i r a t i o n  in  cephalopods 

fu n c t io n s  in  a manner q u i te  s im ila r  to  th a t  o f  v e r te b ra te s .  

Although t h i s  s i m i l a r i t y  between th e  two groups does e x is t  

and th e  p resence  o f  the  various  cytochromes i s  i n d i r e c t  e v i ­

dence f o r  ae ro b ic  carbohydrate ca tabo lism , i t  must be pointed 

ou t t h a t  d i r e c t  evidence i s  a v a i la b le  for on ly  one o f  the  

s e v e ra l  chem ical r e a c t io n s  which comprise th e  Krebs cyc le .

There i s  more in fo rm ation  on the  ca rbohydra te  metabo­

lism  o f  pelecypods than  o f cephalopods. Measurements of 

cytochromes a ,  b, and c and su c c in ic  dehydrogenase have been 

r e p o r te d  (B all and Meyerhof, 1940) in  s l i c e s  of th e  h e a r t  

muscle o f  th e  clam, Venus m ercenaria . Homogenates o f  muscle



t i s s u e  from th e  o y s te r ,  Saxostrea  com m ercialis , con ta in  a 

succ inox idase  system (Humphrey, 1947). In th e  l a t t e r  s tudy  

su c c in a te  d e f i n i t e l y  s t im u la ted  oxygen consumption. However, 

excess malonate was observed to  in h ib i t  th i s  in c re a se  by 

o n ly  40 per c e n t .  Cyanide and az ide  both in h ib i te d  oxygen 

consumption and t h i s  i n h ib i t io n  was rev e rsed  upon a d d i t io n  

o f  methylene b lue to  the m ix tu re . Jodrey and Wilber (1 955 ) ,  

u s in g  homogenates and acetone p r e c ip i ta t e s  o f  mantle t i s s u e  

o f  th e  o y s te r ,  C ra sso s tre a  v i r g i n i c a , dem onstrated the  p r e s ­

ence o f  s u c c in ic  dehydrogenase, i s o - c i t r i c  dehydrogenase, 

m alic  dehydrogenase, o x a la c e t ic  decarboxylase, and cy to ­

chrome oxidase . I t  i s  i n t e r e s t i n g  to  n o te  t h a t  they  were 

n o t ab le  to  dem onstrate th e  presence o f  a c o n l ta se .  Cyanide 

was found to  markedly i n h i b i t  oxygen consumption, but meth­

y lene  blue (1 X 10"5 M.) d id  no t have an a p p re c ia b le  e f f e c t  

in  a v e r t in g  or suppress ing  th e  in h ib i t io n .  They suggest th a t  

th e  cytochrome system perhaps plays on ly  a minor r o l e  in  the 

r e s p i r a t i o n  of o y s te r  t i s s u e .  Kawai (1958) has r e c e n t ly  r e ­

p o r ted  measurements on th e  cytochromes and cytochrome oxidase 

in  th e  o y s te r ,  C ra s so s trea  g ig a s . His measurements confirm 

th o se  of Jodrey  and Wilber (1955) although he found th a t  

methylene b lue in  co n c en tra t io n s  of 6  x 1 0 M. d id  re v e rse  

cyanide in h ib i t i o n  by approxim ately 40 per c e n t .  In a
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subsequent s tudy  on th e  s ig n i f ic a n c e  o f  th e  cytochrome s y s ­

tem In  r e s p i r a t i o n ,  Kawal (1959) ob ta ined  measurements on 

th e  o y s te r ,  C rasso s trea  g lg a s , th e  p e a r l  o y s te r ,  P lnctada 

m artens11. and th e  mussel, M ytllus c r a s s l t e s t a , which I n d i ­

cated  th a t  a c t iv e  cytochrome oxidase and cytochromes a ,  b, 

and c were p re se n t  In  each s p e c ie s .  By study ing  th e  e f f e c t  

o f  carbon monoxide upon th e  cytochrome oxidase and upon the  

t o t a l  r e s p i r a t i o n ,  he c a lc u la te d  th a t  th e  cytochrome system 

accounts fo r  approxim ately  80 per cen t o f  th e  t o t a l  

r e s p i r a t i o n .

Hammen and Wilber (1959) used r a d io a c t iv e  sodium 

b icarbonate  and chromatographic techniques to  fo llow  th e  In ­

co rp o ra tio n  o f  carbon d iox ide In to  o rgan ic  ac id s  o f  I s o la te d  

s t r i p s  of mantle t i s s u e  from th e  o y s te r ,  C ra s so s tre a  v i r g i n ­

i c a . They found th a t  r a d io a c t iv e  carbon appeared f i r s t  In  

su cc in ic  a c id ,  then  In fumarlc a c id ,  and l a s t  In  malic ac id . 

This suggests  the  presence o f  su c c in ic  dehydrogenase, m alic 

dehydrogenase, and fumarase.

In  th e  Gastropoda th e  ae ro b ic  phase o f  ca tabo lism  

has been In v e s t ig a te d  by Baldwin (1938) us ing  s l i c e s  o f  the  

hepatopancreas from H elix  pom atla . Oxygen consumption was 

s t im u la ted  by su c c in a te  and In h ib i te d  by m alonate. Rees 

(1953) confirmed th i s  o b se rv a tio n  and ob ta ined  a d d i t io n a l
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evidence fo r  a f u n c t io n a l  Krebs cyc le . He used a suspension  

o f  th e  hepatopancreas o f  H. pomatia and observed in c reased  

oxygen consumption upon a d d i t io n  o f  each in te rm ed ia te  of th e  

Krebs cy c le . E ck s te in  and Abraham (1959) measured su c c in ic  

dehydrogenase i n  homogenates o f  th e  hepatopancreas of the  

s n a i l ,  (Helix) Levantine h ie roso lym a, and observed in c rease s  

i n  th e  a c t i v i t y  of th e  enzyme as th e  animal came out of 

e s t i v a t i o n .  Minced t i s s u e  o f  the  aq u a tic  s n a i l ,  A u s tra lo rb ls  

g l a b r a tu s , was used  by Weinbach (1953) in  s tu d ie s  o f  the  

Krebs cy c le . Oxygen u p tak e  was in c reased  upon a d d i t io n  o f  

c i t r a t e ,  fum arate , s u c c in a te ,  m a la te , and a - k e to g lu te r a te .  

Weinbach was no t ab le  to  show any marked in h ib i t io n  o f  oxygen 

consumption upon a d d i t io n  o f  f lu o ro a c e ta te ,  t r a n s - a c o n i t a t e ,  

o r  malonate. The ph o sp h o ry la tio n  which accompanies o x id a tiv e  

ca tabo lism  has been dem onstrated in  the  albumen gland of th e  

a q u a t ic  s n a i l ,  Lymnaea s t a g n a l i s  (Weinbach, 1956). In  i n ­

v e s t ig a t io n s  using  t i s s u e  f lu id s  o f  the  marine s n a i l ,  Busycon 

c a n a lic u la tu m . B a ll  and Meyerhof (1940) demonstrated c y to ­

chromes a ,  b, and c sp e c tro p h o to m e tr ic a l ly .  They a ls o  demon­

s t r a t e d  su c c in ic  dehydrogenase by fo llow ing the  anaerobic  

red u c t io n  of methylene b lu e  in  th e  presence of added succinate. 

Person, e t  a l .  (1959) r e p o r te d  th e  presence of cytochrome 

oxidase  in  the  odontophore o f  th e  s n a i l ,  B. ca n a licu la tu m .
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The cytochrome system o f  two sp ec ie s  of sea h a re s ,  Aplysia 

d e p i l a r i s  and A. l im ac in a , has been in v e s t ig a te d  by G h i r e t t i ,  

£ t  a l .  (1959). They re p o r te d  th e  presence o f  cytochromes a ,  

b , c ,  Cl, and a g w ith  cytochrome a^ fu nc tion ing  as th e  te rm i­

n a l  ox idase . They a l s o  o f fe re d  evidence fo r  a Krebs cycle 

by showing in c re ase d  r e s p i r a t i o n  upon a d d i t io n  o f  su c c in a te ,  

m a la te , or c i t r a t e  to  s l i c e s  of g iz za rd  muscle and in h ib i t io n  

o f  su c c in a te - s t im u la te d  r e s p i r a t i o n  upon a d d i t io n  of malonate.

These s tu d ie s  w ith  te rm in a l  r e s p i r a t o r y  pigments in  

m ollusca p o in t  to  a system very  s im ila r  to  th a t  d escr ib ed  

fo r  v e r t e b r a te  t i s s u e .  However, th e  d a ta  on th e  in d iv id u a l  

s te p s  o f  the  Krebs cyc le  suggest t h a t  th e  system in  mollusks 

lacks  a t  l e a s t  one o f  th e  enzymes o f  th e  v e r te b r a te  cyc le .

I t  seems q u i te  p o ss ib le  th a t  th e  a c o n i ta se  s te p  i s  m issing. 

The absence o f  th i s  enzyme has been suggested p rev io u s ly  by 

Jodrey  and Wilber (1955), and th e y  proposed th a t  th e  f i r s t  

compound formed may be i s o - c i t r a t e  r a th e r  than  c i t r a t e .

Anaerobic Metabolism

Von Brand (1946) has reviewed th e  l i t e r a t u r e  on 

anaerob ic  metabolism in  mollusks up to  e a r ly  1945. Most of 

th e  e a r ly  s tu d ie s  involved su b je c t in g  various  sp ec ie s  to  

f a t ig u e  o r  anaerobic cond itions  and measuring carbon d ioxide
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and a c id  p roduction . While th e  p roduction  of a c id  suggests 

a g ly c o ly t ic  pathway s im ila r  to  the  one in  v e r te b r a te s ,  no 

measurements were made th a t  would dem onstrate in d iv id u a l  

s te p s  o f  the  scheme. In  f a c t ,  in  most in s tan ce s  th e  ac id  

produced was not i d e n t i f i e d  but was assumed to  be l a c t i c  

a c id .  Mono-bromoacetic ac id  had been observed to  i n h ib i t  

a c id  p roduc tion  by o y s te r  t i s s u e ,  and io d o a c e t ic  a c id  had 

been employed to  produce s im ila r  e f f e c t s  on s l i c e s  of mussel 

t i s s u e .  These compounds a re  c l a s s i c  in h ib i to r s  of g ly c o ly s is  

in  v e r te b ra te  t i s s u e ,  in h ib i t in g  th e  ox id a tio n  o f  g ly c e ra ld e -  

hyde-3-phosphate . Thus, in h ib i t io n  of a c id  production  by 

th e se  agents i s  c o n t r ib u to ry  evidence fo r  the  presence o f  the  

enzyme.

Humphrey (1944) rep o r ted  an increased  l a c t i c  and 

pyruvic  ac id  form ation  in  e x t ra c ts  o f  o y s te r  muscle, Saxos trea  

com m ercia lis , su b je c ted  to  anaerobic c o n d it io n s .  In these  

in v e s t ig a t io n s  he observed in h ib i t io n  of a c id  p roduction  upon 

a d d i t io n  of f lu o r id e  or io d o ace tic  a c id .  The g i l l  ep ithelium  

of th e  f re sh  w ater mussel was used by Wernstedt (1944) in  a 

s tu d y  o f carbohydrate  metabolism of the  animal. V o la t i le  

f a t t y  ac id s  were d e te c te d  as products of anaerobic metabolism. 

W ernstedt re p o r te d  th a t  c i l i a r y  movement was in h ib i te d  by 

a d d i t io n  of f lu o r id e  to  the re a c t io n  m ix ture , Rees (1953)
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conducted in v e s t ig a t io n s  on th e  g ly c o ly t ic  pathway o f  the  

s n a i l ,  H elix  pom atla. He re p o r te d  th a t  th e  a d d i t io n  o f 

g a la c to s e ,  f r u c to s e - 6 -phosphate , f ru c to s e  d iphosphate , phos- 

phog lyceric  a c id  or g lucose  in c re a se d  th e  oxygen consumption 

o f  a suspension  o f  H. pomatia h ep a to p an c re as . He was a lso  

ab le  to  dem onstrate g ly c o ly t ic  phosphory la tion  in  homogenates 

o f  the hepatopancreas.

O verall ca tabo lism  o f  carbohydrates  has been demon­

s t r a t e d  in  i n t a c t  aq u a tic  s n a i l s  by von Brand, e t  a l .  (1950). 

In  th i s  s tu d y , which inc luded  e ig h tee n  s p e c ie s ,  on ly  two 

sp ec ie s  were found to  produce l a c t i c  a c id  as th e  q u a n t i ta t iv e  

end product o f  anaerobic m etabolism . In  f u r th e r  in v e s t ig a ­

t io n  o f  th ese  o b se rv a tio n s ,  Mehlman and von Brand (1951) 

found v o l a t i l e  f a t t y  a c id s ,  i d e n t i f i e d  as a c e t i c  and p ro p i ­

on ic , to  be among th e  end p roducts  of anaerob ic  metabolism. 

Weinbach (1953) employed minced t i s s u e  and homogenates in  a 

s tudy  on carbohydrate  metabolism o f  th e  s n a i l ,  A u s tra lo rb is  

g l a b r a tu s . The minced t i s s u e  accumulated l a c t i c  and v o l a t i l e  

ac ids  under anaerob ic  c o n d i t io n s ,  a s  d id  i n t a c t  s n a i l s .  When 

th e  e f f e c t  o f  added g lucose , mannose, g a la c to s e ,  g lu c o se - 1 - 

phosphate, and f ru c to s e  d iphosphate  on endogenous oxygen 

consumption and pyruvate  p ro d u c tio n  was s tu d ie d  w ith  minced 

t i s s u e ,  only f ru c to s e  d iphosphate  produced a measurable
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in c re a s e  i n  a c t i v i t y .  Pyruvate p roduction  in c reased  50 per 

cen t w ith  th e  a d d i t io n  o f  f ru c to s e  d iphosphate . Why f ru c ­

to s e  d iphosphate  a lo n e  o f  the  se v e ra l  ca rbohydra tes  employed 

s t im u la te d  py ruvate  p roduction  i s  not im m ediately apparen t.

I t  does no t seem probab le  th a t  f ru c to s e  d iphosphate  i s  th e  

on ly  compound o f  th e  group which can p e n e tr a te  i n t a c t  c e l l s  

o f  t h i s  s p e c ie s .  lodoacetamide in h ib i te d  both oxygen con­

sumption and pyruvate  production  although f lu o r id e  in  0 . 0 1  

M c o n c en tra t io n s  had no in h ib i to r y  e f f e c t .  In  v e r te b r a te  

t i s s u e  and y e a s t ,  f lu o r id e  in h ib i t s  g ly c o ly s i s ,  and hence 

py ruvate  fo rm ation , v ia  i t s  a c t io n  on eno lase . The lack  of 

s e n s i t i v i t y  o f  s n a i l  mince to  f lu o r id e  suggests  e i t h e r  an 

enolase  q u i te  d i f f e r e n t  from the  one in  mammalian t i s s u e  or 

a pathway fo r  th e  fo rm ation  of pyruvate which does not i n ­

vo lve  en o lase . The in h ib i to r y  a c t io n  o f  iodoacetam ide sug­

g e s ts  a g ly c o ly t ic  enzyme in  s n a i l  t i s s u e  comparable to  

g lycera ldehyde-3 -phospha te  dehydrogenase of muscle and yeast. 

The presence  of such an enzyme in  s n a i l s  i s  f u r th e r  suggested  

by th e  occurrence  o f  g ly c o ly t ic  phosphory la tion  in  th e  a l ­

bumen gland o f  Lymnaea s ta g n a l i s  (Weinbach, 1956). In  none 

o f  the  s tu d ie s  w ith  a q u a tic  s n a i l s  (or any m o llu sk s) , however, 

have th e  in d iv id u a l  s tep s  o f  g ly c o ly s is  been c h a ra c te r iz e d .

A d e ta i l e d  s tudy  o f  g ly c o ly s is  in  these  organisms would
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prov ide  b e t t e r  unders tand ing  o f  th e  apparen t m etabolic  d e v i­

a t io n s  d esc r ib ed  above.



CHAPTER I I I  

MATERIALS AND METHODS 

S nails

S n a ils  used in  t h i s  s tudy were i d e n t i f i e d  by Branley 

A. Branson o f Oklahoma S ta te  U n iv e rs ity  as Physa h a l e i  Lea. 

Both la b o ra to ry - r e a re d  s n a i l s  and s n a i l s  c o l le c te d  from the  

U n iv e rs i ty  of Oklahoma g o lf  course pond were used in  t h i s  

study. The la b o ra to ry - r e a re d  colony was s t a r t e d  from eggs laid 

by s n a i l s  th a t  had been c o l le c te d  from th e  g o lf  course pond.

The s n a i l s  were m aintained a t  20° C. in  a l l - g l a s s  

a q u a r ia  co n ta in in g  tap  w ater to  which sm all amounts o f  CaCOg 

had been added. The s n a i l s  were fed ad lib i tu m  w ith l e t tu c e  

leaves  and f i s h  food. Contents of the in d iv id u a l  aq u a ria  

were changed tw ice  each week. Only s n a i l s  weighing more 

than  50 mg. were used in  th e  experiments.

Enzyme P repara tion

The s n a i l s  were p laced  in  a P e t r i  d ish  w ith  a small 

volume o f  w ater and c h i l l e d  by placing  th e  d ish  on ic e  cubes.

15
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A fte r  f iv e  minutes th e  s n a i l s  were removed in d iv id u a l ly  from 

the  d ish , t h e i r  s h e l l s  cracked open, and the  s o f t  p a r t s  r e ­

moved and p laced  in  a sm all volume o f  c h i l l e d  homogenizing 

so lu t io n  (0.154 M KCl made a lk a l in e  w ith  8 m l . /  l i t e r  of 

0 .02 M KHCO3 ) .

The s n a i l s  which had been c o l le c te d  from th e  pond 

were in spec ted  a t  t h i s  p o in t  fo r  trem atode in f e c t io n .  S na ils  

found w ith  c e rc a r ia e ,  r e d ia e ,  or spo rocysts  were d isca rd ed .

When a s u f f i c i e n t  q u a n t i ty  o f  t i s s u e  had been c o l ­

le c te d  (1 - 2  gm s,) , i t  was b lo t t e d ,  weighed on a to r s io n  

ba lance , and p laced  in  a c h i l l e d  Tenbroeck t i s s u e  g r in d e r  

fo r  p re p a ra t io n  of homogenates. T issu e  to  be minced was 

p laced  on a c h i l l e d  g la s s  p l a t e  and minced f re e  hand w ith two 

s c a lp e l s ,  one h e ld  in  each hand. The t i s s u e  to  be homogenized 

was ground with s u f f i c i e n t  homogenizing s o lu t io n  to  make a 25 

per cent (w/v) homogenate.

For some assays t h i s  homogenate was used as th e  source 

o f  enzyme. For o the r  assays the  homogenate was c e n tr i fu g e d  

a t  487 X g fo r  20 minutes a t  5° C. and th e  su p e rn a tan t f lu id  

( " t i s s u e  e x t r a c t" )  was used . In some cases th e  t i s s u e  e x t r a c t  

was d ia lyzed  fo r  f iv e  hours a g a in s t  500 ml. o f  co ld  0.154 M 

KCl. The KCl s o lu t io n  was changed once a t  th e  end o f  two 

hours of d i a l y s i s .  A fte r  d i a ly s i s  the  e x t r a c t  was t r a n s f e r r e d
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to  a c e n t r i fu g e  tu b e , d i lu te d  w ith  an equal volume o f  homo­

g en iz in g  s o lu t io n ,  and c e n tr i fu g e d  a t  1,658 x g fo r  10 

minutes a t  5° C. The su p e rn a tan t f l u id  was decanted and 

saved fo r  use  in  th e  assay . Caution was taken  to  keep th e  

e x t r a c t  c h i l l e d  a t  a l l  t im es.

A n a ly t ic a l  Procedures

The fo llow ing  procedures a re  g en e ra l  o u t l in e s  o f  th e  

method employed. D e ta i l s  o f  th e  in d iv id u a l  assay  c o n d i t io n s  

a r e  given in  c o n te x t .

Oxygen consumption was measured in  th e  Warburg appa­

r a tu s  by a s ta n d a rd  method (Umbreit, e t  a l . , 1959). In a l l  

in s ta n c e s  where anaerob ic  measurements were conducted, the  

r e a c t io n  was c a r r i e d  ou t in  th e  Warburg appara tu s  and th e  

fo llow ing  procedure was employed. The manometers and f la s k s  

were p laced  in  th e  w ate rba th  and gassed fo r  7 m in u te s . Each 

sidearm ven t and manometer stopcock was then  c lo sed  and th e  

c o n te n ts  o f  th e  sidearm t ip p e d  in to  the  r e a c t io n  chamber.

An e q u i l ib r a t i o n  p e r io d  o f  3 minutes was allowed a f t e r  t i p ­

p ing  th e  c o n ten ts  o f  th e  sidearm. The i n i t i a l  manometer 

read in g  was reco rd ed  a t  th e  end o f  th e  e q u i l ib r a t io n  p e r io d .

Anaerobic g ly c o ly s i s  was measured in  an atmosphere 

o f  95 per cen t n i t ro g e n  and 5 per cent carbon d io x id e . A
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g ly c o ly t ic  r e a c t io n  m ix tu re  p a t te rn e d  a f t e r  th a t  o f  LePage 

(1948), but om itting  hexokinase and g lucose , was u sed , and 

th e  enzyme p re p a ra t io n  was p laced  in  th e  sidearm o f  th e  r e ­

a c t io n  f l a s k .

The manometric d e te rm in a tio n s  of g lucose-6 -phosphate 

dehydrogenase and 6 -phosphogluconic dehydrogenase employing 

cyanide follow ed th e  method of Cohen and S co tt  (1950). The 

method d esc r ib ed  by Kornberg (1950) fo r  g lu co se -6 -phosphate 

and 6 -phosphogluconate dehydrogenase, which measures th e  

r a t e  of TPN re d u c t io n  a t  340 mp, was a ls o  used.

Phosphoglucomutase a c t i v i t y  was determined u s in g  

g lu c o se - l-p h o sp h a te  a s  s u b s t r a t e  by coupling th e  r e a c t i o n  to  

g lu c o se -6 -phosphate dehydrogenase and follow ing the  r a t e  of 

TPN re d u c t io n  a t  340 mjj. The a n a ly s is  i s  q u i te  s im i la r  to  

th e  one f o r  measuring phosphoglucoisomerase a c t i v i t y .

Phosphoglucoisomerase a c t i v i t y  was determ ined by the  

method o f  S le in  (1950). The conversion  o f f r u c to s e - 6 -phos­

phate  to  g lu co se -6 -phosphate  i s  coupled to  g lu cose- 6 -phos­

phate  dehydrogenase and TPN red u c t io n  i s  measured a t  340 mp.

F ru c to a ld o la se  a c t i v i t y  was s tu d ie d  by chemical and 

spec tropho tom etric  methods. In  the  chemical method a r e ­

a c t io n  m ix ture  p a t te rn e d  a f t e r  th a t  o f  Taylor (1955) was 

employed. Cyanide was used  to  bind t r i o s e  phosphate, and
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in o rg an ic  phosphate was determined in  a l iq u o ts  of the  r e ­

a c t io n  m ix ture  befo re  and a f t e r  a l k a l i  h y d ro ly s is .  The 

sp ec tro p h o to m e tr ic  method of Warburg and C h r is t ia n  (1943) 

was a lso  used to  d e te c t  t h i s  enzyme.

G lyceraldehyde-3-phosphate dehydrogenase a c t i v i t y  

was es tim ated  by fo llow ing  the  r a t e  o f  re d u c t io n  o f  DPN a t  

340 mp (Warburg and C h r is t ia n ,  1943). The r e a c t io n  was 

i n i t i a t e d  by th e  a d d i t io n  of excess g lycera ldehyde-3-phos­

p h a te .

Glycerophosphate dehydrogenase was determined using 

a method suggested  by Baranowski (1949). A c t iv i ty  was meas­

u red  by fo llow ing  the  o x id a tio n  o f DPNH a t  340 mp in  the  

p resence of excess g lycera ldehyde-3-phosphate .

3-Phosphoglyceric k inase  a c t i v i t y  was measured by 

th e  method of Axelrod and Baranowski (1953) in  which hydrox- 

ylamine i s  used to  bind a c y l  phosphate. The determ ination  

o f  acy l phosphate w ith  hydroxylamine i s  based on s tu d ie s  r e ­

p o rted  by Lipmann and T u t t l e  (1945).

L ac tic  dehydrogenase a c t i v i t y  was determined by two 

d i f f e r e n t  methods. The f i r s t  method i s  e s s e n t i a l l y  th a t  

o u t l in e d  by Kornberg (1955) which measures th e  o x id a tio n  of 

DPNH a t  340 mp in  th e  presence o f excess pyruvate . The 

second method was a c o lo r im e tr ic  d e te rm in a tio n  p a t te rn ed
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a f t e r  th e  method of E l ls  (1959). This a ssay  u t i l i z e s  l a c t i c  

a c id  as s u b s t r a te  and in  t h i s  r e s p e c t  i s  s im i la r  to  th e  

a ssay  procedure o u t l in e d  by N eilands (1955).

The a c t i v i t y  o f  pyruvic k in ase  was shown by a method 

p a t te rn e d  a f t e r  th a t  desc ribed  by Bucher and P f le id e r e r  

(1955). The pyruvate formed from phospho-enol-pyruvic a c id  

and ADP i s  reduced by p u r i f i e d  r a b b i t  muscle l a c t i c  dehydro­

genase* in  th e  r e a c t io n  m ixture and the  r e s u l t i n g  o x id a t io n  

o f  DPNH i s  followed a t  340 mp.

3-Phosphoglyceric a c id  mutase a c t i v i t y  was demon­

s t r a t e d  by th e  method o f  S u th e r lan d , e t  a l .  (1949), which 

couples th i s  enzyme to  eno lase , pyruvic k in ase  and l a c t i c  

dehydrogenase. The a c t i v i t y  was measured by fo llow ing  the  

o x id a tio n  of DPNH a t  340 mp. P u r i f ie d  r a b b i t  muscle l a c t i c  

dehydrogenase was added to  th e  r e a c t io n  m ix ture . The endo­

genous enolase and pyruvic k in a se  a c t i v i t i e s  o f  th e  homo- 

gena te  served to  convert 2 -phosphoglyceric  ac id  to  pyruvic 

a c id  in  th i s  system.

Enolase a c t i v i t y  was determ ined by fo llow ing  th e  i n ­

c rea se  in  abso rp tion  a t  240 mp which accompanies th e  conver­

s io n  of 2 -phosphoglyceric a c id  to  phospho-enol-pyruvic  ac id  

(Warburg and C h r is t ia n ,  1941). The r e a c t io n  was i n i t i a t e d

*
Sigma Chemical Co., Type I I .
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by th e  a d d i t io n  of excess 2 -phosphoglyceric  a c id .

Inorgan ic  phosphate was determ ined c o lo r im e t r i - 

c a l l y  by th e  method o f F iske  and Subbarow (1925). Pyruvic 

ac id  was determined by th e  method o f  K oepsell and Sharpe 

(1952).

At th e  end of every assay  a s u i t a b le  a l iq u o t  o f  th e  

r e a c t io n  m ix ture  was t r e a t e d  w ith  10  per cen t t r i c h l o r o a c e t i c  

a c id  and t o t a l  p ro te in  in  th e  r e s u l t i n g  p r e c i p i t a t e  was de­

te rm ined  by th e  method o f  Lowry, ^  a l .  (1951). This v a lu e  

fo r  t o t a l  p ro te in  was subsequen tly  employed to  c a lc u la te  

enzyme a c t i v i t y  which i s  r e p o r te d  as a fu n c tio n  of p ro te in  

c o n c e n tra t io n  and time.

A ll  spec tropho tom etric  measurements were made in  a 

Beckman Model DU spectropho tom eter, except th e  pyruvate 

k in a se  de te rm ination  which was measured w ith  a MacAlaster 

B ick n e l l  Goenzometer.

Reagents

G lucose-6 -phosphate , f r u c to s e - 6 -phosphate , f ru c to s e -  

1 , 6 -d iphosphate  (barium s a l t s ) ,  g lu c o s e - 1 -phosphate (d ip o ta s ­

sium s a l t ) ,  g lycera ldehyde-3 -phospha te  d ie th y la c e ta l  (mono­

barium s a l t ) ,  ad en o s in e -5 ' -d iphosphate  (disodium s a l t )  and 

2 , 3 -d iphosphoglyceric  a c id  (barium s a l t )  were ob ta ined  from
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Schwarz L a b o ra to r ie s .^  6 -Phosphogluconate, 3-phosphoglycer- 

a t e ,  2 -phosphoglycera te  (barium s a l t s ) ,  pyruvate  (sodium 

s a l t ) ,  a d e n o s in e -5 't r ip h o s p h a te  (disodium s a l t ) ,  and l a c t i c  

dehydrogenase ( type I I )  were ob ta ined  from Sigma Chemical 

Company.2 T riphosphopyrid ine  n u c leo tid e  and diphospho- 

p y r id in e  n u c le o t id e  (sodium s a l t s )  were ob ta ined  from Fabst 

L a b o ra to r ie s .3 L ac tic  a c id  ( l i th iu m  s a l t )  was from Hartmann- 

Leddon C o m p a n y . ^ 2,6-Dichlorophenolindophenol was from E a s t­

man Organic Chemical Company.5 Phenazine m e th o su lfa te  was a 

g i f t  from Dr. H. Alan E l l s .  Phosphopyruvie a c id  (T r ic y c lo -  

hexylamine s a l t )  was o b ta in ed  from C a l i fo rn ia  C orpora tion  

fo r  Biochemical R esea rch .&

D iphosphopyridine n u c le o t id e  was reduced fo llow ing  

th e  method o u t l in e d  by B eisenherz, e t  a l .  (1955). A l l  

barium s a l t s ,  except g lycera ldehyde-3-phosphate  d ie th y la c e ta l

USA.

USA.

USA.

^Schwarz L a b o ra to r ie s ,  I n c . ,  Mount Vernon, New York,

O
Sigma Chemical Company, S t .  Louis, M issouri, USA.

3
Pabst L a b o ra to r ie s ,  Milwaukee, Wisconsin, USA. 

^Hartmann-Leddon Company, P h ilad e lp h ia ,  Pennsylvania,

^Eastman Organic Chemical Company, Newark, New Jersey,

^ C a l i fo rn ia  Foundation fo r  Biochemical Research , Los 
Angeles, C a l i f o r n ia ,  USA.
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were converted to  the  sodium s a l t  before  use w ith an equiv­

a l e n t  amount o f  Na2S0^. G lyceraldehyde-3-phosphate d i e th y l ­

a c e t a l  barium s a l t  was converted to  g lycera ldehyde-3-phos­

pha te  fo llow ing a procedure suggested by th e  s u p p l ie r .  A ll  

s u b s t r a t e  so lu t io n s  were a d ju s ted  to  pH 7.0 before they  were 

in tro d u ced  in  th e  assay  m ix ture . A ll o th e r  chemicals used 

in  th e  study  were commercial products of h igh  p u r i ty .

A bbreviations 

The fo llow ing ab b rev ia tio n s  a re  used , where a p p l i -
\

c a b le ,  throughout the  paper: g lucose-6-phosphate  (G-6-P);

g lucose-1 -phosphate  (G -l-P ) ; 6-phosphogluconic ac id  (6-PG); 

f ru c to se -6 -p h o sp h a te  (F -6-P ); f ru c to s e - 1 ,6 -diphosphate 

(FDP); g lycera ldehyde-3-phosphate  (G-3-P); 3-phosphoglyceric 

a c id  (3-PGA); 2 . 3-phosphoglyceric a c id  (2,3-PGA); 2-phospho­

g ly c e r ic  ac id  (2-PGA); phospho-enol-pyruvic a c id  (PE); 

a d e n o s in e -5 '- t r ip h o s p h a te  (ATP); adenosine -5 '-d iphospha te  

(ADP); tr ip h o sp h o p y r id in e  n u c leo tid e  (TPN); t r ip h o sp h o p y r i­

d ine  n u c le o tid e  reduced (DPNH); io d o a ce t ic  ac id  (lAA); t r i ­

c h lo ro a c e t ic  a c id  (TCA); and ino rgan ic  orthophosphate ( P I ) .



CHAPTER IV

RESULTS

Anaerobic G lyco lysis

Measurements o f  the  g ly c o ly s is  o f  t i s s u e  e x t r a c t s  o f  

P. h a l e i  and th e  e f f e c t  o f  io d o a c e t ic  a c id  a r e  p re se n ted  in  

F ig u re  1. S ince aq u a tic  s n a i l s  have been re p o r te d  to  p ro ­

duce v o l a t i l e  f a t t y  ac id s  as w ell  as l a c t i c  a c id  (Mehlman 

and von Brand, 1951), t o t a l  ac id  r a th e r  than  l a c t i c  a c id  was 

measured. F ru c to se  diphosphate s t im u la te d  and io d o a c e t ic  

a c id  in h ib i t e d  th e  p roduction  of a c id .  The observed gas up­

ta k e ,  in  th e  absence o f  added s u b s t r a te  and in  th e  presence 

o f  io d o a c e t ic  a c id  was unexpected. Gas uptake decreased  

r a p id ly  a f t e r  th e  f i r s t  t h i r t y  minutes o f  measurements.

C ontro l measurements using  r a t  muscle e x t r a c t  d id  

no t show th e  p e c u l ia r  gas uptake o f  th e  s n a i l  e x t r a c t .  The 

measurement w ith  r a t  muscle agrees very  w ell  w ith  r e s u l t s  

r e p o r te d  by LePage and Schneider (1948).

24
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Fig . 1 Anaerobic G ly co ly s is

zero a c t i v i t y  
zero  a c t i v i t y

The complete system fo r  P. h a le i  and r a t  muscle con­
ta in e d :  10 g ly c y lg ly c in e ,  pH 7 .4 ;  31 pM KHCO3 ;
2 'j»M MgCl2 » 2 pM NaF; 2 uM Na p y ru v a te , pH 7 .0 ;
8  pM n ico tin am id e ; 0 .6  pM DPN; 0.012 pM ADP; 20 pM 
FDP; 0 .5  ml. t i s s u e  e x t r a c t  o f  25% homogenate added 
from sidearm of f la s k  a f t e r  e q u i l ib r a t io n .  F in a l  
volume, 2 .0 ml. Gas phase, 95% N2 "5 % CO^. Tempera­
tu r e ,  37°C. R eac tion  tim e, 30 m inutes. A dditions or 
omissions as in d ic a te d .
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G lucose-6 -Phosphate and 6 -Phosphogluconlc 
Dehydrogenase

Although th e s e  two enzymes a re  i n i t i a l  r e a c t io n s  of 

th e  hexose monophosphate shunt r a th e r  than  s teps  o f  th e  

g ly c o ly t ic  pathway, t h e i r  a s s o c ia t io n  w ith  one o f  th e  c e n t r a l  

g ly c o ly t i c  in te rm e d ia te s ,  G-6 -P, makes measurements o f  them 

a p p ro p r ia te .  The manometric measurements (Tables 1 and 2) 

were o b ta in ed  by a  procedure which ignored  the  cyanide- 

absorbing  p ro p e r t ie s  o f  potassium hydroxide (p re sen t in  the 

c e n te r  w ell o f  th e  r e a c t io n  f la sk s ) .  C ontrol v e s s e ls  were em­

ployed, however, and a l l  read ings were co r re c te d  to  them. The 

d a ta  suggest the  p resence  of both th e se  s te p s  in  th e  t i s s u e  

e x t r a c t  of P. h a l e i . In both systems a c t i v i t y  i s  s t im u la te d  

by th e  a d d i t io n  o f  s u b s t r a te .  Phenazine m e th o su lfa te ,  a dye 

which w i l l  o x id iz e  reduced p y r id in e  n u c le o t id e s ,  and which i s  

in  tu rn  ox id ized  by m olecular oxygen (Dickens and Mcllwain, 

1938), a lso  s t im u la te s  th i s  a c t i v i t y .  F u r th e r ,  th e  system 

w ith  g lu c o se -6 -phosphate added has approxim ately  tw ice  the  

oxygen up take  o f  th e  system w ith  6 -phosphogluconate. In a 

system where both dehydrogenase enzymes a re  p re se n t  such a 

r a t i o  o f  oxygen up take would be expected .

Spectrophotom etric  evidence fo r  th e  presence  o f  these 

two enzymes i s  p rese n ted  in  Table 3. In both in s ta n c e s
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a c t i v i t y  was d e te c te d  on ly  a f t e r  a d d i t io n  o f  th e  s u b s t r a te .  

TPN served  as th e  c o - f a c to r  and DPN could no t be s u b s t i tu te d .  

The r a t e  o f  a c t i v i t y  o f  both enzymes was l in e a r  (Fig. 2) fo r  

th e  6  minute p er iod  of measurement. This a c t i v i t y ,  based on 

th e  measurements w ith  G-6 -P as s u b s t r a te ,  i s  in  th e  same 

range  as  th e  a c t i v i t y  rep o r ted  fo r  y ea s t  a u to ly z a te  (Kornberg, 

1950).

Measurements ob ta ined  w ith  d ia ly ze d  t i s s u e  e x t r a c t  

and 6 -PG were comparable to  those re p o r te d  in  Table 3. The 

a d d i t io n  o f  Ng"*  ̂ was n o t necessary  fo r  a c t i v i t y  and no i n ­

c re a s e  in  a c t i v i t y  was observed when i t  was added to  the  

system.

Phosphoglu comu ta s e

This enzyme c a ta ly z e s  th e  conversion of G -l-P  to  

G-6 -P . In view o f  the  h igh  G-6 -P dehydrogenase a c t i v i t y  in  

P. h a l e i , evidence fo r  th e  mutase s te p  was sought by measur­

ing  TPN re d u c t io n  in  a m ixture con ta in ing  excess G -l-P .

T able  4 g ives th e  r e s u l t s  o f  th e se  measurements. Both Mg"^ 

and c y s te in e  were n ecessa ry  fo r  dem onstra tion  of a c t i v i t y .  

N e ith e r  o f th e  c o - f a c to r s  alone nor both to g e th e r  in  th e  

system could s t im u la te  a c t i v i t y  in  th e  absence of G -l-P .

The r a t e  o f  form ation o f  reduced TPN i s  slower w ith G-l-P
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TABLE 1

6  - PH0SPHCX3LUC0NIC DEHYDROGENASE

p i  0 2 /mg. p r o te in /h r .
System Exp. 1 Exp. 2

Complete 77.2 4 7 .3

Minus phenazine m ethosu lfa te 63.9 43.0

Minus 6 -phosphogluconate 49.1 3.2

The complete system con ta ined : Hfi phosphate, pH 7 .0 ;
1 pM MgCl2 ; 8  pM nico tinam ide ; 2 pM KCN; 0. 30 pM TPN ; 10 pM 
lAA, pH 7 .0 ; 0 .4  mg phenazine m e th o su lfa te ;  4 pM 6 -PG, 
added from sidearm of f la s k  a f t e r  e q u i l ib r a t i o n ;  0 .5  ml. 
t i s s u e  e x t r a c t  (762 pg. p r o te in ) .  F in a l  volume, 2.0 ml. Gas 
phase, a i r .  Temperature, 37®C. R eaction  tim e, 30 m inutes. 
Omissions as in d ic a te d .
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TABLE 2

GLUCOSE-6 -PHOSPHATE DEHYDROGENASE

System
p i  0 2 /mg. p r o t e in / h r .

Exp. 1 Exp. 2

Complete 135.6 1 2 0 . 8

Minus phenazine m e th o su lfa te 34.2 47.9

Minus g lu c o se -6 -phosphate 28.4 3.2

The complete system co n ta in ed : 1 3 . 6 ^  Na phosphate. pH 7 .0 ;
1 MgCl2 ; 8  pM n ic o tin a m id e ; 2 |iM KCN; 0 .30  pM TPN; 10 pM 
lAA, pH 7 .0 ;  0 .4  mg phenazine m ethosu lfa te ; 4 G-6 -P,
added from sidearm of f la s k  a f t e r  e q u i l ib r a t io n ;  0 .5  ml. 
t i s s u e  e x t r a c t  (738 pg. p r o te in ) .  F inal volume 2.0 ml. Gas 
phase, a i r .  Tem perature, 37°C. Reaction tim e, 30 m inutes. 
Omissions as in d ic a te d .
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TABLE 3

GLUCOSE-6 -PHOSPHATE AND 6 -PHOSPHOGLUCONIC DEHYDROGENASE

System

Change in  
O.D. 
min. 

(340 mp)

R ate o f  form ation 
o f  reduced TPN*

Complete
w ith  G-6 -P s u b s t r a te 0 .033 9.13

w ith  6 -PG s u b s t r a te 0 . 0 1 0 2.76

Minus s u b s t r a te 0 . 0 0 0 0 . 0 0

E ith e r  s u b s t r a te  minus 
TPN 0 . 0 0 0 0 . 0 0

E ith e r  s u b s t r a te  w ith  
DPN re p la c in g  TPN 0 . 0 0 0 0 . 0 0

*|LjM/tnin/mg. p r o te in  x 10^

The complete system con ta in ed : 300 Na phosphate, pH 7 .0 ; 4 
pM s u b s t r a t e ,  added im m ediately b e fo re  tak in g  th e  zero 
read in g ; 0 .30 pM TPN; 10 pM lAA, pH 7 .0 ;  0 .05  ml. t i s s u e  
e x t r a c t  (61 pg. p r o te in ) .  F in a l  volume 2.5  ml. Temperature, 
25°C. R eaction  tim e, 6  m inutes. Omissions as in d ic a te d .
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F ig . 2 G lucose-6 -phosphate and 6 -Phosphogluconate 
Dehydrogenase

C onditions g iven  in  Table 3.
Curve (A) i s  w ith  G-6 -P as s u b s t r a te ,  
w ith  6 -PG as s u b s t r a t e .

Curve (B) i s
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than  w ith  G-6 -P. However t h i s  r a t e  remains l i n e a r  th rough­

out the  7 minute p e r io d  of measurement (F ig . 3 ) .

Phosphoglucoisomerase 

T his  enzyme m ediates th e  in te r - c o n v e rs io n  o f  G-6 -P 

and F -6 -P. The a b i l i t y  of t i s s u e  e x t r a c t  o f  P. h a l e i  to  

isom erize F -6 -P to  G-6 -P was dem onstrated by coup ling  the  

s te p  w ith G-6 -P dehydrogenase and fo llow ing  th e  re d u c t io n  of 

TPN. In t h i s  way, a c t i v i t y  (Fig. 4) was determined in  the  

presence and in  th e  absence o f  F -6 -P. With t h i s  m ix ture  no 

added c o - fa c to r  o r  c h e la t in g  agent was n ecessa ry  fo r  a c t i v i t y  

and th e  r e a c t io n  r a t e  was l in e a r  fo r  th e  6 minute p e r io d  of 

measurement. This  r a t e  i s  r e l a t i v e l y  h igh  and approaches 

th e  r a t e  observed fo r  G-6 -P dehydrogenase.

A ldolase

This enzyme c a ta ly z e s  th e  s p l i t t i n g  of f ru c to s e  

diphosphate in to  g lycera ldehyde-3 -phospha te  and dihydroxy- 

acetone phosphate. Evidence fo r  i t s  p resence in  P. h a l e i  

was sought by chemical and spec tropho tom etric  methods. In 

studying th e  enzyme, t i s s u e  homogenates, t i s s u e  e x t r a c t s ,  

and d ia ly zed  t i s s u e  e x t r a c ts  were used as the  source  o f  

enzyme. The chemical method of a ssay  was based on th e  meas­

urement of the  a l k a l i - l a b i l e  phosphate o f  the  r e a c t io n
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p ro d u c ts  (Meyerhof and Lohmann, 1943). The r e a c t io n  was 

c a r r i e d  out i n  th e  presence  o f  cyanide which binds th e  t r i o s e  

phosphates and, in  so do ing , p reven ts  them from e n te r in g  in to  

th e  r e v e rs e  r e a c t io n  (H e rb e r t ,  e £ a l . ,  1940) or in to  a d d i­

t i o n a l  deg rada tion  s teps  (Meyerhof, 1951; T ay lo r , 1955). The 

r e s u l t s  of measurements c a r r i e d  out on t i s s u e  homogenates 

(Table 5) a re  q u i te  s im i la r  to  r e s u l t s  ob ta ined  w ith  crude 

and w ith  p u r i f i e d  p re p a ra t io n s  o f  muscle a ld o la s e .  A lk a l i -  

l a b i l e  phosphate i s  p re s e n t  i n  th e  system w ith  cyanide and 

ab sen t in  th e  system f r e e  o f  cyanide.

When th e  assay  was re p e a te d  w ith t i s s u e  e x t r a c t ,  the  

r e s u l t s  d id  n o t agree w ith  th o se  ob ta ined  w ith  th e  whole 

t i s s u e  homogenate. Much more a l k a l i - l a b i l e  phosphate formed 

w ith  th e  t i s s u e  e x t r a c t  than w ith  th e  homogenate and th e  

amount formed w ithou t cyanide was approxim ately th e  same as 

i t  was w ith  cyanide (Table 5 ) .  Although th e  eq u ilib r iu m  in  

muscle a ld o la se  favors th e  form ation  of hexose d iphosphate  

r a t h e r  than t r i o s e  phosphate (H erbert, e t  a l . , 1940) th e  

p o s s i b i l i t y  was cons idered  o f  an a ld o la se  in  s n a i l  t i s s u e  

which would favor form ation  o f  t r i o s e  phosphates. The f a c t  

t h a t  w ith  t i s s u e  homogenate th e re  was no a l k a l i - l a b i l e  phos­

phate  form ation i n  the  absence of cyanide suggested t h a t  th e  

t r i o s e  phosphate was being removed as r a p id ly  as i t  was
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TABLE 4 

PHOSPHOGLUCCJMUTASE

System

Change in  
O.D. 
min. 

(340 m^)

Rate of form ation  
o f reduced TPN*

Complete 0.009 0.85

Minus 0 . 0 0 0 0 . 0 0

Minus G -l-P 0 . 0 0 0 0 . 0 0

Minus c y s te in e 0 . 0 0 0 0 . 0 0

%]M/min/mg. p ro te in  x 1 0 ^

The complete system con ta ined : 2 >iM T r i s  (hydroxymethyl)
aminomethane, pH 7 .4 ;  2 ;jM MgCl2 f  0 .3  ;jM TPN;' 20 ;jM G -l-P , 
added im m ediately  before  tak in g  th e  zero  re a d in g ;  2 0  pM 
c y s te in e ,  pH 7 .4 ;  10 pM lAA, pH 7 .0 ;  0 .1  ml. t i s s u e  e x t r a c t  
(181 /Jg p r o t e in ) .  F in a l  volume, 3.0 ml. Tem perature, 25°C. 
R eaction  tim e, 7 m inutes. Omissions as in d ic a te d .
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F ig . 4 Phosphoglucoisomerase

The complete system co n ta in ed : 400 |jM Na phosphate, 
pH 7 .0 ;  1% F-6 -P; 0 .30  pM TPN; 0 .05 ml. t i s s u e  ex­
t r a c t  (47 pg p r o te in ) .  F in a l  volume, 3.0 ml. Tern-- 
p e ra tu re ,  25°C. There was no change in  O.D. in  th e  
absence o f  F -6 -P.
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formed. I t  seemed p o s s ib le  t h a t  removal of c e l l u l a r  d e b r is  

a l s o  removed components n ec essa ry  fo r  th e  f u r th e r  metabolism 

o f  G-3-P. With t h i s  i n  mind th e  t i s s u e  e x t r a c t  m ix tu re  was 

f o r t i f i e d  w ith  substances which a re  known to  f a c i l i t a t e  

a c t i v i t y  o f  G-3-P dehydrogenase. These r e s u l t s  a r e  a l s o  i n ­

cluded in  Table 5. N e ith e r  DPN nor c y s te in e  added to  th e  

medium alone or to g e th e r  had a p p rec iab le  e f f e c t  on th e  amount 

o f  a l k a l i - l a b i l e  phosphate formed.

Assays fo r  a ld o la s e  were repea ted  w ith  d ia ly ze d  t i s ­

sue e x t r a c t  se rv in g  as th e  source  of enzyme (Table 6 ) .  The 

experim ents were designed  to  measure the  a c t io n  o f a ld o la s e  

i n  d ia ly ze d  t i s s u e  e x t r a c t  and a l s o  to  determ ine the  r e l a ­

t io n s h ip  o f  a c t i v i t y  to  c o n c e n tra t io n  of enzyme. In every 

measurement w ith  cyanide added to  the  r e a c t io n  m ix tu re , the  

t o t a l  a l k a l i - l a b i l e  phosphate was f a r  below the  t o t a l  a l k a l i -  

l a b i l e  phosphate w ithou t cyanide. The cyanide had a d e f i n i t e  

i n h ib i to r y  e f f e c t  on th e  d ia ly z e d  e x t r a c t .  This in h ib i t io n  

was r e l a t e d  to  the  r a t i o  o f  enzyme and cyanide in  the  mix­

tu r e ,  s in c e  th e  a l k a l i - l a b i l e  phosphate in  th e  d e te rm in a tio n s  

w ith  cyanide i s  p ro p o r t io n a l  to  th e  co n c en tra t io n  o f  enzyme 

added.

In  view o f th e  i n h ib i to r y  e f f e c t  of cyanide on d i a ­

lyzed t i s s u e  e x t r a c t  i t  was a ls o  d e s ira b le  to  determ ine
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TABLE 5 

ALDOLASE

System
pg P i/30  m in ./pg . p ro te in  

Homogenate T issue  e x t r a c t

Complete 0 . 0 0 0 0.432

Plus 175 pM KCN 0.085 0.446

Plus .60 pM DPN - 0.438

Plus .04 pM c y s te in e - 0.486

Plus .04 pM c y s te in e  
and .60 pM DPN - 0.415

The complete homogenate system co n ta in ed : 0 .6  pM g ly c in e ,  
pH 9 ,6 ;  2 ]uM FDP; 0 .5  ml. t i s s u e  homogenate (1 .3  mg. 
p r o te in ) .  F in a l  volume 3.0 ml. Tem perature, 37°C. Re­
a c t io n  tim e, 30 m inutes. A dditions as in d ic a te d .

The complete t i s s u e  e x t r a c t  con ta ined : 30 pM T r is  (hydroxy­
methyl) aminomethane, pH 8 . 6 ; 20 pM FDP; 0 .5  ml. t i s s u e  
e x t r a c t  (700 jug. p r o te in ) .  F in a l  volume 2 .0  ml. Temper­
a t u r e ,  37°C. R eac tion  tim e, 10 m inutes. A dditions as 
in d ic a te d .
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a c t i v i t y  by a spec tropho tom etric  method p a tte rn ed  a f t e r  th a t  

o f  Warburg and C h r is t ia n  (1943). In  th i s  method th e  enzyme 

i s  coupled to  G-3-P dehydrogenase and the  r a t e  of r e a c t io n  

i s  measured by fo llow ing  the  re d u c t io n  of DPN. S ince t h i s  

dehydrogenase has been measured p rev io u s ly  in  P. h a l e i  (see 

G-3-P Dehydrogenase) and found to  be very a c t iv e  i n  d ia ly zed  

e x t r a c t ,  excess dehydrogenase was no t added. The r e s u l t s  

f o r  a ld o la se  by t h i s  method a re  p resen ted  in  F igure  5. In 

th e  presence of added FDP, reduced DPN i s  formed and th e  

r a t e  o f  form ation i s  l i n e a r  fo r  the  6  minute period  o f  meas­

urement. When FDP was om itted  from the  m ixture th e re  was no 

m easurable form ation o f  reduced DPN.

Glycerophosphate Dehydrogenase and T rio se  
Phosphate Isomerase

This dehydrogenase ca ta ly zes  the  form ation o f  g ly c e ro ­

phosphate from dihydroxyacetone phosphate and the  concomitant 

o x id a t io n  o f  DPNH. Measurements of th i s  s te p  in  d ia ly ze d  t i s ­

sue  e x t r a c t  o f  P. h a l e i  (Fig. 6 ) were obtained by follow ing 

th e  form ation o f  o x id ized  DPN in  the  presence o f  excess G-3-P. 

Under the  co n d itio n s  o f  t h i s  assay , t r i o s e  isomerase i s  a lso  

measured. Although th e  r a t e  i s  low i t  remains l in e a r  fo r  a 

r e l a t i v e l y  long p e r io d  o f  tim e. The pH optimum fo r  t h i s  s y s ­

tem in  th e  range 6 .5  to  9.0  as determined in  phosphate b u ffe r
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TABLE 6 

ALDOLASE

System
T o ta l

P ro te in
>ig.

*Total 
a l k a l i -  

l a b i l e  P^
pg  P i/30  m in . /  
pg . p r o te in

Complete 1 1 2 14.4 0.385
224 28.0 0.375
336 52.0 0.464

Plus 40 pM cyanide 1 1 2 0 . 0 0 . 0 0 0
224 16.0 0.214
336 22.4 0 . 2 0 0

Figures r e p re s e n t  t o t a l  fo r  10 minute in c u b a tio n
p er io d .

The complete system contained  : 2 0 0 g ly c in e ,  pH 9 .0 ;  30 pM 
FDP; d ia ly ze d  t i s s u e  e x t r a c t  added to  g ive  pg . p r o te in  i n ­
d ic a te d .  F in a l  volume, 3.0 ml. Tem perature, 25°C. Re­
a c t io n  tim e, 10 m inutes. A dditions as in d ic a te d .
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F ig . 5 A ldo lase

The complete system con ta ined : 60 pM pyrophosphate,
pH 8 .4 ;  8 pM c y s te in e ;  0 .6  pM DPN; 40 uM disodium 
a r s e n a te ;  3 .0 pM FDP; 0 .1  ml. d ia lyzed  t i s s u e  e x t r a c t  
(112 pg p r o te in ) .  F in a l  volume, 3.0 ml. Tempera­
tu r e ,  25°C. R eac tion  tim e, 6 m inutes.
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F ig .  6 G lycerophosphate Dehydrogenase and T riosephosphate 
Isomerase

The complete system, curve (A), contained  : f40-jjMfetNa 
phosphate, pH 8 .0 ;  0.9€npM G-3-P; 1.5 x 10"^ pM DPNH; 
0 .1  ml. t i s s u e  e x t r a c t  (70 pg p r o te in ) .  F in a l  v o l ­
ume, 2 .5  ml. Temperature, 25°C. Curve (B) was meas­
u red  when G-3-P was om itted  from the  system.



43

I
u(d
09
(U
■p

I
8

S
•a
<1

40

30

20

10

6.0  6 .5  7 .0  7.5 8.0 8.5 9 .0

pH

F ig .  7 pH Optimum fo r  a-GIycerophosphate Dehydrogenase- 
T r io se  Isomerase System

C onditions as in  f ig u re  5 w ith  pH as in d ic a te d .
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was 7.5  (F ig . 7 ). This pH i s  recommended fo r  maximum a c t i v ­

i t y  fo r  th e  enzyme in  r a b b i t  muscle (B eisenherz , e t  a l . , 1953). 

E f fo r ts  to  in c re a se  a c t i v i t y  of the  enzyme in  P. h a l e i  w ith  

th e  use  o f  t r ie th an o la m in e  b u ffe r  were no t su c c e s s fu l .

G lyceraldehyde-3-Phosphate Dehydrogenase

This enzyme m ediates the  r e a c t io n  between G-3-P and

1,3-PGA. The c l a s s i c a l  i n h ib i t io n  o f  g ly c o ly s is  by iodoacetic  

ac id  and c e r t a in  o th e r  compounds is  a t t r i b u t e d  to  i n h ib i t i o n  

o f G-3-P dehydrogenase and in d ic a te s  su lphydry l groups to  be 

th e  a c t iv e  c a t a l y t i c  s i t e  on the enzyme (Hellerman, 1937; 

Hellerman, ^  a l . , 1943).

Some of the  c h a r a c t e r i s t i c s  o f  t h i s  enzyme in  P. 

h a l e i  a re  shown in  Table 7. In g en e ra l  th e  enzyme in  P. 

h a l e i  i s  s im i la r  to  th e  mammalian muscle enzyme. The n e g l i ­

g ib le  a c t i v i t y  in  th e  absence of a r s e n a te  or phosphate sug­

g e s ts  t h a t ,  as w ith  th e  mammalian enzyme, a r s e n y la t io n  (or 

phosphory lation) i s  an o b l ig a to ry  accompaniment of o x id a t io n  

o f G-3-P. Decreased a c t i v i t y  when phosphate rep la ces  

a r se n a te  fu r th e r  suggests  th a t  the  eq u ilib r ium  r e l a t i o n s  o f  

t h i s  r e a c t io n  and the  r e l a t i v e  tu rnover  r a t e s  o f  G-3-P 

dehydrogenase and phosphoglyceric k in ase  a re  s im ila r  in  P. 

h a l e i  and in  mammalian t i s s u e s  (Cori, e t  a l . ,  1948). The



45

requ irem en t fo r  c y s te in e ,  th e  in h ib i t io n  by io d o a c e t iç  ac id  

and the  i n a c t i v i t y  of TPN as  a c o - fa c to r  a re  o th e r  p o in ts  o f  

s i m i l a r i t y  between G-3-P dehydrogenase in  P. h a l e i  and mam­

m alian t i s s u e s .  A c t iv i ty ,  as measured sp ec tro p h o to m e tr ica lly , 

was d e te c te d  on ly  a f t e r  a d d i t io n  o f  G-3-P. The r a t e  of 

a c t i v i t y  was h ig h ,  compared w ith  o th e r  o x id a tio n  s te p s  meas­

u re d  in  s n a i l  t i s s u e ,  and remained l in e a r  fo r  only a sh o r t  

p e r io d  o f  tim e (F ig . 8 ) .  The f a i l u r e  of th e  system to  r e t a i n  

th e  l i n e a r i t y  was no t due, however, to  any in a c t iv a t io n  of 

th e  enzyme s in ce  a cons tan t r a t e  o f  r e a c t io n  was ob ta ined  

w ith  FDP as th e  s u b s t r a te  (Fig. 5 ) .

3-Phosphoglyceric Kinase

T his  g ly c o ly t ic  enzyme c a ta ly z e s  th e  conversion  of

1,3-PGA to  3-PGA, w ith  the  accompanying phosphory la tion  of 

ADP to  ATP. The r e a c t io n  i s  r e v e r s ib l e  but the  equ ilib r ium  

favors 3-PGA form ation  (Colowick, 1951), and the  a c y l  phos­

phate  o f  1,3-PGA i s  q u ite  l a b i l e  (Schlenk, 1951). N everthe­

l e s s ,  w ith  hydroxylamine, which r e a c t s  w ith  acy l phosphate 

under th e  proper co n d itions  to  form a hydroxamic a c id ,  i t  i s  

p o s s ib le  to  measure the  s te p  by fo llow ing  th e  r e v e r se  

r e a c t io n .

The data  in  Table 8 p rovide evidence fo r  t h i s  s tep
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TABLE 7

GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

System
Change in  

O.D. Rate o f  form ation  
o f  reduced DPN*min. 

(340 mp)

Complete 0.065 9.91

Minus G-3-P 0 . 0 0 0 0 . 0 0

Minus A rsenate 0.003 0.45

Minus C yste ine 0 . 0 0 0 0 . 0 0

0 .3  pM TPN re p la c in g  DPN 0 . 0 0 0 0 . 0 0

Phosphate r e p la c in g  A rsenate 0 . 0 2 2 3.94

Plus 10 lAA 0 . 0 0 0 0 . 0 0

pM/rain/rag. p ro te in  x 10^

The complete system co n ta in ed : 60 pyrophosphate, pH 8 .4 ;  
8  juM c y s te in e ;  0.60 pM DPN; 40 pM disodium a r s e n a te ;  0 .96  pM 
G-3-P; 0 .1  ml. d ia ly zed  t i s s u e  e x t r a c t  (11,2 pg p r o te in ) .  
F in a l  volume, 3.0 ml. Tem perature, 25°C. R eaction  tim e, 1% 
m inutes. V a r ia t io n s  as in d ic a te d .
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F ig . 8  G lyceraldehyde-3-Phosphate Dehydrogenase 

Conditions g iven in Table 7.
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in  the  t i s s u e  o f P. h a l e i . The measurements re p re se n t  th e  

in c re a se  o f  acy l phosphate over th e  zero time measurement. 

Magnesium s t im u la te s  th e  r e a c t io n  r a t e .  The a c t i v i t y  o f  the  

complete system agrees very  c lo s e ly  w ith  the a c t i v i t y  r a t e  

i n  c a t  muscle (Lipmann and T u t t l e ,  1945). P re lim inary  

s tu d ie s  o f  the  method were conducted w ith  e x t ra c ts  of r a t  

muscle and almost id e n t i c a l  r e s u l t s  were obtained .

L ac tic  Dehydrogenase

This enzyme ca ta ly zes  the  r e v e r s ib le  o x id a tio n  o f  

l a c t i c  a c id  to  pyruvic ac id  and, in  v e r te b r a te  t i s s u e ,  r e ­

q u ire s  DPN as a c o - fa c to r .  Under anaerobic co n d itions  th e  

o x id a tio n  of DPNH by th i s  s te p  balances the  re d u c tio n  o f  DPN 

by G-3-P dehydrogenase.

Evidence fo r  th e  presence of t h i s  enzyme in  d ia ly ze d  

t i s s u e  e x t r a c t  was sought by following the  o x id a tio n  o f  added 

DPNH in  the  presence of excess pyruvic ac id .  The r e s u l t s  o f  

th e se  measurements are  shown in  F igure 9. Under the  co n d i­

t io n s  employed in  the  assay , l a c t i c  dehydrogenase a c t i v i t y  

was very  low. High co n c en tra t io n s  o f  pyruvate  (4 mM and 

h ig h e r)  a re  known to  have a marked in h ib i to r y  e f f e c t  upon 

l a c t i c  dehydrogenase of v e r te b r a te  muscle (Kaplan, e t  a l . ,  

1960). The co n c e n tra t io n  of pyruvate used fo r the  l a c t i c
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TABLE 8 

3-PHOSPHOGLYCERIC KINASE

System pM Acyl Phosphate pM/hr/mg. p r o te in

Complete 2 .65 31.17

Minus ATP 0.79 9.29

Minus Mg++ 1.08 12.70

Minus 3-PGA 0.23 2.70

The complete system co n ta in e d : 84 pM T r i s (Hydroxymethyl)
aminomethane, pH 7 .4 ; 40 pM ATP; 12)jM MgClg; 3-PGA;
200 pM Hydroxylamine, pH 7 .0 ;  0 .2  ml. t i s s u e  e x t r a c t  (340 pg. 
p r o te in ) .  F in a l  volume, 3.0 ml. Temperature, 30°C. Re­
a c t io n  tim e, 15 m inutes. Omissions as in d ic a te d .
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dehydrogenase a s say  o f  P. h a l e i  was in  the range r e p o r te d  to  

perm it maximum a c t i v i t y  w ith  th e  v e r te b ra te  enzyme. That ex­

cess  pyruvate  was no t the  p r in c ip a l  reason  fo r  the  low l a c ­

t i c  dehydrogenase a c t i v i t y  i s  supported  by th e  f a c t  t h a t  

DPNH o x id a tio n  was n o t observed upon a d d i t io n  of 3-PGA in  

th e  absence o f  a p u r i f i e d  l a c t i c  dehydrogenase (Table 11). 

Pyruvate was formed upon a d d i t io n  of 3-PGA s in c e  o x id a tio n  

of DPNH was observed in  the  presence of added l a c t i c  dehydro­

genase. The i n i t i a l  c o n c e n tra t io n  of pyruvate  derived  from 

added 3-PGA would no t have been h igh . I t  seems, th e re fo r e ,  

th a t  in h ib i t io n  from excess pyruvate  would no t exp la in  the  

r e l a t i v e l y  low a c t i v i t y  o f  l a c t i c  dehydrogenase in  P. h a l e i . 

S ince pyruvate  k in a se  a c t i v i t y  i s  in f lu en ced  by the  type of 

b u f fe r  employed in  th e  assay  (Table 10), t h i s  could have an 

e f f e c t  upon l a c t i c  dehydrogenase a c t i v i t y  o f  Physa h a l e i  in  

th e  presence o f  added 3-PGA. A d d itio n a l measurements were 

made w ith  3-PGA and w ith  tr ie th an o la m in e  b u ffe r  in s te a d  o f  

phosphate b u f fe r ,  but t h i s  s u b s t i t u t i o n  did no t r e s u l t  in  an 

in c re a s e  in  DPNH o x id a t io n .  No in c re a s e  in  DPNH o x id a tio n  

was observed when t r ie th a n o la m in e  b u ffe r  was s u b s t i tu t e d  fo r 

phosphate b u f fe r  in  th e  p resence o f  added pyruvate .

F u r th e r  a t tem p ts  to  i d e n t i f y  l a c t i c  dehydrogenase in  

s n a i l  t i s s u e  were made fo llow ing th e  method o f Neilands
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(1955) which measures the re d u c t io n  of DPN in  th e  presence 

o f excess l a c t i c  a c id  a t  pH 10 ( th e  re v e rse  o f  th e  system 

d esc r ib ed  above). No a c t i v i t y  was d e tec ted  by t h i s  method. 

This pH i s  an extreme c o n d i t io n ,  however, and, although 

mammalian enzyme can fu n c tio n  in  t h i s  range , i t  i s  conceiv ­

a b le  th a t  such a l k a l i n i t y  in a c t iv a te s  s n a i l  l a c t i c  

dehydrogenase.

A co lo r im e tr ic  method fo r  determ ining dehydrogenases 

a t  pH's near n e u t r a l i t y  has r e c e n t ly  been developed by E l ls  

(1959). The method follow s the  conversion  of l a c t i c  a c id  to  

pyruvic  ac id  and has the  c h a r a c t e r i s t i c  of fo rc in g  the r e ­

a c t io n  toward pyruvic ac id .  The r e s u l t s  p resen ted  in  F igure  

10  were obtained  w ith  th i s  assay .

Using E l l s '  method, s n a i l  l a c t i c  dehydrogenase co­

f a c to r  s p e c i f i c i t y  was dem onstrated to  d i f f e r  from th a t  of 

mammalian muscle. In the l a t t e r ,  l a c t i c  dehydrogenase w ith  

TPN as c o - fa c to r  h as , a t  b e s t ,  a small f r a c t io n  of the 

a c t i v i t y  i t  shows w ith  DPN. The s n a i l  enzyme, on the  o th e r  

hand, i s  a b le ,  under th e  co n d it io n s  of th i s  assay , to u t i l i z e  

TPN as r e a d i ly  as DPN. To th e  a u th o r 's  knowledge, no p r e v i ­

ous r e p o r t  has been made o f  a l a c t i c  dehydrogenase which can 

e f f e c t i v e ly  rep la ce  DPN w ith  TPN.
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F ig . 9 L ac tic  Dehydrogenase

The complete system, curve (A), conta ined : 40 Na 
phosphate, pH 7 .3 ; 6-7 x 1 0 '^  >jM DPNH; 10 pM Na
pyruvate ; 10 pM lAA; 0 .2  ml. t i s s u e  e x t ra c t  (286 pg 
p r o te in ) .  F in a l  volume, 3.0 ml. Temperature, 25°C. 
Curve (B) was measured when Na pyruvate  was om itted 
from the  system.
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The E ffe c t  o f  F lu o r id e  on Minced T issue

Since f lu o r id e  has been rep o r ted  to  have l i t t l e  or 

no in h ib i to r y  e f f e c t  on th e  minced t i s s u e  of A u s tra lo rb is  

g la b ra tu s  (Weinbach, 1953) i t  was d e s i ra b le  to  t e s t  the  

e f f e c t  of t h i s  ion on minced t i s s u e  o f  P. h a l e i . The r e ­

s u l t s  o f  t h i s  s tudy  a re  p resen ted  in  Table 9. The data  

ag ree  w ith  Weinbach's r e p o r t  (1953) th a t  f lu o r id e  f a i l s  to  

i n h i b i t  pyruvate p ro d u c tio n  in  minced s n a i l  t i s s u e .  The i n ­

h i b i t i o n  o f  oxygen up take  i s  somewhat h ig h e r ,  however, in  P. 

h a l e i  than  in  A. g l a b r a t u s . This lack of f lu o r id e  i n h i b i ­

t io n  made i t  d e s i ra b le  to  o b ta in  da ta  on the  in d iv id u a l  

enzymes of the  te rm in a l s te p s  of g ly c o ly s is .

Pyruvic Kinase

This enzyme c a ta ly z e s  th e  r e a c t io n  between phos- 

phopyruvic ac id  and ADP which y ie ld s  pyruvate  and ATP. In  a  

system con ta in ing  l a c t i c  dehydrogenase i t  i s  p o s s ib le  to 

s tu d y  th i s  r e a c t io n  by fo llow ing  the o x id a tio n  of DPNH 

sp e c tro p h o to m e tr ic a l ly .

The approach described  above was employed in  demon­

s t r a t i n g  th i s  k in ase  in  P. h a l e i . I n i t i a l  a t tem p ts  to  demon­

s t r a t e  the  enzyme in  a m ixture w ith  sodium phosphate b u f fe r ,  

Mg++, and ADP gave n e g a tiv e  r e s u l t s .  I t  seemed p o ss ib le
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F ig . 10 L a c t ic  Dehydrogenase

The complete system, curve (A) and (B). co n ta in ed :
30 pM Na phosphate, pH 7 .3 ;  600 x 1 0 ;uM DPN or 
30 X 10  "2 pM TPN; 20 pM l i th iu m  'T a c ta te  ; IQ'pM lAAy 
30 pM KCN, pH 7 .3 ; 0 .2  mg. ^henazine m e th o su tfà te ;
0 .03  pM 2 ,6 -d ich lo ropheno lindopheno l; 0.2 ml. t i s s u e  
e x t r a c t  (234 pg p r o te in ) .  F in a l  volume, 3 .0  ml. Tem­
p e r a tu r e ,  25°C. Curves (C) and (D) were measured 
when l i th iu m  l a c t a t e  was om itted  from the system.
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TABLE 9

EFFECT OF FLUORIDE ON OXYGEN CONSUMPTION 
AND PYRUVATE PRODUCTION

OF MINCED PHYSA HALEI

A ddition
p i  0 2 /h r ./m g . 

t i s s u e *
p y ru v a te /h r . /mg. 

t i s s u e *

None (endogenous) 

30 pM Na f lu o r id e

5.60

4.39

.148

.168

Per cen t in h ib i t io n 2 1 . 6 0 . 0 0

Wet weight

Oxygen consumption was measured in  a t o t a l  volume of 3.0 ml, 
con ta in ing  50 pM Na phosphate, pH 7 .4 . Pyruvate was d e t e r ­
mined in  a 2 . 0  ml. a l iq u o t  of the  r e a c t io n  m ixture a f t e r  
a d d i t io n  of 1.2 ml. of 10% TCA and removal o f  p r e c ip i t a t e d  
p ro te in .  Each value  i s  the  mean of th re e  d e te rm in a tio n s .
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th a t  the  k inase  was p re se n t but undetec ted  due to  the  low 

r a t e  of l a c t i c  dehydrogenase a c t i v i t y  in  th e  system. With 

t h i s  in  mind, a h ig h ly  p u r i f i e d ,  e s s e n t i a l l y  k in a s e - f r e e ,  

l a c t i c  dehydrogenase was o b ta in ed  and added to  th e  a ssay  mix­

tu r e .  The measurements w ith  t h i s  system were a ls o  n ega tive .

Mammalian t i s s u e  enzyme re q u ire s  potassium and mag­

nesium ions fo r  a c t i v i t y  and sodium ions a re  known to  depress 

t h i s  a c t i v i t y  by an tagon iz ing  th e  fu n c tio n  of th e  potassium 

ion  (Lardy, 1949). When sodium phosphate b u f fe r  was rep laced  

w ith  potassium phosphate th e  r e s u l t s  shown in  Table 10 were 

ob ta ined . In t h i s  system a c t i v i t y  was observed only  when 

both Mg++ and ADP were p re s e n t .  The lack of a c t i v i t y  with 

sodium phosphate b u ffe r  suggests  th a t  sodium an tagon izes  the 

P. h a le i  enzyme in  a manner s im i la r  to  i t s  antagonism to  the 

mammalian t i s s u e  enzyme. T rie thanolam ine b u ffe r  has been 

rep o r te d  (Beisenherz, e t  a l . , 1953) to  in c re a se  a c t i v i t y  of 

l inked  systems of t h i s  type and when i t  was s u b s t i tu t e d  for 

potassium phosphate b u f fe r  the r a t e  of a c t i v i t y  was increased  

almost th re e  times (Table 10). With tr ie th a n o la m in e  b u ffe r  

i t  was p o ss ib le  to  t e s t  th e  e f f e c t  of potassium upon th e  

system and th e re  i s  a very  d e f i n i t e  potassium requ irem ent for 

maximum a c t i v i t y .  Even in  the  absence of ADP in  th e  t r i ­

ethanolamine b u ffe red  system th e re  i s  form ation of pyruvate.
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This a c t i v i t y  suggests  th e  p resence o f  a phosphatase i n  the  

system. Whether i t  i s  a s p e c i f i c  or g en e ra l  phosphatase i s  

no t known.

Phosphoglyceric Mutas e

This enzyme c a ta ly z e s  th e  in te rc o n v e rs io n  of 3-PGA 

and 2-PGA. The r e a c t io n  has been s tu d ie d  in  crude muscle 

e x t r a c ts  by fo llow ing  DPNH o x id a tio n  during  l a c t i c  a c id  f o r ­

mation (Su therland , e t  a l . ,  1949). This approach was f o l ­

lowed in  dem onstrating mutase a c t i v i t y  in  d ia ly z e d  e x t r a c t  

of P. h a l e i . The r e s u l t s  of th e  s tudy  a re  p resen ted  in  

Table 11. A c t iv i ty  i s  re p o r te d  as change in  o p t i c a l  d e n s i ty  

per minute and the  r e l a t i v e  va lue  of the  f ig u re s  was con­

s id e re d  in  e v a lu a t io n  of th e  d a ta . The a b i l i t y  of 2 ,3-PGA 

to  s t im u la te  a c t i v i t y  suggests  the mechanism o f  r e a c t io n  in  

Physa h a l e i  i s  s im i la r  to th a t  in  v e r t e b r a te  t i s s u e .  Since 

th e  sequence would invo lve  the  eno lase  s te p ,  a c t i v i t y  was 

determ ined in ,  and found to  be in h ib i te d  by, th e  presence of 

f lu o r id e .

Enolase

This enzyme c a ta ly z e s  th e  convers ion  o f  2-PGA to  PE, 

and i s  c h a ra c te r iz e d  by i t s  s e n s i t i v i t y  to  magnesium f lu o ro -  

phosphate, which i s  formed when f lu o r id e  i s  added to  a system



58

TABLE 10 

PYRUVIC KINASE

Change in
O.P.

System min.
(340 mu)

With Phosphate With T rie thano lam ine 
B uffer Buffer

Complete 0.066

Minus phosphopyruvate 0.005

Minus ADP 0.008

Minus Mg++ 0.005

Minus K+

Minus e x t r a c t 0.003

0.160

0.037

0.078

The complete system co n ta in ed : 150 juM K"'" phosphate, pH 7.5 
or 15 pM tr ie th a n o la m in e ,  pH 7 .5 ; 0 .3  pM DPNH; 0.002 pM PE; 24 
pM MgCl2 ; 0.5pM KCl; 0 .2  ml. d ia ly z e d  t i s s u e  e x t r a c t ;  0 .2  ml. 
l a c t i c  dehydrogenase (180,000 u n i t s ) .  F in a l  volume, 3.0 ml. 
R eac tion  tim e, 5 minutes excep t w ith  the  complete system in  
t r ie th a n o la m in e  which was 2 .5  m in u te s . Omissions as 
in d ic a te d .
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TABLE 11 

PHOSPHOGLYCERIC MUTASE

System

Change in  
O.D.
min. 

(340 mp)

Complete 0.016

Minus 3-PGA 0.003

Minus 2 , 3-PGA 0 . 0 1 1

Minus l a c t i c  dehydrogenase 0 . 0 0 0

Plus 17 pM Na F lu o rid e 0.003

The complete system con ta ined : 100 t r ie th a n o la m in e ,  pH 7.5;
.00135 uM DPNH; 0 .4  ADP; 2.5 3-PGA; 0 .03  juM 2 ,3-PGA;
24 uM MgCl2 ; 1.0 pM lAA; 0 .2  ml. d ia ly z e d  t i s s u e  e x t ra c t  
(160 pg. p r o te in ) ;  0 . 0 1  ml. p u r i f i e d  l a c t i c  dehydrogenase (.5 mg/m l.). F in a l  volume, 3.0 ml. Tem perature, 25°C. Re­
a c t io n  tim e, 7 m inutes. Omissions and a d d i t io n s  as in d ic a te d .
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co n ta in in g  Mg++ and ino rgan ic  phosphate. Since PE absorbs 

l i g h t  a t  240 mp i t  i s  p o ss ib le  to  fo llow  i t s  fo rm ation  

sp e c tro p h o to m e tr ic a l ly .

Evidence fo r  th i s  s te p  in  d ia ly zed  t i s s u e  e x t r a c t  of 

P. h a le i  was o b ta in ed  by follow ing the  in c re a se  in  o p t i c a l  

d e n s i ty  a t  240 mp w ith  2-PGA as s u b s t r a t e .  F igure 11 shows 

th e  r e s u l t s  of th e se  measurements. F lu o r id e  i n h i b i t s  t h i s  

system; in  f a c t ,  the  o p t ic a l  d e n s i ty  o f  th e  mixture decreases 

a t  a s tead y  r a t e  in  the  presence of t h i s  ion .

Enzymes of Carbon Dioxide F ix a t io n

The f a i l u r e  of f lu o r id e  to  i n h i b i t  pyruvate form ation 

in  minced t i s s u e  of P. h a l e i  w hile  the  enolase of the  s n a i l  

i s  d e f i n i t e l y  in h ib i t e d  by th e  ion  suggests  the  p resence  of 

an a l t e r n a t e  pathway fo r  pyruvate s y n th e s is .  Two enzymes, 

o x a la c e t ic  carboxylase  and TPN m alic decarboxylase, both a s ­

so c ia te d  w ith  carbon d ioxide f ix a t i o n ,  provide a ro u te  fo r  

pyruvic a c id  s y n th e s is .  P re lim inary  experiments have been 

c a r r ie d  out on o x a la c e t ic  carboxylase  and TPN m alic  decarbox­

y la se  and a ls o  on a t h i r d  enzyme, su c c in ic  decarboxylase.

The l a s t  enzyme was inc luded  because of previous r e p o r t s  

(Mehlman and von Brand, 1951) o f anaerobic  propion ic  ac id  

form ation  in  a q u a tic  s n a i l s .  Succin ic  decarboxylase i s
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F ig . 11 Enolase

The complete system, curve (A), con ta ined : 40 ;uM 
b ic a rb o n a te -c a rb o n a te  b u f fe r  s a tu ra te d  w ith N£ 57oC0 2  
gas to  pH 7 .6 ;  2.5 juM 2-PGA; S.lpM g ly c in e ;  24 ;uM 
MgCl2 ; 0 .2  ml. d ia ly zed  t i s s u e  e x t r a c t  (125 ;ug 
p r o te in ) .  F in a l  volume, 3.0 ml. Temperature, 250C. 
Curve (B) was measured when 2-PGA was om itted from 
th e  system.
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capable  of c a ta ly z in g  th e  f i x a t i o n  of carbon d iox ide  in to  

p rop ion ic  a c id  form ation  in  a q u a t ic  s n a i l s .  Succin ic  de­

carboxy lase  i s  capable o f  c a ta ly z in g  the  f ix a t io n  o f  carbon 

d iox ide  in to  p ro p io n ic  a c id  to  y ie ld  su cc in ic  a c id .  This 

r e a c t io n  has r e c e n t ly  been dem onstrated in  o y s te r  t i s s u e  by 

Hammen and W ilber (1959). An a ttem p t was made w ith  d ia lyzed  

e x t r a c t  of P. h a l e i  to  dem onstra te  th i s  r e a c t io n  by showing 

carbon d iox ide  ev o lu tio n  and p rop iona te  form ation in  a mix­

tu r e  co n ta in in g  excess s u c c in ic  a c id .  Under th e  co n d it io n s  

employed, however, no a c t i v i t y  was measured.

O xalace tic  ca rboxy lase  from pigeon l i v e r  c a ta ly z e s  

th e  f i x a t io n  o f  carbon d iox ide  in to  pyruvic ac id  to  g ive oxa­

l a c e t i c  ac id  (Ochoa, e t  a l . , 1948). Jodrey and Wilber (1955) 

have dem onstrated a h igh  r a t e  of a c t i v i t y  fo r  t h i s  enzyme in  

o y s te r  t i s s u e .  Evidence fo r  t h i s  enzyme in  P. h a l e i  was 

sought by fo llow ing  carbon d iox ide  ev o lu tion  in  a m ixture 

co n ta in in g  d ia ly ze d  t i s s u e  e x t r a c t  and excess o x a la c e t ic  ac id .  

Under th e  co n d i tio n s  employed, th e  r e s u l t s  of the  a ssay  were 

n e g a tiv e .

TPN m alic decarboxylase  was f i r s t  descr ibed  in  a 

p re p a ra t io n  from pigeon l i v e r  (Ochoa, e t  a l . , 1947). The r e ­

a c t io n  c a ta ly z e s  th e  d eca rb o x y la t io n  and o x ida tion  o f  malic 

a c id  to  pyruvic a c id  accompanied by th e  red u c t io n  of TPN to
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TPNH. This r e a c t io n  has a ls o  been demonstrated in  muscle 

t i s s u e  of A scaris  lum bricoides (Saz and Hubbard, 1957).

This enzyme was t e s t e d  fo r  in  P. h a l e i  by th e  p roce­

dure o u t l in e d  by Ochoa, e t  a l . (1948). The r e s u l t s  of th e se  

spec tropho tom etric  measurements a re  shown in  Table 12. The 

form ation o f  TPNH in  the  presence o f  m alate and Mn++ sug­

g es ts  a TPN malic decarboxylase . Pyruvate was formed in  

co n c en tra t io n s  f a r  too high  to  be accounted fo r  by the  

"m alic" enzyme a lone . No immediate exp lana tion  of t h i s  f in d ­

ing i s  apparen t.
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TABLE 12 

TPN MALIC DECARBOXYIASE

System T o ta l  
pM TPNH Formed

T o ta l  
pM pyruvate  Formed

Complete .034 3.27

Minus d l-m a la te .004 1.69

Minus Mn"*"*" . 0 0 2 0 . 0 0

Minus TPN .003 2 . 0 0

The complete system co n ta ined : 75 g ly c y lg ly c in e , pH 7 .2 ;
3 juM MnCl2 ; 3.0)jM d l-m a la te ;  0 .3  jjM TPN; 0 .2  ml. d ia lyzed  
t i s s u e  e x t r a c t  (151 >ig. p r o te in ) .  F in a l  volume 3.0 ml.
Temperature 25°C. R eaction time 9 m inutes. At the end of
9 minutes 1 ml. o f  10% TCA was added to  the  m ixture. The 
pp t. p ro te in  c e n tr i fu g e d  and 1 ml. a lq .  o f  superSate taken , 
n e u t r a l iz e d ,  d i lu t e d  to  2.0 ml. and 0 .5  ml. o f  th is  d i l u t i o n  
assayed fo r  pyruvate .

Pyruvate assay  m ixture con ta ined : 40 pM Na phosphate, pH
7.4; 1. 35'X 10"^ uM DPNH; 0 .5 mIt' neub.aIq.; 0.1ml. l a c t i c  de­
hydrogenase ( .5  mg. p r o te in /m l . ) .  F in a l  volume 3.0 ml.
Temperature, 25°C. R eac tion  tim e, 10 m inutes. Omissions as
in d ic a te d .



CHAPTER V 

DISCUSSION

The experim enta l da ta  p resen ted  dem onstrate th e  i n i ­

t i a l  s te p s  o f  th e  hexose monophosphate shunt and th e  major 

enzymes o f  th e  g ly c o ly t i c  pathway in  P. h a l e i . Most enzymes 

appear to  be s im i la r  to  comparable enzymes in  v e r te b r a te  

t i s s u e .  For a few enzymes, however, th e  c h a r a c t e r i s t i c s  a re  

r a th e r  d i f f e r e n t .  The r e a c t io n s  invo lved  in  g ly c o ly s is  a re  

summarized in  F ig u re  12. The f ig u re  a l s o  inc ludes the  s te p s  

o f  th e  hexose monophosphate shunt th a t  were measured in  t h i s  

in v e s t ig a t io n .

The unexpected gas up take ( re p o r te d  as carbon d iox ide )  

by t i s s u e  e x t r a c t  of P. h a le i  under anaerob ic  c o n d it io n s  i s  

q u i te  h igh . The da ta  in  Table 1 suggest th a t  exogenous su b ­

s t r a t e  i s  notr n ecessa ry  fo r  t h i s  gas consumption s in ce  th e re  

i s  no in c re a se  in  up take  when FDP i s  p re se n t  in  the  m ix tu re . 

Freeman and W ilber (1948) dem onstrated carbonic anhydrase 

a c t i v i t y  in  t i s s u e  e x t r a c t  o f s e v e ra l  marine raollusks and

65
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suggested  a p o s s ib le  r o l e  o f  carbonic anhydrase in  the  depo­

s i t i o n  o f  ca rbona te  during  s h e l l  form ation . They s t a t e  th a t  

h y d ra t io n  o f  carbon d iox ide  occurs in  m antle t i s s u e  in  th e  

p resence  o f  both ca rbona te  and b ic a rb o n a te .  R ecen tly  F re e ­

man (1960) has shown carbonic  anhydrase a c t i v i t y  (measured 

i n d i r e c t l y  by fo llow ing  th e  e f f e c t  of carbonic  anhydrase i n ­

h i b i t o r s  on s h e l l  growth) in  th e  aq u a tic  s n a i l  Physa h e te r o - 

s t r o p h a . I t  seems q u i te  p o s s ib le  th a t  th e  observed anaerobic 

gas in ta k e  o f  t i s s u e  e x t r a c t  of P. h a l e i  could be due to  an 

a c t iv e  ca rbon ic  anhydrase. I t  i s  a lso  rea so n ab le  to  suppose 

t h a t  th e  carbon d io x id e  p roduction  upon a d d i t io n  o f  FDP i s  

due to  a h ig h  r a t e  o f  a c id  p roduction  which "overshadows" 

th e  carbon d iox ide  up take .

Measurements ob ta ined  w ith  P. h a l e i  dem onstrate both 

6 -PG and G-6 -P dehydrogenase a c t i v i t i e s  ( re a c t io n s  2 and 3 

in  F igure  12). A c t iv i ty  o f both s teps  i s  h igh  r e l a t i v e  to  

o th e r  enzymes (measured in  t h i s  la b o ra to ry )  which a re  con­

cerned w ith  hexose phosphate metabolism. The dem onstra tion  

o f  th e se  two dehydrogenases a lo n e ,  however, i s  no t conc lu ­

s iv e  p roof  fo r  th e  e x is te n c e  o f  a complete shunt as i t  i s  

known fo r  th e  v e r te b r a te  t i s s u e .  The c h a r a c t e r i s t i c s  o f  the  

enzyme a re  a p p a re n t ly  s im i la r  to  those  from v e r te b r a te  

t i s s u e ,  and th e  h igh  a c t i v i t y  p o in ts  to  th e  im portance o f
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th e s e  enzymes in  a s s im i la t io n  of hexose phosphates by th e se  

s n a i l s .

Both phosphoglu cornutase and phosphoglucoisomerase 

( re a c t io n s  1 and 4, F igure  12) in  P. h a l e i  have c h a r a c te r ­

i s t i c s  which a re  s im i la r  to  th e se  enzymes in  v e r te b ra te  

t i s s u e .  Under the  c o n d it io n s  o f  a ssay  th e  a c t i v i t y  o f  th e  

phosphoglucomutase s te p  in  s n a i l  t i s s u e  i s  r a th e r  low. With 

th e  mammalian enzyme, g lu c o s e - 1 , 6 -d iphosphate  has been shown 

(L e lo ir ,  e t  a ] . . , 1948) to  a c t i v a t e  th e  r e a c t io n .  The a d d i ­

t i o n  of th i s  c o - f a c to r  was r e q u i r e d ,  however, only w ith  the  

p u r i f i e d  enzyme. Furtherm ore, w ith  the  p u r i f i e d  enzyme, 

c y s te in e  was not re q u ire d  fo r  a c t i v i t y .  With the s n a i l  ex ­

t r a c t  no e f f o r t  was made to  remove g lucose  diphosphate from 

th e  p re p a ra t io n  nor was e f f o r t  made to  remove th i s  substance  

from the  G -l-P  which was added as s u b s t r a t e  to  the r e a c t io n  

m ix tu re . Whether the  a d d i t io n  of g lucose  d iphosphate to  the  

m ix ture  would have in c re ase d  a c t i v i t y  i s  no t known. The 

response  o f  th e  s te p  to  Mg’*"*" and to  c y s te in e  make i t  re a so n ­

a b le  to  assume, however, t h a t  the  mechanism o f  th i s  r e a c t io n  

in  2 ' h a le i  i s  s im i la r  to  t h a t  of th e  comparable r e a c t io n  in  

v e r te b r a te  t i s s u e .

The a ld o la se  s te p ,  r e a c t io n  6 , F igure  12, in  P. 

h a l e i  seems d e f i n i t e l y  to  be in h ib i t e d  by cyanide. A ldolase
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has been d esc r ib ed  as a m e ta l lo -p ro te in  in  yeast (Warburg 

and C h r is t ia n ,  1942, 1943) i n  b a c te r ia  (Bard and Gunsalus, 

1950) in  fungi (Jagannathan and Singh, 1954) and in  protozoa 

B a e rn s te in ,  1955). Warburg (1942, 1949) re p o r te d  cyan ide, 

pyrophosphate and c y s te in e  i n h ib i t i o n  of th e  yeast a ld o la se  

and the  r e v e r s a l  of cyanide and c y s te in o c ^ h ib i t i o n .  upon 

a d d i t io n  o f  fe r ro u s  or cobaltous ion or z in c .  With bacteria l 

a ld o la se  a , a ' - d i p y r i d y l ,  and o -p h en an th ro lin e  a re  r e p o r te d  

to  i n h i b i t  and the  e f f e c t  can be rev e rsed  by fe r ro u s  or 

cobaltous ion but not by zinc ions (Bard and Gunsalus, 1950). 

The c e l l - f r e e  a ld o la s e  of b a c te r ia ,  however, r e q u ire d  a r e ­

ducing agent such as c y s te in e  fo r  maximum a c t i v i t y .  The 

a ld o la se  o f  th e  fungus, A sp e rg il lu s  n i g e r , i s  re p o r te d  to  be 

s t im u la te d  by zinc ions and in h ib i t e d  by th e  metal binding 

agen ts  e th y le n e d ia m in e te tra c e t ic  ac id  (EDTA), a , a ' - d i p y r i d y l ,  

and pyrophosphate (Jagannathan and Singh, 1954). This enzyme 

was not in h ib i t e d  by c y s te in e ,  and, in  the  crude p re p a ra t io n ,  

pyrophosphate d id  not i n h ib i t  (Jagannathan and Singh, 1953). 

B aern s te in  (1955) found the a ld o la se  of Trichomonas v a g in a l i s  

to  be a m e ta l lo -p ro te in  in h ib i t e d  by the  m eta l b inding agent 

EDTA, but enhanced by c y s te in e .  The in h ib i to r y  a c t io n  of 

cyanide upon th e  P. h a l e i  a ld o la s e  suggests  an enzyme a s s o c i ­

a te d  with a heavy m eta l, and by assuming th e  enzyme to  be a
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m e ta l lo -p ro te in  which i s  no t in h ib i t e d  by c y s te in e  or py ro ­

phosphate one may ex p la in  t h i s  i n h ib i t io n .  The lack o f  i n ­

h i b i t i o n  in  t i s s u e  e x t r a c t  and homogenate of s n a i l  t i s s u e  

could w e ll  be due to  th e  p resence of r e l a t i v e l y  h igh  concen­

t r a t i o n s  o f  d ia ly z a b le  compounds capable o f  r e a c t in g  w ith  

th e  added cyanide in  a manner which would tend to  p r o te c t  

th e  a ld o la s e  enzyme. I t  i s  a l s o  p o s s ib le  th a t  th e re  was 

s u f f i c i e n t  heavy m etal in  the  non -d ia lyzed  p re p a ra t io n s  to  

c o u n te ra c t  the  i n h ib i to r y  e f f e c t  o f  cyanide.

L ac tic  dehydrogenase, r e a c t io n  14, F igure  12, o f  P. 

h a l e i  d i f f e r s  co n s id e rab ly  from th e  corresponding enzyme in  

v e r te b ra te  t i s s u e .  The low a c t i v i t y  observed agrees w ith  

th e  r e p o r t  th a t  l a c t i c  a c id  i s  a minor end product o f  ca rb o ­

h y d ra te  metabolism in  Physidae (Mehlman and von Brand, 1951). 

L ac tic  dehydrogenase in  many in v e r te b ra te s  shows low a c t iv i ty  

w ith  DPN or TPN, a lthough in  th e  presence o f  an a r t i f i c i a l  

c o - fa c to r  (3 -a c e ty l  p y r id in e  d iphosphopyrid ine n u c le o t id e )  a 

r a p id  conversion o f pyruvate  to  l a c t a t e  was observed (Kaplan, 

e t  a l . , 1960). Whether or not such a c t i v i t y  in  P. h a l e i  i s  

due to  low enzyme c o n c e n tra t io n  has not ye t been in v e s t ig a te d .  

The a b i l i t y  of TPN to  s t im u la te  a c t i v i t y  as r e a d i ly  as DPN 

d is t in g u is h e s  t h i s  enzyme from o th e r  l a c t i c  dehydrogenases 

which have been s tu d ie d  and suggests  the  p o s s i b i l i t y  o f  an
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e f f i c i e n t  carbon d iox ide  f i x a t i o n  sequence such as th e  TPN 

m alic d e c a rb o x y la s e - la c t ic  dehydrogenase i n t e r r e l a t i o n  de­

s c r ib e d  by Ochoa (1952). In  the  presence o f  "malic" enzyme, 

m alic a c id  and TPN r e a c t  to  g ive py ruvate , carbon d io x id e , 

and TPNH. Pyruvate and TPNH a re  converted  in  the  presence 

o f  l a c t i c  dehydrogenase to  l a c t i c  ac id  and TPN. The TPN is  

then a v a i la b le  to  r e a c t  w ith  ano ther molecule of m alic ac id  

and the  cyc le  co n t in u es .  The re v e r s e  r e a c t io n  should a lso  

occur, in  which carbon d iox ide  would be f ix ed  in to  pyruvate  

to  y i e ld  m alic  a c id .  In  th e  o y s te r ,  C ra s so s tre a  v i r g i n i c a , 

however, th e  main pathway of carbon d iox ide f ix a t io n  has 

been shown to  invo lve  p ro p io n a te .  Pyruvate ap p a re n tly  does 

no t p a r t i c i p a t e  in  carbon d iox ide  f ix a t i o n  (Hammen and 

W ilber, 1959). F u tu re  work i s  planned to  i d e n t i f y  th e  p rod­

u c ts  of th e  r e a c t io n  and extend th e  da ta  on c o - fa c to r  

s p e c i f i c i t y .

The c l a s s i c a l  s te p s  fo r  convers ion  of t r i o s e  phos­

phate  to  py ruvate  a re  p re se n t  in  P. h a l e i  and th e i r  ch a ra c ­

t e r i s t i c s  appear to  be q u i te  s im i la r  to  those  o f  comparable 

s te p s  in  v e r t e b r a te  t i s s u e .  The G-3-P dehydrogenase, r e ­

a c t io n  9, F ig u re  12, i s  very  a c t iv e  and th e  r e a c t io n  r a t e  o f  

3-PGA k in a s e ,  r e a c t io n  10, F igure  12, i s  comparable to  th a t  

o f  th e  mammalian enzyme. The 3-PGA mutase, re a c t io n  11,
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F ig u re  12, possesses c h a r a c t e r i s t i c s  q u i te  s im ila r  to  those  

o f  the  mammalian enzyme, a lthough , w ith  th e  method o f  assay  

employed, i t  was n o t p o s s ib le  to  o b ta in  va lues  fo r  a c t i v i t y  

r a t e s  which could be ass igned  to  t h i s  enzyme alone. Pyruvate 

k in a s e ,  r e a c t io n  13, F igure  12, i s  q u i te  a c t iv e  in  th e  d ia -  

lyzed  t i s s u e  e x t r a c t  and r e q u ire s  both Mg++ and K+ fo r  

a c t i v i t y .  The requirem ent fo r  th e se  two ions suggests  th a t  

py ruvate  k inase o f  P. h a l e i  more c lo s e ly  resembles th e  mam­

m alian  enzyme th an  th e  yeast enzyme s in c e  in  yeast th e re  i s  

no requirement fo r  K+ in  th e  d ia ly ze d  e x t r a c t  (Muntz, 1947) 

whereas both ions a re  re q u ire d  fo r  a c t i v i t y  in  the  mammalian 

enzyme. The fo rm ation  of pyruvate  in  th e  absence of ADP sug­

g e s ts  the  presence o f  a phosphatase capable o f  s p l i t t i n g  

in o rg an ic  phosphate from phosphopyruvate in  t r ie th a n o la m in e  

b u f fe r .  Absence of a c t i v i t y  in  phosphate b u ffe r  could  be 

due to  phosphate i n h ib i t io n  of th e  enzyme. Several phos­

p ha tases  a re  in h ib i t e d  by in o rgan ic  phosphate; fo r  example, 

i n t e s t i n a l  phosphomonoesterase (Heppel, 1955), phosphomono- 

e s te r a s e  o f  milk (Morton, 1955), and ac y l (ace ty l)  phospha­

t a s e  (Koshland, 1955).

Although f lu o r id e  produced no m easurable re d u c t io n  

in  pyruvate  form ation in  minced t i s s u e ,  the  ion  has a very  

d e f i n i t e  in h ib i to ry  a c t io n  on th e  eno lase  s te p ,  r e a c t io n  1 2 ,
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F igure  12, measured i n  t i s s u e  e x t r a c t  o f  P. h a l e i . I t  Is  

p o ss ib le  th a t  most o f  the  pyruvate  formed In minced t i s s u e

Is  formed v ia  some pathway o th e r  than  th e  g ly c o ly t ic  scheme.

The measurements o f  TPN m alic  decarboxylase a c t i v i t y ,  r e ­

a c t io n  15, F igure  12, In  P. h a l e i  In d ic a te  th e  form ation of 

pyruvate from th i s  source . This could well be a source o f

pyruvate In  minced t i s s u e .  Welnbach (1956) has found th a t

yS '-hydroxybutyrlc a c id  I s  v ig o ro u s ly  oxid ized  by acetone 

powder of the albumen gland of Lyronaea s t a g n a l l s . I t  I s  

p o ss ib le  t h a t  pyruvate  I s  produced In  q u a n t i ty  from some 

endogenous source  o f f a t t y  a c id s .

The t i s s u e  p re p a ra t io n s  which served as the  enzyme 

source fo r  the  measurements re p o r te d  In  th is  paper have 

perm itted  the  dem onstration and approximate measurements of 

a c t i v i t i e s  of the  g ly c o ly t i c  enzymes o f  P. h a l e i . A study 

u t i l i z i n g  p u r i f i e d  (or a t  l e a s t  p a r t i a l l y  p u r i f i e d )  enzymes 

would be d e s i r a b le .  This I s  p a r t i c u l a r l y  t ru e  o f  a ld o la s e  

and l a c t i c  dehydrogenase, which a p p a re n tly  d i f f e r  from th e  

corresponding enzymes in  v e r te b ra te  t i s s u e .  I t  Is  hoped th a t  

In  th e  f u tu re  I t  w i l l  be p o s s ib le  to  o b ta in  measurements on 

th e se  s te p s  with a more homogeneous t i s s u e  such as th e  hepa- 

topancreas or albumen gland r a th e r  than  the e n t i r e  s n a i l .
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F ig . 12 R eaction  scheme fo r  the  g ly c o ly t i c  pathway and 
i n i t i a l  s te p s  of th e  hexose monophosphate shun t.

1. Phosphoglucomutase
2. G-6 -P dehydrogenase
3. 6 -PG dehydrogenase
4 . Phosphoglucoisomerase
5. Phosphofructokinase
6 . A ldolase
7. T r io se  isom erase
8 . G lycerophosphate dehydrogenase
9. G-3 -P dehydrogenase

10. 3-PGA k in ase
11. Phosphoglyceric a c id  mutase
1 2 . eno lase
13. Pyruvate k in ase
14. L ac tic  dehydrogenase
15. TPN m alic decarboxylase
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CHAPTER VI

SUMMARY

1. Homogenates and e x t r a c ts  o f  the  a q u a t ic  s n a i l ,  

Physa h a l e i  Lea, have been employed in  s tu d ie s  of th e  i n i t i a l  

s te p s  of th e  hexose monophosphate shunt and g ly c o ly t ic  

sequence.

2. Both g lu c o se -6 -phosphate and 6 -phosphogluconate 

dehydrogenase have been dem onstrated in  P. h a l e i . They r e ­

semble the  mammalian enzyme in  c o - f a c to r  s p e c i f i c i t y .

3. E ffo r ts  to  fo llow  anaerob ic  ac id  form ation  by 

manometric methods have not produced s a t i s f a c t o r y  r e s u l t s .

The measurements ob ta ined  suggest the presence o f  an a c t iv e  

carbon ic  anhydrase which i n t e r f e r e s  w ith  the measurement o f  

carbon dioxide.

4. Evidence i s  p re se n ted  fo r  th e  presence o f  th e se  

g ly c o ly t i c  enzymes; phosphoglucomutase, phosphoglucoisomerase, 

a ld o la s e ,  tr io sephosphat e  isom erase , a -g lycerophosphate  d e ­

hydrogenase, g lycera ldehyde-3-phosphate  dehydrogenase,
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phosphoglyceric  k in a se ,  phosphoglyceric m utase, en o la se ,  

phosphopyruvate k in a se ,  and l a c t i c  dehydrogenase.

5. Most o f  th e  enzymes o f  the  g ly c o ly t ic  sequence 

have c h a r a c t e r i s t i c s  which a re  s im i la r  or i d e n t i c a l  to  those  

o f  mammalian enzymes. A ldo lase , l a c t i c  dehydrogenase, and 

pyruvate  k in ase  in  P. h a l e i  d i f f e r  in  some r e s p e c ts  from 

corresponding mammalian enzymes.

6 . A ldolase has c h a r a c te r i s t i c s  which suggest th a t  

i t  i s  a m e ta l lo -p ro te in  and thus more c lo se ly  resem bles the  

enzyme found in  microorganisms than  th a t  found in  mammalian 

t i s s u e .

7. L ac tic  dehydrogenase in  P. h a l e i , which has low 

a c t i v i t y ,  func tions  as w ell  w ith  TPN as w ith  DPN. In  t h i s  

r e sp e c t  th e  enzyme i s  q u i te  d i f f e r e n t  from mammalian l a c t i c  

dehydrogenase.

8. F lu o rid e  d id  n o t i n h i b i t  pyruvate p roduction  in  

minced t i s s u e  of P. h a l e i  a lthough the  ion d e f i n i t e l y  i n ­

h i b i t s  eno lase .

9. The presence o f  a "m alic" enzyme was i n v e s t i ­

g a ted , and, w hile m alic a c id  was found to s t im u la te  th e  f o r ­

mation o f  TPNH and pyruvate , pyruvate form ation was not 

accompanied by an equal molar form ation  of reduced TPN. 

Pyruvate form ation was observed in  the  absence of TPN. A
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m alate  to  pyruvate  s tep  could e x p la in  th e  accum ulation of 

pyruvate  observed in  minced t i s s u e  when f lu o r id e  was added 

to  th e  system.
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